Loading...
HomeMy WebLinkAboutDrainage Report Addendum to Drainage Report for Meadowcreek Subdivision — Phase 1 Brazos County, Texas Report: January 2005 Addendum: August 2005 Developer: Main Street Homes — CS, Ltd. 900 Congress Avenue, Suite L -100 Austin, Texas 78701 ®7~, (512) 801 - 8832 , ..... pc, b ® *: r B Q a F S.c, ; �. s Prepared By: • c, ' •, „ TEXCON General Contractors v , � A, r ; � ,® ,i 1 Graham Road �� Z �t' ° College Station, Texas 77845 (979) 764 -7743 ADDENDUM TO DRAINAGE REPORT MEADOWCREEK SUBDIVISION - PHASE 1 SUMMARY The openings in the outlet structure have been reduced in size to decrease the peak flow from the detention pond. Although the decreases in peak flow are not significant for the 5 -year to 100 -year stone events, the reduction in the opening size will have more impact on the typical minor storms that occur frequently. Attached are revised tables and information from the original Drainage Report (dated January 2005), which show the changes due to this design revision. (The following information has been taken from the January 2005 Drainage Report. Changes made are shown in bold italics). DETENTION FACILITY DESIGN Although a storm water detention facility is not required by Brazos County regulations, a detention pond will be constructed to control the peak discharge from this development such that it is less than or equal to the pre- development peak discharge. A comparison of the pre- & post- development peak discharge values for the existing drainage channel at the southeast property line shows an increase in the runoff for the 100 -year storm event. Table 5 shows the increases in runoff for the other storm events if there was not a detention pond to control the runoff. Because of this increased runoff, a detention pond is proposed, which will reduce the peak runoff to less than or equal to the pre - development runoff, as the "Post- Development with Pond" data in Table 5 shows. TABLE 5 — Pre- & Post - Development Peak Discharge Comparison — Detention Pond Design QS Q10 Q25 Q50 Q100 (cfs) (cfs) (cfs) (cfs) (cfs) Pre - Development 158 208 287 348 414 Post - Development without Pond 178 231 315 378 447 Post - Development out of Pond 143 196 273 331 394 Decrease in Peak Discharge 15 12 14 17 20 The area - capacity data and the depth- discharge data are provided in Appendix D. The detention pond grading plan is shown in the construction drawings. The pond outlet structure is a concrete channel which is 10' wide and has a control structure which has 2 openings which are 2' in width and 2' high with a flowline elevation of 293.0. The control structure also has a top crest elevation of 296.5, which allows additional weir flow over the control structure. Also, there is an overflow spillway with a crest elevation of 297.5. This spillway channel has a bottom width of 20', 3H:1 V side slopes and is lined with rock riprap to prevent erosion of the channel. The top of the pond berm is at Elevation 299.5. The proposed grading of the pond and the outlet and spillway details are shown on Exhibit E. The outlet structure channel will have dissipater blocks to reduce the velocity of the discharge and rock riprap will be used to prevent erosion. The peak flow out of the detention facility was determined by the HEC -1 program using the depth discharge data for the pond outlet structure as provided in Appendix D. As shown in Table 5, the peak outflow from the detention facility is Tess than the allowable peak outflow for the design storm event. Additionally, Table 6 presents the maximum water surface in the pond for each storm event, as well as the amount of freeboard provided. A schematic of the graphical HEC -1 computer model, the runoff summary, and the H EC -1 output for the pre - development condition are provided in Appendix E. The pre - development flows in Table 5 are from this HEC -1 output. The post - development HEC -1 schematic, the runoff summary, and the HEC -1 output are provided in Appendix F. TABLE 6 — Summary of Maximum Pond Water Levels Storm Event Water Surface Freeboard, Elevation, ft. ft. _ 5 -year 297.9 1.6 10 -year 298.3 1.2 25 -year 298.7 0.8 50 -year 299.1 0.4 100 -year 299.3 0.2 Note: Detention Pond Top of Berm Elevation = 299.5 Meadowcreek Subdivision - Phase 1 (Revised per Addendum, August 2005) Detention Pond No. 1 Area - Capacity Data V = H * {[A1 +A2 + (A1 *A2) / 3} V = volume, ft A = area, ft H = difference in elevation, ft POND NO. 1 Area - Capacity Data Elevation Depth Area Area Volume Cumulative (ft) (ft) (ft) (acres) (ac -ft) (ac -ft) 293.00 0.00 0 0.000 0.000 0.000 294.00 1.00 9,431 0.217 0.072 0.072 295.00 2.00 34,155 0.784 0.471 0.543 296.00 3.00 51,597 1.184 0.977 1.520 297.00 4.00 72,100 1.655 1.413 2.934 298.00 5.00 132,853 3.050 2.317 5.251 299.00 6.00 235,184 5.399 4.169 9.420 299.50 6.50 260,100 5.971 2.841 12.261 Detention Pond No. 1 Elevation Discharge Data POND NO. 1 Elevation Discharge Data 2 -2.0' wide x 2- high openings 10' wide Overflow Spillway Total Elevation L =4.0, A 9 =8.0 sf crest =296.5 20" BW, 3H:1V side slopes Discharge Elevation Weir Orifice Weir crest = 297.5, n =0.030 (ft) y, depth (ft) Q, cfs h, depth (ft) Q, cfs y, depth (ft) Q, cfs y, depth (ft) Q, cfs Q, cfs (ft) 293.0 0.0 0.0 0.0 0.0 -- -- -- -- 0.0 293.0 294.0 1.0 12.0 -- -- -- -- -- 12.0 294.0 295.0 2.0 34.0 -- -- -- -- -- 34.0 295.0 55.0 296.0 296.0 -- 2.0 55.0 -- -- -- -- 297.0 -- -- 3.0 67.0 0.5 10.6 -- 77.0 297.0 298.0 -- -- 4.0 77.0 1.5 55.1 0.5 18.0 150.0 298.0 299.0 -- -- 5.0 86.0 2.5 118.6 1.5 113.2 318.0 299.0 299.5 -- -- 5.5 90.4 3.0 155.9 2.0 186.0 432.0 299.5 1. Weir Equation Q = 3.0 * L * y312 2. Orifice Equation Q = 4.82 * A * h 112 3. Overflow Spillway - Mannings Equation x �, MEADOWCREEK SUBDIVISION WASTEWATER TREATMENT PLANT PK JOB NO. 51204 -311 TECHNICAL SPECIFICATIONS TABLE OF CONTENTS 11312 - Submersible Pumps 11390 - Package Wastewater Treatment Plant 13430 - Duplex Float Control Panel 16A - General Electrical 1 r St • • . OF TE�•q%S 1 %' ,, .. * / / STEVE E. DUNCAN v e 83252 i qt V.. tic ' h-• ;# ` 41 1,rfr' S: \2004\ 51204 -311 MAINSTREET- WWTP \Admin \Dots \00 - TABLE OF CONTENTS.doc SECTION 11312 SUBMERSIBLE PUMPS PART 1 GENERAL 1.01 SUMMARY This section provides for furnishing and installing constant speed, non -clog submersible sewage pumping units and equipment as indicated on the drawings. The complete installation shall include the placement of anchor bolts, setting of pumps, motors, leveling and aligning equipment and connection to piping to effect a complete operational pumping system, as well as other specified accessories. All the equipment called for under this section of the specifications shall be supplied by the pump manufacturer. This includes the basin, station piping, valves, pumps, motors, level controls, panel and access frame and cover, and the supplier shall, in addition to the Contractor, assume the responsibility for the proper functioning of the equipment. 1.02 MEASUREMENT AND PAYMENT Unless otherwise specified, no direct measurement or payment will be made for submersible pumps, the cost thereof being included in the bid price for the appropriate bid item listed in the proposal. 1.03 RELATED SECTIONS Section 02530 - Sanitary Sewerage System Section 13430 - Duplex Float Control Panel 1.04 PERFORMANCE REQUIREMENTS The pumps shall be so designed that they will safely operate at the specified conditions, speeds and operating pressure ranges without excessive wear, distortion, or vibration. Actual pump manufacturer figures shall not exceed the following performance requirements by more than ten percent (10 %). S:!2 004`51 -311 MAINSTREET- WWrP\AdminSpecs 1std.doc 11312 -1 - Submersible Pumps Std. -8/27 97 LIFT PERFORMANCE REQUIREMENTS STATION Number to be Installed 2 Rated Capacity at Rated TDH, GPM 333 Rated Total Dynamic Head, ft. 33 Station Operating Range, TDH 30 - 36 Maximum Nominal Pump Operating Speed, RPM 1750 Maximum Brake Horsepower Required at Rated Condition 6.5 Minimum Wire to Water Pump Efficiency at Rated Head, Percent 42.7 Solid Size, Inches 2 Maximum Motor Nameplate Horsepower 7.5 Minimum Motor Service Factor 1.15 Model Number CP 3127 Impeller Number 434 Head losses through the pumps are not included in the total pumping heads. Motors must not operate in the service factor in any portion of pump operating range. The sump volume requirements were sized utilizing the OFF level at the volute centerline based on the specified manufacturer. Any additional depth required to submerge or meet start per hour requirements will not be at the Owner's expense. 1.05 SUBMITTALS Complete fabrication, assembly, foundations and installation drawings, together with detailed specifications and data covering material used, parts, devices and other accessories forming a part of the equipment furnished, shall include but shall not be limited to the following: S:200451204.311 MAIN STREET-\ VWTPAdminSpecs'11312- 1. std .doc 11312 -2 Submersible Pumps Std. - 8/27.97 A. Prequalification Package. The pump manufacturer must submit four (4) sets of the following data to the Owner's representative fourteen (14) days prior to the bid date. Pumps Name of Manufacturer Along With Experience Background Type and Model Rotative Speed Size of Discharge Nozzle Type of Bearings Complete Performance Curves Showing Capacity Versus Head NPSHR Pump Overall Efficiency and BHP Data on Shop Painting Motors Name of Manufacturer Type and Model Type of Bearing and Lubrication Rated Size of Motor (HP) Temperature Rating and Motor Service Factor Full Load Rotative Speed Efficiency at Full Load and Rated Pump Condition Full Load Current Locked Rotor Current Unit Exploded View Guaranteed Wire to Water Efficiency Lift Weight of Pump and Motor Total Weight of Base Electrical connection diagrams and schematics identifying all items requiring electrical control or power used in the operation of the pumps shall also be submitted. B. Shop Drawings and Product Data. The Contractor shall furnish submittal data for the Owner's representative's approval. This data shall consist of the following: 1. Certified dimensioned outline drawings for pumping unit with shipping weights and unit weight. S ;2004'51204 -311 MAINSTREET- WW17 .AdmimSpecs'11312- I.std.doc 11312 -3 Submersible Pumps Std. - 827/97 2. Performance curves for the pump. 3. Cross - sectional drawing with detailed parts listed for pumps, motors and pump manufacturer supplied components. 4. Controls. Control schematic; field wiring diagram, manufacturer's catalog data on all components; panel arrangement and details. 5. Frame and Covers. Outline dimensions and materials of construction. 6. Warranty. Manufacturer's standard published warranty certified on supplied equipment. 7. Parts and Service. The equipment supplier shall satisfy the Owner's representative of their proven record of immediate availability of parts and field service on a twenty -four (24) hour basis. The Owner's representative shall inspect the supplier facility and contact local references [ten (10) required] to evaluate their service and spare parts availability. C. Testing and Final Submittals. The pump manufacturer shall perform the following inspection and tests on each pump before shipment from the factory. 1. Impeller, motor rating and electrical connections shall first be checked for compliance with the customer's purchase order. 2. A motor and cable insulation test for moisture content or insulation defects. 3. Prior to submergence, the pump shall be run dry to establish correct rotation and mechanical integrity. 4. The pump shall be run for thirty (30) minutes submerged, a minimum of six (6) feet under water. 5. After Operational Test No. 4, the insulation test (No. 2) is to be performed again. Two (2) sets of the following data shall be submitted upon shipment of pumps and motors: 1. Installation, operation, maintenance and lubrication manuals. 2. Copy of the approved submittal drawings. S: \2004'51204-311 MAINSTREET- WWTP'AdmimSpccs`11312 - std.doc 11 -4 Submersible Pumps Std. - 8,27.97 3. As -built electrical drawings of the control system. 1.06 WARRANTY The pump manufacturer shall warrant the unit being supplied to the Owner against defects in workmanship and material for a pro -rated period of five (5) years under normal use, operation and service. The warranty shall be in printed form and apply to all similar units. PART 2 PRODUCTS 2.01 MANUFACTURERS The pumps shall be manufactured by Flygt Corporation or approved equal. 2.02 MATERIALS AND /OR EQUIPMENT A. General. The pumps shall be vertical, non - clogged raw sewage centrifugal type for operation in a submerged condition. Each unit shall be equipped with a submersible electric motor, completely shop assembled in the pump manufacturer's plant, accurately aligned and properly prepared for shipment. B. Pump Type. The pumps shall be capable of handling raw, unscreened sewage. The discharge connection elbow shall be permanently installed in the wet well along with the discharge piping. Anchor bolts for the discharge connection elbow shall by Type 304 stainless steel. The pumps shall be automatically connected to the discharge connection elbow when lowered into place and shall be easily removed for inspection or service. There shall be no need for personnel to enter wet well to either disconnect or reconnect the pump. Sealing of the pumping unit shall be guided to and pressed tightly against the discharge connection elbow. No portion of the pump shall bear directly on the floor of the wet well. The pump, with its appurtenances and cables, shall be capable of continuous submergence under water without loss of watertight integrity to a depth of 65 feet. C. Lift System. A lift system shall be supplied comprised of a "grip eye" for attachment to lifting equipment hook and short length of chain attached to pump and stainless steel wire rope long enough to reach the station top. The grip eye shall be lowered over the stainless steel wire rope until reaching the chain where the grip eye automatically connects to the chain so the pump can be pulled by the use of lifting equipment. All components to be stainless steel or cast/ductile iron. S'2004 204 -311 MAINSTREET- WWTPAdmim Specs 11312- 1. std .doc 11312 -5 Submersible Pumps Std. - 9;27 -97 This lift system shall enable the operator to connect/disconnect the hook from the lifting device to any one of the submersible pump handles while submerged, from the station top. D. Casing. Each pump casing shall be constructed of fine- grained cast iron. The casting shall be designed for a minimum working pressure of fifty (50) PSIG and hydrostatically tested to 1 -1/2 times the working pressure. E. Pump Shaft. The pump shaft shall be of carbon steel, C1036, completely isolated from the pump medium, or stainless steel when exposed to the pump medium. The pump shaft shall rotate on two (2) permanently lubricated ball or roller bearings. The shaft shall be of sufficient diameter to assure ridged support of the impeller and to prevent excessive vibration at all operating speeds. F. Mechanical Seal. Each pump shall be provided with a mechanical seal system running in an oil reservoir having separate, constantly hydrodynamically lubricated lapped seal faces. The lower seal unit shall contain one (1) stationary and one (1) positively driven rotating tungsten- carbide ring. The upper seal shall contain one (1) stationery tungsten- carbide ring and one (1) positively driven carbon ring. The seals shall be installed in the TANDEM configuration. The seal systems shall not rely upon the pumped media for lubrication. G. Oil Chamber. Each pump shall be provided with an oil chamber for the shaft sealing system. The drain and inspection plug, with positive anti -leak seal, shall be easily accessible from the outside. H. Impeller. The pump impellers shall be one -piece cast iron, full- enclosed, design with wide passages to prevent clogging when pumping solids, trash, rags and string material contained in sewage. The impeller shall be statically and dynamically balanced. The impeller hub shall be accurately fitted and mechanically secured to the impeller shaft. Impeller and casing shall be designed to pass the minimum test sphere size scheduled hereinafter. Wear Rings. A replaceable wear ring shall be installed to provide efficient sealing between the volute and impeller. J. Cooling System. Each unit shall be provided with an adequately designed cooling system. Thermal sensors shall be used to monitor stator temperatures. The stator shall be equipped with three (3) thermal switches, embedded in the end coils of the stator winding [one (1) switch in each stator phase]. These shall be used in conjunction with and supplemental to, external motor overload protection and wired to the control panel. S:'2004'51204-311 MAIN STREET- WWIP`AdminSpecs\,11312- 1.std.doc 11312 -6 Submersible Pumps Std. -8/27; 97 K. Electrical Cable Seal. The cable entry shall be comprised of a single cylindrical elastomer, grommet, flanked by washers. The cable entry junction chamber and motor shall be separated by a stator lead sealing gland or terminal board. Epoxies, silicones, or other secondary sealing system shall not be considered acceptable. L. Motor. Pump motor shall be of NEMA Design B, squirrel -cage induction, shell- type design, housed in an air - filled watertight chamber. The stator winding and stator leads shall be insulated with moisture resistant Class F insulation which will resist a temperature of 155 degrees C (311 degrees F). The stator shall be dipped and baked three (3) times in Class F varnish. The motor shall be designed for continuous duty, capable of sustaining a minimum of ten (10) starts per hour. The rotor bars and short circuit rings shall be made of aluminum. The motor shall be non - overloading across the entire range of the pump performance curve without use of the service factor. The junction chamber, containing the terminal board, shall be sealed from the motor. Connection between the cable conductors and stator leads shall be made with threaded compressed type binding posts permanently affixed to a terminal board and thus, perfectly leak proof. The pump motor cables installed shall be suitable for submersible pump application with cable sizing conforming to ICEA -NEC specifications for submersible pump motors. Manufacturers requiring moisture detection devices for warranty shall supply a lock -out device with manual reset in the control panel. M. Exposed Surfaces. All exposed nuts and bolts shall be of stainless steel, Type 304 or 316. All surfaces coming into contact with sewage, other than stainless steel, shall be protected with a sewage resistant coating. N. Discharge Elbow. The discharge base elbow shall be furnished by the pump manufacturer. The discharge elbow shall have a foot for anchoring to the wet well floor and a means for firmly supporting the guide rails. The design and mass of the discharge elbow shall be sufficient for rigidly supporting the eccentric load of the pump unit and discharge piping. The discharge elbow inlet flange face shall be perpendicular and make a metal to metal contact with the pump discharge nozzle flange face. Sealing of the discharge interface by means of a diaphragm, o -ring or other device is not acceptable. The discharge elbow outlet shall connect Sd2004 $1204 -311 MAINSTREET- WWTP`Admin`Specs'1 131?- 1std.doc 11312-7 Submersible Pumps Std. - 8/27/97 to the discharge piping riser. The elbow shall have ANSI, 125 -pound flange dimensions and drilling. 0. Pump Guides. The pumps shall be capable of being lowered into position in the pump chamber and automatically connected to the discharge connection elbow by the use of sliding bracket and positioning devices. The sliding bracket shall be part of the pump assembly. The sliding bracket and positioning device shall be constructed of cast iron or 304 stainless steel. The upper guide rail bracket and the guide rails shall be constructed of stainless steel, sized as shown on the drawings. Intermediate guide rail brackets shall be constructed of 304 stainless steel and be positioned a maximum of twenty (20) feet apart. P. Mix -Flush Valve. At least one (1) pump in each sump shall be equipped with an automatically operating valve that will provide a mixing action within the sump at the start-up of the pumping cycle. This valve shall be mounted directly on the pump volute and shall direct a portion of the pumpage into the sump to flush and resuspend solids and grease by the turbulent action of its discharge. The turbulent action caused by the flow shall also provide some sump aeration benefits. The valve shall be mounted on the pump volute so that it can be removed from the sump along with the pump during normal and routine maintenance checks and shall be positioned on the volute to provide for non - clogging operation. The valve shall be equipped with an adjustable, wear - resistant discharge nozzle which shall be used to direct flow from the valve to optimize mixing action within the sump. The valve shall not require any external power source or control to operate, neither electric nor pneumatic. The use of any external power source is not acceptable. The valve shall be suitable for use in Class 1, Division 1 hazardous locations. The valve shall open at the beginning of each pumping cycle and shall automatically close during pump operation after a pre- selected time of operation. The valve shall operate automatically by differential pressure across the valve and shall be actuated through a self - contained hydraulic system which uses an environmentally safe fluid. A method of adjusting the valve operating time shall be provided. Q. Access Frame and Cover. Furnish aluminum access frames and covers for top of valve pit and wet well. The cover and frame shall be constructed of 1/4 -inch structural grade aluminum and utilize stainless steel hinges and stainless steel hardware. Covers to be equipped with padlock hasp and hold open arm and sized S:'2004 btAI ]STREET- WWTP\Admin`Specs 11312 -1 std.doc 11312 -8 Submersible Pumps Std. -8 ^_7 97 per the requirements of the drawings. The covers shall be rated for 150 pounds per square foot live load. PART 3 EXECUTION 3.01 ERECTION /INSTALLATION /APPLICATION AND /OR CONSTRUCTION A factory trained service engineer employed by the pump manufacturer shall advise the Contractor in the installation and start-up of the pumping units. The pump manufacturer's service technician shall include in his bid one (1) working day to advise the Owner's operator of operation and maintenance of the pumping units and controls. Pumps shall be installed only in the manner required by the manufacturer and only after the Contractor has been advised by the factory trained service engineer in the methods of installation and start-up of the pumping units. 3.02 FIELD QUALITY CONTROL After all pump and control systems have been completed and put into operation, subject each system to an operating test under design conditions to ensure proper sequence and operation throughout the range of operation. Make adjustments as required to ensure proper functioning of all systems. The units must perform in a manner acceptable to the Owner's representative before final acceptance will be made by the Owner. END OF SECTION S:'2004`51204-311 MAI \STREET- WWTP'AdmimSpecs'I 1312- I.std.doc 11312 -9 Submersible Pumps Std. - 8/27;97 SECTION 11390 PACKAGE WASTEWATER TREATMENT PLANT PART 1 GENERAL 1.01 SUMMARY The equipment manufacturer shall furnish for installation one (1) activated sludge treatment unit operated in the extended aeration mode including all necessary equipment required for operation as described in these specifications. The unit shall be designed to treat 120,000 GPD average (480,000 GPD peak) of raw sanitary sewage containing 200 mg/1 BOD and 200 mg/1 TSS, in accordance with TCEQ criteria for a 10 BOD, 15 TSS, 3 NH permit as manufactured by Southwest Fluid Products, Inc. or equal. The principal items of equipment to include all process piping (including valves) scum and sludge collection, air supply and distribution system, chlorination system, and any accessory equipment included as a part of this specification. PART 2 PRODUCTS 2.01 MATERIALS AND /OR EQUIPMENT A. STRUCTURE: The principal plant shall consist of steel tankage furnished to the engineer's specifications and in accordance with State Design Criteria. The plant shall be divided into zones as shown on the drawings. Steel plate and shapes shall be structural grade A -36, 1/4" minimum, and shall be joined by electric arc welding. Where required for strength or leak proofing, the weld shall be continuous and watertight. B. AERATION TANK: The inside length of the rectangular aeration/digester tank shall be as shown on the drawings. Operating water depth shall be 10 feet 6 inches. The water level shall be a minimum of 18 inches below the top edge of the tank under normal operating conditions. Volume of the aeration zones shall be as follows: Aeration tank: 101,810 gallons (13,611 FT Aerobic Sludge Holding: 30,541 gallons (4,083 FT Each tank shall have aeration diffuser drop lines to provide air for mixing and aeration as described in AIR DISTRIBUTION section of these specifications. S. \,2004 MAINSTREET- WWTP\AdmimSpecs\ 11390- 1stddoc Std - 8/27.97 11390 - 1 Package Wastewater Treatment Plant C. CLARIFIER: A circular, flat - bottomed tank shall serve as a clarifier. The interior cylindrical tank shall serve as a clarifier with center inlet and peripheral discharge. The inside diameter shall be 31'0" and the side water depth shall be 8'0" (based on the top of grout at outside of tank to mean water level). Overflow rate at average daily flow shall be 400 - gallons /day /square foot. An influent - loading well of 6'0" diameter by 4'0" shall be provided to dissipate influent velocity and prevent short- circuiting. An 8" loading pipe shall be installed from the aeration zone sloping upward to the loading well. The bottom of the clarifier shall be concrete with grout fill conforming to a 1 to 12 slope as shown by the drawings. The general contractor, using the collector as a guide for final finishing shall install the concrete. The equipment manufacturer shall provide mechanical sludge and scum collector. The collector arms shall be driven by a triple reduction gear system. The system shall consist of a double reduction gear drive with a flange- mounted motor, shaft mounted to a single reduction main gear drive. The output shaft of the main gear drive requiring no external bearings shall support the entire collection assembly. The gear drive shall be equipped with displacement/micro switch type overload device to automatically disconnect the motor if an overload condition occurs. The clarifier scum pump shall operate continuously. Scum collection shall be via skimmer arm with flexible wiper, which deposits scum in a full width collection box with beach for removal by airlift pump. Sludge collection shall be via adjustable steel scrapers at the bottom of the clarifier. Blades shall be attached to the support arms, arranged to convey settled sludge to a center collection hopper. Sludge from the hopper will be air lifted to the Aeration Zone in the normal mode. Return sludge shall discharge at a point within four feet (4') of the influent end wall of the aeration tank. Clarified liquid shall pass over an adjustable weir plate into the effluent trough. The weir shall be 11 -gauge stainless steel plate. The effluent trough shall be an integral part of the clarifier wall as shown on the drawings. A scum baffle shall be installed inside the weir plate. Airlift pumps for sludge and scum shall be sized as shown under PIPING. Gear drives used in this system shall be commercial drives with parts locally available from PT distributors. The equipment manufacturer shall guarantee that parts and service are available within a 50 -mile radius of the installation. D. ACCESS WALKWAY: Prefabricated walkway shall be provided for access to the clarifier drive unit and all process valves in or on plant tankage. The structure S.2004\51204 -311 MA! NSTREET- WWTP \Admit)Specs'11390- 1.std.docStd.- 8:27 11390 - 2 Package Wastewater Treatment Plant shall be adequate for concentrated loads at the drive mechanism as well as live and dead encountered during normal operation (minimum 150 # lineal foot live load). Continuous handrails shall be provided; walkway surface shall be 1x1 -1/8" galvanized bar grate. Handrails shall be all galvanized steel. The aeration tanks shall be accessed by stairway and 36" wide walkway running the entire length of the tanks and walkway interconnecting the aeration and clarifier tanks. All valves, automatic controls, and other areas needing service shall be accessible to the operator from the walkway or outside wall. Handrails and grating to be the same material as used on the clarifier bridge. E. AIR SUPPLY AND DISTRIBUTION: The equipment manufacturer shall provide three (3) blowers as manufactured by FPZ each blower shall be rated at 260 CFM @ 4.5 PSI. Blowers are complete with 15 HP 3600 RPM 3 ph/60hz/(230/460) volt horizontal TEFC motors. Blowers and motors shall be furnished mounted on a common base plate for installation next to the aeration tank as shown. Each blower combination shall be complete with built together motor/blower arrangement, pressure relief valve, check valve, and flexible piping connections. Air distribution on the plant shall be via steel pipe. (Plastic pipe shall not be allowed for air distribution of drop pipes.) Diffusers for process air shall be connected to the main Air Header through removable drop lines located as shown on drawings. Diffusion devices shall be coarse bubble type with minimum oxygen transfer efficiency of 5% at 20 CFM. The diffuser material shall be 304 stainless steel and inert. Plastic diffusers shall not be considered for this project. The drop pipe shall consist of galvanized schedule 40 steel pipe and be removable by one man without the use of hoists. Diffuser submergence shall be 9' -0 ". Diffusers shall be of the sparger type and have six -air release slots designed to be non- fouling. Diffusers shall include deflector plate to increase diffuser efficiency. Each drop line shall include clean out tee, which will permit "rodding" from above to clear any blockages. F. CHLORINATION SYSTEM: Inside dimensions of the chlorine contact tank shall be 96" long x 144" wide x 96" deep. Steel baffles shall be furnished by the manufacturer installed in the tank to promote plug flow. The tank shall be aerated. The equipment supplier shall also furnish a feeder for feeding liquid chlorine. The feeder shall be manufactured by LMI and be complete with flow pacing ties to flow meter system as shown under FLOW METERING EQUIPMENT. Enclosure to be fiberglass, 28" x 54" x 84" tall complete with hinged door and electrical circuits for feed equipment lighting and ventilation. S:0.004 -311 MAINSTREET- WWTP\ Admin Specs \11390-1.std.docStd.- 8,27i97 11390 - 3 Package Wastewater Treatment Plant G. INTEGRAL V -NOTCH WEIR: To provide for measurement of sewage flow, a V -notch weir chamber shall be provided at the outlet of the CL2 tank. The chamber shall be fabricated of 1 /4- inch -thick steel plate and shall have the same protective coating as the sewage treatment plant. The weir plate shall be constructed of 3/16- inch -thick uncoated aluminum and shall be easily removable from the chamber. The V -notch shall be cut at 22 -1/2 degrees and machined to a smooth, sharp crest for accurate flow indication. The depth, length and width of the chamber upstream of the weir shall be designed for accurate head production in accordance with commonly accepted design practice. A drop of at least six (6) inches shall be provided on the downstream side of the weir. A non - corrosive staff gauge, graduated to hundredths and marked at every foot and every tenth shall be mounted on the chamber wall to indicate the head produced by the weir. The manufacturer shall furnish a table suitable for conversion of staff gauge readings to rate of flow. H. FLOW METERING EQUIPMENT. An ultrasonic flow meter shall be furnished to indicate, totalize and record the sewage flow through the V -notch weir. The flow meter shall be equal to Milltronics OCM3 and shall be suitable for outdoor mounting. Flow shall be recorded on twelve (12) inch circular charts, which make one revolution every seven (7) days, and integrated on an eight (8) digit counter mounted in the instrument case. The chart and indicator drive shall operate on 112 -volt, 60 Hz, single -phase current. Short circuit protection shall be furnished for the flow meter in the treatment plant control panel. The Contractor shall mount the flow meter using material furnished by the manufacturer and shall install all electrical wire and conduit from the treatment plant control panel to the flow meter. PIPING: All piping required for the process located inside the limits of the plant structure shall be furnished by the manufacturer. Pipe stub -outs shall be provided to the exterior wall for connection the external piping. Pipe sizes shall be as follows: 6" Influent 8" Effluent 8" Clarifier Loading S:\200451204- 311 MAISSTREET- WWTP\Admin \Specs \11390- 1 .std.doc Std.-8/27,9711390 Package Wastewater Treatment Plant Airlift pumps shall be schedule 40 galvanized steel completed with stainless steel air supply line, valves and supports. Sizes shall be: 4" Return Sludge Airlift 3" Scum discharge from clarifier External drains and heavy iron drain valves shall be installed at each tank. J. ELECTRICAL: The manufacturer shall provide the controls for the blowers, sludge scraper mechanism, overload device. and scum solenoid control. These controls shall be wired for a single point connection for the electrical contractor. The control panel(s) shall be NEMA -4X GASKETED STAINLESS STEEL enclosure with dripshield, with a polished aluminum hinged deadfront door on a continuous piano hinge and removable subpanel. The control enclosure's outer door will be held closed and sealed by a single handle operated three point latching system with a padlock hasp. There will be no need for exterior clips requiring a screwdriver or wrench to seal the door. The inner aluminum door, mounted on continuous hinge, will be furnished for protection against exposed wiring and will have cutouts for access to the circuit breakers. Mounted on the inner door will be pump run lights, level indication lights, hand off automatic switches and a twenty (20) ampere duplex receptacle. A laminated schematic sheet will be permanently affixed to the interior of the enclosure door. A final record drawing encapsulated in mylar shall be attached to the inside of the front door. Motor Circuit Breaker. A thermal magnetic molded case heavy -duty type circuit breaker shall be supplied as branch circuit protection for each motor. The circuit breaker must have a minimum ampere interrupting capacity of 14,000 symmetrical RMS amps. Motor Starters. Motor starters shall be standard NEMA size, FVNR with a three (3) line bimetal ambient compensated overload relay and heater element. The motor starter shall have a horsepower rating not less than the rated motor horsepower. Control Transformers. A 480/120 (not required with a 240 volt system) volt control transformer shall be provided with sufficient capacity to power the motor starter's holding coils, run lights, elapsed time meters and level controls. A 120 volt/24 volt transformer shall be provided to power level floats and twenty -four (24) volt relays. 5:\2004 -311 MAINSTREET- WWTP'Admin \Specs \11390- I.stddoc Std- 8i27/97 11390 - 5 Package Wastewater Treatment Plant H -O -A Selector Switches. An H -O -A selector switch shall be provided for each pump. The H -O -A selector switches shall be heavy -duty type rated as a NEMA- 4X oil tight switch with ten (10) amp contacts. Elapsed Time Meter. Elapsed time meters shall be provided to record the running time of each pump. The meters shall be the non- reset, 120 VAC digital type with a minimum range of 9,999.9 hours. Pilot Lights. The motor controller shall incorporate neon level indicating and running pilot lights for each pump. The lights shall have an interchangeable shatter resisting lens. Motor running indicator lights shall have green lens and level indicator lights shall have amber lens. LED's will not be acceptable. Space Heater. One (1) 120 VAC, fifty (50) watt space heater shall be installed in the bottom of the motor controller. The heater shall have a rust resisting iron sheath and slots in each mounting tab to accommodate secondary insulation bushing for mounting. A thermostatic control shall be installed in the top of the motor controller for controlling the space heater temperature. The thermostat shall have an adjustable operating range of thirty -five (35) degrees F to ninety (90) degrees F and shall also have SPST; snap- acting contacts rated twenty -five (25) amps at 120 VAC. Phase Monitor. A phase monitor shall be provided to protect against, single phasing, under voltage and phase reversal. The monitor shall have an adjustable operating range and a response time of two (2) seconds. The contact arrangement shall be DPDT with a minimum contact rating of three (3) amps at 600 VAC resistive. Lightning Arrestor /Surge Suppressor. A three (3) phase, three (3) poles, 0 -900 volt lightning arrestor shall be connected to each phase of the incoming service. The arrestor shall be designed to limit the magnitude of the voltage impressed on the motor windings in the event that the system is subjected to lightning -surge voltages. Shall have a response time of five (5) nanoseconds and withstanding a surge of 6,500 amperes. Panel Markings. All component parts in the control panel shall be permanently marked and identified. Marking shall be on the back plate adjacent to the component. All control conductors shall be identified with wire markers as close as practical to each end of conductors. K. AREA LIGHTING: A minimum of three (3) area lights shall be mounted above the walkway. They are to be 150 -watt high - pressure sodium fixture mounted 10 feet above grade with manual and photocell control. (Power and control shall be included with the electrical identified in J- above) S:\ 2004\51204-311 MAINSTREET- WWTPAAdmin\ Specs 11390- 1 std doc Std. - 827,97 11390 - 6 Package Wastewater Treatment Plant L. PAINTING /CORROSION PROTECTION: Fabricated steel items not galvanized or plated will be finish painted. All tankage to be coated with coal tar based polyurethane paint specifically designed for sewage treatment plant service, "moisture cure" type as manufactured by Sherwin- Williams, or equal. Application will be to a minimum thickness of 14 mil over near white (SSPC SP- 10) blast on steal or to manufacturers' recommendations if greater. All steel items not welded to the tank shall be hot dip galvanized or stainless steel. END OF SECTION S:` 2004` 51204 -311 MAINSTREET- WWTP \Admin' Specs\ 11390- I.stddocStd.-8/27 Package Wastewater Treatment Plant • SECTION 13430 DUPLEX FLOAT CONTROL PANEL PART 1 GENERAL 1.01 SUMMARY Requirements for furnishing and installing duplex float control panel as indicated on the drawings. All of the equipment called for under this section to be supplied by the pump manufacturer. 1.02 MEASUREMENT AND PAYMENT Unless otherwise specified, no direct measurement or payment will be made for duplex control panel, the cost thereof being included in the bid price for the appropriate bid item listed in the proposal. PART 2 PRODUCTS 2.01 MATERIALS AND /OR EQUIPMENT A. Control Panel - Float Type 1. Design. Pump manufacturer's duplex float control and alarm system designed to function with pumping units, factory wire and tested. Controls to automatically start and stop pumping units and permit manual operation at the panel. The control panel is to be UL listed, manufactured in a UL approved facility. The control panel shall be wired for a single point connection for the electrical contractor. 2. Sequencing. The control function provides for the operation of the lead pump under normal conditions. If the incoming flow exceeds the pumping capacity of the lead pump, the lag pump will automatically start to handle this increased flow. As the flow decreases, pumps will be cut off at elevations as determined on the drawings. Lead pump will be alternated after each cycle. In the event of a high level condition, an alarm light will be excited to indicate an alarm condition. Should the pump OFF regulator fail, the system will operate with a differential between the lead pump ON and the lag pump ON levels. S:'2004 MAINSTREET- WWTP `,Admin Specs \13430- I .std .doc 13430 -1 Duplex Float Control Panel Std. - 827,97 All control voltage to the liquid level sensors shall be a maximum of twenty -four (24) volts and shall power twenty -four (24) volt plug -in style relays to enable alarm and motor starter coils to operate at one hundred and twenty (120) volts. In the event of phase reversal, loss of phase or low voltage of any phase, control voltage will be interrupted through the phase monitor. The phase monitor will automatically reset upon removal of any and all of the above conditions. 3. The control panel shall be NEMA -3R GASKETED STAINLESS STEEL enclosure with dripshield, with a polished aluminum hinged deadfront door on a continuous piano hinge and removable subpanel. The control enclosure's outer door will be held closed and sealed by a single handle operated three point latching system with a padlock hasp. There will be no need for exterior clips requiring a screwdriver or wrench to seal the door. 4. The inner aluminum door, mounted on continuous hinge, will be furnished for protection against exposed wiring and will have cutouts for access to the circuit breakers. Mounted on the inner door will be pump run lights, level indication lights, hand off automatic switches and a twenty (20) ampere duplex receptacle. A laminated schematic sheet will be permanently affixed to the interior of the enclosure door. A final record drawing encapsulated in mylar shall be attached to the inside of the front door. B. Motor Circuit Breaker. A thermal magnetic molded case heavy -duty type circuit breaker shall be supplied as branch circuit protection for each pump motor. The circuit breaker must have a minimum ampere interrupting capacity of 14,000 symmetrical RMS amps. C. Motor Starters. Motor starters shall be standard NEMA size, FVNR with a three (3) line bimetal ambient compensated overload relay and heater element. The motor starter shall have a horsepower rating not less than the rated motor horsepower. D. Control Transformers. A 480/120 (not required with a 240 volt system) volt control transformer shall be provided with sufficient capacity to power the motor starter's holding coils, run lights, elapsed time meters and level controls. A 120 volt/24 volt transformer shall be provided to power level floats and twenty -four (24) volt relays. S:,2004.S1204 -311 MAINSTREET- WWTPAdminSpcs' 13430- 1.stddoc 13430 -2 Duplex Float Control Panel Std-8 27,97 E. H -O -A Selector Switches. An H -O -A selector switch shall be provided for each pump. The H -O -A selector switches shall be heavy -duty type rated as a NEMA- 4X oil tight switch with ten (10) amp contacts. F. Elapsed Time Meter. Elapsed time meters shall be provided to record the running time of each pump. The meters shall be the non - reset, 120 VAC digital type with a minimum range of 9,999.9 hours. G. Pilot Lights. The motor controller shall incorporate neon level indicating and running pilot lights for each pump. The lights shall have an interchangeable shatter resisting lens. Motor running indicator lights shall have green lens and level indicator lights shall have amber lens. LED's will not be acceptable. H. Space Heater. One (1) 120 VAC, fifty (50) watt space heater shall be installed in the bottom of the motor controller. The heater shall have a rust resisting iron sheath and slots in each mounting tab to accommodate secondary insulation bushing for mounting. A thermostatic control shall be installed in the top of the motor controller for controlling the space heater temperature. The thermostat shall have an adjustable operating range of thirty -five (35) degrees F to ninety (90) degrees F and shall also have SPST; snap- acting contacts rated twenty -five (25) amps at 120 VAC. I. Phase Monitor. A phase monitor shall be provided to protect against, single phasing, under voltage and phase reversal. The monitor shall have an adjustable operating range and a response time of two (2) seconds. The contact arrangement shall be DPDT with a minimum contact rating of three (3) amps at 600 VAC resistive. J. Lead /Lag Pump Alternator. The level control circuit shall include a duplex pump alternator. The alternators shall be the solid -state plug -in type with a five (5) amp; 120 volt output rating and pump sequence indicator lamps. An alternator /test /off switch shall be provided, for alternator test and bypass function. K. Lightning Arrestor /Surge Suppressor. A three (3) phase, three (3) poles, 0 -900 volt lightning arrestor shall be connected to each phase of the incoming service. The arrestor shall be designed to limit the magnitude of the voltage impressed on the motor windings in the event that the system is subjected to lightning -surge voltages. Shall have a response time of five (5) nanoseconds and withstanding a surge of 6,500 amperes. L. High Level Alarm Light. A high -level alarm light shall be mounted on the top of the enclosure as shown on the drawing. The lamp shall be complete with a 120 VAC, 100 -watt incandescent bulb and red lexan shatterproof globe. S:'2004 -311 MAINSTREET- WW1 P\Admin 1.sud.doc 13430 -3 Duplex Float Control Panel Std. - 8/27/97 M. Panel Markings. All component parts in the control panel shall be permanently marked and identified as they are indicated on the drawing. Marking shall be on the back plate adjacent to the component. All control conductors shall be identified with wire markers as close as practical to each end of conductors. N. Motor Protection 1. Winding Temperature. The motor shall contain winding thermal sensors. In the event of an overtemp condition, the motor will be shut down until it's sufficiently cock to automatically reset. 2. Moisture Probes. Manufacturers requiring moisture detection devices for warranty shall supply a lockout device with manual reset in the control panel. O. Level Regulators 1. Sensors. Polypropylene sealed mercury float switches. Provide one (1) sensor for each control level. Sensors to be of the enclosed weight type and set in accordance with contract drawings. 2. Cable. Heavy neoprene jacketed cable. Furnished in one (1) continuous length from sensor to Control Panel. 3. Cable Sensor. A stainless steel cable holder with not less than six (6) hooks shall be used. PART 3 EXECUTION 3.01 FIELD QUALITY CONTROL A factory trained service representative shall check panel for correct connections, check rotation, voltage, amperage and operate pumps through a complete cycle. High -level alarm and alternator shall be demonstrated. Operating instructions shall be given as required. Record drawings and operation and maintenance manuals will be presented at time of start up. END OF SECTION 5'2004`51204 -311 MAINSTREET- WWTP'Admin\Specs 13430-1 std 13430 -4 Duplex Float Control Panel Std. -/2797 05- JO 4 )4A4 Drainage Report for Meadowcreek Subdivision — Phase 1 Brazos County, Texas January 2005 Developer: Main Street Homes — CS, Ltd. 900 Congress Avenue, Suite L -100 Austin, Texas 78701 (512) 801 -8832 Prepared By: TEXCON General Contractors 1707 Graham Road College Station, Texas 77845 (979) 764 -7743 Addendum to Drainage Report for Meadowcreek Subdivision — Phase 1 Brazos County, Texas Report: January 2005 Addendum: August 2005 Developer: Main Street Homes — CS, Ltd. 900 Congress Avenue, Suite L -100 Austin, Texas 78701 (512) 801 -8832 .01 .. °.. ?ctit) oir * � 0 JOSEPH P .�� . . � 5 eo t 65 � • <v/ Prepared By: `�S' . _ �.o s TEXCON General Contractors �I �'® 1707 Graham Road 2 ° College Station, Texas 77845 (979) 764 -7743 ADDENDUM TO DRAINAGE REPORT MEADOWCREEK SUBDIVISION - PHASE 1 SUMMARY The openings in the outlet structure have been reduced in size to decrease the peak flow from the detention pond. Although the decreases in peak flow are not significant for the 5 -year to 100 -year stone events, the reduction in the opening size will have more impact on the typical minor storms that occur frequently. Attached are revised tables and information from the original Drainage Report (dated January 2005), which show the changes due to this design revision. (The following information has been taken from the January 2005 Drainage Report. Changes made are shown in bold italics). DETENTION FACILITY DESIGN Although a storm water detention facility is not required by Brazos County regulations, a detention pond will be constructed to control the peak discharge from this development such that it is less than or equal to the pre- development peak discharge. A comparison of the pre- & post- development peak discharge values for the existing drainage channel at the southeast property line shows an increase in the runoff for the 100 -year stone event. Table 5 shows the increases in runoff for the other storm events if there was not a detention pond to control the runoff. Because of this increased runoff, a detention pond is proposed, which will reduce the peak runoff to less than or equal to the pre - development runoff, as the "Post- Development with Pond" data in Table 5 shows. TABLE 5 — Pre- & Post - Development Peak Discharge Comparison — Detention Pond Design 0 Q70 Q25 Q50 Q100 (cfs) (cfs) (cfs) (cfs) (cfs) Pre- Development 158 208 287 348 414 Post - Development without Pond 178 231 315 378 447 Post - Development out of Pond 143 196 273 331 394 Decrease in Peak Discharge 15 12 14 17 20 The area - capacity data and the depth- discharge data are provided in Appendix D. The detention pond grading plan is shown in the construction drawings. The pond outlet structure is a concrete channel which is 10' wide and has a control structure which has 2 openings which are 2' in width and 2' high with a flowline elevation of 293.0. The control structure also has a top crest elevation of 296.5, which allows additional weir flow over the control structure. Also, there is an overflow spillway with a crest elevation of 297.5. This spillway channel has a bottom width of 20', 3H:1 V side slopes and is lined with rock riprap to prevent erosion of the channel. The top of the pond berm is at Elevation 299.5. The proposed grading of the pond and the outlet and spillway details are shown on Exhibit E. The outlet structure channel will have dissipater blocks to reduce the velocity of the discharge and rock riprap will be used to prevent erosion. 1 The peak flow out of the detention facility was determined by the HEC -1 program using the depth discharge data for the pond outlet structure as provided in Appendix D. As shown in Table 5, the peak outflow from the detention facility is less than the allowable peak outflow for the design storm event. Additionally, Table 6 presents the maximum water surface in the pond for each storm event, as well as the amount of freeboard provided. A schematic of the graphical HEC -1 computer model, the runoff summary, and the HEC -1 output for the pre - development condition are provided in Appendix E. The pre - development flows in Table 5 are from this HEC -1 output. The post - development HEC -1 schematic, the runoff summary, and the HEC -1 output are provided in Appendix F... TABLE 6 — Summary of Maximum Pond Water Levels Storm Event Water Surface Freeboard, Elevation, ft. ft. 5 -year 297.9 1.6 10 -year 298.3 1.2 25 -year 298.7 0.8 50 -year 299.1 0.4 100 -year 299.3 0.2 Note: Detention Pond Top of Berm Elevation = 299.5 f Meadowcreek Subdivision - Phase 1 (Revised per Addendum, August 2005) Detention Pond No. 1 Area - Capacity Data V = 1i* ([A1 +A2 + (A1 *A2) / 3) V = volume, ft A = area, ft H = difference in elevation, ft POND NO. 1 Area - Capacity Data Elevation Depth Area Area Volume Cumulative (ft) (ft) (ft) (acres) (ac -ft) (ac -ft) 293.00 0.00 0 0.000 0.000 0.000 294.00 1.00 9,431 0.217 0.072 0.072 295.00 2.00 34,155 0.784 0.471 0.543 ---._------------ - - - - -- - - - -- - - - -- - - -- 296.00 3.00 51,597 1.184 0.977 1.520 297.00 4.00 72,100 1.655 1.413 2.934 298.00 5.00 132,853 3.050 2.317 5.251 299.00 6.00 235,184 5.399 4.169 9.420 299.50 6.50 260,100 5.971 2.841 - 12.261 Detention Pond No. 1 Elevation Discharge Data POND NO. 1 Elevation Discharge Data 2 -2.0' wide x 2- high openings 10' wide Overflow Spillway Total Elevation L A sf crest =296.5 20" BW, 3H:1V side slopes Elevation Discharge Weir Orifice Weir crest = 297.5, n=0.030 (ft) y, depth (ft) Q, cfs h, depth (ft) Q, cfs y, depth (ft) Q, cfs y, depth (ft) Q, cfs Q, cfs (ft) 293.0 0.0 0.0 0.0 0.0 -- -- -- -- 0.0 293.0 294.0 1.0 12.0 12.0 294.0 -- - -- --- -- - -- - -- - 295.0 __ 2.0 _ 34.0 -- -- - -- -- 34.0 295. - - -- 296.0 -- _ -- 2.0 55.0 -- -- -- -- 55.0 296.0 - -- 3.0 67 0. . 297.0 -- -- 0.5 10.6 -- -- 77.0 -- 4.0 7 7.0 1 55.1 0.5 18.0 150.0 298.0 298.0 -- - - -- - - - -- -- _ -- 5.0 86.0 2.5 118.6 1.5 113.2 318.0 299.0 299.0 -- __- -- - - -- - -- 299.5 -- -- 5.5 - 90.4 3.0 155.9 2.0 - 186.0 432.0 299.5 1. Weir Equation Q = 3.0 * L* y 312 2. Orifice Equation Q = 4.82 * A * h 112 3. Overflow Spillway - Mannings Equation CERTIFICATION 1, Joseph P. Schultz, Licensed Professional Engineer No. 65889, State of Texas, certify that this report for the drainage design for the Meadowcreek Subdivision — Phase 1, was prepared by me in accordance with the provisions of the Subdivision and Development Regulations of Brazos County. r �a t s * • •. * 0 JOSEPH P. SCHULTZ j Josil P. hultz, P.E. � o ••,C. 65889 0. 44, `® /nh' I TABLE OF CONTENTS DRAINAGE REPORT MEADOWCREEK SUBDIVISION - PHASE 1 CERTIFICATION 1 TABLE OF CONTENTS 2 LIST OF TABLES 3 INTRODUCTION 4 GENERAL LOCATION AND DESCRIPTION 4 FLOOD HAZARD INFORMATION 4 DEVELOPMENT DRAINAGE PATTERNS 4 DRAINAGE DESIGN CRITERIA 4 STORM WATER RUNOFF DETERMINATION 5 DETENTION FACILITY DESIGN 7 STORM SEWER DESIGN 8 CHANNEL DESIGN 9 CONCLUSIONS 9 APPENDIX A 10 Storm Sewer Inlet Design Data: Calculations, Gutter Depth, Time of Concentration Data APPENDIX B 21 Storm Sewer Pipe Design Data: Drainage System Diagram, Drainage Area Data, Manning's & Culvert Calculator Data, Time of Concentration Data APPENDIX C 56 Drainage Channel Design Data: Calculation Summary, Channel Calculator Data APPENDIX D 66 Detention Pond Design Data & Calculations: Area- Capacity Data, SCS Curve Number Data, Time of Concentration Calculations APPENDIX E 76 Detention Pond Pre - Development HEC -1 Output, Runoff Summary & Schematic APPENDIX F 85 Detention Pond Post - Development HEC -1 Output, Runoff Summary & Schematic EXHIBIT A 98 Drainage Area Map — Post - Development, Inlet Design EXHIBIT B 100 Drainage Area Map — Post - Development, Pipe & Channel Design EXHIBIT C 102 Drainage Area Map — Pre - Development, Pond Design EXHIBIT D 104 Drainage Area Map — Post - Development, Pond Design EXHIBIT E 104 Detention Pond Plan and Details LIST OF TABLES TABLE 1 — Rainfall Intensity Calculations 5 TABLE 2 — Time of Concentration (t Equations 6 TABLE 3 — Pre- & Post - Development Runoff Information — Detention Evaluation 6 TABLE 4 — Post - Development Runoff Information — Storm Sewer Design 6 TABLE 5 — Pre- & Post - Development Peak Discharge Comparison — Detention Pond Design 7 TABLE 6 — Summary of Maximum Pond Water Levels 8 DRAINAGE REPORT MEADOWCREEK SUBDIVISION - PHASE 1 INTRODUCTION The purpose of this report is to provide the hydrological effects of the construction of the Meadowcreek Subdivision — Phase 1, and to verify that the proposed storm drainage system meets the requirements set forth by the Subdivision and Development Regulations of Brazos County. Since this subdivision has curb and gutter streets, as typically found in urban residential developments, the streets and drainage structures have also been designed to meet City of College Station Drainage Policy and Design Standards. GENERAL LOCATION AND DESCRIPTION The project is located on a portion of a 75 acre tract located west of FM 2154 along the south side of Koppe Bridge Road approximately 1 mile from Wellborn, Texas. The site is predominantly wooded. The existing ground elevations range from elevation 292 to elevation 327. The general location of the project site is shown on the vicinity map in Exhibit C. FLOOD HAZARD INFORMATION The project site is located in the Peach Creek Drainage Basin. This entire site is located in a Zone X Area according to the Flood Insurance Rate Map prepared by the Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated areas dated July 2, 1992, panel number 48041CO200-C. Zone X Areas are determined to be outside of the 500 - year floodplain. DEVELOPMENT DRAINAGE PATTERNS Prior to development, the storm water runoff from this site flows in a southeasterly direction and leaves the site in an existing drainage channel. Ultimately, this runoff flows into a tributary of Peach Creek and then into Peach Creek. Runoff from the adjacent properties to the northeast, northwest and southwest also enters this site. This runoff is accounted for in the design of the drainage structures for this project. After development, the runoff will be discharged at the same location as before the development. DRAINAGE DESIGN CRITERIA The design parameters for the storm sewer and detention facility analysis are as follows: • The Rational Method is utilized to determine peak storm water runoff rates for the storm sewer inlet, pipe and drainage channel design, and the HEC -1 computer program is utilized to determine peak storm water runoff rates for the detention facility design. • Design Storm Frequency Storm sewer system 10, 25 and 100 -year storm events Channel Design 25 and 100 -year storm events Detention facility analysis 5, 10, 25, 50 and 100 -year storm events 4 • Runoff Coefficients Pre - development C = 0.30 Post - development (single family residential) C = 0.55 • Runoff Curve Number (CN) Detention Pond The Brazos County Soil Survey shows the soils in the area to be classified as hydrologic Group C & D soils. The pre - development CN is based on no development on the site. The post- development CN is based on development of Phase l of the subdivision within the detention pond drainage area. The CN calculations are found in Appendix D. • Rainfall Intensity equations and values for Brazos County can be found in Table 1. • Time of Concentration, t, — Calculations are based on the method found in the TR -55 publication. Refer to Table 2 for the equations and Appendices for calculations. The runoff flow paths used for calculating the pre- & post - development times of concentration for the detention pond analysis are shown on Exhibits C & D, and the flow path used for the post - development time of concentration for the storm sewer design is found on Exhibit A, and on Exhibit B for the channel design. For smaller drainage areas, a minimum t, of 10 minutes is used to determine the rainfall intensity values. STORM WATER RUNOFF DETERMINATION The peak runoff values were determined in accordance with the criteria presented in the previous section for the 5, 10, 25, 50, and 100 -year storm events. The drainage areas for the pre- & post- development conditions for the detention pond analysis are shown on Exhibits C & D. The drainage areas for the post - development conditions for the storm sewer design are shown on Exhibit A and on Exhibit B for the channel design. Pre- development and post - development runoff information for the detention facility evaluation is summarized in Table 3. Post - development runoff conditions for the storm sewer design are summarized in Table 4. TABLE 1 — Rainfall Intensity Calculations Rainfall Intensity Values (in /hr) Storm t = I = b / (tc +d) Event 10 min I = Rainfall Intensity (in /hr) 15 7.693 1 8.635 = U(V'60) 125 9.861 t = Time of concentration (min) 1 11.148 L = Length (ft) 1100 11.639 V = Velocity (ft/sec) Brazos County: 5 year storm 10 year storm 25 year storm 50 year storm 100 year storm b= 76 b= 80 b= 89 b= 98 b= 96 d = 8.5 d = 8.5 d = 8.5 d = 8.5 d = 8.0 e = 0.785 e = 0.763 e = 0.754 e = 0.745 e = 0.730 (Data taken from State Department of Highways and Public Transportation Hydraulic Manual, page 2 - 16) TABLE 2 - Time of Concentration (t Equations The lime of concentration was determined using methods found in TR -55, "Urban Hydrology for Small Watersheds." The equations are as follows: Time of Concentration: Tc = T, (shef „ 1 o „ )+ T,(concentrated sheet flow) where: T, = Travel Time, minutes For Sheet Flow: T, = 0.007 (n L) 8 (30 s °.4 where: T, = travel time, hours n = Manning's roughness coefficient L = flow length, feet Pz = 2 -year, 24 -hour rainfall = 4.5" s = land slope, ft/ft For Shallow Concentrated Flow: T, = L / (60 *V) where: T, = travel time, minutes V = Velocity, fps (See Fig 3 -1, App. E) L = flow length, feet Refer to Appendices for calculations. TABLE 3 - Pre- & Post - Development Runoff Information - Detention Evaluation Area tc Area # CN (acres) (min) (hrs) Pre 101 188.48 69.7 83.1 49.9 Post 301 188.48 71.7 80.5 48.3 TABLE 4 - Post - Development Runoff Information - Storm Sewer Design Area # Area C (Gutter (acres) Location) A Total C' Cx CTCUI � x 201 1.02 8.52 9.54 0.55 0.30 0.33 202A 1.10 2.29 3.39 0.55 0.30 0.38 202B 1.32 0.24 1.56 0.55 0.30 0.51 202 (C2) 1.10 2.20 3.30 0.55 0.30 0.38 202 (C3) 1.08 0.00 1.08 0.55 0.30 0.55 203 1.00 4.33 5.33 0.55 0.30 0.35 204 (C4) 0.24 0.24 0.48 0.55 0.30 0.43 205 (C5) 0.41 0.10 0.51 0.55 0.30 0.50 206 (B2) 2.34 0.34 2.68 0.55 0.30 0.52 206 2.34 0.34 2.68 0.55 0.30 0.52 210 (C1) 2.00 0.00 2.00 0.55 0.30 0.55 210 2.41 0.10 2.51 0.55 0 -30 0.54 211 0.09 0.00 0.09 0.55 0.30 0.55 212 0.09 0.00 0.09 0.55 0.30 0.55 214 (A2) 0.57 0.00 0.57 0.55 0.30 0.55 215 (A4) 0.07 0.00 0.07 0.55 0.30 0.55 216 (B1) 1.34 0.00 1.34 0.55 0.30 0.55 216 1.34 0.00 1.34 0.55 0.30 0.55 217 017 0.00 0.17 0.55 0.30 0.55 218 0.13 0.00 0.13 0.55 0.30 0.55 220 (A1) 0.66 0.62 1.28 0.55 0.30 0.43 220 2.07 0.00 2.07 0.55 0.30 0.55 221 (A3) 0.25 0.00 0.25 0.55 0.30 0.55 221 0.32 0.00 0.32 0.55 0.30 0 55 222A 2.97 0.00 2.97 0.55 0.30 0.55 222B 0.00 4.86 4.86 0.55 0 30 0.30 223 0.23 8.66 8.89 0.55 0.30 0.31 (i DETENTION FACILITY DESIGN Although a storm water detention facility is not required by Brazos County regulations, a detention pond will be constructed to control the peak discharge from this development such that it is less than or equal to the pre - development peak discharge. A comparison of the pre- & post - development peak discharge values for the existing drainage channel at the southeast property line shows an increase in the runoff for the 100 -year storm event. Table 5 shows the increases in runoff for the other storm events if there was not a detention pond to control the runoff. Because of this increased runoff, a detention pond is proposed, which will reduce the peak runoff to less than or equal to the pre- development runoff, as the "Post- Development with Pond" data in Table 5 shows. TABLE 5 — Pre- & Post - Development Peak Discharge Comparison — Detention Pond Design Q5 Q10 Q25 Q50 0 100 (cfs) (cfs) (cfs) (cfs) (cfs) Pre - Development 158 208 287 348 414 Post - Development without Pond 178 231 315 378 447 Post - Development out of Pond 154 202 278 336 400 Decrease in Peak Discharge 4 6 9 12 14 The area - capacity data and the depth - discharge data are provided in Appendix D. The detention pond grading plan is shown in the construction drawings. The pond outlet structure is a concrete channel which is 10' wide and has a control structure which has 2 openings which are 4.5' in width and 2' high with a flowline elevation of 293.0. The control structure also has a top crest elevation of 296.5, which allows additional weir flow over the control structure. Also, there is an overflow spillway with a crest elevation of 297.5. This spillway channel has a bottom width of 20', 3H:1 V side slopes and is lined with rock riprap to prevent erosion of the channel. The top of the pond berm is at Elevation 299.5. The proposed grading of the pond and the outlet and spillway details are shown on Exhibit E. The outlet structure channel will have dissipater blocks to reduce the velocity of the discharge and rock riprap will be used to prevent erosion. The peak flow out of the detention facility was determined by the HEC -1 program using the depth discharge data for the pond outlet structure as provided in Appendix D. As shown in Table 5, the peak outflow from the detention facility is less than the allowable peak outflow for the design storm event. Additionally, Table 6 presents the maximum water surface in the pond for each storm event, as well as the amount of freeboard provided. A schematic of the graphical HEC -1 computer model, the runoff summary, and the HEC -1 output for the pre- development condition are provided in Appendix E. The pre - development flows in Table 5 are from this HEC -1 output. The post - development HEC -1 schematic, the runoff summary, and the HEC -1 output are provided in Appendix F. TABLE 6 — Summary of Maximum Pond Water Levels Water Surface Freeboard, Storm Event Elevation, ft. ft. 5 -year 296.8 2.7 10 -year 297.5 2.0 25 ear 298.2 1.3 50 -year 298.5 1.0 100 -year 298.9 - 0.6 Note: Detention Pond Top of Berm Elevation = 299.5 STORM SEWER DESIGN The storm sewer piping for this project has been selected to be Reinforced Concrete Pipe (RCP) meeting the requirements of ASTM C -76, Class III pipe meeting the requirements of ASTM C -789. The curb inlets and junction boxes will be cast -in -place concrete. Appendix A presents a summary of the storm sewer inlet design parameters and calculations. The inlets were designed based on a 10 -year design storm. As per College Station guidelines, the capacities of inlets in sump were reduced by 10% to allow for clogging. Inlets for the residential streets were located to maintain a gutter flow depth of 5" or less. This design depth will prevent the spread of water from reaching the crown of the road for the 10- year storm event. Refer to Appendix A for a summary of the gutter flow depths. The runoff intercepted by the proposed storm sewer inlets was calculated using the following equations. The depth of flow in the gutter was determined by using the Straight Crown Flow equation. The flows intercepted by Inlets 3, 4 & 8 were calculated by using the Capacity of Inlets On Grade equation. These equations and resulting data are summarized in Appendix A. The capacities for the inlets in sump (Inlets 1, 2 6 & 7) were calculated using the Inlets in Sumps, Weir Flow equation with a maximum allowable depth of 7" (5" gutter flow plus 2" gutter depression). These equations and the resulting data are also summarized in Appendix A. The area between the right -of -way and the curb line of the streets will be graded as necessary to provide a minimum of 6" of freeboard above the curb line. This will ensure that the runoff from the 100 -year storm event will remain within the street right -of -way. Appendix B presents a summary of the storm sewer pipe design parameters and calculations. All pipes are 18" in diameter or larger. The pipes for the storm sewer system were designed based on the 10 -year storm event, and they will also pass the 100 -year storm event. Based on the depth of flow in the street determined for the 100 -year storm event, this runoff will be contained within the street right -of -way until it enters the storm sewer system. As required by College Station, the velocity of flow in the storm sewer pipe system is not lower than 2.5 feet per second, and it does not exceed 15 feet per second. As the data shows, even during low flow conditions, the velocity in the pipes will exceed 2.5 feet per second and prevent sediment build- up in the pipes. The maximum flow in the storm sewer pipe system will occur in Pipe No. 7. The maximum velocity for the pipe system in this development will be 8.88 feet per second and will occur in Pipe No. 6. Appendix B contains a summary of the pipe calculations as well as flow diagrams mapping the flows through the storm sewer system for the 10 and 100 -year events. All of the store sewer pipes were also evaluated as culverts for the 25- and 100 -year storm events. This data is also provided in Appendix B. CHANNEL DESIGN There are seven channels conveying runoff for this phase of development. A summary of the design characteristics of these channels is as follows: Channel No. Bottom Width Bottom Material Side Slopes Channel Slope 1 10' grass 411:1V 0.6% 2 10' grass 6H:1V 1.0% 3 4' grass 4H:1V 2.0% 4 "V" bottom concrete 4H:1V 0.8% 5 4' grass 4H:1V 1.91% 6 "V" bottom concrete 4H:1V 0.5% 7 4' grass 4H:1V 2.0% Refer to Appendix C summary tables for velocities and depths for the 10- and 100 -year storm events. CONCLUSIONS The construction of this project will increase the storm water runoff from this site. The proposed storm sewer system should adequately control the runoff and release it into existing drainages or into the detention pond. The detention facility should adequately control the peak post - development runoff so that it will not have any impact on the properties downstream, and there should be no flood damage to downstream or adjacent landowners resulting from this development. 0 APPENDIX A Storm Sewer Inlet Design Data: Calculations, Gutter Depth, Time of Concentration Data oz _ N O O m n m 2 o o' v - i ry d •. 2- n n n _ D; .S 1' O 5 s I I E o o o = n to n to Y Si o, N a o I �xn z — o 0 0 0 T O ' X ' • N'N m W N, ' . f N,n co'm N Q E `o n'0 • .. p, n o V'.N 2 . 8 O a _. N _ m V i 8 � � a E .,gym 3 g O :::: ' ::': :: _ mn K v .. LL A g C I - Q b o E a o 0 o kr o' 2 2 2 ' mn E S T � o tL n O J O J• L O y C to o ^ b x O C I I z "0 p O S ii g', m • fir ^ ' O d O J LL O T T. N U tC m e— h m N £ U N II II II E - o b E �JO a E i4 O N 1 C H ° ° I Cr G T .L_' 2 : 2 Al m N m 1 d N u — O O O E a E t CY a o 0 0 ° o E u h ° E — 000 1� -o- _'n `0 3 m '61 m u s • a d _ m n a_ d m n x as _ d u 44 ' E 0 F '^ 8° °o 8 8 3 in m m m - 8 0 0 0 0 0. O . 4 _ C E. .~ O a t .. „ N &-... Z 0 o - d m 'n v a o d U -t O U d m , ..-g, d o d .00...0. N C V IIO C c o,„ C >O 2 a II O = ti a` d N 0, m r 2 a 3 a D b o 0 0 0 0- o N o ._ m Q u= m S D a E a n E a U N N e a d J _ p u • C C Q re 3 O b 3 d f C m d f r t� '2' ry ry O ry°_ O = G d' . LL Q ` ry N O LL a c, n ' LL N O (n Io b T d ro N 1- T !UI C O n o __ • 0 w L u u °I = cc) O c v ) s 0 0 0 T 1 o Z ,O J _ -r . 1 1 U ID cn 0 r` to o . to 0) a0 :! 6) E ° w M 6) 6) co o to , M V co d to 0 to v CO 0 CO r) Q V O. •- Nf�INNl0 I00 C0 '.� O w N O u O 0 O) 00 O cp _ O to 1 0 11 11 11 0 8L o ' c°1rnI � r) CD COI m J .1 c r �'�''00' 0 o to a o .,- ,_ 0 •- 11 II 11 • 1 • r J E v o t W tO.N'. M �a) NI IV I(O � 11N O ( v to co 6) N I10 co (6 .-,,- I-:• .N to l to t_ , I I co • -C".. 00 ', M '. 10 N 0) I c0 1 00 00 1 0) to T o.0 (O '1 -. to l co 6) `-, I I "'t `I c. — -- � • �I 1 I � 1to ID • co I II �'�Io I� E to E 4, y N CO N N C) N 1 r N I I I V O to to .� tO co to h co N V N I 1 co o 0 I� t0 , � �1 rt.: ''� m to to >rn CO w 0 10 fa O 11 11 11 > C to I N C 00 CO 1 (0 0) (0 to T w .0 0) (O 7 0 (0 , ' 1 r r (0 (0 6 . ' 1(O I) ' O O (� ..... rn1aotornito�a ,- I aomNao N - to 6) ' n I (O 1 1 6) N- 1, 6) O) 6) ! 6) E ., ---• V M N N 'tn IO) ltnitn' CO, 00 1 0O O d V to 1 � '. co to id l.- 6) M'M -4- I.- o '. tfi l. 1 tri ',6i ' , IO'(O V to , i a) V in':M OoIto tolto - >. o.0 n M' 00 �' 6)'� tO 1M' M MIM E 0 S C —. CO to 0, 6) N' N ;(O I CO I I(O r . tri , cc) l (O l (a' ri l ao 1 co 1 ao' co 1 (xi oo c E 1 1 0 0 E 7-) to 1` ' ao V aO 1 N N I N i N- I t>D to E°_ u) V ,_ w N- to 7 0) t` .- r M (O 6) O '` In • 0 C7 ° tn, .. - , - !a ao ,- Io rij (1.) m to ti n. 0 > CO CO O ` C 10 i NIMI0)I to !6) i ,- toIM',M co O co 11 11 II 0 „, t I co 6) i V .O 0 O � '(o ' 0o'M:a M'to!(O ''(o ' C0 -o - 10 v!I�uiIn ;CO r�ItrijN-ir 0 • E C r O 6)!NI ,- 'I O N , OIO Ito O 1- .: E N 0' IMM 0) : O 'a II 1 _ y 0o I to IN O I N I to to to l: to co 1to 2 co V , to • to to to 1 to to ' to V ! to o..) O O010 O'O Old E O +' O,O o,o.c) v1 0) C M M co I co co co I co 1 co co M! M t... O 41 U o 010 O' o m 0 N- y CO ao 0 CL O 11 II II O 10 to to to to to to (n to to , to I1 D (1) — d V to to to in to to to :(n to to '(n d V 0000' 0 :000000 m 0 N mo N to _ L (p O 0o co co 0 r 1 V M to 0 ▪ M o d LO M o to O M N N CL s 1 _ r) — 0 0 N N 0 0 0 • C a C O o .- (J) •y.. 0 o V 0-a O O O 0 N O •, CO Q N O N ,- M O 0 0 0 M O ^ N O O O o O o O O O O _c 0 " c -I..l CZ N CD • Is O (n U c _ +' 0 _ O co .1, v o n 1` V (O to 4) Y 0) 0 N d M 0 to O M (O N C 45 E Lo Q R o O Z v V C v (9 »- . co 0O O 0) o) o 3 m° m O 1 11 11 11 D C 0 c o Uv0 v to 000 N U Q co 0) a W N N N N N N N N N N N N N LO ( — Q O O L II II 11 II _ m 0 1 g p c N N F- c o Q O_ m lL Meadowcreek Subdivision Phase 1 Depth of Flow in Gutter (Refer to Exhibit A for Gutter Locations) 10 -year storm 100 -year storm Gutter A C Slope t h 0 10 Y10-actual 1100 0100 Yfoo Location Area # (acres) ( ft/ft) (min) (in /hr) (cfs) (ft) (in) (in /hr) (cfs) (ft) (in) Al 220 1.07 0.40 0.0080 11.5 8.136 3.48 0.303 3.63 10.979 4.70 0.339 4.06 A2 214 0.57 0.55 0.0080 19.7 6.260 1.95 0.244 2.92 8.497 2.65 0.273 3.28 A3 221 0.25 0.55 0.0080 10.0 8.635 1.18 0.202 2.42 11.639 1.59 0.225 2.70 A4 215 0.07 0.55 0.0080 10.0 8.635 0.35 0.129 1.54 11.639 0.48 0.144 1.72 B1 216 1.34 0.55 0.0100 10.0 8.635 6.36 0.364 4.37 11.639 8.58 0.407 4.88 B2 206 2.68 0.52 0.0100 43.1 3.948 5.50 0.345 4.13 5.434 7.57 0.388 4.66 01 210 2.01 0.55 0.0123 11.0 8.295 9.17 0.401 4.82 11.189 12.37 0.449 5.39 C2 202 (C2) 3.30 0.38 0.0080 27.7 5.174 6.49 0.382 4.59 7.1 8.85 0.429 5.15 C3 202(C3)+bypass from C2 1.08 0.55 0.0080 10.0 8.635 5.13 0.350 4.20 11.6 8.60 0.425 5.10 C4 204 0.48 0.42 0.0080 17.9 6.583 1.33 0.211 2.53 8.9 1.80 0.236 2.84 C4 205 0.51 0.50 0.0120 21.2 6.017 1.53 0.206 2.48 8.2 2.08 0.231 2.78 01 217 0.17 0.55 0.0080 10.0 8.635 0.81 0 -175 2.10 11.6 1.09 0.196 2.35 D2 218 0.13 0.55 0.0080 10.0 8.635 0.62 0.158 1.90 11.6 0.83 0.177 2.12 El 211 0.09 0.55 0.0200 10.0 8.635 0.43 0.116 1.39 11.6 0.58 0.130 1.56 E2 212 0.09 0.55 0.0200 10.0 8.635 0.43 0.116 1.39 11.6 0.58 0.130 1.56 Transverse (Crown) slope ( ft/ft) 27' street = 0.0330 Straight Crown Flow (Solved to find actual depth of flow in gutter, y): Q = 0.56 * (z/n) * S1/2 * yea ' y = {Q / [0.56 * (z/n) ' Sv2) }3fa n = Roughness Coefficient = 0.018 S = Street/Gutter Slope (ft/ft) y = Depth of flow at inlet (ft) z = Reciprocal of crown slope: 27' street = 30 [3 Meadowcreek Subdivision - Phase 1 T Calculations -Post Development Inlet Design Drainage Area #202 (C2) Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 254 Elev,= 324 Elev 316.5 Slope= 0.0295 T 0.007(L *n)" ° = 0.362 hours= 21.7 min (P) 0.5 *(S)0.4 Concentrated Flow 1: V= 2.4 fps (unpaved) L= 132 Elev,= 316.5 Elev 313.5 Slope= 0.0227 T,= L /(60 *V) = ( 0.9 min Gutter Flow 1: V= 1.8 fps (paved) L= 245 Elev,= EIev Slope= 0.0080 T,= L /(60 *V) = f 2.3 min Gutter Flow 2: V= 2.2 fps (paved) L= 300 Elev,= EIev Slope= 0.0123 T,= L /(60 *V) = f 2.3 min Gutter Flow 3: V= 1.95 fps (paved) L= 59 Elev,= EIev Slope= 0.0090 T,= L /(60 *V) = I 0.5 min (T 27.7 min 1 Drainage Area #202 (C3) Gutter Flow 1: V= 1.95 fps (paved) L= 341 Elev,= EIev Slope= 0.0090 T,= L /(60 *V) = 2.9 min 14- Gutter Flow 2: V= 1.8 fps (paved) L= 119 Elev Elev Slope= 0.0080 T L /(60 *V) = I 1.1 min ITS 4.0 min ,using 10 min Drainage Area #204 (C4) Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 129 Elev 310 Elev 304.5 Slope= 0.0426 Tt 0.007(L *n)" ° = 0.182 hours= I 10.9 min (P)0.5 *(S)0. Sheet Flow: n= 0.15; (short-grass prairie) P= 4.5 L= 114 EIev1= ,, 31 0 Elev 304.51 Slope= 0.0482 T 0.007(L *n) = 0.108 hours= I 6.5 min I (MO .5 *(S) Gutter Flow 1: V= 1.8 fps (paved) L= 51 Elev 304.5` Elev 302.5 Slope= 0:0080 T L /(60 *V) = I 0.5 min I IT S = 17.9 min I Drainage Area #205 (C5) Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 73 Elev 305 Elev 303.7 Slope= 0.0178 T,= 0.007(L *n)" ° = 0.163 hours= I 9.8 min (P)0.5 *(S)0. Sheet Flow: n= 0.15 (short -grass prairie) P= 4.5 IS L= 127 Elev,= 303.7 EIev 301.5 Slope= 0.0173 T,= 0.007(L *n)" ° = 0.177 hours= 10.6 min (P)0.5 *(S)0.4 Concentrated Flow 1: V= 1.95 fps (unpaved) L= 90 Elev,= 301.5 EIev 300.5 Slope= 0.0111 T,= L /(60 *V) = 0.8 min IT c = 21.2 min I Drainage Area #206 (B2) Sheet Flow 1: n= 0.24 (dense grass) P= 4.5 L= 192 Elev,= 327 EIev 324.7 Slope= 0.0120 Tt= 0.007(L *n)" ° = 0.415 hours= I 24.9 min I (P)0.5 *(S)0. Sheet Flow 2: n= 0.15 (short grass prairie) P= 4.5 L= 108 Elev,= 324.7 EIev 323 Slope= 0.0157 T,= 0.007(L *n) = 0.161 hours= I 9.7 min I (P) S* Concentrated Flow 1: V= 3 fps (unpaved) L= 56 Elev,= 323 EIev 321 Slope= 0.0357 T,= L /(60 *V) = I 0.3 min Gutter Flow 1: V= 1.8 fps (paved) L= 200 Elev,= 321 EIev Slope= 0.0080 T,= L /(60 *V) = 1.9 min Gutter Flow 2: V= 2 fps (paved) L= 200 Elev,= 0 EIev Slope= 0.0100 T,= L /(60 *V) = 1.7 min IL Gutter Flow 3: V= 1.8 fps (paved) L= 200 Elev 0 EIev Slope= 0.0080 T,= L /(60 *V) = 1.9 min Gutter Flow 4: V= 2 fps (paved) L= 320 Elev 0 EIev Slope= 0.0100 T,= L /(60*V) = 2.7 min ITS 43.1 min 1 Drainage Area #210 (C1) Gutter Flow 1: V= 1.8 fps (paved) L= 382 Elev EIev Slope= 0.0080 T,= L /(60 *V) = I 3.5 min Gutter Flow 2: V= 2.2 fps (paved) L= 300 Elev 0 EIev Slope= 0,0123 T,= L/(60*V) = I 2.3 min I Gutter Flow 3: V= 2 fps (paved) L= 400 Elev 0 EIev Slope= 0.0090 T,= L /(60 *V) = I 3.3 min 1 Gutter Flow 4: V= 1.8 fps (paved) L= 203 Elev 0 EIev Slope= 0.0080 T,= L /(60 *V) = 1.9 min IT c = 11.0 min I Drainage Area #214 (A2) Sheet Flow: n= 0.15 (dense grass) P= 4.5 11 L= 257 Elev,= 325.5 EIev 321.4 Slope= 0.0160 T,= 0.007(L *n)" b = 0.321 hours= 19.3 min (P) 0. 5 *(S)04 Gutter Flow 1: V= 1.8 fps (unpaved) L= 44 Elev,= EIev Slope= 0.0080 T,= L /(60 *V) = I 0.4 min ITS 19.7 min ' Drainage Area #215 (A4) Gutter Flow 1: V= 1.8 fps (unpaved) L= 69 Elev EIev Slope= 0.0080 Tt L/(60*V) = I 0.6 min ITc 0.6 min 'using 10 min Drainage Area #216 (B1) Gutter Flow 1: V= 1.8 fps (paved) L= 198 Elev 0 EIev Slope= 0.0080 T,= U(60 *V) = I 1.8 min I Gutter Flow 2: V= 2 fps (paved) L= 200 Elev,= 0 EIev Slope= 0.0100 T,= U(60 *V) = I 1.7 min I Gutter Flow 3: V= 1.8 fps (paved) L= 200 Elev 0 EIev Slope= 0.0080 T,= L /(60 *V) = 1.9 min Gutter Flow 4: V= 2 fps (paved) L= 320 Elev,= EIev Slope= 0.0100 T,= L /(60 *V) = 2.7 min II?) IT S = 8.1 min fusing 10 min Drainage Area #220 (A1) Sheet Flow: n= 0.15 (dense grass) P= 4.5 L= 114 Elev,= 326 Elev 323 Slope= 0.0263 T 0.007(L *n)" ° = 0.137 hours= I 8.2 min (p)0 .5*(S)0 . Gutter Flow 1: V= 1.8 fps (unpaved) L= 355 Elev,= EIev Slope= 0.0080 T,= L /(60 *V) = I 3.3 min I IT 11.5 min I Drainage Area #221 (A3) Sheet Flow: n= 0.15 (dense grass) P= 4.5 L= 70 Elev,= 322.1 EIev 320.9 Slope= 0.0171 T, 0.007(L *n) 6 = 0.110 hours= 6.6 min I (p)0.5 *(S)0. Gutter Flow 1: V= 1.8 fps (unpaved) L= 369 Elev,= EIev Slope= 0.0080 T,= L/(60*V) = I 3.4 min I IT c = 10.0 min I lq • _ • J .50 - - -- •-------- -- - -- - - - -- -- - -■ ■.. . - - -.. ■ ■ 1111 - - - - -- ∎MMOIMIN- -- ---■■■ NMI We l OEM iM ii i�D:■ IIIIIIMMIIIININ=IMP MINIM= tIIMIt•INUIIN MMtl■■■ ■111111111MMtlt ■■■ ■ ■t/ tt'MANONOt■ • ■ NIMIIMIIIMIIIIIIMINI ■■■■■1 1111111111 MIIs ■■■■■i MIIIIMMINIIINIM MIIIINIMMININEWINI■■1111 ■t■• ■ ■111 • — ��M��M..U.R.•IlIiui1••�•Ut•• /•M /��M� INIIIIMINIIIM• IE••• I ■11l11 1 1 1111111 II 11111111•\raiuI/IMMINlIIII im ow.•. .11IIu•t1111111111U■■U■/I11'/ 11M111111111..U■UI■1111111111•11111►,111! 11111111111111111■ ���.R.I111111II IIIII I1IIU11�.1 ���R .20 — Im.Naui� 1 1II1111111I�! ■ //II /,11NNN ■■ NE.. iNNiIiiIIIIIIIIIIlII 'i11►.111NNEO■ • ■■.iiiu111111111111III JV1111NU111 ■N■iiiiiiIIIIIIIIIIII? IVIIIIINNIII ■■IIIIIIIIIIIII IIIII /,II! IIIIII IIII1 .10 - .�t■M—.- - - -..■■ ■1111..11. Mgt►.- ■ ■ ■ ■ ■•ttt■MINIt+— , tom•■ ■- -�IIMIUNI •1110 ■■ ■.111111• Int, //■■■■••ttIMIB- -■■ — MNIMttNNIMtUMMUM MI MINIM IMF / MID ..■ ■■■ III •11111111111111INIIIIMIll 111=11111111111111111111•11I111111•U1/I11V /1/IIUN IIUl _ _ _ ���Euua .�•••11I/11 1 //•Ell ■1••11���1•_ _ ������IN���I1•••11/11111��/•••• o . 06 1111111111111111. ..iIu111114111/:11u111/1111NI11111111•■ 1 ���1•R .UI11111'd11Pi111•1111111/m���■ ---- -- - - -. ..' y M_---- -- -.■. •...' •11s•= - •.. .■ ■.�MMII --OM H non esomme Nos tom-. -■ ■P ■ ■ ■I. ■11SIIIN.•-. ■. ■■...�M -1111 7 _____ttl____ ■■ ■' ■1111111Mtt__ Mil tttt__t> - o U _■����MIIM�•uAIM / tlNtl■■■t■■��_■�tt1� s_ ��OMMIUM jur1111111�...111111�1I.1111M111. (u — 1• MIIIIIIIIt IIIIIMI/, ■'IC/IIliit ■. Il•11=111••111111I ����•• U P 'IUU/. ■•11/111�1•1 ° 1111111111111. ■ ■11/M/U111111111111UU■■•1111•11111111111111111■ IIIIIIIMIMIIIU M■'All'4111111111 UU I1111111 IIIIMIMIIIIII■ 11111111•11111111 ■IYll/111111 ■ ■ 11111 / 11 �� R.• .02 — MUM b NIIIIIIIIIIMIIIIIIINNNN■ NE■ 4 e /111111111111111111111•N■ ■■ ■■ A1111111111111111111111NNNN■ ■■ I 411111111111111111111111111111111 NNi!/ 1/I11111111111111111111111Niii1 1 .01 — IM.W RW 11■■11111111111 ■ ■ ■1111111NN. ■■ NI ►A'P" " "I "'1MU iii iiiiiiiiii N /./,INuIIIIIIII IIIIIN ■/I■Iif111111111111IN1111111IR III I .005 — W 14 II1111111111111N1111111111NNNli 1 1 1 1 1 1 t 1 1 1 t 1 2 4 6 10 20 Average velocity, ft /sec Figure 1- 1.— Average velocities for estimating travel time for .shallow concentrated (low. " • 3 -2 (210- VI- TR -55, Second Ed.. June 1980) i ; • . APPENDIX B Storm Sewer Pipe Design Data: Drainage System Diagram, Drainage Area Data, Manning's & Culvert Calculator Data, Time of Concentration Data I Meadowcreek Subdivision Phase 1 - Drainage System Diagram Channel No. 3 I Channel No. 5 I Inlet 8 Pipe 3 Pipe 6 Pipe 10 I Channel No. 7 I 1 1 1 1 Inlet 2 Inlet 4 Inlet 7 F- l Pipe 9 Pipe 2 Pipe 5 Pipe 8 4 4 Inlet 1 Inlet 3 Inlet 6 1, 1 1 Pipe 1 Pipe 4 Pipe 7 Channel No. 2 Channel No. 4 I Channel No. 6 I 1 II Channel No. 1 I Channel No. 1 I I Into Detention Pond I 1 1 I Into Stream Into Stream 1 t I Into Detention Pond 11 Into Detention Pond I Zz U a) N L O E o 4 m o o co rn�'.o v O) p L O N • d V <. .N- CV CO C N O C� CO .CU (D O O K CO L O) Q (T Occ) O co v J ; 11 11 II a) C to O to !. to!M E N O J 0 )` o t N NM 10.0,0 1N to CO (D - 0 a) O _ c d Nt " CV N N V a v o II II II - .- V! d i V I c I V V j CO i CO (O f- 1 1 1 1 y J N 0) O CO ' ' I in [co COIN co C ,. ) N O N to 0) O a to co V , O Q v h Ico X 16 l00 N N V', '00 W r- '-, '-'.Ni�1`- M1N t_ co >. o .c co 00 I N o O O to co �! 0 Co _^ N N N O: O 1 O 1- h N <Y I V 1 a I v 4 1 , V, M (o (o (O 1 1 1 O 00 of Co M h .73 ) (0 '. 8 co (0 in O Q V V V' 01 M 1 to' 0! 00 O ` CO CO LO t— in —N N � ,. O OO O N I I 1 O 11 11 11 0) �. co h I I - (0 1 0) ! " 0) !� N ' N N t I4-) >. o t CO 00 0) 0) 0). 0) ON M N j ( I M , ( 0 '.M I M • to toto in I N- A IM to �!4, co '.h o w co co I O co co co co to h CO • C d co >+ o L co - , 0)1 N 1 0)' N h �O'..O O' ',h �h r C C - C 0)' M �' ,M I M M I M V V 4 to o E " I N O . E .-- � c t ` o _ l i tD l o, � � r)I� N'(0o C t� (0 � .V.� •- . — iN:M h to C a) a) co h (0 1 > 00 co O • Cr) o I N (O CO (D 1 CO ' I h to N N • tfl N N'.N�N N' I1 V • V <t 0 E 00� h1Co h'C0 � 1(o'CO V'M h H El LT) to (.0 ', 01 M N _ 11 .o ' 1 1(0 �;N1V.. 1N10)iV in a) 4 U co I 01h N'to �' N! 0) CO CV CV 3 (0' 1. -I0)jh 1 1 ,Mi ._''00 to. 00 o MIM'M M.M, M M M o 0 O O co , 0' O' O O O O 1 0 0,0 010X O O!O co O h O M "0 M co M CO 0) 0) CO M L CO U 00 0 a3 00 co O _ to to to to 1 to to 1 to to to 1 to c:-.) 11 11 11 C 0 to ' to I to to to to l to to to to •- _a D a) N 0,010 01010 0 0 Q t0 C4 (P co co O 6 N N co co O • - O • 00 N ca to M a) F- r a) a) Q CO (O CO CO CO N CO (O CO 0) N y ,. _ CO CO CO CO N to O) N co N ' - f0 CA N Q CO CO CO CO M M M M d N _c ED, a a ° w a 0 N N 0 CO O (O N CO N 0 0) > 0) O 0 CO CO N h CO 0 CO V O co C Q N N o V M to M a) C c O , (0 - O Q) 5.. Q 1 1 1 1 1 1 M 0 U U 4t c o, M N M N o . 4- 0 L n co N co V N c c.") V O N O N m 0 0 Q 7 C (7 a U >_ N N N N (D N N N V ll Q - Q Q O N ! N a o N ,[ R N O N N d 11 II II II CO 0 a) Q 0 N N N I- CJ 0 < O u m U Q 3 ) 0) _ O C6 Q d N M V to Co h CO (7) C a) Q d R _ d 0 LL 23 Meadowcreek Subdivision - Phase 1 Summary of Manning Pipe Data # of Pipe size Length Pipe # Barrels (in) (ft) % Slope 010 V %Full 0100 V100 %Rini® 1 1 24 75.14 1.0% 12.87 7.02 56.56% 17.85 7.51 70.80% 2 1 24 30.89 1.0% 12.33 6.95 55.07% 17.09 7.45 68.50% 3 1 24 16.00 1.0% 8.70 6.69 44.85% 12.07 6.92 54.35% 4 1 27 23.48 0.6% 15.85 6.08 62.33% 22.03 6.39 80.98% 5 1 24 30.24 1.0% 13.64 7.12 58.69% 18.95 7.57 74.31% 6 1 18 23.58 2.0% 9.43 8.40 60.69% 13.11 8.88 77.84% 7 1 30 24.08 1.0% 24.86 8.27 58.89% 34.03 8.77 73.72% 8 1 30 91.25 0.8% 18.57 7.09 52.64% 25.41 7.61 64.37% 9 1 18 24.00 2.0% 8.73 8.26 57.73% 11.95 8.79 71.89% 10 1 18 447.40 0.9% 6.68 5.70 62.94% 9.12 5.97 80.69% Zit" Pipe 1 - 10 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 24.0000 in Flowrate 12.8700 cfs Slope 0.0100 ft /ft Manning's n 0.0140 Computed Results: Depth 13.5749 in Area 3.1416 ft2 Wetted Area 1.8325 ft2 Wetted Perimeter 40.8581 in Perimeter 75.3982 in Velocity 7.0231 fps Hydraulic Radius 6.4586 in Percent Full 56.5623 % Full flow Flowrate 21.0065 cfs Full flow velocity 6.6866 fps Pipe 1 - 100 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 24.0000 in Flowrate 17.8500 cfs Slope 0.0100 ft /ft Manning's n 0.0140 Computed Results: Depth 16.9931 in Area 3.1416 ft2 Wetted Area 2.3783 ft2 Wetted Perimeter 47.9986 in Perimeter 75.3982 in Velocity 7.5053 fps Hydraulic Radius 7.1351 in Percent Full 70.8047 % Full flow Flowrate 21.0065 cfs Full flow velocity 6.6866 fps Meadowcreek Subdivision - Phase 1 Brazos County, Texas 2S Pipe 2 - 10 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 24.0000 in Flowrate 12.3300 cfs Slope 0.0100 ft /ft Manning's n 0.0140 Computed Results: Depth 13.2174 in Area 3.1416 ft2 Wetted Area 1.7733 ft2 Wetted Perimeter 40.1381 in Perimeter 75.3982 in Velocity 6.9530 fps Hydraulic Radius 6.3621 in Percent Full 55.0725 % Full flow Flowrate 21.0065 cfs Full flow velocity 6.6866 fps Pipe 2 - 100 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 24.0000 in Flowrate 17.0900 cfs Slope 0.0100 ft /ft Manning's n 0.0140 Computed Results: Depth 16.4405 in Area 3.1416 ft2 Wetted Area 2.2936 ft2 Wetted Perimeter 46.7965 in Perimeter 75.3982 in Velocity 7.4511 fps Hydraulic Radius 7.0579 in Percent Full 68.5023 % Full flow Flowrate 21.0065 cfs Full flow velocity 6.6866 fps Meadowcreek Subdivision - Phase 1 Brazos County, Texas Pipe 3 - 10 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 24.0000 in Flowrate 8.7000 cfs Slope 0.0100 ft /ft Manning's n 0.0140 Computed Results: Depth 10.7652 in Area 3.1416 ft2 Wetted Area 1.3654 ft2 Wetted Perimeter 35.2251 in Perimeter 75.3982 in Velocity 6.3720 fps Hydraulic Radius 5.5816 in Percent Full 44.8548 % Full flow Flowrate 21.0065 cfs Full flow velocity 6.6866 fps Pipe 3 - 100 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 24.0000 in Flowrate 12.0700 cfs Slope 0.0100 ft /ft Manning's n 0.0140 Computed Results: Depth 13.0451 in Area 3.1416 ft2 Wetted Area 1.7448 ft2 Wetted Perimeter 39.7920 in Perimeter 75.3982 in Velocity 6.9179 fps Hydraulic Radius 6.3140 in Percent Full 54.3546 % Full flow Flowrate 21.0065 cfs Full flow velocity 6.6866 fps Meadowcreek. Subdivision - Phase 1 Brazos County, Texas 11 Pipe 4 - 10 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 27.0000 in Flowrate 15.8500 cfs Slope 0.0060 ft /ft Manning's n 0.0140 Computed Results: Depth 16.8284 in Area 3.9761 ft2 Wetted Area 2.6057 ft2 Wetted Perimeter 49.1378 in Perimeter 84.8230 in Velocity 6.0827 fps Hydraulic Radius 7.6362 in Percent Full 62.3276 % Full flow Flowrate 22.2760 cfs Full flow velocity 5.6025 fps Pipe 4 - 100 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 27.0000 in Flowrate 22.0300 cfs Slope 0.0060 ft /ft Manning's n 0.0140 Computed Results: Depth 21.8643 in Area 3.9761 ft2 Wetted Area 3.4492 ft2 Wetted Perimeter 60.4529 in Perimeter 84.8230 in Velocity 6.3869 fps Hydraulic Radius 8.2162 in Percent Full 80.9787 % Full flow Flowrate 22.2760 cfs Full flow velocity 5.6025 fps Meadowcreek Subdivision - Phase 1 Brazos County, Texas 2S Pipe 5 - 10 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 24.0000 in Flowrate 13.6400 cfs Slope 0.0100 ft /ft Manning's n 0.0140 Computed Results: Depth 14.0853 in Area 3.1416 ft2 Wetted Area 1.9166 ft2 Wetted Perimeter 41.8911 in Perimeter 75.3982 in Velocity 7.1168 fps Hydraulic Radius 6.5883 in Percent Full 58.6889 % Full flow Flowrate 21.0065 cfs Full flow velocity 6.6866 fps Pipe 5 - 100 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 24.0000 in Flowrate 18.9500 cfs Slope 0.0100 ft /ft Manning's n 0.0140 Computed Results: Depth 17.8353 in Area 3.1416 ft2 Wetted Area 2.5035 ft2 Wetted Perimeter 49.8869 in Perimeter 75.3982 in Velocity 7.5693 fps Hydraulic Radius 7.2265 in Percent Full 74.3139 % Full flow Flowrate 21.0065 cfs Full flow velocity 6.6866 fps Meadowcreek Subdivision - Phase 1 Brazos County, Texas 29 Pipe 6 - 10 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 18.0000 in Flowrate 9.4300 cfs Slope 0.0200 ft /ft Manning's n 0.0140 Computed Results: Depth 10.9238 in Area 1.7671 ft2 Wetted Area 1.1222 ft2 Wetted Perimeter 32.1519 in Perimeter 56.5487 in Velocity 8.4031 fps Hydraulic Radius 5.0261 in Percent Full 60.6880 % Full flow Flowrate 13.7943 cfs Full flow velocity 7.8060 fps Pipe 6 - 100 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 18.0000 in Flowrate 13.1100 cfs Slope 0.0200 ft /ft Manning's n 0.0140 Computed Results: Depth 14.0104 in Area 1.7671 ft2 Wetted Area 1.4758 ft2 Wetted Perimeter 38.9020 in Perimeter 56.5487 in Velocity 8.8832 fps Hydraulic Radius 5.4629 in Percent Full 77.8357 % Full flow Flowrate 13.7943 cfs Full flow velocity 7.8060 fps Meadowcreek Subdivision - Phase 1 Brazos County, Texas 3o Pipe 7 - 10 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 30.0000 in Flowrate 24.8600 cfs Slope 0.0100 ft /ft Manning's n 0.0140 Computed Results: Depth 17.6657 in Area 4.9087 ft2 Wetted Area 3.0068 ft2 Wetted Perimeter 52.4839 in Perimeter 94.2478 in Velocity 8.2679 fps Hydraulic Radius 8.2497 in Percent Full 58.8858 % Full flow Flowrate 38.0873 cfs Full flow velocity 7.7591 fps Pipe 7 - 100 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 30.0000 in Flowrate 34.0300 cfs Slope 0.0100 ft /ft Manning's n 0.0140 Computed Results: Depth 22.1153 in Area 4.9087 ft2 Wetted Area 3.8791 ft2 Wetted Perimeter 61.9507 in Perimeter 94.2478 in Velocity 8.7727 fps Hydraulic Radius 9.0166 in Percent Full 73.7175 % Full flow Flowrate 38.0873 cfs Full flow velocity 7.7591 fps Meadowcreek Subdivision - Phase 1 Brazos County, Texas 31 Pipe 8 - 10 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 30.0000 in Flowrate 18.5700 cfs Slope 0.0080 ft /ft Manning's n 0.0140 Computed Results: Depth 15.7924 in Area 4.9087 ft2 Wetted Area 2.6194 ft2 Wetted Perimeter 48.7095 in Perimeter 94.2478 in Velocity 7.0895 fps Hydraulic Radius 7.7437 in Percent Full 52.6414 % Full flow Flowrate 34.0664 cfs Full flow velocity 6.9399 fps Pipe 8 - 100 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 30.0000 in Flowrate 25.4100 cfs Slope 0.0080 ft /ft Manning's n 0.0140 Computed Results: Depth 19.3107 in Area 4.9087 ft2 Wetted Area 3.3399 ft2 Wetted Perimeter 55.8687 in Perimeter 94.2478 in Velocity 7.6080 fps Hydraulic Radius 8.6086 in Percent Full 64.3691 % Full flow Flowrate 34.0664 cfs Full flow velocity 6.9399 fps Meadowcreek Subdivision - Phase 1 Brazos County, Texas 32 Pipe 9 - 10 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 18.0000 in Flowrate 8.7300 cfs Slope 0.0200 ft /ft Manning's n 0.0140 Computed Results: Depth 10.3921 in Area 1.7671 ft2 Wetted Area 1.0569 ft2 Wetted Perimeter 31.0697 in Perimeter 56.5487 in Velocity 8.2601 fps Hydraulic Radius 4.8984 in Percent Full 57.7337 % Full flow Flowrate 13.7943 cfs Full flow velocity 7.8060 fps Pipe 9 - 100 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 18.0000 in Flowrate 11.9500 cfs Slope 0.0200 ft /ft Manning's n 0.0140 Computed Results: Depth 12.9399 in Area 1.7671 ft2 Wetted Area 1.3598 ft2 Wetted Perimeter 36.4305 in Perimeter 56.5487 in Velocity 8.7877 fps Hydraulic Radius 5.3751 in Percent Full 71.8886 % Full flow Flowrate 13.7943 cfs Full flow velocity 7.8060 fps Meadowcreek Subdivision -- Phase 1 Brazos County, Texas 33 Pipe 10 - 10 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 18.0000 in Flowrate 6.6800 cfs Slope 0.0090 ft /ft Manning's n 0.0140 Computed Results: Depth 11.3292 in Area 1.7671 ft2 Wetted Area 1.1714 ft2 Wetted Perimeter 32.9864 in Perimeter 56.5487 in Velocity 5.7024 fps Hydraulic Radius 5.1138 in Percent Full 62.9400 % Full flow Flowrate 9.2535 cfs Full flow velocity 5.2364 fps Pipe 10 - 100 Year Storm Manning Pipe Calculator Given Input Data: Shape Circular Solving for Depth of Flow Diameter 18.0000 in Flowrate 9.1200 cfs Slope 0.0090 ft /ft Manning's n 0.0140 Computed Results: Depth 14.5235 in Area 1.7671 ft2 Wetted Area 1.5278 ft2 Wetted Perimeter 40.1681 in Perimeter 56.5487 in Velocity 5.9693 fps Hydraulic Radius 5.4771 in Percent Full 80.6861 % Full flow Flowrate 9.2535 cfs Full flow velocity 5.2364 fps Meadowcreek Subdivision - Phase 1 Brazos County, Texas O ) 4) — I 0) N N a) 0) a) o • C CIOIO C C C C C C o 'cr ca co N- CO , O ' (O V a) I rn a) a) "- r CO ' rn rn o ri . N N Q = co MjM'M co co Co co i I o ' ICON O)I�IO)'OO O) ,r'. N o n LOIV'CO I I Cr) ItO',00 CD I- a) I� M CO N- CO 00 N- 00 LO o U 1 C D ) LO ', r M r LO o 00 ',O O'0',0)i— o Cr a) N N'NI00'M LO O r r ("Ni 'r r co CV O a) a) °� a) I a) a) a) a) a) a) 0 E E . O C Z C C C C - SP, co N ' a7 r co 1 co o ' N- co LI) c o 0):M' ir- c r :a)Ic 'Cr 'Cr 0 00'a);a)!O r CNOOIa)'0 co CO rir r'rr r;a)Ia1',OLQ W Cr) M' MIM 1 CO M'C CV Cr) CO N �CD,O)iO,r''cf CD N N,'r'', to co I� ' ti I M V I � CO 00 I � 00 LO co 1 co I co N- -- co I co V co cv p' ,M rr'O)'co M o • • �-y Q'. 00 :L() ' V r r r N-1 r N' N Qo 0 0 0 0 ,o 'o 0 0 0 o o o o co'O',Q;O,'co o O) Q'OIOo.� co co Lo o „c) a)'` co 0 N '� O , N � N — to O co co Q'MI� N- co r'N co CV' N'a) CV C N . O co tf i ~ '1O N- 10 a)) co co O a) r r.r10,0 OI,O)I0)',a) a) LLJ M M M M co co N N N N C O LO N N LO CO CO .) '- M co N CO CO r CD > Q L` N CO CO O LO CO CO r co — O O O O) a) a) O — M co co co co co N N N co N R > .0 `' - CO co co co co LO LO V 0 0 3 "Cr 'Cr 71 � r- CO CO LO R - r r r M ri (-6 O r Ln C O 0 N N N r .- r 0 0 0 0 O () Q 0 , M CO CO CO C'') co co CO C`) CO CA CO > 0 •- V' O O O O CV CV r -a if r 7 V V V M CO N (y Q r r M CO M 0 r Ln • > 0 — N N N r r 0 0 0 Q CO co co co co co co co co co U c U >+ - N N N N N e- O CO CO e O 00 C CL N O ca CU a) O _ 1. N co V to Q N- Co 6) Pipe 1 - 25 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 14.8800 cfs Manning's n 0.0140 Roadway Elevation 321.1400 ft Inlet Elevation 316.7500 ft Outlet Elevation 316.0000 ft Diameter 24.0000 in Length 75.1400 ft Entrance Loss 0.0000 Tailwater 2.0000 ft Computed Results: Headwater 318.9834 ft From Inlet Slope 0.0100 ft /ft Velocity 7.2568 fps Pipe 1 - 100 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 17.8500 cfs Manning's n 0.0140 Roadway Elevation 321.1400 ft Inlet Elevation 316.7500 ft Outlet Elevation 316.0000 ft Diameter 24.0000 in Length 75.1400 ft Entrance Loss 0.0000 Tailwater 2.0000 ft Computed Results: Headwater 319.3649 ft From Inlet Slope 0.0100 ft /ft Velocity 7.5096 fps Meadowcreek Subdivision - Phase 1 Brazos County, Texas 36 Pipe 2 - 25 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 14.2400 cfs Manning's n 0.0140 Roadway Elevation 321.1400 ft Inlet Elevation 317.1600 ft Outlet Elevation 316.8500 ft Diameter 24.0000 in Length 30.8900 ft Entrance Loss 0.0000 Tailwater 2.0000 ft Computed Results: Headwater 319.3203 ft From Inlet Slope 0.0100 ft /ft Velocity 7.1887 fps Pipe 2 - 100 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 17.0900 cfs Manning's n 0.0140 Roadway Elevation 321.1400 ft Inlet Elevation 317.1600 ft Outlet Elevation 316.8500 ft Diameter 24.0000 in Length 30.8900 ft Entrance Loss 0.0000 Tailwater 2.0000 ft Computed Results: Headwater 319.7136 ft From Inlet Slope 0.0100 ft /ft Velocity 7.4552 fps Meadowcreek Subdivision - Phase 1 Brazos County, Texas 31 Pipe 3 - 25 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 10.0600 cfs Manning's n 0.0140 Roadway Elevation 321.1400 ft Inlet Elevation 317.7100 ft Outlet Elevation 317.5500 ft Diameter 24.0000 in Length 16.0000 ft Entrance Loss 0.0000 Tailwater 2.0000 ft Computed Results: Headwater 319.5859 ft From Outlet Slope 0.0100 ft /ft Velocity 3.2022 fps Pipe 3 - 100 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 12.0700 cfs Manning's n 0.0140 Roadway Elevation 321.1400 ft Inlet Elevation 317.7100 ft Outlet Elevation 317.5500 ft Diameter 24.0000 in Length 16.0000 ft Entrance Loss 0.0000 Tailwater 2.0000 ft Computed Results: Headwater 319.6720 ft From Outlet Slope 0.0100 ft /ft Velocity 3.8420 fps Meadowcreek Subdivision -- Phase 1 Brazos County, Texas 38 Pipe 4 - 25 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 18.3300 cfs Manning's n 0.0140 Roadway Elevation 313.4000 ft Inlet Elevation 308.3100 ft Outlet Elevation 308.1700 ft Diameter 27.0000 in Length 23.4800 ft Entrance Loss 0.0000 Tailwater 2.2500 ft Computed Results: Headwater 310.7052 ft From Outlet Slope 0.0060 ft /ft Velocity 4.6101 fps Pipe 4 - 100 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 22.0300 cfs Manning's n 0.0140 Roadway Elevation 313.4000 ft Inlet Elevation 308.3100 ft Outlet Elevation 308.1700 ft Diameter 27.0000 in Length 23.4800 ft Entrance Loss 0.0000 Tailwater 2.2500 ft Computed Results: Headwater 311.0917 ft From Inlet Slope 0.0060 ft /ft Velocity 6.3912 fps Meadowcreek Subdivision - Phase 1 Brazos County, Texas 3c Pipe 5 - 25 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 15.7700 cfs Manning's n 0.0140 Roadway Elevation 313.4000 ft Inlet Elevation 308.8700 ft Outlet Elevation 308.5700 ft Diameter 24.0000 in Length 30.1500 ft Entrance Loss 0.0000 Tailwater 2.0000 ft Computed Results: Headwater 311.2263 ft From Inlet Slope 0.0100 ft /ft Velocity 7.3436 fps Pipe 5 - 100 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 18.9500 cfs Manning's n 0.0140 Roadway Elevation 313.4000 ft Inlet Elevation 308.8700 ft Outlet Elevation 308.5700 ft Diameter 24.0000 in Length 30.1500 ft Entrance Loss 0.0000 Tailwater 2.0000 ft Computed Results: Headwater 311.6481 ft From Inlet Slope 0.0100 ft /ft Velocity 7.5738 fps Meadowcreek Subdivision -- Phase 1 Brazos County, Texas 40 Pipe 6 - 25 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 10.9100 cfs Manning's n 0.0140 Roadway Elevation 313.4000 ft Inlet Elevation 310.2200 ft Outlet Elevation 309.7500 ft Diameter 18.0000 in Length 23.5500 ft Entrance Loss 0.0000 Tailwater 1.5000 ft Computed Results: Headwater 312.7270 ft From Inlet Slope 0.0200 ft /ft Velocity 8.6591 fps Pipe 6 - 100 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 13.1100 cfs Manning's n 0.0140 Roadway Elevation 313.4000 ft Inlet Elevation 310.2200 ft Outlet Elevation 309.7500 ft Diameter 18.0000 in Length 23.5500 ft Entrance Loss 0.0000 Tailwater 1.5000 ft Computed Results: Headwater 313.4005 ft From Inlet Slope 0.0200 ft /ft Velocity 8.8887 fps Meadowcreek Subdivision - Phase 1 Brazos County, Texas Pipe 7 - 25 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 28.6000 cfs Manning's n 0.0140 Roadway Elevation 300.4000 ft Inlet Elevation 295.8200 ft Outlet Elevation 295.5800 ft Diameter 30.0000 in Length 24.0800 ft Entrance Loss 0.0000 Tailwater 2.5000 ft Computed Results: Headwater 298.8983 ft From Inlet Slope 0.0100 ft /ft Velocity 8.5219 fps Pipe 7 - 100 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 34.0300 cfs Manning's n 0.0140 Roadway Elevation 300.4000 ft Inlet Elevation 295.8200 ft Outlet Elevation 295.5800 ft Diameter 30.0000 in Length 24.0800 ft Entrance Loss 0.0000 Tailwater 2.6100 ft Computed Results: Headwater 299.3953 ft From Inlet Slope 0.0100 ft /ft Velocity 8.7778 fps Meadowcreek Subdivision - Phase 1 Brazos County, Texas 42- Pipe 8 - 25 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 21.3600 cfs Manning's n 0.0140 Roadway Elevation 301.3200 ft Inlet Elevation 296.6500 ft Outlet Elevation 295.9200 ft Diameter 30.0000 in Length 91.2500 ft Entrance Loss 0.0000 Tailwater 2.5000 ft Computed Results: Headwater 299.0687 ft From Inlet Slope 0.0080 ft /ft Velocity 7.3319 fps Pipe 8 - 100 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 25.4100 cfs Manning's n 0.0140 Roadway Elevation 301.3200 ft Inlet Elevation 296.6500 ft Outlet Elevation 295.9200 ft Diameter 30.0000 in Length 91.2500 ft Entrance Loss 0.0000 Tailwater 2.9800 ft Computed Results: Headwater 299.3964 ft From Inlet Slope 0.0080 ft /ft Velocity 7.6121 fps Meadowcreek Subdivision -- Phase 1 Brazos County, Texas 43 Pipe 9 - 25 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 10.0400 cfs Manning's n 0.0140 Roadway Elevation 301.3200 ft Inlet Elevation 298.1300 ft Outlet Elevation 297.6500 ft Diameter 18.0000 in Length 24.0000 ft Entrance Loss 0.0000 Tailwater 1.5000 ft Computed Results: Headwater 300.4047 ft From Inlet Slope 0.0200 ft /ft Velocity 8.5195 fps Pipe 9 - 100 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Decsription SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 11.9500 cfs Manning's n 0.0140 Roadway Elevation 301.3200 ft Inlet Elevation 298.1300 ft Outlet Elevation 297.6500 ft Diameter 18.0000 in Length 24.0000 ft Entrance Loss 0.0000 Tailwater 1.5000 ft Computed Results: Headwater 300.9400 ft From Inlet Slope 0.0200 ft /ft Velocity 8.7928 fps Meadowcreek Subdivision -- Phase 1 Brazos County, Texas Pipe 10 - 25 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 7.6800 cfs Manning's n 0.0140 Roadway Elevation 305.2100 ft Inlet Elevation 301.6800 ft Outlet Elevation 297.6500 ft Diameter 18.0000 in Length 447.4000 ft Entrance Loss 0.0000 Tailwater 1.5000 ft Computed Results: Headwater 303.4473 ft From Inlet Slope 0.0090 ft /ft Velocity 5.8584 fps Pipe 10 - 100 Year Storm Culvert Calculator Entered Data: Shape Circular Number of Barrels 1 Solving for Headwater Chart Number 1 Scale Number 1 Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate 9.1200 cfs Manning's n 0.0140 Roadway Elevation 305.2100 ft Inlet Elevation 301.6800 ft Outlet Elevation 297.6500 ft Diameter 18.0000 in Length 447.4000 ft Entrance Loss 0.0000 Tailwater 1.5000 ft Computed Results: Headwater 303.7383 ft From Inlet Slope 0.0090 ft /ft Velocity 5.9733 fps Meadowcreek Subdivision - Phase 1 Brazos County, Texas 4S Meadowcreek Subdivision - Phase 1 T Calculations -Post Development Pipe and Channel Design Drainage Area #201 Sheet Flow: n= 0.24 (dense grass) P= 4:5 L= 300 Elev,= 327.8 EIev 326 Slope= 0.0100 T 0.007(L *n)" b = 0.637 hours= I 38.2 min I (p)0.5 *(S)0. Concentrated Flow 1: V= 2.5 fps (unpaved) L= 244 Elev 326 EIev 324 Slope= 0.0082 T,= L /(60 *V) = I 1.6 min I Concentrated Flow 2: V= 1..3 fps (unpaved) L= 1894 Elev,= 324 EIev 312 Slope= 0.0063: T L /(60 *V) = I 24.3 min I ITS 64.1 min I Flow Through Channel #5: V= "2:78; fps (Manning's) L= 86 Elev 312 EIev 311 Slope= 0.0191 T L /(60 *V) = I 0.5 min IT 64.6 min I Flow Through Pipe #5: V= 7.12 fps (Manning's) L= 30 Elev 311 EIev Slope= 0.0100 T,= L /(60 *V) = 0.1 min I IT c = 64.7 min Flow Through Pipe #4: V= 6.08 fps (Manning's) L= 34 Elev,= 0 EIev Slope= 0.0060 46 T,= L/(60*V) = 0.1 min ITS 64.8 min I Flow Through Channel #4: V= 3.44 fps (Manning's) L= 103 Elev 0 EIev Slope= 0.0060 T,= L /(60 *V) = I 0.5 min ITS 65.3 min I Drainage Area #202A Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 254 Elev 324 EIev 316.5 Slope= 0.0295 T 0.007(L *n)" ° = 0.362 hours= I 21.7 min (P) 5 * Concentrated Flow 1: V= 2.4 fps (unpaved) L= 132 EIev 316.5 EIev 313.5 Slope= 0.0227 T,= L/(60*V) = I 0.9 min Gutter Flow 1: V= 1.8 fps (paved) L= 245 Elev EIev Slope= 0.0080 T,= L /(60 *V) = 2.3 min Gutter Flow 2: V= 2.2 fps (paved) L= 300 EIev EIev Slope= 0.0123 T,= L /(60 *V) = 2.3 min Gutter Flow 3: V= 1.95 fps (paved) L= 59 EIev EIev Slope= 0.0090 T,= L/(60*V) = 0.5 min I IT c = 27.7 min I 41 Drainage Area #202B Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 129 Elev,= 310 EIev 304.5 Slope= 0.0426 T 0.007(L "n)"' = 0.182 hours= 10.9 min I (p)0.5„ (S)0. Sheet Flow: n= 0.15 (short -grass prairie) P= 4.5 L= 114 Elev,= 310 EIev 304.5; Slope= 0.0482 T 0.007(L *n)" ° = 0.108 hours= I 6.5 min I (p)0.5 *(S)0. Gutter Flow 1: V= 1.8 fps (paved) L= 51= EIev 304.5 EIev 302.5; Slope= 0.0080 T L /(60 *V) = I 0.5 min I ITS 17.9 min I Drainage Area #203 Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 293 Elev 324 EIev 315 Slope= 0.0307 T 0.007(L "n)" ° = 0.399 hours= I 23.9 min I (p)0 .5 *(S)0 . Concentrated Flow 1: V= 1.8 fps (unpaved) L= 848 Elev 315 EIev 304.5 Slope= 0.0124 T,= L /(60 *V) = I 7.9 min IT c = 31.8 min I Flow Through Channel #7: V= 2.77 fps (Manning's) L= 90 Elev 304.5 Elev Slope= 0.0200 T,= L /(60"V) = 0.5 min IT c = 32.3 min I Flow Through Pipe #9: V= 8.26 fps (Manning's) L= 33 Elev 0 EIev Slope= 0.0200 T,= L/(60*V) = 0.1 min IT S = 32.4 min I Flow Through Pipe #8: V= 7.09 fps (Manning's) L= 91 Elev 0 EIev Slope= 0.0080 T,= L/(60*V) = 0.2 min I ITS 32.6 min I Flow Through Pipe #7: V= 8.27 fps (Manning's) L= 33 Elev 0 EIev Slope= 0.0100 T,= L/(60*V) = 0.1 min IT 32.7 min I Flow Through Channel #6: V= 2.96 fps (Manning's) L= 99 Elev,= 0 Elev Slope= 0.0050 T,= L/(60*V) = 0.6 min ITS 33.3 min I Drainage Area #206 Sheet Flow 1: n= 0.24 (dense grass) P= 4.5 L= 192 Elev,= 327 EIev 324.7 Slope= 0.0120 T,= 0.007(L "n) " = 0.415 hours= 24.9 min (p) 05 * Sheet Flow 2: n= 0.015 (short grass prairie) 41 P= 4.5 L= 108 Elev 324.7 EIev 323 Slope= 0.0157 T 0.007(L *n)" a = 0.026 hours= 1.6 min (P) 5 * Concentrated Flow 1: V= 3 fps (unpaved) L= 56 Elev 323 Elev 321 Slope= 0.0357 T L /(60"V) = 0.3 min Gutter Flow 1: V= 1.8 fps (paved) L= 200 EIev 321 EIev Slope= 0.0080 T,= L /(60 *V) = 1.9 min Gutter Flow 2: V= 2 fps (paved) L= 200! EIev 0 EIev Slope= 0.0100 T,= L /(60 *V) = I 1.7 min Gutter Flow 3: V= 1.8 fps (paved) L= 200 Elev 0 EIev Slope= 0.0080 T L /(60 *V) = I 1.9 min Gutter Flow 4: V= 2 fps (paved) L= 320 EIev 0 EIev Slope= 0.0100 T,= L /(60 *V) = I 2.7 min f T 35.0 min Drainage Area #210 Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 73 Elev 305 EIev 303.7 Slope= 0.0178 T 0.007(L *n)" a = 0.163 hours= 9.8 min (P) 5 * 4 50 Sheet Flow: n= 0.15 (short -grass prairie) P= 4.5 L= 127 Elev 303.7 Elev 301.5 Slope= 0.0173 T,= 0.007(L *n)" = 0.177 hours= 10.6 min (P) Concentrated Flow 1: V= 1.95 fps (unpaved) L= 90 Elev 301.5 Elev 300.5 Slope= 0.0111 T L /(60 *V) = I 0.8 min IT 21.2 min 1 Drainage Area #216 Gutter Flow 1: V= 1.8 fps (paved) L= 198 Elev Elev Slope= 0.0080 T L /(60 *V) = 1.8 min Gutter Flow 2: V= 2 fps (paved) L= 200 Elev Elev Slope= 0.0100 T,= L /(60 *V) = I 1.7 min Gutter Flow 3: V= 1.8 fps (paved) L= 200 Elev Elev Slope= 0.0080 T L /(60 *V) = I 1.9 min Gutter Flow 4: V= 2 fps (paved) L= 320 Elev Elev Slope= 0.0100 T,= L /(60 *V) = I 2.7 min IT c = 8.1 min ,using 10 min Drainage Area #220 Sheet Flow: n= 0.15 (short grass prairie) 5 ( P= 4.5 L= 114 Elev 326 EIev 323 Slope= 0.0263 T 0.007(L *n) ° = 0.137 hours= I 8.2 min (P) 0.5* (S) o.4 Gutter Flow 1: V= 1.8 fps (unpaved) L= 355' Elev EIev Slope= 0.0080 - F t = L /(60 *V) = 3.3 min I 1T 11.5 min Drainage Area #221 Sheet Flow: n= 0.15 (short grass prairie) P= 4.5 L= 70 Elev 322.1, EIev 320.9 Slope= 0.0171 T 0.007(L *n)" ° = 0.110 hours= I 6.6 min I (p)0 . 5 *(S)0 .4 Gutter Flow 1: V= 1.8 fps (unpaved) L= 369 Elev EIev Slope= 0.0080 T,= L /(60 *V) = I 3.4 min I ITS 10.0 min Drainage Area #223 Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 300 Elev 332.3 EIev 331.1 Slope= 0.0040 T 0.007(L *n)" ° = 0.919 hours= I 55.1 min (P) S*(S)04 Concentrated Flow 1: V= 2 fps (unpaved) L= 404 Elev 331.1 EIev 326 Slope= 0.0126 T,= L /(60 *V) = 3.4 min 52- Concentrated Flow 2: V= 3.8 fps (unpaved) L= 55 Elev 326 EIev 323 Slope= 0.0545 T,= L /(60 *V) = 0.2 min I ITS 58.7 min I Flow Through Channel #3: V= 2.75 fps (Manning's) L= 142.5 EIev 321:94 EIev 319.09 Slope= 0.0200 T L /(60 *V) = I 0.9 min I ITS 59.6 min I Flow Through Pipe #3: V= 6.37 fps (Manning's) L= 24 EIev EIev Slope= 0.0100, T L /(60 *V) = I 0.1 min I ITS 59.7 min I Flow Through Pipe #2: V= 6.95 fps (Manning's) L= 31 Elev EIev Slope= 0.0100 -. f t = L /(60 *V) = I 0.1 min I ITS 59.8 min I Flow Through Pipe #1: V= 7.02 fps (Manning's) L= 83 EIev 0 EIev Slope= 0.0100 T,= L /(60*V) = I 0.2 min I IT,= 60.0 min I Flow Through Channel #2: V= 2.24 fps (Manning's) L= 960 EIev 0 EIev Slope= 0.0060 T,= L /(60 *V) = 7.1 min IT 67.1 min 1 53 Flow Through Channel #1: V= 2.38 fps (Manning's) L= 380 Elev,= 0 Elev Slope= 0.0060 T,= L /(60 *V) = 2.7 min lT 69.8 min 59' r . , s- .50 — ----- -- -- -- - • -- IMO= ------ - - - - -- . -- 1- - ----- 1------.. ■•- - ■--■ --- -MI -- -- 11----■■.■■■WV —M .•--- 1- 111•1111=1111- 1•MMIN- IN-■■ ■•■ ■1 - - - - NOM MOM a MEMO — ... �1���t��M�■■■■■■s 1t1•M.M■■■■■■r ____lam_ 111•EllIMMIIM— MIMMII W1111•••\WINII l•-t111■ ■•••/ Mitral•ttINIIIMIlle 111111•11MIMttatIrn111111■ ■1111■ ■ ■ 111111 N ■ 11■ ■ ■■•IMINIAINNIIIIMEM MINI=111111M1•11..U. ■■••II1 111111111 • 1 ■ 1111 ■ 1111,.1 ∎ /MINUN • .... ����M�MI MIN ■ ■I ■ /IIIMININIII■ ■MIMMA��M� MMINIMINIHINIMINIIIIIIIMII■■11IIIIII1IIMIIMIH t ■i1 //INNIMM1I MINIMMIMMO U■■■■■ ■IIIIIIMEUIIlUUIIY IIMIII•IIII • MIIIMIIIIIIIUI.IIUii111111111IIII■1U1IIII IMIMIIMIIII■ i ���. .UiiiIlIIIIII11IIUh ■IIIIV .20 — MINEM.i.� I11111111111I!■//I1/ �MINIIu II!,111IMMIN ■.. IiIIlIIIIIIIIIIIIIITi11 //1111INUII■ ■.iii iI111111111111I V IVl II II III II ■ ■If1111111111111111/,11 X111111 RIII1 1 0 - ,...------ . ■ ■ ■.•••••./ /E- /.-■■ ■. ■■INIMIIIMII- -- 1■1111=----- u. ■ ■••••Ma' -l:tMall1•.••ill--- 4- INIMMUMIIIIMI ■■••••itlltallmIu.■• ■ 11111111MIMIN 1111•11=11M11111•11•1111111■■ ■11111111VuIum■ ■■ ■••111 ____ � _ �������� ■� ■ ■ ■� /1111 /�•�� ■ ■ ■� o . 06 O INIIMI IIIIlIIIIMIIIIIII1111I•11111111•■ _ ��IM�RUIIII■IIII' IIIPAIIMIIII111IIIM�NI�■ N ------- - - - - -• MO NM ... -- -- ----_. ----- N ------ . ■.a..e MIS =MI --- ■..•.1■11•-111=-- ' N ���--- --- ■ ■P Mill .1..1 MINA MN ...•� —�-- — "" "MINA -1111■ 1. ■•....1---- ■ ■.. ■.'�� -- L .04 — �.t��.t■� -- .1111..■■.. ■..1-- ■ ■.. ■ ■ ■ ■� = 1... ill....tt.tt11t.u- ■ ► / ■••r ■•umu- 11 ■•••• -- =1111• •to 4 O 11■ItttaMOIMt ttiIIIWUI11• /MIIIMIIMIMI■ 0 MIIIIIit• IIMMIIIIillit •IMif ■I.■■•'/ /Ilflilul•11••U..au uftlffMIIMIIIIIIMI. 1 L -. �moom��m ■1 ■ ■ / / /IU1I1••11•■ ■ ■•11■U MIUMM =IIMMiNNIIII MIMICS 1111 /11u /uuitli,fl . III III ..-- fi•f__ S i IMIIIIIM111111111111111111EMILIPAIIIIIIIIMIIIIIIMIIIIIMINIMIMI IIIMIIIMII•N■%Ul'4I111111 IUII■ /11111•111111111M■ .02 — NMI INEWII1111111111��11111111�NIMI�■ b V/1111111111UI1I1111111•1111111U■ MEM /1111111111111111111111111111111111 � , a'° 4IIIII1IIIIIIIIII111111IMUhh■ ■■ 1 411111111111I11111111111RUIII • .01 — ■■ W�/ 1/1111111111111I1111111111UIII1 I IIII..., ■ ■■ ■11111111111 ■ ■ ■■11111111111...■ .. 1R'4l■■I1111111111I ■■ 111111 ii.. ■ ■■ 111111111E111111111111111111111111111111111111111M1 ■ A WIIIIUIHhIIIIIIIIn111111111111UUIl i .005 — W1!4 111111111111111111111111111R1111 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 6 10 20 Average velocity, ft /sec Figure 3 -1.- Average velocities for estimating travel time for shallow concentrated flow. i 3-2 (210- VI- TR -55. Second Ed.. June 1986) • 3 5t APPENDIX C Drainage Channel Design Data: Calculation Summary, Channel Calculator Data (Refer to Appendix B for Time of Concentration Data) 0 a) L c O E co N co o� N- (D V (0 O 3- ° o w r 0 0) 0' 0) O O , T N M 0 O tO N (+) C) C cc. L• O N. to tf ) N— N'.,- M, . 0 O Cq O co V 0) M '(0 N J N ; 0O II II II T g .0 0 r.-- co 1 N.1 - 'N -� _O - 0 N C. _ v a N i' (n 11 II II 1 • - V 4V 4 4 (O (D a+ J ° V) (0 aO i M O) 11) t!) to O d .) 00 0) . 0 (V N .- T o L O O ((0 0) N I CO O 0 — "-- O NN 0)i '' o ' N 1)) _ CO V •' I CO I CO 1 M E 0 E n w N (n CO to v CO O N CO rn y- 1M 0 I I I L Cr O (. v N 0 0 ) 100 0 00 1 O ( 10 N ' N i I a 0) 00 O O 11 11 d V N to '.� 0), CO NIM 10 .0 -o IO >s m t r r '. N O),. 0)', O (V v M CO Ni IM I 0) 6 to O V M O N E w (n oco' N 0 5 M !� .6 6 0) N', 00 , 1 C m a) • V'. O all n 0 0) (0 >. o t (n O1N CV 1 1 O I ,O O N O O.(O'1 0 O • — N M,M C) M'1V 4 0 E I , (U 0 M N.�IO)I C'4 C LO `p v V ,• (n •1c61 N om 0 co 0 1` M I n, OO N r C a) O 0 s_ 1 1 U II 11 .1 a ) M 'tn O 1 O M '(o .� N > ,,, t V ' in 1 0) . co O 1 r.... O .0 - 0 a) to ! 1` I r 0 CO ,- 11- + E D .- n O 1 00,- I r -0 . 00 H r r 0 ad 414 N I . I 11 E CO (0 to CO (O I CO I, CO ..5) < N - 1- � VI N O) 0 U r O (0 I CV N '. N 00 to 1(sJI( c61 N- 07 O O1 O co .- to T O M V ("0 CO M r O O O'O "O BOO . 0 _ 0 O'.0 O O O O (0 CO CO CO CO CO CO i CO . CO L O U o 0 0 6'61 o a.) co w LO N- o (n to 10 (o 1 1) u) (f) O 11 11 11 0 M «) to to '.. (n 1 (n (n ,- _a "0 (1) o ' o o'oo 0 C _ 0 t- to ' o ( M E (0 N W 8 - 0) to M 0 O N V co .M-- Q) to Q F M 0 a) CO 0 Q1 CO N 0 CO d _ co. (0 0 0) to 0) co y ❑ l0 O Q N 00 W OO co M V 0 t d N .0 0 Q N _ N 0) O O N M 0 O CL to O r O co. o -0 C 0) ( a Q to 0 V (o N 0 > , OO O O (/) L O Q o c E II II II O 00 0 C Q_o '0 N _ o N N r _ O a) o ' (C N N N � 0) (n U C = L It .5 Q M N M O C 0 (9 _ N N co CO M Q U N N N N 0 O N 0 O (d 0 J. • R L' O M N N N 0) N Q 3 CO c Q N N N .- 7- (O 1(7 (n 0 0 . N N o cav IX 0 LL Q( 0 O Y O O N 0 d II II II II CO y Q d N N H CY O< U � CO ❑ 3- 3 0 N ❑ ik 42 Yt tt tt 3k It O 0 013 C 6) 0 0 0 0 0 0 0 _ C C C 0 C C C CCS (4 0_ m CO CO m m� m m 0) m o 0. • ❑ o U 0 0 0 0 0 (J 57 Meadowcreek Subdivision - Phase 1 Summary of Channel Calculator Data Bottom Side Channel Width Slopes Mannings % 010 V10 Depth of Q100 V100 Depth of # (ft) (ft/ft) "n" Value Slope (cfs) (fps) Flow (in) (cfs) (fps) Flow (in) 1 10 0.25 0.04 0.60% 36.50 2.47 12.52 50.76 2.72 14.94 2 10 0.17 0.04 1.00% 18.04 2.24 7.13 25.02 2.47 8.52 3 4 0.25 0.04 2.00% 8.61 2.75 6.19 11.93 3.02 7.35 4 0 0.25 0.03 0.80% 15.83 3.44 12.87 22.00 3.73 14.56 5 4 0.25 0.04 1.91% 9.48 2.78 6.59 13.17 3.06 7.82 6 0 0.25 0.03 0.50% 24.82 2.96 17.36 33.97 3.21 19.53 7 4 0.25 0.04 2.00% 8.81 2.77 6.27 12.06 3.03 7. sa Channel #1 - 10 Year Storm Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 36.5000 cfs Slope 0.0060 ft /ft Manning's n 0.0400 Height 18.0000 in Bottom width 120.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 12.5174 in Velocity 2.4690 fps Flow area 14.7835 ft2 Flow perimeter 223.2208 in Hydraulic radius 9.5368 in Top width 220.1389 in Area 24.0000 ft2 Perimeter 268.4318 in Percent full 69.5409 % Channel #1 - 100 Year Storm Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 50.7600 cfs Slope 0.0060 ft /ft Manning's n 0.0400 Height 18.0000 in Bottom width 120.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 14.9377 in Velocity 2.7223 fps Flow area 18.6462 ft2 Flow perimeter 243.1790 in Hydraulic radius 11.0415 in Top width 239.5012 in Area 24.0000 ft2 Perimeter 268.4318 in Percent full 82.9870 % Meadowcreek Subdivision - Phase 1 Brazos County, Texas Sq Channel #2 - 10 Year Storm Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 18.0400 cfs Slope 0.0100 ft /ft Manning's n 0.0400 Height 18.0000 in Bottom width 120.0000 in Left slope 0.1667 ft /ft Right slope 0.1667 ft /ft Computed Results: Depth 7.1292 in Velocity 2.2387 fps Flow area 8.0583 ft2 Flow perimeter 206.7132 in Hydraulic radius 5.6135 in Top width 205.5329 in Area 28.4973 ft2 Perimeter 338.9368 in Percent full 39.6065 % Channel #2 - 100 Year Storm Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 25.0200 cfs Slope 0.0100 ft /ft Manning's n 0.0400 Height 18.0000 in Bottom width 120.0000 in Left slope 0.1667 ft /ft Right slope 0.1667 ft /ft Computed Results: Depth 8.5162 in Velocity 2.4728 fps Flow area 10.1181 ft2 Flow perimeter 223.5840 in Hydraulic radius 6.5166 in Top width 222.1741 in Area 28.4973 ft2 Perimeter 338.9368 in Percent full 47.3123 % Meadowcreek Subdivision - Phase 1 Brazos County, Texas Channel #3 - 10 Year Storm Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 8.6100 cfs Slope 0.0200 ft /ft Manning's n 0.0400 Height 18.0000 in Bottom width 48.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 6.1920 in Velocity 2.7517 fps Flow area 3.1290 ft2 Flow perimeter 99.0602 in Hydraulic radius 4.5485 in Top width 97.5356 in Area 15.0000 ft2 Perimeter 196.4318 in Percent full 34.3998 % Channel #3 - 100 Year Storm Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 11.9300 cfs Slope 0.0200 ft /ft Manning's n 0.0400 Height 18.0000 in Bottom width 48.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 7.3457 in Velocity 3.0222 fps Flow area 3.9475 ft2 Flow perimeter 108.5746 in Hydraulic radius 5.2354 in Top width 106.7659 in Area 15.0000 ft2 Perimeter 196.4318 in Percent full 40.8097 % Meadovcreek Subdivision - Phase 1 Bl,izos County, Texas 61 Channel #4 - 10 Year Storm Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 15.8300 cfs Slope 0.0080 ft /ft Manning's n 0.0250 Height 18.0000 in Bottom width 0.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 12.8722 in Velocity 3.4393 fps Flow area 4.6026 ft2 Flow perimeter 106.1471 in Hydraulic radius 6.2439 in Top width 102.9778 in Area 9.0000 ft2 Perimeter 148.4318 in Percent full 71.5124 % Channel #4 - 100 Year Storm Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 22.0000 cfs Slope 0.0080 ft /ft Manning's n 0.0250 Height 18.0000 in Bottom width 0.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 14.5632 in Velocity 3.7343 fps Flow area 5.8913 ft2 Flow perimeter 120.0913 in Hydraulic radius 7.0642 in Top width 116.5056 in Area 9.0000 ft2 Perimeter 148.4318 in Percent full 80.9067 % Meadowcreek Subdivision - Phase 1 Brazos County, Texas 402 Channel #5 - 10 Year Storm Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 9.4800 cfs Slope 0.0191 ft /ft Manning's n 0.0400 Height 18.0000 in Bottom width 48.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 6.5938 in Velocity 2.7836 fps Flow area 3.4057 ft2 Flow perimeter 102.3740 in Hydraulic radius 4.7904 in Top width 100.7506 in Area 15.0000 ft2 Perimeter 196.4318 in Percent full 36.6323 % Channel #5 - 100 Year Storm Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 13.1700 cfs Slope 0.0191 ft /ft Manning's n 0.0400 Height 18.0000 in Bottom width 48.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 7.8235 in Velocity 3.0571 fps Flow area 4.3080 ft2 Flow perimeter 112.5139 in Hydraulic radius 5.5136 in Top width 110.5877 in Area 15.0000 ft2 Perimeter 196.4318 in Percent full 43.4637 % Meadowcreek Subdivision - Phase 1 Brazos County, Texas 43 Channel #6 - 10 Year Storm Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 24.8200 cfs Slope 0.0050 ft /ft Manning's n 0.0280 Height 24.0000 in Bottom width 0.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 17.3631 in Velocity 2.9638 fps Flow area 8.3744 ft2 Flow perimeter 143.1802 in Hydraulic radius 8.4224 in Top width 138.9052 in Area 16.0000 ft2 Perimeter 197.9091 in Percent full 72.3464 % Channel #6 - 100 Year Storm Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 33.9700 cfs Slope 0.0050 ft /ft Manning's n 0.0280 Height 24.0000 in Bottom width 0.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 19.5316 in Velocity 3.2057 fps Flow area 10.5968 ft2 Flow perimeter 161.0620 in Hydraulic radius 9.4742 in Top width 156.2531 in Area 16.0000 ft2 Perimeter 197.9091 in Percent full 81.3818 % Meadowcreek Subdivision Phase 1 Brazos County, Texas /A_ CA Channel #7 - 10 Year Storm Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 8.8100 cfs Slope 0.0200 ft /ft Manning's n 0.0400 Height 18.0000 in Bottom width 48.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 6.2676 in Velocity 2.7701 fps Flow area 3.1804 ft2 Flow perimeter 99.6838 in Hydraulic radius 4.5943 in Top width 98.1407 in Area 15.0000 ft2 Perimeter 196.4318 in Percent full 34.8199 % Channel #7 - 100 Year Storm Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 12.0600 cfs Slope 0.0200 ft /ft Manning's n 0.0400 Height 18.0000 in Bottom width 48.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 7.3871 in Velocity 3.0315 fps Flow area 3.9782 ft2 Flow perimeter 108.9160 in Hydraulic radius 5.2597 in Top width 107.0972 in Area 15.0000 ft2 Perimeter 196.4318 in Percent full 41.0397 % Meadocreek Subdivision - Phase 1 Hrazos County, Texas APPENDIX D Detention Pond Design Data & Calculations: Area - Capacity Data, SCS Curve Number Data, Time of Concentration Calculations 66 Meadowcreek Subdivision - Phase 1 Detention Pond No. 1 Area - Capacity Data V = H * {[A1 +A2 + (A1 *A2) / 3} V = volume, ft A = area, ft H = difference in elevation, ft POND NO. 1 Area - Capacity Data Elevation Depth Area Area Volume Cumulative (ft) (ft) (ft) (acres) (ac -ft) (ac -ft) 293.00 0.00 0 0.000 0.000 0.000 294.00 1.00 9,431 0.217 0.072 0.072 295.00 2.00 34,155 0.784 0.471 0.543 296.00 3.00 51,597 1.184 0.977 1.520 297.00 4.00 72,100 1.655 1.413 2.934 298.00 5.00 132,853 3.050 2.317 5.251 299.00 6.00 235,184 5.399 4.169 9.420 Detention Pond No. 1 Elevation Discharge Data POND NO. 1 Elevation Discharge Data _ 2-4.5' wide x 2- high openings 10' wide Overflow Spillway Total Elevation L =9.0', A =18 sf crest =296.5 20" BW, 3H:1V side slopes Discharge Elevation Weir Orifice Weir crest = 297.5, n =0.030 (ft) y, depth (ft) Q, cfs h, depth (ft) Q, cfs y, depth (ft) Q, cfs y, depth (ft) Q, cfs Q, cfs (ft) 293.0 0.0 0.0 0.0 0.0 -- -- -- -- 0.0 293.0 294.0 1.0 27.0 -- -- -- -- -- 27.0 294.0 295.0 2.0 76.4 -- -- -- -- 76.4 295.0 296.0 -- 2.0 122.7 -- -- -- -- 122.7 296.0 297.0 -- -- 3.0 150.3 0.5 10.6 -- -- 160.9 297.0 298.0 -- 4.0 173.5 1.5 55.1 0.5 18.0 246.0 298.0 299.0 -- -- 5.0 194.0 2.5 118.6 1.5 113.2 425.8 299.0 1. Weir Equation Q = 3.0 * L * y312 2. Orifice Equation Q = 4.82 * A.* h 112 3. Overflow Spillway - Mannings Equation (PI Meadowcreek Subdivision - Phase 1 SCS Curve Number Calculations Drainage Area - 101 Area - Ac. 188.48 sq. mi. 0.2945 T, = 83.1 Lag = L = 0.6Tc = 49.9 min = 0.831 hrs Weighted Land Use Soil Type Area - Ac. CN II CN Pasture (good) C 54.73 74 21.5 Pasture (good) D 26.62 80 11.3 Wooded (good) C 58.08 70 21.6 Wooded (good) D 39.87 77 16.3 Farmstead C 4.50 82 2.0 Road -- 2.36 98 1.2 Water -- 2.32 100 1.2 Total - CN II 188.48 75.1 Average Runoff condition CN = 69.7 CNI = 57.1 ARC CN = CN I + 0.70(CN II - CN I) SCS Curve Number Calculations Post - Development Drainage Area - 301 Area - Ac. 188.48 sq. mi. 0.2945 T, = 80.5 Lag = L = 0.6Tc = 48.3 min = 0.805 hrs Weighted Land Use Soil Type Area - Ac. CN II CN Pasture (good) C 55.49 74 21.8 Pasture (good) D 26.78 80 11.4 Wooded (good) C 44.26 70 16.4 Wooded (good) D 32.24 77 13.2 Developed Area C 12.66 90 6.0 Developed Area D 7.87 92 3.8 Farmstead C 4.50 82 2.0 Road -- 2.36 98 1.2 Water -- 2.32 100 1.2 Total - CN II 188.48 77.1 Average Runoff condition CN = 71.7 CN I = 59.1 ARC CN = CNI + 0.70(CN II - CN I) (o� Meadowcreek Subdivision - Phase 1 T Calculations- Pre - Development Drainage Area #101 Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 300 EIev 332.3 EIev 331.1 Slope= 0.0040 T,= 0.007(L "n)" ° = 0.919 hours= I 55.1 min (P)0.5,(S)0. Concentrated Flow 1: V= 2 fps (unpaved) L= 404 Elev 331.1 EIev 326 Slope= 0.0126 T,= L /(60 *V) = I 3.4 min Concentrated Flow 2: V= 3.8 fps (unpaved) L= 55 Elev 326 EIev 323 Slope= 0.0545' T,= L /(60 *V) = I 0.2 min Flow Through Stream #1 V= 2.02 fps (Manning's) Segment #1: L= 800 Elev 323 EIev 313 Slope= ._0:0125. T L/(60*V) = I 6.6 min I Flow Through Stream #1 V= 2.49 fps ( Manning's) Segment #2: L= 1461 EIev 313 EIev = 297 Slope= 0.0110 T,= L /(60*V) = I 9.8 min I Flow Through Stream #3 V= 1.51, fps (Manning's) Segment #1: L= 384 Elev 297 EIev 296.5 Slope= 0.0013 T,= L /(60*V) = 4.2 min Flow Through Stream #3 V= 2.57 fps (Manning's) Segment #2: L= 581 Elev 296.5 Elev 293.5 Slope= 0.005 T,= L /(60 *V) = 3.8 min IT 83.1 min I (p9 Meadowcreek Subdivision - Phase 1 T Calculations- Post - Development Drainage Area #301 Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 300 Elev 332.3; Elev 331.1 Slope= 0.0040 T 0.007(L *n)" ° = 0.919 hours= I 55.1 min (P)0.5 *(S)0. Concentrated Flow 1: V= 2 fps (unpaved) L= 404 Elev 331:1 Elev 326 Slope= 0.0126 T L /(60*V) = 3.4 min Concentrated Flow 2: V= 3.8 fps (unpaved) L= 55 Elev 326 Elev 323 Slope= 0.0545: Tt L /(60 *V) = ( 0.2 min I Flow Through Channel #3: V= 2.75 fps (Manning's) L= 142.5' Elev 321.94 Elev 319.09 Slope= 0.0200 T L /(60*V) = I 0.9 min I Flow Through Pipe #3: V= 6.37 fps (Manning's) L= 24 Elev,= Elev Slope= 0.0100 T L /(60 *V) = I 0.1 min I Flow Through Pipe #2: V= 6.95 fps (Manning's) L= 31 Elev,= Elev Slope= 0.0100 T L /(60 *V) = 0.1 min Flow Through Pipe #1: V= 7.02 fps (Manning's) L= 83 Elev,= 0 Elev Slope= 0.0100 T L /(60 *V) = 0.2 min Flow Through Channel #2: V= 2.24 fps (Manning's) L= 960 Elev,= 0 Elev,= Slope= 0.0060 70 T,= L /(60 *V) = I 7.1 min 1 Flow Through Channel #1: V= 2.38 fps (Manning's) L= 380 Elev 0 Elev Slope= 0.0060 T,= L /(60 *V) = 2.7 min Flow Through Stream #1 V= 2.49 fps (Manning's) Segment #2: L= 762 Elev Elev Slope= 0.0110 T,= L /(60 *V) = I 5.1 min Flow Through Stream #3 V= 1.51 fps (Manning's) Segment #1: L= 384 Elev Elev Slope= 0.0013 T,= L /(60 *V) = I 4.2 min Flow Through Stream #3 V= 2.57 fps (Manning's) Segment #2: L= 218 EIev Elev Slope= 0.0050 T,= L/(60*V) = I 1.4 min I Tc = 80.5 min I 1' J' .1■■•=11111MEMIMMIIMINI SUM= MN •• MIMI IMP APIMMINIIIN INIIMM Elt .t.t......■..••Ill1.........1 MINI',MINMI U ttttIMMINI.. ..MM..■a WON NMI tg......IPIIMMMINIMIIINIIIIIIII __ a.___..■■ .■ ■..hI1il1.. ■■ ■IIaaMalI∎..1•111111111111 , ". �IM���1•� .U.UUI.ii•ii ■uv /.IM/ MNIMMEMOR•III•■111111111111111111■ ■11■ /1111/ /MMU■ • IMIIIMII__U.Ru■■IUIIIIIIIIU 111I11'/MIIIIIIII■ 1 IIIMIIIIIIIIMINIM 1111111111IIIIIMI I' IIIMMI111•1■ ������1�■11f111111111�1111M 1�1�MINI■ .20 — MIIMM..11 1IIIIIIIIIIIII■/111/.11IIIIIMII■ IN. . INII /111111111 ■I I/i 11►,1111NM1■ ■.. iiii .I11111111111II ■■III IIIf hiIII IIIII I/ WA II M11I 11.11111111111111.111111111111111111=111111111.111111111111111111=1111111111111 .10 — 1■1 ..limuI■ m.. ■ ■ ■. ••••essam... ■ ■. ■ ■.•■••••■••= ftltl.1=11ttt...Mf....■■■■■801101 U.. ■■■■11111111 IM..1IN . ---- m...■■ ■ ■■■.■.u.....■■■■■■ ∎..IMMIMIM 4- MINIMIIIIMINIMIIIIM NMI orili WA Mono Is MINEMMENO _ miimisMonom umaa iarIII MMa■a ummil • IMIIIIIIMIIIMINIIIIIMIIIIIIII 1111/41• ■UI11111111•11111UU �MI�......iIIu11 / 1111 /M�IIhhIII11�IMU� o . 06 — IIIIIIIIIIIIIIIIIIIIIIIIIII1111 /iIIIMI ■IIIIIIII �MI�...MIIIII III u��al/u111I���•■ N — ---- - - - -■. ._• _... ..• -- M■ I.-- a 0 ■••■••■■•••111INIMM (I) MI■11■1■111=11.1 MOM= MIN AIM III' •Ile =111111111MI MIN NM MN 6111M1■11•11111MIIIM = ...m.im .m...r'1...' ••u 1.......•■••tl. ..tt.tl... o IIMIIIM11111131111BMINIIIIP a■■. / ■■•.u. ■■111•MIIIMIIINI V •11•11=11a.111•U.. ■ /. ■ ■a'dl■ /{1/1■ N U••.uuiaa.aMMIIIIa■11 - 1 L _ __aal__..ala 1/ as /gliIl111111 al■ • IN II��a.al•� m aa■ a.1a. .111• I../J ■IIMIIlfihl..UU •IaahIIIIIIIIIUMIIIN " IIIIIIIIMINIIIIIMINE•4 ■11/11111111111111111111111■1111111111MININIIN 3C l�mmum ■%fit '4 11111111milllI1111um■ 11.111111•111 ■F4UJ 511111IIIIRIIIIIII11i•��R• .02 — MIIIIIMI NIIIIIIIIII11IIMII111NaI ME■ a '° /111111111111111111111.■■.. ■■ J c , a� �111111111111U11111111 ■■ A 4111111111111111111111111111111111 • .01 — ■ UI! 4V1111111111111I1111111111Rilil ONNE/,U/ ■ilIII1 /1111111■1IIIIII MINVAR Ai1IIIIIIIIIIIIII1IIII1111111111111 mil, ■/ ,JIII111111111111N11111111S•RI■ ■ IIigii11111111111IIIHH11111111 .1111UII 1 • .005 — • 10111111111111111N1111111111RIII . 1 1 1 i V o l t s 1 1 2 4 6 10 20 • Average velocity, ft /sec Figure :1-I.—Average velocities for estimating travel time for shallow concentrated flow. , ,, 3 -2 (210- VI- TR -55, Second Ed., June 1986) ,1 Stream #1 Segment #1 Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 13.6800 cfs Slope 0.0125 ft /ft Manning's n 0.0600 Height 18.0000 in Bottom width 24.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 12.8982 in Velocity 2.0204 fps Flow area 6.7709 ft2 Flow perimeter 130.3609 in Hydraulic radius 7.4793 in Top width 127.1853 in Area 12.0000 ft2 Perimeter 172.4318 in Percent full 71.6564 % Stream #1 Segment #2 Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 38.4400 cfs Slope 0.0110 ft /ft Manning's n 0.0600 Height 30.0000 in Bottom width 36.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 19.4832 in Velocity 2.4936 fps Flow area 15.4152 ft2 Flow perimeter 196.6629 in Hydraulic radius 11.2873 in Top width 191.8659 in Area 32.5000 ft2 Perimeter 283.3863 in Percent full 64.9441 % Meadowcreek Subdivision - Phase 1 Brazos County, Texas 73 Stream #2 Segment #1 Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 58.2100 cfs Slope 0.0060 ft /ft Manning's n 0.0400 Height 30.0000 in Bottom width 36.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 22.3463 in Velocity 2.9916 fps Flow area 19.4576 ft2 Flow perimeter 220.2723 in Hydraulic radius 12.7201 in Top width 214.7704 in Area 32.5000 ft2 Perimeter 283.3863 in Percent full 74.4877 % Stream #2 Segment #2 Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 21.8900 cfs Slope 0.0060 ft /ft Manning's n 0.0400 Height 30.0000 in Bottom width 36.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 14.4412 in Velocity 2.3279 fps Flow area 9.4034 ft2 Flow perimeter 155.0856 in Hydraulic radius 8.7312 in Top width 151.5300 in Area 32.5000 ft2 Perimeter 283.3863 in Percent full 48.1375 % Meadowcreek Subdivision - Phase 1 Brazos County, Texas -74 Stream #3 Segment #1 Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 125.6200 cfs Slope 0.0013 ft /ft Manning's n 0.0600 Height 50.0000 in Bottom width 72.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 46.4942 in Velocity 1.5081 fps Flow area 83.2946 ft2 Flow perimeter 455.4009 in Hydraulic radius 26.3382 in Top width 443.9535 in Area 94.4444 ft2 Perimeter 484.3106 in Percent full 92.9884 % Stream #3 Segment #2 Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 141.3600 cfs Slope 0.0050 ft /ft Manning's n 0.0600 Height 42.0000 in Bottom width 72.0000 in Left slope 0.2500 ft /ft Right slope 0.2500 ft /ft Computed Results: Depth 36.4253 in Velocity 2.5670 fps Flow area 55.0684 ft2 Flow perimeter 372.3710 in Hydraulic radius 21.2955 in Top width 363.4027 in Area 70.0000 ft2 Perimeter 418.3409 in Percent full 86.7270 % Meadowcreek Subdivision - Phase 1 Brazos County, Texas 1 APPENDIX E Detention Pond Pre - Development HEC -1 Output, Runoff Summary & Schematic 7 c) PRE 25 PRE10 PR ESO PRE100 • °P� * * 4 * * * * * * H * * Z * 4. W * * X * 4 C4 * cx 4 0 * cow 3 • X * (x H 4 w W * W Z ' * a 4 W W H * > * Z U 1.0 * H Z I C7 0 w o 0 X cn a 4, W 1-1 0 C o 4 H (x a * a H H H * U) W 4 E.4 W (n Z H ° Z 0 o '0 x * (n H Z (- in * - a 1- U * a 0 0 H r- 3 U Z! Z 3 0 O w w "-- * w H w m 0 � * x ( * U 01 * 0 f-, * 0 a (x w 3 >"+ H ON ■ 01 * Z >' O (x * 0o v) - * H W W 4 O 1 .0 H * a > W w Z 4 O r H <4 H. it • 0 Q •N H 0 H H * w 0 �O U .-1 (1) (n �C * x * 1.0 x W H W H * * 3 H x 3 3 I - H H H H * * * * * * * * * * 'n 0 X E' 3 Z N H H 0 H • u) W 3 -4 W H M x m 0 a ° 0 .. .. .. .. .. .. .. .. N W a - .. .. .. .. .. .. .. .. .. -_ — cnwZ co cn O 0 X X X X X X X .. .. .. .. .. .. .. .. .. 4 S` I-1 W CO H X o� °r 4 0 0 W X •• •• . .. .. io — H W U W 0 .. -. - •• ° H X < < C7 X .. .. N U .- •• .) W Cx W C •• •• 0 x (s. u) W H (1) H •• •• u Z C7 .Li � Q o in X X X X k .. .. 0 0 • • • • zz H Cn 4 X X X X X X X -. •• E+ •1 .. •• C 3 0 X W H -- •• N >, aJ .. .. 0 Z U 01 Z p N U w x> o X X .. .. 0 .. .. > E - ' w a 0 X X X .. .. 0 .. .. W x 3 a s 0 X X X • • • • 0 (/) p x , 0 0) 0 1 X X X X X X X •• •• V N .. .- W a O C7 rZ-1 Z x • • • • J - 1 0 H Z cn H E-' H. X X X X X X X .. .• •• •• 3 cn E- x - Z (24 H X •• .• w X .. .. •• •• Z , 0 O O * 0 0 0 U cal I-1 H a a) XXXXX •• •• w .. .• ro a < -1 0 •• •• .- -. •• -- •• •• •• •• •• •• •• 0 > . 00100 .................. v cn 5 X�w '0 Z H U W U ix m -.+ O H 0 W m m H a 0 w n a 4. * 4. * * * 4. * 4. •-- > W a 4.0 3 3 0 W 3 Cx H 4 N 4 0 a w Z O 0 a W 4. d' C * .. E a r-C H Ca E- - O � 4' o 3 -- r -1 Q X 0E- 4 . m * U S-! * W 0- * a Cn I-1 v * � C * w > g u) w * * 0 , w w 3 X 3 O * w 0 w a H w * ( '1 w 1-4 4, a u. m (x Z 4' H H .1, a O� w * 01 H rn • 3 a Z X C) w w * U rn o * O O w> * x * H H •• Z <C * a d' 0 * H H Cr) H 3 * 0 * H H Z H 0) * x Z (N * C7 Z Z O U a) 4, 1.0 4 0 t=, G. E-■ FC H ri * Cx cn N * a w w a w o * 0 cx * 00O(x o * 0 W rl * v) - G) (0 * (x > o * i-' W W 3 Cf) Z • * 0 * x xxwcnH , * >1 * E ■ 0 E■ Z 0 Yr '-a * x W * E' * * q rC O * 0 n 4, (� 4 M L, ■ .., 7 7 4 4 + • .. . ■ H W 0 g a 0 H 01 w 0 0 0 0 0 d , N N 0 01 . , t' 1.11 10 r- N N O O O O O N M r1 N pi • rl 'V' Lc) Lc) Lo 01 O O O O O 01 01 0 rI N • CO 01 d' Lf1 in U) . II to a) N Co N N N N N r-1 N 0 N E-1 E-1 N k N 0 N in N 01 N pi N X N rl (0 rl V' • z H ?-I 0 H .CI d' r-i 0 N 10 C 0 L(1 U ,-1 0 r1 d' 10 00 01 W (I) r1 . 3 rl )J ri 1-1 )-1 r-I ri • ro a) Rs a) >, a) >. a) >. G >, 1 >' 0 rl 0 0 0 L0 d' 0 Hi 0 co • - ,1 Lfl \0 r1 V0 in N in co HI Co . N -r1 0 0 0 1 0 1 0 . 1 -rt r-i ,-I H ri HI 'I3 0 0 0 0 0 A ' -1 r-1 rl H r-1 F. N 0 0 O N O N O N O N O N Z H • `n a) 01 a) 01 a) 01 a) 0■ a) 01 0 CD W sJ a) a) a) a) a) 0 ,-1 3 r-1 L11 � L0 lfl H 01 Lf1 0 H ( Ln 10 ri � in 0 ,-I 0 ((5 in 0 H 0 411 • 0 0 V' rl 0 [." V' ,-1 rl in 0 d' N r1 0 0 d' 0 rl 0 0 a' 0 01 X • 7:1 Lfl -H 01 CO r-I -,1 01 m N -rl 01 0) in -H 0f r-I co H - rl 01 H CO U • al W (15 N W r0 N . 141 it N W (0 N W (0 N (n (1) 0 N - 0 (x 44 0 (x la 0 (4 )-1 0 05 41 0 w 1-1 X 0., q 0 0.1 q 0 a1 q 0 a q 0 0., q 0 q q q qH 1-1 x 0 x 14 10 x 0 x0 0 o aaX 0 roaaX x o r a n a )0 X 5 (00 10 x XX N W r♦ N rl •7' L(1 to N CO 01 0 r-1 N rl d' Ln l0 (- Co 01 0 r-1 N 01 •t. 1.11 1.0 N CO 01 O ■-I N 01 d' Ln (o h CO 01 0 11 N 01 'z r-1 r1 r-I H r-1 ri .-1 ri ■-1 r 4 N N N N N N N N N N r1 r) 0101 01 01(.101 rl on 'T ' <1' <1' H .-1 4444 ## ##### * 44 * * # * * * * 44 * a * * # Ul w +, * * a F # w Z 'D * * # w W H * * # Z U w * * H F U1 * * U 0 w m * * * Z z w cr. * * wHa4C0 * * * a F H ,-1 * * a w Ul Z ,l * 3 o w R 1 * * 3 Z 0 0 k.0 * * * Ul H z r4 In * * a 0 o H N * * 44 aZU,-7 * * oww< - - * 44 U Ul U l0 * # 0 r1 * * * >', H Ol . m * * * X00cn -- * * o . > * * # 4, # • ▪ 0 0 * Ul n * • x * * * * * # * * * * * * * * * 44 44 44 * * * * * a E * F * o * d * a if in .� > g * A N ,F7, Z 1 H 0 * 4, X w a Z 0 w H 4 Hi X * U 4'4 # U * O 0 0 a A ] a 014410 0 F al o-1 UFE>+ [1 1-1 * rs, 3 ao FCHxwwa Ul m w * Fax Z0E' FE s x 1 ZFa H IL. gH a a Z * -0 0Z� 00 00E - 0 w w * n:$ 0 U O Z >, X cm a a * q O U 0 w H H a 0 0 a w -,1 F 0 F E- F w Z Z Z o� -1 F * Ul Z F a fx ■ PO H H F o 0 H w F a * -� H 0 0 Z 4C A fa Z E w w X 4 >, H F F Z Z w o" O w Ul r ., -,-1 aax Ecnm wwu L.1 Li) O 01 * w 0 , U) w * * * 44 * * * * * * A cn x F r-' w w a * 10 * * 3 wino • H 0 0 0 0 0 01 u w fY1 a a 0 * 0 * Ul -7 0 0 0 In ,-a 4 w O Z w U u w * � # 3 .. * r FC o N o H [� u (a G * .. * x * O * H (N * (1) H F a f-0 m 3 U 4, 4 Q F w x * } * w N # U > Z E F al * x ,-1 * 3 w I-+ H a Z 3 -- # 0 a E F w o * * * 'b 0 H Z 0 H * X 3 w * m a F o a F w * 3 w E 3 aJ FFF.a ZwwOww HQ 4Z4 3 0 w H * E Z Z o I 1 x H F E Z F Z E- HE w o> aC * H H F 4 00)4-10 a E 4 H 1 # - 1 Z FC o a H w ,-a w G] * 44 44 44 #* * 0 • 3 U at a c n rr 1� Z f a F fa F w PE 4 F 4 o a a * * * # 0 m 0 44 H H of a H H 00)0 .'7 4 >.1c .'7 4 ' * * f H • in * F 0 ZZH a cnw F d 0 44 0 E F 0 I Z -, w W * * * a # o # a a 0 H FP, a X ` 0 0 0) 44 * * in 0 * x 7. N # F CI H U 0 3 0) w a * * I 4,, 0 -k a ? O # Z > rn * H co # 0 x 1Ww0000E * * a ,--1 # m N x a waFZ w * # o * 0 a * m Q a .a [i. cn Ul F o # 0 W r1 # H * * # Pi - k 0) > 0 # 4 * * * '1 , * Ca * 0 * * * * * * r-4 # >' * Z .-1 * .T, w 44 01 * * F * * C> < * * 2. * ( a * x 0 E * -1 14: * `, I11 3 * .3 -3 * * * i# 3 * * * 4 4 * * * 4 * * * * * * * 3 3 * * * * 4 * * * * * * 3 * 4 4 4 3 3 4 3 * 4 4 * * * * * * * 3 4 * * * O * 0 * O * 0 * o o * W Q o W Q O H g> o * H 4> ° * 3 H En FC w 4 H Cn R4 4 0) Z ( 4 x X o 4 a 0 0 4 a -04 co rx * 4 H Q O Cn W 0 x W Q R: W C7 a O H x W * * 0 F x W * 3 v Q U Q Z 0 x w 4 m o D �� Z x w 4 (f) >, � x o 0) Z w * x a 0 0 Z w * x 0 Q a w a H o - o Q a W a H o * o Q rr�� a .-1[4. * a a W o a W F X KC E 4 0 * * a o a E * Z E 4 0 * o a a F X o 0 0 z 4 X Fax 0 O H z a H 0 x a H fxxXOHZa * ZFaXfx * zEax ZHa0 * OZ�O 0 • 0 X UQ 0XZ * 00X0Q0 E-. * UO U00UXOOH UCH x OH x F O x F Z F a U W ccn F W I O Q U HOQZ> XcnX N 4 HF * 0) X N 4 Cj R : a .>.'1 ✓ H H W a a ✓ 4:4:l-4 0) Lti a J a a x fa. c n 1 H w * a s X0 m a. -)H La * wax H * H * Cn O * 0 * W Lf1 0 • O N , 0 N W Ln O • O N H O h W Ln O • O a O N 0 f O 4 a O N 0 . O * a O rn 0 4 g M 0 4 0) H O H O H 4 * > 3 a * a * a * a 0 * 0 z zH�U� 0 FFFaXH. - INH 0 HFHax * Z Z 0 g U X >> X a * z Z O 4 U O a a U Z O FC 4C H 0 * * * * * * O fx a U Z O FC 4 C H 0 * * * * * * O o a U Z U aama, HCn 0 * * * Ua a Cn aH Cn CnX o 4' * * Uaacn 1-1 H 01 H 1--1 H H a * * H I-1 a H H H H a * * H H O I-1 H E. * * * F F * * * H * .3 O * 0 Z -3 * L.1 * U X H * * r-1 * a H * * N * a H * W * H * W * F O a * * a 4' 0 a * * n. * 0 4 * * * * [ * * * H * L. * * * * 0) * * * * * * W * * * * * * Q W * W U * U ` X k O CO * ri w * . . * -. * * * * * 4 * * * 4 * * * * * * * * 1, * * * * * * 4 * * * * * * * * * * * * * 4, * * * 4 * 0 * o O * O * O o o * Q o I-1 � (•C \O * H co < VD * 11 � < lD CI) 0) * xCa a o rx C4 a * a o a co H Q O U) 44 H Q O U) 4, PC Cn H Q 0 U) F UXO * 4 0xO H * aaFUO U x IN * U Q z . z-+ X o x r- O OzUx m U Q z >- • O a \o x `0 O a z \o * * x 04 Jz VD * x a ' z az \ 'x a 1-L H * O Q a w a H o OQa H * H x a H H o.w o C.1 O g * a 0 w Hw.a * O o O Z g * a O a 0 0 Z F. X a O o 1--i z (x H X H z IZ * F x a o H z� (Y.. X0H * zE (2 QF * OZ L-IC= Q o O H * U O X U ' o o H -0 U 0 X U O o H * F O x H w C H w * i O Q U > a CHn E r- * H U O Q 7 > a c Z N g 4 H \O a s >+ KC I-I g F.I \O C4 ra J 1 CC H /S H \) c n a . - a H \o * a a x a V I a H \o * a a x a U) ILI .a H ri * .1 o * Cn O N .1 0 L" w In 0 • 0 N HI 0 N O * w Ln O • O N H 0 r" N 0 H O * a O N 0 ri 0 * .-] O N 0 r1 0 f+l 0 * W M 0 * CQ M 0 * g * g O H 0 11 O * * FC * µ * a * a * 0 O * z z o a u� >> z 0 a * ZF > >z 0 •a O KC KC " 0 * * * * * * O R 4-7 U Z O FC g I--1 C7 * * * * * * O IX 0 U Z O FC FC I 0 H C n c n ,0) 0 * * * U a a m a H Cn Cn 0) 0 * * * U a a CI) a H cn Cn X 0 H H H a * * H H 0 H H H H .-a * * F1 H 0 H H H H a H * * * H H * * 0 * H H Z * * o * (5 Z * * o * (5 z F-1 * * in * a H * * ri * a H * w * H * w * H w * * a * (5 w * * a * (5 w F a * * a * 0 a * * a * O a w * * * as 4, * * w 4 * * * * it (n * * * * * * Cn * * * * * * o 0 0 C.) * 41 * C�1 W * w * U * r 1 U • G G1 « 0) C ., Hi 4' 4' 4' 4' 4' 4' x 4' 4' 9' 1' 9' 9' 4' 4' 4' e x 4' 9' 4' 4' 4' 9' 4' 4' 4' 4' 4' 4' x t 9' 9' x 4' 4' 4' x x 0 Q i H Cn FC 4 x a as oa g4 o x o]C Qa k a U x U Q Z Z U « x a Z k E+ x a H o Q a w ° OD0 Z z > x Z axa0Hw U OZZ U C7 x O H H OQ V >aCnX C:4 a H H aalX cn E. 4' 4' W ino • oroHOS a 0 N O -i * (T� M H 0 1 a k k > k ] 0 E~E•E�axE��NE• * 4'* O ° a u Z O F k H # # k U a a Cn a H CA En X k x H H 0 H H H H k M k E. a x a x 0 x Q x 0 x x 4' x x e « « x « « x x x x r 4' Y, O w w 0 O TC H w U) X H 6 J w I 0 H g H Z 4 O\ O\ O\ Ol 01 N H w N N N N N C Q,' 0 0 0 0 0 H on Q a . o 'J lO N r W L` coo H 0 d' lO CO 0 N N a x H H w co a N w N a H z • X Zi 1-1 w < ) lD N N Lo r- co U) Z O •' l) W 0 N N a rx x H H >' [4 u) 0 I (24 C.1 w a H N w< 0 (n w w w w PC w v: . w 0 (7 .h- W N N VD (- w O H (4 0 a' to CO 0 N N Ol co w x cr [Y U r4 ' to z o H x 3 z o H w w w 0 x N N 0 co N O X KC Ln Ln Ln d' d' Ln H (.1 w H Z a m rn ri rn rn rn [II co co N co d' LP 0 in O co d' H H [x] a H N N m d' d' a a rL Z 0 o 0 Ln o 0 H in ,-1 N Ln rl 4 a a a a a a H a a a a a (3 * u) * H H H H H H < ‹C FC FC FC 4 U w X x x X x 0 x H 0 a z o H o c7 CD CD CD w 0 0 ° 0 0 Z z w (3 0 0 [3 0 U 47 a >' >' > >■ > O X x X x x Ln a g a: k U 1 APPENDIX F Detention Pond Post - Development HEC -1 Output, Runoff Summary & Schematic VO POST10 [POST50 POSTS V / Ir A � loo NDS p V 0 Vv Z w * * X * * a * * 0 4 ' a a * m w * • w * a H * w > * 4 1 Z l0 * a u 4 Z0 o HZ 1 4 1-4 H ft) * U 0 H * z Z w° a m 0 4 w 1Hago 4 Ha a if a H H H 4 m w • * CL w m H 4 1> * ° Z 0 0 to * Q r 4 m H z a lfl * H a r U 4 4 0 0 H C� * 0 Z W * 0 Ww4 -- * U m U )13 * X * U * 0 0a * r 1 GI . 0\ * Z H 0 W it 0 o m "•-* 4 4 0 l0 H * 4 4 > * .. 1 w w z a 0 * 0 NH44° 4 • 4 m 0 H 0 ■ H H l0 0 H m m FC 4 z X 4 4 * * � x xmH47 * * 1 H FI 1-4 4-1 4 * * * * * * * * * in 0 x H 3 Z r H H H U H • m w 3 H m H r) X coCaa 0 0 .. .. .. .. .. .. .. .. ro w a - �C m w z r 0 m0CI) X X X X X X X .. .. .. .. .. .. .. .. .. * C` H zz woo H FC .... C .... c Z mN PIC 0 X .. .. .. .. N h 0 0 0 W X o v H H 1 a a X .. .. RI .. .. H X g g 0 H X .. .. .. .. U 0 0 U .. .. - • a) U •• .• W a w X X .. .. N H . • .. U x G Z C U X >4 .... a . .... U � 000 0. >4 >4 .. .. H ,j .. .. ai z 1H 0 cn >4 XX><XX •• •• � 4 .. .. Q 0 aZ4 a •• .. ,, a) U w a .. .. X X X .. .• •• •• •-•4 > H w 4 X X X ...• 0 Ai ...• 0 w x 3 4 04 U >4 X X •• •• 0 w .c7 x 1 00w .. X X x X X X X •• .. U ro .. N a 0 C Z -ri x .. •. J.J 0 H Cr) H H XXXXXXX .... .. .. a m a �z C1i X H .... Z 10 00 * 0 0 H Cam U H 17 N X .. .. z N XXX .. .• G` .. .. al as 4 3 Z 4 0 .. .• •• •• 0 > , n 4 •• •• •. •• •• •• •• •• •• a) m xgxg '0 0 H U (Q U a rn - 4 0 H I x w ,•, U) H a X Cr) 0 a if * * * * * * * * .4 > 1 w G■ * ,N * 0 a W O ° 17 U) C7 C * •• * w a aww 0 * H r) 4 4 CA 1 H Ca H -r1 4 I 0 4 N .-7 FC .Y. 0 H S-1 4 w h * t"1 H Cr) FCC H 4 x ■ --1 * m X uC x w * W > * m 4 4' U W W X * w X 4 ,-1 0wmaz * 0 w H * a 0 X m w 4 r1 ,-1 H m * w .. 4 Cr \ • * a zzo w * 0 rn o * 0 0 w> * F(,' r-1 • In * 0 H H • • 44 * a o * H H m H 3 * 0 * H H Z H al * x Z N * U Z Z 0 U o * a >+ 0 — * 0 H H H H * 64H ID * a awH < H r, * m N * a ill waw o * 0 a * Ca 0 0 4 o * 0 w H * cn -• w r'1 * (2 . > 0 * H w w Zr * 0 * x x x w cn H 4+) * >' * H H 4 r-I * r w * * C * .. * Cl 6 C o * 0 0 * 0 .f.) * . -7 k * ., k k :,1 k M k a a Q ,. .. w 4 a 0 ri rn m o 0 0 cl' N N C 10 10 h O 10 10 10 10 O O\ 0 0 0 0 01 N Ol r1 Ol • 01 • rI O1 • 01 1 V. 101 01 Ol • GI IV in • O1 N 01 d' • m d' 01 LO • In N V. N Ln N N N 10 • . d' 10 0 0 0 r1 0 O 0 0 r1 0 O 0 rn 01 Ln 10 Ln • O co in 00 O (b in N 0 • • 01 • 01 V' 0) M • 01 d' 01 cr • (0 N N N rn N N N •l W X to a) N co N Ln 0 01 0 N N N LP 0 01 0 N N N 1.0 H F. N 10 N Ln N 0 N In N in N in \0 N o r 10 N 0 N 10 • • a N • 01 10 CA rl • 01 10 01 r1 Z { r1 N ri N r1 N r-I N ■l H S-I • 0 ri ..C1 • r-I O N d' O N 0 Ln d' 0 h 0 d' Cr u ri O M OD Cr 0) 10 CO W a) 10 rl V) N 10 r-I 10 N 10 ■i X 3 ri • 01 N 01 .-i • 01 N 01 $-1 =I S1 r N ri N r-1 N ri N (0 ,-1 • • I N S-I (ll • a) r6 >,' C >, a) rn 0 0 0 d' 0 d' 0 >, l0 0 d' 0 d' O Lll d' 0 a' -.-1 in is 10 !b N N • CO • N r1 0' Lf1 10 Ln 0 r1 L' in 10 in rn h -.-1 I 0 al • Ol h 01 rl 0 Ol • ON 0' T I 0 01 • • • > N O N N N 0 (V N N 0 -ri ri r1 ri '0 O 0 0 .-4 rn rn r1 N (5 0 0 r 'b >N000 0 r '0 > 0' 0 0 0 0 r r 0 > 0- O) (0 0 W r1 . . r6 G W •■ - - • N C W rI a) -- r-1 0 a N V. (' d' a) r-I 0 .-1 N V. L' V' (1) ri 0 -5 N •& S1 L' a W • 01 N 1 S-I L` a W • 0■ N 01 S.1 N a W • • • a) 4 O (V N 1] O N N 4 0 • a) G C C Sa (1) 0 a) 0 a) 0 • • 0 Ol -r1 01 -r1 0) -r1 ,-I 3 ,- 1 in (0 10 11) in U HI 0 0 0 0 0 rll in 0 (11 it r1 0 O 0 0 Ln RS 10 in in i) r1 co • O in (.' .' 0 in (5 • • •-I (5 0' •1 O O C • N 4] d' N O in G `0 E. -H 01 CO q a) 0 01 0 r) F -r1 01 CO ri (1) 0 rn O r1 F. -r1 01 a0 N a) o • (6 u) (0 N • Z 1.1 01 01 CO rci N 0 1- � 4--) 0 1 M 0) N 0) 0 q 1- � u • a) 0 $-1 0 0 a) N N 0 Sa 0 Z a) N N 0 S-1 0 Z (1) X a q 0 a 0. CI) 0 0, (21 aq o 0, CI • Q qH I ala 0( ( 15 i a cw 0m m a a( XXX X XX Xam (4) r-1 N rl Cr 1 10 N CO 01 O r-1 N M '1' to 1O N CO O r N 01 1 01 •(' In 10 N CO 01 0 ,-1 N rn d' 1.11 \0 (- HI 01 O N r1 _l' In z r1 r1 ri r-1 •-1 HI HI ri N N N N N N N N N N rn rl M rl (0 (0 (0 (0 ( 0 (0 0 ' 0' 0' 0 ' 0 r H .1 V V O rn O rn r ON N a\ N r N O m O CO to CO rn r rn N N N O Ol O ["- O (` • Ol N -i N O N O • N ■O O N O\ N --1 N O r 0 L!1 vO Li) N N O O O r r r N Ol N N O O O r'1 O rn O\ O1 N N N aw m m m 0 N W ▪ r N w 0 a 0 H • • • • • 0 • • • • • • CO 0 0 o ■ • r N • N 0 01 0 0 0 0 01 0 01 0 r 0. 01 • M rn • . • 0 Ol • 01 0 0 V' 01 • LC • 01 d' Ol 0 • 0 N 01 L O N N N • LO N d' N . d' • • ■0 0 0 0 0 0 0 0 0 0 0 H 0 r 0 • 00009 0000 • Lfl • 01 d' 01 Lfl • 01 cr 01 • M Csi N N M N N N • • LO N H N tP 0 01 0 N 0 N 0 0 0 0 N H N 01 N 0 N 0 N 0 N n l0 N 0 N LO N 0 N 0 • 0 • 0 1.0 01 'V • 01 10 01 Z H N H N H N H N H • • H C O <■ O r O 0 d• O r O U 0 0 0 a0 . W H ■0 N \JO H V0 N l0 x • H • O1 N 01 H • 01 N 01 • } - I H N H N ?-I H N H N QJ >. . Q) >, o M H 0 0 V 0 0 CO 0 0 0 • 0 0 0 00 0 0 0 k.0 0 • O 01 • 01 r 01 I O O1 • 0 r 0 • N 0 N N N 0 N N • H H • O O • M M H N 0 r Ti >N000 O N '27 >N000 'Z, RI C w H • RS a w H ••• H • Q) H 0 .-1 N •:r r Q) H 0 .-7 N , r N 1 0 • }-1 N a W • 01 N 01 }-1 r a W • 01 N 01 a • KC O N N O N N • C C W • Q) 0 0) 0 0 trl -.i trl -.1 H 0 f0 In 0 in LJ H 0 0 0 0 0 (a In 0 In JJ H 0 0 0 0 Lfl in C RI. o 0 o C • • • o C v' 0 0 0 C • • • • H - -1 01 H CO LO Q) 0 0 0 M H -H 01 H CO 0 0) O 0 0 M 0 • 0 0) N Q JJ 0 01 H 21 N - H L 0 0 CO • 0 S o 'Z 0 N N Cr) }-I 0 Q Q) N N a H a 0 0 a 0 a 0 0 a 0 0 0 Q 0� a aQ x xx a� c w n a x x x O na a a� x x° a c cn n u) a s 0 XX CJ N N 0 0 0 - 1 0 0 0 l0 N CO 01 O H N M ,' In ■0 r 00 0 0 H N M ' Lfl 10 r 0 0 01 O H N M Z -1• Lfl Lf) Lfl to to Lf) in Lfl Lfl Ln LO a lO a a s l0 a ■0 1.0 r r N r r N N N N N CO C0 M N H 90 * * * * * * * * * * * 4 * * * * 4, 4' * * * * a * * * cnw 4' * 4' a' F 4* * W Z 4 - 0 * * W W r1 * 4' z U ■o * 4 ' H F in * * C7 0 W O * * * z z w * 4 ' w FI g 0 * * a F i-i 1-1 * * w W Cr) Z 1 * * 0 W IX 1 * Z 00co * Cn H Z w in * * 04 00 - + N 4, 0 W W 4 ^ * U u) U '.o * * U . * * >4Hrn -C * * 0 0 u) -- * * 0 Vo H * * a > * * * 0 4 * * * • a 0 4, * * U) A * * • >-, * * * x * * * * * * * * it * . 4' * * * * * * * * * * * * * 4' * * * * * * * * a £ F * N * * rl > w * A w 4 4, y U) Z -4 * / 1l H 0 * a sC a £ U) Z 0 w F w 0 F a H x i - Q F a 0 r.0 U .Q F a 0 0 '- -4-1 a O a 0 0 W w 0 0 U F -'-1 U) 0 .a a U F £ >-' W H * w 3 (x 0 4 H x W W u) cn u) w * Fax Z0F F£ 14C4 x Rf 1 Z F a 1-1 G4 4 H 0 x (2 Z * al 0 Z 4 0 000 F 00 W W * al C U Cr] ZZ >+ X u) a a * O 0 U 0 W H H P: 0 0 0 W -. F 0 F F E. W Z Z O N co a F fx, -.-1 H0 1 Oq �� £ ww * > wa>+ H FF Zzw 0 , wW m rl - .4 a a x £mm wwU 0) U) w w * r, v w U 1 Cn w * * * * * * * * * * .A (o PC x F H W W 0 * 40 * * w1no • ■ 100000101 U W P1 a(24 0 * N * W a 0 0 0 ul .1 a W 0 z W O O U W * * to * (Y) 0 M a' 4 co En H w U 4 « 0 * • * .. * .k KC g4 0 0 > 4 * Q * .--1 en * (1) H F a. CQ -H * 1 0 * a) a' f.1 -4 .-1 w * (n * 0 * (4 g 0 F w x * 3, * w 4' u > Z £ F a) * X H * 3 w 1-1 1-4 a Z * -- * 0 a £ F 0.1 O * * * '0 0 H Z 0 H * X * w * a) (x F 0 04 F w * * w £ * a) FFFa zwwaww H(.0 gZ< 4' 0 W H * £ ZZO4 0HF£ZF£F FE w0> 4' 1 r-4 F * 0(4)1U 0.4)E-4 41-1Z FC O (x H W a W W * * * * * * * x rn • * U a a (f) z F 0 F W F F Q F a 0 C� (x 4 4 * 4 Urn 0 4 1-, H 0 X 0 H H 0 0 U z 4 W > FC D * * * r 1-1 - lf4 * F 0 z z 1--1 a (n W F F * * 4 * * a 7r. 0 * 0 0 £ >904 - Will * * In * * o * a CL' 0 .-1 )o-• x 0 0 * * F * rn * x Z N * F 0 0 Z • F-' �C 4 w 4, m -1‘ 0 * 0 > + 0 - - - . . * 0 >+ 0 -i 0 0 3 ( x 0 -i0020)('. 0. * * 0 * m * 1--1 No * 0 x W Z 0 0 (x £ -1 ' 1, a 4 ' . * U) N * x a' w a F .0 w * * * 0 * 0 a * Cr) 0aa44 cn(n * * o * 0 W ,-4 * .-1 * * * rl * X > 0 * a * * * • * (1) * 0 * * * * * * M * > 4' 0 r1 * X W * W * * F 4 * * n < * 7 * C) 0 * * O * 1-1 F * ;r m * r ..) Z ■ F -∎ .i h ._. k R. 4 4 <� k I.1; k .) * k 1) « 4 A ::I � a. a Y 4 4 a 1. k 4 4 4'�{ * 4, * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * O * * O * * > O * > H g> * P 4> H U) 4 10 * H U) 4 * H U) 4 x * x ax * x!a 04 OCx * a Ofx * a O0 r.0 m 0 * FC, m 0 * g cn 0 C H 0 0) 0 H 0 U) R: H Q W 0 x W 0 a * W 0 x W A a ' * W O x G) Q PC O F x W Q * a O F x W 0 * a O F x L') C4 0x0 * 4x Ux0 * 4 c Ux U A Z U x N U 0 Z x U Q z U Ul >+ O z ■0 * U) >+ 0 J U Z * UI >• O Z x a z 10 * x a j z * x Cl. H x a H 1-1 * F x a H * H x a O 0 a w 0 O A a w O Q a W a a f47 4 F W a * a a W rrCC F W a * a a G7 F W O 4 aH10 4F4 0 * 0 4 04P1 4Fg * O4 104 4 H O 0 00Z 1 > * C24 0 00Zg> * fx0 002 F a' x a O H Z fx F i x a O H Z fx H CL' x a O H Z Z H a X t x Q H W * Z H a X CY. A H 0) * Z H a X a A H o Z - U� a lc U OAfxAH * OZ4OQa0F * OZ )o0C40 U o 0z O 0 4 OIY.Z * 0 O U >4 0 I 0 U x O H u 0 x o 1. 0 0 x 0 F 0 x H * F 0 x H * H 0 x F ZFU:U W U)HG7 * ZH(X U41mHEll * ZHrx0fs1u)H HO0 Z H A >C4U)X N * 0 >C4U) * 1--100 >fxm Cti a .>+ 0 Q H g H kO (Y. a .>'i 0 4 H 4 H 0: a .-/ 4 H 4 aaxamw 40 * aaXCCfEuaF * aaxamwa ■-1 * * U) O * U) * Cf) W in O • O N .-1 O s 01 Ul O • O N .-4 0 h fit In O • O N 1 0 a 0 ,-.1 O .-1 O * a 0 (NI 0 .- I * a 0 N 0 M 0 * M 0 * 01 M * * H O H O H * * g > * > * > a * a * a o * o * o a 0 * a * a H H F a x F H N F 0 H H H a x F r4 N F H H H a x F H N zz OFCU »z a * zz ogu > >z * zzogu >> o aauzoK4 4 F-+ 0 * * * * * * 0 04 4UZO4 4I * * * * * * orxaUZO 1 1 O a a U) a H (f) C0 X 0 * * * U a a U) (34 H U) U) X * * * U a a Cf) a H U) U) H H a H Fi H I- I a * * H H 0 H H H H * * H I-I 0 4-1 F-1 H H H * * * H H * * o * H Z * * ui * 0 * * r1 * 0 a I-1 * * 0 * a * * H * a H * Z * H * U) * E-1 W * * 0 * 0 * * 0 k a o a * * a * 0 * 4 a * o 01 * * * * * * KC * k * * H * * * * * * 4 4 * * * k (.1 k k k * * * k k * * * * 0 C.] * k 01 k k U * * • C U ■ -� 1 v I .. 1 Z * 1 * * * * * * * * 44 * * 1, 1, * * * * 4 * .1, 4, 1, * * * * 1 * 4, 1, 4, * * * * 1 * * * * * 41 * * * * * 1 * * * * * 1, 4, * * * * * * * * * * * * * * * 4, * * * * * * * 4, 44 * * * * * * * * ir * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 3 * o 44 * 0 1, o * 4, O * o 3 0 3 0 0 * o W Q * > W 0 * ° * H > > 4 q) 3 H Cn 4 * H Cn FC ■D 4, Cn (1) 4 a O a -lc a o Cx C4 * W 0 x W Q C4 * W 0 x W Q a o * g174 U x 00 * 4 U * 01 Q * * O w * En >, 0 * c x 7 CZ CO * Z lo * x a 7. * x a ;J Z lD * F-1 r-1 * H X a H * H X a H rl 4 01 o o 7 • * 4 O a W a H W 4 * a a0 W as H W 4 "I' > 0 * a o a D 0 Z > * a 0 a o 0 Z KC> ° 4 a H a x a 0 r Z Cx H a x a O H Z a W * Z H a X a Q H W * Z H a Z Cx Q H W H * o Z a 0E * O Z O Q x Q H 4 , U O � O Q a0rO a Z * Uo il6 Ua.O C4 Z U 0 X O H U 0 Z O H * H o x E. * H o x E. W * Z H ( x 0 01 C H W * Z H a 0 W cfH W 4 X N * H o (0 > R: Cn > 3 H o Q > 0.i u) X r 4 H r> (14 4 '' 0 KC H !.0 H Pi 4 Q 4 H 4 H VD H ■D * aax Cr) w .-7H * la, ax am[*.4 H H * * .-1 3 o * Ul * Cn 0 * N W Lfl 0 • 0 N ,-] 0 N W Lfl 0 • 0 N H 0 N r1 0 3 .a 0 N 0 H 3 4 0 N 0 'H 0 * ° # M 0 3 M O * 4 4 o H O H O 3 a 1 ' a * * g * g * * > * > * * a * a * 0 * 0 H O * ZZO 00> >z HHH4XE4r. 0 * Z Z o g U Q >> Z a r 0 * * * * * * O a 1 U Z O 4 C FC H * * * * * * O a 4 U Z O 4 'C FC H 0 Z 0 3 * * U a a Cn a H Cn Cn X * * * U a 041 Cn a H Cn Cn 5 0 H F ] * * Fi Fl 0 H H r-1 1-1 * * 1-1 H 0 H I--1 1-H H ■-] H * * * H H * * Lc) * H H * Z * * O * 0 * * N * X Z * H * * `-I 3 a * * E-+ * C 11 * * 0 * H * Cn * H f_.7 * * Z 4 ' ] * * O * 0 w * ,a * * a 4 ' 0 * * a * 0 .] Q ' * * * it g H * * * * * * H • * * * * * * Cf) * * * * * * * * * * * * (n * O 0 w * * Er] li] * * 13] * U * * C_) * :z. .f. ... .i, I.I - 1 1 (N ,11 i 1 * 3 * * * * * * 4 * * * * * * k # * * * * * 4 3 4 3 * * 3 * * * * * * * # 5 * * * * 4 * * * 4 * 3 * * * * * * * * 4 * * * 4 * * * 3 3 * 4 * * * * * * * * * 4 5 * 5 4 * * 0 * 4 O * Q * Cl o * w Q w 0 o > w * > w 0 3 F-4 Cn FG 4 H U1 3 V) * x ✓a 4 x a Oo * a o['1 10 f-1 0 0 C./1 * Q 1-4 0 0 U) w o x w Q tx 4 w o x w C] R * aOFxw 3 - 70Fxw0 * KC ( 0X0 * 1x Uxo 4 UC]z X 0 U Z Ux N U) >4 0 2 * Cn >5 0 ID 4 X a .J z * X a X z CD * F • x a +--3 -5 F x a 1--+ < * O 0aw 00aix) o a 4 wgF.al4 4 a . - < 1 E ' 0 1 < - 1 * O 4aF4agE -' g 4 Oao.F a KC E"4'C o * 124 00Z 1> * 1:40 xCDz�C> * H a X aO# -+Zo4 FaXa01 z F a Z a q 1 , w # Z F a X a 0 F-+ w O z O Q a Q F * O 2 O Q a O F # U O CJ D U X O O H -4 U O 0 U X O O 4 1 F o x F 3 F o x F * z F a U w [n F w 4 Z F a U w U) F w * H O Q X > a ' C n n X * H O Q > R. U) E N * a a KC H (may Fi [ 4 a g 1-1 FC F1 \D aaxacn [:.4F 4 aaXau) a 4F ID * * r-1 * U) * U] O 3 U) [a] [n 0 • 0 N < - 1 0 N C11 to 0 • 0 N rl 0 N W 4 0 N 0 <-1 3 <1 0 N 0 ■-+ 0 * 1-1 M O 4 01 M O * * * H 0 H 0 H R * * > * > 5 > a * a * a O 0 0 * ° F F F .] x F ri N F H F F .7 x F ri N F 0 F Z Z O g U 0 > > Z * Z z 0 g U 0 >> Z a 5 Z * * * * * O a 4 U Z O 4'C g ri * * * * * * O Q: 4 U Z O <C '< C Fi 0 3 * * * # * 0 * * U a a U) a F - i Cn CU Z 5 * * U a a U) a Fi Cr) U) X 0 * 5 * U * * I-I F1 0 H H F1 H * * F1 F-+ 0 H H H 1-1 F] 5 * 3 * F F * * 0 * F F 5 * * F 3 in 5 ] 5 * Lc * . 2 * * O * Z * CV 3 04 * * F 3 a H * * U) * a * Q * H * [n * F * Q * F * 2 * 13 * * 0 * X w z * * a * 0 * * a * 0 ,-1 * * a 3 0 * * * * KC * * * * * * * F * * * * 4 5 * * * 3 * * 5 * * 44 * * * * * * (/) * * * * * * Q * [s) • * [a) * * 0 k; * * 4 * * * * * -X * * * 4 * 1 * * * * * * * * * * * 3 * * * -I * * * * * 1 , 1, * 4 , 4, * * * * * * * * * * * * * 0 * 0 4 0 Q 51 CI o C/ * F g > ° * F < > H M g * H U 4 l0 4 H U) F=C (n 0) Z (n 4 x a 4 a Hrx g.4 cn H 0 0 Ul * H 0 O U) 4 0 H 0 (1) w 0PX1.1x 40Hxw * aoHxQ� a o F 0 w x 4 < a u x o U0ZU] °c 4 U0ZZUX r UOZZUX � :1 * U) >4 O Z w 4 Ul >4 0 x ° a al Z * x Z %.0 4 x a Z F x a H 4 F x a H rl * F x a 1--1 O 0aW * a 00aHwa o 4 a 00r Ewa 4 oaa E.XgE. C O 4 4 0H C7 2 E.> ao 0 aOZ4 * ° Fax F ax w0 z 11 F (xx'ia0HZa Z F a X fx C a H W 4 Z F W X a 0 H W * ZZ Z a X O 0 0 q H U0 C4 Z 4 O U 0 0 �0Q00 Z * 0O(xU r0Ck Z U 0 0 0 U 0) 0 F U 0 x x F O H * F U x O 0 x F H U x 0 * F 0 x F H Z O F Q U > imi a ( 01 Z F X U 4 W U) F W 4 Z F [L' U W U) F W H 0 C] > a 0 Z t` * H 0 0 Z > 0 U) Z X a> g H g H a a > a H a 1--1 1--1 (x i- l0 1 >+ � FC H FC H 04 04 x04 m[L. 4F * a (o * 04 04 X 04 Cf) 44 4 * H * * (1) o * U) ((1 0 • O N ■■ 0 h W Ul O • 0 N r1 0 o- W (1) 0 • 0 N r1 0 0 O N 0 rl * a O (V 0 rl 0 * a O (V O rl ('1 0 4 01 0) 0 4 0) r'1 O 4 g 4 g 0 -1 O H 0 * 0 4 Q'. 4 > 4 > 4 a * a 4 0 0 * X FF4 XFr4NF FFFaXF 404E 0 2Z0.-CUH > >Z ZO�CU0 > >Z 4 ZZ0�CU0 > >Z a * u a U Z 0 g g H 4 * * * * * 0 a a U Z 0 Ft g H 0 4 * * * * * 0 a a U Z 0 FC FC H a s Cr) a H U) Co X * 4 4 U a a u) a 1-1 CO U) X 0 * * * U a a Cn a 1 U) Cn E H H 0 H H H H * * 1-I Fi 0 H H H H a * * Fi 1-1 0 H 4-9 4-4 H H * * o 4 F F 1- � * 4 * F F 1 * 0 4, Z 4 * 0 * * * rl * a 1-1 4 * 0 * Cu * F * E. * r1 4 F 4 * (0 * W * * 0 * 0 * * a * 0 1 * * 04 * 0 * * * 0) 4, * 4, * * * * .k * * [ -4 * * * 4 * * 4 * 1 94 1 1 14 * 14 Cr) 1 * 44 * -14 44 Ca 4, W * W 44 * U X * x al * , ) a Q ir k k k k k k k k k k k k k k k k k k k k k k k k k 4' k k k k k k k i# k k k k k 4' k k k k k A G k > H m KC cn k x (Y k a O Qi k l Q 0 cn w ]OEHx W k OQZZU Z U x Crl ° �az k H X a oo ° [x o a OZ r24 x0Ol -IZCY k Zi H a x Q H w ° u o g a ° u Q o a z U 0 x o ff « Z H a U 111 c H w k o o zz 4 a 1 - 1 H k a a x a m 4-, a H k k U] W to O • 0 N 0 N k 7 0 N O rl k W t+l O k H k a k k a k 0 k R. H H H a x H N H # k k k k k o a Q U U 7. o KC K H a a U1 a H cn cn k k H H Of H H H H k k H H k k k k k k a k k [ k k a k k k q k 0 k k k k k k k k k k • k k k k k k k k 7 0 • k � w r=4 C7 0o m in rl N O FC N r N N N F, W CI) rn en M rn M X H � m H co i in CO X C7 H g W N co co co H rn rn rn N 01 U) N N N N N z Q,' Ol Ol 01 01 o al a\ O1 a\ Fi W N N N N (N N N N N N d' O O 0 0 0 0 0 0 0 0 H CQ Q a . o .--1 0 CO 0 c' O V' CO 1.0 CO N H 0 in in kO \O 0■ 0l ,-I O rl N C a x ,-i ,-1 , .4' DI m C1. N w N Ia 6 £ X z z 1-4 Ci 01 < .'7 ■-I O N to V' O a' OD 0) CO N V) 0 0 III VI 0O W 01 01 H 0 rl N d' a a x H , I C, cn O I C■ H N W 0 Cr) W W 0, W C4 Cz, : W Cx . G. U ; U` '.7 ,--1 0 00 ( V' o d' co 0) N CO 0 cn W x uI vI Lo m m m N C4 0 Q4 • > 0) zo 4-I X • Z O H a 0. 0. 01 0 OD CO N CO In In M rl m N in X F=C d' (` d' N d' N V' N V' N N H 01 W H X C4 m r1 rn M r1 en rn rn rn rn el H H x 3 CO v' H C V I n C O 0 o r - o 0 4 0 S to rn o ,-1 N N rl d' o 0) W ,-] H .-1 N N M N rl 01 V' (4' rl a r=. ,-I X o In o 0 O N to H 0 N L(1 to 0 O O H H 0 H H H N H In H o H u) Z (1) 0 Cr) 0 (r) 0 H H < 0 0 0 Z 0 Z 0 Z (n 0 C4 H a a a a a a a a a a 0 « (n H H H H H H < KC FC < FC g u W Z a 0 r a , 0 a 0 a 0 a 0 01 x O 0 H CL H a H 0 H 0 H H H 0 E! 0 0 0 0 0 0 0 0 0 0 0) a 0 W 0 W 0 W 0 W 0 W 0) 0 a a H a H a E a H a H 0 z W 0 0 0 a 0 0) 0 0) 0 0) U w a r O >. 0 > 0 r 0 > 0 O x a x a x a x a x a Li, A; }, CY: . 11 EXHIBIT A Drainage Area Map — Post - Development, Inlet Design Oe ■�J co 22 1 { f �,� \� \ / ( /r � '� S EWER i V ° m 1 \ ' t` \\ C y y SiATltl�l 0 cn `� �. l / ` e / ! �� �— .� 4° ROCK RIP f / ® ,r � - •� E + 1 >� f '� ` oo.o SEWER TREATMENT E --•- E E I . —� E E�-- � -.,� •E, E ' E E r' E E E � E E �E /"" �� P f/ rh\ / _ � { �} �� � '.`��` \J 1 ' E s E I \' i EXISTING POWERLINE I n E -• / f (t0 BE ABAN�ONO __ "� +/( `r^ — �__ — 2O n `,. OR RELOCAIFD) f r CHANNEL f r / I/ �1 \ ( t ���.� C� Q 28 I '� `._• `~ l �_ �l !/ 1 ! mil ' 1 /___— \'� �`,- I / '\;�,�., /,% F- \9 -� -+— O 40 0 - � 1 � ) ) _� ._- .-- _..,,7 _.. � ! f -� � � �� t � .� ` .l • : i r —_ fi r � f / L (FEET I LEG NOTE REFER TO THE GRADING PLAN IN THE CONSTRUCTION DRAWINGS FOR THE PROPOSED CONTOURS. EXISTING CONTOUR (MAJOR) -- EXISTING CONTOUR (MINOR) PROPOSED STORM SEWER ® STORM INLET DRAINAGE AREA BOUNDARY ___________ TIME OF CONCENTRATION CALCULATION FLOW PATH - -- -- - -- PROPERTY LINE CONCRETE CHANNEL LINING r CONCRETE RIPRAP ROCK RIPRAP 218 DRAINAGE AREA NUMBER & 0.13 ACREAGE FLOW DIRECTION E1 GUTTER DEPTH CHECK LOCATION CL F- • ®® • Wv LLJ 90 0 CL • • W. 1 001 u2!saU iauuug3 did luatudolanaU -Jsod — dujAi caw AuumaQ S 1IfIHX1 -7")0 j - 201 �N � �,� 9,54 �� �1� �' BLOCK CHANN 5 6 7 8 10 1 1 1 J2 r 13 1 15 2 0 ONC ElE Q. ( 1 .Sv, ~ I��_ — � I I 1 1 1 II I 1� ��.1 1 1 I - FJ3D ai b 6 .9 E R-R- J�"77.. /2�23 BL CK 1 8.89 p► PE:: I BLOCF43 I I I .34 NL—Er 1 ONCR -010. 4' 3 .0 % L 53' 1 4 5 1 16 7 1 — — — — — — — — — — - 2 3 7 1 1 12 13 4 NEL #4 1p 97 #rNj 103' ad Dnv 4 0.1 0 21 0 2B HMI 17 2n 4.86 1 4p ,r•' 1 � f I - r A 20 falD 0 1 SCAL IN EET AN* C5 MOC � °~'•, 1� I ����� I G 1111\ [�, - �� ��: � �Nlla a f. `�seaaaa i -- IXK 6 ROCK) + c� 305 LEGEND NOTE: REFER TO THE GRADING PLAN IN THE CONSTRUCTION DRAWINGS FOR THE .PROPOSED CONTOURS. ro., cn L- EXISTING CONTOUR (MAJOR) 0 00 EXISTING CONTOUR (MINOR) PROPOSED CONTOUR w -------- PROPOSED STORM SEWER 0 DRAINAGE AREA BOUNDARY U) TIME OF CONCENTRATION CALCULATION FLOW PATH E o n PROPERTY LINE OUTLET STRUCTURE 0 CONCRETE CHANNEL LINING CONCRETE RIPRAP r ROCK RIPRAP 221 DRAINAGE AREA NUMBER & r- 0 0 - 0 -) � ACREAGE FLOW DIRECTION cn L- Lo 't 0 00 w 0 U) E o n 0 c) U) r (D 0 0 r- 0 0 - 0 -) � T- w U) z c) U) z u) w W z • o j w U) J z z w W > Z Z) 0 0 w C) c) U) o e$ uj 0 W 0 3: 0 CL CL 0 Lu EXHIBIT C Drainage Area Map — Pre - Development, Pond Design 1 n, ftftz a. st� A , An VRA & a VA ",,'a'mu W. & LORALEE SA "I 'p 13.2,4 ACRE IRACT 795/ �, � � � 1 + roc �,' �� � -`}�, 1 �' f•\-- 1 -- -_� l er lzsm!A LAYMAN VALUAMS D MENN AND / ACRE 1RACT N MARY C. MEN 5206/1 gc LO)MA. 92 AcRElRA /F ---ES<EY AND KEY IRA 5173/239 T FdO MM iffilaER AND vAM KAREN MUER �� ACRE IRACT 'V 0 05 /, .48 + eel � I te r-- -'' � ,� / � � �' F 'd 4 111 320- .77 4 . ...... . . . ........... � � t �'' J — ".__.__" � - -'� J� � .7 CRE 1RACT 1 �"51 •i \ �1. � -.\, ,r'""� V 24� 150 75 0 150 SCALE IN FEET 300 L NO 1106-.1 R! KY L 5.500 A 3217/36 LEGEND 335 EXISTING CONTOUR (MAJOR) EXISTING CONTOUR (MINOR) -310 EXISTING CONTOUR (USGS) PROPERTY BOUNDARY DRAINAGE AREA BOUNDARY TIME OF CONCENTRATION CALCULATION FLOW PATH VEGETATION LINE DRAINAGE AREA NUMBER & ACREAGE FLOW DIRECTION 0 T n U) bj x => Lu z Lj < cn bj C ) 13:� w -j U) LL- 0 ry 0 U) U) bi 0 cn 5; Ld C5 z PVA V) u ul 0 r 00 r's ( (n a -4- X X C) (1) 0 0 w w a ( 0) 0 C 0 r-. 0 0) 0 ---� • w w a- 0 0 u) > W. z w w D • 0. > (/) < C) v u) Z • w • • CL w VICINITY MAP Z4 H9MUT W. LORALEE 13.2¢ ACRE .�CT /l/F 'L", C- VAUGORA & A. AuGURA 5.03 ACRE TRACT V Is 17 15 5 — T 4 2 LOCI C943 9 " ptm I 4 1 . , — 2. . 2r PEE 0 Creek + - I ROCK 0 LAW p + ' '� ` , 30 0 VALUAMS AND /6:1W5 ANCT G. 8,t4 5206/19 /F EL MA RY C. N MA JOSEPH 92 ACRE L M EY AND 3.215 5173/23 M. M � C �5173121 TRACT 32 29 56 ACRE iso7/178 2d 25 CHWE& 23 19 11 13 Is AS, f 6 /to 811EI i =tA C( F7 3W OWC S.E.T. MUM AND :9 KAR EN 'TRACT 28 2.138 A CRE 29 tEL is 5585/72 p 16 X, DLO L l (/ /11 �} 1 - 2 2 300 NIF M A t �'•�, -.� � � � ( � 1!! i ` \"^� _ � r -� 07/40 0 co F 0- co co ( n W 9 < M x Ld 1 Ld r- z r) 0 w < < u .. 0 � Ld m 0 n ff -�� (� �(� �\ -• -- �� D ET ENTION �D TENT 0 C) r j / / // ] �' f N S / A r r" L W 1, 7/44 972 A, ACT 0 NOTE: Li REFER TO EXHIBIT E FOR DETENTION POND DESIGN. ry . N I �� c? + 305 \ // 1 ` '.•_" `� + Ze f GORNEY 0.77 ACRE I + � � /�• .......... N %wa L T RACT 4/671 MACT \ I � .� t t � 9 \ � fj l �� A, C) I N/F ,.KY I yoUNG 5.500 ACRE TRACT 32.17/36 150 LEGEND I 1 EXISTING CONTOUR (MAJOR) Lo 00 EXISTING CONTOUR (MINOR) -310 EXISTING CONTOUR (USGS) PROPERTY BOUNDARY ------------ PROPOSED STORM SEWER DRAINAGE AREA BOUNDARY ---------- TIME OF CONCENTRATION X CALCULATION FLOW PATH - - - - -- PROPERTY LINE 0 3 01 DRAINAGE AREA NUMBER & \1 88.4§1 ACREAGE E . FLOW DIRECTION I 1 w r z w ow i Z (D w • U) j w - oz w C)M • ss Z �ecl) w z owo U) 0 o 3: C) 0 w 2 V) 0 Lo 00 Q (n -4— c X 0 0 fy- E . L� (D 0 w r z w ow i Z (D w • U) j w - oz w C)M • ss Z �ecl) w z owo U) 0 o 3: C) 0 w 2 I 30 91 )$ 30 PIPE #8 1 t 10-1 CD 0 CD 31 - 3 0 29 3 0.80 `300.80 T13 300.4D 1 ET #6 m ........ . . . . . . . PIPE jr -7 A 300.70 TG 30" CONCRETE S.E.T. 2 2 Z8'k rri CHANNEL #6 " 4 ROCK RIPRAP 190 SF m I --3> 9.92 TB" ?98.72 TB "- 298.72 TB Lo'67 TBA = 297.0 I-"- SEWER SEWER TREATMENT PLANT f y m m 11'4" 308 TOE WALL 5 REINF; C ING TOP OF SHALL BE GRADE 60 (60,000 PSI). TOP OF WAH =294.0 of TOP OF 0) (D C) = r- TOP OF SLAB=292.70 99 0) El CONCRETE RIPRAP ON ROCK RIPRAP A (n 2'x1'x2' HIGH --D W < DISSIPATOR BLOCKS C) - r Ld -j CL 06 1 93.0 Z o w B U) Uj < 0. FL=292.95 Ky I 2t 10, 0 Z 0 TOP OF 0 U) TOP OF TOP WALL=299.0 N FL=293.05 / LLJ 1'x2'x1' DEEP A m TOP OF TOP OF WALL=294.0-\\ LL- 0 TOP OF z TOP OF SLAB=293.25 O TOE WALL � k-:" Pond Outlet Structure 0 N.T.S. 8" THICK 8" THICK ROCK RIPR WALLS WALLS O f W (6 "X 1 2 )) CK) (n 0.0 4 15 SF f y m m 1 1 2 2'8 6" THICK SLAB Pond Outlet Structure OUTLET -r" DE ASE PAD-ELEV. 300.0 ERFL( S 10' C ELEV.=297.5 EXISTING GROUND GRASS LINED CHANNEL 1XI '\\ VARIES 4 j Channel # 1 Typical Section N.T.S. 55' 1 Channel # 2 Typical Section N.T.S. Channel # 4 & 6 Typical Section N.T.S. EXISTING GROUND GRASS LINED CHANNEL VARIES 1 4 4 Channel # 3, 5 & 7 Typical Section N.T.S. Section A-A m N.T.Sm- 10 8" THICK 8" THICK WALLS WALLS 1 . 299.0 296.5 4W m 295.0 293.0 2'8 2'8" m 6" THICK SLAB Pond Outlet Structure m I Section 13-13 ROCK RIPRAP (6"X12" ROCK) 1915 SIT GRADING CONSTRUCTION NOTES: 1. FILL MATERIAL USED TO ACHffEV GRADE �IN A D� �RpkS TO RECEIVE � PAVEMENT, AND OTHER AREAS, HAL COM PA( TED TO AT ETERMINED BY TY AS LEAST 95% OF THE MAXIMUM DRY BE 'S' THE STANDARD PROCTOR TEST, (ASTM D698 ,AT A MOISTURE CONTENT FROM 2% BELOW TO 4% ABOVE THE OPTIMUM MOISTURE CONTENT. 2. ROCK RIPRAP SHALL BE 6" TO 12" PIECES PLACED TO A MINIMUM DEPTH OF 12", UNLESS OTHERWISE NOTED. �3. THE TOPOGRAPHY SHOWN IS FROM AERIAL TOPOGRAPHY PREPARED FOR THE OWNER OF THE PROPERTY I . 4. ALL CONCRETE FOR PAVEMENT CONSTRU ION SHALL HAV A MINIMUM 28-DAY COMRESSIVE STRENGTH F 3000 PSI WITH MINIMUM CEMENT CONTENT OF 5 SACKS ER CUBIC YARD. T E MAXIMUM PERCENTAGE OE Elc�,�•ki,RE CEMENT OF PORTLAN 30 15 0 30 SCALE IN FEET EM ENT 11'4" 308 TOE WALL 5 REINF; C ING TOP OF SHALL BE GRADE 60 (60,000 PSI). TOP OF WAH =294.0 ALL=294.0 TOP OF 0) (D C) = r- TOP OF SLAB=292.70 99 SLAB=292.70 El CONCRETE RIPRAP ON ROCK RIPRAP A (n 2'x1'x2' HIGH --D W < DISSIPATOR BLOCKS C) - r CL 06 1 93.0 Z o w B U) B < 0. FL=292.95 Ky L=292.95 10, 0 Z 0 TOP OF 0 U) TOP OF TOP WALL=299.0 N FL=293.05 / � =293.05 1'x2'x1' DEEP A A TOP OF TOP OF WALL=294.0-\\ "'-WALL=294.0 TOP OF z TOP OF SLAB=293.25 LAB=293.25 TOE WALL � k-:" Pond Outlet Structure Detail N.T.S. 8" THICK 8" THICK WALLS WALLS O f 1 1 2 2'8 6" THICK SLAB Pond Outlet Structure OUTLET -r" DE ASE PAD-ELEV. 300.0 ERFL( S 10' C ELEV.=297.5 EXISTING GROUND GRASS LINED CHANNEL 1XI '\\ VARIES 4 j Channel # 1 Typical Section N.T.S. 55' 1 Channel # 2 Typical Section N.T.S. Channel # 4 & 6 Typical Section N.T.S. EXISTING GROUND GRASS LINED CHANNEL VARIES 1 4 4 Channel # 3, 5 & 7 Typical Section N.T.S. Section A-A m N.T.Sm- 10 8" THICK 8" THICK WALLS WALLS 1 . 299.0 296.5 4W m 295.0 293.0 2'8 2'8" m 6" THICK SLAB Pond Outlet Structure m I Section 13-13 ROCK RIPRAP (6"X12" ROCK) 1915 SIT GRADING CONSTRUCTION NOTES: 1. FILL MATERIAL USED TO ACHffEV GRADE �IN A D� �RpkS TO RECEIVE � PAVEMENT, AND OTHER AREAS, HAL COM PA( TED TO AT ETERMINED BY TY AS LEAST 95% OF THE MAXIMUM DRY BE 'S' THE STANDARD PROCTOR TEST, (ASTM D698 ,AT A MOISTURE CONTENT FROM 2% BELOW TO 4% ABOVE THE OPTIMUM MOISTURE CONTENT. 2. ROCK RIPRAP SHALL BE 6" TO 12" PIECES PLACED TO A MINIMUM DEPTH OF 12", UNLESS OTHERWISE NOTED. �3. THE TOPOGRAPHY SHOWN IS FROM AERIAL TOPOGRAPHY PREPARED FOR THE OWNER OF THE PROPERTY I . 4. ALL CONCRETE FOR PAVEMENT CONSTRU ION SHALL HAV A MINIMUM 28-DAY COMRESSIVE STRENGTH F 3000 PSI WITH MINIMUM CEMENT CONTENT OF 5 SACKS ER CUBIC YARD. T E MAXIMUM PERCENTAGE OE Elc�,�•ki,RE CEMENT OF PORTLAN 30 15 0 30 SCALE IN FEET EM ENT S 308 PERCENT. 5 REINF; C ING STEEL SHALL BE GRADE 60 (60,000 PSI). if 0) 0') C14 Uj I Ld U-1 in 11 O n 0 1-- m 6" Typical Toewall Detail N.T.S. Elev. 2 99.5 z 0 F- C) U) LA 0 0 LLI Ld F-- C5 z -310 L0 0 00 z 308 EXISTING CONTOUR (MINOR) X C 0 0 ry E 0 a = C O vi C) 0 co 299 0) (D C) = r- O r'- 0 0) 99 CONCRETE CHANNEL LINING El CONCRETE RIPRAP ON ROCK RIPRAP (n (n --D W < C) - r CL 06 1 bj Z o w :L1 I U) < 0. Z C) m 0 Z 0 0 U) LEGEND CL W 0 w N -310 EXISTING CONTOUR (MAJOR) 308 EXISTING CONTOUR (MINOR) ROW LINE PROPERTY LINE FLOW DIRECTION PROPOSED STORM SEWER 299 PROPOSED CONTOURS O OUTLET STRUCTURE 99 CONCRETE CHANNEL LINING El CONCRETE RIPRAP ON ROCK RIPRAP Typical Pond Berm N.T.S. Typical Overflow Spillway N.T.S. • • O Typical Pond Berm N.T.S. Typical Overflow Spillway N.T.S. 0 V) (n (n --D w Cn bj :L1 I < re m x mn w z z � k-:" Uj '-'i 0 O f W (n 0.0 Typical Pond Berm N.T.S. Typical Overflow Spillway N.T.S.