HomeMy WebLinkAboutDrainage Report Addendum
to
Drainage Report
for
Meadowcreek Subdivision — Phase 1
Brazos County, Texas
Report: January 2005
Addendum: August 2005
Developer:
Main Street Homes — CS, Ltd.
900 Congress Avenue, Suite L -100
Austin, Texas 78701 ®7~,
(512) 801 - 8832 , ..... pc, b
® *: r B
Q a
F S.c, ; �. s
Prepared By: • c,
' •, „
TEXCON General Contractors v , � A, r ; � ,® ,i
1 Graham Road �� Z �t' °
College Station, Texas 77845
(979) 764 -7743
ADDENDUM TO DRAINAGE REPORT
MEADOWCREEK SUBDIVISION - PHASE 1
SUMMARY
The openings in the outlet structure have been reduced in size to decrease the peak flow from
the detention pond. Although the decreases in peak flow are not significant for the 5 -year to
100 -year stone events, the reduction in the opening size will have more impact on the typical
minor storms that occur frequently. Attached are revised tables and information from the
original Drainage Report (dated January 2005), which show the changes due to this design
revision.
(The following information has been taken from the January 2005 Drainage Report. Changes made
are shown in bold italics).
DETENTION FACILITY DESIGN
Although a storm water detention facility is not required by Brazos County regulations, a
detention pond will be constructed to control the peak discharge from this development such
that it is less than or equal to the pre- development peak discharge.
A comparison of the pre- & post- development peak discharge values for the existing drainage
channel at the southeast property line shows an increase in the runoff for the 100 -year storm
event. Table 5 shows the increases in runoff for the other storm events if there was not a
detention pond to control the runoff. Because of this increased runoff, a detention pond is
proposed, which will reduce the peak runoff to less than or equal to the pre - development
runoff, as the "Post- Development with Pond" data in Table 5 shows.
TABLE 5 — Pre- & Post - Development Peak Discharge Comparison — Detention Pond Design
QS Q10 Q25 Q50 Q100
(cfs) (cfs) (cfs) (cfs) (cfs)
Pre - Development 158 208 287 348 414
Post - Development without Pond 178 231 315 378 447
Post - Development out of Pond 143 196 273 331 394
Decrease in Peak Discharge 15 12 14 17 20
The area - capacity data and the depth- discharge data are provided in Appendix D. The
detention pond grading plan is shown in the construction drawings.
The pond outlet structure is a concrete channel which is 10' wide and has a control structure
which has 2 openings which are 2' in width and 2' high with a flowline elevation of 293.0. The
control structure also has a top crest elevation of 296.5, which allows additional weir flow over
the control structure. Also, there is an overflow spillway with a crest elevation of 297.5. This
spillway channel has a bottom width of 20', 3H:1 V side slopes and is lined with rock riprap to
prevent erosion of the channel. The top of the pond berm is at Elevation 299.5. The proposed
grading of the pond and the outlet and spillway details are shown on Exhibit E. The outlet
structure channel will have dissipater blocks to reduce the velocity of the discharge and rock
riprap will be used to prevent erosion.
The peak flow out of the detention facility was determined by the HEC -1 program using the
depth discharge data for the pond outlet structure as provided in Appendix D. As shown in
Table 5, the peak outflow from the detention facility is Tess than the allowable peak outflow for
the design storm event. Additionally, Table 6 presents the maximum water surface in the pond
for each storm event, as well as the amount of freeboard provided.
A schematic of the graphical HEC -1 computer model, the runoff summary, and the H EC -1
output for the pre - development condition are provided in Appendix E. The pre - development
flows in Table 5 are from this HEC -1 output.
The post - development HEC -1 schematic, the runoff summary, and the HEC -1 output are
provided in Appendix F.
TABLE 6 — Summary of Maximum Pond Water Levels
Storm Event Water Surface Freeboard,
Elevation, ft. ft.
_ 5 -year 297.9 1.6
10 -year 298.3 1.2
25 -year 298.7 0.8
50 -year 299.1 0.4
100 -year 299.3 0.2
Note: Detention Pond Top of Berm Elevation = 299.5
Meadowcreek Subdivision - Phase 1
(Revised per Addendum, August 2005)
Detention Pond No. 1 Area - Capacity Data
V = H * {[A1 +A2 + (A1 *A2) / 3}
V = volume, ft
A = area, ft
H = difference in elevation, ft
POND NO. 1
Area - Capacity Data
Elevation Depth Area Area Volume Cumulative
(ft) (ft) (ft) (acres) (ac -ft) (ac -ft)
293.00 0.00 0 0.000 0.000 0.000
294.00 1.00 9,431 0.217 0.072 0.072
295.00 2.00 34,155 0.784 0.471 0.543
296.00 3.00 51,597 1.184 0.977 1.520
297.00 4.00 72,100 1.655 1.413 2.934
298.00 5.00 132,853 3.050 2.317 5.251
299.00 6.00 235,184 5.399 4.169 9.420
299.50 6.50 260,100 5.971 2.841 12.261
Detention Pond No. 1 Elevation Discharge Data
POND NO. 1
Elevation Discharge Data
2 -2.0' wide x 2- high openings 10' wide Overflow Spillway Total
Elevation L =4.0, A 9 =8.0 sf crest =296.5 20" BW, 3H:1V side slopes Discharge Elevation
Weir Orifice Weir crest = 297.5, n =0.030
(ft) y, depth (ft) Q, cfs h, depth (ft) Q, cfs y, depth (ft) Q, cfs y, depth (ft) Q, cfs Q, cfs (ft)
293.0 0.0 0.0 0.0 0.0 -- -- -- -- 0.0 293.0
294.0 1.0 12.0 -- -- -- -- -- 12.0 294.0
295.0 2.0 34.0 -- -- -- -- -- 34.0 295.0
55.0 296.0
296.0 -- 2.0 55.0 -- -- -- --
297.0 -- -- 3.0 67.0 0.5 10.6 -- 77.0 297.0
298.0 -- -- 4.0 77.0 1.5 55.1 0.5 18.0 150.0 298.0
299.0 -- -- 5.0 86.0 2.5 118.6 1.5 113.2 318.0 299.0
299.5 -- -- 5.5 90.4 3.0 155.9 2.0 186.0 432.0 299.5
1. Weir Equation Q = 3.0 * L * y312
2. Orifice Equation Q = 4.82 * A * h 112
3. Overflow Spillway - Mannings Equation
x �,
MEADOWCREEK SUBDIVISION
WASTEWATER TREATMENT PLANT
PK JOB NO. 51204 -311
TECHNICAL SPECIFICATIONS
TABLE OF CONTENTS
11312 - Submersible Pumps
11390 - Package Wastewater Treatment Plant
13430 - Duplex Float Control Panel
16A - General Electrical
1
r
St • • . OF TE�•q%S 1
%' ,, .. * / /
STEVE E. DUNCAN
v e 83252 i
qt V.. tic ' h-•
;#
` 41 1,rfr'
S: \2004\ 51204 -311 MAINSTREET- WWTP \Admin \Dots \00 - TABLE OF CONTENTS.doc
SECTION 11312
SUBMERSIBLE PUMPS
PART 1 GENERAL
1.01 SUMMARY
This section provides for furnishing and installing constant speed, non -clog submersible
sewage pumping units and equipment as indicated on the drawings. The complete
installation shall include the placement of anchor bolts, setting of pumps, motors,
leveling and aligning equipment and connection to piping to effect a complete operational
pumping system, as well as other specified accessories.
All the equipment called for under this section of the specifications shall be supplied by
the pump manufacturer. This includes the basin, station piping, valves, pumps, motors,
level controls, panel and access frame and cover, and the supplier shall, in addition to the
Contractor, assume the responsibility for the proper functioning of the equipment.
1.02 MEASUREMENT AND PAYMENT
Unless otherwise specified, no direct measurement or payment will be made for
submersible pumps, the cost thereof being included in the bid price for the appropriate
bid item listed in the proposal.
1.03 RELATED SECTIONS
Section 02530 - Sanitary Sewerage System
Section 13430 - Duplex Float Control Panel
1.04 PERFORMANCE REQUIREMENTS
The pumps shall be so designed that they will safely operate at the specified conditions,
speeds and operating pressure ranges without excessive wear, distortion, or vibration.
Actual pump manufacturer figures shall not exceed the following performance
requirements by more than ten percent (10 %).
S:!2 004`51 -311 MAINSTREET- WWrP\AdminSpecs 1std.doc 11312 -1 - Submersible Pumps
Std. -8/27 97
LIFT
PERFORMANCE REQUIREMENTS STATION
Number to be Installed 2
Rated Capacity at Rated TDH, GPM 333
Rated Total Dynamic Head, ft. 33
Station Operating Range, TDH 30 - 36
Maximum Nominal Pump Operating Speed, RPM 1750
Maximum Brake Horsepower Required at Rated Condition 6.5
Minimum Wire to Water Pump Efficiency at Rated Head, Percent 42.7
Solid Size, Inches 2
Maximum Motor Nameplate Horsepower 7.5
Minimum Motor Service Factor 1.15
Model Number CP 3127
Impeller Number 434
Head losses through the pumps are not included in the total pumping heads.
Motors must not operate in the service factor in any portion of pump operating range.
The sump volume requirements were sized utilizing the OFF level at the volute centerline
based on the specified manufacturer. Any additional depth required to submerge or meet
start per hour requirements will not be at the Owner's expense.
1.05 SUBMITTALS
Complete fabrication, assembly, foundations and installation drawings, together with
detailed specifications and data covering material used, parts, devices and other
accessories forming a part of the equipment furnished, shall include but shall not be
limited to the following:
S:200451204.311 MAIN STREET-\ VWTPAdminSpecs'11312- 1. std .doc 11312 -2 Submersible Pumps
Std. - 8/27.97
A. Prequalification Package. The pump manufacturer must submit four (4) sets of
the following data to the Owner's representative fourteen (14) days prior to the bid
date.
Pumps
Name of Manufacturer Along With Experience Background
Type and Model
Rotative Speed
Size of Discharge Nozzle
Type of Bearings
Complete Performance Curves Showing Capacity Versus Head
NPSHR
Pump Overall Efficiency and BHP
Data on Shop Painting
Motors
Name of Manufacturer
Type and Model
Type of Bearing and Lubrication
Rated Size of Motor (HP)
Temperature Rating and Motor Service Factor
Full Load Rotative Speed
Efficiency at Full Load and Rated Pump Condition
Full Load Current
Locked Rotor Current
Unit
Exploded View
Guaranteed Wire to Water Efficiency
Lift Weight of Pump and Motor
Total Weight of Base
Electrical connection diagrams and schematics identifying all items requiring
electrical control or power used in the operation of the pumps shall also be
submitted.
B. Shop Drawings and Product Data. The Contractor shall furnish submittal data for
the Owner's representative's approval. This data shall consist of the following:
1. Certified dimensioned outline drawings for pumping unit with shipping
weights and unit weight.
S ;2004'51204 -311 MAINSTREET- WW17 .AdmimSpecs'11312- I.std.doc 11312 -3 Submersible Pumps
Std. - 827/97
2. Performance curves for the pump.
3. Cross - sectional drawing with detailed parts listed for pumps, motors and
pump manufacturer supplied components.
4. Controls. Control schematic; field wiring diagram, manufacturer's catalog
data on all components; panel arrangement and details.
5. Frame and Covers. Outline dimensions and materials of construction.
6. Warranty. Manufacturer's standard published warranty certified on
supplied equipment.
7. Parts and Service. The equipment supplier shall satisfy the Owner's
representative of their proven record of immediate availability of parts and
field service on a twenty -four (24) hour basis. The Owner's representative
shall inspect the supplier facility and contact local references [ten (10)
required] to evaluate their service and spare parts availability.
C. Testing and Final Submittals. The pump manufacturer shall perform the
following inspection and tests on each pump before shipment from the factory.
1. Impeller, motor rating and electrical connections shall first be checked for
compliance with the customer's purchase order.
2. A motor and cable insulation test for moisture content or insulation
defects.
3. Prior to submergence, the pump shall be run dry to establish correct
rotation and mechanical integrity.
4. The pump shall be run for thirty (30) minutes submerged, a minimum of
six (6) feet under water.
5. After Operational Test No. 4, the insulation test (No. 2) is to be performed
again.
Two (2) sets of the following data shall be submitted upon shipment of pumps and
motors:
1. Installation, operation, maintenance and lubrication manuals.
2. Copy of the approved submittal drawings.
S: \2004'51204-311 MAINSTREET- WWTP'AdmimSpccs`11312 - std.doc 11 -4 Submersible Pumps
Std. - 8,27.97
3. As -built electrical drawings of the control system.
1.06 WARRANTY
The pump manufacturer shall warrant the unit being supplied to the Owner against
defects in workmanship and material for a pro -rated period of five (5) years under normal
use, operation and service. The warranty shall be in printed form and apply to all similar
units.
PART 2 PRODUCTS
2.01 MANUFACTURERS
The pumps shall be manufactured by Flygt Corporation or approved equal.
2.02 MATERIALS AND /OR EQUIPMENT
A. General. The pumps shall be vertical, non - clogged raw sewage centrifugal type
for operation in a submerged condition. Each unit shall be equipped with a
submersible electric motor, completely shop assembled in the pump
manufacturer's plant, accurately aligned and properly prepared for shipment.
B. Pump Type. The pumps shall be capable of handling raw, unscreened sewage.
The discharge connection elbow shall be permanently installed in the wet well
along with the discharge piping. Anchor bolts for the discharge connection elbow
shall by Type 304 stainless steel. The pumps shall be automatically connected to
the discharge connection elbow when lowered into place and shall be easily
removed for inspection or service. There shall be no need for personnel to enter
wet well to either disconnect or reconnect the pump. Sealing of the pumping unit
shall be guided to and pressed tightly against the discharge connection elbow. No
portion of the pump shall bear directly on the floor of the wet well. The pump,
with its appurtenances and cables, shall be capable of continuous submergence
under water without loss of watertight integrity to a depth of 65 feet.
C. Lift System. A lift system shall be supplied comprised of a "grip eye" for
attachment to lifting equipment hook and short length of chain attached to pump
and stainless steel wire rope long enough to reach the station top. The grip eye
shall be lowered over the stainless steel wire rope until reaching the chain where
the grip eye automatically connects to the chain so the pump can be pulled by the
use of lifting equipment. All components to be stainless steel or cast/ductile iron.
S'2004 204 -311 MAINSTREET- WWTPAdmim Specs 11312- 1. std .doc 11312 -5 Submersible Pumps
Std. - 9;27 -97
This lift system shall enable the operator to connect/disconnect the hook from the
lifting device to any one of the submersible pump handles while submerged, from
the station top.
D. Casing. Each pump casing shall be constructed of fine- grained cast iron. The
casting shall be designed for a minimum working pressure of fifty (50) PSIG and
hydrostatically tested to 1 -1/2 times the working pressure.
E. Pump Shaft. The pump shaft shall be of carbon steel, C1036, completely isolated
from the pump medium, or stainless steel when exposed to the pump medium.
The pump shaft shall rotate on two (2) permanently lubricated ball or roller
bearings. The shaft shall be of sufficient diameter to assure ridged support of the
impeller and to prevent excessive vibration at all operating speeds.
F. Mechanical Seal. Each pump shall be provided with a mechanical seal system
running in an oil reservoir having separate, constantly hydrodynamically
lubricated lapped seal faces. The lower seal unit shall contain one (1) stationary
and one (1) positively driven rotating tungsten- carbide ring. The upper seal shall
contain one (1) stationery tungsten- carbide ring and one (1) positively driven
carbon ring. The seals shall be installed in the TANDEM configuration. The seal
systems shall not rely upon the pumped media for lubrication.
G. Oil Chamber. Each pump shall be provided with an oil chamber for the shaft
sealing system. The drain and inspection plug, with positive anti -leak seal, shall
be easily accessible from the outside.
H. Impeller. The pump impellers shall be one -piece cast iron, full- enclosed, design
with wide passages to prevent clogging when pumping solids, trash, rags and
string material contained in sewage. The impeller shall be statically and
dynamically balanced. The impeller hub shall be accurately fitted and
mechanically secured to the impeller shaft. Impeller and casing shall be designed
to pass the minimum test sphere size scheduled hereinafter.
Wear Rings. A replaceable wear ring shall be installed to provide efficient
sealing between the volute and impeller.
J. Cooling System. Each unit shall be provided with an adequately designed cooling
system.
Thermal sensors shall be used to monitor stator temperatures. The stator shall be
equipped with three (3) thermal switches, embedded in the end coils of the stator
winding [one (1) switch in each stator phase]. These shall be used in conjunction
with and supplemental to, external motor overload protection and wired to the
control panel.
S:'2004'51204-311 MAIN STREET- WWIP`AdminSpecs\,11312- 1.std.doc 11312 -6 Submersible Pumps
Std. -8/27; 97
K. Electrical Cable Seal. The cable entry shall be comprised of a single cylindrical
elastomer, grommet, flanked by washers. The cable entry junction chamber and
motor shall be separated by a stator lead sealing gland or terminal board.
Epoxies, silicones, or other secondary sealing system shall not be considered
acceptable.
L. Motor. Pump motor shall be of NEMA Design B, squirrel -cage induction, shell-
type design, housed in an air - filled watertight chamber. The stator winding and
stator leads shall be insulated with moisture resistant Class F insulation which will
resist a temperature of 155 degrees C (311 degrees F). The stator shall be dipped
and baked three (3) times in Class F varnish.
The motor shall be designed for continuous duty, capable of sustaining a
minimum of ten (10) starts per hour. The rotor bars and short circuit rings shall
be made of aluminum.
The motor shall be non - overloading across the entire range of the pump
performance curve without use of the service factor.
The junction chamber, containing the terminal board, shall be sealed from the
motor. Connection between the cable conductors and stator leads shall be made
with threaded compressed type binding posts permanently affixed to a terminal
board and thus, perfectly leak proof.
The pump motor cables installed shall be suitable for submersible pump
application with cable sizing conforming to ICEA -NEC specifications for
submersible pump motors.
Manufacturers requiring moisture detection devices for warranty shall supply a
lock -out device with manual reset in the control panel.
M. Exposed Surfaces. All exposed nuts and bolts shall be of stainless steel, Type 304
or 316. All surfaces coming into contact with sewage, other than stainless steel,
shall be protected with a sewage resistant coating.
N. Discharge Elbow. The discharge base elbow shall be furnished by the pump
manufacturer. The discharge elbow shall have a foot for anchoring to the wet
well floor and a means for firmly supporting the guide rails. The design and mass
of the discharge elbow shall be sufficient for rigidly supporting the eccentric load
of the pump unit and discharge piping. The discharge elbow inlet flange face
shall be perpendicular and make a metal to metal contact with the pump discharge
nozzle flange face. Sealing of the discharge interface by means of a diaphragm,
o -ring or other device is not acceptable. The discharge elbow outlet shall connect
Sd2004 $1204 -311 MAINSTREET- WWTP`Admin`Specs'1 131?- 1std.doc 11312-7 Submersible Pumps
Std. - 8/27/97
to the discharge piping riser. The elbow shall have ANSI, 125 -pound flange
dimensions and drilling.
0. Pump Guides. The pumps shall be capable of being lowered into position in the
pump chamber and automatically connected to the discharge connection elbow by
the use of sliding bracket and positioning devices. The sliding bracket shall be
part of the pump assembly. The sliding bracket and positioning device shall be
constructed of cast iron or 304 stainless steel.
The upper guide rail bracket and the guide rails shall be constructed of stainless
steel, sized as shown on the drawings. Intermediate guide rail brackets shall be
constructed of 304 stainless steel and be positioned a maximum of twenty (20)
feet apart.
P. Mix -Flush Valve. At least one (1) pump in each sump shall be equipped with an
automatically operating valve that will provide a mixing action within the sump at
the start-up of the pumping cycle.
This valve shall be mounted directly on the pump volute and shall direct a portion
of the pumpage into the sump to flush and resuspend solids and grease by the
turbulent action of its discharge. The turbulent action caused by the flow shall
also provide some sump aeration benefits. The valve shall be mounted on the
pump volute so that it can be removed from the sump along with the pump during
normal and routine maintenance checks and shall be positioned on the volute to
provide for non - clogging operation. The valve shall be equipped with an
adjustable, wear - resistant discharge nozzle which shall be used to direct flow
from the valve to optimize mixing action within the sump.
The valve shall not require any external power source or control to operate,
neither electric nor pneumatic. The use of any external power source is not
acceptable. The valve shall be suitable for use in Class 1, Division 1 hazardous
locations.
The valve shall open at the beginning of each pumping cycle and shall
automatically close during pump operation after a pre- selected time of operation.
The valve shall operate automatically by differential pressure across the valve and
shall be actuated through a self - contained hydraulic system which uses an
environmentally safe fluid. A method of adjusting the valve operating time shall
be provided.
Q. Access Frame and Cover. Furnish aluminum access frames and covers for top of
valve pit and wet well. The cover and frame shall be constructed of 1/4 -inch
structural grade aluminum and utilize stainless steel hinges and stainless steel
hardware. Covers to be equipped with padlock hasp and hold open arm and sized
S:'2004 btAI ]STREET- WWTP\Admin`Specs 11312 -1 std.doc 11312 -8 Submersible Pumps
Std. -8 ^_7 97
per the requirements of the drawings. The covers shall be rated for 150 pounds
per square foot live load.
PART 3 EXECUTION
3.01 ERECTION /INSTALLATION /APPLICATION AND /OR CONSTRUCTION
A factory trained service engineer employed by the pump manufacturer shall advise the
Contractor in the installation and start-up of the pumping units. The pump
manufacturer's service technician shall include in his bid one (1) working day to advise
the Owner's operator of operation and maintenance of the pumping units and controls.
Pumps shall be installed only in the manner required by the manufacturer and only after
the Contractor has been advised by the factory trained service engineer in the methods of
installation and start-up of the pumping units.
3.02 FIELD QUALITY CONTROL
After all pump and control systems have been completed and put into operation, subject
each system to an operating test under design conditions to ensure proper sequence and
operation throughout the range of operation. Make adjustments as required to ensure
proper functioning of all systems. The units must perform in a manner acceptable to the
Owner's representative before final acceptance will be made by the Owner.
END OF SECTION
S:'2004`51204-311 MAI \STREET- WWTP'AdmimSpecs'I 1312- I.std.doc 11312 -9 Submersible Pumps
Std. - 8/27;97
SECTION 11390
PACKAGE WASTEWATER TREATMENT PLANT
PART 1 GENERAL
1.01 SUMMARY
The equipment manufacturer shall furnish for installation one (1) activated sludge
treatment unit operated in the extended aeration mode including all necessary equipment
required for operation as described in these specifications. The unit shall be designed to
treat 120,000 GPD average (480,000 GPD peak) of raw sanitary sewage containing 200
mg/1 BOD and 200 mg/1 TSS, in accordance with TCEQ criteria for a 10 BOD, 15 TSS,
3 NH permit as manufactured by Southwest Fluid Products, Inc. or equal.
The principal items of equipment to include all process piping (including valves) scum
and sludge collection, air supply and distribution system, chlorination system, and any
accessory equipment included as a part of this specification.
PART 2 PRODUCTS
2.01 MATERIALS AND /OR EQUIPMENT
A. STRUCTURE: The principal plant shall consist of steel tankage furnished to the
engineer's specifications and in accordance with State Design Criteria. The plant
shall be divided into zones as shown on the drawings. Steel plate and shapes shall
be structural grade A -36, 1/4" minimum, and shall be joined by electric arc
welding. Where required for strength or leak proofing, the weld shall be
continuous and watertight.
B. AERATION TANK: The inside length of the rectangular aeration/digester tank
shall be as shown on the drawings. Operating water depth shall be 10 feet 6
inches. The water level shall be a minimum of 18 inches below the top edge of
the tank under normal operating conditions.
Volume of the aeration zones shall be as follows:
Aeration tank: 101,810 gallons (13,611 FT
Aerobic Sludge Holding: 30,541 gallons (4,083 FT
Each tank shall have aeration diffuser drop lines to provide air for mixing and
aeration as described in AIR DISTRIBUTION section of these specifications.
S. \,2004 MAINSTREET- WWTP\AdmimSpecs\ 11390- 1stddoc Std - 8/27.97 11390 - 1 Package Wastewater Treatment Plant
C. CLARIFIER: A circular, flat - bottomed tank shall serve as a clarifier. The
interior cylindrical tank shall serve as a clarifier with center inlet and peripheral
discharge. The inside diameter shall be 31'0" and the side water depth shall be
8'0" (based on the top of grout at outside of tank to mean water level). Overflow
rate at average daily flow shall be 400 - gallons /day /square foot. An influent -
loading well of 6'0" diameter by 4'0" shall be provided to dissipate influent
velocity and prevent short- circuiting. An 8" loading pipe shall be installed from
the aeration zone sloping upward to the loading well.
The bottom of the clarifier shall be concrete with grout fill conforming to a 1 to
12 slope as shown by the drawings. The general contractor, using the collector as
a guide for final finishing shall install the concrete.
The equipment manufacturer shall provide mechanical sludge and scum collector.
The collector arms shall be driven by a triple reduction gear system. The system
shall consist of a double reduction gear drive with a flange- mounted motor, shaft
mounted to a single reduction main gear drive.
The output shaft of the main gear drive requiring no external bearings shall
support the entire collection assembly.
The gear drive shall be equipped with displacement/micro switch type overload
device to automatically disconnect the motor if an overload condition occurs. The
clarifier scum pump shall operate continuously.
Scum collection shall be via skimmer arm with flexible wiper, which deposits
scum in a full width collection box with beach for removal by airlift pump.
Sludge collection shall be via adjustable steel scrapers at the bottom of the
clarifier. Blades shall be attached to the support arms, arranged to convey settled
sludge to a center collection hopper. Sludge from the hopper will be air lifted to
the Aeration Zone in the normal mode. Return sludge shall discharge at a point
within four feet (4') of the influent end wall of the aeration tank.
Clarified liquid shall pass over an adjustable weir plate into the effluent trough.
The weir shall be 11 -gauge stainless steel plate. The effluent trough shall be an
integral part of the clarifier wall as shown on the drawings. A scum baffle shall
be installed inside the weir plate.
Airlift pumps for sludge and scum shall be sized as shown under PIPING.
Gear drives used in this system shall be commercial drives with parts locally
available from PT distributors. The equipment manufacturer shall guarantee that
parts and service are available within a 50 -mile radius of the installation.
D. ACCESS WALKWAY: Prefabricated walkway shall be provided for access to
the clarifier drive unit and all process valves in or on plant tankage. The structure
S.2004\51204 -311 MA! NSTREET- WWTP \Admit)Specs'11390- 1.std.docStd.- 8:27 11390 - 2 Package Wastewater Treatment Plant
shall be adequate for concentrated loads at the drive mechanism as well as live
and dead encountered during normal operation (minimum 150 # lineal foot live
load). Continuous handrails shall be provided; walkway surface shall be 1x1 -1/8"
galvanized bar grate. Handrails shall be all galvanized steel.
The aeration tanks shall be accessed by stairway and 36" wide walkway running
the entire length of the tanks and walkway interconnecting the aeration and
clarifier tanks. All valves, automatic controls, and other areas needing service
shall be accessible to the operator from the walkway or outside wall. Handrails
and grating to be the same material as used on the clarifier bridge.
E. AIR SUPPLY AND DISTRIBUTION: The equipment manufacturer shall
provide three (3) blowers as manufactured by FPZ each blower shall be rated at
260 CFM @ 4.5 PSI. Blowers are complete with 15 HP 3600 RPM 3
ph/60hz/(230/460) volt horizontal TEFC motors. Blowers and motors shall be
furnished mounted on a common base plate for installation next to the aeration
tank as shown. Each blower combination shall be complete with built together
motor/blower arrangement, pressure relief valve, check valve, and flexible piping
connections.
Air distribution on the plant shall be via steel pipe. (Plastic pipe shall not be
allowed for air distribution of drop pipes.) Diffusers for process air shall be
connected to the main Air Header through removable drop lines located as shown
on drawings. Diffusion devices shall be coarse bubble type with minimum
oxygen transfer efficiency of 5% at 20 CFM. The diffuser material shall be 304
stainless steel and inert. Plastic diffusers shall not be considered for this project.
The drop pipe shall consist of galvanized schedule 40 steel pipe and be removable
by one man without the use of hoists. Diffuser submergence shall be 9' -0 ".
Diffusers shall be of the sparger type and have six -air release slots designed to be
non- fouling. Diffusers shall include deflector plate to increase diffuser efficiency.
Each drop line shall include clean out tee, which will permit "rodding" from
above to clear any blockages.
F. CHLORINATION SYSTEM: Inside dimensions of the chlorine contact tank
shall be 96" long x 144" wide x 96" deep. Steel baffles shall be furnished by the
manufacturer installed in the tank to promote plug flow. The tank shall be
aerated.
The equipment supplier shall also furnish a feeder for feeding liquid chlorine.
The feeder shall be manufactured by LMI and be complete with flow pacing ties
to flow meter system as shown under FLOW METERING EQUIPMENT.
Enclosure to be fiberglass, 28" x 54" x 84" tall complete with hinged door and
electrical circuits for feed equipment lighting and ventilation.
S:0.004 -311 MAINSTREET- WWTP\ Admin Specs \11390-1.std.docStd.- 8,27i97 11390 - 3 Package Wastewater Treatment Plant
G. INTEGRAL V -NOTCH WEIR: To provide for measurement of sewage flow, a
V -notch weir chamber shall be provided at the outlet of the CL2 tank. The
chamber shall be fabricated of 1 /4- inch -thick steel plate and shall have the same
protective coating as the sewage treatment plant. The weir plate shall be
constructed of 3/16- inch -thick uncoated aluminum and shall be easily removable
from the chamber. The V -notch shall be cut at 22 -1/2 degrees and machined to a
smooth, sharp crest for accurate flow indication. The depth, length and width of
the chamber upstream of the weir shall be designed for accurate head production
in accordance with commonly accepted design practice. A drop of at least six (6)
inches shall be provided on the downstream side of the weir.
A non - corrosive staff gauge, graduated to hundredths and marked at every foot
and every tenth shall be mounted on the chamber wall to indicate the head
produced by the weir. The manufacturer shall furnish a table suitable for
conversion of staff gauge readings to rate of flow.
H. FLOW METERING EQUIPMENT. An ultrasonic flow meter shall be furnished
to indicate, totalize and record the sewage flow through the V -notch weir. The
flow meter shall be equal to Milltronics OCM3 and shall be suitable for outdoor
mounting.
Flow shall be recorded on twelve (12) inch circular charts, which make one
revolution every seven (7) days, and integrated on an eight (8) digit counter
mounted in the instrument case. The chart and indicator drive shall operate on
112 -volt, 60 Hz, single -phase current. Short circuit protection shall be furnished
for the flow meter in the treatment plant control panel.
The Contractor shall mount the flow meter using material furnished by the
manufacturer and shall install all electrical wire and conduit from the treatment
plant control panel to the flow meter.
PIPING: All piping required for the process located inside the limits of the plant
structure shall be furnished by the manufacturer. Pipe stub -outs shall be provided
to the exterior wall for connection the external piping. Pipe sizes shall be as
follows:
6" Influent
8" Effluent
8" Clarifier Loading
S:\200451204- 311 MAISSTREET- WWTP\Admin \Specs \11390- 1 .std.doc Std.-8/27,9711390 Package Wastewater Treatment Plant
Airlift pumps shall be schedule 40 galvanized steel completed with stainless steel
air supply line, valves and supports. Sizes shall be:
4" Return Sludge Airlift
3" Scum discharge from clarifier
External drains and heavy iron drain valves shall be installed at each tank.
J. ELECTRICAL: The manufacturer shall provide the controls for the blowers,
sludge scraper mechanism, overload device. and scum solenoid control. These
controls shall be wired for a single point connection for the electrical contractor.
The control panel(s) shall be NEMA -4X GASKETED STAINLESS STEEL
enclosure with dripshield, with a polished aluminum hinged deadfront door on a
continuous piano hinge and removable subpanel.
The control enclosure's outer door will be held closed and sealed by a single
handle operated three point latching system with a padlock hasp. There will be no
need for exterior clips requiring a screwdriver or wrench to seal the door.
The inner aluminum door, mounted on continuous hinge, will be furnished for
protection against exposed wiring and will have cutouts for access to the circuit
breakers. Mounted on the inner door will be pump run lights, level indication
lights, hand off automatic switches and a twenty (20) ampere duplex receptacle.
A laminated schematic sheet will be permanently affixed to the interior of the
enclosure door. A final record drawing encapsulated in mylar shall be attached to
the inside of the front door.
Motor Circuit Breaker. A thermal magnetic molded case heavy -duty type circuit
breaker shall be supplied as branch circuit protection for each motor. The circuit
breaker must have a minimum ampere interrupting capacity of 14,000
symmetrical RMS amps.
Motor Starters. Motor starters shall be standard NEMA size, FVNR with a three
(3) line bimetal ambient compensated overload relay and heater element. The
motor starter shall have a horsepower rating not less than the rated motor
horsepower.
Control Transformers. A 480/120 (not required with a 240 volt system) volt
control transformer shall be provided with sufficient capacity to power the motor
starter's holding coils, run lights, elapsed time meters and level controls. A 120
volt/24 volt transformer shall be provided to power level floats and twenty -four
(24) volt relays.
5:\2004 -311 MAINSTREET- WWTP'Admin \Specs \11390- I.stddoc Std- 8i27/97 11390 - 5 Package Wastewater Treatment Plant
H -O -A Selector Switches. An H -O -A selector switch shall be provided for each
pump. The H -O -A selector switches shall be heavy -duty type rated as a NEMA-
4X oil tight switch with ten (10) amp contacts.
Elapsed Time Meter. Elapsed time meters shall be provided to record the running
time of each pump. The meters shall be the non- reset, 120 VAC digital type with
a minimum range of 9,999.9 hours.
Pilot Lights. The motor controller shall incorporate neon level indicating and
running pilot lights for each pump. The lights shall have an interchangeable
shatter resisting lens. Motor running indicator lights shall have green lens and
level indicator lights shall have amber lens. LED's will not be acceptable.
Space Heater. One (1) 120 VAC, fifty (50) watt space heater shall be installed in
the bottom of the motor controller. The heater shall have a rust resisting iron
sheath and slots in each mounting tab to accommodate secondary insulation
bushing for mounting.
A thermostatic control shall be installed in the top of the motor controller for
controlling the space heater temperature. The thermostat shall have an adjustable
operating range of thirty -five (35) degrees F to ninety (90) degrees F and shall
also have SPST; snap- acting contacts rated twenty -five (25) amps at 120 VAC.
Phase Monitor. A phase monitor shall be provided to protect against, single
phasing, under voltage and phase reversal. The monitor shall have an adjustable
operating range and a response time of two (2) seconds. The contact arrangement
shall be DPDT with a minimum contact rating of three (3) amps at 600 VAC
resistive.
Lightning Arrestor /Surge Suppressor. A three (3) phase, three (3) poles, 0 -900
volt lightning arrestor shall be connected to each phase of the incoming service.
The arrestor shall be designed to limit the magnitude of the voltage impressed on
the motor windings in the event that the system is subjected to lightning -surge
voltages. Shall have a response time of five (5) nanoseconds and withstanding a
surge of 6,500 amperes.
Panel Markings. All component parts in the control panel shall be permanently
marked and identified. Marking shall be on the back plate adjacent to the
component. All control conductors shall be identified with wire markers as close
as practical to each end of conductors.
K. AREA LIGHTING: A minimum of three (3) area lights shall be mounted above
the walkway. They are to be 150 -watt high - pressure sodium fixture mounted 10
feet above grade with manual and photocell control. (Power and control shall be
included with the electrical identified in J- above)
S:\ 2004\51204-311 MAINSTREET- WWTPAAdmin\ Specs 11390- 1 std doc Std. - 827,97 11390 - 6 Package Wastewater Treatment Plant
L. PAINTING /CORROSION PROTECTION: Fabricated steel items not galvanized
or plated will be finish painted. All tankage to be coated with coal tar based
polyurethane paint specifically designed for sewage treatment plant service,
"moisture cure" type as manufactured by Sherwin- Williams, or equal.
Application will be to a minimum thickness of 14 mil over near white (SSPC SP-
10) blast on steal or to manufacturers' recommendations if greater.
All steel items not welded to the tank shall be hot dip galvanized or stainless steel.
END OF SECTION
S:` 2004` 51204 -311 MAINSTREET- WWTP \Admin' Specs\ 11390- I.stddocStd.-8/27 Package Wastewater Treatment Plant
•
SECTION 13430
DUPLEX FLOAT CONTROL PANEL
PART 1 GENERAL
1.01 SUMMARY
Requirements for furnishing and installing duplex float control panel as indicated on the
drawings.
All of the equipment called for under this section to be supplied by the pump
manufacturer.
1.02 MEASUREMENT AND PAYMENT
Unless otherwise specified, no direct measurement or payment will be made for duplex
control panel, the cost thereof being included in the bid price for the appropriate bid item
listed in the proposal.
PART 2 PRODUCTS
2.01 MATERIALS AND /OR EQUIPMENT
A. Control Panel - Float Type
1. Design. Pump manufacturer's duplex float control and alarm system
designed to function with pumping units, factory wire and tested.
Controls to automatically start and stop pumping units and permit manual
operation at the panel. The control panel is to be UL listed, manufactured
in a UL approved facility. The control panel shall be wired for a single
point connection for the electrical contractor.
2. Sequencing. The control function provides for the operation of the lead
pump under normal conditions. If the incoming flow exceeds the pumping
capacity of the lead pump, the lag pump will automatically start to handle
this increased flow. As the flow decreases, pumps will be cut off at
elevations as determined on the drawings. Lead pump will be alternated
after each cycle. In the event of a high level condition, an alarm light will
be excited to indicate an alarm condition.
Should the pump OFF regulator fail, the system will operate with a
differential between the lead pump ON and the lag pump ON levels.
S:'2004 MAINSTREET- WWTP `,Admin Specs \13430- I .std .doc 13430 -1 Duplex Float Control Panel
Std. - 827,97
All control voltage to the liquid level sensors shall be a maximum of
twenty -four (24) volts and shall power twenty -four (24) volt plug -in style
relays to enable alarm and motor starter coils to operate at one hundred
and twenty (120) volts.
In the event of phase reversal, loss of phase or low voltage of any phase,
control voltage will be interrupted through the phase monitor. The phase
monitor will automatically reset upon removal of any and all of the above
conditions.
3. The control panel shall be NEMA -3R GASKETED STAINLESS STEEL
enclosure with dripshield, with a polished aluminum hinged deadfront
door on a continuous piano hinge and removable subpanel.
The control enclosure's outer door will be held closed and sealed by a
single handle operated three point latching system with a padlock hasp.
There will be no need for exterior clips requiring a screwdriver or wrench
to seal the door.
4. The inner aluminum door, mounted on continuous hinge, will be furnished
for protection against exposed wiring and will have cutouts for access to
the circuit breakers. Mounted on the inner door will be pump run lights,
level indication lights, hand off automatic switches and a twenty (20)
ampere duplex receptacle.
A laminated schematic sheet will be permanently affixed to the interior of
the enclosure door. A final record drawing encapsulated in mylar shall be
attached to the inside of the front door.
B. Motor Circuit Breaker. A thermal magnetic molded case heavy -duty type circuit
breaker shall be supplied as branch circuit protection for each pump motor. The
circuit breaker must have a minimum ampere interrupting capacity of 14,000
symmetrical RMS amps.
C. Motor Starters. Motor starters shall be standard NEMA size, FVNR with a three
(3) line bimetal ambient compensated overload relay and heater element. The
motor starter shall have a horsepower rating not less than the rated motor
horsepower.
D. Control Transformers. A 480/120 (not required with a 240 volt system) volt
control transformer shall be provided with sufficient capacity to power the motor
starter's holding coils, run lights, elapsed time meters and level controls. A 120
volt/24 volt transformer shall be provided to power level floats and twenty -four
(24) volt relays.
S:,2004.S1204 -311 MAINSTREET- WWTPAdminSpcs' 13430- 1.stddoc 13430 -2 Duplex Float Control Panel
Std-8 27,97
E. H -O -A Selector Switches. An H -O -A selector switch shall be provided for each
pump. The H -O -A selector switches shall be heavy -duty type rated as a NEMA-
4X oil tight switch with ten (10) amp contacts.
F. Elapsed Time Meter. Elapsed time meters shall be provided to record the running
time of each pump. The meters shall be the non - reset, 120 VAC digital type with
a minimum range of 9,999.9 hours.
G. Pilot Lights. The motor controller shall incorporate neon level indicating and
running pilot lights for each pump. The lights shall have an interchangeable
shatter resisting lens. Motor running indicator lights shall have green lens and
level indicator lights shall have amber lens. LED's will not be acceptable.
H. Space Heater. One (1) 120 VAC, fifty (50) watt space heater shall be installed in
the bottom of the motor controller. The heater shall have a rust resisting iron
sheath and slots in each mounting tab to accommodate secondary insulation
bushing for mounting.
A thermostatic control shall be installed in the top of the motor controller for
controlling the space heater temperature. The thermostat shall have an adjustable
operating range of thirty -five (35) degrees F to ninety (90) degrees F and shall
also have SPST; snap- acting contacts rated twenty -five (25) amps at 120 VAC.
I. Phase Monitor. A phase monitor shall be provided to protect against, single
phasing, under voltage and phase reversal. The monitor shall have an adjustable
operating range and a response time of two (2) seconds. The contact arrangement
shall be DPDT with a minimum contact rating of three (3) amps at 600 VAC
resistive.
J. Lead /Lag Pump Alternator. The level control circuit shall include a duplex pump
alternator. The alternators shall be the solid -state plug -in type with a five (5)
amp; 120 volt output rating and pump sequence indicator lamps. An
alternator /test /off switch shall be provided, for alternator test and bypass function.
K. Lightning Arrestor /Surge Suppressor. A three (3) phase, three (3) poles, 0 -900
volt lightning arrestor shall be connected to each phase of the incoming service.
The arrestor shall be designed to limit the magnitude of the voltage impressed on
the motor windings in the event that the system is subjected to lightning -surge
voltages. Shall have a response time of five (5) nanoseconds and withstanding a
surge of 6,500 amperes.
L. High Level Alarm Light. A high -level alarm light shall be mounted on the top of
the enclosure as shown on the drawing. The lamp shall be complete with a 120
VAC, 100 -watt incandescent bulb and red lexan shatterproof globe.
S:'2004 -311 MAINSTREET- WW1 P\Admin 1.sud.doc 13430 -3 Duplex Float Control Panel
Std. - 8/27/97
M. Panel Markings. All component parts in the control panel shall be permanently
marked and identified as they are indicated on the drawing. Marking shall be on
the back plate adjacent to the component. All control conductors shall be
identified with wire markers as close as practical to each end of conductors.
N. Motor Protection
1. Winding Temperature. The motor shall contain winding thermal sensors.
In the event of an overtemp condition, the motor will be shut down until
it's sufficiently cock to automatically reset.
2. Moisture Probes. Manufacturers requiring moisture detection devices for
warranty shall supply a lockout device with manual reset in the control
panel.
O. Level Regulators
1. Sensors. Polypropylene sealed mercury float switches. Provide one (1)
sensor for each control level. Sensors to be of the enclosed weight type
and set in accordance with contract drawings.
2. Cable. Heavy neoprene jacketed cable. Furnished in one (1) continuous
length from sensor to Control Panel.
3. Cable Sensor. A stainless steel cable holder with not less than six (6)
hooks shall be used.
PART 3 EXECUTION
3.01 FIELD QUALITY CONTROL
A factory trained service representative shall check panel for correct connections, check
rotation, voltage, amperage and operate pumps through a complete cycle. High -level
alarm and alternator shall be demonstrated. Operating instructions shall be given as
required. Record drawings and operation and maintenance manuals will be presented at
time of start up.
END OF SECTION
5'2004`51204 -311 MAINSTREET- WWTP'Admin\Specs 13430-1 std 13430 -4 Duplex Float Control Panel
Std. -/2797
05- JO
4 )4A4
Drainage Report
for
Meadowcreek Subdivision — Phase 1
Brazos County, Texas
January 2005
Developer:
Main Street Homes — CS, Ltd.
900 Congress Avenue, Suite L -100
Austin, Texas 78701
(512) 801 -8832
Prepared By:
TEXCON General Contractors
1707 Graham Road
College Station, Texas 77845
(979) 764 -7743
Addendum
to
Drainage Report
for
Meadowcreek Subdivision — Phase 1
Brazos County, Texas
Report: January 2005
Addendum: August 2005
Developer:
Main Street Homes — CS, Ltd.
900 Congress Avenue, Suite L -100
Austin, Texas 78701
(512) 801 -8832 .01 .. °.. ?ctit)
oir
* �
0 JOSEPH P .�� . . �
5
eo
t 65 � • <v/
Prepared By: `�S' . _ �.o s
TEXCON General Contractors �I �'®
1707 Graham Road 2 °
College Station, Texas 77845
(979) 764 -7743
ADDENDUM TO DRAINAGE REPORT
MEADOWCREEK SUBDIVISION - PHASE 1
SUMMARY
The openings in the outlet structure have been reduced in size to decrease the peak flow from
the detention pond. Although the decreases in peak flow are not significant for the 5 -year to
100 -year stone events, the reduction in the opening size will have more impact on the typical
minor storms that occur frequently. Attached are revised tables and information from the
original Drainage Report (dated January 2005), which show the changes due to this design
revision.
(The following information has been taken from the January 2005 Drainage Report. Changes made
are shown in bold italics).
DETENTION FACILITY DESIGN
Although a storm water detention facility is not required by Brazos County regulations, a
detention pond will be constructed to control the peak discharge from this development such
that it is less than or equal to the pre- development peak discharge.
A comparison of the pre- & post- development peak discharge values for the existing drainage
channel at the southeast property line shows an increase in the runoff for the 100 -year stone
event. Table 5 shows the increases in runoff for the other storm events if there was not a
detention pond to control the runoff. Because of this increased runoff, a detention pond is
proposed, which will reduce the peak runoff to less than or equal to the pre - development
runoff, as the "Post- Development with Pond" data in Table 5 shows.
TABLE 5 — Pre- & Post - Development Peak Discharge Comparison — Detention Pond Design
0 Q70 Q25 Q50 Q100
(cfs) (cfs) (cfs) (cfs) (cfs)
Pre- Development 158 208 287 348 414
Post - Development without Pond 178 231 315 378 447
Post - Development out of Pond 143 196 273 331 394
Decrease in Peak Discharge 15 12 14 17 20
The area - capacity data and the depth- discharge data are provided in Appendix D. The
detention pond grading plan is shown in the construction drawings.
The pond outlet structure is a concrete channel which is 10' wide and has a control structure
which has 2 openings which are 2' in width and 2' high with a flowline elevation of 293.0. The
control structure also has a top crest elevation of 296.5, which allows additional weir flow over
the control structure. Also, there is an overflow spillway with a crest elevation of 297.5. This
spillway channel has a bottom width of 20', 3H:1 V side slopes and is lined with rock riprap to
prevent erosion of the channel. The top of the pond berm is at Elevation 299.5. The proposed
grading of the pond and the outlet and spillway details are shown on Exhibit E. The outlet
structure channel will have dissipater blocks to reduce the velocity of the discharge and rock
riprap will be used to prevent erosion.
1
The peak flow out of the detention facility was determined by the HEC -1 program using the
depth discharge data for the pond outlet structure as provided in Appendix D. As shown in
Table 5, the peak outflow from the detention facility is less than the allowable peak outflow for
the design storm event. Additionally, Table 6 presents the maximum water surface in the pond
for each storm event, as well as the amount of freeboard provided.
A schematic of the graphical HEC -1 computer model, the runoff summary, and the HEC -1
output for the pre - development condition are provided in Appendix E. The pre - development
flows in Table 5 are from this HEC -1 output.
The post - development HEC -1 schematic, the runoff summary, and the HEC -1 output are
provided in Appendix F...
TABLE 6 — Summary of Maximum Pond Water Levels
Storm Event Water Surface Freeboard,
Elevation, ft. ft.
5 -year 297.9 1.6
10 -year 298.3 1.2
25 -year 298.7 0.8
50 -year 299.1 0.4
100 -year 299.3 0.2
Note: Detention Pond Top of Berm Elevation = 299.5
f
Meadowcreek Subdivision - Phase 1
(Revised per Addendum, August 2005)
Detention Pond No. 1 Area - Capacity Data
V = 1i* ([A1 +A2 + (A1 *A2) / 3)
V = volume, ft
A = area, ft
H = difference in elevation, ft
POND NO. 1
Area - Capacity Data
Elevation Depth Area Area Volume Cumulative
(ft) (ft) (ft) (acres) (ac -ft) (ac -ft)
293.00 0.00 0 0.000 0.000 0.000
294.00 1.00 9,431 0.217 0.072 0.072
295.00 2.00 34,155 0.784 0.471 0.543
---._------------ - - - - --
- - - -- - - - -- - - --
296.00 3.00 51,597 1.184 0.977 1.520
297.00 4.00 72,100 1.655 1.413 2.934
298.00 5.00 132,853 3.050 2.317 5.251
299.00 6.00 235,184 5.399 4.169 9.420
299.50 6.50 260,100 5.971 2.841 - 12.261
Detention Pond No. 1 Elevation Discharge Data
POND NO. 1
Elevation Discharge Data
2 -2.0' wide x 2- high openings 10' wide Overflow Spillway Total
Elevation L A sf crest =296.5 20" BW, 3H:1V side slopes Elevation
Discharge
Weir Orifice Weir crest = 297.5, n=0.030
(ft) y, depth (ft) Q, cfs h, depth (ft) Q, cfs y, depth (ft) Q, cfs y, depth (ft) Q, cfs Q, cfs (ft)
293.0 0.0 0.0 0.0 0.0 -- -- -- -- 0.0 293.0
294.0 1.0 12.0 12.0 294.0
-- - --
--- -- - -- - --
-
295.0 __ 2.0 _ 34.0 -- -- - -- -- 34.0 295.
- - --
296.0 -- _ -- 2.0 55.0 -- -- -- -- 55.0 296.0
- -- 3.0 67 0. .
297.0 -- -- 0.5 10.6 -- -- 77.0
-- 4.0 7 7.0 1 55.1 0.5 18.0 150.0 298.0
298.0 -- - - -- - - - -- -- _
-- 5.0 86.0 2.5 118.6 1.5 113.2 318.0 299.0
299.0 -- __- -- - - -- - --
299.5 -- -- 5.5 - 90.4 3.0 155.9 2.0 - 186.0 432.0 299.5
1. Weir Equation Q = 3.0 * L* y 312
2. Orifice Equation Q = 4.82 * A * h 112
3. Overflow Spillway - Mannings Equation
CERTIFICATION
1, Joseph P. Schultz, Licensed Professional Engineer No. 65889, State of Texas, certify that this
report for the drainage design for the Meadowcreek Subdivision — Phase 1, was prepared by
me in accordance with the provisions of the Subdivision and Development Regulations of
Brazos County.
r �a t
s * • •. *
0 JOSEPH P. SCHULTZ j
Josil P. hultz, P.E.
� o
••,C. 65889 0. 44,
`® /nh'
I
TABLE OF CONTENTS
DRAINAGE REPORT
MEADOWCREEK SUBDIVISION - PHASE 1
CERTIFICATION 1
TABLE OF CONTENTS 2
LIST OF TABLES 3
INTRODUCTION 4
GENERAL LOCATION AND DESCRIPTION 4
FLOOD HAZARD INFORMATION 4
DEVELOPMENT DRAINAGE PATTERNS 4
DRAINAGE DESIGN CRITERIA 4
STORM WATER RUNOFF DETERMINATION 5
DETENTION FACILITY DESIGN 7
STORM SEWER DESIGN 8
CHANNEL DESIGN 9
CONCLUSIONS 9
APPENDIX A 10
Storm Sewer Inlet Design Data:
Calculations, Gutter Depth, Time of Concentration Data
APPENDIX B 21
Storm Sewer Pipe Design Data:
Drainage System Diagram, Drainage Area Data, Manning's & Culvert Calculator Data, Time of Concentration Data
APPENDIX C 56
Drainage Channel Design Data:
Calculation Summary, Channel Calculator Data
APPENDIX D 66
Detention Pond Design Data & Calculations:
Area- Capacity Data, SCS Curve Number Data, Time of Concentration Calculations
APPENDIX E 76
Detention Pond Pre - Development HEC -1 Output, Runoff Summary & Schematic
APPENDIX F 85
Detention Pond Post - Development HEC -1 Output, Runoff Summary & Schematic
EXHIBIT A 98
Drainage Area Map — Post - Development, Inlet Design
EXHIBIT B 100
Drainage Area Map — Post - Development, Pipe & Channel Design
EXHIBIT C 102
Drainage Area Map — Pre - Development, Pond Design
EXHIBIT D 104
Drainage Area Map — Post - Development, Pond Design
EXHIBIT E 104
Detention Pond Plan and Details
LIST OF TABLES
TABLE 1 — Rainfall Intensity Calculations 5
TABLE 2 — Time of Concentration (t Equations 6
TABLE 3 — Pre- & Post - Development Runoff Information — Detention Evaluation 6
TABLE 4 — Post - Development Runoff Information — Storm Sewer Design 6
TABLE 5 — Pre- & Post - Development Peak Discharge Comparison — Detention Pond Design 7
TABLE 6 — Summary of Maximum Pond Water Levels 8
DRAINAGE REPORT
MEADOWCREEK SUBDIVISION - PHASE 1
INTRODUCTION
The purpose of this report is to provide the hydrological effects of the construction of the
Meadowcreek Subdivision — Phase 1, and to verify that the proposed storm drainage system
meets the requirements set forth by the Subdivision and Development Regulations of Brazos
County. Since this subdivision has curb and gutter streets, as typically found in urban
residential developments, the streets and drainage structures have also been designed to meet
City of College Station Drainage Policy and Design Standards.
GENERAL LOCATION AND DESCRIPTION
The project is located on a portion of a 75 acre tract located west of FM 2154 along the south
side of Koppe Bridge Road approximately 1 mile from Wellborn, Texas. The site is
predominantly wooded. The existing ground elevations range from elevation 292 to elevation
327. The general location of the project site is shown on the vicinity map in Exhibit C.
FLOOD HAZARD INFORMATION
The project site is located in the Peach Creek Drainage Basin. This entire site is located in a
Zone X Area according to the Flood Insurance Rate Map prepared by the Federal Emergency
Management Agency (FEMA) for Brazos County, Texas and incorporated areas dated July 2,
1992, panel number 48041CO200-C. Zone X Areas are determined to be outside of the 500 -
year floodplain.
DEVELOPMENT DRAINAGE PATTERNS
Prior to development, the storm water runoff from this site flows in a southeasterly direction
and leaves the site in an existing drainage channel. Ultimately, this runoff flows into a tributary
of Peach Creek and then into Peach Creek. Runoff from the adjacent properties to the
northeast, northwest and southwest also enters this site. This runoff is accounted for in the
design of the drainage structures for this project. After development, the runoff will be
discharged at the same location as before the development.
DRAINAGE DESIGN CRITERIA
The design parameters for the storm sewer and detention facility analysis are as follows:
• The Rational Method is utilized to determine peak storm water runoff rates for the storm
sewer inlet, pipe and drainage channel design, and the HEC -1 computer program is utilized
to determine peak storm water runoff rates for the detention facility design.
• Design Storm Frequency
Storm sewer system 10, 25 and 100 -year storm events
Channel Design 25 and 100 -year storm events
Detention facility analysis 5, 10, 25, 50 and 100 -year storm events
4
• Runoff Coefficients
Pre - development C = 0.30
Post - development (single family residential) C = 0.55
• Runoff Curve Number (CN) Detention Pond
The Brazos County Soil Survey shows the soils in the area to be classified as hydrologic
Group C & D soils. The pre - development CN is based on no development on the site.
The post- development CN is based on development of Phase l of the subdivision within
the detention pond drainage area. The CN calculations are found in Appendix D.
• Rainfall Intensity equations and values for Brazos County can be found in Table 1.
• Time of Concentration, t, — Calculations are based on the method found in the TR -55
publication. Refer to Table 2 for the equations and Appendices for calculations. The
runoff flow paths used for calculating the pre- & post - development times of concentration
for the detention pond analysis are shown on Exhibits C & D, and the flow path used for the
post - development time of concentration for the storm sewer design is found on Exhibit A,
and on Exhibit B for the channel design. For smaller drainage areas, a minimum t, of 10
minutes is used to determine the rainfall intensity values.
STORM WATER RUNOFF DETERMINATION
The peak runoff values were determined in accordance with the criteria presented in the
previous section for the 5, 10, 25, 50, and 100 -year storm events. The drainage areas for the
pre- & post- development conditions for the detention pond analysis are shown on Exhibits C &
D. The drainage areas for the post - development conditions for the storm sewer design are
shown on Exhibit A and on Exhibit B for the channel design. Pre- development and post -
development runoff information for the detention facility evaluation is summarized in Table 3.
Post - development runoff conditions for the storm sewer design are summarized in Table 4.
TABLE 1 — Rainfall Intensity Calculations
Rainfall Intensity Values (in /hr)
Storm t = I = b / (tc +d)
Event 10 min I = Rainfall Intensity (in /hr)
15 7.693
1 8.635 = U(V'60)
125 9.861 t = Time of concentration (min)
1 11.148 L = Length (ft)
1100 11.639 V = Velocity (ft/sec)
Brazos County:
5 year storm 10 year storm 25 year storm 50 year storm 100 year storm
b= 76 b= 80 b= 89 b= 98 b= 96
d = 8.5 d = 8.5 d = 8.5 d = 8.5 d = 8.0
e = 0.785 e = 0.763 e = 0.754 e = 0.745 e = 0.730
(Data taken from State Department of Highways and Public Transportation Hydraulic Manual, page 2 - 16)
TABLE 2 - Time of Concentration (t Equations
The lime of concentration was determined using methods found in TR -55, "Urban
Hydrology for Small Watersheds." The equations are as follows:
Time of Concentration: Tc = T, (shef „ 1 o „ )+ T,(concentrated sheet flow)
where: T, = Travel Time, minutes
For Sheet Flow: T, = 0.007 (n L) 8
(30 s °.4 where: T, = travel time, hours
n = Manning's roughness coefficient
L = flow length, feet
Pz = 2 -year, 24 -hour rainfall = 4.5"
s = land slope, ft/ft
For Shallow Concentrated Flow: T, = L / (60 *V)
where: T, = travel time, minutes
V = Velocity, fps (See Fig 3 -1, App. E)
L = flow length, feet
Refer to Appendices for calculations.
TABLE 3 - Pre- & Post - Development Runoff Information - Detention Evaluation
Area tc
Area # CN
(acres) (min) (hrs)
Pre 101 188.48 69.7 83.1 49.9
Post 301 188.48 71.7 80.5 48.3
TABLE 4 - Post - Development Runoff Information - Storm Sewer Design
Area # Area C
(Gutter (acres)
Location) A Total C' Cx CTCUI
� x
201 1.02 8.52 9.54 0.55 0.30 0.33
202A 1.10 2.29 3.39 0.55 0.30 0.38
202B 1.32 0.24 1.56 0.55 0.30 0.51
202 (C2) 1.10 2.20 3.30 0.55 0.30 0.38
202 (C3) 1.08 0.00 1.08 0.55 0.30 0.55
203 1.00 4.33 5.33 0.55 0.30 0.35
204 (C4) 0.24 0.24 0.48 0.55 0.30 0.43
205 (C5) 0.41 0.10 0.51 0.55 0.30 0.50
206 (B2) 2.34 0.34 2.68 0.55 0.30 0.52
206 2.34 0.34 2.68 0.55 0.30 0.52
210 (C1) 2.00 0.00 2.00 0.55 0.30 0.55
210 2.41 0.10 2.51 0.55 0 -30 0.54
211 0.09 0.00 0.09 0.55 0.30 0.55
212 0.09 0.00 0.09 0.55 0.30 0.55
214 (A2) 0.57 0.00 0.57 0.55 0.30 0.55
215 (A4) 0.07 0.00 0.07 0.55 0.30 0.55
216 (B1) 1.34 0.00 1.34 0.55 0.30 0.55
216 1.34 0.00 1.34 0.55 0.30 0.55
217 017 0.00 0.17 0.55 0.30 0.55
218 0.13 0.00 0.13 0.55 0.30 0.55
220 (A1) 0.66 0.62 1.28 0.55 0.30 0.43
220 2.07 0.00 2.07 0.55 0.30 0.55
221 (A3) 0.25 0.00 0.25 0.55 0.30 0.55
221 0.32 0.00 0.32 0.55 0.30 0 55
222A 2.97 0.00 2.97 0.55 0.30 0.55
222B 0.00 4.86 4.86 0.55 0 30 0.30
223 0.23 8.66 8.89 0.55 0.30 0.31
(i
DETENTION FACILITY DESIGN
Although a storm water detention facility is not required by Brazos County regulations, a
detention pond will be constructed to control the peak discharge from this development such
that it is less than or equal to the pre - development peak discharge.
A comparison of the pre- & post - development peak discharge values for the existing drainage
channel at the southeast property line shows an increase in the runoff for the 100 -year storm
event. Table 5 shows the increases in runoff for the other storm events if there was not a
detention pond to control the runoff. Because of this increased runoff, a detention pond is
proposed, which will reduce the peak runoff to less than or equal to the pre- development
runoff, as the "Post- Development with Pond" data in Table 5 shows.
TABLE 5 — Pre- & Post - Development Peak Discharge Comparison — Detention Pond Design
Q5 Q10 Q25 Q50 0 100
(cfs) (cfs) (cfs) (cfs) (cfs)
Pre - Development 158 208 287 348 414
Post - Development without Pond 178 231 315 378 447
Post - Development out of Pond 154 202 278 336 400
Decrease in Peak Discharge 4 6 9 12 14
The area - capacity data and the depth - discharge data are provided in Appendix D. The
detention pond grading plan is shown in the construction drawings.
The pond outlet structure is a concrete channel which is 10' wide and has a control structure
which has 2 openings which are 4.5' in width and 2' high with a flowline elevation of 293.0.
The control structure also has a top crest elevation of 296.5, which allows additional weir flow
over the control structure. Also, there is an overflow spillway with a crest elevation of 297.5.
This spillway channel has a bottom width of 20', 3H:1 V side slopes and is lined with rock
riprap to prevent erosion of the channel. The top of the pond berm is at Elevation 299.5. The
proposed grading of the pond and the outlet and spillway details are shown on Exhibit E. The
outlet structure channel will have dissipater blocks to reduce the velocity of the discharge and
rock riprap will be used to prevent erosion.
The peak flow out of the detention facility was determined by the HEC -1 program using the
depth discharge data for the pond outlet structure as provided in Appendix D. As shown in
Table 5, the peak outflow from the detention facility is less than the allowable peak outflow for
the design storm event. Additionally, Table 6 presents the maximum water surface in the pond
for each storm event, as well as the amount of freeboard provided.
A schematic of the graphical HEC -1 computer model, the runoff summary, and the HEC -1
output for the pre- development condition are provided in Appendix E. The pre - development
flows in Table 5 are from this HEC -1 output.
The post - development HEC -1 schematic, the runoff summary, and the HEC -1 output are
provided in Appendix F.
TABLE 6 — Summary of Maximum Pond Water Levels
Water Surface Freeboard,
Storm Event Elevation, ft. ft.
5 -year 296.8 2.7
10 -year 297.5 2.0
25 ear 298.2 1.3
50 -year 298.5 1.0
100 -year 298.9 - 0.6
Note: Detention Pond Top of Berm Elevation = 299.5
STORM SEWER DESIGN
The storm sewer piping for this project has been selected to be Reinforced Concrete Pipe
(RCP) meeting the requirements of ASTM C -76, Class III pipe meeting the requirements of
ASTM C -789. The curb inlets and junction boxes will be cast -in -place concrete.
Appendix A presents a summary of the storm sewer inlet design parameters and calculations.
The inlets were designed based on a 10 -year design storm. As per College Station guidelines,
the capacities of inlets in sump were reduced by 10% to allow for clogging.
Inlets for the residential streets were located to maintain a gutter flow depth of 5" or less. This
design depth will prevent the spread of water from reaching the crown of the road for the 10-
year storm event. Refer to Appendix A for a summary of the gutter flow depths. The runoff
intercepted by the proposed storm sewer inlets was calculated using the following equations.
The depth of flow in the gutter was determined by using the Straight Crown Flow equation.
The flows intercepted by Inlets 3, 4 & 8 were calculated by using the Capacity of Inlets On
Grade equation. These equations and resulting data are summarized in Appendix A. The
capacities for the inlets in sump (Inlets 1, 2 6 & 7) were calculated using the Inlets in Sumps,
Weir Flow equation with a maximum allowable depth of 7" (5" gutter flow plus 2" gutter
depression). These equations and the resulting data are also summarized in Appendix A. The
area between the right -of -way and the curb line of the streets will be graded as necessary to
provide a minimum of 6" of freeboard above the curb line. This will ensure that the runoff
from the 100 -year storm event will remain within the street right -of -way.
Appendix B presents a summary of the storm sewer pipe design parameters and calculations.
All pipes are 18" in diameter or larger. The pipes for the storm sewer system were designed
based on the 10 -year storm event, and they will also pass the 100 -year storm event. Based on
the depth of flow in the street determined for the 100 -year storm event, this runoff will be
contained within the street right -of -way until it enters the storm sewer system. As required by
College Station, the velocity of flow in the storm sewer pipe system is not lower than 2.5 feet
per second, and it does not exceed 15 feet per second. As the data shows, even during low flow
conditions, the velocity in the pipes will exceed 2.5 feet per second and prevent sediment build-
up in the pipes. The maximum flow in the storm sewer pipe system will occur in Pipe No. 7.
The maximum velocity for the pipe system in this development will be 8.88 feet per second and
will occur in Pipe No. 6. Appendix B contains a summary of the pipe calculations as well as
flow diagrams mapping the flows through the storm sewer system for the 10 and 100 -year
events. All of the store sewer pipes were also evaluated as culverts for the 25- and 100 -year
storm events. This data is also provided in Appendix B.
CHANNEL DESIGN
There are seven channels conveying runoff for this phase of development. A summary of the
design characteristics of these channels is as follows:
Channel No. Bottom Width Bottom Material Side Slopes Channel Slope
1 10' grass 411:1V 0.6%
2 10' grass 6H:1V 1.0%
3 4' grass 4H:1V 2.0%
4 "V" bottom concrete 4H:1V 0.8%
5 4' grass 4H:1V 1.91%
6 "V" bottom concrete 4H:1V 0.5%
7 4' grass 4H:1V 2.0%
Refer to Appendix C summary tables for velocities and depths for the 10- and 100 -year storm
events.
CONCLUSIONS
The construction of this project will increase the storm water runoff from this site. The
proposed storm sewer system should adequately control the runoff and release it into existing
drainages or into the detention pond. The detention facility should adequately control the peak
post - development runoff so that it will not have any impact on the properties downstream, and
there should be no flood damage to downstream or adjacent landowners resulting from this
development.
0
APPENDIX A
Storm Sewer Inlet Design Data:
Calculations, Gutter Depth, Time of Concentration Data
oz
_
N O
O m n m
2 o o' v - i ry
d •. 2- n n n
_ D; .S 1'
O
5
s I I
E
o o o = n to n to
Y Si o, N a
o
I �xn z
— o 0 0 0
T
O ' X '
• N'N m
W N, ' . f N,n co'm N
Q
E
`o n'0
• .. p, n o V'.N 2 . 8 O
a _. N _ m
V i
8 � �
a E .,gym
3 g
O :::: ' ::': ::
_ mn K v .. LL A g C I
- Q b o E
a o 0
o kr o' 2 2 2 ' mn E S T �
o tL n
O J O J• L O y C to o ^ b
x O C I I z "0 p O
S ii g', m • fir ^ ' O d O J LL O T
T. N
U tC m e— h m N £ U N II II II E
- o b E �JO a E
i4
O N
1 C H ° °
I
Cr
G T .L_' 2 : 2 Al m N m
1 d N
u — O O O
E a E t
CY a o 0 0 ° o
E
u h °
E — 000 1� -o- _'n
`0 3
m '61 m
u s • a d _ m n a_ d m n
x
as _
d u 44 ' E
0
F '^ 8° °o 8 8 3 in
m m m - 8 0 0 0 0 0. O .
4 _
C
E. .~
O a
t .. „ N
&-...
Z
0 o - d m 'n v a
o d
U -t O U d m ,
..-g, d o d .00...0. N C V IIO C
c o,„ C >O 2
a II O = ti a`
d N 0,
m r 2 a 3 a D
b o 0 0 0 0- o N o ._ m Q u= m S
D
a E a n E a U N N e a d J _ p u • C C Q re
3
O b 3 d f C m d f r t� '2' ry ry O ry°_ O = G d'
. LL Q ` ry N O LL a c, n ' LL N O (n Io b T d ro N 1- T !UI C
O
n o __ • 0
w L u
u °I = cc) O c v ) s 0 0 0 T 1
o Z
,O J
_ -r .
1
1
U
ID
cn
0 r` to o . to 0) a0 :! 6)
E ° w M 6) 6) co o to , M V co d to 0 to v CO 0
CO r)
Q V O. •- Nf�INNl0 I00 C0 '.� O w N O
u O 0 O) 00 O cp _ O
to 1 0 11 11 11
0 8L o ' c°1rnI � r) CD COI m J .1
c r �'�''00' 0 o to a o .,- ,_ 0 •- 11 II 11
• 1 • r J
E v o t W tO.N'. M �a) NI IV I(O � 11N
O ( v to co 6) N I10
co (6 .-,,- I-:• .N to l
to
t_ , I I
co • -C".. 00 ', M '. 10 N 0) I c0 1 00 00 1 0) to
T o.0 (O '1 -. to l co 6) `-, I I "'t `I
c. — -- � • �I 1 I � 1to ID • co I II �'�Io I� E
to E 4, y N CO N N C) N 1 r N I I I V O to to
.� tO co to h co N V N I 1 co
o 0 I� t0 , � �1 rt.: ''� m to
to >rn CO w 0
10
fa O 11 11 11
> C to I N C 00 CO 1 (0 0) (0 to
T w .0 0) (O 7 0 (0 , ' 1 r r (0 (0 6
. ' 1(O I) ' O O
(� ..... rn1aotornito�a ,- I aomNao
N - to 6) ' n I (O 1 1 6) N- 1, 6) O) 6) ! 6)
E ., ---• V M N N
'tn IO) ltnitn' CO, 00 1 0O
O d V to 1 � '. co to id l.- 6) M'M -4- I.-
o '. tfi l. 1 tri ',6i ' , IO'(O V
to , i
a) V in':M OoIto tolto -
>. o.0 n M' 00 �' 6)'� tO 1M' M MIM E
0 S C —. CO to 0, 6) N' N ;(O I CO I I(O
r
. tri , cc) l (O l (a' ri l ao 1 co 1 ao' co 1 (xi oo c E
1
1 0 0
E 7-) to 1` ' ao V aO 1 N N I N i N- I t>D to E°_ u) V
,_ w N- to 7 0) t` .- r M (O 6) O '` In • 0 C7 ° tn, .. - , - !a ao ,- Io rij (1.) m to ti
n. 0 > CO CO O
` C
10 i NIMI0)I to !6) i ,- toIM',M co O co 11 11 II
0 „, t I co 6) i V .O 0 O
� '(o ' 0o'M:a M'to!(O ''(o ' C0 -o -
10 v!I�uiIn ;CO r�ItrijN-ir 0
• E
C r O 6)!NI ,- 'I O N , OIO Ito O 1-
.: E N 0' IMM 0) : O 'a II
1 _ y
0o I to IN O I N I to to to l: to co 1to
2 co V ,
to • to to to 1 to to ' to V ! to
o..) O O010 O'O Old
E
O
+' O,O o,o.c) v1 0)
C M M co I co co co I co 1 co co M! M t... O
41 U o 010 O' o m 0 N-
y CO ao 0
CL O 11 II II
O 10 to to to to to to (n to to , to I1 D (1)
— d V to to to in to to to :(n to to '(n
d V 0000' 0 :000000
m 0
N mo
N to _
L (p O 0o co co 0 r 1 V M to
0 ▪ M o d LO M o to O M N N
CL s 1 _ r) — 0 0 N N 0 0 0
• C a
C
O o
.- (J) •y.. 0 o V 0-a O O O 0 N O
•, CO Q N O N ,- M O 0 0 0 M O ^
N O O O o O o O O O O _c
0 " c
-I..l CZ N
CD
• Is
O
(n U c _ +' 0
_ O co .1, v o n 1` V (O to 4)
Y 0) 0 N d M 0 to O M (O N C 45 E Lo
Q R o O Z v
V C v (9 »- . co 0O O
0) o) o 3 m° m O 1 11 11 11
D C 0 c o Uv0 v to 000 N U Q co 0)
a W N N N N N N N N N N N N N LO
( — Q O O L II II 11 II _ m
0 1
g p c N N F- c o Q O_ m
lL
Meadowcreek Subdivision
Phase 1
Depth of Flow in Gutter
(Refer to Exhibit A for Gutter Locations)
10 -year storm 100 -year storm
Gutter A C Slope t h 0 10 Y10-actual 1100 0100 Yfoo
Location Area # (acres) ( ft/ft) (min) (in /hr) (cfs) (ft) (in) (in /hr) (cfs) (ft) (in)
Al 220 1.07 0.40 0.0080 11.5 8.136 3.48 0.303 3.63 10.979 4.70 0.339 4.06
A2 214 0.57 0.55 0.0080 19.7 6.260 1.95 0.244 2.92 8.497 2.65 0.273 3.28
A3 221 0.25 0.55 0.0080 10.0 8.635 1.18 0.202 2.42 11.639 1.59 0.225 2.70
A4 215 0.07 0.55 0.0080 10.0 8.635 0.35 0.129 1.54 11.639 0.48 0.144 1.72
B1 216 1.34 0.55 0.0100 10.0 8.635 6.36 0.364 4.37 11.639 8.58 0.407 4.88
B2 206 2.68 0.52 0.0100 43.1 3.948 5.50 0.345 4.13 5.434 7.57 0.388 4.66
01 210 2.01 0.55 0.0123 11.0 8.295 9.17 0.401 4.82 11.189 12.37 0.449 5.39
C2 202 (C2) 3.30 0.38 0.0080 27.7 5.174 6.49 0.382 4.59 7.1 8.85 0.429 5.15
C3 202(C3)+bypass from C2 1.08 0.55 0.0080 10.0 8.635 5.13 0.350 4.20 11.6 8.60 0.425 5.10
C4 204 0.48 0.42 0.0080 17.9 6.583 1.33 0.211 2.53 8.9 1.80 0.236 2.84
C4 205 0.51 0.50 0.0120 21.2 6.017 1.53 0.206 2.48 8.2 2.08 0.231 2.78
01 217 0.17 0.55 0.0080 10.0 8.635 0.81 0 -175 2.10 11.6 1.09 0.196 2.35
D2 218 0.13 0.55 0.0080 10.0 8.635 0.62 0.158 1.90 11.6 0.83 0.177 2.12
El 211 0.09 0.55 0.0200 10.0 8.635 0.43 0.116 1.39 11.6 0.58 0.130 1.56
E2 212 0.09 0.55 0.0200 10.0 8.635 0.43 0.116 1.39 11.6 0.58 0.130 1.56
Transverse (Crown) slope ( ft/ft)
27' street = 0.0330
Straight Crown Flow (Solved to find actual depth of flow in gutter, y):
Q = 0.56 * (z/n) * S1/2 * yea ' y = {Q / [0.56 * (z/n) ' Sv2) }3fa
n = Roughness Coefficient = 0.018
S = Street/Gutter Slope (ft/ft)
y = Depth of flow at inlet (ft)
z = Reciprocal of crown slope:
27' street = 30
[3
Meadowcreek Subdivision - Phase 1
T Calculations -Post Development
Inlet Design
Drainage Area #202 (C2)
Sheet Flow: n= 0.24 (dense grass)
P= 4.5
L= 254 Elev,= 324 Elev 316.5 Slope= 0.0295
T 0.007(L *n)" ° = 0.362 hours= 21.7 min
(P) 0.5 *(S)0.4
Concentrated Flow 1: V= 2.4 fps (unpaved)
L= 132 Elev,= 316.5 Elev 313.5 Slope= 0.0227
T,= L /(60 *V) = ( 0.9 min
Gutter Flow 1: V= 1.8 fps (paved)
L= 245 Elev,= EIev Slope= 0.0080
T,= L /(60 *V) = f 2.3 min
Gutter Flow 2: V= 2.2 fps (paved)
L= 300 Elev,= EIev Slope= 0.0123
T,= L /(60 *V) = f 2.3 min
Gutter Flow 3: V= 1.95 fps (paved)
L= 59 Elev,= EIev Slope= 0.0090
T,= L /(60 *V) = I 0.5 min
(T 27.7 min 1
Drainage Area #202 (C3)
Gutter Flow 1: V= 1.95 fps (paved)
L= 341 Elev,= EIev Slope= 0.0090
T,= L /(60 *V) = 2.9 min
14-
Gutter Flow 2: V= 1.8 fps (paved)
L= 119 Elev Elev Slope= 0.0080
T L /(60 *V) = I 1.1 min
ITS 4.0 min ,using 10 min
Drainage Area #204 (C4)
Sheet Flow: n= 0.24 (dense grass)
P= 4.5
L= 129 Elev 310 Elev 304.5 Slope= 0.0426
Tt 0.007(L *n)" ° = 0.182 hours= I 10.9 min
(P)0.5 *(S)0.
Sheet Flow: n= 0.15; (short-grass prairie)
P= 4.5
L= 114 EIev1= ,, 31 0 Elev 304.51 Slope= 0.0482
T 0.007(L *n) = 0.108 hours= I 6.5 min I
(MO .5 *(S)
Gutter Flow 1: V= 1.8 fps (paved)
L= 51 Elev 304.5` Elev 302.5 Slope= 0:0080
T L /(60 *V) = I 0.5 min I
IT S = 17.9 min I
Drainage Area #205 (C5)
Sheet Flow: n= 0.24 (dense grass)
P= 4.5
L= 73 Elev 305 Elev 303.7 Slope= 0.0178
T,= 0.007(L *n)" ° = 0.163 hours= I 9.8 min
(P)0.5 *(S)0.
Sheet Flow: n= 0.15 (short -grass prairie)
P= 4.5
IS
L= 127 Elev,= 303.7 EIev 301.5 Slope= 0.0173
T,= 0.007(L *n)" ° = 0.177 hours= 10.6 min
(P)0.5 *(S)0.4
Concentrated Flow 1: V= 1.95 fps (unpaved)
L= 90 Elev,= 301.5 EIev 300.5 Slope= 0.0111
T,= L /(60 *V) = 0.8 min
IT c = 21.2 min I
Drainage Area #206 (B2)
Sheet Flow 1: n= 0.24 (dense grass)
P= 4.5
L= 192 Elev,= 327 EIev 324.7 Slope= 0.0120
Tt= 0.007(L *n)" ° = 0.415 hours= I 24.9 min I
(P)0.5 *(S)0.
Sheet Flow 2: n= 0.15 (short grass prairie)
P= 4.5
L= 108 Elev,= 324.7 EIev 323 Slope= 0.0157
T,= 0.007(L *n) = 0.161 hours= I 9.7 min I
(P) S*
Concentrated Flow 1: V= 3 fps (unpaved)
L= 56 Elev,= 323 EIev 321 Slope= 0.0357
T,= L /(60 *V) = I 0.3 min
Gutter Flow 1: V= 1.8 fps (paved)
L= 200 Elev,= 321 EIev Slope= 0.0080
T,= L /(60 *V) = 1.9 min
Gutter Flow 2: V= 2 fps (paved)
L= 200 Elev,= 0 EIev Slope= 0.0100
T,= L /(60 *V) = 1.7 min
IL
Gutter Flow 3: V= 1.8 fps (paved)
L= 200 Elev 0 EIev Slope= 0.0080
T,= L /(60 *V) = 1.9 min
Gutter Flow 4: V= 2 fps (paved)
L= 320 Elev 0 EIev Slope= 0.0100
T,= L /(60*V) = 2.7 min
ITS 43.1 min 1
Drainage Area #210 (C1)
Gutter Flow 1: V= 1.8 fps (paved)
L= 382 Elev EIev Slope= 0.0080
T,= L /(60 *V) = I 3.5 min
Gutter Flow 2: V= 2.2 fps (paved)
L= 300 Elev 0 EIev Slope= 0,0123
T,= L/(60*V) = I 2.3 min I
Gutter Flow 3: V= 2 fps (paved)
L= 400 Elev 0 EIev Slope= 0.0090
T,= L /(60 *V) = I 3.3 min 1
Gutter Flow 4: V= 1.8 fps (paved)
L= 203 Elev 0 EIev Slope= 0.0080
T,= L /(60 *V) = 1.9 min
IT c = 11.0 min I
Drainage Area #214 (A2)
Sheet Flow: n= 0.15 (dense grass)
P= 4.5
11
L= 257 Elev,= 325.5 EIev 321.4 Slope= 0.0160
T,= 0.007(L *n)" b = 0.321 hours= 19.3 min
(P) 0. 5 *(S)04
Gutter Flow 1: V= 1.8 fps (unpaved)
L= 44 Elev,= EIev Slope= 0.0080
T,= L /(60 *V) = I 0.4 min
ITS 19.7 min '
Drainage Area #215 (A4)
Gutter Flow 1: V= 1.8 fps (unpaved)
L= 69 Elev EIev Slope= 0.0080
Tt L/(60*V) = I 0.6 min
ITc 0.6 min 'using 10 min
Drainage Area #216 (B1)
Gutter Flow 1: V= 1.8 fps (paved)
L= 198 Elev 0 EIev Slope= 0.0080
T,= U(60 *V) = I 1.8 min I
Gutter Flow 2: V= 2 fps (paved)
L= 200 Elev,= 0 EIev Slope= 0.0100
T,= U(60 *V) = I 1.7 min I
Gutter Flow 3: V= 1.8 fps (paved)
L= 200 Elev 0 EIev Slope= 0.0080
T,= L /(60 *V) = 1.9 min
Gutter Flow 4: V= 2 fps (paved)
L= 320 Elev,= EIev Slope= 0.0100
T,= L /(60 *V) = 2.7 min
II?)
IT S = 8.1 min fusing 10 min
Drainage Area #220 (A1)
Sheet Flow: n= 0.15 (dense grass)
P= 4.5
L= 114 Elev,= 326 Elev 323 Slope= 0.0263
T 0.007(L *n)" ° = 0.137 hours= I 8.2 min
(p)0 .5*(S)0 .
Gutter Flow 1: V= 1.8 fps (unpaved)
L= 355 Elev,= EIev Slope= 0.0080
T,= L /(60 *V) = I 3.3 min I
IT 11.5 min I
Drainage Area #221 (A3)
Sheet Flow: n= 0.15 (dense grass)
P= 4.5
L= 70 Elev,= 322.1 EIev 320.9 Slope= 0.0171
T, 0.007(L *n) 6 = 0.110 hours= 6.6 min I
(p)0.5 *(S)0.
Gutter Flow 1: V= 1.8 fps (unpaved)
L= 369 Elev,= EIev Slope= 0.0080
T,= L/(60*V) = I 3.4 min I
IT c = 10.0 min I
lq
• _
•
J
.50 - - -- •-------- -- - --
- - - -- -- - -■ ■.. . - - -.. ■ ■ 1111 - - - - --
∎MMOIMIN- -- ---■■■ NMI We l OEM iM ii i�D:■
IIIIIIMMIIIININ=IMP MINIM= tIIMIt•INUIIN MMtl■■■ ■111111111MMtlt ■■■ ■ ■t/ tt'MANONOt■ •
■ NIMIIMIIIMIIIIIIMINI ■■■■■1 1111111111 MIIs ■■■■■i MIIIIMMINIIINIM
MIIIINIMMININEWINI■■1111 ■t■• ■ ■111 •
— ��M��M..U.R.•IlIiui1••�•Ut•• /•M /��M�
INIIIIMINIIIM• IE••• I ■11l11 1 1 1111111 II 11111111•\raiuI/IMMINlIIII
im ow.•. .11IIu•t1111111111U■■U■/I11'/
11M111111111..U■UI■1111111111•11111►,111! 11111111111111111■
���.R.I111111II IIIII I1IIU11�.1 ���R
.20 — Im.Naui� 1 1II1111111I�! ■ //II /,11NNN ■■
NE.. iNNiIiiIIIIIIIIIIlII 'i11►.111NNEO■ •
■■.iiiu111111111111III JV1111NU111
■N■iiiiiiIIIIIIIIIIII? IVIIIIINNIII
■■IIIIIIIIIIIII IIIII /,II! IIIIII IIII1
.10 - .�t■M—.- - - -..■■ ■1111..11. Mgt►.- ■ ■ ■ ■ ■•ttt■MINIt+—
, tom•■ ■- -�IIMIUNI •1110 ■■ ■.111111• Int, //■■■■••ttIMIB- -■■
— MNIMttNNIMtUMMUM MI MINIM IMF / MID ..■ ■■■ III •11111111111111INIIIIMIll
111=11111111111111111111•11I111111•U1/I11V /1/IIUN IIUl _ _ _
���Euua .�•••11I/11 1 //•Ell ■1••11���1•_
_ ������IN���I1•••11/11111��/••••
o . 06 1111111111111111. ..iIu111114111/:11u111/1111NI11111111•■ 1 ���1•R .UI11111'd11Pi111•1111111/m���■
---- -- - - -. ..'
y M_---- -- -.■. •...' •11s•= - •.. .■ ■.�MMII --OM
H non esomme Nos tom-. -■ ■P ■ ■ ■I. ■11SIIIN.•-. ■. ■■...�M -1111
7 _____ttl____ ■■ ■' ■1111111Mtt__ Mil tttt__t> -
o
U _■����MIIM�•uAIM / tlNtl■■■t■■��_■�tt1�
s_ ��OMMIUM jur1111111�...111111�1I.1111M111.
(u — 1• MIIIIIIIIt IIIIIMI/, ■'IC/IIliit ■. Il•11=111••111111I
����•• U P 'IUU/. ■•11/111�1•1
° 1111111111111. ■ ■11/M/U111111111111UU■■•1111•11111111111111111■
IIIIIIIMIMIIIU M■'All'4111111111 UU I1111111 IIIIMIMIIIIII■
11111111•11111111 ■IYll/111111 ■ ■ 11111 / 11 �� R.•
.02 —
MUM b NIIIIIIIIIIMIIIIIIINNNN■
NE■ 4 e /111111111111111111111•N■ ■■
■■ A1111111111111111111111NNNN■
■■ I 411111111111111111111111111111111
NNi!/ 1/I11111111111111111111111Niii1 1
.01 — IM.W RW 11■■11111111111 ■ ■ ■1111111NN. ■■
NI ►A'P" " "I "'1MU iii iiiiiiiiii
N /./,INuIIIIIIII IIIIIN
■/I■Iif111111111111IN1111111IR III I
.005 — W 14 II1111111111111N1111111111NNNli
1 1 1 1 1 1 t 1 1 1 t
1 2 4 6 10 20
Average velocity, ft /sec
Figure 1- 1.— Average velocities for estimating travel time for .shallow concentrated (low. "
•
3 -2 (210- VI- TR -55, Second Ed.. June 1980)
i ;
• .
APPENDIX B
Storm Sewer Pipe Design Data:
Drainage System Diagram, Drainage Area Data, Manning's & Culvert Calculator Data,
Time of Concentration Data
I
Meadowcreek Subdivision
Phase 1 - Drainage System Diagram
Channel No. 3 I Channel No. 5 I Inlet 8
Pipe 3 Pipe 6 Pipe 10 I Channel No. 7 I
1 1 1 1
Inlet 2 Inlet 4 Inlet 7 F- l Pipe 9
Pipe 2 Pipe 5 Pipe 8
4 4
Inlet 1 Inlet 3 Inlet 6
1, 1 1
Pipe 1 Pipe 4 Pipe 7
Channel No. 2 Channel No. 4 I Channel No. 6 I
1
II Channel No. 1 I Channel No. 1 I I Into Detention Pond
I 1 1
I Into Stream Into Stream
1 t
I Into Detention Pond 11 Into Detention Pond I
Zz
U
a)
N L
O
E o 4 m o o co rn�'.o v O) p L O
N • d V <. .N- CV CO C N O C� CO .CU (D O O K CO
L
O) Q (T Occ) O
co v J ; 11 11 II
a) C to O to !. to!M E N O J 0
)` o t N NM 10.0,0 1N to CO (D - 0 a)
O _ c d Nt " CV N N V a v o II II II
- .- V! d i V I c I V V j CO i CO (O f-
1 1 1 1 y J
N 0) O CO ' ' I in [co COIN co C ,. )
N O N to 0) O a to co V ,
O Q v h Ico X 16 l00 N N V', '00
W r- '-, '-'.Ni�1`- M1N
t_
co
>. o .c co 00 I N o O O to co �! 0 Co
_^ N N N O: O 1 O 1- h
N <Y I V 1 a I v 4 1 , V, M (o (o (O
1 1
1 O
00 of Co M h .73 ) (0 '. 8 co (0 in
O Q V V V' 01 M 1 to' 0! 00 O ` CO CO LO t—
in —N N �
,. O OO O
N I I 1 O 11 11 11
0) �. co h I I - (0 1 0) ! " 0) !� N ' N N t I4-) >. o t CO 00 0) 0) 0). 0) ON M
N j ( I M , ( 0 '.M I M • to toto in
I
N- A IM to �!4, co '.h
o w co co I O co co co co to h CO •
C
d
co >+ o L co - , 0)1 N 1 0)' N h
�O'..O O' ',h �h r C
C - C 0)' M �' ,M I M M I M V V 4 to o E
" I N O
.
E .-- � c t ` o _ l i tD l o, � � r)I� N'(0o C t� (0
� .V.� •- . — iN:M h to C a) a) co h
(0 1 > 00 co O
• Cr) o
I N (O CO (D 1 CO ' I h to N N • tfl
N N'.N�N N' I1 V • V <t 0
E 00� h1Co h'C0 � 1(o'CO V'M h H
El LT) to (.0 ', 01 M N _ 11
.o
' 1 1(0 �;N1V.. 1N10)iV in a)
4 U co I 01h N'to �' N! 0) CO CV CV
3 (0' 1. -I0)jh 1 1 ,Mi ._''00 to. 00
o MIM'M M.M, M M M
o 0 O O co , 0' O' O O O O 1
0
0,0 010X O O!O co O h
O M "0 M co M CO 0) 0) CO M L CO
U 00 0 a3 00 co O
_ to to to to 1 to to 1 to to to 1 to c:-.)
11 11 11
C 0 to ' to I to to to to l to to to to •- _a D a)
N 0,010 01010 0 0
Q t0 C4 (P co co O 6 N N co co
O • - O • 00 N ca to M
a) F-
r a)
a) Q CO (O CO CO CO N CO (O CO 0)
N y ,. _ CO CO CO CO N to O) N co N ' -
f0 CA N Q CO CO CO CO M M M M d N _c ED, a a °
w a 0
N N 0 CO O (O N CO N 0 0) > 0)
O 0 CO CO N h CO 0 CO V O co
C Q N N o V M to M a) C c O
, (0 - O Q) 5..
Q 1 1 1 1 1 1
M 0 U U 4t c o, M N M N o . 4- 0 L
n co N co
V N c c.") V O N O N m 0 0 Q 7 C (7 a
U >_ N N N N (D N N N V ll Q - Q
Q O N ! N a o N
,[ R N O N N d 11 II II II CO
0
a) Q 0 N N N I- CJ 0 < O u m
U Q
3 ) 0) _
O C6 Q d N M V to Co h CO (7) C a) Q
d R _ d
0 LL
23
Meadowcreek Subdivision - Phase 1
Summary of Manning Pipe Data
# of Pipe size Length
Pipe # Barrels (in) (ft) % Slope 010 V %Full 0100 V100 %Rini®
1 1 24 75.14 1.0% 12.87 7.02 56.56% 17.85 7.51 70.80%
2 1 24 30.89 1.0% 12.33 6.95 55.07% 17.09 7.45 68.50%
3 1 24 16.00 1.0% 8.70 6.69 44.85% 12.07 6.92 54.35%
4 1 27 23.48 0.6% 15.85 6.08 62.33% 22.03 6.39 80.98%
5 1 24 30.24 1.0% 13.64 7.12 58.69% 18.95 7.57 74.31%
6 1 18 23.58 2.0% 9.43 8.40 60.69% 13.11 8.88 77.84%
7 1 30 24.08 1.0% 24.86 8.27 58.89% 34.03 8.77 73.72%
8 1 30 91.25 0.8% 18.57 7.09 52.64% 25.41 7.61 64.37%
9 1 18 24.00 2.0% 8.73 8.26 57.73% 11.95 8.79 71.89%
10 1 18 447.40 0.9% 6.68 5.70 62.94% 9.12 5.97 80.69%
Zit"
Pipe 1 - 10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 24.0000 in
Flowrate 12.8700 cfs
Slope 0.0100 ft /ft
Manning's n 0.0140
Computed Results:
Depth 13.5749 in
Area 3.1416 ft2
Wetted Area 1.8325 ft2
Wetted Perimeter 40.8581 in
Perimeter 75.3982 in
Velocity 7.0231 fps
Hydraulic Radius 6.4586 in
Percent Full 56.5623 %
Full flow Flowrate 21.0065 cfs
Full flow velocity 6.6866 fps
Pipe 1 - 100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 24.0000 in
Flowrate 17.8500 cfs
Slope 0.0100 ft /ft
Manning's n 0.0140
Computed Results:
Depth 16.9931 in
Area 3.1416 ft2
Wetted Area 2.3783 ft2
Wetted Perimeter 47.9986 in
Perimeter 75.3982 in
Velocity 7.5053 fps
Hydraulic Radius 7.1351 in
Percent Full 70.8047 %
Full flow Flowrate 21.0065 cfs
Full flow velocity 6.6866 fps
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
2S
Pipe 2 - 10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 24.0000 in
Flowrate 12.3300 cfs
Slope 0.0100 ft /ft
Manning's n 0.0140
Computed Results:
Depth 13.2174 in
Area 3.1416 ft2
Wetted Area 1.7733 ft2
Wetted Perimeter 40.1381 in
Perimeter 75.3982 in
Velocity 6.9530 fps
Hydraulic Radius 6.3621 in
Percent Full 55.0725 %
Full flow Flowrate 21.0065 cfs
Full flow velocity 6.6866 fps
Pipe 2 - 100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 24.0000 in
Flowrate 17.0900 cfs
Slope 0.0100 ft /ft
Manning's n 0.0140
Computed Results:
Depth 16.4405 in
Area 3.1416 ft2
Wetted Area 2.2936 ft2
Wetted Perimeter 46.7965 in
Perimeter 75.3982 in
Velocity 7.4511 fps
Hydraulic Radius 7.0579 in
Percent Full 68.5023 %
Full flow Flowrate 21.0065 cfs
Full flow velocity 6.6866 fps
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
Pipe 3 - 10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 24.0000 in
Flowrate 8.7000 cfs
Slope 0.0100 ft /ft
Manning's n 0.0140
Computed Results:
Depth 10.7652 in
Area 3.1416 ft2
Wetted Area 1.3654 ft2
Wetted Perimeter 35.2251 in
Perimeter 75.3982 in
Velocity 6.3720 fps
Hydraulic Radius 5.5816 in
Percent Full 44.8548 %
Full flow Flowrate 21.0065 cfs
Full flow velocity 6.6866 fps
Pipe 3 - 100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 24.0000 in
Flowrate 12.0700 cfs
Slope 0.0100 ft /ft
Manning's n 0.0140
Computed Results:
Depth 13.0451 in
Area 3.1416 ft2
Wetted Area 1.7448 ft2
Wetted Perimeter 39.7920 in
Perimeter 75.3982 in
Velocity 6.9179 fps
Hydraulic Radius 6.3140 in
Percent Full 54.3546 %
Full flow Flowrate 21.0065 cfs
Full flow velocity 6.6866 fps
Meadowcreek. Subdivision - Phase 1
Brazos County, Texas
11
Pipe 4 - 10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 27.0000 in
Flowrate 15.8500 cfs
Slope 0.0060 ft /ft
Manning's n 0.0140
Computed Results:
Depth 16.8284 in
Area 3.9761 ft2
Wetted Area 2.6057 ft2
Wetted Perimeter 49.1378 in
Perimeter 84.8230 in
Velocity 6.0827 fps
Hydraulic Radius 7.6362 in
Percent Full 62.3276 %
Full flow Flowrate 22.2760 cfs
Full flow velocity 5.6025 fps
Pipe 4 - 100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 27.0000 in
Flowrate 22.0300 cfs
Slope 0.0060 ft /ft
Manning's n 0.0140
Computed Results:
Depth 21.8643 in
Area 3.9761 ft2
Wetted Area 3.4492 ft2
Wetted Perimeter 60.4529 in
Perimeter 84.8230 in
Velocity 6.3869 fps
Hydraulic Radius 8.2162 in
Percent Full 80.9787 %
Full flow Flowrate 22.2760 cfs
Full flow velocity 5.6025 fps
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
2S
Pipe 5 - 10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 24.0000 in
Flowrate 13.6400 cfs
Slope 0.0100 ft /ft
Manning's n 0.0140
Computed Results:
Depth 14.0853 in
Area 3.1416 ft2
Wetted Area 1.9166 ft2
Wetted Perimeter 41.8911 in
Perimeter 75.3982 in
Velocity 7.1168 fps
Hydraulic Radius 6.5883 in
Percent Full 58.6889 %
Full flow Flowrate 21.0065 cfs
Full flow velocity 6.6866 fps
Pipe 5 - 100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 24.0000 in
Flowrate 18.9500 cfs
Slope 0.0100 ft /ft
Manning's n 0.0140
Computed Results:
Depth 17.8353 in
Area 3.1416 ft2
Wetted Area 2.5035 ft2
Wetted Perimeter 49.8869 in
Perimeter 75.3982 in
Velocity 7.5693 fps
Hydraulic Radius 7.2265 in
Percent Full 74.3139 %
Full flow Flowrate 21.0065 cfs
Full flow velocity 6.6866 fps
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
29
Pipe 6 - 10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 18.0000 in
Flowrate 9.4300 cfs
Slope 0.0200 ft /ft
Manning's n 0.0140
Computed Results:
Depth 10.9238 in
Area 1.7671 ft2
Wetted Area 1.1222 ft2
Wetted Perimeter 32.1519 in
Perimeter 56.5487 in
Velocity 8.4031 fps
Hydraulic Radius 5.0261 in
Percent Full 60.6880 %
Full flow Flowrate 13.7943 cfs
Full flow velocity 7.8060 fps
Pipe 6 - 100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 18.0000 in
Flowrate 13.1100 cfs
Slope 0.0200 ft /ft
Manning's n 0.0140
Computed Results:
Depth 14.0104 in
Area 1.7671 ft2
Wetted Area 1.4758 ft2
Wetted Perimeter 38.9020 in
Perimeter 56.5487 in
Velocity 8.8832 fps
Hydraulic Radius 5.4629 in
Percent Full 77.8357 %
Full flow Flowrate 13.7943 cfs
Full flow velocity 7.8060 fps
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
3o
Pipe 7 - 10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 30.0000 in
Flowrate 24.8600 cfs
Slope 0.0100 ft /ft
Manning's n 0.0140
Computed Results:
Depth 17.6657 in
Area 4.9087 ft2
Wetted Area 3.0068 ft2
Wetted Perimeter 52.4839 in
Perimeter 94.2478 in
Velocity 8.2679 fps
Hydraulic Radius 8.2497 in
Percent Full 58.8858 %
Full flow Flowrate 38.0873 cfs
Full flow velocity 7.7591 fps
Pipe 7 - 100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 30.0000 in
Flowrate 34.0300 cfs
Slope 0.0100 ft /ft
Manning's n 0.0140
Computed Results:
Depth 22.1153 in
Area 4.9087 ft2
Wetted Area 3.8791 ft2
Wetted Perimeter 61.9507 in
Perimeter 94.2478 in
Velocity 8.7727 fps
Hydraulic Radius 9.0166 in
Percent Full 73.7175 %
Full flow Flowrate 38.0873 cfs
Full flow velocity 7.7591 fps
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
31
Pipe 8 - 10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 30.0000 in
Flowrate 18.5700 cfs
Slope 0.0080 ft /ft
Manning's n 0.0140
Computed Results:
Depth 15.7924 in
Area 4.9087 ft2
Wetted Area 2.6194 ft2
Wetted Perimeter 48.7095 in
Perimeter 94.2478 in
Velocity 7.0895 fps
Hydraulic Radius 7.7437 in
Percent Full 52.6414 %
Full flow Flowrate 34.0664 cfs
Full flow velocity 6.9399 fps
Pipe 8 - 100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 30.0000 in
Flowrate 25.4100 cfs
Slope 0.0080 ft /ft
Manning's n 0.0140
Computed Results:
Depth 19.3107 in
Area 4.9087 ft2
Wetted Area 3.3399 ft2
Wetted Perimeter 55.8687 in
Perimeter 94.2478 in
Velocity 7.6080 fps
Hydraulic Radius 8.6086 in
Percent Full 64.3691 %
Full flow Flowrate 34.0664 cfs
Full flow velocity 6.9399 fps
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
32
Pipe 9 - 10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 18.0000 in
Flowrate 8.7300 cfs
Slope 0.0200 ft /ft
Manning's n 0.0140
Computed Results:
Depth 10.3921 in
Area 1.7671 ft2
Wetted Area 1.0569 ft2
Wetted Perimeter 31.0697 in
Perimeter 56.5487 in
Velocity 8.2601 fps
Hydraulic Radius 4.8984 in
Percent Full 57.7337 %
Full flow Flowrate 13.7943 cfs
Full flow velocity 7.8060 fps
Pipe 9 - 100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 18.0000 in
Flowrate 11.9500 cfs
Slope 0.0200 ft /ft
Manning's n 0.0140
Computed Results:
Depth 12.9399 in
Area 1.7671 ft2
Wetted Area 1.3598 ft2
Wetted Perimeter 36.4305 in
Perimeter 56.5487 in
Velocity 8.7877 fps
Hydraulic Radius 5.3751 in
Percent Full 71.8886 %
Full flow Flowrate 13.7943 cfs
Full flow velocity 7.8060 fps
Meadowcreek Subdivision -- Phase 1
Brazos County, Texas
33
Pipe 10 - 10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 18.0000 in
Flowrate 6.6800 cfs
Slope 0.0090 ft /ft
Manning's n 0.0140
Computed Results:
Depth 11.3292 in
Area 1.7671 ft2
Wetted Area 1.1714 ft2
Wetted Perimeter 32.9864 in
Perimeter 56.5487 in
Velocity 5.7024 fps
Hydraulic Radius 5.1138 in
Percent Full 62.9400 %
Full flow Flowrate 9.2535 cfs
Full flow velocity 5.2364 fps
Pipe 10 - 100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape Circular
Solving for Depth of Flow
Diameter 18.0000 in
Flowrate 9.1200 cfs
Slope 0.0090 ft /ft
Manning's n 0.0140
Computed Results:
Depth 14.5235 in
Area 1.7671 ft2
Wetted Area 1.5278 ft2
Wetted Perimeter 40.1681 in
Perimeter 56.5487 in
Velocity 5.9693 fps
Hydraulic Radius 5.4771 in
Percent Full 80.6861 %
Full flow Flowrate 9.2535 cfs
Full flow velocity 5.2364 fps
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
O ) 4) — I 0) N N a) 0) a)
o • C CIOIO C C C C C C
o 'cr ca co N- CO , O ' (O V a) I
rn a) a) "- r CO ' rn rn o ri
. N N Q
= co MjM'M co co Co co
i I
o ' ICON O)I�IO)'OO O) ,r'. N
o n LOIV'CO I I Cr) ItO',00 CD I- a)
I� M CO N- CO 00 N- 00 LO
o U 1 C D ) LO ', r M r LO
o 00 ',O O'0',0)i— o Cr a) N
N'NI00'M LO O
r r ("Ni 'r r co CV
O
a) a) °� a) I a) a) a) a) a) a)
0 E E . O C Z C C C C -
SP, co N ' a7 r co 1 co o ' N- co LI)
c o 0):M' ir- c r :a)Ic 'Cr 'Cr
0 00'a);a)!O r CNOOIa)'0 co
CO rir r'rr r;a)Ia1',OLQ
W Cr) M' MIM 1 CO M'C CV Cr) CO
N �CD,O)iO,r''cf CD
N N,'r'', to co
I� ' ti I M V I � CO 00 I � 00 LO
co 1 co I co N- -- co I co V
co cv p' ,M rr'O)'co M o • •
�-y Q'. 00 :L() '
V r r r N-1 r N' N
Qo 0 0 0 0 ,o 'o 0 0 0
o
o o o co'O',Q;O,'co o O)
Q'OIOo.� co co Lo o „c)
a)'`
co 0 N '� O , N �
N — to O co co Q'MI�
N- co r'N co CV' N'a) CV
C
N . O co tf i ~ '1O N- 10 a)) co co
O a) r r.r10,0 OI,O)I0)',a) a)
LLJ M M M M co co N N N N
C
O LO N N LO CO CO
.) '- M co N CO CO r CD
> Q L` N CO CO O LO CO CO
r co — O O O O) a) a) O
— M co co co co co N N N co
N
R >
.0 `' - CO co co co co LO LO V
0 0 3 "Cr 'Cr 71 � r- CO CO LO
R - r r r M ri (-6 O r Ln
C O 0 N N N r .- r 0 0 0 0
O () Q 0 , M CO CO CO C'') co co CO C`) CO
CA CO
> 0 •- V' O O O O CV CV r
-a if r 7 V V V M CO N
(y Q r r M CO M 0 r Ln
• > 0 — N N N r r 0 0 0 Q
CO co co co co co co co co co
U
c
U >+ - N N N N N e- O CO CO e
O 00 C
CL N
O
ca
CU
a) O _ 1. N co V to Q N- Co 6)
Pipe 1 - 25 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 14.8800 cfs
Manning's n 0.0140
Roadway Elevation 321.1400 ft
Inlet Elevation 316.7500 ft
Outlet Elevation 316.0000 ft
Diameter 24.0000 in
Length 75.1400 ft
Entrance Loss 0.0000
Tailwater 2.0000 ft
Computed Results:
Headwater 318.9834 ft From Inlet
Slope 0.0100 ft /ft
Velocity 7.2568 fps
Pipe 1 - 100 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 17.8500 cfs
Manning's n 0.0140
Roadway Elevation 321.1400 ft
Inlet Elevation 316.7500 ft
Outlet Elevation 316.0000 ft
Diameter 24.0000 in
Length 75.1400 ft
Entrance Loss 0.0000
Tailwater 2.0000 ft
Computed Results:
Headwater 319.3649 ft From Inlet
Slope 0.0100 ft /ft
Velocity 7.5096 fps
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
36
Pipe 2 - 25 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 14.2400 cfs
Manning's n 0.0140
Roadway Elevation 321.1400 ft
Inlet Elevation 317.1600 ft
Outlet Elevation 316.8500 ft
Diameter 24.0000 in
Length 30.8900 ft
Entrance Loss 0.0000
Tailwater 2.0000 ft
Computed Results:
Headwater 319.3203 ft From Inlet
Slope 0.0100 ft /ft
Velocity 7.1887 fps
Pipe 2 - 100 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 17.0900 cfs
Manning's n 0.0140
Roadway Elevation 321.1400 ft
Inlet Elevation 317.1600 ft
Outlet Elevation 316.8500 ft
Diameter 24.0000 in
Length 30.8900 ft
Entrance Loss 0.0000
Tailwater 2.0000 ft
Computed Results:
Headwater 319.7136 ft From Inlet
Slope 0.0100 ft /ft
Velocity 7.4552 fps
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
31
Pipe 3 - 25 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 10.0600 cfs
Manning's n 0.0140
Roadway Elevation 321.1400 ft
Inlet Elevation 317.7100 ft
Outlet Elevation 317.5500 ft
Diameter 24.0000 in
Length 16.0000 ft
Entrance Loss 0.0000
Tailwater 2.0000 ft
Computed Results:
Headwater 319.5859 ft From Outlet
Slope 0.0100 ft /ft
Velocity 3.2022 fps
Pipe 3 - 100 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 12.0700 cfs
Manning's n 0.0140
Roadway Elevation 321.1400 ft
Inlet Elevation 317.7100 ft
Outlet Elevation 317.5500 ft
Diameter 24.0000 in
Length 16.0000 ft
Entrance Loss 0.0000
Tailwater 2.0000 ft
Computed Results:
Headwater 319.6720 ft From Outlet
Slope 0.0100 ft /ft
Velocity 3.8420 fps
Meadowcreek Subdivision -- Phase 1
Brazos County, Texas
38
Pipe 4 - 25 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 18.3300 cfs
Manning's n 0.0140
Roadway Elevation 313.4000 ft
Inlet Elevation 308.3100 ft
Outlet Elevation 308.1700 ft
Diameter 27.0000 in
Length 23.4800 ft
Entrance Loss 0.0000
Tailwater 2.2500 ft
Computed Results:
Headwater 310.7052 ft From Outlet
Slope 0.0060 ft /ft
Velocity 4.6101 fps
Pipe 4 - 100 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 22.0300 cfs
Manning's n 0.0140
Roadway Elevation 313.4000 ft
Inlet Elevation 308.3100 ft
Outlet Elevation 308.1700 ft
Diameter 27.0000 in
Length 23.4800 ft
Entrance Loss 0.0000
Tailwater 2.2500 ft
Computed Results:
Headwater 311.0917 ft From Inlet
Slope 0.0060 ft /ft
Velocity 6.3912 fps
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
3c
Pipe 5 - 25 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 15.7700 cfs
Manning's n 0.0140
Roadway Elevation 313.4000 ft
Inlet Elevation 308.8700 ft
Outlet Elevation 308.5700 ft
Diameter 24.0000 in
Length 30.1500 ft
Entrance Loss 0.0000
Tailwater 2.0000 ft
Computed Results:
Headwater 311.2263 ft From Inlet
Slope 0.0100 ft /ft
Velocity 7.3436 fps
Pipe 5 - 100 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 18.9500 cfs
Manning's n 0.0140
Roadway Elevation 313.4000 ft
Inlet Elevation 308.8700 ft
Outlet Elevation 308.5700 ft
Diameter 24.0000 in
Length 30.1500 ft
Entrance Loss 0.0000
Tailwater 2.0000 ft
Computed Results:
Headwater 311.6481 ft From Inlet
Slope 0.0100 ft /ft
Velocity 7.5738 fps
Meadowcreek Subdivision -- Phase 1
Brazos County, Texas
40
Pipe 6 - 25 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 10.9100 cfs
Manning's n 0.0140
Roadway Elevation 313.4000 ft
Inlet Elevation 310.2200 ft
Outlet Elevation 309.7500 ft
Diameter 18.0000 in
Length 23.5500 ft
Entrance Loss 0.0000
Tailwater 1.5000 ft
Computed Results:
Headwater 312.7270 ft From Inlet
Slope 0.0200 ft /ft
Velocity 8.6591 fps
Pipe 6 - 100 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 13.1100 cfs
Manning's n 0.0140
Roadway Elevation 313.4000 ft
Inlet Elevation 310.2200 ft
Outlet Elevation 309.7500 ft
Diameter 18.0000 in
Length 23.5500 ft
Entrance Loss 0.0000
Tailwater 1.5000 ft
Computed Results:
Headwater 313.4005 ft From Inlet
Slope 0.0200 ft /ft
Velocity 8.8887 fps
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
Pipe 7 - 25 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 28.6000 cfs
Manning's n 0.0140
Roadway Elevation 300.4000 ft
Inlet Elevation 295.8200 ft
Outlet Elevation 295.5800 ft
Diameter 30.0000 in
Length 24.0800 ft
Entrance Loss 0.0000
Tailwater 2.5000 ft
Computed Results:
Headwater 298.8983 ft From Inlet
Slope 0.0100 ft /ft
Velocity 8.5219 fps
Pipe 7 - 100 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 34.0300 cfs
Manning's n 0.0140
Roadway Elevation 300.4000 ft
Inlet Elevation 295.8200 ft
Outlet Elevation 295.5800 ft
Diameter 30.0000 in
Length 24.0800 ft
Entrance Loss 0.0000
Tailwater 2.6100 ft
Computed Results:
Headwater 299.3953 ft From Inlet
Slope 0.0100 ft /ft
Velocity 8.7778 fps
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
42-
Pipe 8 - 25 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 21.3600 cfs
Manning's n 0.0140
Roadway Elevation 301.3200 ft
Inlet Elevation 296.6500 ft
Outlet Elevation 295.9200 ft
Diameter 30.0000 in
Length 91.2500 ft
Entrance Loss 0.0000
Tailwater 2.5000 ft
Computed Results:
Headwater 299.0687 ft From Inlet
Slope 0.0080 ft /ft
Velocity 7.3319 fps
Pipe 8 - 100 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 25.4100 cfs
Manning's n 0.0140
Roadway Elevation 301.3200 ft
Inlet Elevation 296.6500 ft
Outlet Elevation 295.9200 ft
Diameter 30.0000 in
Length 91.2500 ft
Entrance Loss 0.0000
Tailwater 2.9800 ft
Computed Results:
Headwater 299.3964 ft From Inlet
Slope 0.0080 ft /ft
Velocity 7.6121 fps
Meadowcreek Subdivision -- Phase 1
Brazos County, Texas
43
Pipe 9 - 25 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 10.0400 cfs
Manning's n 0.0140
Roadway Elevation 301.3200 ft
Inlet Elevation 298.1300 ft
Outlet Elevation 297.6500 ft
Diameter 18.0000 in
Length 24.0000 ft
Entrance Loss 0.0000
Tailwater 1.5000 ft
Computed Results:
Headwater 300.4047 ft From Inlet
Slope 0.0200 ft /ft
Velocity 8.5195 fps
Pipe 9 - 100 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING
ENTRANCE
Scale Decsription SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 11.9500 cfs
Manning's n 0.0140
Roadway Elevation 301.3200 ft
Inlet Elevation 298.1300 ft
Outlet Elevation 297.6500 ft
Diameter 18.0000 in
Length 24.0000 ft
Entrance Loss 0.0000
Tailwater 1.5000 ft
Computed Results:
Headwater 300.9400 ft From Inlet
Slope 0.0200 ft /ft
Velocity 8.7928 fps
Meadowcreek Subdivision -- Phase 1
Brazos County, Texas
Pipe 10 - 25 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 7.6800 cfs
Manning's n 0.0140
Roadway Elevation 305.2100 ft
Inlet Elevation 301.6800 ft
Outlet Elevation 297.6500 ft
Diameter 18.0000 in
Length 447.4000 ft
Entrance Loss 0.0000
Tailwater 1.5000 ft
Computed Results:
Headwater 303.4473 ft From Inlet
Slope 0.0090 ft /ft
Velocity 5.8584 fps
Pipe 10 - 100 Year Storm
Culvert Calculator
Entered Data:
Shape Circular
Number of Barrels 1
Solving for Headwater
Chart Number 1
Scale Number 1
Chart Description CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
Scale Description SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate 9.1200 cfs
Manning's n 0.0140
Roadway Elevation 305.2100 ft
Inlet Elevation 301.6800 ft
Outlet Elevation 297.6500 ft
Diameter 18.0000 in
Length 447.4000 ft
Entrance Loss 0.0000
Tailwater 1.5000 ft
Computed Results:
Headwater 303.7383 ft From Inlet
Slope 0.0090 ft /ft
Velocity 5.9733 fps
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
4S
Meadowcreek Subdivision - Phase 1
T Calculations -Post Development
Pipe and Channel Design
Drainage Area #201
Sheet Flow: n= 0.24 (dense grass)
P= 4:5
L= 300 Elev,= 327.8 EIev 326 Slope= 0.0100
T 0.007(L *n)" b = 0.637 hours= I 38.2 min I
(p)0.5 *(S)0.
Concentrated Flow 1: V= 2.5 fps (unpaved)
L= 244 Elev 326 EIev 324 Slope= 0.0082
T,= L /(60 *V) = I 1.6 min I
Concentrated Flow 2: V= 1..3 fps (unpaved)
L= 1894 Elev,= 324 EIev 312 Slope= 0.0063:
T L /(60 *V) = I 24.3 min I
ITS 64.1 min I
Flow Through Channel #5: V= "2:78; fps (Manning's)
L= 86 Elev 312 EIev 311 Slope= 0.0191
T L /(60 *V) = I 0.5 min
IT 64.6 min I
Flow Through Pipe #5: V= 7.12 fps (Manning's)
L= 30 Elev 311 EIev Slope= 0.0100
T,= L /(60 *V) = 0.1 min I
IT c = 64.7 min
Flow Through Pipe #4: V= 6.08 fps (Manning's)
L= 34 Elev,= 0 EIev Slope= 0.0060
46
T,= L/(60*V) = 0.1 min
ITS 64.8 min I
Flow Through Channel #4: V= 3.44 fps (Manning's)
L= 103 Elev 0 EIev Slope= 0.0060
T,= L /(60 *V) = I 0.5 min
ITS 65.3 min I
Drainage Area #202A
Sheet Flow: n= 0.24 (dense grass)
P= 4.5
L= 254 Elev 324 EIev 316.5 Slope= 0.0295
T 0.007(L *n)" ° = 0.362 hours= I 21.7 min
(P) 5 *
Concentrated Flow 1: V= 2.4 fps (unpaved)
L= 132 EIev 316.5 EIev 313.5 Slope= 0.0227
T,= L/(60*V) = I 0.9 min
Gutter Flow 1: V= 1.8 fps (paved)
L= 245 Elev EIev Slope= 0.0080
T,= L /(60 *V) = 2.3 min
Gutter Flow 2: V= 2.2 fps (paved)
L= 300 EIev EIev Slope= 0.0123
T,= L /(60 *V) = 2.3 min
Gutter Flow 3: V= 1.95 fps (paved)
L= 59 EIev EIev Slope= 0.0090
T,= L/(60*V) = 0.5 min I
IT c = 27.7 min I
41
Drainage Area #202B
Sheet Flow: n= 0.24 (dense grass)
P= 4.5
L= 129 Elev,= 310 EIev 304.5 Slope= 0.0426
T 0.007(L "n)"' = 0.182 hours= 10.9 min I
(p)0.5„ (S)0.
Sheet Flow: n= 0.15 (short -grass prairie)
P= 4.5
L= 114 Elev,= 310 EIev 304.5; Slope= 0.0482
T 0.007(L *n)" ° = 0.108 hours= I 6.5 min I
(p)0.5 *(S)0.
Gutter Flow 1: V= 1.8 fps (paved)
L= 51= EIev 304.5 EIev 302.5; Slope= 0.0080
T L /(60 *V) = I 0.5 min I
ITS 17.9 min I
Drainage Area #203
Sheet Flow: n= 0.24 (dense grass)
P= 4.5
L= 293 Elev 324 EIev 315 Slope= 0.0307
T 0.007(L "n)" ° = 0.399 hours= I 23.9 min I
(p)0 .5 *(S)0 .
Concentrated Flow 1: V= 1.8 fps (unpaved)
L= 848 Elev 315 EIev 304.5 Slope= 0.0124
T,= L /(60 *V) = I 7.9 min
IT c = 31.8 min I
Flow Through Channel #7: V= 2.77 fps (Manning's)
L= 90 Elev 304.5 Elev Slope= 0.0200
T,= L /(60"V) = 0.5 min
IT c = 32.3 min I
Flow Through Pipe #9: V= 8.26 fps (Manning's)
L= 33 Elev 0 EIev Slope= 0.0200
T,= L/(60*V) = 0.1 min
IT S = 32.4 min I
Flow Through Pipe #8: V= 7.09 fps (Manning's)
L= 91 Elev 0 EIev Slope= 0.0080
T,= L/(60*V) = 0.2 min I
ITS 32.6 min I
Flow Through Pipe #7: V= 8.27 fps (Manning's)
L= 33 Elev 0 EIev Slope= 0.0100
T,= L/(60*V) = 0.1 min
IT 32.7 min I
Flow Through Channel #6: V= 2.96 fps (Manning's)
L= 99 Elev,= 0 Elev Slope= 0.0050
T,= L/(60*V) = 0.6 min
ITS 33.3 min I
Drainage Area #206
Sheet Flow 1: n= 0.24 (dense grass)
P= 4.5
L= 192 Elev,= 327 EIev 324.7 Slope= 0.0120
T,= 0.007(L "n) " = 0.415 hours= 24.9 min
(p) 05 *
Sheet Flow 2: n= 0.015 (short grass prairie)
41
P= 4.5
L= 108 Elev 324.7 EIev 323 Slope= 0.0157
T 0.007(L *n)" a = 0.026 hours= 1.6 min
(P) 5 *
Concentrated Flow 1: V= 3 fps (unpaved)
L= 56 Elev 323 Elev 321 Slope= 0.0357
T L /(60"V) = 0.3 min
Gutter Flow 1: V= 1.8 fps (paved)
L= 200 EIev 321 EIev Slope= 0.0080
T,= L /(60 *V) = 1.9 min
Gutter Flow 2: V= 2 fps (paved)
L= 200! EIev 0 EIev Slope= 0.0100
T,= L /(60 *V) = I 1.7 min
Gutter Flow 3: V= 1.8 fps (paved)
L= 200 Elev 0 EIev Slope= 0.0080
T L /(60 *V) = I 1.9 min
Gutter Flow 4: V= 2 fps (paved)
L= 320 EIev 0 EIev Slope= 0.0100
T,= L /(60 *V) = I 2.7 min
f T 35.0 min
Drainage Area #210
Sheet Flow: n= 0.24 (dense grass)
P= 4.5
L= 73 Elev 305 EIev 303.7 Slope= 0.0178
T 0.007(L *n)" a = 0.163 hours= 9.8 min
(P) 5 * 4
50
Sheet Flow: n= 0.15 (short -grass prairie)
P= 4.5
L= 127 Elev 303.7 Elev 301.5 Slope= 0.0173
T,= 0.007(L *n)" = 0.177 hours= 10.6 min
(P)
Concentrated Flow 1: V= 1.95 fps (unpaved)
L= 90 Elev 301.5 Elev 300.5 Slope= 0.0111
T L /(60 *V) = I 0.8 min
IT 21.2 min 1
Drainage Area #216
Gutter Flow 1: V= 1.8 fps (paved)
L= 198 Elev Elev Slope= 0.0080
T L /(60 *V) = 1.8 min
Gutter Flow 2: V= 2 fps (paved)
L= 200 Elev Elev Slope= 0.0100
T,= L /(60 *V) = I 1.7 min
Gutter Flow 3: V= 1.8 fps (paved)
L= 200 Elev Elev Slope= 0.0080
T L /(60 *V) = I 1.9 min
Gutter Flow 4: V= 2 fps (paved)
L= 320 Elev Elev Slope= 0.0100
T,= L /(60 *V) = I 2.7 min
IT c = 8.1 min ,using 10 min
Drainage Area #220
Sheet Flow: n= 0.15 (short grass prairie)
5 (
P= 4.5
L= 114 Elev 326 EIev 323 Slope= 0.0263
T 0.007(L *n) ° = 0.137 hours= I 8.2 min
(P) 0.5* (S) o.4
Gutter Flow 1: V= 1.8 fps (unpaved)
L= 355' Elev EIev Slope= 0.0080
- F t = L /(60 *V) = 3.3 min I
1T 11.5 min
Drainage Area #221
Sheet Flow: n= 0.15 (short grass prairie)
P= 4.5
L= 70 Elev 322.1, EIev 320.9 Slope= 0.0171
T 0.007(L *n)" ° = 0.110 hours= I 6.6 min I
(p)0 . 5 *(S)0 .4
Gutter Flow 1: V= 1.8 fps (unpaved)
L= 369 Elev EIev Slope= 0.0080
T,= L /(60 *V) = I 3.4 min I
ITS 10.0 min
Drainage Area #223
Sheet Flow: n= 0.24 (dense grass)
P= 4.5
L= 300 Elev 332.3 EIev 331.1 Slope= 0.0040
T 0.007(L *n)" ° = 0.919 hours= I 55.1 min
(P) S*(S)04
Concentrated Flow 1: V= 2 fps (unpaved)
L= 404 Elev 331.1 EIev 326 Slope= 0.0126
T,= L /(60 *V) = 3.4 min
52-
Concentrated Flow 2: V= 3.8 fps (unpaved)
L= 55 Elev 326 EIev 323 Slope= 0.0545
T,= L /(60 *V) = 0.2 min I
ITS 58.7 min I
Flow Through Channel #3: V= 2.75 fps (Manning's)
L= 142.5 EIev 321:94 EIev 319.09 Slope= 0.0200
T L /(60 *V) = I 0.9 min I
ITS 59.6 min I
Flow Through Pipe #3: V= 6.37 fps (Manning's)
L= 24 EIev EIev Slope= 0.0100,
T L /(60 *V) = I 0.1 min I
ITS 59.7 min I
Flow Through Pipe #2: V= 6.95 fps (Manning's)
L= 31 Elev EIev Slope= 0.0100
-. f t = L /(60 *V) = I 0.1 min I
ITS 59.8 min I
Flow Through Pipe #1: V= 7.02 fps (Manning's)
L= 83 EIev 0 EIev Slope= 0.0100
T,= L /(60*V) = I 0.2 min I
IT,= 60.0 min I
Flow Through Channel #2: V= 2.24 fps (Manning's)
L= 960 EIev 0 EIev Slope= 0.0060
T,= L /(60 *V) = 7.1 min
IT 67.1 min 1
53
Flow Through Channel #1: V= 2.38 fps (Manning's)
L= 380 Elev,= 0 Elev Slope= 0.0060
T,= L /(60 *V) = 2.7 min
lT 69.8 min
59'
r
. , s-
.50 — ----- -- -- -- - • -- IMO= ------ - - - - -- .
-- 1- - ----- 1------.. ■•- - ■--■
--- -MI -- -- 11----■■.■■■WV —M .•---
1- 111•1111=1111- 1•MMIN- IN-■■ ■•■ ■1 - - - - NOM MOM a MEMO —
... �1���t��M�■■■■■■s 1t1•M.M■■■■■■r ____lam_
111•EllIMMIIM— MIMMII W1111•••\WINII l•-t111■ ■•••/ Mitral•ttINIIIMIlle
111111•11MIMttatIrn111111■ ■1111■ ■ ■ 111111 N ■ 11■ ■ ■■•IMINIAINNIIIIMEM
MINI=111111M1•11..U. ■■••II1 111111111 • 1 ■ 1111 ■ 1111,.1 ∎ /MINUN •
.... ����M�MI MIN ■ ■I ■ /IIIMININIII■ ■MIMMA��M�
MMINIMINIHINIMINIIIIIIIMII■■11IIIIII1IIMIIMIH t ■i1 //INNIMM1I
MINIMMIMMO U■■■■■ ■IIIIIIMEUIIlUUIIY IIMIII•IIII •
MIIIMIIIIIIIUI.IIUii111111111IIII■1U1IIII IMIMIIMIIII■ i
���. .UiiiIlIIIIII11IIUh ■IIIIV
.20 — MINEM.i.� I11111111111I!■//I1/
�MINIIu II!,111IMMIN
■.. IiIIlIIIIIIIIIIIIIITi11 //1111INUII■
■.iii iI111111111111I V IVl II II III II
■ ■If1111111111111111/,11 X111111 RIII1
1 0 - ,...------ . ■ ■ ■.•••••./ /E- /.-■■ ■. ■■INIMIIIMII- --
1■1111=----- u. ■ ■••••Ma' -l:tMall1•.••ill---
4- INIMMUMIIIIMI ■■••••itlltallmIu.■• ■ 11111111MIMIN
1111•11=11M11111•11•1111111■■ ■11111111VuIum■ ■■ ■••111 ____
�
_ �������� ■� ■ ■ ■� /1111 /�•�� ■ ■ ■�
o . 06 O INIIMI IIIIlIIIIMIIIIIII1111I•11111111•■
_ ��IM�RUIIII■IIII' IIIPAIIMIIII111IIIM�NI�■
N ------- - - - - -• MO NM ... -- -- ----_. -----
N ------ . ■.a..e MIS =MI --- ■..•.1■11•-111=-- '
N ���--- --- ■ ■P Mill .1..1 MINA MN ...•� —�--
— "" "MINA -1111■ 1. ■•....1---- ■ ■.. ■.'�� --
L .04 — �.t��.t■� -- .1111..■■.. ■..1-- ■ ■.. ■ ■ ■ ■�
= 1... ill....tt.tt11t.u- ■ ► / ■••r ■•umu- 11 ■•••• -- =1111• •to 4
O 11■ItttaMOIMt ttiIIIWUI11• /MIIIMIIMIMI■
0 MIIIIIit• IIMMIIIIillit •IMif ■I.■■•'/ /Ilflilul•11••U..au uftlffMIIMIIIIIIMI. 1
L -. �moom��m ■1 ■ ■ / / /IU1I1••11•■ ■ ■•11■U MIUMM
=IIMMiNNIIII MIMICS 1111 /11u /uuitli,fl . III III ..-- fi•f__
S i IMIIIIIM111111111111111111EMILIPAIIIIIIIIMIIIIIIMIIIIIMINIMIMI
IIIMIIIMII•N■%Ul'4I111111 IUII■ /11111•111111111M■
.02 — NMI INEWII1111111111��11111111�NIMI�■
b V/1111111111UI1I1111111•1111111U■
MEM /1111111111111111111111111111111111 � , a'° 4IIIII1IIIIIIIIII111111IMUhh■
■■ 1 411111111111I11111111111RUIII •
.01 — ■■ W�/ 1/1111111111111I1111111111UIII1 I
IIII..., ■ ■■ ■11111111111 ■ ■ ■■11111111111...■
.. 1R'4l■■I1111111111I ■■ 111111 ii.. ■ ■■
111111111E111111111111111111111111111111111111111M1
■ A WIIIIUIHhIIIIIIIIn111111111111UUIl i
.005 — W1!4 111111111111111111111111111R1111
1 1 1 1 1 1 1 1 1 1 1 1
1 2 4 6 10 20
Average velocity, ft /sec
Figure 3 -1.- Average velocities for estimating travel time for shallow concentrated flow.
i
3-2 (210- VI- TR -55. Second Ed.. June 1986) • 3
5t
APPENDIX C
Drainage Channel Design Data:
Calculation Summary, Channel Calculator Data
(Refer to Appendix B for Time of Concentration Data)
0
a) L
c
O
E co N co o� N- (D V (0 O
3- ° o w r 0 0) 0' 0) O O , T N M
0 O tO N (+) C) C cc. L• O N.
to tf ) N— N'.,- M, . 0 O Cq O
co V 0) M '(0 N
J N ; 0O II II II
T g .0 0 r.-- co 1 N.1 - 'N -� _O - 0 N
C. _ v a N i' (n 11 II II
1
• - V 4V 4 4 (O (D
a+ J
° V) (0 aO i M O) 11) t!) to
O d .) 00 0) . 0 (V N .-
T o L O O ((0 0) N I CO O
0 — "-- O NN 0)i
'' o ' N
1)) _ CO V •' I CO I CO 1 M E
0
E n w N (n CO to v CO O
N CO rn y-
1M 0 I I I L Cr
O (. v N 0 0 ) 100 0 00 1 O ( 10
N ' N i I a 0) 00 O
O 11 11 d V N to '.� 0), CO NIM 10 .0 -o IO
>s m t r r '. N O),. 0)', O
(V v M CO Ni IM I 0) 6 to
O V M O N
E w (n oco'
N 0 5 M !� .6 6 0) N', 00
, 1 C
m
a) • V'. O all n 0 0) (0
>. o t (n O1N CV 1 1 O I ,O
O N O O.(O'1 0
O • — N M,M C) M'1V 4 0 E
I , (U 0
M N.�IO)I C'4 C LO
`p v V ,• (n •1c61 N om 0 co 0 1`
M I n, OO N r C a) O
0
s_ 1 1 U II 11 .1
a ) M 'tn O 1 O M '(o .� N
> ,,, t V ' in 1 0) . co O 1 r.... O .0 - 0 a)
to ! 1` I r 0 CO ,- 11- +
E
D .- n
O 1 00,- I r -0 . 00 H
r r 0 ad 414 N I . I 11
E CO (0 to CO (O I CO I, CO ..5)
< N - 1- � VI N O) 0
U r O (0 I CV N '. N 00
to 1(sJI( c61 N-
07 O O1 O co .- to
T O M V ("0 CO M
r
O O O'O "O BOO
. 0 _
0 O'.0 O O O O (0 CO
CO CO CO CO CO i CO . CO L
O U o 0 0 6'61 o a.) co w
LO N-
o
(n to 10 (o 1 1) u) (f) O 11 11 11
0 M «) to to '.. (n 1 (n (n ,- _a "0 (1)
o ' o o'oo 0
C _
0 t- to ' o ( M
E (0 N W 8 - 0) to M
0 O N V co .M-- Q) to
Q F M
0
a) CO
0 Q1 CO N 0 CO
d _ co. (0 0 0) to 0) co
y ❑ l0 O Q N 00 W OO co M V
0 t d N
.0 0 Q N _ N 0) O O N M 0 O
CL to O r O co. o -0 C 0)
( a Q to 0 V (o N 0 > , OO O
O (/) L
O Q o c E II II II
O 00 0 C Q_o '0 N
_ o N N r _ O a) o ' (C N N N � 0) (n U C = L
It .5 Q M N M O C 0 (9 _
N N co CO M Q
U N N N N 0 O N 0 O (d 0 J.
• R L' O M N N N 0) N Q 3 CO c
Q N N N .- 7- (O 1(7
(n 0 0 . N N o cav IX 0 LL Q( 0 O
Y O O N 0 d II II II II CO
y Q d N N H CY O< U � CO
❑ 3- 3 0 N ❑ ik 42 Yt tt tt 3k It
O 0 013 C 6) 0 0 0 0 0 0 0
_ C C C 0 C C C
CCS (4
0_ m CO CO m m� m m
0) m o 0.
• ❑ o U 0 0 0 0 0 (J
57
Meadowcreek Subdivision - Phase 1
Summary of Channel Calculator Data
Bottom Side
Channel Width Slopes Mannings % 010 V10 Depth of Q100 V100 Depth of
# (ft) (ft/ft) "n" Value Slope (cfs) (fps) Flow (in) (cfs) (fps) Flow (in)
1 10 0.25 0.04 0.60% 36.50 2.47 12.52 50.76 2.72 14.94
2 10 0.17 0.04 1.00% 18.04 2.24 7.13 25.02 2.47 8.52
3 4 0.25 0.04 2.00% 8.61 2.75 6.19 11.93 3.02 7.35
4 0 0.25 0.03 0.80% 15.83 3.44 12.87 22.00 3.73 14.56
5 4 0.25 0.04 1.91% 9.48 2.78 6.59 13.17 3.06 7.82
6 0 0.25 0.03 0.50% 24.82 2.96 17.36 33.97 3.21 19.53
7 4 0.25 0.04 2.00% 8.81 2.77 6.27 12.06 3.03 7.
sa
Channel #1 - 10 Year Storm
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 36.5000 cfs
Slope 0.0060 ft /ft
Manning's n 0.0400
Height 18.0000 in
Bottom width 120.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 12.5174 in
Velocity 2.4690 fps
Flow area 14.7835 ft2
Flow perimeter 223.2208 in
Hydraulic radius 9.5368 in
Top width 220.1389 in
Area 24.0000 ft2
Perimeter 268.4318 in
Percent full 69.5409 %
Channel #1 - 100 Year Storm
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 50.7600 cfs
Slope 0.0060 ft /ft
Manning's n 0.0400
Height 18.0000 in
Bottom width 120.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 14.9377 in
Velocity 2.7223 fps
Flow area 18.6462 ft2
Flow perimeter 243.1790 in
Hydraulic radius 11.0415 in
Top width 239.5012 in
Area 24.0000 ft2
Perimeter 268.4318 in
Percent full 82.9870 %
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
Sq
Channel #2 - 10 Year Storm
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 18.0400 cfs
Slope 0.0100 ft /ft
Manning's n 0.0400
Height 18.0000 in
Bottom width 120.0000 in
Left slope 0.1667 ft /ft
Right slope 0.1667 ft /ft
Computed Results:
Depth 7.1292 in
Velocity 2.2387 fps
Flow area 8.0583 ft2
Flow perimeter 206.7132 in
Hydraulic radius 5.6135 in
Top width 205.5329 in
Area 28.4973 ft2
Perimeter 338.9368 in
Percent full 39.6065 %
Channel #2 - 100 Year Storm
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 25.0200 cfs
Slope 0.0100 ft /ft
Manning's n 0.0400
Height 18.0000 in
Bottom width 120.0000 in
Left slope 0.1667 ft /ft
Right slope 0.1667 ft /ft
Computed Results:
Depth 8.5162 in
Velocity 2.4728 fps
Flow area 10.1181 ft2
Flow perimeter 223.5840 in
Hydraulic radius 6.5166 in
Top width 222.1741 in
Area 28.4973 ft2
Perimeter 338.9368 in
Percent full 47.3123 %
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
Channel #3 - 10 Year Storm
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 8.6100 cfs
Slope 0.0200 ft /ft
Manning's n 0.0400
Height 18.0000 in
Bottom width 48.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 6.1920 in
Velocity 2.7517 fps
Flow area 3.1290 ft2
Flow perimeter 99.0602 in
Hydraulic radius 4.5485 in
Top width 97.5356 in
Area 15.0000 ft2
Perimeter 196.4318 in
Percent full 34.3998 %
Channel #3 - 100 Year Storm
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 11.9300 cfs
Slope 0.0200 ft /ft
Manning's n 0.0400
Height 18.0000 in
Bottom width 48.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 7.3457 in
Velocity 3.0222 fps
Flow area 3.9475 ft2
Flow perimeter 108.5746 in
Hydraulic radius 5.2354 in
Top width 106.7659 in
Area 15.0000 ft2
Perimeter 196.4318 in
Percent full 40.8097 %
Meadovcreek Subdivision - Phase 1
Bl,izos County, Texas
61
Channel #4 - 10 Year Storm
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 15.8300 cfs
Slope 0.0080 ft /ft
Manning's n 0.0250
Height 18.0000 in
Bottom width 0.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 12.8722 in
Velocity 3.4393 fps
Flow area 4.6026 ft2
Flow perimeter 106.1471 in
Hydraulic radius 6.2439 in
Top width 102.9778 in
Area 9.0000 ft2
Perimeter 148.4318 in
Percent full 71.5124 %
Channel #4 - 100 Year Storm
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 22.0000 cfs
Slope 0.0080 ft /ft
Manning's n 0.0250
Height 18.0000 in
Bottom width 0.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 14.5632 in
Velocity 3.7343 fps
Flow area 5.8913 ft2
Flow perimeter 120.0913 in
Hydraulic radius 7.0642 in
Top width 116.5056 in
Area 9.0000 ft2
Perimeter 148.4318 in
Percent full 80.9067 %
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
402
Channel #5 - 10 Year Storm
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 9.4800 cfs
Slope 0.0191 ft /ft
Manning's n 0.0400
Height 18.0000 in
Bottom width 48.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 6.5938 in
Velocity 2.7836 fps
Flow area 3.4057 ft2
Flow perimeter 102.3740 in
Hydraulic radius 4.7904 in
Top width 100.7506 in
Area 15.0000 ft2
Perimeter 196.4318 in
Percent full 36.6323 %
Channel #5 - 100 Year Storm
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 13.1700 cfs
Slope 0.0191 ft /ft
Manning's n 0.0400
Height 18.0000 in
Bottom width 48.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 7.8235 in
Velocity 3.0571 fps
Flow area 4.3080 ft2
Flow perimeter 112.5139 in
Hydraulic radius 5.5136 in
Top width 110.5877 in
Area 15.0000 ft2
Perimeter 196.4318 in
Percent full 43.4637 %
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
43
Channel #6 - 10 Year Storm
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 24.8200 cfs
Slope 0.0050 ft /ft
Manning's n 0.0280
Height 24.0000 in
Bottom width 0.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 17.3631 in
Velocity 2.9638 fps
Flow area 8.3744 ft2
Flow perimeter 143.1802 in
Hydraulic radius 8.4224 in
Top width 138.9052 in
Area 16.0000 ft2
Perimeter 197.9091 in
Percent full 72.3464 %
Channel #6 - 100 Year Storm
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 33.9700 cfs
Slope 0.0050 ft /ft
Manning's n 0.0280
Height 24.0000 in
Bottom width 0.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 19.5316 in
Velocity 3.2057 fps
Flow area 10.5968 ft2
Flow perimeter 161.0620 in
Hydraulic radius 9.4742 in
Top width 156.2531 in
Area 16.0000 ft2
Perimeter 197.9091 in
Percent full 81.3818 %
Meadowcreek Subdivision Phase 1
Brazos County, Texas /A_
CA
Channel #7 - 10 Year Storm
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 8.8100 cfs
Slope 0.0200 ft /ft
Manning's n 0.0400
Height 18.0000 in
Bottom width 48.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 6.2676 in
Velocity 2.7701 fps
Flow area 3.1804 ft2
Flow perimeter 99.6838 in
Hydraulic radius 4.5943 in
Top width 98.1407 in
Area 15.0000 ft2
Perimeter 196.4318 in
Percent full 34.8199 %
Channel #7 - 100 Year Storm
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 12.0600 cfs
Slope 0.0200 ft /ft
Manning's n 0.0400
Height 18.0000 in
Bottom width 48.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 7.3871 in
Velocity 3.0315 fps
Flow area 3.9782 ft2
Flow perimeter 108.9160 in
Hydraulic radius 5.2597 in
Top width 107.0972 in
Area 15.0000 ft2
Perimeter 196.4318 in
Percent full 41.0397 %
Meadocreek Subdivision - Phase 1
Hrazos County, Texas
APPENDIX D
Detention Pond Design Data & Calculations:
Area - Capacity Data, SCS Curve Number Data, Time of Concentration Calculations
66
Meadowcreek Subdivision - Phase 1
Detention Pond No. 1 Area - Capacity Data
V = H * {[A1 +A2 + (A1 *A2) / 3}
V = volume, ft
A = area, ft
H = difference in elevation, ft
POND NO. 1
Area - Capacity Data
Elevation Depth Area Area Volume Cumulative
(ft) (ft) (ft) (acres) (ac -ft) (ac -ft)
293.00 0.00 0 0.000 0.000 0.000
294.00 1.00 9,431 0.217 0.072 0.072
295.00 2.00 34,155 0.784 0.471 0.543
296.00 3.00 51,597 1.184 0.977 1.520
297.00 4.00 72,100 1.655 1.413 2.934
298.00 5.00 132,853 3.050 2.317 5.251
299.00 6.00 235,184 5.399 4.169 9.420
Detention Pond No. 1 Elevation Discharge Data
POND NO. 1
Elevation Discharge Data _
2-4.5' wide x 2- high openings 10' wide Overflow Spillway Total
Elevation L =9.0', A =18 sf crest =296.5 20" BW, 3H:1V side slopes Discharge Elevation
Weir Orifice Weir crest = 297.5, n =0.030
(ft) y, depth (ft) Q, cfs h, depth (ft) Q, cfs y, depth (ft) Q, cfs y, depth (ft) Q, cfs Q, cfs (ft)
293.0 0.0 0.0 0.0 0.0 -- -- -- -- 0.0 293.0
294.0 1.0 27.0 -- -- -- -- -- 27.0 294.0
295.0 2.0 76.4 -- -- -- -- 76.4 295.0
296.0 -- 2.0 122.7 -- -- -- -- 122.7 296.0
297.0 -- -- 3.0 150.3 0.5 10.6 -- -- 160.9 297.0
298.0 -- 4.0 173.5 1.5 55.1 0.5 18.0 246.0 298.0
299.0 -- -- 5.0 194.0 2.5 118.6 1.5 113.2 425.8 299.0
1. Weir Equation Q = 3.0 * L * y312
2. Orifice Equation Q = 4.82 * A.* h 112
3. Overflow Spillway - Mannings Equation
(PI
Meadowcreek Subdivision - Phase 1
SCS Curve Number Calculations
Drainage Area - 101
Area - Ac. 188.48
sq. mi. 0.2945
T, = 83.1
Lag = L = 0.6Tc = 49.9 min = 0.831 hrs
Weighted
Land Use Soil Type Area - Ac. CN II CN
Pasture (good) C 54.73 74 21.5
Pasture (good) D 26.62 80 11.3
Wooded (good) C 58.08 70 21.6
Wooded (good) D 39.87 77 16.3
Farmstead C 4.50 82 2.0
Road -- 2.36 98 1.2
Water -- 2.32 100 1.2
Total - CN II 188.48 75.1
Average Runoff condition CN = 69.7
CNI = 57.1
ARC CN = CN I + 0.70(CN II - CN I)
SCS Curve Number Calculations
Post - Development
Drainage Area - 301
Area - Ac. 188.48
sq. mi. 0.2945
T, = 80.5
Lag = L = 0.6Tc = 48.3 min = 0.805 hrs
Weighted
Land Use Soil Type Area - Ac. CN II CN
Pasture (good) C 55.49 74 21.8
Pasture (good) D 26.78 80 11.4
Wooded (good) C 44.26 70 16.4
Wooded (good) D 32.24 77 13.2
Developed Area C 12.66 90 6.0
Developed Area D 7.87 92 3.8
Farmstead C 4.50 82 2.0
Road -- 2.36 98 1.2
Water -- 2.32 100 1.2
Total - CN II 188.48 77.1
Average Runoff condition CN = 71.7
CN I = 59.1
ARC CN = CNI + 0.70(CN II - CN I)
(o�
Meadowcreek Subdivision - Phase 1
T Calculations- Pre - Development
Drainage Area #101
Sheet Flow: n= 0.24 (dense grass)
P= 4.5
L= 300 EIev 332.3 EIev 331.1 Slope= 0.0040
T,= 0.007(L "n)" ° = 0.919 hours= I 55.1 min
(P)0.5,(S)0.
Concentrated Flow 1: V= 2 fps (unpaved)
L= 404 Elev 331.1 EIev 326 Slope= 0.0126
T,= L /(60 *V) = I 3.4 min
Concentrated Flow 2: V= 3.8 fps (unpaved)
L= 55 Elev 326 EIev 323 Slope= 0.0545'
T,= L /(60 *V) = I 0.2 min
Flow Through Stream #1 V= 2.02 fps (Manning's)
Segment #1:
L= 800 Elev 323 EIev 313 Slope= ._0:0125.
T L/(60*V) = I 6.6 min I
Flow Through Stream #1 V= 2.49 fps ( Manning's)
Segment #2:
L= 1461 EIev 313 EIev = 297 Slope= 0.0110
T,= L /(60*V) = I 9.8 min I
Flow Through Stream #3 V= 1.51, fps (Manning's)
Segment #1:
L= 384 Elev 297 EIev 296.5 Slope= 0.0013
T,= L /(60*V) = 4.2 min
Flow Through Stream #3 V= 2.57 fps (Manning's)
Segment #2:
L= 581 Elev 296.5 Elev 293.5 Slope= 0.005
T,= L /(60 *V) = 3.8 min
IT 83.1 min I
(p9
Meadowcreek Subdivision - Phase 1
T Calculations- Post - Development
Drainage Area #301
Sheet Flow: n= 0.24 (dense grass)
P= 4.5
L= 300 Elev 332.3; Elev 331.1 Slope= 0.0040
T 0.007(L *n)" ° = 0.919 hours= I 55.1 min
(P)0.5 *(S)0.
Concentrated Flow 1: V= 2 fps (unpaved)
L= 404 Elev 331:1 Elev 326 Slope= 0.0126
T L /(60*V) = 3.4 min
Concentrated Flow 2: V= 3.8 fps (unpaved)
L= 55 Elev 326 Elev 323 Slope= 0.0545:
Tt L /(60 *V) = ( 0.2 min I
Flow Through Channel #3: V= 2.75 fps (Manning's)
L= 142.5' Elev 321.94 Elev 319.09 Slope= 0.0200
T L /(60*V) = I 0.9 min I
Flow Through Pipe #3: V= 6.37 fps (Manning's)
L= 24 Elev,= Elev Slope= 0.0100
T L /(60 *V) = I 0.1 min I
Flow Through Pipe #2: V= 6.95 fps (Manning's)
L= 31 Elev,= Elev Slope= 0.0100
T L /(60 *V) = 0.1 min
Flow Through Pipe #1: V= 7.02 fps (Manning's)
L= 83 Elev,= 0 Elev Slope= 0.0100
T L /(60 *V) = 0.2 min
Flow Through Channel #2: V= 2.24 fps (Manning's)
L= 960 Elev,= 0 Elev,= Slope= 0.0060
70
T,= L /(60 *V) = I 7.1 min 1
Flow Through Channel #1: V= 2.38 fps (Manning's)
L= 380 Elev 0 Elev Slope= 0.0060
T,= L /(60 *V) = 2.7 min
Flow Through Stream #1 V= 2.49 fps (Manning's)
Segment #2:
L= 762 Elev Elev Slope= 0.0110
T,= L /(60 *V) = I 5.1 min
Flow Through Stream #3 V= 1.51 fps (Manning's)
Segment #1:
L= 384 Elev Elev Slope= 0.0013
T,= L /(60 *V) = I 4.2 min
Flow Through Stream #3 V= 2.57 fps (Manning's)
Segment #2:
L= 218 EIev Elev Slope= 0.0050
T,= L/(60*V) = I 1.4 min
I Tc = 80.5 min I
1'
J'
.1■■•=11111MEMIMMIIMINI SUM= MN •• MIMI IMP APIMMINIIIN
INIIMM Elt .t.t......■..••Ill1.........1 MINI',MINMI U
ttttIMMINI.. ..MM..■a WON NMI tg......IPIIMMMINIMIIINIIIIIIII
__ a.___..■■ .■ ■..hI1il1.. ■■ ■IIaaMalI∎..1•111111111111 ,
". �IM���1•� .U.UUI.ii•ii ■uv /.IM/
MNIMMEMOR•III•■111111111111111111■ ■11■ /1111/ /MMU■ •
IMIIIMII__U.Ru■■IUIIIIIIIIU 111I11'/MIIIIIIII■ 1
IIIMIIIIIIIIMINIM 1111111111IIIIIMI I' IIIMMI111•1■
������1�■11f111111111�1111M 1�1�MINI■
.20 — MIIMM..11 1IIIIIIIIIIIII■/111/.11IIIIIMII■
IN. . INII /111111111 ■I I/i 11►,1111NM1■
■.. iiii .I11111111111II
■■III IIIf hiIII IIIII I/ WA II M11I
11.11111111111111.111111111111111111=111111111.111111111111111111=1111111111111 .10 — 1■1 ..limuI■ m.. ■ ■ ■. ••••essam... ■ ■. ■ ■.•■••••■••=
ftltl.1=11ttt...Mf....■■■■■801101 U.. ■■■■11111111 IM..1IN
. ---- m...■■ ■ ■■■.■.u.....■■■■■■ ∎..IMMIMIM
4- MINIMIIIIMINIMIIIIM NMI orili WA Mono Is MINEMMENO
_ miimisMonom umaa iarIII MMa■a ummil
• IMIIIIIIMIIIMINIIIIIMIIIIIIII 1111/41• ■UI11111111•11111UU
�MI�......iIIu11 / 1111 /M�IIhhIII11�IMU�
o . 06 — IIIIIIIIIIIIIIIIIIIIIIIIIII1111 /iIIIMI ■IIIIIIII
�MI�...MIIIII III u��al/u111I���•■
N — ---- - - - -■. ._• _... ..• -- M■ I.-- a 0 ■••■••■■•••111INIMM
(I) MI■11■1■111=11.1 MOM= MIN AIM III' •Ile =111111111MI MIN NM MN 6111M1■11•11111MIIIM
= ...m.im .m...r'1...' ••u 1.......•■••tl. ..tt.tl...
o IIMIIIM11111131111BMINIIIIP a■■. / ■■•.u. ■■111•MIIIMIIINI
V •11•11=11a.111•U.. ■ /. ■ ■a'dl■ /{1/1■ N U••.uuiaa.aMMIIIIa■11 - 1
L _ __aal__..ala 1/ as /gliIl111111 al■ • IN II��a.al•�
m aa■ a.1a. .111• I../J ■IIMIIlfihl..UU •IaahIIIIIIIIIUMIIIN
" IIIIIIIIMINIIIIIMINE•4 ■11/11111111111111111111111■1111111111MININIIN
3C l�mmum ■%fit '4 11111111milllI1111um■
11.111111•111 ■F4UJ 511111IIIIRIIIIIII11i•��R•
.02 — MIIIIIMI NIIIIIIIIII11IIMII111NaI
ME■ a '° /111111111111111111111.■■..
■■ J c , a� �111111111111U11111111
■■ A 4111111111111111111111111111111111 •
.01 — ■ UI! 4V1111111111111I1111111111Rilil
ONNE/,U/ ■ilIII1 /1111111■1IIIIII
MINVAR Ai1IIIIIIIIIIIIII1IIII1111111111111
mil, ■/ ,JIII111111111111N11111111S•RI■
■ IIigii11111111111IIIHH11111111 .1111UII 1 •
.005 — • 10111111111111111N1111111111RIII .
1 1 1 i V o l t s 1
1 2 4 6 10 20
•
Average velocity, ft /sec
Figure :1-I.—Average velocities for estimating travel time for shallow concentrated flow. , ,,
3 -2 (210- VI- TR -55, Second Ed., June 1986) ,1
Stream #1 Segment #1
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 13.6800 cfs
Slope 0.0125 ft /ft
Manning's n 0.0600
Height 18.0000 in
Bottom width 24.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 12.8982 in
Velocity 2.0204 fps
Flow area 6.7709 ft2
Flow perimeter 130.3609 in
Hydraulic radius 7.4793 in
Top width 127.1853 in
Area 12.0000 ft2
Perimeter 172.4318 in
Percent full 71.6564 %
Stream #1 Segment #2
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 38.4400 cfs
Slope 0.0110 ft /ft
Manning's n 0.0600
Height 30.0000 in
Bottom width 36.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 19.4832 in
Velocity 2.4936 fps
Flow area 15.4152 ft2
Flow perimeter 196.6629 in
Hydraulic radius 11.2873 in
Top width 191.8659 in
Area 32.5000 ft2
Perimeter 283.3863 in
Percent full 64.9441 %
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
73
Stream #2 Segment #1
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 58.2100 cfs
Slope 0.0060 ft /ft
Manning's n 0.0400
Height 30.0000 in
Bottom width 36.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 22.3463 in
Velocity 2.9916 fps
Flow area 19.4576 ft2
Flow perimeter 220.2723 in
Hydraulic radius 12.7201 in
Top width 214.7704 in
Area 32.5000 ft2
Perimeter 283.3863 in
Percent full 74.4877 %
Stream #2 Segment #2
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 21.8900 cfs
Slope 0.0060 ft /ft
Manning's n 0.0400
Height 30.0000 in
Bottom width 36.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 14.4412 in
Velocity 2.3279 fps
Flow area 9.4034 ft2
Flow perimeter 155.0856 in
Hydraulic radius 8.7312 in
Top width 151.5300 in
Area 32.5000 ft2
Perimeter 283.3863 in
Percent full 48.1375 %
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
-74
Stream #3 Segment #1
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 125.6200 cfs
Slope 0.0013 ft /ft
Manning's n 0.0600
Height 50.0000 in
Bottom width 72.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 46.4942 in
Velocity 1.5081 fps
Flow area 83.2946 ft2
Flow perimeter 455.4009 in
Hydraulic radius 26.3382 in
Top width 443.9535 in
Area 94.4444 ft2
Perimeter 484.3106 in
Percent full 92.9884 %
Stream #3 Segment #2
Channel Calculator
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 141.3600 cfs
Slope 0.0050 ft /ft
Manning's n 0.0600
Height 42.0000 in
Bottom width 72.0000 in
Left slope 0.2500 ft /ft
Right slope 0.2500 ft /ft
Computed Results:
Depth 36.4253 in
Velocity 2.5670 fps
Flow area 55.0684 ft2
Flow perimeter 372.3710 in
Hydraulic radius 21.2955 in
Top width 363.4027 in
Area 70.0000 ft2
Perimeter 418.3409 in
Percent full 86.7270 %
Meadowcreek Subdivision - Phase 1
Brazos County, Texas
1
APPENDIX E
Detention Pond Pre - Development HEC -1 Output, Runoff Summary & Schematic
7 c)
PRE 25
PRE10 PR ESO
PRE100
•
°P�
* * 4 * * * * * *
H * *
Z * 4.
W * *
X * 4
C4 * cx 4
0 * cow 3 •
X * (x H 4 w
W * W Z ' * a
4 W W H *
> * Z U 1.0 * H Z
I C7 0 w o 0
X cn
a 4, W 1-1 0 C o 4 H (x
a * a H H H * U) W
4 E.4 W (n Z H
° Z 0 o '0 x
* (n H Z (- in * - a 1- U
* a 0 0 H r- 3 U Z! Z
3 0 O w w "-- * w H w
m 0 � * x (
* U 01
* 0 f-, * 0 a (x w
3 >"+ H ON ■ 01 * Z >' O (x
* 0o v) - * H W W
4 O 1 .0 H
* a >
W w Z
4 O r H <4 H.
it • 0 Q •N H 0 H H
* w 0
�O U .-1 (1) (n �C
* x * 1.0 x W H W H
* *
3 H x
3 3 I - H H H H
*
* * * * * * * * * 'n 0 X E' 3 Z
N H H
0 H • u)
W 3 -4 W H
M x m 0 a
° 0
.. .. .. .. .. .. .. .. N W a -
.. .. .. .. .. .. .. .. .. -_ — cnwZ
co cn O 0
X X X X X X X .. .. .. .. .. .. .. .. .. 4 S` I-1
W CO H
X o� °r 4 0 0 W
X •• •• . .. .. io — H W U W
0 .. -. - •• ° H X < < C7
X .. .. N U .- •• .) W Cx W
C •• •• 0 x (s. u) W H
(1) H •• •• u Z C7
.Li � Q o
in X X X X k .. .. 0 0 • • • • zz H Cn
4 X X X X X X X -. •• E+ •1 .. •• C 3 0 X W H
-- •• N >, aJ .. .. 0 Z U 01 Z
p N U w x>
o X X .. .. 0 .. .. > E - ' w a
0 X X X .. .. 0 .. .. W x 3 a s
0 X X X • • • • 0 (/) p x , 0 0) 0 1
X X X X X X X •• •• V N .. .- W a O C7 rZ-1 Z x
• • • • J - 1 0 H Z cn H E-'
H. X X X X X X X .. .• •• •• 3 cn E- x - Z (24 H X •• .•
w X .. ..
•• •• Z , 0 O O
* 0 0 0 U cal I-1 H a
a) XXXXX •• •• w .. .• ro a < -1
0 •• •• .- -.
•• -- •• •• •• •• •• •• •• 0 > . 00100
.................. v cn 5 X�w
'0 Z H U W U ix
m -.+ O H 0 W
m m H a 0 w n a
4. * 4. * * * 4. * 4. •-- > W a
4.0 3 3 0 W 3 Cx H
4 N 4 0 a w Z O 0
a W
4. d'
C * ..
E
a r-C H Ca E-
-
O � 4' o 3 -- r -1 Q X 0E-
4 . m * U
S-! * W 0- * a Cn I-1
v * � C * w > g u) w
* * 0 , w w 3
X 3 O * w 0 w a H w
* ( '1 w 1-4 4, a u. m (x Z
4' H H .1, a O� w
* 01 H rn • 3 a Z X C) w w
* U rn o * O O w>
* x * H H •• Z <C
* a d' 0 * H H Cr) H 3
* 0 * H H Z H
0) * x Z (N * C7 Z Z O U
a) 4, 1.0 4 0 t=, G. E-■ FC H
ri * Cx cn N * a w w a w
o * 0 cx * 00O(x
o * 0 W rl * v) - G)
(0 * (x > o * i-' W W 3 Cf) Z
• * 0 * x xxwcnH
, * >1 * E ■ 0 E■ Z 0 Yr
'-a * x W
* E' *
* q rC
O * 0 n
4, (� 4
M
L,
■
.., 7 7 4 4 + • .. . ■
H
W
0
g
a
0
H
01
w 0 0 0 0 0
d , N N 0 01
. , t' 1.11 10 r- N
N O O O O O
N M r1 N pi
• rl 'V' Lc) Lc) Lo
01 O O O O O
01 01 0 rI N
• CO 01 d' Lf1 in
U)
. II
to a) N Co N N N N N r-1 N 0 N
E-1 E-1 N k N 0 N in N 01 N pi N
X N rl (0 rl V'
•
z
H ?-I
0
H .CI
d' r-i 0 N 10 C 0 L(1
U ,-1 0 r1 d' 10 00 01
W (I) r1 .
3 rl )J ri 1-1 )-1 r-I ri
• ro a) Rs a) >,
a) >. a) >.
G >, 1 >' 0
rl 0 0 0 L0 d' 0 Hi 0 co
• - ,1 Lfl \0 r1 V0 in N in co HI Co
. N
-r1 0 0 0 1 0 1 0
. 1
-rt r-i ,-I H ri HI
'I3 0 0 0 0 0
A ' -1 r-1 rl H r-1 F.
N 0 0 O N O N O N O N O N Z
H
• `n a) 01 a) 01 a) 01 a) 0■ a) 01 0
CD W
sJ a) a) a) a) a) 0
,-1 3 r-1 L11 � L0 lfl H 01 Lf1 0 H ( Ln 10 ri � in 0 ,-I 0 ((5 in 0 H 0 411
• 0 0 V' rl 0 [." V' ,-1 rl in 0 d' N r1 0 0 d' 0 rl 0 0 a' 0 01 X
• 7:1 Lfl -H 01 CO r-I -,1 01 m N -rl 01 0) in -H 0f r-I co H - rl 01 H CO U
• al W (15 N W r0 N . 141 it N W (0 N W (0 N (n
(1) 0 N - 0 (x 44 0 (x la 0 (4 )-1 0 05 41 0 w 1-1
X 0., q 0 0.1 q 0 a1 q 0 a q 0 0., q 0 q q
q qH 1-1 x 0 x 14 10 x 0 x0 0 o aaX 0 roaaX x o r a n a )0 X 5 (00 10 x XX N
W r♦ N rl •7' L(1 to N CO 01 0 r-1 N rl d' Ln l0 (- Co 01 0 r-1 N 01 •t. 1.11 1.0 N CO 01 O ■-I N 01 d' Ln (o h CO 01 0 11 N 01
'z r-1 r1 r-I H r-1 ri .-1 ri ■-1 r 4 N N N N N N N N N N r1 r) 0101 01 01(.101 rl on 'T ' <1' <1'
H
.-1
4444 ## ##### *
44 * *
# * *
* *
44
* a * *
# Ul w +, *
* a F
# w Z 'D * *
# w W H * *
# Z U w *
* H F U1 *
* U 0 w m * *
* Z z w cr. *
* wHa4C0 * *
* a F H ,-1 *
* a w Ul Z ,l *
3 o w R 1 * *
3 Z 0 0 k.0 * *
* Ul H z r4 In *
* a 0 o H N * *
44 aZU,-7 *
* oww< - - *
44 U Ul U l0 *
# 0 r1 * *
* >', H Ol . m * *
* X00cn -- *
* o . > * *
# 4, # • ▪ 0 0
* Ul n
* • x * *
* * *
# *
* * *
* * *
*
*
44
44
44
*
*
*
*
*
a
E *
F
*
o *
d *
a
if
in
.� > g *
A
N ,F7, Z
1
H 0 *
4, X w a Z 0
w
H 4 Hi X *
U 4'4 #
U *
O 0 0
a
A ] a 014410 0 F
al o-1 UFE>+ [1 1-1 *
rs, 3 ao FCHxwwa Ul m w *
Fax Z0E' FE s x
1 ZFa H IL. gH a a Z *
-0 0Z� 00 00E - 0 w w *
n:$ 0 U O Z >, X cm a a *
q O U 0 w H H a 0 0 a w
-,1 F 0 F E- F w Z Z Z o� -1 F *
Ul Z F a fx ■ PO H H F o 0 H w F a *
-� H 0 0 Z 4C A fa Z E w w
X 4 >, H F F Z Z w o" O w Ul
r ., -,-1 aax Ecnm wwu L.1 Li) O 01 *
w 0 , U) w *
* * 44 * * * * * * A cn x F r-' w w a *
10 * * 3 wino • H 0 0 0 0 0 01 u w fY1 a a 0
* 0 * Ul -7 0 0 0 In ,-a 4 w O Z w U u w *
� #
3 .. * r FC o N o H [� u (a
G * .. * x *
O * H (N * (1) H F a f-0
m 3 U 4, 4 Q F w x *
} * w N # U > Z E F
al * x ,-1 * 3 w I-+ H a Z
3 -- # 0 a E F w o *
* * 'b 0 H Z 0 H *
X 3 w * m a F o a F w *
3 w E 3 aJ FFF.a ZwwOww HQ 4Z4
3 0 w H * E Z Z o I 1 x H F E Z F Z E- HE w o> aC
* H H F 4 00)4-10 a E 4 H 1 # - 1 Z FC o a H w ,-a w G] * 44 44 44 #*
* 0 • 3 U at a c n rr 1� Z f a F fa F w PE 4 F 4 o a a * * *
# 0 m 0 44 H H of a H H 00)0 .'7 4 >.1c .'7 4 ' *
* f H • in * F 0 ZZH a cnw F
d 0 44 0 E F 0 I Z -, w W * *
* a
# o # a a 0 H FP, a X ` 0 0 0) 44
* * in
0 * x 7. N # F CI H U 0 3 0) w a * * I 4,,
0 -k a ? O # Z >
rn * H co # 0 x 1Ww0000E * * a
,--1 # m N x a waFZ w * #
o * 0 a * m Q a .a [i. cn Ul F
o # 0 W r1 # H * * #
Pi - k 0) > 0 # 4 * * *
'1 , * Ca * 0 * * * * * *
r-4 # >' * Z
.-1 * .T, w 44 01 *
* F *
* C> < * *
2. * ( a *
x 0 E *
-1 14: * `,
I11
3
*
.3 -3
* *
*
i# 3
* *
* 4
4 *
*
* 4
* *
*
*
* *
* 3
3
* *
* *
4 *
*
* *
* *
3 *
4
4 4
3 3
4 3
*
4
4 *
*
*
*
*
*
* 3
4
* *
*
O * 0 *
O * 0 *
o
o *
W Q o W Q O
H g> o * H 4> ° * 3
H En FC w 4 H Cn R4 4
0) Z ( 4 x
X o 4 a 0 0 4 a -04 co rx *
4 H Q O Cn
W 0 x W Q R: W C7
a O H x W * * 0 F x W *
3 v Q
U Q Z 0 x w 4 m o D �� Z x w 4 (f) >, � x o 0) Z w * x a 0 0 Z w * x
0 Q a w a H o - o Q a W a H o * o Q
rr�� a .-1[4. * a a W
o a W F X KC E 4 0 * * a o a E * Z E 4 0 * o a a F
X o 0 0 z 4 X Fax 0 O H z a H 0 x a
H fxxXOHZa * ZFaXfx * zEax
ZHa0 * OZ�O
0 • 0 X UQ 0XZ * 00X0Q0 E-. * UO
U00UXOOH UCH x OH
x F O x F
Z F a U W ccn F W I O Q U
HOQZ> XcnX N 4 HF * 0) X N 4 Cj
R : a .>.'1 ✓ H H W a a ✓ 4:4:l-4 0) Lti a J
a a x fa. c n 1 H w * a s X0 m a. -)H La * wax
H * H *
Cn O *
0 *
W Lf1 0 • O N , 0 N W Ln O • O N H O h W Ln O • O
a O N 0 f O 4 a O N 0 . O * a O
rn 0 4 g M 0 4 0)
H O H O H
4
* > 3
a * a * a
* a 0 * 0
z zH�U� 0 FFFaXH. - INH 0 HFHax
* Z Z 0 g U X >> X a * z Z O 4 U
O a a U Z O FC 4C H 0 * * * * * * O fx a U Z O FC 4 C H 0 * * * * * * O o a U Z
U aama, HCn 0 * * * Ua a Cn aH Cn CnX o 4' * * Uaacn
1-1 H 01 H 1--1 H H a * * H I-1 a H H H H a * * H H O I-1
H E. * * * F F * * * H
* .3 O * 0 Z -3 * L.1 * U
X H * * r-1 * a H * * N * a
H * W * H * W * F
O a * * a 4' 0 a * * n. * 0
4 * * * *
[ * * * H * L. *
* * *
0) * * * * * * W * * * * * *
Q
W * W
U * U `
X k
O CO * ri w * . .
* -.
* *
*
*
*
4 *
*
*
4
* *
*
*
*
*
*
* 1,
*
*
*
* *
*
4 *
*
*
*
*
*
*
* *
*
*
*
* 4,
*
*
*
4 *
0 * o
O * O * O
o
o * Q o
I-1 � (•C \O * H co < VD * 11 � < lD
CI) 0)
* xCa a o rx
C4 a * a o a
co H Q O U) 44 H Q O U) 4, PC Cn H Q 0 U)
F UXO * 4 0xO H * aaFUO
U x IN * U Q z . z-+ X o x r-
O OzUx m U Q z >- • O a \o x `0
O a z \o * * x 04 Jz VD * x a ' z az \
'x a 1-L H * O Q a w a H o OQa
H * H x a H H
o.w o C.1
O
g * a 0 w Hw.a * O o
O Z g * a O a 0 0 Z F.
X a O
o 1--i z (x H X H z IZ * F x a o H z� (Y..
X0H * zE (2 QF * OZ L-IC=
Q o O H * U O X U ' o o H -0 U 0 X U O o H
* F O x H
w C H w * i O Q U > a CHn E r- * H U O Q 7 > a c Z N
g 4 H \O a s >+ KC I-I g F.I \O C4 ra J 1 CC H /S H \)
c n a . - a H \o * a a x a V I a H \o * a a x a U) ILI .a H
ri * .1
o * Cn O
N .1 0 L" w In 0 • 0 N HI 0 N O * w Ln O • O N H 0 r"
N 0 H O * a O N 0 ri 0 * .-] O N 0 r1 0
f+l 0 * W M 0 * CQ M 0
* g * g
O H 0 11 O
* * FC
* µ
* a * a
* 0
O * z z o a u� >> z 0 a
* ZF > >z 0
•a
O KC KC " 0 * * * * * * O R 4-7 U Z O FC g I--1 C7 * * * * * * O IX 0 U Z O FC FC I 0
H C n c n ,0) 0 * * * U a a m a H Cn Cn 0) 0 * * * U a a CI) a H cn Cn X 0
H H H a * * H H 0 H H H H .-a * * F1 H 0 H H H H a
H * * * H H * * 0 * H H
Z * * o * (5 Z * * o * (5 z
F-1 * * in * a H * * ri * a H
* w * H * w * H
w * * a * (5 w * * a * (5 w
F a * * a * 0 a * * a * O a
w * * * as 4, * * w
4 * * * * it
(n * * * * * * Cn * * * * * *
o 0 0
C.) * 41 * C�1
W * w *
U * r 1
U
• G G1 « 0) C ., Hi
4'
4'
4'
4'
4'
4'
x
4'
4'
9'
1'
9'
9'
4'
4'
4'
e
x
4'
9'
4'
4'
4'
9'
4'
4'
4'
4'
4'
4'
x
t
9'
9'
x
4'
4'
4'
x
x 0
Q
i H Cn FC
4 x a
as oa
g4 o
x o]C Qa
k a U x
U Q Z Z U
« x a Z
k E+ x a H
o Q a w
° OD0 Z z >
x Z axa0Hw
U OZZ
U C7 x O H
H OQ V >aCnX
C:4 a H H
aalX cn E.
4'
4'
W ino • oroHOS
a 0 N O -i
* (T� M
H 0
1 a
k
k >
k ]
0
E~E•E�axE��NE•
* 4'* O ° a u Z O F k H
# # k U a a Cn a H CA En X
k x H H 0 H H H H
k M k E.
a
x a x 0
x Q x 0
x x
4' x
x e
« « x
« « x x x x
r
4' Y, O
w
w 0
O TC
H
w U)
X
H
6 J w
I 0
H g
H
Z 4 O\ O\ O\ Ol 01 N
H w N N N N N C
Q,' 0 0 0 0 0 H
on
Q a .
o 'J lO N r W L` coo
H 0 d' lO CO 0 N N
a x H H
w
co a N
w N
a
H
z • X
Zi 1-1
w < ) lD N N Lo r- co
U) Z O •' l) W 0 N N
a rx x H H
>' [4 u) 0 I
(24 C.1 w
a H N
w< 0
(n w w w
w PC w v: .
w 0 (7 .h- W N N VD (- w
O H (4 0 a' to CO 0 N N
Ol co w x
cr
[Y U r4 ' to
z o
H x
3 z
o H
w
w w 0 x N N 0 co N O
X KC Ln Ln Ln d' d' Ln
H (.1 w
H Z a m rn ri rn rn rn
[II
co co N co d' LP
0 in O co d' H H
[x] a H N N m d' d'
a a rL
Z 0
o 0 Ln o 0
H in ,-1 N Ln rl
4 a a a a a a
H a a a a a (3 *
u)
*
H H H H H H
< ‹C FC FC FC 4 U
w
X x x X x 0 x
H 0 a z o
H o c7 CD CD CD w
0 0 °
0 0 Z z
w (3 0 0 [3 0 U 47
a >' >' > >■ >
O X x X x x Ln a
g
a:
k U 1
APPENDIX F
Detention Pond Post - Development HEC -1 Output, Runoff Summary & Schematic
VO
POST10
[POST50
POSTS V / Ir
A � loo
NDS
p V
0
Vv
Z
w * *
X * *
a * *
0 4 ' a
a * m w * •
w * a H * w
> * 4 1 Z l0 * a
u 4 Z0 o HZ
1 4 1-4 H ft) * U 0
H * z Z w° a m
0 4 w 1Hago 4 Ha
a if a H H H 4 m w
•
* CL w m H 4 1>
* ° Z 0 0 to * Q r
4 m H z a lfl * H a r U
4 4 0 0 H C� * 0 Z W
* 0 Ww4 --
* U m U )13 *
X
* U * 0 0a
* r 1 GI . 0\ * Z H 0 W
it 0 o m "•-* 4
4 0 l0 H *
4 4 > * .. 1 w w z
a 0 * 0 NH44°
4 •
4 m 0
H 0 ■ H H
l0 0 H m m FC
4 z X 4
4
* * � x xmH47
* * 1 H FI 1-4 4-1
4
* * * * * * * * * in 0 x H 3 Z
r H H H
U H • m
w 3 H m H
r) X coCaa
0 0
.. .. .. .. .. .. .. .. ro w a - �C
m w z
r 0 m0CI)
X X X X X X X .. .. .. .. .. .. .. .. .. * C` H zz
woo H FC
.... C .... c Z mN PIC
0 X .. .. .. .. N h 0 0 0 W
X
o v H H 1 a
a X .. .. RI .. .. H X g g 0
H X .. .. .. .. U 0 0 U ..
.. - • a) U •• .• W a w
X X .. .. N H . • .. U x G Z C
U X >4 .... a . ....
U � 000
0. >4 >4 .. .. H ,j .. .. ai z 1H 0 cn
>4 XX><XX •• •• � 4 .. .. Q 0 aZ4
a •• .. ,, a) U w
a .. ..
X X X .. .• •• •• •-•4 > H w 4
X X X ...• 0 Ai ...• 0 w x 3 4 04
U >4 X X •• •• 0 w .c7 x 1 00w
.. X X x X X X X •• .. U ro .. N a 0 C Z
-ri x .. •. J.J 0 H Cr) H H
XXXXXXX .... .. .. a m a �z
C1i X H .... Z 10 00
* 0 0
H Cam U H 17
N X .. .. z
N XXX .. .• G` .. .. al as 4 3 Z 4
0 .. .• •• ••
0 > , n 4
•• •• •. •• •• •• •• •• •• a) m xgxg
'0 0 H U (Q U a
rn - 4 0 H I x w
,•, U) H a X Cr) 0 a if * * * * * * * * .4 > 1 w G■
* ,N * 0 a W O ° 17 U) C7
C * •• * w a aww
0 * H r) 4 4 CA 1 H Ca H
-r1 4 I 0 4 N .-7 FC .Y. 0 H
S-1 4 w h * t"1 H Cr) FCC H
4 x ■ --1 * m X uC x w
* W > * m
4 4' U W W
X * w X 4 ,-1 0wmaz
* 0 w H * a 0 X m w
4 r1 ,-1 H m * w ..
4 Cr \ • * a zzo w
* 0 rn o * 0 0 w>
* F(,' r-1 • In * 0 H H • • 44
* a o * H H m H 3
* 0 * H H Z H
al * x Z N * U Z Z 0 U
o * a >+ 0 — * 0 H H H H
* 64H ID * a awH < H
r, * m N * a ill waw
o * 0 a * Ca 0 0 4
o * 0 w H * cn -• w
r'1 * (2 . > 0 * H w w Zr
* 0 * x x x w cn H
4+) * >' * H H 4
r-I * r w *
* C *
.. * Cl 6 C
o * 0 0
* 0
.f.) * . -7 k
* .,
k k
:,1 k M k a a Q ,. ..
w
4
a
0
ri
rn
m o 0 0
cl' N N
C 10 10
h O 10 10 10 10 O O\ 0 0 0 0 01
N Ol r1 Ol • 01 • rI O1
• 01 1 V. 101 01 Ol • GI IV
in • O1 N 01 d' • m d' 01 LO
•
In N V. N Ln N N N 10
•
. d'
10 0 0 0 r1 0 O 0 0 r1 0 O 0
rn 01 Ln 10 Ln
• O co in 00 O (b in N 0
•
• 01 • 01 V' 0) M • 01 d' 01 cr
• (0 N N N rn N N N •l
W
X
to a) N co N Ln 0 01 0 N N N LP 0 01 0 N N N 1.0
H F. N 10 N Ln N 0 N In N in N in
\0 N o r 10 N 0 N 10
• •
a N • 01 10 CA rl • 01 10 01 r1
Z { r1 N ri N r1 N r-I N ■l
H S-I
• 0
ri ..C1
• r-I O N d' O N 0 Ln d' 0 h 0 d' Cr
u ri O M OD Cr 0) 10 CO
W a) 10 rl V) N 10 r-I 10 N 10 ■i
X 3 ri • 01 N 01 .-i • 01 N 01 $-1 =I
S1 r N ri N r-1 N ri N (0 ,-1
•
• I N S-I (ll
• a) r6 >,'
C >, a)
rn 0 0 0 d' 0 d' 0 >, l0 0 d' 0 d' O Lll d' 0 a'
-.-1 in is 10 !b N N • CO
• N r1 0' Lf1 10 Ln 0 r1 L' in 10 in rn h
-.-1 I 0 al • Ol h 01 rl 0 Ol • ON 0' T I 0 01 •
•
• > N O N N N 0 (V N N 0
-ri ri r1 ri
'0 O 0 0
.-4 rn rn r1
N (5 0 0 r 'b >N000 0 r '0 > 0' 0 0 0 0 r r 0 > 0-
O) (0 0 W r1 . . r6 G W •■ - - • N C W rI
a) -- r-1 0 a N V. (' d' a) r-I 0 .-1 N V. L' V' (1) ri 0 -5 N
•& S1 L' a W • 01 N 1 S-I L` a W • 0■ N 01 S.1 N a W •
•
• a) 4 O (V N 1] O N N 4 0
• a) G C C
Sa (1) 0 a) 0 a) 0
•
• 0 Ol -r1 01 -r1 0) -r1
,-I 3 ,- 1 in (0 10 11) in U HI 0 0 0 0 0 rll in 0 (11 it r1 0 O 0 0 Ln RS 10 in in i) r1 co
• O in (.' .' 0 in (5 • • •-I (5 0' •1 O O C • N 4] d' N O in G
`0 E. -H 01 CO q a) 0 01 0 r) F -r1 01 CO ri (1) 0 rn O r1 F. -r1 01 a0 N a) o
•
(6 u) (0 N • Z 1.1 01 01 CO rci N 0 1- � 4--) 0 1 M 0) N 0) 0 q 1- � u
• a) 0 $-1 0 0 a) N N 0 Sa 0 Z a) N N 0 S-1 0 Z (1)
X a q 0 a 0. CI) 0 0, (21 aq o 0, CI
•
Q qH I ala 0( ( 15 i a cw 0m m a a( XXX X XX Xam
(4) r-1 N rl Cr 1 10 N CO 01 O r-1 N M '1' to 1O N CO O r N 01 1 01 •(' In 10 N CO 01 0 ,-1 N rn d' 1.11 \0 (- HI 01 O N r1 _l' In
z r1 r1 ri r-1 •-1 HI HI ri N N N N N N N N N N rn rl M rl (0 (0 (0 (0 ( 0 (0 0 ' 0' 0' 0 ' 0 r
H
.1
V V
O rn O
rn r ON
N a\
N r N
O m O
CO to CO
rn r rn
N N N
O Ol O
["- O (`
• Ol
N -i N
O N O
• N ■O
O N O\
N --1 N
O r
0
L!1 vO Li)
N N
O O O
r r r
N Ol
N N
O O O
r'1 O rn
O\ O1
N N
N aw
m m m
0 N W
▪ r
N
w
0
a
0
H
•
•
•
•
•
0
•
•
•
•
•
•
CO 0 0
o ■
• r N
•
N 0 01 0 0 0 0 01 0 01 0
r 0. 01 • M rn • .
• 0 Ol • 01 0 0 V' 01
• LC • 01 d' Ol 0 • 0 N 01
L O N N N •
LO N d' N
. d'
•
•
■0 0 0 0 0 0 0 0 0 0 0
H 0 r 0
• 00009 0000
• Lfl • 01 d' 01 Lfl • 01 cr 01
• M Csi N N M N N N
•
•
LO N H N tP 0 01 0 N 0 N 0 0 0 0 N
H N 01 N 0 N 0 N 0 N
n l0 N 0 N LO N 0 N
0
•
0 • 0 1.0 01 'V • 01 10 01
Z H N H N H N H N
H
•
•
H
C O <■ O r O 0 d• O r O
U 0 0 0 a0 .
W H ■0 N \JO H V0 N l0
x • H • O1 N 01 H • 01 N 01
•
} - I H N H N ?-I H N H N
QJ >.
. Q)
>, o
M H 0 0 V 0 0 CO 0 0 0
• 0 0 0 00 0 0 0 k.0 0
• O 01 • 01 r 01 I O O1 • 0 r 0
• N 0 N N N 0 N N
• H H
• O O
• M M H
N 0 r Ti >N000 O N '27 >N000 'Z,
RI C w H • RS a w H ••• H
• Q) H 0 .-1 N •:r r Q) H 0 .-7 N , r N 1 0
•
}-1 N a W • 01 N 01 }-1 r a W • 01 N 01 a
• KC O N N O N N
•
C C W
• Q) 0 0) 0 0
trl -.i trl -.1
H 0 f0 In 0 in LJ H 0 0 0 0 0 (a In 0 In JJ H 0 0 0 0 Lfl
in C RI. o 0 o C • • • o C v' 0 0 0 C • • • •
H - -1 01 H CO LO Q) 0 0 0 M H -H 01 H CO 0 0) O 0 0 M 0
• 0 0) N Q JJ 0 01 H 21 N - H L 0 0 CO
•
0 S o 'Z 0 N N Cr) }-I 0 Q Q) N N a H
a 0 0 a 0 a 0 0 a 0 0 0
Q 0� a aQ x xx a� c w n a x x x O na a a� x x° a c cn n u) a s 0 XX CJ N
N
0 0 0 - 1 0 0 0 l0 N CO 01 O H N M ,' In ■0 r 00 0 0 H N M ' Lfl 10 r 0 0 01 O H N M
Z -1• Lfl Lf) Lfl to to Lf) in Lfl Lfl Ln LO a lO a a s l0 a ■0 1.0 r r N r r N N N N N CO C0 M N
H
90
* * * * * * * * * *
* 4 *
* * *
4, 4' * * *
* a * *
* cnw 4' *
4' a' F 4*
* W Z 4 - 0 *
* W W r1 *
4' z U ■o *
4 ' H F in *
* C7 0 W O * *
* z z w *
4 ' w FI g 0 *
* a F i-i 1-1 *
* w W Cr) Z 1 *
* 0 W IX 1
* Z 00co
* Cn H Z w in *
* 04 00 - + N
4, 0 W W 4 ^
* U u) U '.o *
* U . *
* >4Hrn -C *
* 0 0 u) -- *
* 0 Vo H *
* a > * *
* 0 4 * *
* • a 0 4, *
* U) A *
* • >-, * *
* x * *
* * *
* *
* it * .
4' * *
* * * * * * * * * *
*
4'
*
*
*
*
*
*
*
*
a
£
F
*
N *
*
rl > w *
A w 4 4,
y U) Z -4 *
/ 1l H 0 *
a sC a
£ U) Z 0
w F w 0
F a H x
i - Q F a
0 r.0
U .Q F a 0 0
'- -4-1 a O a 0 0 W w 0 0 U F
-'-1 U) 0 .a a U F £ >-' W H *
w 3 (x 0 4 H x W W u) cn u) w *
Fax Z0F F£ 14C4 x
Rf 1 Z F a 1-1 G4 4 H 0 x (2 Z *
al 0 Z 4 0 000 F 00 W W *
al C U Cr] ZZ >+ X u) a a *
O 0 U 0 W H H P: 0 0 0 W
-. F 0 F F E. W Z Z O N co a F fx,
-.-1 H0 1 Oq �� £ ww *
> wa>+ H FF Zzw 0 , wW m
rl - .4 a a x £mm wwU 0) U) w w *
r, v w U 1 Cn w *
* * * * * * * * * .A (o PC x F H W W 0 *
40 * * w1no • ■ 100000101 U W P1 a(24 0
* N * W a 0 0 0 ul .1 a W 0 z W O O U W *
* to * (Y) 0 M a' 4 co En H w U 4 « 0 *
• * .. * .k KC g4 0 0 > 4 *
Q * .--1 en * (1) H F a. CQ
-H * 1 0 * a) a' f.1 -4 .-1 w *
(n * 0 * (4 g 0 F w x *
3, * w 4' u > Z £ F
a) * X H * 3 w 1-1 1-4 a Z
* -- * 0 a £ F 0.1
O *
* * '0 0 H Z 0 H *
X * w * a) (x F 0 04 F w *
* w £ * a) FFFa zwwaww H(.0 gZ<
4' 0 W H * £ ZZO4 0HF£ZF£F FE w0>
4' 1 r-4 F * 0(4)1U 0.4)E-4 41-1Z FC O (x H W a W W * * * * * *
* x rn • * U a a (f) z F 0 F W F F Q F a 0 C� (x 4 4 *
4 Urn 0 4 1-, H 0 X 0 H H 0 0 U z 4 W > FC D * *
* r 1-1 - lf4 * F 0 z z 1--1 a (n W F F * * 4 *
* a 7r. 0 * 0 0 £ >904 - Will * * In *
* o * a CL' 0 .-1 )o-• x 0 0 * * F *
rn * x Z N * F 0 0 Z • F-' �C 4 w 4, m -1‘ 0 * 0 > + 0 - - - . . * 0 >+ 0 -i 0 0 3 ( x 0 -i0020)('. 0. * * 0 *
m * 1--1 No * 0 x W Z 0 0 (x £ -1 ' 1, a 4 '
. * U) N * x a' w a F .0 w * * *
0 * 0 a * Cr) 0aa44 cn(n * *
o * 0 W ,-4 * .-1 * * *
rl * X > 0 * a * * *
• * (1) * 0 * * * * * *
M * > 4' 0
r1 * X W * W *
* F 4 *
* n < *
7 * C) 0 *
* O * 1-1 F * ;r
m * r ..) Z ■ F -∎ .i h ._.
k R. 4 4
<� k I.1; k
.) * k
1) « 4 A
::I � a. a Y 4 4 a 1. k 4 4 4'�{
* 4, * *
* *
*
*
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
O * *
O * *
> O *
> H g> * P 4>
H U) 4 10 * H U) 4 * H U) 4
x * x ax * x!a
04 OCx * a Ofx * a O0
r.0 m 0 * FC, m 0 * g cn 0
C H 0 0) 0 H 0 U) R: H Q
W 0 x W 0 a * W 0 x W A a ' * W O x G) Q
PC O F x W Q * a O F x W 0 * a O F x L')
C4 0x0 * 4x Ux0 * 4 c Ux
U A Z U x N U 0 Z x U Q z U
Ul >+ O z ■0 * U) >+ 0 J U Z * UI >• O Z
x a z 10 * x a j z * x Cl.
H x a H 1-1 * F x a H * H x a
O 0 a w 0 O A a w O Q a W
a a f47 4 F W a * a a W rrCC F W a * a a G7 F W
O 4 aH10 4F4 0 * 0 4 04P1 4Fg * O4 104 4 H
O 0 00Z 1 > * C24 0 00Zg> * fx0 002
F a' x a O H Z fx F i x a O H Z fx H CL' x a O H Z
Z H a X t x Q H W * Z H a X CY. A H 0) * Z H a X a A H
o Z - U� a lc U
OAfxAH * OZ4OQa0F * OZ )o0C40
U o 0z O 0 4 OIY.Z * 0 O U >4 0 I
0 U x O H u 0 x o 1. 0 0 x 0
F 0 x H * F 0 x H * H 0 x F
ZFU:U W U)HG7 * ZH(X U41mHEll * ZHrx0fs1u)H
HO0 Z H A
>C4U)X N * 0 >C4U) * 1--100 >fxm
Cti a .>+ 0 Q H g H kO (Y. a .>'i 0 4 H 4 H 0: a .-/ 4 H 4
aaxamw 40 * aaXCCfEuaF * aaxamwa
■-1 * *
U) O * U) * Cf)
W in O • O N .-1 O s 01 Ul O • O N .-4 0 h fit In O • O N 1 0
a 0 ,-.1 O .-1 O * a 0 (NI 0 .- I * a 0 N 0
M 0 * M 0 * 01 M
* *
H O H O H
* * g
> * > * >
a * a * a
o * o * o
a 0 * a * a
H H F a x F H N F 0 H H H a x F r4 N F H H H a x F H N
zz OFCU »z a * zz ogu > >z * zzogu >>
o aauzoK4 4 F-+ 0 * * * * * * 0 04 4UZO4 4I * * * * * * orxaUZO 1 1
O a a U) a H (f) C0 X 0 * * * U a a U) (34 H U) U) X * * * U a a Cf) a H U) U)
H H a H Fi H I- I a * * H H 0 H H H H * * H I-I 0 4-1 F-1 H
H H * * * H H * * o * H
Z * * ui * 0 * * r1 * 0
a I-1 * * 0 * a * * H * a
H * Z * H * U) * E-1
W * * 0 * 0 * * 0 k a
o a * * a * 0 * 4 a * o
01 * * * * * *
KC * k * *
H * * * * * *
4 4 * * * k
(.1 k k k * * * k k * * * *
0
C.] * k
01 k k
U * *
•
C U
■
-� 1 v I
.. 1
Z
* 1 *
* * *
* * *
* 44 *
* 1, 1, * * *
* 4 *
.1, 4, 1, * * *
* 1 *
4, 1, 4, * * *
* 1 *
* * *
* 41 *
* * *
* 1 *
* *
* * 1, 4, * *
* * *
* * *
* * *
* * *
* 4, *
* * *
* *
* 4, 44 * * *
* * *
* * ir
* * *
* * *
* * *
* * *
* * *
* * *
* *
* * *
* * *
* * *
* 3 *
o 44 * 0 1, o * 4, O *
o 3 0 3 0 0 *
o W Q
* > W 0 *
° * H > > 4
q) 3 H Cn 4 * H Cn FC ■D 4, Cn (1)
4 a O a -lc a o Cx
C4 * W 0 x W Q C4 * W 0 x W Q a
o * g174 U x 00 * 4 U * 01 Q *
*
O w * En >, 0 * c x 7 CZ CO *
Z lo * x a 7. * x a ;J Z lD *
F-1 r-1 * H X a H * H X a H rl 4 01 o
o 7 • * 4 O a W a H W 4 * a a0 W as H W 4 "I' > 0 * a o a D 0 Z > * a 0 a o 0 Z KC> ° 4
a H a x a 0 r Z Cx H a x a O H Z a
W * Z H a X a Q H W * Z H a Z Cx Q H W
H * o Z a 0E * O Z O Q x Q H
4 , U O � O Q a0rO a Z * Uo il6 Ua.O C4 Z
U 0 X O H U 0 Z O H
* H o x E. * H o x E.
W * Z H ( x 0 01 C H W * Z H a 0 W cfH W 4
X N * H o (0 > R: Cn > 3 H o Q > 0.i u) X r 4
H r>
(14 4 '' 0 KC H !.0 H Pi 4 Q 4 H 4 H VD
H ■D * aax Cr) w .-7H * la, ax am[*.4 H
H * * .-1 3
o * Ul * Cn 0 *
N W Lfl 0 • 0 N ,-] 0 N W Lfl 0 • 0 N H 0 N
r1 0 3 .a 0 N 0 H 3 4 0 N 0 'H 0 *
° # M 0 3 M O *
4 4
o H O H O
3 a 1 ' a *
* g * g *
* > * > *
* a * a
* 0 * 0
H O * ZZO 00> >z HHH4XE4r. 0
* Z Z o g U Q >> Z a
r 0 * * * * * * O a 1 U Z O 4 C FC H * * * * * * O a 4 U Z O 4 'C FC H 0
Z 0 3 * * U a a Cn a H Cn Cn X * * * U a 041 Cn a H Cn Cn 5 0
H F ] * * Fi Fl 0 H H r-1 1-1 * * 1-1 H 0 H I--1 1-H H ■-]
H * * * H H * * Lc) * H H *
Z * * O * 0 * * N * X Z *
H * * `-I 3 a * * E-+ * C 11 *
* 0 * H * Cn * H
f_.7 * * Z 4 ' ] * * O * 0 w *
,a * * a 4 ' 0 * * a * 0 .]
Q ' * * * it g
H * * * * * * H •
* * * * * *
Cf) * * * * * * * * * * * * (n *
O 0
w * * Er]
li] * * 13] *
U * * C_) *
:z. .f. ... .i,
I.I
- 1 1 (N ,11 i 1
* 3
* *
* *
* *
4 *
* *
* *
* k
# *
* *
* *
4 3
4 3
* *
3 *
* *
* *
* *
# 5
* *
* *
4 *
* *
4 *
3 *
* *
* *
* *
* 4
* *
* 4
* *
* 3
3 *
4 *
* *
* *
* *
* *
4 5
* 5
4 *
* 0 *
4 O *
Q * Cl o *
w Q w 0 o
> w * > w 0 3
F-4 Cn FG 4 H U1 3 V) *
x ✓a 4 x
a Oo * a o['1
10 f-1 0 0 C./1 * Q 1-4 0 0 U)
w o x w Q tx 4 w o x w C] R *
aOFxw 3 - 70Fxw0 *
KC ( 0X0 * 1x Uxo 4
UC]z X 0 U Z Ux N
U) >4 0 2 * Cn >5 0 ID 4
X a .J z * X a X z CD *
F • x a +--3 -5 F x a 1--+ < *
O 0aw 00aix) o
a 4 wgF.al4 4 a . - < 1 E ' 0 1 < - 1 *
O 4aF4agE -' g 4 Oao.F a KC E"4'C o *
124 00Z 1> * 1:40 xCDz�C> *
H a X aO# -+Zo4 FaXa01
z F a Z a q 1 , w # Z F a X a 0 F-+ w
O z O Q a Q F * O 2 O Q a O F #
U O
CJ D U X O O H -4 U O 0 U X O O 4
1
F o x F 3 F o x F *
z F a U w [n F w 4 Z F a U w U) F w *
H O Q X > a ' C n n X * H O Q > R. U) E N *
a a KC H (may Fi [ 4 a g 1-1 FC F1 \D
aaxacn [:.4F 4 aaXau) a 4F ID *
* r-1 *
U) * U] O 3 U)
[a] [n 0 • 0 N < - 1 0 N C11 to 0 • 0 N rl 0 N W
4 0 N 0 <-1 3 <1 0 N 0 ■-+ 0 * 1-1
M O 4 01 M O *
* *
H 0 H 0 H
R * *
> * > 5 >
a * a * a
O 0 0 * °
F F F .] x F ri N F H F F .7 x F ri N F 0 F
Z Z O g U 0 > > Z * Z z 0 g U 0 >> Z a 5 Z
* * * * * O a 4 U Z O 4'C g ri * * * * * * O Q: 4 U Z O <C '< C Fi 0 3 * * * # * 0
* * U a a U) a F - i Cn CU Z 5 * * U a a U) a Fi Cr) U) X 0 * 5 * U
* * I-I F1 0 H H F1 H * * F1 F-+ 0 H H H 1-1 F] 5 *
3 * F F * * 0 * F F 5 * * F
3 in 5 ] 5 * Lc * . 2 * * O * Z
* CV 3 04 * * F 3 a H * * U) * a
* Q * H * [n * F * Q * F
* 2 * 13 * * 0 * X w z *
* a * 0 * * a * 0 ,-1 * * a 3 0
* * * * KC * *
* * * * * F * * *
* 4 5 * * * 3 *
* 5 * * 44 * * * * * * (/) * * * * * *
Q
* [s) •
* [a) *
* 0
k;
* *
4 *
*
* *
*
-X *
* *
4 *
1 *
*
*
*
*
*
* *
*
*
* 3
* *
*
-I *
*
*
*
*
1 , 1,
*
4 , 4,
*
*
*
*
*
*
*
* *
* *
*
* 0 *
0 4 0 Q 51 CI o C/ * F g > ° * F < >
H M g * H U 4 l0 4 H U) F=C
(n 0) Z (n
4 x a 4 a Hrx
g.4 cn H 0 0 Ul * H 0 O U) 4 0 H 0 (1)
w 0PX1.1x 40Hxw * aoHxQ�
a o F 0 w x
4 < a u x o
U0ZU]
°c 4 U0ZZUX r UOZZUX
�
:1 * U) >4 O Z w 4 Ul >4 0
x ° a al Z * x Z %.0 4 x a Z
F x a H 4 F x a H rl * F x a 1--1
O 0aW * a 00aHwa o 4 a 00r Ewa
4 oaa E.XgE. C O 4 4
0H C7 2 E.>
ao 0
aOZ4 * °
Fax F ax w0 z 11 F (xx'ia0HZa
Z F a X fx C a H W 4 Z F W X a 0 H W * ZZ Z a X O 0 0 q H
U0 C4 Z 4 O U 0 0 �0Q00 Z * 0O(xU r0Ck Z
U 0 0 0 U 0) 0
F U 0 x x F O H * F U x O 0 x F H U x 0 * F 0 x F H
Z O F Q U > imi a ( 01 Z F X U 4 W U) F W 4 Z F [L' U W U) F W
H 0 C] > a 0 Z t` * H 0 0 Z > 0 U) Z
X a> g H g H a a > a H a 1--1 1--1 (x i-
l0 1 >+ � FC H FC H
04 04 x04 m[L. 4F * a (o * 04 04 X 04 Cf) 44 4
* H *
* (1) o * U)
((1 0 • O N ■■ 0 h W Ul O • 0 N r1 0 o- W (1) 0 • 0 N r1 0 0
O N 0 rl * a O (V 0 rl 0 * a O (V O rl
('1 0 4 01 0) 0 4 0) r'1 O
4 g 4 g
0 -1 O H 0
* 0 4 Q'.
4 > 4 >
4 a * a
4 0 0 * X
FF4 XFr4NF FFFaXF 404E 0 2Z0.-CUH > >Z
ZO�CU0 > >Z 4 ZZ0�CU0 > >Z a *
u a U Z 0 g g H 4 * * * * * 0 a a U Z 0 Ft g H 0 4 * * * * * 0 a a U Z 0 FC FC H
a s Cr) a H U) Co X * 4 4 U a a u) a 1-1 CO U) X 0 * * * U a a Cn a 1 U) Cn E
H H 0 H H H H * * 1-I Fi 0 H H H H a * * Fi 1-1 0 H 4-9 4-4 H
H * * o 4 F F 1- � * 4 * F F
1 * 0 4, Z 4 * 0 *
* * rl * a 1-1 4 * 0 * Cu
* F * E. * r1 4 F
4 * (0 * W * * 0 * 0
* * a * 0 1 * * 04 * 0
* * * 0) 4, * 4, * * * *
.k * * [ -4 * * *
4 * * 4 * 1
94 1 1 14 * 14 Cr) 1 * 44 * -14 44
Ca
4, W
* W 44
* U
X
* x al * , )
a Q
ir
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
4'
k
k
k
k
k
k
k
i#
k
k
k
k
k
4'
k
k
k
k
k A
G
k >
H m KC
cn
k x (Y
k a O Qi
k l Q 0 cn
w ]OEHx W
k OQZZU Z U x
Crl ° �az
k H X a
oo
° [x o a OZ
r24 x0Ol -IZCY
k Zi H a x Q H w
° u o g a ° u Q o a z
U 0 x o ff
« Z H a U 111
c H w
k o o zz 4 a 1 - 1 H
k a a x a m 4-, a H
k
k U]
W to O • 0 N 0 N
k 7
0 N O rl
k W t+l O
k
H
k a
k
k a
k 0
k R.
H H H a x H N H
# k k k k k o a Q U U 7. o KC K H
a a U1 a H cn cn
k k H H Of H H H H
k k H H
k k k
k k k a
k k [
k k a k
k k q k 0
k k k
k k
k k k
k k
•
k k k k k k
k
k
7 0
•
k �
w
r=4 C7 0o m in rl N
O FC N r N N N
F,
W CI) rn en M rn M
X
H
� m H co
i
in CO
X C7
H g W N co co co
H rn rn rn N 01
U) N N N N N
z Q,' Ol Ol 01 01 o al a\ O1 a\
Fi W N N N N (N N N N N N d'
O O 0 0 0 0 0 0 0 0 H
CQ
Q a .
o .--1 0 CO 0 c' O V' CO 1.0 CO N
H 0 in in kO \O 0■ 0l ,-I O rl N C
a x ,-i ,-1 , .4'
DI
m C1. N
w N
Ia 6
£ X
z
z 1-4
Ci 01 < .'7 ■-I O N to V' O a' OD 0) CO N
V) 0 0 III VI 0O W 01 01 H 0 rl N d'
a a x H
, I C, cn O I
C■ H N
W 0
Cr) W W 0,
W C4
Cz, : W Cx .
G. U ; U` '.7 ,--1 0 00 ( V' o d' co 0) N
CO 0
cn W x uI vI Lo m m m N
C4 0 Q4 • > 0)
zo
4-I X
• Z
O H
a 0.
0. 01 0 OD CO N CO In In M rl m N in
X F=C d' (` d' N d' N V' N V' N N
H 01 W
H X C4 m r1 rn M r1 en rn rn rn rn el
H
H
x 3 CO v' H C V I n C O 0 o r - o 0
4 0 S to rn o ,-1 N N rl d' o 0)
W ,-] H .-1 N N M N rl 01 V' (4' rl
a r=. ,-I
X o In o 0
O N to H 0 N L(1 to 0 O O
H H 0 H H H N H In H o
H u) Z (1) 0 Cr) 0 (r) 0 H H
< 0 0 0 Z 0 Z 0 Z (n 0 C4
H a a a a a a a a a a 0 «
(n
H H H H H H
< KC FC < FC g u
W
Z a 0 r a , 0 a 0 a 0 a 0 01 x
O 0 H CL H a H 0 H 0 H H
H 0
E! 0 0 0 0 0 0 0 0 0 0 0)
a
0 W
0 W 0 W 0 W 0 W 0) 0
a a H a H a E a H a H
0 z
W 0 0 0 a 0 0) 0 0) 0 0) U w
a r O >. 0 > 0 r 0 > 0
O x a x a x a x a x a Li,
A;
},
CY:
. 11
EXHIBIT A
Drainage Area Map — Post - Development, Inlet Design
Oe
■�J
co
22 1 { f �,� \� \ / ( /r � '� S EWER i V
° m 1 \ ' t` \\ C y y SiATltl�l 0 cn
`� �. l / ` e / ! �� �— .� 4° ROCK RIP
f / ® ,r � - •� E + 1 >� f '� ` oo.o SEWER TREATMENT
E --•- E E I . —� E E�-- � -.,� •E, E ' E E r' E E E � E E �E /"" �� P
f/ rh\ / _ � { �} �� � '.`��` \J
1 ' E s E I \' i EXISTING POWERLINE
I n E -• / f (t0 BE ABAN�ONO __ "� +/( `r^ — �__ —
2O n `,. OR RELOCAIFD) f r CHANNEL f r / I/ �1 \ ( t ���.� C� Q
28 I '� `._• `~ l �_ �l !/ 1 ! mil ' 1 /___— \'� �`,- I / '\;�,�., /,% F- \9 -� -+— O
40 0
- � 1 � ) ) _� ._- .-- _..,,7 _.. � ! f -� � � �� t � .� ` .l • : i r —_ fi r � f /
L (FEET
I
LEG
NOTE
REFER TO THE GRADING PLAN IN
THE CONSTRUCTION DRAWINGS FOR
THE PROPOSED CONTOURS.
EXISTING CONTOUR (MAJOR)
-- EXISTING CONTOUR (MINOR)
PROPOSED STORM SEWER
® STORM INLET
DRAINAGE AREA BOUNDARY
___________ TIME OF CONCENTRATION
CALCULATION FLOW PATH
- -- -- - -- PROPERTY LINE
CONCRETE CHANNEL LINING
r CONCRETE RIPRAP
ROCK RIPRAP
218 DRAINAGE AREA NUMBER &
0.13 ACREAGE
FLOW DIRECTION
E1 GUTTER DEPTH CHECK LOCATION
CL F-
•
®®
•
Wv
LLJ
90 0 CL •
•
W.
1
001
u2!saU iauuug3 did luatudolanaU -Jsod — dujAi caw AuumaQ
S 1IfIHX1
-7")0
j -
201
�N � �,� 9,54 ��
�1� �'
BLOCK CHANN
5 6 7 8 10 1 1 1 J2 r 13 1 15 2
0 ONC ElE Q.
( 1 .Sv, ~ I��_ — � I I 1 1 1 II I 1� ��.1 1 1 I - FJ3D
ai
b 6 .9 E R-R- J�"77..
/2�23
BL CK 1
8.89 p►
PE:: I BLOCF43 I I I .34
NL—Er 1 ONCR
-010.
4' 3 .0 %
L 53' 1 4 5 1 16 7 1
— — — — — — — — — — - 2 3 7 1 1 12 13 4 NEL
#4
1p
97 #rNj
103'
ad Dnv
4 0.1
0
21
0
2B HMI
17
2n
4.86 1
4p
,r•' 1 � f
I - r
A 20 falD 0 1
SCAL IN EET
AN*
C5
MOC � °~'•, 1� I ����� I G 1111\ [�,
- �� ��: � �Nlla a f. `�seaaaa i --
IXK
6 ROCK)
+
c�
305
LEGEND
NOTE:
REFER TO THE GRADING PLAN IN THE
CONSTRUCTION DRAWINGS FOR THE
.PROPOSED CONTOURS.
ro.,
cn
L-
EXISTING CONTOUR (MAJOR)
0
00
EXISTING CONTOUR (MINOR)
PROPOSED CONTOUR
w
--------
PROPOSED STORM SEWER
0
DRAINAGE AREA BOUNDARY
U)
TIME OF CONCENTRATION
CALCULATION FLOW PATH
E o n
PROPERTY LINE
OUTLET STRUCTURE
0
CONCRETE CHANNEL LINING
CONCRETE RIPRAP
r
ROCK RIPRAP
221
DRAINAGE AREA NUMBER &
r- 0 0
- 0 -) �
ACREAGE
FLOW DIRECTION
cn
L-
Lo
't
0
00
w
0
U)
E o n
0
c)
U)
r
(D
0
0
r- 0 0
- 0 -) �
T-
w
U)
z
c)
U)
z
u)
w
W
z
•
o
j
w
U)
J
z
z
w
W
>
Z
Z)
0
0
w
C)
c)
U)
o e$
uj
0
W
0
3:
0
CL
CL
0
Lu
EXHIBIT C
Drainage Area Map — Pre - Development, Pond Design
1 n,
ftftz a.
st�
A ,
An
VRA &
a VA
",,'a'mu W. & LORALEE SA "I 'p
13.2,4 ACRE IRACT
795/
�, � � � 1 +
roc �,' �� � -`}�, 1 �' f•\-- 1 -- -_� l
er
lzsm!A LAYMAN VALUAMS
D MENN AND / ACRE 1RACT
N
MARY C. MEN 5206/1
gc LO)MA. 92 AcRElRA /F ---ES<EY AND
KEY
IRA 5173/239 T
FdO MM iffilaER AND
vAM KAREN MUER
�� ACRE IRACT
'V
0
05 /,
.48
+
eel � I te r-- -'' � ,� / � � �'
F
'd
4 111
320-
.77
4
. ...... . . . ........... � � t �'' J — ".__.__" � - -'� J� � .7 CRE 1RACT 1 �"51 •i \ �1. � -.\, ,r'""� V
24�
150 75 0 150
SCALE IN FEET
300
L NO
1106-.1
R! KY L
5.500 A
3217/36
LEGEND
335 EXISTING CONTOUR (MAJOR)
EXISTING CONTOUR (MINOR)
-310 EXISTING CONTOUR (USGS)
PROPERTY BOUNDARY
DRAINAGE AREA BOUNDARY
TIME OF CONCENTRATION
CALCULATION FLOW PATH
VEGETATION LINE
DRAINAGE AREA NUMBER &
ACREAGE
FLOW DIRECTION
0
T n
U) bj
x
=>
Lu
z Lj
< cn bj
C ) 13:� w -j
U) LL-
0
ry
0
U) U)
bi
0
cn
5;
Ld
C5
z
PVA
V) u
ul
0 r
00
r's (
(n
a
-4- X
X C) (1)
0
0 w
w
a ( 0)
0 C
0
r-. 0 0)
0 ---�
• w
w a-
0 0 u) >
W. z
w
w D
• 0.
> (/)
< C) v u)
Z
• w •
•
CL w
VICINITY MAP
Z4
H9MUT W. LORALEE
13.2¢ ACRE .�CT
/l/F
'L", C- VAUGORA &
A. AuGURA
5.03 ACRE TRACT V
Is
17
15
5 — T
4
2 LOCI
C943
9
" ptm I
4 1 . , — 2. .
2r PEE
0
Creek
+
- I ROCK
0
LAW
p +
' '� ` , 30
0
VALUAMS
AND /6:1W5 ANCT
G. 8,t4
5206/19
/F EL MA RY C. N
MA
JOSEPH 92 ACRE L M EY AND
3.215 5173/23 M. M
� C �5173121 TRACT
32 29 56 ACRE
iso7/178
2d 25
CHWE&
23
19
11 13 Is AS,
f
6 /to 811EI i
=tA C(
F7 3W OWC
S.E.T. MUM AND
:9 KAR EN 'TRACT
28 2.138 A CRE
29 tEL is 5585/72
p 16 X, DLO L
l (/ /11 �} 1 - 2
2
300
NIF
M A
t �'•�, -.� � � � ( � 1!! i ` \"^� _ � r -� 07/40
0 co
F 0-
co co
( n W 9
<
M
x
Ld
1
Ld r-
z r)
0 w < < u ..
0 � Ld
m 0 n ff
-�� (� �(� �\ -• -- �� D ET ENTION �D
TENT 0
C)
r j / / // ] �' f N S / A r r" L W 1, 7/44 972 A, ACT
0
NOTE: Li
REFER TO EXHIBIT E FOR DETENTION POND DESIGN. ry
. N I �� c?
+
305 \ // 1 ` '.•_" `�
+ Ze
f
GORNEY
0.77 ACRE I + � � /�•
.......... N %wa L
T RACT 4/671 MACT
\ I � .� t t � 9
\ � fj l ��
A,
C)
I
N/F
,.KY I yoUNG
5.500 ACRE TRACT
32.17/36
150
LEGEND
I
1
EXISTING CONTOUR (MAJOR)
Lo
00
EXISTING CONTOUR (MINOR)
-310
EXISTING CONTOUR (USGS)
PROPERTY BOUNDARY
------------
PROPOSED STORM SEWER
DRAINAGE AREA BOUNDARY
----------
TIME OF CONCENTRATION
X
CALCULATION FLOW PATH
- - - - --
PROPERTY LINE
0
3 01
DRAINAGE AREA NUMBER &
\1 88.4§1
ACREAGE
E .
FLOW DIRECTION
I
1
w
r
z
w
ow i
Z
(D
w
• U)
j w - oz
w C)M
•
ss
Z �ecl)
w
z owo
U)
0
o 3:
C) 0
w
2
V)
0
Lo
00
Q
(n
-4—
c
X
0
0
fy-
E .
L� (D
0
w
r
z
w
ow i
Z
(D
w
• U)
j w - oz
w C)M
•
ss
Z �ecl)
w
z owo
U)
0
o 3:
C) 0
w
2
I
30 91
)$
30
PIPE #8 1
t 10-1
CD
0 CD 31 - 3 0 29
3 0.80 `300.80 T13
300.4D
1 ET #6
m
........ . . . . . . .
PIPE jr -7
A 300.70 TG
30" CONCRETE
S.E.T.
2
2 Z8'k rri
CHANNEL #6
" 4 ROCK RIPRAP
190 SF
m
I
--3>
9.92 TB"
?98.72 TB "- 298.72 TB
Lo'67 TBA
= 297.0
I-"- SEWER
SEWER TREATMENT
PLANT
f y
m
m
11'4"
308
TOE WALL
5 REINF;
C ING
TOP OF
SHALL BE GRADE 60 (60,000 PSI).
TOP OF
WAH =294.0
of
TOP OF
0)
(D C) = r-
TOP OF
SLAB=292.70
99
0)
El
CONCRETE RIPRAP
ON
ROCK RIPRAP
A
(n
2'x1'x2' HIGH
--D
W <
DISSIPATOR BLOCKS
C) - r
Ld
-j
CL
06 1
93.0
Z
o w
B
U)
Uj
<
0.
FL=292.95
Ky
I
2t
10,
0
Z 0
TOP OF
0 U)
TOP OF
TOP
WALL=299.0
N
FL=293.05 /
LLJ
1'x2'x1' DEEP
A
m
TOP OF
TOP OF
WALL=294.0-\\
LL-
0
TOP OF
z
TOP OF
SLAB=293.25
O
TOE WALL
�
k-:"
Pond Outlet Structure
0
N.T.S.
8" THICK
8" THICK
ROCK RIPR
WALLS
WALLS
O f
W
(6 "X 1 2 )) CK)
(n
0.0
4 15 SF
f y
m
m
1 1
2 2'8
6" THICK
SLAB
Pond Outlet Structure
OUTLET
-r" DE
ASE PAD-ELEV. 300.0
ERFL(
S
10' C
ELEV.=297.5
EXISTING GROUND GRASS
LINED
CHANNEL
1XI
'\\ VARIES
4 j
Channel # 1
Typical Section
N.T.S.
55'
1
Channel # 2
Typical Section
N.T.S.
Channel # 4 & 6
Typical Section
N.T.S.
EXISTING GROUND GRASS
LINED
CHANNEL
VARIES 1
4 4
Channel # 3, 5 & 7
Typical Section
N.T.S.
Section A-A
m N.T.Sm-
10
8" THICK 8" THICK
WALLS WALLS
1 . 299.0
296.5
4W
m
295.0
293.0
2'8 2'8"
m
6" THICK
SLAB
Pond Outlet Structure
m I Section 13-13
ROCK RIPRAP
(6"X12" ROCK)
1915 SIT
GRADING CONSTRUCTION NOTES:
1. FILL MATERIAL USED TO ACHffEV GRADE �IN A D� �RpkS TO RECEIVE
�
PAVEMENT, AND OTHER AREAS, HAL COM PA( TED TO AT
ETERMINED BY
TY AS
LEAST 95% OF THE MAXIMUM DRY BE 'S'
THE STANDARD PROCTOR TEST, (ASTM D698 ,AT A MOISTURE
CONTENT FROM 2% BELOW TO 4% ABOVE THE OPTIMUM MOISTURE
CONTENT.
2. ROCK RIPRAP SHALL BE 6" TO 12" PIECES PLACED TO A
MINIMUM DEPTH OF 12", UNLESS OTHERWISE NOTED.
�3. THE TOPOGRAPHY SHOWN IS FROM AERIAL TOPOGRAPHY
PREPARED FOR THE OWNER OF THE PROPERTY I .
4. ALL CONCRETE FOR PAVEMENT CONSTRU ION SHALL HAV A
MINIMUM 28-DAY COMRESSIVE STRENGTH F 3000 PSI WITH
MINIMUM CEMENT CONTENT OF 5 SACKS ER CUBIC YARD. T E
MAXIMUM PERCENTAGE OE Elc�,�•ki,RE CEMENT OF PORTLAN
30 15 0 30
SCALE IN FEET
EM ENT
11'4"
308
TOE WALL
5 REINF;
C ING
TOP OF
SHALL BE GRADE 60 (60,000 PSI).
TOP OF
WAH =294.0
ALL=294.0
TOP OF
0)
(D C) = r-
TOP OF
SLAB=292.70
99
SLAB=292.70
El
CONCRETE RIPRAP
ON
ROCK RIPRAP
A
(n
2'x1'x2' HIGH
--D
W <
DISSIPATOR BLOCKS
C) - r
CL
06 1
93.0
Z
o w
B
U)
B
<
0.
FL=292.95
Ky
L=292.95
10,
0
Z 0
TOP OF
0 U)
TOP OF
TOP
WALL=299.0
N
FL=293.05 /
� =293.05
1'x2'x1' DEEP
A
A
TOP OF
TOP OF
WALL=294.0-\\
"'-WALL=294.0
TOP OF
z
TOP OF
SLAB=293.25
LAB=293.25
TOE WALL
�
k-:"
Pond Outlet Structure
Detail
N.T.S.
8" THICK
8" THICK
WALLS
WALLS
O f
1 1
2 2'8
6" THICK
SLAB
Pond Outlet Structure
OUTLET
-r" DE
ASE PAD-ELEV. 300.0
ERFL(
S
10' C
ELEV.=297.5
EXISTING GROUND GRASS
LINED
CHANNEL
1XI
'\\ VARIES
4 j
Channel # 1
Typical Section
N.T.S.
55'
1
Channel # 2
Typical Section
N.T.S.
Channel # 4 & 6
Typical Section
N.T.S.
EXISTING GROUND GRASS
LINED
CHANNEL
VARIES 1
4 4
Channel # 3, 5 & 7
Typical Section
N.T.S.
Section A-A
m N.T.Sm-
10
8" THICK 8" THICK
WALLS WALLS
1 . 299.0
296.5
4W
m
295.0
293.0
2'8 2'8"
m
6" THICK
SLAB
Pond Outlet Structure
m I Section 13-13
ROCK RIPRAP
(6"X12" ROCK)
1915 SIT
GRADING CONSTRUCTION NOTES:
1. FILL MATERIAL USED TO ACHffEV GRADE �IN A D� �RpkS TO RECEIVE
�
PAVEMENT, AND OTHER AREAS, HAL COM PA( TED TO AT
ETERMINED BY
TY AS
LEAST 95% OF THE MAXIMUM DRY BE 'S'
THE STANDARD PROCTOR TEST, (ASTM D698 ,AT A MOISTURE
CONTENT FROM 2% BELOW TO 4% ABOVE THE OPTIMUM MOISTURE
CONTENT.
2. ROCK RIPRAP SHALL BE 6" TO 12" PIECES PLACED TO A
MINIMUM DEPTH OF 12", UNLESS OTHERWISE NOTED.
�3. THE TOPOGRAPHY SHOWN IS FROM AERIAL TOPOGRAPHY
PREPARED FOR THE OWNER OF THE PROPERTY I .
4. ALL CONCRETE FOR PAVEMENT CONSTRU ION SHALL HAV A
MINIMUM 28-DAY COMRESSIVE STRENGTH F 3000 PSI WITH
MINIMUM CEMENT CONTENT OF 5 SACKS ER CUBIC YARD. T E
MAXIMUM PERCENTAGE OE Elc�,�•ki,RE CEMENT OF PORTLAN
30 15 0 30
SCALE IN FEET
EM ENT
S
308
PERCENT.
5 REINF;
C ING
STEEL
SHALL BE GRADE 60 (60,000 PSI).
if
0)
0')
C14
Uj
I
Ld
U-1
in
11
O
n
0
1--
m
6"
Typical Toewall Detail
N.T.S.
Elev. 2 99.5
z
0
F-
C)
U)
LA
0
0
LLI
Ld
F--
C5
z
-310
L0
0 00
z
308
EXISTING CONTOUR (MINOR)
X
C 0
0 ry
E 0
a =
C
O vi C)
0 co
299
0)
(D C) = r-
O
r'- 0 0)
99
CONCRETE CHANNEL LINING
El
CONCRETE RIPRAP
ON
ROCK RIPRAP
(n
(n
--D
W <
C) - r
CL
06 1
bj
Z
o w
:L1 I
U)
<
0.
Z
C) m
0
Z 0
0 U)
LEGEND
CL W 0
w
N
-310
EXISTING CONTOUR (MAJOR)
308
EXISTING CONTOUR (MINOR)
ROW LINE
PROPERTY LINE
FLOW DIRECTION
PROPOSED STORM SEWER
299
PROPOSED CONTOURS
O
OUTLET STRUCTURE
99
CONCRETE CHANNEL LINING
El
CONCRETE RIPRAP
ON
ROCK RIPRAP
Typical Pond Berm
N.T.S.
Typical Overflow Spillway
N.T.S.
•
•
O
Typical Pond Berm
N.T.S.
Typical Overflow Spillway
N.T.S.
0
V)
(n
(n
--D
w
Cn
bj
:L1 I
<
re
m
x
mn
w
z
z
�
k-:"
Uj
'-'i
0
O f
W
(n
0.0
Typical Pond Berm
N.T.S.
Typical Overflow Spillway
N.T.S.