Loading...
HomeMy WebLinkAboutDrainage Report FIEVIEWED F ')MPLIA 9. FEB 0 5 200 COLLEGE STATION ENGINEERING Drainage Report For Fairfield at Luther Street F I L Multi - Family Site Plan 20.63 Acres Travis L. Williams, Sr. et ali • Crawford Burnett Survey, A -7 Brazos County, Texas Longaro & Clarke Project No. 124 -14 -37 January, 2001 Prepared For: Fairfield Residential Companies 2045 North Highway 360, Suite 250 Grand Prairie, Texas 75050 r OF rE y ,t ••q cr 1 /* n * • S. DANNY MILLER 4 tt ..... 82725 i • 4,0 44 d .../ % f ° c ; ;, : r Prepared By: % ° AL E` LONGARO & CLARKE, INC. � •9 Consulting Engineers 1101 Capital of Texas Highway South, Suite C -100 ' 1-5 Austin, Texas 78746 (512) 306 -0228 Drainage Report For Fairfield at Luther Street Multi - Family Site Plan 20.63 Acres Travis L. Williams, Sr. et ali Crawford Burnett Survey, A -7 Brazos County, Texas Table of Contents Page 1.0 Location 1 2.0 Property Characteristics 1 3.0 Drainage Design Criteria 3 4.0 Summary and Conclusion 4 Exhibits 1. Site Location Map 2. Drainage Area Map 3. Offsite Drainage Area Map 4. Floodplain Delineation Map 5. FEMA Flood Insurance Rate Map Appendices A. Rational Method Drainage Calculations B. HEC -RAS Input and Output 1.0 LOCATION The project site is approximately 20.63 acres and is located at the east corner of Luther Street and Harvey Mitchell Parkway (a.k.a. F.M. 2818), approximately one half mile southeast of the intersection of George Bush Drive and Harvey Mitchell Parkway. As well, the site is approximately 1.5 miles from the Texas A &M University main campus. The site is within the City of College Station Corporate Limits, Brazos County, Texas (Grid No. N -37). The current land use is agricultural /open space with at least one, possibly two, detached single family dwelling units located upon the property. The proposed land use is Multi - Family, and can be better seen on the attached site location map and aerial photograph as shown in Exhibits 1 and 2, respectively. The site is located on the "Wellborn" USGS 7.5 minute Quadrangle sheet. The site adjoins a small waterway, which is a tributary to White Creek, a primary drainageway, which is a tributary of the Brazos River. No portion of the subject tract is located within the Special Flood Hazard Area (100 year floodplain) according to the Flood Insurance Rate Map for Brazos County, Texas, Map Nos. 48041 C0181 C and 48041 C0182C, Community No. 480083, Panel Nos. 0181C and 0182C, effective July 2, 1992 (Exhibit 5) 2.0 PROPERTY CHARACTERISTICS The current land use for the subject tract is agricultural, with one or two single family dwellings located upon the property. The 20.63 acre tract can be described as slightly vegetated with flat to moderately steep slopes. Vegetation mostly consists of post oak, and other hardwoods, located around the vicinity of a natural waterway through the property. Slopes across the tract range from 2% to 5 %, draining toward the waterway located along the front third of the property. According to the Soil Conservation Service "Soil Survey of Brazos County, Texas," there are two predominant soil types located on the subject tract. Both soil types consist of various sandy loam layers at the surface, with more clayey soils below the sandy loam. These layers of clay are typical of most clay types found in the area with very high shrink -swell potential. The majority of the site consists of the Tabor Series (Ta) fine sandy loam, and the Lufkin Series (Lf) sandy loam. The subject tract is bounded to the northwest by Luther Street, and to the southwest by Harvey Mitchell Parkway. Most of the property on the opposite sides of these roadways is currently owned by Texas A &M University, and is not expected to be sold or developed in the near future. However, G: \124- 14 \DOCS \drngrpt.wpd Page 1 of 5 April 18, 2000 there are two vacant, undeveloped, privately owned tracts located on the opposite side of Harvey Mitchell Parkway. Currently, the TAMU property is undeveloped, and is being used for agricultural research purposes for the university. Adjacent property to the northeast is currently owned by Sigma Alpha Epsilon fraternity, and is currently being developed for their fraternity house. Adjacent to that tract is an existing multi - family development, Melrose Apartments. Property to the southeast is currently an undeveloped, wooded, 6.0 acre tract owned by Raymond Gorzycki. No plans are currently in the review process for this tract. A small waterway, which is a tributary to White Creek, drains through the front third of the property. This waterway originally drained a significant drainage area, up to Jones Butler Road, however, since the construction of the Melrose development, a significant portion of the original drainage area has been diverted into a detention pond located at the south corner of the Melrose development, which discharges into the waterway Walden Pond is located on. Secondary drainage includes the waterway through the subject tract, and various storm sewer systems that will drain into the waterway from the proposed development. Offsite drainage includes approximately 20.9 acres associated with Luther Street R.O.W., the SAE Fraternity House, the outparcels and future Phase Two of the Melrose development, located north of the subject tract. Approximately 9.94 acres of the 20.9 acres will drain directly into Luther Street. A 36" and 24" storm sewer with three 10' inlets will be constructed to drain the 9.94 acres. The remaining 10.97 acres is associated with the Fraternity House, and drains to a low point located along the northeastern property line of the subject tract. A 30" storm sewer and inlet will be constructed to the low point to drain the 10.97 acres. All drainage calculations were performed for fully developed, un- detained conditions for the 100 year storm. Though detention is being provided for the Fraternity House, and the Phase Two plans for Melrose indicate that a detention pond is proposed upon development of that tract, for purposes of sizing storm sewers and inlets, it was assumed that detention was not provided. The subject tract will be developed as a student housing, multi - family development consisting of fifteen residential buildings and one clubhouse /leasing office, with a total of 324 dwelling units. Amenities will include a swimming pool, a basketball court and two sand volleyball courts. G: \124- 14 \DOCS \drngrpt.wpd Page 2 of 5 April 18, 2000 3.0 DRAINAGE DESIGN CRITERIA Currently, no drainage studies exist for the secondary waterway through the subject tract. As stated previously, a significant portion of the natural drainage area has been diverted into another drainage area, and therefore peak discharges into the waterway have been reduced. However, due to the proposed development of the subject tract, discharges will be increased due to the increase in impervious cover. Private drainage easements will be dedicated for the natural waterway, and those storm sewer systems collecting offsite drainage. All drainage systems will be privately maintained, with the exception of the system that drains Luther Street. Offsite drainage calculations for the Luther Street storm sewer system, as well as the analysis of the existing 60" culvert beneath FM 2818, and for purposes of calculating a 100 year floodplain for the water way through the site, were calculated for the 2 -, 5 -, 10 -, 25- 50- and 100 -year storms. Storm sewer sizes were calculated with Manning's equation, with a Manning's n value of 0.014. All pipes are sized to convey the 100 year storm discharges with out surcharging. The Luther Street storm sewer will traverse a portion of the proposed development, and ultimately discharge into the waterway. This storm sewer is located within a 15' drainage easement. The total drainage area to the existing 60" culvert is approximately 46.34 acres, which develops a fully developed, undetained 100 year discharge of 211 cfs. A HEC -RAS computer model was developed to calculate water surface elevations for the waterway through the site, and to delineate a 100 year flood plain. As shown on the Floodplain Delineation Map, the floodplain does not affect any proposed buildings or parking areas. As well, all wastewater manholes are located outside the floodplain. The HEC -RAS input and output are included herein. The HEC -RAS model begins downstream of the 60" culvert, and therefore includes the culvert in the analysis. Based on conversations with City staff, the subject tract would not be required to provide onsite detention provided conveyance of stormwater flows is available through the 60" RCP culvert beneath Harvey Mitchell Parkway. Based on the above mentioned offsite calculations for the 46.34 acres, the 100 year peak discharge is 211 cfs to the culvert. Based on the HEC -RAS output, the calculated headwater elevation on the 60" RCP is 292.53, while the road elevation is 302.5 thus providing approximately 10.0 feet of freeboard. Therefore, the culvert has adequate capacity to convey un- detained flows from the subject tract. G: \124- 14 \DOCS \drngrpt.wpd Page 3 of 5 April 18, 2000 Onsite drainage calculations for the storm sewer system and inlet designs were calculated using the Rational Method, with a 10 minute time of concentration. Peak discharges were calculated for the 2 -, 5 -, 10 -, 25- 50- and 100 -year storms. These calculations are included on the drainage area map (Exhibit 3). Storm sewer sizes were calculated with Manning's equation, with a Manning's n value of 0.014. All pipes are sized to convey the 100 year storm discharges with out surcharging. Storm sewer outfalls will consist of headwalls with energy dissapators and rock rip -rap to minimize erosion at the outfall. Storm sewer lines will be constructed with Class III RCP for pipe sizes 18" and larger, and SDR 26 PVC for 12" and 15" pipe sizes. The contractor will be allowed an alternate bid item to use High Density Polyethylene (HDPE) pipe in lieu of the materials mentioned above. This pipe is corrugated on the outside, with a smooth wall on the inside, and therefore has comparable structural and hydraulic characteristics as RCP and PVC. Surface drainage will consist of sheet flow and concentrated flow along drainage swales and curb gutters. Grassed swales around buildings are graded with a minimum slope of 2.0 %, and paved areas with concentrated flow are graded with a minimum slope of 1.0 %. All paved areas will drain to curb inlets located throughout the parking lot, and grassed and landscaped areas will drain to area grate inlets provided throughout those areas. All stormwater runoff from the subject tract will be collected and discharged into the natural waterway. 4.0 SUMMARY AND CONCLUSION The subject tract is located on the east corner of Harvey Mitchell Parkway and Luther Street, opposite Texas A &M property. The proposed development consists of 324 multifamily units designed to accommodate student housing, with all required parking and drives, and amenities such as a clubhouse, swimming pool, basketball court and volleyball courts. Conveyance for stormwater runoff will be provided by constructing onsite storm sewer systems that will discharge into a secondary waterway that runs through the site. Offsite flows will be conveyed to the waterway via storm sewer systems. All systems are designed to convey the 100 year storm without surcharging the system. Conveyance through the 60" RCP culvert beneath Harvey Mitchell Parkway is available for the fully developed, 100 year storm, and therefore detention is not required. G: \124- 14 \DOCS \drngrpt.wpd Page 4 of 5 April 18, 2000 I hereby certify that this report for the drainage design of Fairfield at Luther Street - Multi - Family Site Plan was prepared by me in accordance with the provisions of the City of college Station Drainage Policy and Design Standards for the owners thereof. 14 / J ¶ q--) per 1` * P �' Registered Profe' Engineer eA p9R YBNbp>o)NNWN�a:�N . Gi'JNY MILLER ,� State of Texas Number 82725 82725 r �,o 4r�'r'sVf'ISTVV 4�d G: \124- 14 \DOCS \drngrpt.wpd Page 5 of 5 April 18, 2000 1 1 1 4L ' - 0 : 4 k"D■opy \ ‘," ,, ,.... / * 0 L,4---..?... - - - , ' 4, - ", ,, 4 ....... , ,,, •,. , 4 4. si ■ 100 \ ‘'N 1 -,,,--, \f"ey I / ' , - _ , - , V' \ .A0 / - , / H \ \ ''-' – Gikt<4 \ ■ „„,■ 1 4 I — i N.. " • Alib_ , . 1 i N L.VERSIT V r •p i , 40 , , O . '.." . 1 1 1 8 ' ' 7 t 4 N # 1 8 \,, 4 - ;,;,0 -,-, i■., ',..,,, _, \ ' / • \ / .11 / , e 4..A•; t , \ \------\ , ,',-- ----■ --., _ . i a Nx., , t 4 4A 1 \\ ' - , - \ 4. ARPORT ■ ■ ........ N. , 414 /- ' . - / ' SO, ' - • 0 MAW ■ b \ ' , 1 CAM 1 , r . r - , ' ' *s• X/ e ' \ 44 4 1; ; 14. \ 1 '• ... . • — \ • ,-. ... — . 1 1 ) _ __ _ ,_ ) i . ,• , ) ./. ...., A %1\ ... '' -- ir I I ■ ", J ‘ 4 4 1 mann waumm / 1 — ; ...,.. _ _. _ - ■ — 111 --- r - -- \ _ -- , : - \ .0N I 5 1 ...,. ,_..., ,,- L .4 '7 4 ( - 1 - . I 1 LEGEND 4 ) I ■ 4.- , ) ■ 1 \ ' — I , ,.. - -- ( \ '' / I ' ._ I ? --“: 1 r 1 I.. SDIEL1S ■.....■-. *mut ..D.. ........ D. D.NDI ma: D . Du .•,... • • ■■•• s............r. '- ..' — ' _ 7 ' !!'„..■-- :"....=:= / Demi. Wt.*. owlim. Texas Dept. of Transportation I m -- BRAZOS COUNTY MAP # 21 r • LOCATION MAP 7\1) 1 • 1 / 2 M I L E Longaro & Clarke, Inc. ilimmiumlowammli q Consulting Engineers Land Development • Stormwater Quality Management • Water Resources 1010 Lard Crml C.w. Soo* 200 Assool, Too 77744 a 1 V i k j PP�IFIC \\\ 3 % V �i I o w �,i I UINERN Z SO U• (u< \ I N Z X N Z X O W N Z 0 co N \ ' . O • 1--4 • v 1 I 1 WO 00 LL. 1" O CD • j �. \ v U7t • .<:?.? b � s c Q G U • 11 11 1 I 111 Q I $ 11111 L 1 ,.1 111 11 , W r?, '* W �• Z • 1 • • / . v' I T X Q V m 00 W , ♦ W o 0.v Z CI o ■ Z O d,, O 0) c o N ,S,, ` �i N a 1, # I tu - 0 X ID W Z • 0 . N O • V' X W . \.2 ca 1. . e s 1 LO 0) r co co (O V r O LO V 0) ° N - N N V ^ O ° W Cl a U (O (D ( ) 0 0) (0 M 0 CO CO (0 O O N N N M M 0 (O LL N O U m ao (n m .- r co (n (O (O O r - N N () V O r co co N N CO -- r N W r O 0 ID 0 0 0 (O 0 to CO N CO - O O O V 4 K O_ co .- ,- co O 0) W O U 0. M CO (D ( co O V O - I.: r c0 C7 04 (D LO 01 ,- ,- N W VI U U LO 0) v o o M <7 C '( CO N 6 N 0 - T ,- N r 0 0 U IX N d 0 0 1 0 co O N CO = Z o 0- CO 0 n Z LO H O Z O O O O 6= 0 0 o ( l 0 O ~ 2 .,- N N O N Z QI r r r r F (/) (/) 0 0 I- 0 v CO • F- > Z O 0 O W 0 Z r O O N 0 W W' N S V N N CO O N cC 0 1- 2 N O O V O 2 W a Z (O (o (O Q) (D (D F W W (n w O z U K j w 3 a a ° 0 0 0 CO U- W co O ° = V V O W CO M O V CC O F o 0 0 o o O z < U • = Z r; 6 6 (0(O (D LL N LL 0 0 0 0 0 Z 4. 0. CO (o a) O M W 0. O O (0 = (O r (D CO r W Q LL , °° 0 Z O V (A r tD CO Q' (0 0 0 • > _ w M Z > a Z O 0 ) O › - O N 2 M CO 0 '4') CO N N u0 O OJ t- g O 6 C O 6 ° Z (D CO V O M Q U W o o N 0 a co to to n Q rn °' ° r _ w W a O O a r ° 0 LO Q (D } o 2 O w ( m y CO CD J Z I,- N O =° �O l � 000 (° 0Z0 0 00 0 00 m D a) (n v Q on c d (n w ^ C Q Z O CO O 0 O L L ° Q O ° 0 N O — (o o or O .- N N.- N N N = O co II 1 0 (0 CO Q a. N r W O Q tD (O , CO v _ Y ° W U W U rn v F2 , 0 I O H 2 _ 2 T . , 0 O O a Q Q N N O N U U 2 a CD (() N Q W N n co < _ W 5 a, O_ 0 0 0 0 } ° O Q CO W U N Q N N N • _ 0 0 F 0 0 0 0 0 (L) - w' Q a r N O) O(0 N co W N LL 0 0 0 0 0 _I (.0 z 0 (n 0 (o U • H t- } o U Q W U o.0 a) v) o M Q W O Cr) 0 00 0 0 N W )- Q O • N 6 H 0 N N M Ur O Q M lO O (V . or 6 • n Q ~ c Z w Q 0 Z Z y W 0 u O Z o (i U W Q C j c Z Q N O 1)- .- N CO mi (O 2 w 0 w - N M Q LO w O IZ z E CC Q CC Z OU w < 4 U w O O w 0 0) .0 V 0 i • J 0 0 0 0 0 0 0 0 Oo 0 o 0 o o 0 0 0 O ~ 66006o0.-6606600666 F- F- W Z W O U 0,0000 cO o r o r o 0 0 o M o 0 it -I'--M N V 0 0 0 0? O O N .- 0 0 0 0 4 0 0 H W F W W F- 0 0 0 o o O 0 0 0 W o a u a a a a a N a a a¢ C[ J O F- 0 0 Z Z Z Z O Z 0 0 0 Z Z Z Z 0 0 0 I- LL, LL O O O O O O O O 6 • W • > 00 0 0 0 0 0 W 0 0) 1- 0 0 000 0 10 00 N N 0 0 0 0 In 0 0 CO W Q r -1 Z 0 u z o o o o 0 o o °. o 0 0 0 o m 0 o 0 0 N Q O 0 F- O O N O .- O , - . 0 0 0 O O N (V O O O o I 0 0 o u 0 -J Z 3 a t~i. a a o a o¢ o N a a a a a N N a a a 4 0 _J F = Z Z o Z o Z o o Z Z Z Z Z o o Z Z Z 2 U 0 o p 0 - a - I- 0 0 S 0 N 0 N 0 0 0 0 0 0 0 0 0000 LL v = U W o La II 2 w 3 N Z O O O N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o • 2 0 F - 2 N N N,- N N N N O,- N N N N N N N u) W 111 a ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l N N N N N N N N N Q N N N N N N N N = 0 O ` 1 0 0 0 0 0 0 0 0 0 Z 0 0 0 O 0 0 0 0 I LL v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tu J • W • O 0 ) t' 0 0 000 0 10 0 0 0 10 0 0 0 0 0 0 0 EP.:. 10 0) 10 01 L0 0) N N ■!) N 11) N 10 10 10 0) N > N LL c 0) 0 Z m Z U Z 2 W O d .- N C) V l0 t0 r m T 0 -< V 0) (0 r CO 2 Z Q N W C Z W m p a a e 0 n M g m o 0 m c3 m n 0 1 O N 0 N (D e m O N 0 (O O m 10 N 7- • o n O CV O N 0 N N 6 O CV .,- M O 6 O W O U N 0 N O CO 0) n CO 0 n 0 4- CO 0 0 n CO 0 0 N _ 0 O e N (h N CO 1n 0 n 0 N CO O U) 6 Oo ,- ,- O N o N' 4.- O N O O N ,- 0 O L.L. m C) CO 0 e 0 CO CO m N n CO CO n m 0 Cr, 0 N 00 0 1� 0 1° CO 0 Cr, CO n O n N 0 N O O 4- e • e m 4- 4- 0•4 0 m 0^ 4. O (V 0 O 0) ,- O N O L.L. C) N CO n(0 e 0 e e 0 0) 4- n N 0 0) e 0 CO 0 0 e CO n 1O 0 7 0 0 0 N CO n 0" n O N CO n 0 0 e 0 0 ' O o , - m N 0 0 0 0 C7 U o • N- 0 M N 0 CO CO n N M 0 n 4- 0 0 0 N 0 0 0] m e e 4- 0 e 0 CO In n CO 0 CO CO r CO 0 • 4 O o.- M e m 0 0 o.- n N e 0 0 n 0 4. s- 0 at 10) - . 0 0 0 0 CO CO CO 0 0 0 0 0 0) N- O n 4- 0 01 N CO n 0) 4- CO V e 0 N n 0 0 0 0. 0 0 4 0 4 0 0 0 0 4 0 N N O o o O U 2 e e e e e e e N e e e e e e e e e e • Z m • CL m N 0 (0 0 In 0 m 0 0 0 0 N 0 N 0 0 LO O 0 _ m Z n co ca e O E z • p W Q O O 0 0 m 0 CO m 0 CO e CO CO m m m m 0 m m m _ 2 CO CO m CO CO CO m 0 CO m CO CO m m m CO CO m U w N Z o 0) 0 0 0 0 0) 0 0 0) 0 6 0 0) 0) 0 0 0 LL 0. W W Z O 0 W F > 2 0.) M M 0 0 0) Ch 0 M CO M 0) M M 01 0 0 M W W C0 O 0 2 (0 0 0 0 0 0 0 0 0 0 0 0 CO CO O 0 0 CO O W CO U -? m co co 0) co co m 0 m co m 0 co ao m 0 o ai W CO 0 CO 0 0 CO 0 CO 0 0 0 CO CO CO 0 0 CO CO N 2 (0 0 0 CO CD m CD 0) CO 0 CO CO O 0 (0 CO CD O Z n 0.: h. r n n r N n n r n n 1 n I- n n 6 °) CO 0 } O 0 0 CO CO (0 CO CO 0, CO 0) (0 (0 (0 co (0 co (0 0) N S M co o co co CO CO CO 0 C) (h CO C) 01 cO M M 0) O — Z 0 0 0 0 0 0 0 e 0 m m m 0 0 0 0 0 0 o rx CO N Q 0 m e w n LL N 0 CO 10 0 0] N CO CO 0 N 0 0 0 0 CO N 0 o o O w n N. In m m n m 0 n w CO m m m (n m y m O Z O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o U U Q • (D CO `° W n } o V Z o o o O O o O o 0 0 0 0 0 0 0 0 0 0 0 0 0 N 2 O o O O ry o O O o 0 0 o O O o N K 0 0 m } O 0 U CO 4- m e 0- 10 0 0- 0 .-- 10 m 0 N CO CO 0 N e m O O r n e N m N CO o 4 O 4 0 0 a Q Q .- o o 0 0 0.4 r".- o 0 0 0 o .4 O o • 0 1O LO QJ n 0 m co >. o Z f0 W U 0 01 0 0 0 0 e 0-00101c00-0000 0 � Q m 0') 0 0 0 0 e M 0 0 0 .- 0 0 0 .- O n 10 F- Q Q 6 c 6 6 06 6 6 6 0 6 6 66 0 Q • 0 m 0 J W O 0 J n 3- 0 0 F w 0 0 n 0 0 0 0 N C+) M 0 m 0 0 m e, U O 09 7 o N O 01 V CO 4- CO Cl LC) e 4- 0 N Q Q Q N O O O o N e .-. ,- O O o .- O N O o m Q Cn Z Z W p U p w O CC O N o a m m r.... m 0 ° ,_ .. t O . 0° ~O p Q F- U W W W m a c) 0 V 00N C) 0r` U1 N. I00)'0N V N00 10 N C)0 .- 100 Q 0 0 0 0 O 0 0 O O O O O O O H u Z_ W ~ M • f0 V 0) 10 00 7 (O N0O(00(0 10 0 0) 0) 0) n IO N O O O J UN r` ^ ^' 0 Ni V (O N. m (0 r` r` r` <0 0 V J LL w = a w N N M cC a' . w d W Z V V V V N N N 0 0 '01 0 0 0 CO �� NNNN .� �� 00 N MC)f7 C) E Q O 0 N(010 O 100) 10(o N- 0C)N s r` CN N NO V O OO CO C) 0 (/) NN C V N e -' - N0 O V 1- N 0 O nro V V 0 Nv. V (0 N(00 C)C)NN (0 CD O 00) O10(0N 0 0 n n r` n 00 7 7 r' 0 o 2 Z 0 0 0 0 (0 (0 0) CO V 10 0 V 10000 m 0 10 (o V 700 NU) N N vi N 7 C00 NM 0 0 .- v N N LL 0 0 N CO ' ' (0 (0 0) 03 0 (0 0 0 V 0 N CO 03 r•- V co 07 O)1010 E (• (00(0 0 00 oa 0 0>00) 0 0 N? — Z (0 7 N 0 '- CO V 10 C 10 0 •-• (0 m N. N CO 10 O M 01 V LO J CO C) V (O O O O N V 0 0 7 r' N 00< ( co 0 N 0 7 o ( I O r0), 0 7 C) (000 O a N7 O OOO7 Q0 0< CJ 0 0 '- (0 r• 0 7 0) V (0 10 C) N C) (h 0 N ' O 0 0 0 10 1 7 V Q 10 O7' N O O O co N 0 0 X 07 00 1Z Q Q — 7 co 0 10 O o 0) o 0 o (0 0 C) 0 CO O N (- O O 7 '- V O '- t` O O 10(0 (010 O 00 V 0 0000 0 Z N N N N )- )- .- '- cn Z 0 t- Q J 0 a. ,- NC) V )- )- N , -N ■- V .N C) 0 ) N (h O J • )- Q 0 < w a Q 2 O " N C) 0 O � 0'- 0N100 0" N w O O u- Q LI- Z g w CI • (5 it_ - (75 J W Q Z J 0 co N .- - J (o J V 10 N N . .J O In V 0 J C) N O m K Q (n 3 (n u) (n "a3 (n N 0 0 0 0 0 0 > - O (O N O) W V m O > - N O (O V M d) 0 m > - N V O `Z.' I- V 0 0 > - 7 N N(' N m m 1 N O O O O r) N O r M M V- F- M N N CO F' F - M N N N M J �' 0 0 0 0 0 0 O J O O O O O O Q 0 J LL O O O O O o 9 O W LL 0 0 0 0 0 0 0 O Z Z Z Z tor N N - V 0 ( 0 N N 10 N N R N N V 0 N 0 0) (O co co O N r- M N '- CO M M + N V V t0 N (O O + I 0 (0 o (O (0 10 6 O + F' C N N N (0 N '- O + F 0 N O N N (O .- O O 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0 O O LL 0 0 0 0 0 0 0 O O LL" 0 0 0 0 0 0 0 O >- _ } _ } } Ce Ce 0 0 0 v V U U U �- Q Q a u- CO N N 0) CO N 0 _ < J LL r 0 0) N N Q J 0- O (O N (D O M < J 0- N 0 r r N 0- V .- LL " u_ O O O O N O O LL 0 10 CO e- O .- O O 0- �+ LL T N M N O o0 V LL O) M . - (O O O co Z_ Z Z Z o i N 0 0 0 0 0 O O O O O O °O 0 O O 0 V O n O N O O O Lo F r r 0 6 0 a m r o r r a r o 0 o r o vi vi 0 6 0 ai 0 6 0 0 6 6 0 6 0 0 0 6 J o u_ J • u_ J o LL 0 o LL ar, U J U J v U J 0 J 0 • 0 0 0 0 U3 V7 fn N W 00000000 LU CI u ~ - vi 0 0 10 0 0 0 (ri 7 LL 6 6 o 6 o 0 o 6 7 0- 6 ui 0 6 0 0 0 10 7 u ( N o O 0 0 0 vi J J . - . - J J J '- r V J r 0 0 0 Z Z Z Z Z ( 0 04 04 10 0 10 10 04 �"' 1010040410040.10 " (O N 0 M 0. N N 2 0 N V r' •- co o. 2 J N O CO N N,- 0) J (O CO W CO N N O J co. co O O N M N J n N (O CO CO 0 N Q U) 0) M 1� V O) O O W Q N a m (O O N .- • O Q N (D O N R O Q N O O N N O 1- LL 0 0 .- .- 0 O 0 0- O O U 0 (- V O 0 u- () O U >- 0 0 0 0 0 0 0 0 >- 0 0 0 0 0 0 0 0 r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V) 0 0 0 0 0 0 0 o 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o u) 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 o N Q 0 0 0 0 0 0 0 o N Q 0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 0 0 Ce CL_ U Q m U 0 m 0 m U Li- 0 U- CO 0 LL. (J LL. 0 N 0 Z (O M N R 0 V V M Z CO CO M CO LO N N (0 Z tD N 0 M n W." N Z 0 N K r 0 0- CO O CO N N W .- (O CO 0 CO CO N 0 co N 0 O N M N 0 (0 (0 co co O N N 0) M 0. V 0) ' 0 0 - 0 3 I R O) (O o N,- o Q 3 u) (0 0 0) N C o O 3 o r 0 0) N (O N o a H p LL F QQ 0 u_ N F - O u_ L-.1 I- o u. N ( +- J 0 U LL U 7 7 7 7 U U U 0 J _ J _ J _ J _ U u U (0 0 U a U u LLJ (U .- N t` 0 0 CO L N 0- O O .' CO w O N 1. o) o•- N W O.- N 1� D) 0 .- (D Q. ' 0_ J Q J Q. J W W W W CI CI CI CI 1- •.• F- LLI J .- N r m O r (p Z J $ r N I� lO ? J L N 0 0 N ? J $ .- N N 0) 0 .- (D n z o z n z n z J 2 J 2 J J 7 7 7 7 0 U) V) E 0 O O 0 V P U U 0 v U < ~ 0 0 0 0 0 '- 0 r Q ~ 0 0 O O O N < ~ 0 0 0 0 (O N 0 ~ LL 700707,-L, J = 0 0 0 0 0 0 0 0 LL J= 0 0 0 0 0 0 0 U. J= 0 0 0 0 0 0 0 O J= 000000 o z a 0 0 0 0 0 0 0 0 0 Z a 0 0 0 0 0000 0 z d 0 0 0 0 0000 Z Z a 0 0 0 0 0 000 Z w Z w Z w _ Li/ 0 0 C7 0 C7 0 O 0 0 0 " J O N co co co co co co co c] J O N M CO CO CO C) M M M J O N C) M M M M M M M O N CO MM co co M co co O F ` - CO CO CO CD 0 0 (0 O V 2 CO ID 0 O O CO 0 CO 0 Q F- (0 0 0 0 0 CO CD CD 0 (o 0 N t0 CO LO CO (O (JJ v 0) 6 (D N N (D (D N LL N (D cci N 6 N N N W 6 La ui N LL ([1 to O 0) c w L.L. N (D (D (D (O (O (0 xi a Cr o c o CC ((1 C0 M < N < N < N < N N N to W N W N N W W N p w H p w F- p w F- p w F-- )-- v ( 0 0 0 0 0 0 0 0 F. 0 0 0 0 0 0 0 0 F. v 0 0 0 0 0 0 0 0 S H LL 0 0 0 0 0 0 0 0 «. n N ul 3 3 8 (D 3 E (D N N 0) N 3 (D (0 (D 3 ..J N N LO to 0 LO 0 0 _I ( n n n n r r r n U 1< r r r n n n n r J 1 < r n r n n r r r U O' W n n r n r r r r Z c Z a ZZ a Z a a (O 0 n V t 0 co cr, N CO n C n O N CO M CO N CO m n O N N N 0 t00 CO CO O 0 0 0 W N 0 < ,- '- O •- O NOM 0 < .- O N ONO M 0 Fa- N O N 6 N M co - I— 0 V N 0 U F- 0 Jn 1- U >- 0 0 0 0 0 0 0 0 >- 0 0 0 0 0 0 0 o >- 0 0 0 0 0 0 0 0 p 0 0 0 0 0 0 0 0 1- 0) 0 0 0 0 0 0 0 0 N V1 0 0 0 O O o o O (n 0 0 0 0 Co 0 0 0 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CZ d LL Ce CL a LL !L LL LL LL 0 }� U m U 0 m U m 0 Jn a N 0 (f) 0 CO 0 O D O 0 O N O N O 0 n CO CO CO CO M CO 0 O 0 D N r O O N (O 0 0 0 0 CO J Q - 3 - O O - - O - N N J.. -- -- O - - O N O M r 3 - - O N 6 N 6 M h N •- O N0 N- M J O LL g 0 LL g O W J O u LL U U = LL U 7 , U 0 a 0 0 U aa U 0 0 M N O N CO C 0 1 W CO V (O CO N M' LO = W CO a (O CO N CO V (O S W M V (O (O N CO O N X W • a i a a a a a W W W W o p p o J • # J # J # J # - LU W M 0 N N .N- e M - W W CO 0 N N W W CO 0 0) CD .N- .M- .- W J CO V co co N^ (O F Z g Z g Z ¢ Z O 0 0 0 HEC -RAS September 1998 Version 2.2 U.S. Army Corp of Engineers Hydrologic Engineering Center 609 Second Street, Suite D Davis, California 95616 -4687 (916) 756 -1104 X X XXXXXX XXXX XXXX XX XXXX X X X X X X X X X X x x x x X X X X X xxxxxx( XXXX x XXX XXXX xxxxxx XXXX X X X X X X X X X x x 0( X X X X X X X X x xxxxxx 00(x0 X X X X X X X X X PROJECT DATA Project Title: Luther Street Floodplain Delineation Project File Luther.prj Run Date and Time: 1/25/01 1:22:34 PM Project in English units PLAN DATA Plan Title: Plan -1 Plan File : g: \124- 14 \DOCS \Luther.p0l Geometry Title: Luther Street Floodplain Delineation Geometry File : g: \124- 14 \DOCS \Luther.g01 Flow Title : 25 & 100 Year Flows Flow File : g: \124- 14 \DOCS \Luther.f01 Plan Summary Information: Number of: Cross Sections = 8 Mulitple Openings = 0 Culverts = 1 Inline Weirs = 0 Bridges = 0 Computational Information Water surface calculation tolerance = 0.01 Critical depth calculaton tolerance = 0.01 Maximum number of interations = 20 Maximum difference tolerance = 0.3 Flow tolerance factor = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance Computational Flow Regime: Subcritical Flow FLOW DATA Flow Title: 25 & 100 Year Flows Flow File g: \124- 14 \DOCS \Luther.f01 Flow Data (cfs) River Reach RS PF 1 PF 2 Luther trib -1 2065 128.71 152.19 Luther trib -1 1580 177.77 210.96 Boundary Conditions • River Reach Profile Upstream Downstream Luther trib -1 PF 1 Normal S = .005 Normal 5 = .005 Luther Crib -1 PF 2 Normal S = .005 Normal S = .005 GEOMETRY DATA Geometry Title: Luther Street Floodplain Delineation Geometry File : g: \124 -14 \DOGS \Luther.g01 CROSS SECTION RIVER: Luther REACH: trib -1 RS: 2065 INPUT Description: Section 2065 Station Elevation Data num= 8 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 55 310 77 308 92 305 97 304 100 303.7 113 304 119 305 135 308 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 55 .065 97 .04 113 .065 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 97 113 180 195 180 .1 .3 CROSS SECTION RIVER: Luther REACH: trib -1 RS: 1870 INPUT Description: Section 1870 Station Elevation Data num= 10 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 55 307 68 306 72 305 95 300 98 299 100 298.4 102 299 104 300 109 301 138 305 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 55 .065 98 .04 104 .065 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 98 104 185 215 185 .1 .3 CROSS SECTION RIVER: Luther REACH: trib -1 RS: 1655 INPUT Description: Station Elevation Data num= 14 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 42 303 80 298 85 296 92 295 98 294 100 293.3 102 294 103 295 107 296 117 297 121 298 124 299 130 300 156 303 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 42 .065 98 .04 103 .065 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 98 103 90 75 55 .1 .3 CROSS SECTION RIVER: Luther REACH: trib -1 RS: 1580 INPUT Description: Section 1580 Station Elevation Data num= 12 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 50 302 65 298 76 296 83 295 95 294 97 293 100 292.6 103 293 107 294 114 295 142 300 158 302 Manning's n Values num= 3 Sta n.Val Sta n Val Sta n Val 50 .065 95 .04 107 .065 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 95 107 190 200 195 .1 .3 CROSS SECTION RIVER: Luther REACH: trib -1 RS: 1380 INPUT Description: Section 1380 Station Elevation Data num= 11 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 40 300 72 295 90 292 96 291 98 290 100 289.3 103 290 105 291 113 291 132 295 163 300 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 40 .045 96 .035 105 .045 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 96 105 60 70 70 .1 .3 CROSS SECTION RIVER: Luther REACH: trib -1 RS: 1310 INPUT Description: Section 1310 - US of 60" Culvert Station Elevation Data num= 7 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 18 300 SO 295 73 290 100 284.62 123 290 145 295 184 300 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 18 .045 73 .035 123 .045 I 1 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 73 123 250 250 250 .3 .5 CULVERT RIVER: Luther REACH: trib -1 RS: 1185 INPUT Description: FM 2818 60" Culvert Distance from Upstream XS = 70 Deck /Roadway Width = 80 Weir Coefficient = 2.6 Bridge Deck /Roadway Skew = Upstream Deck /Roadway Coordinates num= 2 Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord 0 305 275 360 302 275 Upstream Bridge Cross Section Data Station Elevation Data num= 7 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 18 300 50 295 73 290 100 284.62 123 290 145 295 184 300 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 18 .045 73 .035 123 .045 Bank Sta: Left Right Coeff Contr. Expan. 73 123 .3 .5 Downstream Deck /Roadway Coordinates num= 2 Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord 0 310 275 350 308 275 Downstream Bridge Cross Section Data Station Elevation Data num= 6 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 45 295 83 288 100 282.57 110 288 125 290 164 295 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 45 .065 83 .04 110 .065 Bank Sta: Left Right Coeff Contr. Expan. 83 110 .3 .5 Upstream Embankment side slope = 4.5 horiz. to 1.0 vertical Downstream Embankment side slope = 3 horiz. to 1.0 vertical Maximum allowable submergence for weir flow = .95 Elevation at which weir flow begins = Energy head used in spillway design = Spillway height used in design = Weir crest shape = Broad Crested Number of Culverts = 1 Culvert Name Shape Rise Span Culvert 41 Circular 5 FHWA Chart 8 1 - Concrete Pipe Culvert FHWA Scale 4 1 - Square edge entrance with headwall Solution Criteria = Highest U.S. EG Culvert Upstrm Dist Length n Value Entrance Loss Coef Exit Loss Coef 5 240 .014 .5 1 Upstream Elevation = 284.62 Centerline Station = 100 Downstream Elevation = 282.57 Centerline Station = 100 CROSS SECTION RIVER: Luther REACH: trib-1 RS: 1060 INPUT Description: Section 1060 - DS of 60" Culvert Station Elevation Data num= 6 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 45 295 83 288 100 282.57 110 288 125 290 164 295 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 45 .065 83 .04 110 .065 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 83 110 60 60 50 .3 .5 CROSS SECTION RIVER: Luther REACH: trib -1 RS: 1000 INPUT Description: Section 1000 Station Elevation Data num= 10 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 7 293 19 292 33 290 56 287 69 286 I 100 285 109 286 117 287 139 291 166 294 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 7 .065 69 .04 109 .065 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 69 109 0 0 0 .3 .5 SUMMARY OF MANNING'S N VALUES River:Luther Reach River Sta. nl n2 n3 trib -1 2065 .065 .04 .065 trib -1 1870 .065 .04 .065 trib -1 1655 .065 .04 .065 trib -1 1580 .065 .04 .065 trib -1 1380 .045 .035 .045 trib -1 1310 .045 .035 .045 trib -1 1185 Culvert trib -1 1060 .065 .04 .065 trib -1 1000 .065 .04 .065 SUMMARY CF REACH LENGTHS River: Luther Reach River Sta. Left Channel Right Crib -1 2065 180 195 180 trib -1 1870 185 215 185 trib -1 1655 90 75 55 trib -1 1580 190 200 195 trib -1 1380 60 70 70 trib -1 1310 250 250 250 trib -1 1185 Culvert trib -1 1060 60 60 50 trib -1 1000 0 0 0 SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Luther Reach River Sta. Contr. Expan. trib -1 2065 .1 .3 trib -1 1870 .1 .3 trib -1 1655 .1 .3 Crib -1 1580 .1 .3 trib -1 1380 .1 .3 Crib -1 1310 .3 .5 trib -1 1185 Culvert trib -1 1060 .3 .5 trib -1 1000 .3 .5 Profile Output Table - Standard Table 1 Reach River Sta Q Total Min Ch E1 W.S. Elev Crit W.S. E.G. Elev E.G. Slope Vel Chnl Flow Area Top Width Froude 4 Chl (cfs) (ft) (ft) (ft) (ft) (ft /ft) (ft /s) (sq ft) (ft) trib -1 2065 128.71 303.70 305.06 305.06 305.57 0.020175 5.98 25.51 27.61 0.96 trib -1 2065 152.19 303.70 305.19 305.19 305.74 0.019566 6.30 29.13 28.93 0.96 trib -1 1870 128.71 298.40 301.16 301.16 301.88 0.015988 7.59 24.63 20.50 0.90 trib -1 1870 152.19 298.40 301.38 301.38 302.12 0.015055 7.84 29.37 23.08 0.89 trib -1 1655 128.71 293.30 296.28 296.73 0.011046 6.55 31.93 25.44 0.74 trib -1 1655 152.19 293.30 296.44 296.94 0.011349 6.94 36.38 27.54 0.75 Crib -1 1580 177.77 292.60 295.08 295.08 295.72 0.014516 6.79 34.26 32.02 0.86 trib -1 1580 210.96 292.60 295.27 295.27 295.94 0.013859 7.06 40.59 34.42 0.85 trib -1 1380 177.77 289.30 292.10 292.10 292.71 0.011441 7.04 34.00 28.84 0.86 trib -1 1380 210.96 289.30 292.25 292.25 292.92 0.011768 7.49 38.55 30.49 0.88 trib -1 1310 177.77 284.62 291.27 287.07 291.28 0.000072 0.89 205.20 61.42 0.08 trib -1 1310 210.96 284.62 292.53 287.25 292.54 0.000039 0.78 290.08 72.80 0.06 trib -1 1185 Culvert trib -1 1060 177.77 282.57 287.07 285.72 287.26 0.003424 3.54 50.24 22.35 0.42 trib -1 1060 210.96 282.57 287.21 285.96 287.45 0.004067 3.94 53.56 23.08 0.46 trib -1 1000 177.77 285.00 286.84 286.35 286.99 0.005002 3.19 61.04 57.65 0.49 1 trib -1 1000 210.96 285.00 286.98 286.46 287.15 0.005008 3.40 69.04 60.50 0.49 Profile Output Table - Standard Table 2 Reach River Sta E.G. Elev W.S. Elev Vel Head Frctn Loss C & E Loss Q Left Q Channel Q Right TOp Width (ft) (ft) (ft) (ft) (ft) (cfs) (cfs) (cfs) (ft) trib -1 2065 305.57 305.06 0.51 3.45 0.02 5.88 115.72 7.11 27.61 trib -1 2065 305.74 305.19 0.56 3.29 0.02 7.85 134.81 9.53 28.93 trib -1 1870 301.88 301.16 0.72 2.71 0.08 22.35 99.85 6.52 20.50 Crib -1 1870 302.12 301.38 0.74 2.67 0.07 28.72 113.42 10.05 23.08 Crib -1 1655 296.73 296.28 0.45 0.99 0.02 43.01 80.40 5.31 25.44 trib -1 1655 296.94 296.44 0.49 0.99 0.02 53.40 90.97 7.81 27.54 trib -1 1580 295.72 295.08 0.64 2.55 0.01 13.01 157.27 7.49 32.02 trib -1 1580 295.94 295.27 0.67 2.53 0.00 19.85 179.77 11.34 34.42 trib -1 1380 292.71 292.10 0.61 0.02 0.18 8.56 131.38 37.83 28.84 trib -1 1380 292.92 292.25 0.67 0.01 0.20 12.29 150.05 48.62 30.49 trib -1 1310 291.28 291.27 0.01 0.76 176.29 0.72 61.42 trib -1 1310 292.54 292.53 0.01 3.49 204.14 3.33 72.80 trib -1 1185 Culvert trib -1 1060 287.26 287.07 0.19 0.25 0.02 177.77 22.35 trib -1 1060 287.45 287.21 0.24 0.27 0.03 210.96 23.08 trib -1 1000 286.99 286.84 0.15 4.16 171.06 2.55 57.65 trib -1 1000 287.15 286.98 0.17 6.20 200.96 3.80 60.50 (O (O O O <t (D (O a0 W (0 N (O Q) O) O) O) W N N- N- 00 00 co. 00 O O �' V �' V V '. O O O O O O O O O O O O O O O O o. D O r M O O <t V N N V O) N O (n 0) (f) O M O) O V 03 O d, O 0 d, .1.. 00 M O (11) n 00 O M (O N V 00 O N N M h 0 }} e* N N N N ,-,,,' N N co M N M ‘"L' r N N (O (D 0 l- : -s ; r M M M O O Q) O O 00 , (O V' d' (O (0 M O co N 1[) O (!) N O N 1<) O O ,. O 4 Q) O V O 7 00 (n O O M O) Z ' N N N N M M M d' mm O O) 1<) tO 00 (0 N N O g 1 _ 032 Q) V' to 7 O) co V Q) O) N V 0)1 O _ 0) <n 00 In O) n O O d' co 6 M 14) O) r 7 C ~" (O (O r M O M r ti O O M M M .0 F ... " ., (O CC") O O co 6 O N Q) d' 1-- N 00 ;, n M W a 7 (O V' (O M NW MC' 0) (O 0) O O M LOW N- O O V 0 0 0 47. :', O 6) (l) _ � _ M O O M V LO (1') O^' N r r r r O O O O O O (/) j' O O 00 O O 00 O O O O O O O O } O O O O O O 0 0 O O 66 66 66 " ;" r V a0 N CO N -61; N M OW Mir) (O N 00 r CO 0") h- 0 N (O N Q) e" r (O N (0 O 0 ) (f ) N N N N N M ' ' ) ' O O M M O) O O) N N 0) N M N 0003 ▪ M M M M N N N N N N N N N N NN ll7 =V. M O (f73"8 00 r min (!) NCO LL7 (O O O N N O N O M (() (() r (!) (1) N N r (C) (f) (O (O ? O O O O O) 0) O) O) M of co M a0 M 7'Z M M M M N N N N N N NN N N ms, P a. ?x M O) (O W C A )",t col— c"-,;', r M n V (0 : } E - � ' ," 0- •---m. N V M N r N tf') O N 00 6) ).. ([) (f) (O (O (f) (1) N N N co N� (O (O w ;� O O E,0 O) 6) O) O) O) 0) O 6) co 00 0) M , . M M M M N N N N N N N N N N N N O O O O O O O 0 0 N N n h O O r i''-'• V V' M M CO O M M O O LOUD O O • £ .' !$. M M N M M M N N m O) V V N N (O (f) L "-: O O O) O N N O) O ( P O M ao (0 W CO CO 00 O0 '(,_ M M N N N N N N NN N N N N ▪ a L c2 ' i:.. r O) ,--(3) r m N- (0 r CO h (O t (O N� (O 0 ... N� r 1---m h Q) N� O . 0) r-- 0) � O) °0 00 N N N M N n O h 0 r...--c2 5 N� O r O ` N (O N (1) N (O r n r ,- r 7 r O O r r r r r r (V r (V r (V r N r N 7 r ,'- i s y o- : . ,° , a ' to <(3 s Q' C (() <0 O C3 . O O O 0 in 0 O . 0 0 * C0 <0 E � 4'- u) u) (0 — (0 Q 0 O, a.0 =o ',' co ,(0 (o 10 ,(0 o 03 , (n w ' g w : �.0 .0 .0 ..n .1. .c5 .4 n ' .n�_.0 .n. ".0 I CO 0 00 Cr V N N 'V Q) N 0 N!') 00 to 0 t...,. (D O) t() O tt) 0 .1. 00 a - 00 (')0 (O to • T3 % r 00 O M LC) N - N 00 O N N M n O N N N N N N co M N M (D N N (D > ; v a ; o 1- r 0) co N N M U) 0 tC) to cv LO O M 00 V co co ND t` M (0 M • L °' N O) M 0 t() h ti M(0 O M N M f �.r (' '''•'' r N N O r h a0 '0 O) 7 n (0 M 0 # -Y W 00 0) N n M O N r N- Q ) O O) _� d) co O 0 t ' O) - O (O V n O O O M 0) 00 O) co to N- O (- N - r T.- r r r r ,— N r N r N at r e.),,,,,,.. -61 ' . 00 14) N 0 t0 co O) co O) co O ': 00 N M 0 O 00 Nn N 6 r N 4 Vi, c, Q1 — N N V LC) O CD O M V N N W t` N N O co 0 N M O O O O O O O O (NI 0 0 ; O O O 0 0 O O O 0 O O O N :�r a j'^z. 14) Q) - N- O) 0) in co N t, N` ( N N- ND O) O 10 Nn O O N N 4 M N N O 0 N N 0 0 0 0 _ r r c v a° (D N V' 0 ) V n 0 V in t) ( o 0, r d' V (O (O (O (O O O r N r r 0 O O O 0 O O O O O 0 0 O O O O — a co `s : _ (0 O) (0 o0 W d 0) ( 0 - N ,- 0 ) O N 0 0) O r r M N '`j: L6 N • Ok tp tq r (O (0 tq 10 N N a) N N- r M M ^,, O 0 O O O O) O) F.,„) Q) O) CO co co co , CO C's) M C') N N N N (0,3 N N N N N N (4 (0 0) _''?, V 0) N CO '1' N V - N M <t t 0 'I-LC) O) _(0 " " (C) LO • N (O (O CV 1 C) N N a) N n N- O r y O 0 O 0 O) O) 6) 6) O) O) O) 7 00 00 CO co t 45 -s . M M M M N N "0" N N N N N N U N (V N N J W 0) kill (l] 0 0' it, 14) 0 O 0 0 C'; O 0.. tC) 0 O O O d (Q (0 1ti A- aC) L0 00 00 ? 0 Off'. •, )`4^ CO . CO (0 r O 0: C N a+R B. QJ PN - r .. a+• : R •r• ' Nr , — -r! r Q °, tm' ,S° 4' co U # . 4 g ar , r ( r ?,, ,,-,1; �— r^ a-- r• r r � = � .o- al ' -- 'a a , a a b ,� S � . 5' S � 5 ( a r ,7- N `. S w '''S N 0 LL Li_ C W d d • O co 3 O O N O O O T N o r - O s C (6 C co O v c O C co c 0 o c L 03 U Q c - 0 m O O L._ N N ll v/ O 4 -O L I J O 4 1 N I m N ; (NI N N (4) UOIWAOI3 - N r . V C I LL lL c (1) rn a a■ o • c m co rra -N N v 0 - CL C 0 w CO co 0 0 N C O 0 ) _ C c (1) CO 0 0 0 LL co N co cn o L 7 J O ,1111,111 II 11111111 11111, TIII - (O O co co co O O O O O O O co M M M M M M (4) uogenal3 a 1 N — -0 c 1u_ u_ c o a7 0_ d ■ 30 • • _c y I U) (1) c J 1 C) on O -V • co O O - O N - • • 1 i . • C I CO 0 ° 0_ 1 - O • 1 C O . - c0 r-- N F C c c O O O • a U CO fn O V) CU O _ - o O O LL - co a) O L a) 0 J O _ co • 0 i r r r r 1r ■ ■ i , r i 1 r , I r i r Er i ■ i co ,r O O O O O 0) c+) co co (`') (o (N (4) UOI)2n0o 1 - N . c0 c LL LL C (n w 4 d 0_ • • C J 0 m 0 r (13 I T 0 l i T- co co 0 _ r O 1.0 - N 0 r - r , i - • C (S3 _ 11 C • - O N N F. C N o frilliiiiiiPi' ..= -o0 0 r C (n 0. O O LL N N - L ^ VJ L _O N CO L _ 7 - oo co 0 O _ O 0 O O co m o) o) o) co M M N N N N (4) uogene0 • . N r0 C LL LL C (/) y V) (n C CD m O O LO (o 0 - LO N -N r _ C i C � O I as a0 O • - C w - Q O O LL (1) L 0 CO J Ln (O c+Oj OM N N N N (4) uogen2o .D N - «D C LL LL C U) N U) ■ - • CA i 1 m 0 • c O o L) N L o v 0 CU d c -c‘i 0 o CD co c c N o 0 (B 0_ - O O o ' _o O • • • tU L _ J O O _ O O O co oo O D1 m m m o0 co N N N N N N (4) uo4enal3 - N 12 C LL LL C CO C; • n_ a. a•c 3 c9 m O r0 0 _ 0 0 -(D in 0 N l 0 CO - � 0 CL > r 0 0 • o o - • o a o ' c o c N - L -0 0 o o co Q c - O o ti a) L w o _ co a) N L 7 O J CO to V O O O - N O O a) a) O a) co co a) (h N N N N N N N N (II) uoi;enalE N C CO C LL LL C (J) • y cn 0 _o N _ co O da r 0 O i ' .. u.0� "` - r °., , w Y o Lo cN r 3 yea ` p_� k k cp a 713 Q LL ram � a r E � � � � o LL CD d 1 0 : t in M M N N N N (ii) uoga ei • N - p @ C LL U C (J, CO 1 J I N N 3 C7 m ( 0 0 _ 0 - v O 0 co _ N o 0 > • O O • o • o F w co C C p O O . O LL N o Cll • I L O J -co it) co _ O m m Cr) Cr) c0 CO O co N N N N N N N N (31) Upl}2n8o . N •• (w0 a a v7 • 0 ! co cn 0 -0 0 - v 0 0 N o -N � I o O -o 0 ( a o C c o N o a ❑ o 4 m N 0_ O O LL, 4) _ 0 J 0 ,n 0 0 0 I N o O 0) 0) N a0 a0 N N N N N N (j) uogenal� k< Drainage Report For Fairfield at Luther Street Multi - Family Site Plan 20.63 Acres Travis L. Williams, Sr. et ali Crawford Burnett Survey, A -7 Brazos County, Texas Longaro & Clarke Project No. 124 -14 -37 April, 2000 Prepared For: Fairfield Residential Companies 2045 North Highway 360, Suite 250 Grand Prairie, Texas 75050 Prepared By: LONGARO & CLARKE, INC. Consulting Engineers 1101 Capital of Texas Highway South, Suite C -100 Austin, Texas 78746 (512) 306 -0228 Drainage Report For Fairfield at Luther Street Multi- Family Site Plan 20.63 Acres Travis L. Williams, Sr. et ali Crawford Burnett Survey, A -7 Brazos County, Texas Table of Contents Page 1.0 Location 1 2.0 Property Characteristics 1 3.0 Drainage Design Criteria 2 4.0 Summary and Conclusion 4 Exhibits 1. Site Location Map 2. Aerial Photograph 3. Drainage Area Map 4. Offsite Drainage Area Map 5. FEMA Flood Insurance Rate Map Appendices A. Hydrologic / Hydraulic Calculation for 60" Culvert 1.0 LOCATION The project site is approximately 20.63 acres and is located at the east corner of Luther Street and Harvey Mitchell Parkway (a.k.a. F.M. 2818), approximately one half mile southeast of the intersection of George Bush Drive and Harvey Mitchell Parkway. As well, the site is approximately 1.5 miles from the Texas A &M University main campus. The site is within the City of College Station Corporate Limits, Brazos County, Texas (Grid No. N -37). The current land use is agricultural /open space with at least one, possibly two, detached single family dwelling units located upon the property. The proposed land use is Multi- Family, and can be better seen on the attached site location map and aerial photograph as shown in Exhibits 1 and 2, respectively. The site is located on the "Wellborn" USGS 7.5 minute Quadrangle sheet. The site adjoins a small waterway, which is a tributary to White Creek, a primary drainageway, which is a tributary of the Brazos River. No portion of the subject tract is located within the Special Flood Hazard Area (100 year floodplain) according to the Flood Insurance Rate Map for Brazos County, Texas, Map Nos. 4804100181C and 48041C0182C, Community No. 480083, Panel Nos. 0181C and 0182C, effective July 2, 1992 (Exhibit 5) 2.0 PROPERTY CHARACTERISTICS The current land use for the subject tract is agricultural, with one or two single family dwellings located upon the property. The 20.63 acre tract can be described as slightly vegetated with flat to moderately steep slopes. Vegetation mostly consists of post oak, and other hardwoods, located around the vicinity of a natural waterway through the property. Slopes across the tract range from 2% to 5 %, draining toward the waterway located along the front third of the property. According to the Soil Conservation Service "Soil Survey of Brazos County, Texas," there are two predominant soil types located on the subject tract. Both soil types consist of various sandy loam layers at the surface, with more clayey soils below the sandy loam. These layers of clay are typical of most clay types found in the area with very high shrink -swell potential. The majority of the site consists of the Tabor Series (Ta) fine sandy loam, and the Lufkin Series (Lf) sandy loam. The subject tract is bounded to the northwest by Luther Street, and to the southwest by Harvey Mitchell Parkway. Most of the property on the opposite sides of these roadways is currently owned by Texas A &M University, and is not expected to be sold or developed in the near future. However, G: \124- 14 \DOCS \EngrptSP.wpd Page 1 of 4 April 18, 2000 there are two vacant, undeveloped, privately owned tracts located on the opposite side of Harvey Mitchell Parkway. Currently, the TAMU property is undeveloped, and is being used for agricultural research purposes for the university. Adjacent property to the northeast is currently owned by Sigma Alpha Epsilon fraternity, and is currently being developed for their fraternity house. Adjacent to that tract is an existing multi - family development, Melrose Apartments. Property to the southeast is currently an undeveloped, wooded, 6.0 acre tract owned by Raymond Gorzycki. No plans are currently in the review process for this tract. A small waterway, which is a tributary to White Creek, drains through the front third of the property. This waterway originally drained a significant drainage area, up to Jones Butler Road, however, since the construction of the Melrose development, a significant portion of the original drainage area has been diverted into a detention pond located at the south corner of the Melrose development, which discharges into the waterway Walden Pond is located on. Secondary drainage includes the waterway through the subject tract, and various storm sewer systems that will drain into the waterway from the proposed development. Offsite drainage includes approximately 5.5 acres associated with Luther Street R.O.W., and the outparcels located north of the subject tract. The 5.5 acre drainage area will be collected via a proposed curb inlet located within Luther Street, that will discharge into the waterway via a storm sewer system. This storm sewer is to be constructed with the Luther Street Improvements construction plans that are currently being reviewed. As well, Lots 1 and 2 of the Melrose development, that portion south of the existing apartments (11.9 acres), will drain through the waterway via a 30" storm sewer line to be stubbed to their property. Currently, Lot 1 is under construction with a fraternity house. Construction plans for that development indicate a detention pond to be located along the northern boundary line of the subject tract. The subject tract will be developed as a student housing, multi - family development consisting of fifteen residential buildings and one clubhouse /leasing office, with a total of 324 dwelling units. Amenities will include a swimming pool, a basketball court and two sand volleyball courts. 3.0 DRAINAGE DESIGN CRITERIA Currently, no drainage studies exist for the secondary waterway through the subject tract. As stated previously, a significant portion of the natural drainage area has been diverted into another drainage area, and therefore peak discharges into the waterway have been reduced. However, G: \124- 14 \DOCS \EngrptSP.wpd Page 2 of 4 April 18, 2000 due to the proposed development of the subject tract, discharges will be increased due to the increase in impervious cover. Private drainage easements will be dedicated for the natural waterway, and those storm sewer systems collecting offsite drainage. All drainage systems will be privately maintained. Drainage calculations for the storm sewer system and inlet designs were calculated using the Rational Method, with a 10 minute time of concentration. Peak discharges were calculated for the 2 -, 5 -, 10 -, 25- 50- and 100 -year storms. These calculations are included on the drainage area map (Exhibit 3). Storm sewer sizes were calculated with Manning's equation, with a Manning's n value of 0.014. All pipes are sized to convey the 100 year storm discharges with out surcharging. Storm sewer outfalls will consist of headwalls with energy dissapators and rock rip -rap to minimize erosion at the outfall. Storm sewer lines will be constructed with Class III RCP for pipe sizes 18" and larger, and SDR 26 PVC for 12" and 15" pipe sizes. The contractor will be allowed an alternate bid item to use High Density Polyethylene (HDPE) pipe in lieu of the materials mentioned above. This pipe is corrugated on the outside, with a smooth wall on the inside, and therefore has comparable structural and hydraulic characteristics as RCP and PVC. Surface drainage will consist of sheet flow and concentrated flow along drainage swales and curb "gutters. Grassed swales around buildings are graded with a minimum slope of.2.0 %, and paved areas with concentrated flow are graded with a minimum slope of 1.0 %. All paved areas will drain to curb inlets located throughout the parking lot, and grassed and landscaped areas will drain to area grate inlets provided throughout those areas. All stormwater runoff from the subject tract will be collected and discharged into the natural waterway. Based on conversations with City staff, the subject tract would not be required to provide onsite detention provided conveyance of stormwater flows is available through the 60" RCP culvert beneath Harvey Mitchell Parkway. Hydrologic calculations for the drainage area to the culvert are provided for the fully developed, un- detained 100 year storm, utilizing the SCS method with HEC -1. As well, hydraulic calculations for the culvert are provided utilizing the TxDOT THYSYS Culvert program, and verifying the results with a TxDOT nomograph. The 100 year peak discharge is 338 cfs to the culvert. The calculated headwater elevation on the 60" RCP is 297.91, while the road elevation is 302.5 thus providing approximately 4.5 feet of freeboard. The TxDOT nomograph computes a headwater elevation of 298.32, thus providing 4.2 feet of freeboard. Therefore, the culvert has adequate capacity to convey un- detained flows from the subject tract. These calculations are provided in Appendix C and a drainage are map is shown in Exhibit 4. G: \124- 14 \DOCS \EngrptSP.wpd Page 3 of 4 April 18, 2000 4.0 SUMMARY AND CONCLUSION The subject tract is located on the east corner of Harvey Mitchell Parkway and Luther Street, opposite Texas A &M property. The proposed development consists of 324 multifamily units designed to accommodate student housing, with all required parking and drives, and amenities such as a clubhouse, swimming pool, basketball court and volleyball courts. Conveyance for stormwater runoff will be provided by constructing onsite storm sewer systems that will discharge into a secondary waterway that runs through the site. Offsite flows will be conveyed to the waterway via storm sewer systems. All systems are designed to convey the 100 year storm without surcharging the system. Conveyance through the 60" RCP culvert beneath Harvey Mitchell Parkway is available for the fully developed, 100 year storm, and therefore detention is not required. I hereby certify that this report for the drainage design of Fairfield at Luther Street - Multi- Family Site Plan was prepared by me in accordance with the provisions of the City of college Station Drainage Policy and Design Standards for the owners thereof. O,# *, * � Registered Profes 'o Engineer t... �. r.rr;w4li „E .. State of Texas Number 82725 s _2,7;2 "c Z r / s G: \124- 14 \DOCS \EngrptSP.wpd Page 4 of 4 April 18, 2000 II i. 1 .. \j am- ai a " � f. i , • � r_4-_'_ V r �tt�!IE ` 1, cit ``,,, ',. Q 4 j ; •` 44.. t0 L.. A', . 9 • / •� / -_ olf Course 47 \ e. `A\ x _20 .,1 \ o ,,./ I ` ., 154 ( '�/�. ` ' =f. — te' / / \ a \ r igh , • '. 4 0 / / ' 4 7 \ C }i �r �_ l�. s ■ h Fiel • , 4'.k . ,,. , / V • / 3so _ � f \L . „) / • 336 �1� X 7 `_ - \ . � .�, 111‘' 4 N IN \ R od / / round's ` �f,,,,_� •:\>24. \\ �— A • \ r 1 v 4.,•0, i ... /,.. S / \)' 'lb i . A v // c .,.-/-,,. ..,,-----' -. '2 *IVO - 0' , ,/" • -� qi / o , "\ N. ' f s p ; �,. v c \2 � k\--.: \\\ NH7 \ / .(—) ' ' \ • • \ „. \ ,, \,., FAL D , ( \‘‘\,. X / VS ). ....sr?” ' ze s to '.: e. c ... . ii:______\ Li .--'. i . j a 1 ii �� ?�• . i l a �S ,sPO \ • \ -- A 1 Y 7 1 - _ 3 1 • \/, % fl 1 ' y )1•,,0 s ta , ■ ( 1. i : • \ ')1 - . 344 Z:/ / \ 3 °() I' ' I Y \ ,-\,/, , , r „ � ,� 0:32\ . 1 , , ;% o N o v i % �� �� ;\ , i r \ .# �: l . /" ! / ,� \ � N Z, D PAe U.S.G.S. MAP N WELL QUADRANGLE G Longaro & Clarke, Inc. f Consulting Engineers _J [and Dreefopwery • Sionnwater Qualify Management • water Rerourcrs jp nn Load C � -+r la Win.. mw 6111111=1.111111111.1 Y' 2000 0 2000 • 1 • 1 .. 1 ,� r= � . * �,� 1 7 / + 1 : i •••■• ' `, , , , - 4.4 It rte - + ,,,•■• x � a:. f 0 . ) . .1s, ...„....,..,..,v,_ ,,.....,.....,..„-•,_4., -. ' ' .' $ l' ' sot — - ; . `' (�' a �- . � \G 4 * -.� � f r l II i f + ; - ''... ' ,'' , ..--;'. ii r t a ......t; _ ,..1 ,.: :. I . -4 -/- ' 'I : . -', ' , , ,� �_.1 a ,., <• r .,. f # a • + am ',. - x • ,...,,,,,,A, ;. . N +♦ M i y . � e 3 i - Pig . . , - • } � ate 4 I _........,. 1 =,., ..,.._, ,. - .7 1 -: -..- I"' r , • ' • 1 ,. 4 ' �Vy J •1 1, - .: FM 618 w x s r _ r " F ° x k „.• .' ' - ' '.: . T. VI • • 0 1 11.111111. AERIAL PHOTO q Longaro & Clarke, Inc_ Consulting Engineers - Lend Development • Stormwater Quality Mamagem ent • Water Rea-moves es UItl tta tay -o - r@ nt �> >ro -attn I 500 O 500 V i R f PACIFIC \ , . ••■■•• i R. t ai ti l fi n NEON �� (::`, \ , � 1 I N Z X O w X Z . O W N O I N co m N I. O •r.I .4..J • C .j.j r �� v !'Y 1 / U d" L, • 1 6d,5, i Q U. e� '4 w •• Z .• O • •' W • / • N .>) ,t v J o u v, X . Q 00 • w w N a Z Z 0 o O 6,, O °c N ti � N a , t I g o i I N I I O ■ IO X " r w _ 1 N ii. � 1 CS , e 4 4 5 _ Clarke, Inc. COMPUTATION HEET r' Longaro & Cl am, am,, +� SUBJECT L L Consulting Engineers 40" 2CP C4. and Development • Stormwater Quality Management • Water Resources JOB NO. SHEET NO. OF ~ DATE 2 -10-0 � BY L CHKD BY DATE 1 A GlU _ 9/ ( s 0 6 S% r . Cove,,--) - t 1 e , 7_,0 %vrw., C Con5e9-✓o - vd,) 1 h e P ,. x'23 '""� i =96 11, p . .., Z, (13 LA o i-S.0 4 O73O qt IL P -13.-- L p 31,. - 6,3o I'LL, = 7, ? t -1, -, Ft/1, ' 93 S jg.-- IL Pz,,,, 1(.3s I- L It I 1 IL ... L 00 10 0 CO N N 1 00 N C• 0 0 h 01 0.01 h 0 O yr un M r, CD ,--4 N 01 N N O up r, ,r .. 01 0 CA C 1 0 C1 0 01 0 01 01 0 0•• C 1 h h h •• O O CA h 03 0 CO 0 0 01.0 O h o ii. r-4 r S- rd 01 0 0 r•4 M CO 0 r• 0 M N 01 N h 0. v0 0' N 011D O 0 010 0 M 0' 10 O N C' d r > 0101 Q1 Q7 r•+ r+ 0 -000 01 0 Q1001 .- , x4010101000100 O1r -1010 L O . • • • • O O .. 10 0 0' O x4 01 0 01 h 0 0 .- N CO C' 4 O 10 O N N 0 0 C1 CO 01 O cr O O O h 01 xi 0. O , 4 N 0 R 0 •"I N 1D C• T Q• 0 10 '.001 10 yr 01 M M M M 10 M 0 C N h M C' C' M N t') 0 h h h 0 h h 0 h h h h h h h h h h l0 h 0 0 h h h h h h h h h 0 h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CO IL N 100 0 d O .'-1 O N C 0 h 0h 0• CV 10000 on .--1 10 C 000•. - -10010 M 0 0 CO O h 0 CO 0 01 CO 01 0 0 CO 0 CO 0 0 0 0 CO 0 CO 01 O 01 h CO CO 0 0 0 CO 0 0 0 01 -4 r4 i r0 M cr 10 0 0 0 L[7 N 0 C M M h 01 C• M h h 01 0 CO .--1 x4 0 .--I h 0• N 0 0 01 h M on un 0) JD 01000100 0101001 01001010101001001 O101 p 010/0101 Q101 Q1010 ,A0 00 C. h h 01 ('.J. --1 h M U10• d 100 N 01.x70 CO 10 O M 00 h on r, 01010 01 ct 0 N M 01 M O M r-4 10 0 0 C' 0 0 0 01 10 0• .--1 0• M x4 cr h 0 0 0• M 0 N ct 0• 01 N O h co h h h CO h h O h h 0 h h h h h h h h h O CO h h h h h h h h h 0 h CO IL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O C O N 10 0 0 0' 0 .-r 0 N C• 0 h 0 h C• N 10 0 0 0 '.O(') .-1 10 . 0 0 0•,--4 ... 0 10 01 0 �. - 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •� CO 0 h CO CO 0 010 C10 0 0 0 CO CO 0 0 0 0 CO CO 01 O 01 h CO 0 0 0 CO CO 0 0 0 01 IL • .-4 .--I + U 0 N ..----..----• Z 4J 4 .1 i 04 y 0) 1] 0110 h 0 0 Cl 01 0 h O O CO On 01 O CO O 01 O O 0 h CO 01 CO C1 CO CO 0 0 01 O C1 h CO C. LC) T 11 ro CL 17 0 •-. d N h 01 N C• 0 on M 0 1010 0110 h 101000.00 N h 10101010 cr 01010 0•N +� 111111 ¢ ro•r a1 hhhhhCO hr--07 h'r-h r, 1-, hhCOh h hhOCOhhhhhhhhhOh CO J 0 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 O O M O L cC L O O U.� • ON1000d•Or -10 NC'0 h0h N1D00 on lD �' 00C'.- - 1 0 01 D M 0 N 04 ,_ 0 0 h O CO O 01 CO 010 0 CO 0 0 0 0 0 0 CO 0 0 01 O CT h CO 0 CO CO 0 CO 0 0 CO 01 .+ . -I r N L v, w 3 N = ...... Z tt, ro ,.... • OM M010.00Q>0Nh0CJlh Ol01D d'OOOOMNlD OlOh. --BOO V h010 '�\ 4, U h10 hr�h 0x h h n h h rs rs 1D h 100 CO h h 0 lD r, r- r- O 10 Q1 h h 0 un 1 n3 O N >, O i U .--I M 0110 M 0 O O h h O' 0 h N M 0110 N N M 01 M M 001 M M h 01010 r4010N N = 0 1- O r Ln r- 00 L- h h 10 r1 1D r r - r O h 1-7 1D co x4101010 r- 1010 h 00 10 N 0S") CD - I-- m O N hOhhhOf, hhhhf� h r� hhOhhhhO h O hO Z O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q s CT F 0 Q1 L (%I i Z M11 CO N 100 00 . CD c-1 ON C O r- 0 r, 0'N 1000010 M x1100 00 d.- -10010 M C ro 1--1 41 ,- • CO O r CO 0 0 01 0 01 CO 0 0 0 O CO CO 0 O 0 O CO 01 O 01 r 0 0 CO 0 0 0 CO 0 CO 01 3 r , _--I e---1 .--I 04 r-I , iii C 4-- • 0 O 0 i r--r 01 r .• - - M C• 0 N N N 01 00 01 0 0 CO 10 C• 0 10 0 01 O r Cr C N 01 0 CO 0 0 0 10 w , c3 n-.1 h 010 h 1010 h h 1010 h 117 r- :O r- 10117 1D h h 1D 1D co 0 h 10 h r, 1.01 0- r-. 10101.01 J Q1 CC N • CO VI = >1 L.,. Q 0 1-- CO 0 r- CD C'M0 N hlDN W CO 01 N r N h M 01 r+.-- I co O --I O1D0 C•r� 00101. --10 a1 C• rnN000 0. 0.- 00 rn00hOh 1Nrnr-0h0h1DO0N1D. -I Q1 h0hhh 0 rs, r, Or�r- r, r, h h h 0 h h r, h co O h h h h h h h h h co r, co 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 1D °O W N N CO N 0 0 10 1\1 0• 01(0 h M 0' 01 r- 0 0 C' O (-IN, (04 N 01 N N O 1D h 0' O1TO cn 010010 cn 00010100 CO 01h h h O0001h 0000 c00 Ol00 r- CD .-4 i ICI N O N M O l N 0 01 0' N N CO 0 VD up co M .--4 O O 1 0 O O M M C• 10 O O N 0' co 0 cD OA L- O . 1D V7 10 h O' 01D 1D 0 01D C• 00000 00101000 r- C 100 h 0• r- 0000' >1 N 01 N 0 .--1 0 10 0 r M 0 (‚401100101 N 0 0. 014.0 4.00110011010-40101 0 10 01 N 01 C1 r•1 CO N 01 C• 0 .--1 01 01 0 0 .•-4 01 01 01 .--1 0 10 01 0 10 01 N r- 0 01 0 --I r, N r 0 1D 0' a) h O h CO h CO 0 0 0 r- 0 0 0 r- r- h O h h h 0 CO 0 0 r- CO h 0 CO r- CO r- 0 r- O L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 L. Q1 ro S- 0 r O C r. C ro ro Cl Q1 v O r- C , s4 C O 3 C 04 O ut >- u1 3 b i i O C> i O i O O N 0 VI - O Ut N Y N 0 O 0 0 -- S- N vI I . r- 47 4-.I U •� N CU S - 0 S - U N 0 0 Q1 0 0 ut U �[ 0 0 . ) 0 J 3 0 , 0 S - 0 i Z N S. Q1 0 0 N N 4 r ID 4 r ro C CC 4 N N 3 VI O 3 r C - 0 = 0) C VI - VI 4• ro V1 .- a VI >1 N X ro i VI 3 al ro Q1 co co i i r- s_ ..n o L O 'O 01 ro U E r- � ¢� Q Qi S- Q Q Q m colon m m m m m m m m m m m on m m m CO U U U U L) L) U U 12 - BRIDGE DIVISION HYDRAULIC MANUAL 2 - 16 I I HEC1 S /N: 1343001888 HMVersion: 6.33 Data File: luther.HC1 • ' U.S. ARMY CORPS OF ENGINEERS ' • • FLOOD HYDROGRAPH PACKAGE (HEC -1) HYDROLOGIC ENGINEERING CENTER • MAY 1991 609 SECOND STREET • VERSION 6.0.1E DAMS, CALIFORNIA 95616 • • • • (916) 756-1104 • RUN DATE 02/18/2000 TIME 16:62:32 1 . X X 7CCCCCCX XXXXX X K X X X X XX X x x C)OC X XX X XXICC XXXX x x x X X x C x X X X x x =CCCCC XXXXX XXX 1 .. Full Microcomputer Implementation .. by ... it 1:: ,,, Haestad Methods, Inc. 37 Brookside Road . Waterbury, Connecticut 06708 ' (203) 755 -1666 It THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC -1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW. THE DEFINITIONS OF VARIABLES - RTIMP- AND - RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973 -STYLE INPUT STRUCTURE. THE DEFINITION OF - AMSKK- ON RM -CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM 1 1. 1 1 1 1 1. t ' IL_ IL HEC -1 INPUT PAGE 1 LINE ID 1 2 3 4 5 6 7 8 9 10 1 ID FAIRFIELD AT LUTHER STREET IL 2 ID 100 YEAR STORM EVENT CULVERT ANALYSIS 3 ID FILE NAME G: \124- 14 \DOCS \LUTHER.HC 4 ID LEC JOB #124 -14 FEB, 2000 5 IT 2 6 ID 3 7 KR DEV -1• 8 KM BASIN DA -1 FULLY DEVELOPED CONDITIONS lir 9 KM TO CULVERT, AREA = 43.7 AC. 10 BA 0.068 11 PH 0 0 1.23 2.43 4.41 5.56 6.30 7.71 9.38 11.35 12 LS 0 91 13 UD .20 14 ZZ i lkif L , L , Illi, 111, III. I lk, I 1 lit,: I 1 1 lit, IL I HEC1 S /N: 1343001888 HMVersion: 6.33 Data File: luther.HC1 IL • • • • U.S. ARMY CORPS OF ENGINEERS FLOOD • HYDROGRAPH PACKAGE (HEC -1) HYDROLOGIC ENGINEERING CENTER MAY 1991 • 609 SECOND STREET • VERSION 4.0.1E • DAVZS, CALIFORNIA 95616 • • (916) 756-1104 • RUN DATE 02/18/2000 TIME 16:42:32 'IL' . FAIRFIELD AT LUTHER STREET 100 YEAR STORM EVENT CULVERT ANALYSIS FILE NAME G: \124- 14 \DOCS \LUTHER.HC L&C JOB #124 -14 FEB, 2000 - 6 IO OUTPUT I P� OL VARIABLES PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IL IT HYDROGRAPH TIME DATA NMIN 2 MINUTES IN COMPUTATION INTERVAL IDATE 1 0 STARTING DATE ITIME 0000 STARTING TIME NQ 101 NUMBER OF HYDROGRAPH ORDINATES NDE 1 0 ENDING DATE ilL NDTITIMME 0320 ENDING TIME ICENT 19 CENTURY MARK COMPUTATION INTERVAL 0.03 HOURS TOTAL TIME BASE 3.33 HOURS ENGLISH UNITS SQUARE MILES li, DRAINAGE AREA PRECIPITATION DEPTH INCHES LENGTH, ELEVATION FEET FLOW CUBIC FEET PER SECOND STORAGE VOLUME ACRE -FEET ., SURFACE AREA DEGREES TEMPERATURE DEGREES FAHRENHEIT 1 . . 7 KK DEV -1 • BASIN DA -1 FULLY DEVELOPED CONDITIONS IL TO CULVERT, AREA = 43.7 AC. SUBBASIN RUNOFF DATA 10 BA SUBBASIN CHARACTERISTICS TAREA 0.07 SUBBASIN AREA PRECIPITATION DATA 11 PH DEPTHS FOR 0- PERCENT HYPOTHETICAL STORM TP -49 HYDRO -35 TP -40 5 1.23 15-MIN 243 60-MIN 441 5.56 6 -30 6-HR 12-HR 24-HR 8 11.35 2-DAY 000 4-DAY 000 70. 10-DAY 00 STORM AREA = 0.07 IL 12 LS SCS LOSS RATE STRTL 0.20 INITIAL ABSTRACTION CRVNBR 91.00 CURVE NUMBER IL RTIMP 0.00 PERCENT IMPERVIOUS AREA 1 3 UD SCS DIMENSIONLESS UNITGRAPH TLAG 0.20 LAG UNIT HYDROGRAPH 32 END -OF- PERIOD ORDINATES IIIIV 10. 30. 62. 104. 136. 150. 150. 138. 120. 96. 71. 55. 42. 34. 26. 20. 16. 12. 10. 7. 6. 5. 4. 3. 2. 2. 1. 1. 1. 1. 0. 0. ••• ••• • HYDROGRAPH AT STATION DEV -1 1 TOTAL RAINFALL = 6.49, TOTAL LOSS = 1.05, TOTAL EXCESS = 5.44 PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 20-HR 72 -HR 3.33-HR (CFS) (HR) (CFS) 338. 1.90 69. 69. 69. 69. Illit (INCHES) 5.278 5.278 5.278 5.278 (AC -FT) 19. 19. 19. 19. CUMULATIVE AREA = 0.07 SQ MI 1 lillit L RUNOFF SUMMARY FLAW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD B ARER M AXIMU M MAX MTIETOFE OPERATION STATION FLOW PEAK 6 -HOUR 24-HOUR 72 -HOUR HYDROGRAPH AT DEV -1 338. 1.90 69. 69. 69. 0.07 ,: ••' NORMAL END OF HEC -1 •" _ L Illpr it., L L 1 L Texas Hydraulic System Culvert Design Fairfield @ Luther St. 124 -14 -04 Brazos County IL FM 2818 60" -- culvert 1 Shape: 'Circular 1 Length(L):1 245.001 ft Material: (Concrete 1 Slope(S):1 0.00841 Span:1 0.001 ft n: I 0.01201 Rise:1 5.001 ft Ke: I 0.501 Barrels:1 11 Entrance Type: 'Headwall Discharge Description Q HW TW BW* V Q Inlet Ctl Outlet Ctl total elevation elevation out over road HW depth HW depth (cfs) (ft) ' (ft) (ft) (ft) (cfs) (ft) (ft) 1100 year 1 338.00 1 297.91 1 0.00 195.85 1 17.48 1 0.00 1 15.10 1 13.29 *Backwater (BW = HW - TW - r.„ L L L 2/ 18/00 G: \124- 14\DOCS\FM2818.CLV _. L. L output.lis TEXAS HYDRAULIC SYSTEM, CULVERT (ver. 1.1. Jan /1998) Fri Feb 18 16:43:22 2000 Ilim CULVERT HYDRAULIC COMPUTATIONS CULVERT NAME: culvert 1 Input Unite: English PROJECT NAME: Fairfield a Luther St Output Units: English PROJECT CONTROL: 124 -14 -04 COUNTY: Brazos County DESCRIPTION: FM 2818 60" ANALYZE SINGLE OPENING CULVERT MATERIAL: CONCRETE SHAPE: RCP CIRCULAR PIPE. ENTRANCE: HEADWALL PROFILE: STRAIGHT CULVERT FREQUENCY: 1'00 year DISCHARGE: 338.00 cfs Tailwater not provided for 338.00 cfs. Minimum of normal or critical depth used as tailwater. n value: 0.0120 Ke value: 0.5000 CULVERT DIAN. = 5.00 ft BARRELS = 1 INLET station: 405.00 elevation: 284.87 ft OUTLET station: 100.00 elevation: 282.32 ft ill Ili' CULVERT OUTPUT RUN NO =, 1 ANALYSIS for discharge frequency of : 100 year Barls. Qpb Rise Span Length Max.HW elev HW CaHW H0 Control Veloc. Out.depth cfs ft ft ft ft ft ft ft /s ft 1 338.00 5.00 0.00 245.00 0.00 297.91 13.29 Outlet 17.48 4.78 Inlet control depth = 13.29 ft Outlet control depth = Normal depth = 5.00 ft Culvert slope = 0.00836 Critical depth 4.78 ft Critical slope 0.01247 RUNING MESSAGES LIST: *Computation: Tailwater elevation lower than outlet elevation. *Computation: Minimum of normal /critical depth used. NORMAL TERMINATION OF THYSYS, CULVERT. 1 'IL 'IL ',' L iilki L Page 1 IlL - 2000 i - PRESSURE LINE -.4 - H z W H z Z NW -.5 71000 a: -J 0 i - -- _ _ _ i _. 1- D P / \ -.6 - 800 -120 UNSUBME OUTLET SUBMERGED OUTLET — — — 600 -108 -.8 - 500 - 96 -4,--' -1.0 �, - - 400 - 84 ------ - i,e -72 / - - � -- - 7- 200 - 6 6 e j " -- ( 0 O F ,Y W — 2 \ O C LL - 0 e',.. Z 00 ./ 0 - - 54 L ,uo Z - to D.4B / - c - 0.5 00 �' ti� i - 3 w -48 — T . v- p _ a - 10 Z 42 .• .. w - 4 W - Q' � Z e _ _ a _ 80/ o X0 0 a — 5 _ _ -36 - -60 W -33 .0 X00 -6 CI - 50 I - w -30 - 40 Q '1 W EJe,✓ = 2. B7 32 5 0 0 _ 8 0 - 27 N4J' Tw� //' e o -I0 - 30 s - 24 = 2.98). 32 - -21 - - 20 - -18 -20 EQUATION: H ■ [2.5204 (I • CO + 466.18 n L 7 \ D 4 0 16h J `10 / -10 -15 — H . Head in feet - 8 C = Entrance loss coefficient — D : Diameter of pipe in feet n • Manning's roughness coefficient - 6 - 1 2 L • Length of culvert in feet - 5 0 - Design discharge rote in cfs — 4 FHWA HEAD FOR CONCRETE PIPE CULVERTS FLOWING FULL n =0.012 NOMOGRAPH K BRIDGE DIVISION HYDRAULIC MANUAL 12 -85