HomeMy WebLinkAboutDrainage Report FIEVIEWED F
')MPLIA 9.
FEB 0 5 200
COLLEGE STATION
ENGINEERING
Drainage Report
For
Fairfield at Luther Street F I L
Multi - Family Site Plan
20.63 Acres
Travis L. Williams, Sr. et ali
• Crawford Burnett Survey, A -7
Brazos County, Texas
Longaro & Clarke Project No. 124 -14 -37
January, 2001
Prepared For:
Fairfield Residential Companies
2045 North Highway 360, Suite 250
Grand Prairie, Texas 75050
r OF rE
y ,t ••q cr 1
/* n * •
S. DANNY MILLER 4
tt ..... 82725 i • 4,0 44 d .../
% f ° c ; ;, : r
Prepared By: % ° AL E`
LONGARO & CLARKE, INC. � •9
Consulting Engineers
1101 Capital of Texas Highway South, Suite C -100 ' 1-5
Austin, Texas 78746
(512) 306 -0228
Drainage Report
For
Fairfield at Luther Street
Multi - Family Site Plan
20.63 Acres
Travis L. Williams, Sr. et ali
Crawford Burnett Survey, A -7
Brazos County, Texas
Table of Contents
Page
1.0 Location 1
2.0 Property Characteristics 1
3.0 Drainage Design Criteria 3
4.0 Summary and Conclusion 4
Exhibits
1. Site Location Map
2. Drainage Area Map
3. Offsite Drainage Area Map
4. Floodplain Delineation Map
5. FEMA Flood Insurance Rate Map
Appendices
A. Rational Method Drainage Calculations
B. HEC -RAS Input and Output
1.0 LOCATION
The project site is approximately 20.63 acres and is located at the east corner of Luther Street and
Harvey Mitchell Parkway (a.k.a. F.M. 2818), approximately one half mile southeast of the
intersection of George Bush Drive and Harvey Mitchell Parkway. As well, the site is approximately
1.5 miles from the Texas A &M University main campus. The site is within the City of College
Station Corporate Limits, Brazos County, Texas (Grid No. N -37). The current land use is
agricultural /open space with at least one, possibly two, detached single family dwelling units
located upon the property. The proposed land use is Multi - Family, and can be better seen on the
attached site location map and aerial photograph as shown in Exhibits 1 and 2, respectively. The
site is located on the "Wellborn" USGS 7.5 minute Quadrangle sheet. The site adjoins a small
waterway, which is a tributary to White Creek, a primary drainageway, which is a tributary of the
Brazos River. No portion of the subject tract is located within the Special Flood Hazard Area (100
year floodplain) according to the Flood Insurance Rate Map for Brazos County, Texas, Map Nos.
48041 C0181 C and 48041 C0182C, Community No. 480083, Panel Nos. 0181C and 0182C,
effective July 2, 1992 (Exhibit 5)
2.0 PROPERTY CHARACTERISTICS
The current land use for the subject tract is agricultural, with one or two single family dwellings
located upon the property. The 20.63 acre tract can be described as slightly vegetated with flat to
moderately steep slopes. Vegetation mostly consists of post oak, and other hardwoods, located
around the vicinity of a natural waterway through the property. Slopes across the tract range from
2% to 5 %, draining toward the waterway located along the front third of the property. According
to the Soil Conservation Service "Soil Survey of Brazos County, Texas," there are two predominant
soil types located on the subject tract. Both soil types consist of various sandy loam layers at the
surface, with more clayey soils below the sandy loam. These layers of clay are typical of most clay
types found in the area with very high shrink -swell potential. The majority of the site consists of the
Tabor Series (Ta) fine sandy loam, and the Lufkin Series (Lf) sandy loam.
The subject tract is bounded to the northwest by Luther Street, and to the southwest by Harvey
Mitchell Parkway. Most of the property on the opposite sides of these roadways is currently owned
by Texas A &M University, and is not expected to be sold or developed in the near future. However,
G: \124- 14 \DOCS \drngrpt.wpd Page 1 of 5 April 18, 2000
there are two vacant, undeveloped, privately owned tracts located on the opposite side of Harvey
Mitchell Parkway. Currently, the TAMU property is undeveloped, and is being used for agricultural
research purposes for the university. Adjacent property to the northeast is currently owned by
Sigma Alpha Epsilon fraternity, and is currently being developed for their fraternity house. Adjacent
to that tract is an existing multi - family development, Melrose Apartments. Property to the southeast
is currently an undeveloped, wooded, 6.0 acre tract owned by Raymond Gorzycki. No plans are
currently in the review process for this tract.
A small waterway, which is a tributary to White Creek, drains through the front third of the property.
This waterway originally drained a significant drainage area, up to Jones Butler Road, however,
since the construction of the Melrose development, a significant portion of the original drainage
area has been diverted into a detention pond located at the south corner of the Melrose
development, which discharges into the waterway Walden Pond is located on. Secondary drainage
includes the waterway through the subject tract, and various storm sewer systems that will drain
into the waterway from the proposed development.
Offsite drainage includes approximately 20.9 acres associated with Luther Street R.O.W., the SAE
Fraternity House, the outparcels and future Phase Two of the Melrose development, located north
of the subject tract. Approximately 9.94 acres of the 20.9 acres will drain directly into Luther Street.
A 36" and 24" storm sewer with three 10' inlets will be constructed to drain the 9.94 acres. The
remaining 10.97 acres is associated with the Fraternity House, and drains to a low point located
along the northeastern property line of the subject tract. A 30" storm sewer and inlet will be
constructed to the low point to drain the 10.97 acres. All drainage calculations were performed for
fully developed, un- detained conditions for the 100 year storm. Though detention is being provided
for the Fraternity House, and the Phase Two plans for Melrose indicate that a detention pond is
proposed upon development of that tract, for purposes of sizing storm sewers and inlets, it was
assumed that detention was not provided.
The subject tract will be developed as a student housing, multi - family development consisting of
fifteen residential buildings and one clubhouse /leasing office, with a total of 324 dwelling units.
Amenities will include a swimming pool, a basketball court and two sand volleyball courts.
G: \124- 14 \DOCS \drngrpt.wpd Page 2 of 5 April 18, 2000
3.0 DRAINAGE DESIGN CRITERIA
Currently, no drainage studies exist for the secondary waterway through the subject tract. As
stated previously, a significant portion of the natural drainage area has been diverted into another
drainage area, and therefore peak discharges into the waterway have been reduced. However,
due to the proposed development of the subject tract, discharges will be increased due to the
increase in impervious cover. Private drainage easements will be dedicated for the natural
waterway, and those storm sewer systems collecting offsite drainage. All drainage systems will
be privately maintained, with the exception of the system that drains Luther Street.
Offsite drainage calculations for the Luther Street storm sewer system, as well as the analysis of
the existing 60" culvert beneath FM 2818, and for purposes of calculating a 100 year floodplain for
the water way through the site, were calculated for the 2 -, 5 -, 10 -, 25- 50- and 100 -year storms.
Storm sewer sizes were calculated with Manning's equation, with a Manning's n value of 0.014.
All pipes are sized to convey the 100 year storm discharges with out surcharging. The Luther
Street storm sewer will traverse a portion of the proposed development, and ultimately discharge
into the waterway. This storm sewer is located within a 15' drainage easement.
The total drainage area to the existing 60" culvert is approximately 46.34 acres, which develops
a fully developed, undetained 100 year discharge of 211 cfs. A HEC -RAS computer model was
developed to calculate water surface elevations for the waterway through the site, and to delineate
a 100 year flood plain. As shown on the Floodplain Delineation Map, the floodplain does not affect
any proposed buildings or parking areas. As well, all wastewater manholes are located outside the
floodplain. The HEC -RAS input and output are included herein.
The HEC -RAS model begins downstream of the 60" culvert, and therefore includes the culvert in
the analysis. Based on conversations with City staff, the subject tract would not be required to
provide onsite detention provided conveyance of stormwater flows is available through the 60" RCP
culvert beneath Harvey Mitchell Parkway. Based on the above mentioned offsite calculations for
the 46.34 acres, the 100 year peak discharge is 211 cfs to the culvert. Based on the HEC -RAS
output, the calculated headwater elevation on the 60" RCP is 292.53, while the road elevation is
302.5 thus providing approximately 10.0 feet of freeboard. Therefore, the culvert has adequate
capacity to convey un- detained flows from the subject tract.
G: \124- 14 \DOCS \drngrpt.wpd Page 3 of 5 April 18, 2000
Onsite drainage calculations for the storm sewer system and inlet designs were calculated using
the Rational Method, with a 10 minute time of concentration. Peak discharges were calculated for
the 2 -, 5 -, 10 -, 25- 50- and 100 -year storms. These calculations are included on the drainage area
map (Exhibit 3). Storm sewer sizes were calculated with Manning's equation, with a Manning's n
value of 0.014. All pipes are sized to convey the 100 year storm discharges with out surcharging.
Storm sewer outfalls will consist of headwalls with energy dissapators and rock rip -rap to minimize
erosion at the outfall. Storm sewer lines will be constructed with Class III RCP for pipe sizes 18"
and larger, and SDR 26 PVC for 12" and 15" pipe sizes. The contractor will be allowed an alternate
bid item to use High Density Polyethylene (HDPE) pipe in lieu of the materials mentioned above.
This pipe is corrugated on the outside, with a smooth wall on the inside, and therefore has
comparable structural and hydraulic characteristics as RCP and PVC.
Surface drainage will consist of sheet flow and concentrated flow along drainage swales and curb
gutters. Grassed swales around buildings are graded with a minimum slope of 2.0 %, and paved
areas with concentrated flow are graded with a minimum slope of 1.0 %. All paved areas will drain
to curb inlets located throughout the parking lot, and grassed and landscaped areas will drain to
area grate inlets provided throughout those areas. All stormwater runoff from the subject tract will
be collected and discharged into the natural waterway.
4.0 SUMMARY AND CONCLUSION
The subject tract is located on the east corner of Harvey Mitchell Parkway and Luther Street,
opposite Texas A &M property. The proposed development consists of 324 multifamily units
designed to accommodate student housing, with all required parking and drives, and amenities
such as a clubhouse, swimming pool, basketball court and volleyball courts.
Conveyance for stormwater runoff will be provided by constructing onsite storm sewer systems that
will discharge into a secondary waterway that runs through the site. Offsite flows will be conveyed
to the waterway via storm sewer systems. All systems are designed to convey the 100 year storm
without surcharging the system. Conveyance through the 60" RCP culvert beneath Harvey Mitchell
Parkway is available for the fully developed, 100 year storm, and therefore detention is not
required.
G: \124- 14 \DOCS \drngrpt.wpd Page 4 of 5 April 18, 2000
I hereby certify that this report for the drainage design of Fairfield at Luther Street - Multi - Family
Site Plan was prepared by me in accordance with the provisions of the City of college Station
Drainage Policy and Design Standards for the owners thereof.
14 / J
¶ q--)
per 1` * P �' Registered Profe' Engineer
eA p9R YBNbp>o)NNWN�a:�N
. Gi'JNY MILLER ,� State of Texas Number 82725
82725 r �,o
4r�'r'sVf'ISTVV 4�d
G: \124- 14 \DOCS \drngrpt.wpd Page 5 of 5 April 18, 2000
1
1
1 4L '
- 0 : 4 k"D■opy \ ‘," ,, ,.... / * 0
L,4---..?... - - - , ' 4, - ", ,, 4 ....... , ,,, •,. ,
4 4.
si ■ 100
\ ‘'N
1 -,,,--, \f"ey
I / ' , -
_
, - , V' \
.A0
/ - , / H
\ \ ''-' – Gikt<4 \ ■
„„,■
1 4 I
— i
N.. "
• Alib_
, . 1 i N L.VERSIT V r •p i , 40 , , O .
'.." . 1 1 1 8 ' ' 7
t 4 N #
1 8 \,, 4 - ;,;,0 -,-, i■., ',..,,, _,
\ ' /
• \ /
.11 / , e 4..A•; t
, \
\------\ , ,',-- ----■ --., _ . i a Nx., , t 4 4A
1 \\ ' - , - \
4. ARPORT ■
■ ........ N. , 414 /-
' . - / ' SO,
'
-
•
0
MAW ■
b \ ' ,
1 CAM 1
, r .
r -
, ' ' *s•
X/
e ' \
44 4 1; ; 14.
\
1
'• ...
. •
— \ •
,-.
...
— .
1 1
)
_
__
_
,_
) i
. ,• , )
./. ....,
A %1\
...
'' --
ir I
I ■
", J ‘ 4 4 1 mann
waumm /
1
—
; ...,.. _ _. _ - ■ — 111
---
r - -- \
_ -- , : - \ .0N
I 5
1 ...,. ,_..., ,,- L .4
'7 4 ( - 1 - .
I 1
LEGEND 4 )
I ■ 4.- ,
) ■ 1 \ ' — I ,
,.. - --
( \ ''
/ I '
._
I
? --“:
1 r
1 I.. SDIEL1S
■.....■-. *mut
..D.. ........ D. D.NDI
ma: D . Du .•,... • • ■■•• s............r.
'-
..' — '
_ 7 '
!!'„..■-- :"....=:= /
Demi.
Wt.*. owlim.
Texas Dept. of Transportation
I
m --
BRAZOS COUNTY MAP # 21
r •
LOCATION MAP
7\1) 1 • 1 / 2 M I L E
Longaro & Clarke, Inc.
ilimmiumlowammli q Consulting Engineers
Land Development • Stormwater Quality Management • Water Resources
1010 Lard Crml C.w. Soo* 200 Assool, Too 77744
a
1
V i
k
j
PP�IFIC \\\ 3
% V �i
I o w �,i
I UINERN Z
SO U•
(u< \
I N
Z X
N
Z
X
O
W N
Z
0
co
N
\ '
.
O
• 1--4
•
v 1 I
1 WO 00 LL.
1" O CD
•
j �. \
v
U7t
• .<:?.? b � s c Q
G
U • 11 11 1 I
111 Q
I $ 11111 L
1 ,.1 111 11 , W
r?, '* W
�• Z
•
1
•
•
/ .
v' I T
X Q
V m
00
W , ♦ W o 0.v
Z CI o ■ Z
O d,, O 0) c o
N ,S,, ` �i N a 1,
#
I
tu - 0
X
ID
W
Z
• 0
.
N
O
• V'
X
W .
\.2 ca
1.
. e
s
1
LO 0) r co co (O
V r O LO V 0)
° N - N N V ^ O
° W Cl
a U
(O (D ( ) 0 0) (0
M 0 CO CO (0 O
O N N N M M 0
(O LL N
O U
m ao (n m .- r
co (n (O (O O r
- N N () V O r
co co N N CO -- r
N W r
O 0
ID 0 0 0 (O 0
to CO N CO
- O O O V 4 K
O_ co .- ,- co O 0)
W
O U 0.
M CO (D (
co O V O
- I.: r c0 C7 04 (D
LO 01 ,- ,- N W VI
U U
LO 0) v o o M
<7 C '( CO N 6
N 0 - T ,- N r 0
0 U
IX N d
0 0 1 0 co O N CO
= Z o 0- CO 0 n
Z LO
H O Z O O O O 6= 0
0 o ( l 0
O ~ 2 .,- N N O N Z QI r r r r
F
(/) (/) 0 0
I- 0 v CO •
F- > Z O 0 O
W 0 Z r O O N 0 W W' N S V N N CO O N
cC 0 1- 2 N O O V O 2 W a Z (O (o (O Q) (D (D
F W W
(n w
O z
U K
j
w 3 a a ° 0 0 0 CO U- W co O ° = V V O W CO M O V
CC O F o 0 0 o o O z < U •
= Z r; 6 6 (0(O (D
LL N LL 0 0 0 0 0 Z 4. 0.
CO (o a) O M
W 0.
O O (0 = (O r (D CO r
W Q LL , °° 0 Z O V (A r tD
CO
Q' (0 0 0
• > _ w M
Z > a Z O 0 ) O › - O N 2 M CO 0 '4') CO N N
u0 O OJ t- g O 6 C O 6 ° Z (D CO V O M
Q U W o
o N
0
a co to to
n Q rn °' ° r
_ w W
a O O a r ° 0 LO Q (D } o 2 O w ( m y CO CD
J Z I,- N O
=° �O l � 000 (° 0Z0 0 00 0 00
m
D a) (n v
Q on c d (n
w ^
C Q Z O CO
O 0 O L L ° Q O ° 0 N O — (o o or O .- N N.- N N
N =
O co
II 1 0 (0 CO
Q a. N r
W O Q tD (O , CO
v _ Y °
W U W U rn v F2 ,
0 I O H 2 _ 2 T . , 0 O O a Q Q N N O N
U U 2
a CD (() N
Q W N n co < _
W 5 a, O_ 0 0 0 0 } ° O Q CO
W U N Q N N N •
_ 0 0 F 0 0 0 0 0 (L) - w' Q a r N O) O(0 N
co W N LL 0 0 0 0 0 _I (.0
z
0 (n 0 (o U
• H t- } o U Q W U o.0 a) v) o M
Q W O Cr) 0 00 0 0 N W )- Q O • N 6 H 0 N N M Ur O Q M lO O (V . or 6
• n Q ~
c Z
w Q
0 Z
Z y W 0 u
O
Z o (i U W Q C j c
Z Q N O 1)-
.- N CO mi (O
2 w 0 w - N M Q LO w O IZ z E
CC Q
CC Z OU w < 4 U
w O O w 0
0) .0 V 0
i
•
J
0 0 0 0 0 0 0 0 Oo 0 o 0 o o 0 0 0
O ~ 66006o0.-6606600666
F-
F-
W Z
W O U 0,0000 cO o r o r o 0 0 o M o 0
it -I'--M N V 0 0 0 0? O O N .- 0 0 0 0 4 0 0
H W
F
W W F- 0 0 0 o o O 0 0 0
W o a u a a a a a N a a a¢
C[ J O F- 0 0 Z Z Z Z O Z 0 0 0 Z Z Z Z 0 0 0
I- LL, LL O O O O O O O O 6
•
W • > 00 0 0 0 0 0
W 0 0) 1- 0 0 000 0 10 00 N N 0 0 0 0 In 0 0
CO W Q r
-1 Z 0 u z o o o o 0 o o °. o 0 0 0 o m 0 o 0 0
N Q O 0 F- O O N O .- O , - . 0 0 0 O O N (V O O O
o I 0 0
o
u
0 -J Z 3 a t~i. a a o a o¢ o N a a a a a N N a a a
4 0 _J F = Z Z o Z o Z o o Z Z Z Z Z o o Z Z Z
2 U
0
o p 0 - a - I- 0 0 S 0 N 0 N 0 0 0 0 0 0 0 0 0000
LL v = U W
o La
II
2 w 3
N Z O O O N 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o • 2 0 F - 2 N N N,- N N N N O,- N N N N N N N
u) W
111 a ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l N N N N N N N N N Q N N N N N N N N
= 0 O ` 1 0 0 0 0 0 0 0 0 0 Z 0 0 0 O 0 0 0 0
I LL v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tu
J • W • O 0 ) t' 0 0 000 0 10 0 0 0 10 0 0 0 0 0 0 0
EP.:. 10 0) 10 01 L0 0) N N ■!) N 11) N 10 10 10 0) N
> N LL
c
0)
0
Z m
Z U
Z
2 W O d .- N C) V l0 t0 r m T 0 -< V 0) (0 r CO
2 Z
Q N
W C
Z
W
m p a a e 0 n M g m o 0 m c3 m n
0 1 O N 0 N (D e m O N 0 (O O m 10 N 7- •
o n O CV O N 0 N N 6 O CV .,- M O 6
O W
O U
N 0 N O CO 0) n CO 0 n 0 4- CO 0 0 n
CO 0 0 N _ 0 O e N (h N CO 1n 0 n 0 N CO
O U) 6 Oo ,- ,- O N o N' 4.- O N O O N ,- 0
O L.L.
m C) CO 0 e 0 CO CO m N n CO CO n m 0 Cr, 0 N
00 0 1� 0 1° CO 0 Cr, CO n O n N 0 N O O 4- e •
e m 4- 4- 0•4 0 m 0^ 4. O (V 0 O 0) ,- O N
O L.L.
C) N CO n(0 e 0 e e 0 0) 4- n N 0 0) e
0 CO 0 0 e CO n 1O 0 7 0 0 0 N CO n 0" n
O N CO n 0 0 e 0 0 ' O o , - m N 0 0 0 0
C7 U o
• N- 0 M N 0 CO CO n N M 0 n 4- 0 0 0 N
0 0 0] m e e 4- 0 e 0 CO In n CO 0 CO CO r CO
0 • 4 O o.- M e m 0 0 o.- n N e 0 0 n
0 4. s- 0
at
10) - . 0 0 0 0 CO CO CO 0 0 0 0 0 0) N-
O n 4- 0 01 N CO n 0) 4- CO V e 0 N n 0 0
0 0. 0 0 4 0 4 0 0 0 0 4 0 N N O o o
O U
2 e e e e e e e N e e e e e e e e e e
• Z m
•
CL m N 0 (0 0 In 0 m 0 0 0 0 N 0 N 0 0 LO
O
0 _ m
Z n
co ca e O E z • p
W Q O O 0 0 m 0 CO m 0 CO e CO CO m m m m 0 m m m
_ 2 CO CO m CO CO CO m 0 CO m CO CO m m m CO CO m
U w N Z o 0) 0 0 0 0 0) 0 0 0) 0 6 0 0) 0) 0 0 0
LL 0.
W
W Z
O
0
W F > 2 0.) M M 0 0 0) Ch 0 M CO M 0) M M 01 0 0 M
W W C0 O 0 2 (0 0 0 0 0 0 0 0 0 0 0 0 CO CO O 0 0 CO
O W CO U -? m co co 0) co co m 0 m co m 0 co ao m 0 o ai
W CO 0 CO 0 0 CO 0 CO 0 0 0 CO CO CO 0 0 CO CO
N 2 (0 0 0 CO CD m CD 0) CO 0 CO CO O 0 (0 CO CD O
Z n 0.: h. r n n r N n n r n n 1 n I- n n
6 °) CO 0
} O 0 0 CO CO (0 CO CO 0, CO 0) (0 (0 (0 co (0 co (0 0)
N S M co o co co CO CO CO 0 C) (h CO C) 01 cO M M 0)
O — Z 0 0 0 0 0 0 0 e 0 m m m 0 0 0 0 0 0
o
rx CO N
Q 0 m e
w n LL
N 0 CO 10 0 0] N CO CO 0 N 0 0 0 0 CO N 0
o o O w n N. In m m n m 0 n w CO m m m (n m y
m O Z O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o
U U
Q • (D CO `°
W n
} o V Z o o o O O o O o 0 0 0 0 0 0 0 0 0 0 0 0 0
N 2 O o O O ry o O O o 0 0 o O O o
N
K 0 0 m
} O 0 U CO 4- m e 0- 10 0 0- 0 .-- 10 m 0 N CO CO 0 N
e m O O r n e N m N CO o 4 O 4 0 0
a Q Q .- o o 0 0 0.4 r".- o 0 0 0 o .4 O o
• 0 1O LO
QJ n 0 m co
>. o Z f0 W U 0 01 0 0 0 0 e 0-00101c00-0000
0 � Q m 0') 0 0 0 0 e M 0 0 0 .- 0 0 0 .- O n
10 F- Q
Q 6 c 6 6 06 6 6 6 0 6 6 66 0
Q • 0 m 0 J
W O 0 J n
3- 0 0 F w 0 0 n 0 0 0 0 N C+) M 0 m 0 0 m e,
U O 09 7 o N O 01 V CO 4- CO Cl LC) e 4- 0
N Q Q Q N O O O o N e .-. ,- O O o .- O N O o m
Q
Cn Z
Z
W p
U p
w O CC O N o a m m r.... m 0 ° ,_ .. t O . 0° ~O
p Q F-
U W
W W
m a c) 0
V 00N C) 0r` U1 N. I00)'0N
V N00 10 N C)0 .- 100
Q 0 0 0 0 O 0 0 O O O O O O O
H u Z_
W ~ M
• f0 V 0) 10 00 7 (O N0O(00(0
10 0 0) 0) 0) n IO N O O O
J UN r` ^ ^' 0 Ni V (O N. m (0 r` r` r`
<0 0
V J LL
w
=
a w N N M
cC
a' .
w
d W Z V V V V N N N 0 0 '01
0 0 0 CO
�� NNNN .� �� 00 N MC)f7 C)
E Q
O
0 N(010 O 100) 10(o N- 0C)N s
r` CN N NO V O OO CO C)
0 (/) NN C V N e -' - N0 O V 1- N
0
O nro V V 0 Nv. V (0 N(00
C)C)NN (0 CD O 00) O10(0N 0
0 n n r` n 00 7 7 r' 0
o 2
Z
0 0 0 0 (0 (0 0) CO V 10 0 V
10000 m 0 10 (o V 700
NU) N N vi N 7 C00 NM 0 0 .- v N
N LL
0 0
N CO ' ' (0 (0 0) 03 0 (0 0 0 V 0
N CO 03 r•- V co 07 O)1010
E (• (00(0 0 00 oa 0 0>00) 0 0
N?
— Z
(0 7 N 0 '- CO V 10 C 10 0 •-• (0 m N. N CO 10 O M 01 V LO
J CO C) V (O O O O N V 0 0 7 r' N
00<
( co 0 N 0 7 o ( I O r0), 0 7 C)
(000 O a N7 O OOO7
Q0
0<
CJ 0 0 '- (0 r• 0 7 0) V (0 10 C) N
C) (h 0 N ' O 0 0 0 10 1 7 V
Q 10 O7' N O O O co N 0 0 X 07
00
1Z Q
Q —
7 co 0 10 O o 0) o 0 o (0 0 C) 0
CO O N (- O O 7 '- V O '- t` O O
10(0 (010 O 00 V 0 0000
0 Z N N N N )- )- .- '-
cn
Z
0
t-
Q
J 0 a.
,- NC) V )- )- N , -N ■- V .N C) 0 ) N (h
O
J • )-
Q
0
<
w a
Q 2 O " N C) 0 O � 0'- 0N100 0" N
w O
O u-
Q LI-
Z
g w
CI
• (5 it_ - (75 J
W Q Z J 0 co N .- - J (o J V 10 N N . .J O In V 0 J C) N O
m K Q (n 3 (n u) (n "a3 (n N
0
0
0 0 0 0
> - O (O N O) W V m O > - N O (O V M d) 0 m > - N V O `Z.' I- V 0 0 > - 7 N N(' N m m
1 N O O O O r) N O r M M V- F- M N N CO F' F - M N N N M
J �' 0 0 0 0 0 0 O J O O O O O O Q 0 J LL O O O O O o 9 O W LL 0 0 0 0 0 0 0 O
Z Z Z Z
tor N N - V 0 ( 0 N N 10 N N R N N V 0 N 0 0) (O co co O N r- M N '- CO M M
+ N V V t0 N (O O + I 0 (0 o (O (0 10 6 O + F' C N N N (0 N '- O + F 0 N O N N (O .- O
O 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0 O O LL 0 0 0 0 0 0 0 O O LL" 0 0 0 0 0 0 0 O
>- _ } _ } } Ce
Ce 0 0 0
v V
U U U �- Q
Q a u- CO N N 0) CO N 0 _ < J LL r
0 0) N N Q J 0- O (O N (D O M < J 0- N 0 r r N 0- V .-
LL " u_ O O O O N O O LL 0 10 CO e- O .- O O 0- �+ LL T N M N O o0 V LL O) M . - (O O O co Z_ Z Z Z
o i N 0 0 0 0 0 O O O O O O °O 0 O O 0 V O n O N O O O Lo
F r r 0 6 0 a m r o r r a r o 0 o r o vi vi 0 6 0 ai 0 6 0 0 6 6 0 6 0 0 0 6 J o u_ J
• u_ J o LL
0 o LL
ar, U J U J v U J
0
J 0
• 0
0 0 0
U3
V7 fn N W 00000000 LU
CI u ~ - vi 0 0 10 0 0 0 (ri 7 LL 6 6 o 6 o 0 o 6 7 0- 6 ui 0 6 0 0 0 10 7 u ( N o O 0 0 0 vi
J J . - . - J J J '- r V J r
0 0 0
Z Z Z Z Z
( 0 04 04 10 0 10 10 04 �"' 1010040410040.10 " (O N 0 M 0. N N 2 0 N V r' •- co o.
2 J N O CO N N,- 0) J (O CO W CO N N O J co. co O O N M N J n N (O CO CO 0 N
Q U) 0) M 1� V O) O O W Q N a m (O O N .- • O Q N (D O N R O Q N O O N N O
1- LL 0 0 .- .- 0 O 0 0-
O O U 0 (- V O 0 u- () O U
>- 0 0 0 0 0 0 0 0 >- 0 0 0 0 0 0 0 0 r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V) 0 0 0 0 0 0 0 o 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o u) 0 0 0 0 0 0 0 0
Q 0 0 0 0 0 0 0 o N Q 0 0 0 0 0 0 0 o N Q 0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 0 0
Ce CL_ U Q m U 0 m 0 m U
Li- 0 U- CO 0
LL. (J LL.
0
N 0
Z (O M N R 0 V V M Z CO CO M CO LO N N (0 Z tD N 0 M n W." N Z 0 N K r 0 0-
CO O CO N N W .- (O CO 0 CO CO N 0 co N 0 O N M N 0 (0 (0 co co O N N
0) M 0. V 0) ' 0 0 - 0 3 I R O) (O o N,- o Q 3 u) (0 0 0) N C o O 3 o r 0 0) N (O N o
a H p LL F QQ 0 u_ N F - O u_ L-.1 I- o u. N
( +- J 0 U LL U
7 7 7 7
U U U 0
J _ J _ J _ J _
U u U (0 0 U a U u
LLJ (U .- N t` 0 0 CO L N 0- O O .' CO w O N 1. o) o•- N W O.- N 1� D) 0 .- (D
Q. ' 0_ J Q J Q. J
W W W W CI
CI CI CI 1- •.• F-
LLI J .- N r m O r (p Z J $ r N I� lO ? J L N 0 0 N ? J $ .- N N 0) 0 .- (D
n z o z n z n z
J 2 J 2 J J
7 7 7 7
0 U) V)
E
0
O O 0 V
P
U U 0 v U
< ~ 0 0 0 0 0 '- 0 r Q ~ 0 0 O O O N < ~ 0 0 0 0 (O N 0 ~
LL 700707,-L,
J = 0 0 0 0 0 0 0 0 LL J= 0 0 0 0 0 0 0 U. J= 0 0 0 0 0 0 0 O J= 000000
o z a 0 0 0 0 0 0 0 0 0 Z a 0 0 0 0 0000 0 z d 0 0 0 0 0000 Z Z a 0 0 0 0 0 000
Z w Z w Z w _ Li/
0 0 C7 0 C7 0
O 0 0 0 "
J O N co co co co co co co c] J O N M CO CO CO C) M M M J O N C) M M M M M M M O N CO MM co co M co co
O F ` - CO CO CO CD 0 0 (0 O V 2 CO ID 0 O O CO 0 CO 0 Q F- (0 0 0 0 0 CO CD CD 0 (o 0 N t0 CO LO CO (O
(JJ v 0) 6 (D N N (D (D N LL N (D cci N 6 N N N W 6 La ui N LL ([1 to O 0) c w L.L. N (D (D (D (O (O (0 xi
a Cr o c o CC ((1 C0
M < N < N < N <
N N N to
W N W N N W W N
p w H p w F- p w F- p w F--
)-- v ( 0 0 0 0 0 0 0 0 F. 0 0 0 0 0 0 0 0 F. v 0 0 0 0 0 0 0 0 S H LL 0 0 0 0 0 0 0 0
«. n N ul 3 3 8 (D 3 E (D N N 0) N 3 (D (0 (D 3 ..J N N LO to 0 LO 0 0
_I ( n n n n r r r n U 1< r r r n n n n r J 1 < r n r n n r r r U O' W n n r n r r r r
Z
c Z a ZZ a Z a a
(O 0 n V t 0 co cr, N CO n C n O N CO M CO N CO m n O N N N 0 t00 CO CO
O 0 0 0 W N 0 < ,- '- O •- O NOM 0 < .- O N ONO M 0 Fa- N O N 6 N M co -
I— 0 V N 0 U F- 0 Jn 1- U
>- 0 0 0 0 0 0 0 0 >- 0 0 0 0 0 0 0 o >- 0 0 0 0 0 0 0 0 p 0 0 0 0 0 0 0 0
1- 0) 0 0 0 0 0 0 0 0 N V1 0 0 0 O O o o O (n 0 0 0 0 Co 0 0 0 0) 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CZ d LL Ce CL a LL !L LL LL LL 0 }� U m U 0 m U m 0
Jn a N 0 (f) 0 CO 0
O D O 0 O N O N O 0 n CO CO CO CO M CO 0 O 0 D N r O O N (O 0 0 0 0 CO
J Q - 3 - O O - - O - N N J.. -- -- O - - O N O M r 3 - - O N 6 N 6 M h N •- O N0 N- M
J O LL g 0 LL g O W J O u
LL U U = LL U 7 , U
0 a 0 0 U aa U 0 0
M N O N CO C 0 1 W CO V (O CO N M' LO = W CO a (O CO N CO V (O S W M V (O (O N CO O N
X
W • a i a a a a a
W W W W
o p p o
J • # J # J # J #
- LU W M 0 N N .N- e M - W W CO 0 N N W W CO 0 0) CD .N- .M- .- W J CO V co co N^ (O
F Z g Z g Z ¢ Z
O 0 0 0
HEC -RAS September 1998 Version 2.2
U.S. Army Corp of Engineers
Hydrologic Engineering Center
609 Second Street, Suite D
Davis, California 95616 -4687
(916) 756 -1104
X X XXXXXX XXXX XXXX XX XXXX
X X X X X X X X X X
x x x x X X X X X
xxxxxx( XXXX x XXX XXXX xxxxxx XXXX
X X X X X X X X X
x x 0( X X X X X X X
X x xxxxxx 00(x0 X X X X X X X X X
PROJECT DATA
Project Title: Luther Street Floodplain Delineation
Project File Luther.prj
Run Date and Time: 1/25/01 1:22:34 PM
Project in English units
PLAN DATA
Plan Title: Plan -1
Plan File : g: \124- 14 \DOCS \Luther.p0l
Geometry Title: Luther Street Floodplain Delineation
Geometry File : g: \124- 14 \DOCS \Luther.g01
Flow Title : 25 & 100 Year Flows
Flow File : g: \124- 14 \DOCS \Luther.f01
Plan Summary Information:
Number of: Cross Sections = 8 Mulitple Openings = 0
Culverts = 1 Inline Weirs = 0
Bridges = 0
Computational Information
Water surface calculation tolerance = 0.01
Critical depth calculaton tolerance = 0.01
Maximum number of interations = 20
Maximum difference tolerance = 0.3
Flow tolerance factor = 0.001
Computation Options
Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational Flow Regime: Subcritical Flow
FLOW DATA
Flow Title: 25 & 100 Year Flows
Flow File g: \124- 14 \DOCS \Luther.f01
Flow Data (cfs)
River Reach RS PF 1 PF 2
Luther trib -1 2065 128.71 152.19
Luther trib -1 1580 177.77 210.96
Boundary Conditions
•
River Reach Profile Upstream Downstream
Luther trib -1 PF 1 Normal S = .005 Normal 5 = .005
Luther Crib -1 PF 2 Normal S = .005 Normal S = .005
GEOMETRY DATA
Geometry Title: Luther Street Floodplain Delineation
Geometry File : g: \124 -14 \DOGS \Luther.g01
CROSS SECTION RIVER: Luther
REACH: trib -1 RS: 2065
INPUT
Description: Section 2065
Station Elevation Data num= 8
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
55 310 77 308 92 305 97 304 100 303.7
113 304 119 305 135 308
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
55 .065 97 .04 113 .065
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
97 113 180 195 180 .1 .3
CROSS SECTION RIVER: Luther
REACH: trib -1 RS: 1870
INPUT
Description: Section 1870
Station Elevation Data num= 10
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
55 307 68 306 72 305 95 300 98 299
100 298.4 102 299 104 300 109 301 138 305
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
55 .065 98 .04 104 .065
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
98 104 185 215 185 .1 .3
CROSS SECTION RIVER: Luther
REACH: trib -1 RS: 1655
INPUT
Description:
Station Elevation Data num= 14
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
42 303 80 298 85 296 92 295 98 294
100 293.3 102 294 103 295 107 296 117 297
121 298 124 299 130 300 156 303
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
42 .065 98 .04 103 .065
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
98 103 90 75 55 .1 .3
CROSS SECTION RIVER: Luther
REACH: trib -1 RS: 1580
INPUT
Description: Section 1580
Station Elevation Data num= 12
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
50 302 65 298 76 296 83 295 95 294
97 293 100 292.6 103 293 107 294 114 295
142 300 158 302
Manning's n Values num= 3
Sta n.Val Sta n Val Sta n Val
50 .065 95 .04 107 .065
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
95 107 190 200 195 .1 .3
CROSS SECTION RIVER: Luther
REACH: trib -1 RS: 1380
INPUT
Description: Section 1380
Station Elevation Data num= 11
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
40 300 72 295 90 292 96 291 98 290
100 289.3 103 290 105 291 113 291 132 295
163 300
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
40 .045 96 .035 105 .045
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
96 105 60 70 70 .1 .3
CROSS SECTION RIVER: Luther
REACH: trib -1 RS: 1310
INPUT
Description: Section 1310 - US of 60" Culvert
Station Elevation Data num= 7
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
18 300 SO 295 73 290 100 284.62 123 290
145 295 184 300
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
18 .045 73 .035 123 .045
I
1
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
73 123 250 250 250 .3 .5
CULVERT RIVER: Luther
REACH: trib -1 RS: 1185
INPUT
Description: FM 2818 60" Culvert
Distance from Upstream XS = 70
Deck /Roadway Width = 80
Weir Coefficient = 2.6
Bridge Deck /Roadway Skew =
Upstream Deck /Roadway Coordinates
num= 2
Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord
0 305 275 360 302 275
Upstream Bridge Cross Section Data
Station Elevation Data num= 7
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
18 300 50 295 73 290 100 284.62 123 290
145 295 184 300
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
18 .045 73 .035 123 .045
Bank Sta: Left Right Coeff Contr. Expan.
73 123 .3 .5
Downstream Deck /Roadway Coordinates
num= 2
Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord
0 310 275 350 308 275
Downstream Bridge Cross Section Data
Station Elevation Data num= 6
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
45 295 83 288 100 282.57 110 288 125 290
164 295
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
45 .065 83 .04 110 .065
Bank Sta: Left Right Coeff Contr. Expan.
83 110 .3 .5
Upstream Embankment side slope = 4.5 horiz. to 1.0 vertical
Downstream Embankment side slope = 3 horiz. to 1.0 vertical
Maximum allowable submergence for weir flow = .95
Elevation at which weir flow begins =
Energy head used in spillway design =
Spillway height used in design =
Weir crest shape = Broad Crested
Number of Culverts = 1
Culvert Name Shape Rise Span
Culvert 41 Circular 5
FHWA Chart 8 1 - Concrete Pipe Culvert
FHWA Scale 4 1 - Square edge entrance with headwall
Solution Criteria = Highest U.S. EG
Culvert Upstrm Dist Length n Value Entrance Loss Coef Exit Loss Coef
5 240 .014 .5 1
Upstream Elevation = 284.62
Centerline Station = 100
Downstream Elevation = 282.57
Centerline Station = 100
CROSS SECTION RIVER: Luther
REACH: trib-1 RS: 1060
INPUT
Description: Section 1060 - DS of 60" Culvert
Station Elevation Data num= 6
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
45 295 83 288 100 282.57 110 288 125 290
164 295
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
45 .065 83 .04 110 .065
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
83 110 60 60 50 .3 .5
CROSS SECTION RIVER: Luther
REACH: trib -1 RS: 1000
INPUT
Description: Section 1000
Station Elevation Data num= 10
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
7 293 19 292 33 290 56 287 69 286
I
100 285 109 286 117 287 139 291 166 294
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
7 .065 69 .04 109 .065
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
69 109 0 0 0 .3 .5
SUMMARY OF MANNING'S N VALUES
River:Luther
Reach River Sta. nl n2 n3
trib -1 2065 .065 .04 .065
trib -1 1870 .065 .04 .065
trib -1 1655 .065 .04 .065
trib -1 1580 .065 .04 .065
trib -1 1380 .045 .035 .045
trib -1 1310 .045 .035 .045
trib -1 1185 Culvert
trib -1 1060 .065 .04 .065
trib -1 1000 .065 .04 .065
SUMMARY CF REACH LENGTHS
River: Luther
Reach River Sta. Left Channel Right
Crib -1 2065 180 195 180
trib -1 1870 185 215 185
trib -1 1655 90 75 55
trib -1 1580 190 200 195
trib -1 1380 60 70 70
trib -1 1310 250 250 250
trib -1 1185 Culvert
trib -1 1060 60 60 50
trib -1 1000 0 0 0
SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS
River: Luther
Reach River Sta. Contr. Expan.
trib -1 2065 .1 .3
trib -1 1870 .1 .3
trib -1 1655 .1 .3
Crib -1 1580 .1 .3
trib -1 1380 .1 .3
Crib -1 1310 .3 .5
trib -1 1185 Culvert
trib -1 1060 .3 .5
trib -1 1000 .3 .5
Profile Output Table - Standard Table 1
Reach River Sta Q Total Min Ch E1 W.S. Elev Crit W.S. E.G. Elev E.G. Slope Vel Chnl Flow Area Top Width Froude 4 Chl
(cfs) (ft) (ft) (ft) (ft) (ft /ft) (ft /s) (sq ft) (ft)
trib -1 2065 128.71 303.70 305.06 305.06 305.57 0.020175 5.98 25.51 27.61 0.96
trib -1 2065 152.19 303.70 305.19 305.19 305.74 0.019566 6.30 29.13 28.93 0.96
trib -1 1870 128.71 298.40 301.16 301.16 301.88 0.015988 7.59 24.63 20.50 0.90
trib -1 1870 152.19 298.40 301.38 301.38 302.12 0.015055 7.84 29.37 23.08 0.89
trib -1 1655 128.71 293.30 296.28 296.73 0.011046 6.55 31.93 25.44 0.74
trib -1 1655 152.19 293.30 296.44 296.94 0.011349 6.94 36.38 27.54 0.75
Crib -1 1580 177.77 292.60 295.08 295.08 295.72 0.014516 6.79 34.26 32.02 0.86
trib -1 1580 210.96 292.60 295.27 295.27 295.94 0.013859 7.06 40.59 34.42 0.85
trib -1 1380 177.77 289.30 292.10 292.10 292.71 0.011441 7.04 34.00 28.84 0.86
trib -1 1380 210.96 289.30 292.25 292.25 292.92 0.011768 7.49 38.55 30.49 0.88
trib -1 1310 177.77 284.62 291.27 287.07 291.28 0.000072 0.89 205.20 61.42 0.08
trib -1 1310 210.96 284.62 292.53 287.25 292.54 0.000039 0.78 290.08 72.80 0.06
trib -1 1185 Culvert
trib -1 1060 177.77 282.57 287.07 285.72 287.26 0.003424 3.54 50.24 22.35 0.42
trib -1 1060 210.96 282.57 287.21 285.96 287.45 0.004067 3.94 53.56 23.08 0.46
trib -1 1000 177.77 285.00 286.84 286.35 286.99 0.005002 3.19 61.04 57.65 0.49
1
trib -1 1000 210.96 285.00 286.98 286.46 287.15 0.005008 3.40 69.04 60.50 0.49
Profile Output Table - Standard Table 2
Reach River Sta E.G. Elev W.S. Elev Vel Head Frctn Loss C & E Loss Q Left Q Channel Q Right TOp Width
(ft) (ft) (ft) (ft) (ft) (cfs) (cfs) (cfs) (ft)
trib -1 2065 305.57 305.06 0.51 3.45 0.02 5.88 115.72 7.11 27.61
trib -1 2065 305.74 305.19 0.56 3.29 0.02 7.85 134.81 9.53 28.93
trib -1 1870 301.88 301.16 0.72 2.71 0.08 22.35 99.85 6.52 20.50
Crib -1 1870 302.12 301.38 0.74 2.67 0.07 28.72 113.42 10.05 23.08
Crib -1 1655 296.73 296.28 0.45 0.99 0.02 43.01 80.40 5.31 25.44
trib -1 1655 296.94 296.44 0.49 0.99 0.02 53.40 90.97 7.81 27.54
trib -1 1580 295.72 295.08 0.64 2.55 0.01 13.01 157.27 7.49 32.02
trib -1 1580 295.94 295.27 0.67 2.53 0.00 19.85 179.77 11.34 34.42
trib -1 1380 292.71 292.10 0.61 0.02 0.18 8.56 131.38 37.83 28.84
trib -1 1380 292.92 292.25 0.67 0.01 0.20 12.29 150.05 48.62 30.49
trib -1 1310 291.28 291.27 0.01 0.76 176.29 0.72 61.42
trib -1 1310 292.54 292.53 0.01 3.49 204.14 3.33 72.80
trib -1 1185 Culvert
trib -1 1060 287.26 287.07 0.19 0.25 0.02 177.77 22.35
trib -1 1060 287.45 287.21 0.24 0.27 0.03 210.96 23.08
trib -1 1000 286.99 286.84 0.15 4.16 171.06 2.55 57.65
trib -1 1000 287.15 286.98 0.17 6.20 200.96 3.80 60.50
(O (O O O <t (D (O a0 W (0 N (O Q) O)
O) O) W N N- N- 00 00 co. 00 O O �' V �' V
V '. O O O O O O O O O O O O O O O O
o.
D
O
r M O O <t V N N V O) N O (n 0) (f) O
M O) O V 03 O d, O 0 d, .1.. 00 M O (11)
n 00 O M (O N V 00 O N N M h 0
}} e* N N N N ,-,,,' N N co M N M ‘"L' r N N (O (D
0
l- :
-s ; r M M M O O Q) O O 00 , (O V' d'
(O (0 M O co N 1[) O (!) N O N 1<) O O
,. O 4 Q) O V O 7 00 (n O O M O)
Z ' N N N N M M M d' mm O O) 1<) tO 00 (0
N N
O g
1
_ 032 Q) V' to 7 O) co V Q) O) N V 0)1 O
_ 0) <n 00 In O) n O O d' co 6
M 14) O) r 7
C ~" (O (O r M O M r ti O O M M M
.0
F ...
" ., (O CC") O O co 6 O N Q) d' 1-- N 00
;, n M W a 7 (O V' (O M NW MC'
0) (O 0) O O M LOW N- O O V 0 0 0
47. :', O 6) (l) _ � _ M O O M V LO (1')
O^' N r r r r O O O O O O
(/) j' O O 00 O O 00 O O O O O O O O
} O O O O O O 0 0
O O 66 66 66
" ;" r V a0 N CO N -61; N M OW Mir)
(O N 00 r CO 0") h- 0 N (O N Q)
e" r
(O N (0 O 0 ) (f ) N N N N N M
' ' ) ' O O M M O) O O) N N 0) N M N 0003
▪ M M M M N N N N N N N N N N NN
ll7 =V.
M O (f73"8 00 r min (!) NCO LL7 (O
O O N N O N O M
(() (() r (!) (1) N N r (C) (f) (O (O
? O O O O O) 0) O) O) M of co M a0 M
7'Z M M M M N N N N N N NN N N
ms,
P a.
?x M O) (O W C A )",t col— c"-,;', r M n V (0
: } E - � ' ," 0- •---m. N V M N r N tf') O N 00 6)
).. ([) (f) (O (O (f) (1) N N N co N� (O (O
w ;� O O E,0 O) 6) O) O) O) 0) O 6) co 00 0) M
, . M M M M N N N N N N N N N N N N
O O O O O O O 0 0 N N n h O O
r i''-'• V V' M M CO O M M O O
LOUD O O • £ .' !$. M M N M M M N N m O) V V N N (O (f)
L "-: O O O) O N N O) O ( P O M ao (0 W CO CO 00 O0
'(,_ M M N N N N N N NN
N N N N
▪ a
L
c2 ' i:.. r O) ,--(3) r m N- (0 r CO h (O t (O N� (O
0 ... N� r 1---m h Q) N� O . 0) r-- 0) � O)
°0 00 N N N M N n O h 0 r...--c2 5 N� O r O
` N (O N (1) N (O r n r ,- r 7 r
O O r r r r r r (V r (V r (V r N r N
7
r
,'- i s y o- : .
,° ,
a ' to <(3 s Q' C (() <0 O C3 . O O O 0 in 0 O . 0 0
* C0 <0 E � 4'- u) u) (0 — (0 Q 0 O,
a.0 =o ',' co ,(0 (o 10 ,(0 o 03 ,
(n w ' g
w : �.0 .0 .0 ..n .1. .c5 .4 n ' .n�_.0 .n. ".0
I
CO
0 00 Cr V N N 'V Q) N 0 N!') 00 to 0
t...,. (D O) t() O tt) 0 .1. 00 a - 00 (')0 (O to
• T3 % r 00 O M LC) N - N 00 O N N M n O
N N N N N N co M N M (D N N (D
> ; v
a ;
o
1-
r 0) co N N M U) 0
tC) to
cv LO O M 00 V co co ND t` M (0 M • L °' N O) M 0
t() h ti M(0 O M N M
f �.r
(' '''•'' r
N N O r h a0 '0 O) 7 n (0 M 0
# -Y W 00 0) N n M O N r N- Q ) O O)
_� d) co O 0 t ' O) - O (O V n O
O O
M 0) 00 O) co to N- O (- N -
r T.-
r r r r ,— N r N r N
at r e.),,,,,,..
-61 ' . 00 14) N 0 t0 co O) co O) co O
': 00 N M 0 O 00 Nn N 6 r N 4
Vi, c,
Q1 —
N N V LC) O CD O M V
N N W t` N N O co 0 N M
O O O O O O O O (NI
0 0
; O O O 0 0
O O O 0 O O O
N
:�r a j'^z. 14) Q) - N- O) 0) in co N t, N`
( N N- ND O) O 10 Nn O O N N
4 M N N O 0
N N 0 0 0 0
_ r r
c
v a° (D N V' 0 ) V n 0 V
in
t) ( o 0, r d' V (O (O (O (O O O r N r r
0 O O O 0 O O O O O 0 0 O O O O
— a co
`s : _ (0 O) (0 o0 W d 0) ( 0 - N ,- 0 ) O N 0 0)
O r r M N '`j: L6 N • Ok tp tq r (O (0 tq 10 N N a) N N- r M M
^,, O 0 O O O O) O) F.,„) Q) O) CO co co co
, CO C's)
M C')
N N N N (0,3 N N N N N N
(4
(0
0) _''?, V 0) N CO '1' N V - N M <t t 0 'I-LC) O) _(0
" " (C) LO • N (O (O CV 1 C) N N a) N n N- O r
y O 0 O 0 O) O) 6) 6) O) O) O) 7 00 00 CO co
t 45 -s . M M M M N N "0"
N N N N N N U N (V N N
J W
0)
kill (l] 0 0' it, 14) 0 O 0 0 C'; O 0.. tC) 0 O O O
d (Q (0 1ti A- aC) L0 00 00 ? 0 Off'. •, )`4^ CO . CO (0 r O 0:
C N a+R B. QJ PN - r .. a+• : R •r• ' Nr , — -r!
r
Q °, tm' ,S° 4' co U # . 4 g ar , r ( r ?,, ,,-,1; �— r^ a-- r• r r � = � .o-
al ' -- 'a a , a a b ,�
S � . 5' S � 5 ( a r ,7- N `. S w '''S
N
0 LL Li_
C
W d d • O
co 3
O
O
N
O
O
O
T
N o
r - O
s
C
(6
C
co
O v
c
O
C
co c
0
o
c
L
03 U
Q c
- 0 m
O
O
L._
N
N
ll
v/ O
4
-O
L
I J
O
4
1 N
I
m N ; (NI
N N
(4) UOIWAOI3
- N r . V
C I LL lL c (1)
rn a a■ o • c
m
co
rra
-N
N
v
0
-
CL
C
0
w
CO co
0
0 N
C
O 0
) _
C c (1)
CO
0
0
0
LL
co
N
co
cn
o
L
7
J
O
,1111,111 II 11111111 11111, TIII - (O
O
co
co co
O O O O O O O
co M M M M M M
(4) uogenal3
a 1 N — -0
c 1u_ u_ c o
a7 0_ d ■ 30 • • _c
y I U) (1) c
J 1 C) on
O
-V
•
co O
O -
O
N -
•
•
1 i .
•
C I
CO 0 °
0_
1 - O
•
1
C
O . -
c0 r--
N F
C
c c
O O O
•
a U CO
fn
O V)
CU
O _
- o
O
O
LL - co
a)
O
L
a)
0
J
O
_ co
•
0
i r r r r 1r ■ ■ i , r i 1 r , I r i r Er i ■ i co ,r
O O O O O 0)
c+) co co (`') (o (N
(4) UOI)2n0o
1
- N . c0
c LL LL C (n
w 4 d 0_ • • C
J 0 m
0
r (13
I T
0
l i T-
co
co
0 _
r
O
1.0 -
N 0
r -
r
, i -
•
C
(S3 _
11
C • -
O
N
N F.
C
N o frilliiiiiiPi' ..= -o0 0
r
C (n
0.
O
O
LL
N
N -
L ^
VJ
L _O
N CO
L _
7 -
oo
co
0
O
_ O
0
O O co m o) o) o)
co M M N N N N
(4) uogene0
•
. N r0
C LL LL C (/)
y V) (n C
CD m
O
O
LO
(o
0 -
LO
N
-N
r _
C i
C �
O I
as a0
O • -
C w -
Q
O
O
LL
(1)
L 0 CO
J
Ln
(O
c+Oj OM N N N N
(4) uogen2o
.D N - «D
C LL LL C U)
N U) ■ - •
CA i 1 m
0
•
c
O o
L)
N L o
v
0
CU
d
c
-c‘i
0
o
CD co
c
c
N o 0
(B
0_
- O
O o ' _o
O
•
•
•
tU
L _
J O
O
_ O O
O
co
oo O D1 m m m o0
co N N N N N N
(4) uo4enal3
- N 12
C LL LL C CO
C; • n_ a. a•c
3 c9 m
O
r0
0
_ 0
0
-(D
in
0
N
l
0
CO - � 0
CL > r
0 0 •
o o -
• o
a o '
c
o c
N - L -0 0
o o co
Q c
- O
o ti
a)
L w o
_ co
a)
N
L
7 O
J CO
to
V
O
O
O
- N
O O a) a) O a) co co a)
(h N N N N N N N N
(II) uoi;enalE
N C CO
C LL LL C (J) •
y cn
0
_o
N
_ co
O
da r
0
O i ' .. u.0� "` -
r °., , w
Y
o
Lo
cN
r 3
yea `
p_� k
k
cp
a
713 Q LL ram � a r E � � � �
o
LL
CD
d
1 0 :
t
in
M M N N N N
(ii) uoga ei
•
N - p @
C LL U C (J,
CO 1 J I N N
3 C7 m
( 0
0
_
0
- v
O 0
co _
N o
0
>
•
O
O • o
• o F
w
co
C
C
p O
O . O
LL N o
Cll
•
I
L
O
J -co
it)
co
_
O
m m Cr) Cr) c0 CO O co
N N N N N N N N
(31) Upl}2n8o
. N •• (w0
a a v7 •
0 ! co cn
0
-0
0
- v
0
0
N o
-N
� I
o
O -o
0
( a o
C
c o
N o a
❑ o 4 m
N
0_
O
O
LL,
4)
_
0
J
0
,n
0
0
0
I N
o
O 0) 0) N a0 a0
N N N N N N
(j) uogenal�
k<
Drainage Report
For
Fairfield at Luther Street
Multi - Family Site Plan
20.63 Acres
Travis L. Williams, Sr. et ali
Crawford Burnett Survey, A -7
Brazos County, Texas
Longaro & Clarke Project No. 124 -14 -37
April, 2000
Prepared For:
Fairfield Residential Companies
2045 North Highway 360, Suite 250
Grand Prairie, Texas 75050
Prepared By:
LONGARO & CLARKE, INC.
Consulting Engineers
1101 Capital of Texas Highway South, Suite C -100
Austin, Texas 78746
(512) 306 -0228
Drainage Report
For
Fairfield at Luther Street
Multi- Family Site Plan
20.63 Acres
Travis L. Williams, Sr. et ali
Crawford Burnett Survey, A -7
Brazos County, Texas
Table of Contents
Page
1.0 Location 1
2.0 Property Characteristics 1
3.0 Drainage Design Criteria 2
4.0 Summary and Conclusion 4
Exhibits
1. Site Location Map
2. Aerial Photograph
3. Drainage Area Map
4. Offsite Drainage Area Map
5. FEMA Flood Insurance Rate Map
Appendices
A. Hydrologic / Hydraulic Calculation for 60" Culvert
1.0 LOCATION
The project site is approximately 20.63 acres and is located at the east corner of Luther Street and
Harvey Mitchell Parkway (a.k.a. F.M. 2818), approximately one half mile southeast of the
intersection of George Bush Drive and Harvey Mitchell Parkway. As well, the site is approximately
1.5 miles from the Texas A &M University main campus. The site is within the City of College
Station Corporate Limits, Brazos County, Texas (Grid No. N -37). The current land use is
agricultural /open space with at least one, possibly two, detached single family dwelling units
located upon the property. The proposed land use is Multi- Family, and can be better seen on the
attached site location map and aerial photograph as shown in Exhibits 1 and 2, respectively. The
site is located on the "Wellborn" USGS 7.5 minute Quadrangle sheet. The site adjoins a small
waterway, which is a tributary to White Creek, a primary drainageway, which is a tributary of the
Brazos River. No portion of the subject tract is located within the Special Flood Hazard Area (100
year floodplain) according to the Flood Insurance Rate Map for Brazos County, Texas, Map Nos.
4804100181C and 48041C0182C, Community No. 480083, Panel Nos. 0181C and 0182C,
effective July 2, 1992 (Exhibit 5)
2.0 PROPERTY CHARACTERISTICS
The current land use for the subject tract is agricultural, with one or two single family dwellings
located upon the property. The 20.63 acre tract can be described as slightly vegetated with flat to
moderately steep slopes. Vegetation mostly consists of post oak, and other hardwoods, located
around the vicinity of a natural waterway through the property. Slopes across the tract range from
2% to 5 %, draining toward the waterway located along the front third of the property. According
to the Soil Conservation Service "Soil Survey of Brazos County, Texas," there are two predominant
soil types located on the subject tract. Both soil types consist of various sandy loam layers at the
surface, with more clayey soils below the sandy loam. These layers of clay are typical of most clay
types found in the area with very high shrink -swell potential. The majority of the site consists of the
Tabor Series (Ta) fine sandy loam, and the Lufkin Series (Lf) sandy loam.
The subject tract is bounded to the northwest by Luther Street, and to the southwest by Harvey
Mitchell Parkway. Most of the property on the opposite sides of these roadways is currently owned
by Texas A &M University, and is not expected to be sold or developed in the near future. However,
G: \124- 14 \DOCS \EngrptSP.wpd Page 1 of 4 April 18, 2000
there are two vacant, undeveloped, privately owned tracts located on the opposite side of Harvey
Mitchell Parkway. Currently, the TAMU property is undeveloped, and is being used for agricultural
research purposes for the university. Adjacent property to the northeast is currently owned by
Sigma Alpha Epsilon fraternity, and is currently being developed for their fraternity house. Adjacent
to that tract is an existing multi - family development, Melrose Apartments. Property to the southeast
is currently an undeveloped, wooded, 6.0 acre tract owned by Raymond Gorzycki. No plans are
currently in the review process for this tract.
A small waterway, which is a tributary to White Creek, drains through the front third of the property.
This waterway originally drained a significant drainage area, up to Jones Butler Road, however,
since the construction of the Melrose development, a significant portion of the original drainage
area has been diverted into a detention pond located at the south corner of the Melrose
development, which discharges into the waterway Walden Pond is located on. Secondary drainage
includes the waterway through the subject tract, and various storm sewer systems that will drain
into the waterway from the proposed development.
Offsite drainage includes approximately 5.5 acres associated with Luther Street R.O.W., and the
outparcels located north of the subject tract. The 5.5 acre drainage area will be collected via a
proposed curb inlet located within Luther Street, that will discharge into the waterway via a storm
sewer system. This storm sewer is to be constructed with the Luther Street Improvements
construction plans that are currently being reviewed. As well, Lots 1 and 2 of the Melrose
development, that portion south of the existing apartments (11.9 acres), will drain through the
waterway via a 30" storm sewer line to be stubbed to their property. Currently, Lot 1 is under
construction with a fraternity house. Construction plans for that development indicate a detention
pond to be located along the northern boundary line of the subject tract.
The subject tract will be developed as a student housing, multi - family development consisting of
fifteen residential buildings and one clubhouse /leasing office, with a total of 324 dwelling units.
Amenities will include a swimming pool, a basketball court and two sand volleyball courts.
3.0 DRAINAGE DESIGN CRITERIA
Currently, no drainage studies exist for the secondary waterway through the subject tract. As
stated previously, a significant portion of the natural drainage area has been diverted into another
drainage area, and therefore peak discharges into the waterway have been reduced. However,
G: \124- 14 \DOCS \EngrptSP.wpd Page 2 of 4 April 18, 2000
due to the proposed development of the subject tract, discharges will be increased due to the
increase in impervious cover. Private drainage easements will be dedicated for the natural
waterway, and those storm sewer systems collecting offsite drainage. All drainage systems will
be privately maintained.
Drainage calculations for the storm sewer system and inlet designs were calculated using the
Rational Method, with a 10 minute time of concentration. Peak discharges were calculated for the
2 -, 5 -, 10 -, 25- 50- and 100 -year storms. These calculations are included on the drainage area
map (Exhibit 3). Storm sewer sizes were calculated with Manning's equation, with a Manning's n
value of 0.014. All pipes are sized to convey the 100 year storm discharges with out surcharging.
Storm sewer outfalls will consist of headwalls with energy dissapators and rock rip -rap to minimize
erosion at the outfall. Storm sewer lines will be constructed with Class III RCP for pipe sizes 18"
and larger, and SDR 26 PVC for 12" and 15" pipe sizes. The contractor will be allowed an alternate
bid item to use High Density Polyethylene (HDPE) pipe in lieu of the materials mentioned above.
This pipe is corrugated on the outside, with a smooth wall on the inside, and therefore has
comparable structural and hydraulic characteristics as RCP and PVC.
Surface drainage will consist of sheet flow and concentrated flow along drainage swales and curb
"gutters. Grassed swales around buildings are graded with a minimum slope of.2.0 %, and paved
areas with concentrated flow are graded with a minimum slope of 1.0 %. All paved areas will drain
to curb inlets located throughout the parking lot, and grassed and landscaped areas will drain to
area grate inlets provided throughout those areas. All stormwater runoff from the subject tract will
be collected and discharged into the natural waterway.
Based on conversations with City staff, the subject tract would not be required to provide onsite
detention provided conveyance of stormwater flows is available through the 60" RCP culvert
beneath Harvey Mitchell Parkway. Hydrologic calculations for the drainage area to the culvert are
provided for the fully developed, un- detained 100 year storm, utilizing the SCS method with HEC -1.
As well, hydraulic calculations for the culvert are provided utilizing the TxDOT THYSYS Culvert
program, and verifying the results with a TxDOT nomograph. The 100 year peak discharge is 338
cfs to the culvert. The calculated headwater elevation on the 60" RCP is 297.91, while the road
elevation is 302.5 thus providing approximately 4.5 feet of freeboard. The TxDOT nomograph
computes a headwater elevation of 298.32, thus providing 4.2 feet of freeboard. Therefore, the
culvert has adequate capacity to convey un- detained flows from the subject tract. These
calculations are provided in Appendix C and a drainage are map is shown in Exhibit 4.
G: \124- 14 \DOCS \EngrptSP.wpd Page 3 of 4 April 18, 2000
4.0 SUMMARY AND CONCLUSION
The subject tract is located on the east corner of Harvey Mitchell Parkway and Luther Street,
opposite Texas A &M property. The proposed development consists of 324 multifamily units
designed to accommodate student housing, with all required parking and drives, and amenities
such as a clubhouse, swimming pool, basketball court and volleyball courts.
Conveyance for stormwater runoff will be provided by constructing onsite storm sewer systems that
will discharge into a secondary waterway that runs through the site. Offsite flows will be conveyed
to the waterway via storm sewer systems. All systems are designed to convey the 100 year storm
without surcharging the system. Conveyance through the 60" RCP culvert beneath Harvey Mitchell
Parkway is available for the fully developed, 100 year storm, and therefore detention is not
required.
I hereby certify that this report for the drainage design of Fairfield at Luther Street - Multi- Family
Site Plan was prepared by me in accordance with the provisions of the City of college Station
Drainage Policy and Design Standards for the owners thereof.
O,# *,
* � Registered Profes 'o Engineer
t... �. r.rr;w4li „E .. State of Texas Number 82725
s _2,7;2 "c Z
r /
s
G: \124- 14 \DOCS \EngrptSP.wpd Page 4 of 4 April 18, 2000
II
i.
1 .. \j am- ai a " � f. i , • � r_4-_'_ V r �tt�!IE `
1,
cit ``,,, ',. Q 4 j ; •` 44.. t0 L.. A', . 9
• / •� / -_ olf Course 47 \ e. `A\ x _20 .,1
\ o ,,./ I ` ., 154 ( '�/�. ` ' =f. — te'
/ / \ a \ r igh , • '.
4 0 / / ' 4 7 \ C }i �r �_ l�. s ■ h Fiel
• , 4'.k . ,,. ,
/ V
• / 3so _ � f \L . „) /
• 336 �1� X 7 `_ - \ . � .�, 111‘'
4 N IN \ R od / / round's ` �f,,,,_� •:\>24. \\ �— A • \ r
1 v 4.,•0, i
... /,.. S
/ \)' 'lb i . A v // c .,.-/-,,. ..,,-----' -. '2 *IVO
- 0' , ,/" •
-� qi / o , "\
N. ' f s p ; �,. v c \2 �
k\--.: \\\ NH7 \ / .(—) ' ' \
• •
\
„. \ ,, \,.,
FAL D , ( \‘‘\,. X / VS ). ....sr?” ' ze s to '.: e.
c ... .
ii:______\
Li .--'. i . j a 1 ii �� ?�• . i l
a
�S ,sPO \ • \
-- A
1 Y 7 1 - _ 3 1
• \/, % fl
1 ' y )1•,,0 s ta ,
■
( 1. i
: • \ ')1 - . 344 Z:/
/ \ 3 °() I' ' I Y \
,-\,/,
, , r „ � ,�
0:32\ .
1 , ,
;% o N o v i % �� �� ;\ , i
r \ .# �: l . /" ! / ,� \ � N Z, D PAe
U.S.G.S. MAP
N WELL QUADRANGLE G Longaro & Clarke, Inc.
f Consulting Engineers
_J [and Dreefopwery • Sionnwater Qualify Management • water Rerourcrs
jp nn Load C � -+r la Win.. mw 6111111=1.111111111.1
Y' 2000 0 2000
•
1 •
1
.. 1
,� r= � . * �,�
1 7 / +
1 : i •••■• ' `, , , , - 4.4
It rte - +
,,,•■•
x � a:. f 0 . ) .
.1s, ...„....,..,..,v,_ ,,.....,.....,..„-•,_4., -. ' ' .' $ l' ' sot —
- ; . `' (�' a �- . � \G 4 *
-.�
�
f r l
II i
f + ;
- ''... ' ,'' , ..--;'. ii r
t a ......t; _ ,..1
,.: :.
I . -4 -/- '
'I : . -', ' , , ,� �_.1
a ,.,
<• r
.,. f # a •
+ am ',. - x •
,...,,,,,,A, ;. .
N
+♦ M
i y . � e 3 i -
Pig . . , - • } � ate 4 I
_........,.
1 =,., ..,.._, ,. - .7 1 -: -..- I"' r , • '
• 1 ,. 4
' �Vy J •1 1, - .: FM 618 w
x
s r _
r " F ° x k „.• .' ' - ' '.:
. T. VI • •
0 1 11.111111.
AERIAL PHOTO
q Longaro & Clarke, Inc_
Consulting Engineers
- Lend Development • Stormwater Quality Mamagem ent • Water Rea-moves
es
UItl tta tay -o - r@ nt �> >ro -attn
I
500 O 500
V i
R
f PACIFIC \ , . ••■■•• i R.
t ai
ti
l fi n
NEON ��
(::`, \ , �
1 I N
Z X
O w
X Z .
O
W N
O I
N
co
m
N
I.
O
•r.I
.4..J
•
C .j.j
r ��
v !'Y 1 /
U d"
L, •
1
6d,5, i Q U.
e� '4 w
•• Z
.• O
•
•' W •
/
• N
.>) ,t v J
o u v,
X . Q
00
• w w N a
Z Z 0 o
O 6,, O °c
N ti � N a ,
t
I g o
i I N
I
I
O
■ IO
X "
r
w _ 1
N ii. �
1 CS
, e
4
4 5
_ Clarke, Inc. COMPUTATION HEET
r' Longaro & Cl am, am,,
+� SUBJECT L
L Consulting Engineers 40" 2CP C4.
and Development • Stormwater Quality Management • Water Resources JOB NO. SHEET NO. OF
~ DATE 2 -10-0
�
BY
L CHKD BY DATE
1 A
GlU
_ 9/ ( s 0 6 S% r . Cove,,--)
- t 1 e , 7_,0 %vrw., C Con5e9-✓o - vd,)
1
h e
P ,. x'23 '""�
i =96
11, p . .., Z, (13 LA
o i-S.0
4 O73O qt
IL P
-13.--
L p 31,. - 6,3o
I'LL, = 7, ? t -1, -,
Ft/1, ' 93 S jg.--
IL
Pz,,,, 1(.3s I-
L
It
I
1
IL
...
L 00 10 0 CO N N 1 00 N C• 0 0 h 01 0.01 h 0 O yr un M r, CD ,--4 N 01 N N O up r, ,r
.. 01 0 CA C 1 0 C1 0 01 0 01 01 0 0•• C 1 h h h •• O O CA h 03 0 CO 0 0 01.0 O h o
ii. r-4 r
S-
rd 01 0 0 r•4 M CO 0 r• 0 M N 01 N h 0. v0 0' N 011D O 0 010 0 M 0' 10 O N C' d r
> 0101 Q1 Q7 r•+ r+ 0 -000 01 0 Q1001 .- , x4010101000100 O1r -1010
L O . • • • • O O .. 10 0 0' O x4 01 0 01 h 0 0 .- N CO C' 4 O 10 O N N 0 0 C1 CO 01 O cr O O O h 01
xi 0. O , 4 N 0 R 0 •"I N 1D C• T Q• 0 10 '.001 10 yr 01 M M M M 10 M 0 C N h M C' C' M N
t') 0 h h h 0 h h 0 h h h h h h h h h h l0 h 0 0 h h h h h h h h h 0 h 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CO IL N 100 0 d O .'-1 O N C 0 h 0h 0• CV 10000 on .--1 10 C 000•. - -10010 M 0
0
CO O h 0 CO 0 01 CO 01 0 0 CO 0 CO 0 0 0 0 CO 0 CO 01 O 01 h CO CO 0 0 0 CO 0 0 0 01
-4 r4
i
r0 M cr 10 0 0 0 L[7 N 0 C M M h 01 C• M h h 01 0 CO .--1 x4 0 .--I h 0• N 0 0 01 h M on un
0) JD 01000100 0101001 01001010101001001 O101 p 010/0101 Q101 Q1010 ,A0
00 C. h h 01 ('.J. --1 h M U10• d 100 N 01.x70 CO 10 O M 00 h on r, 01010 01
ct 0 N M 01 M O M r-4 10 0 0 C' 0 0 0 01 10 0• .--1 0• M x4 cr h 0 0 0• M 0 N ct 0• 01 N
O h co h h h CO h h O h h 0 h h h h h h h h h O CO h h h h h h h h h 0 h CO
IL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O C O N 10 0 0 0' 0 .-r 0 N C• 0 h 0 h C• N 10 0 0 0 '.O(') .-1 10 . 0 0 0•,--4 ... 0 10 01 0
�. - 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
•� CO 0 h CO CO 0 010 C10 0 0 0 CO CO 0 0 0 0 CO CO 01 O 01 h CO 0 0 0 CO CO 0 0 0 01
IL • .-4 .--I
+ U 0 N
..----..----• Z 4J
4 .1 i
04 y 0) 1] 0110 h 0 0 Cl 01 0 h O O CO On 01 O CO O 01 O O 0 h CO 01 CO C1 CO CO 0 0 01 O C1 h CO
C. LC) T
11 ro
CL 17 0
•-. d N h 01 N C• 0 on M 0 1010 0110 h 101000.00 N h 10101010 cr 01010 0•N
+�
111111 ¢ ro•r a1 hhhhhCO hr--07 h'r-h r, 1-, hhCOh h hhOCOhhhhhhhhhOh CO
J 0 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0
O O
M O
L cC L O
O U.� • ON1000d•Or -10 NC'0 h0h N1D00 on lD �' 00C'.- - 1 0 01 D M 0
N 04
,_ 0 0 h O CO O 01 CO 010 0 CO 0 0 0 0 0 0 CO 0 0 01 O CT h CO 0 CO CO 0 CO 0 0 CO 01
.+ . -I r
N
L v, w 3 N
= ...... Z tt, ro ,....
• OM M010.00Q>0Nh0CJlh Ol01D d'OOOOMNlD OlOh. --BOO V h010 '�\
4, U h10 hr�h 0x h h n h h rs rs 1D h 100 CO h h 0 lD r, r- r- O 10 Q1 h h 0 un 1
n3 O N >, O
i U
.--I M 0110 M 0 O O h h O' 0 h N M 0110 N N M 01 M M 001 M M h 01010 r4010N
N = 0 1- O r Ln r- 00 L- h h 10 r1 1D r r - r O h 1-7 1D co x4101010 r- 1010 h 00 10 N 0S") CD
- I-- m O N hOhhhOf, hhhhf� h r� hhOhhhhO h O hO
Z O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Q s CT
F 0 Q1
L
(%I i
Z M11 CO N 100 00 . CD c-1 ON C O r- 0 r, 0'N 1000010 M x1100 00 d.- -10010 M
C ro
1--1 41 ,- • CO O r CO 0 0 01 0 01 CO 0 0 0 O CO CO 0 O 0 O CO 01 O 01 r 0 0 CO 0 0 0 CO 0 CO 01
3 r , _--I e---1 .--I
04 r-I
,
iii
C 4--
• 0 O 0
i r--r 01 r .• - - M C• 0 N N N 01 00 01 0 0 CO 10 C• 0 10 0 01 O r Cr C N 01 0 CO 0 0 0 10
w , c3 n-.1 h 010 h 1010 h h 1010 h 117 r- :O r- 10117 1D h h 1D 1D co 0 h 10 h r, 1.01 0- r-. 10101.01
J Q1 CC N •
CO VI = >1
L.,. Q 0
1-- CO 0 r- CD C'M0 N hlDN W CO 01
N r N h M 01 r+.-- I co O --I O1D0 C•r� 00101. --10 a1 C•
rnN000 0. 0.- 00 rn00hOh 1Nrnr-0h0h1DO0N1D. -I
Q1 h0hhh 0 rs, r, Or�r- r, r, h h h 0 h h r, h co O h h h h h h h h h co r, co
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
• 1D °O W N N CO N 0 0 10 1\1 0• 01(0 h M 0' 01 r- 0 0 C' O (-IN, (04 N 01 N N O 1D h 0'
O1TO cn 010010 cn 00010100 CO 01h h h O0001h 0000 c00 Ol00 r- CD
.-4
i
ICI N O N M O l N 0 01 0' N N CO 0 VD up co M .--4 O O 1 0 O O M M C• 10 O O N 0' co 0 cD OA
L-
O . 1D V7 10 h O' 01D 1D 0 01D C• 00000 00101000 r- C 100 h 0• r- 0000'
>1
N
01 N 0 .--1 0 10 0 r M 0 (‚401100101 N 0 0. 014.0 4.00110011010-40101 0 10 01 N 01
C1 r•1 CO N 01 C• 0 .--1 01 01 0 0 .•-4 01 01 01 .--1 0 10 01 0 10 01 N r- 0 01 0 --I r, N r 0 1D 0'
a) h O h CO h CO 0 0 0 r- 0 0 0 r- r- h O h h h 0 CO 0 0 r- CO h 0 CO r- CO r- 0 r- O
L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0
L. Q1 ro S- 0 r O
C r. C ro ro Cl Q1 v O r- C , s4 C
O 3 C 04 O ut
>- u1 3 b i i O C> i O i O O N 0 VI - O Ut N Y N 0 O 0 0
-- S- N vI
I . r- 47 4-.I U •� N CU S - 0 S - U N 0 0 Q1 0 0 ut U �[ 0 0 . ) 0 J 3 0 , 0 S - 0 i
Z N S. Q1 0 0 N N 4 r ID 4 r ro C CC 4 N N 3 VI O 3 r C - 0 = 0) C VI - VI 4•
ro V1 .- a VI >1 N X ro i VI 3 al ro Q1 co co i i r- s_ ..n o
L O 'O 01 ro U E r- � ¢� Q Qi S- Q Q Q m colon m m m m m m m m m m m on m m m CO U U U U L) L) U U
12 - BRIDGE DIVISION HYDRAULIC MANUAL
2 - 16
I
I HEC1 S /N: 1343001888 HMVersion: 6.33 Data File: luther.HC1
•
' U.S. ARMY CORPS OF ENGINEERS '
•
• FLOOD HYDROGRAPH PACKAGE (HEC -1) HYDROLOGIC ENGINEERING CENTER
•
MAY 1991 609 SECOND STREET
•
VERSION 6.0.1E DAMS, CALIFORNIA 95616 •
• •
•
(916) 756-1104
• RUN DATE 02/18/2000 TIME 16:62:32
1 .
X X 7CCCCCCX XXXXX X
K X X X X XX
X x x C)OC X XX X
XXICC XXXX
x x x X X
x C x X X X
x x =CCCCC XXXXX XXX
1
.. Full Microcomputer Implementation ..
by ...
it 1::
,,, Haestad Methods, Inc.
37 Brookside Road . Waterbury, Connecticut 06708 ' (203) 755 -1666
It
THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC -1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.
THE DEFINITIONS OF VARIABLES - RTIMP- AND - RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973 -STYLE INPUT STRUCTURE.
THE DEFINITION OF - AMSKK- ON RM -CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION
NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY,
DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION
KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM
1
1.
1
1
1
1
1.
t '
IL_
IL HEC -1 INPUT PAGE 1
LINE ID 1 2
3 4 5 6 7 8 9 10
1 ID FAIRFIELD AT LUTHER STREET
IL 2 ID 100 YEAR STORM EVENT CULVERT ANALYSIS
3 ID FILE NAME G: \124- 14 \DOCS \LUTHER.HC
4 ID LEC JOB #124 -14 FEB, 2000
5 IT 2
6 ID 3
7 KR DEV -1•
8 KM BASIN DA -1 FULLY DEVELOPED CONDITIONS
lir 9 KM TO CULVERT, AREA = 43.7 AC.
10 BA 0.068
11 PH 0 0 1.23 2.43 4.41 5.56 6.30 7.71 9.38 11.35
12 LS 0 91
13 UD .20
14 ZZ
i lkif
L ,
L
,
Illi,
111,
III.
I
lk,
I
1
lit,:
I
1
1
lit,
IL
I HEC1 S /N: 1343001888 HMVersion: 6.33 Data File: luther.HC1
IL • •
•
• U.S. ARMY CORPS OF ENGINEERS
FLOOD • HYDROGRAPH PACKAGE (HEC -1) HYDROLOGIC ENGINEERING CENTER
MAY 1991 • 609 SECOND STREET
•
VERSION 4.0.1E • DAVZS, CALIFORNIA 95616
•
•
(916) 756-1104
• RUN DATE 02/18/2000 TIME 16:42:32
'IL' .
FAIRFIELD AT LUTHER STREET
100 YEAR STORM EVENT CULVERT ANALYSIS
FILE NAME G: \124- 14 \DOCS \LUTHER.HC
L&C JOB #124 -14 FEB, 2000 -
6 IO OUTPUT I P� OL VARIABLES PRINT CONTROL
IPLOT 0 PLOT CONTROL
QSCAL 0. HYDROGRAPH PLOT SCALE
IL IT HYDROGRAPH TIME DATA
NMIN 2 MINUTES IN COMPUTATION INTERVAL
IDATE 1 0 STARTING DATE
ITIME 0000 STARTING TIME
NQ 101 NUMBER OF HYDROGRAPH ORDINATES
NDE 1 0 ENDING DATE
ilL NDTITIMME 0320 ENDING TIME
ICENT 19 CENTURY MARK
COMPUTATION INTERVAL 0.03 HOURS
TOTAL TIME BASE 3.33 HOURS
ENGLISH UNITS SQUARE MILES
li, DRAINAGE AREA
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE -FEET
., SURFACE AREA
DEGREES TEMPERATURE DEGREES FAHRENHEIT
1 . .
7 KK DEV -1 •
BASIN DA -1 FULLY DEVELOPED CONDITIONS
IL TO CULVERT, AREA = 43.7 AC.
SUBBASIN RUNOFF DATA
10 BA SUBBASIN CHARACTERISTICS
TAREA 0.07 SUBBASIN AREA
PRECIPITATION DATA
11 PH DEPTHS FOR 0- PERCENT HYPOTHETICAL STORM TP -49
HYDRO -35 TP -40
5 1.23 15-MIN 243 60-MIN 441 5.56 6 -30 6-HR 12-HR 24-HR
8 11.35 2-DAY 000 4-DAY 000 70. 10-DAY
00
STORM AREA = 0.07
IL 12 LS SCS LOSS RATE
STRTL 0.20 INITIAL ABSTRACTION
CRVNBR 91.00 CURVE NUMBER
IL RTIMP 0.00 PERCENT IMPERVIOUS AREA
1 3 UD SCS DIMENSIONLESS UNITGRAPH
TLAG 0.20 LAG
UNIT HYDROGRAPH
32 END -OF- PERIOD ORDINATES
IIIIV 10. 30. 62. 104. 136. 150. 150. 138. 120. 96.
71. 55. 42. 34. 26. 20. 16. 12. 10. 7.
6. 5. 4. 3. 2. 2. 1. 1. 1. 1.
0. 0.
••• ••• •
HYDROGRAPH AT STATION DEV -1
1
TOTAL RAINFALL = 6.49, TOTAL LOSS = 1.05, TOTAL EXCESS = 5.44
PEAK FLOW TIME MAXIMUM AVERAGE FLOW
6-HR 20-HR 72 -HR 3.33-HR (CFS) (HR)
(CFS) 338. 1.90 69. 69. 69. 69.
Illit (INCHES) 5.278 5.278 5.278 5.278
(AC -FT) 19. 19. 19. 19.
CUMULATIVE AREA = 0.07 SQ MI
1
lillit
L
RUNOFF SUMMARY
FLAW IN CUBIC FEET PER SECOND
TIME IN HOURS, AREA IN SQUARE MILES
PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD B ARER M AXIMU M
MAX MTIETOFE
OPERATION STATION FLOW PEAK
6 -HOUR 24-HOUR 72 -HOUR
HYDROGRAPH AT DEV -1 338. 1.90 69. 69. 69. 0.07
,: ••' NORMAL END OF HEC -1 •" _
L Illpr
it.,
L
L
1
L
Texas Hydraulic System Culvert Design
Fairfield @ Luther St.
124 -14 -04
Brazos County
IL FM 2818 60"
-- culvert 1
Shape: 'Circular 1 Length(L):1 245.001 ft
Material: (Concrete 1 Slope(S):1 0.00841
Span:1 0.001 ft n: I 0.01201
Rise:1 5.001 ft Ke: I 0.501
Barrels:1 11 Entrance Type: 'Headwall
Discharge Description
Q HW TW BW* V Q Inlet Ctl Outlet Ctl
total elevation elevation out over road HW depth HW depth
(cfs) (ft) ' (ft) (ft) (ft) (cfs) (ft) (ft)
1100 year 1 338.00 1 297.91 1 0.00 195.85 1 17.48 1 0.00 1 15.10 1 13.29
*Backwater (BW = HW - TW -
r.„
L
L
L
2/ 18/00
G: \124- 14\DOCS\FM2818.CLV
_.
L.
L output.lis
TEXAS HYDRAULIC SYSTEM, CULVERT (ver. 1.1. Jan /1998)
Fri Feb 18 16:43:22 2000
Ilim CULVERT HYDRAULIC COMPUTATIONS
CULVERT NAME: culvert 1
Input Unite: English
PROJECT NAME: Fairfield a Luther St Output Units: English
PROJECT CONTROL: 124 -14 -04
COUNTY: Brazos County
DESCRIPTION: FM 2818 60"
ANALYZE SINGLE OPENING CULVERT
MATERIAL: CONCRETE
SHAPE: RCP CIRCULAR PIPE.
ENTRANCE: HEADWALL
PROFILE: STRAIGHT CULVERT
FREQUENCY: 1'00 year DISCHARGE: 338.00 cfs
Tailwater not provided for 338.00 cfs.
Minimum of normal or critical depth used as tailwater.
n value: 0.0120 Ke value: 0.5000
CULVERT DIAN. = 5.00 ft BARRELS = 1
INLET station: 405.00 elevation: 284.87 ft
OUTLET station: 100.00 elevation: 282.32 ft
ill Ili' CULVERT OUTPUT RUN NO =, 1
ANALYSIS for discharge frequency of : 100 year
Barls. Qpb Rise Span Length Max.HW elev
HW CaHW H0 Control Veloc. Out.depth
cfs ft ft ft ft ft ft
ft /s ft
1 338.00 5.00 0.00 245.00 0.00 297.91 13.29 Outlet 17.48 4.78
Inlet control depth = 13.29 ft
Outlet control depth =
Normal depth
= 5.00 ft Culvert slope = 0.00836
Critical depth 4.78 ft Critical slope 0.01247
RUNING MESSAGES LIST:
*Computation: Tailwater elevation lower than outlet elevation.
*Computation: Minimum of normal /critical depth used.
NORMAL TERMINATION OF THYSYS, CULVERT.
1
'IL
'IL ','
L
iilki
L Page 1
IlL
- 2000
i - PRESSURE LINE -.4
- H
z W
H
z Z NW -.5
71000 a: -J 0 i - -- _ _ _ i _.
1- D P / \ -.6
- 800 -120
UNSUBME OUTLET SUBMERGED OUTLET —
— — 600 -108 -.8
- 500 - 96 -4,--' -1.0 �, -
- 400 - 84 ------ -
i,e -72 / -
- � -- -
7- 200 - 6 6 e j " -- (
0 O F ,Y W — 2
\ O C LL -
0 e',.. Z
00 ./ 0 - - 54 L ,uo
Z - to D.4B / - c - 0.5 00 �' ti� i - 3
w -48 — T .
v- p _
a - 10 Z 42 .• .. w - 4
W - Q' � Z e _ _
a _ 80/ o X0 0 a — 5
_ _ -36
- -60 W -33 .0 X00 -6
CI - 50 I -
w -30
- 40 Q '1 W EJe,✓ = 2. B7 32 5 0 0 _ 8
0 - 27 N4J' Tw� //' e o -I0
- 30 s
- 24 = 2.98). 32 -
-21 -
- 20 -
-18 -20
EQUATION: H ■ [2.5204 (I • CO + 466.18 n L 7 \
D 4 0 16h J `10 /
-10 -15
— H . Head in feet
- 8 C = Entrance loss coefficient
— D : Diameter of pipe in feet
n • Manning's roughness coefficient
- 6 - 1 2 L • Length of culvert in feet
-
5 0 - Design discharge rote in cfs
— 4
FHWA HEAD FOR
CONCRETE PIPE CULVERTS
FLOWING FULL
n =0.012
NOMOGRAPH K
BRIDGE DIVISION HYDRAULIC MANUAL 12 -85