HomeMy WebLinkAbout13 Great Oaks Subd. 500-43(
• McCLURE ENGINEERING, INC. ______ __
September 15 , 2000
Mr. Ted Mayo , P.E.~ 'f-l:)....(?{J
Development Engineer
City of College Station
P.O. Box 9960
College Station, Texas 77842
Re: Revised Drainage Report for Great Oaks Subdivision
DearTed:
Since the submittal of our initial drainage report , we have been working with the
developer and contractor to reduce the construction cost for this project. The primary
change we made is with two of the drainage structures that were proposed. Initially,
Culvert 10 was to consist of dual, 6'x 5' reinforced concrete box culverts and Culvert 13
was to be a single 42 " RCP . We are now proposing these structures be replaced with
aluminized steel pipes that have Manning's "n" values that are the same as concrete pipe.
Using this material, Culvert 10 will become dual 78 " round culverts and Culvert 13 will
remain a 42 " pipe .
In the revised drainage report for this project we evaluated the system using these
new structures. This analysis indicates that the same objectives for :freeboard and
detention can be achieved using the alurninized steel structures. We have also addressed
the comments you made during your review of the original report. Attached you will
find a letter that responds to each of the comments you gave us. As always , please feel
free to call us with any questions. Thank you .
Sincerely,
&!_
Kent Laza, P.E. r-
Project Administrator
1 008 Woodcreek Drive, Suite 1 03 • College Station, Texas 77845
(979) 693-3838 •FAX (979) 693-2554 •email: mcclure@tca.net
\
Great Oaks Subdivision
Response to Drainage Report Comments
Note: EXHlBIT C-1 in the original drainage report has been deleted and replaced with
EXHlBIT D-2 . EXHlBIT C-1 was a spreadsheet analysis for the dual 6 'x 5 ' RCBC,
which are no longer being proposed in this development. EXHlBIT D-2 is a summary of
the post-development HEC-RAS analysis using dual 78 " aluminized steel culverts. All
other "C " exhibits in the revised report have been renumbered to reflect that change.
1. Comment : Page ii-CSP C ULVERT ANALYSIS: Clarify-JOA or JOB -see Exhibit "A "
Response: The correct culvert designation is 1 OA. This culvert drains the front hal f of the
lots on the northeast side of Durrand Street. The correction has been made to the
Table of Contents and Exhibit C-4.
2. Comment: Page 2-Flowrates (cfe) from Drainage Areas: add area J 3 (42 " ACP)
Response: The flowrates for Drainage Area 13 have been added to the chart. The figures for
thjs chart come from the HEC-1 analysis in Exhibit B-3.
3. Comment: Page 3-Add area J 3, JOA or JOB ?
Response: The chart has been expanded to include the crossing for Drainage Area 13 . The
correction for Culvert l OA has also been made.
4 . Comment: EXHIBIT B-J -Add area J3
Response: EXHlBIT B-1 is a spreadsheet developed to compute stormwater flowrates from
small watersheds using the Rational Formula method. Area 13 drains 22 .36
acres, which is approaching the Hmit for accurate application of the Rational
Formula (generally 25 acres). Since the HEC-1 model had already been
developed for tills project, flowrates from that model for Drainage Area 13 were
used to design Culvert 13 in Exhibit C-5 . Therefore, since the Rational Formula
flowrates were not used, it would be mjsJeading to list flowrates from Drainage
Area 13 on EXHlBIT B-1.
5. Comment: EXHIBIT C-5 (now C-4) -Clarify-JOA or JOB
Response: As noted in No. 1 above, the correct culvert designation is 1 OA. Tills correction
has been made to the report .
6 . Comment: EXHIBIT C-6 (now C-5) -re-examine total flow values vs. flow p er pipe.
Response: The "Flow Per Pipe" figures li sted in Column 3 of the original submittal are the
correct values taken from the HEC-1 analysis in Exhibit B-3. All of the
subsequent calculations are based on those figures so the culvert design does not
change. The "Total Flow'' figures listed in Column 2 have been changed to
match those in Column 3 .
ENGINEERING REVIEW
COMMENTS No. 1
Great Oaks Subdivision Phase One
Final Plat
1. Sheets 1 &2-everything looks fine
Infrastructure Drawings
1. Sheet 2-note: sta. 10+61 .57 install two 4x2 RCB see profile this sheet ???
2 . Sheet 3-3" W-3 should be W-2 ; 2-30" esp ? cmp
3 . Sheet 4-Cheneau Street should be Kingswood Drive ; 2-24" esp ? cmp ;
Drainage from 2-30" & 2-24" cmp's -to creek-no defined path .
4. Sheet 5-Arboleda Lane or Drive-see master preliminary plat.
5 . Sheet 7,8 &9-ditto
6. Sheet 9-street centerline intersection sta .-Great Oaks Drive-50+25,3 or
50+21.3 ; waterline intersection sta . 82+24.91or82+ 27.91
7 . Sheet S-2-Grate inlet detail-3' 3" ID will not accommodate 42" ASP ; add
detail for single sloped headwall for 42 " ACP .
Drainage Report
1.Page ii-CSP CUL VERT ANALYSIS : Clarify-1 OA or 1 OB -see Exhibit "A"
2. Page 2-Flowrates (cfs) from Drainage Areas : add area 13 (42"ACP)
3. Page 3-Add area 13; 10Aor 108?
4 . EXHIBIT B-1-Add area 13
5. EXHIBIT C-5-Clarify-10Aor 10B
6 . EXHIBIT C-6-re-examine total flow values vs . flow per pipe.
Engineer's Cost Estimate
1. Everyth ing looks fine
Reviewed by: Ted M~ Date : 08-2 1-00
McCLURE ENGINEERING INC ,
e, Suite 103 1008 Woodcreek Driv
College Station, Tex
(979) 693-3838, FAX
as 77845
693-2554
.
TRANSMITTAL LETTER
1#1 ()/M
TO: Mr. Ted Mayo, P.~ D
A
R
ate: 9/14/2000 Proj. #
Development Services ttn:
CITY OF COLLEGE STATION E: GREAT OAKS SUBDIVISION
We are sending you the following : C8J Attached 0 Under Separate Cover Via :
0 Invoice 0 Prints C8J Plans 0 Contractor Invoice 0 B id Books 0 Specifications 0 Change Order
0 Contracts 0 Other
Copies Date Description
Sets of Revised Constructio n Plans
1----~---------~
Copies of Revised Drainage Report
These are transmitted as follows
0 For Approval C8J Approved as Submitted Sets to be approved and returned to me
C8J For your use 0 Approved except as noted 3 Copies for your files
Corrected Prints 0 As Requested 0 Resubmitted after Revisions ---
0 For Review Comments 0 Other
REMARKS: PLEASE CALL WHEN OUR COPY OF THE DRAINAG E REPORT IS READY TO BE PICKED UP. THANX
COPY TO: SIGN ED:®
:ael R. McClure, P.E ., R.P .L.S.
President
'.
.,.
·~. -
I
-
Drainage Report
FOR
GREAT OAKS SUBDIVISION
VICINITY MAP
NTS
JULY, 2000
Re vised : SEPTEMBER, 2000
Prepared By.
McClure Engineering, Inc.
1008 WOODCREEK DRIVE
SUITE 103
COL LEGE STATION, TEXAS 7 7845
(979) 693-3838
Dra1nage Report
FOR
GREAT OAKS SUBDIVISION
NTS
JULY, 2000
Revised : SEPTEMBER, 2000
Prepared 8 y.
McClure Engineering, Inc.
1008 WOODCREEK DRIVE
SUITE 103
COLLEGE STATION, TEXAS 77845
(979) 693-3838
CERTIFICATION
I , Kent M. Laza, Registered Professional Engineer No. 65923 , State of Texas , certify that
this report for the drainage design for GREAT OAKS SUBDIVISION located in the Cit y of College
Station Extraterritorial Jurisdiction, was prepared by me using the guidelines of the Cit y o f College
Station Drainage Policy and Design Standards for the owners thereof As agreed by the Development
Engineer, post-development runoff rates for the 5 and 10 year design storms are not detained to the
pre-developed runoff rates.
DRAINAG E REPOR T
GREAT OAKS SUBDIVISION
I I
Kent M. Laza, P.E. No . 65923
INTRODUCTION
TABLE OF CONTENTS
GREAT OAKS SUBDIVISION
GENERAL LOCATION AND DESCRIPTION
FLOOD HAZARD INFORMATION
PRIMARY DRAINAGE SYSTEM DESCRIPTION
DRAINAGE DESIGN CRITERIA
DETENTION DESIGN
CONCLUSION
EXHIBITS
DRAINAGE AREA MAP -PROPOSED CONDITIONS
RATIONAL FORMULAS DRAINAGE AREA CALCULATIONS
HEC-1 ANALYSIS: PRE-DEV 100-YR
HEC-1 ANALYSIS: POST-DEV 100-YR
CSP CUL VERT ANALYSIS: CUL VERT 4
CSP CUL VERT ANALYSIS: CUL VERT 8A
CSP CUL VERT ANALYSIS: CUL VERT 8B
CSP CULVERT ANALYSIS: CULVERT lOA
CSP CUL VERT ANALYSIS: CUL VERT 13
HEC-RAS SUMMARY: PRE-DEV WATER SURFACE ELEVATIONS
HEC-RAS SUMMARY: POST-DEV WATER SURFACE ELEVATIONS
WITH CULVERT 10
DRAINAGE REPORT
GREAT OAKS SUBDIVISION
1
1
1
1
2
3
4
"A"
"B-1"
"B-2"
"B-3"
"C-1"
"C-2"
"C-3"
"C-4"
"C-5"
"D-1"
"D-2"
II
INTRODUCTION:
STORM DRAINAGE REPORT
GREAT OAKS SUBDIVISION
This storm drainage report is intended to analyze the drainage infrastructure proposed for the
development of the Great Oaks Subdivision. The existing and proposed conditions are included to
show how the design will achieve the desired drainage objectives of Brazos County and the City of
College Station.
GENERAL LOCATION AND DESCRIPTION:
Great Oaks Subdivision is located in southwest portion of the extra territorial jurisdiction of
College Station in Brazos County. Great Oaks is bounded by the Quail Run Subdivision to the North,
property owned by M.S. and Vada Kavanaugh to the West, Gandy Road to the South, and property
owned by David Borsack to the East.
FLOOD HAZARD INFORMATION:
No portion of the site is shown to be within the 500-year floodplain on the FEMA Flood
Insurance Rate Maps (FIRM) for Brazos County, Texas and Incorporated Areas, Map Number
48041CO182C, effective July 2, 1992. As such, this site is not currently regulated under the National
Flood Insurance Program. It should be noted that the portion of Hopes Creek in the Great Oaks
Subdivision was not included in previous flood studies by FEMA and no attempt was made by them
to prepare a FIRM for this area. The floodplain analysis prepared with this study indicates the
presence of a 100-year floodplain through the subdivision based on current conditions in the drainage
basin. The limits of this floodplain are contained within the drainage easements shown on the plat
but they are subject to change as further development occurs in the drainage basin.
PRIMARY DRAINAGE SYSTEM DESCRIPTION:
Exhibit "A" is a drainage area map that shows contours and proposed drainage areas for the
STORM DRAINAGE REPORT
GREAT OAKS SUBDIVISION
PAGEl
site. The proposed street will have a 24' wide paved surface with ditches. Storm water from the site
will be captured in the ditches along the roads and conveyed to Hopes Creek. Corrugated metal pipe
culverts and aluminized steel culverts will be used at the street crossings.
DRAINAGE DESIGN CRITERIA:
Since this project falls within the ETJ of College Station, the drainage system for Great Oaks
was designed using the criteria in College Station's Drainage Policy and Design Standards. The
design storm is a 25-year rainfall event for all drainage structures. Flow calculations for minor
structures are based on the Rational Method (Exhibit "B-1 "). Flow calculations for the major
structures are based on the U.S. Army Corp of Engineer's HEC-1 program (Exhibit "B-2"). Pipe
sizes were determined by analyzing culvert capacity under inlet and outlet control or HEC-RAS
modeling . Requirements for freeboard and road overtopping were met by all proposed culverts.
Exhibits "B-1" and "B-3" indicate the peak runoff calculations for the post-development
conditions of the drainage areas shown in Exhibit "A". A summary of these results is shown below:
Flowrates (cfs) from Dra inage Areas
Drainage Area
4
8A
8B
lOA
Culvert 10*
13
STORM DRAINAGE REPORT
GREAT OAKS SUBDIVISION
5 year
23.5
37.6
11.8
20.7
372
45
In Great Oaks Sub division
10 year 25 y ear 50 year 100 year
26.6 30 .5 34.6 39.0
42.6 48 .8 55.4 62 .6
13.2 15 .1 17.1 19 .2
23.5 26 .9 30.6 34.6
470 57 7 656 743
56 6 9 78 89
•Culvert I 0 is th e co mbination of drainage areas 9, IOA, and JOB
PAGE2
These runoff rates were used to design the roadway crossings shown in Exhibits "C-1"
through "C-5". The resulting culvert sizes are as follows:
Drainage Area Culvert Size
4 2 -30" Corrugated Steel Pipes
8A 2 -30" Corrugated Steel Pipes
8B 2 -24" Corrugated Steel Pipes
IOA 2-30" Corrugated Steel Pipes
10 2 Bbl. 78" Aluminized Steel Pipe
13 42" Aluminized Steel Pipe
DETENTION DESIGN:
The dual 78" aluminized steel culverts shown above are designed to detain water in the
channel upstream of the crossing on Great Oaks Drive. These culverts reduce the 100, 50 and 25-year
events below the existing peak outflow from the site, but they do not provide detention for the 2, 5,
and 10-year events. The following excerpts from Exhibits "B-2" and ''B-3" show this detention for
the larger storms as well as the small increases in water surface elevation from the smaller storms.
These small increases are easily contained within the channel banks and do not pose a threat to
surrounding property.
Great Oaks Subdivision
Comparison of Pre vs Post Development Runoff Rates
From HEC-1 at Gandy Road Crossing
Storm Pre-Dev Post-Dev Difference
Event Eievation
(ft)
2 267.49
5 268.86
10 269.68
25 270.52
50 271.05
100 271.55
STORM DRAINAGE REPORT
GREAT OAKS SUBDIVISION
Flowrate Elevation
(cfs) (ft)
721 267.60
1149 268.92
1459 269.71
1824 270 .50
2087 271.01
2402 271.47
Flowrate Elevation Flowrate
(cfs) (ft) (cfs)
750 0.11 29
1170 0.06 21
1471 0.03 12
1817 -0.02 -7
2062 -0.04 -25
2353 -0.08 -49
PAGE 3
CONCLUSION:
Great Oaks is a rural subdivision for single family residences on lots that are approximately
1 acre in size. The change in impervious area from the development ofthis subdivision is small and
has minimal effects on the existing drainage system.
Proposed improvements at the street crossings are designed using guidelines in the City of
College Station's Drainage Policy and Design Standards . Exhibits "C-1" through "C-5" show that
all drainage structures in the Great Oaks Subdivision are capable of passing the 25-year rainfall event
with one foot of freeboard. The dual 78" culverts on Great Oaks Drive serve to detain the post-
development runoff from the 25, 50 and 100-year rainfall events. The small increases in water surface
elevations from the lesser storms are contained within the channels and do not threaten surrounding
property.
Exhibits "D-1" and "D-2" are summaries of the HEC-RAS analyses for the pre and post-
development, 100-year rainfall event. Water surface elevations and top widths from the post
development analysis were used to define the drainage easements shown on the plat. However, since
this section of Hopes Creek is currently unregulated by FEMA, the floodplain boundaries are subject
to change as further development occurs upstream.
STORM DRAINAGE REPORT
GREAT OAKS SUBDIVISION
PAGE4
~ ~ w c g .. 0::: w ...J ~ ~ 0.. ~ LL.. w w 0 t:= I-c (!) 0::: ...J z ~ z ~ w z w u 5 J: ~ ...J > w :E ...J z ~ w~ c w ~ 0::: I-~ cw ii) > w (!) >z 0 z 0::: w ~ 0 o~ c I-:::> ~ 0::: 0.. I-NO. AC. 0.4 0.55 0.9 ft. 4 7.36 0.00 7.36 0.00 4.05 909.0 8A 12.54 0.00 12.54 0.00 6.90 752.0 88 2.65 0.00 2.65 0.00 1.46 482.0 10A 7.29 0.00 7.29 0.00 4.01 267.0 13 (see HEC-1 data in Exhibit B-3) EXHIBIT 8-1 Rational Formula Drainage Area Calculations Great Oaks Subdivision ~ 0 ~ ~ ...J LL.. 0 0 c ...J ...J z LL.. LL.. ~ 5 0::: J: 0::: w I-w (3 ~ ~ 0::: ...J ~ (!) ~ ...J 0 w ...J ...J u w :::> z :::> ...J >~ (!) ~ (!) ~ ~ iij U) N .,, 0 LL.. u :::> ~ 0 !.!? 0 ft. ft. ft. ft/s min min In/Hr cfs In/Hr cfs 13.0 1.0 1.0 0.8 17.9 17.9 4.71 19.1 5.8 23.5 13.0 800.0 8.0 1.3 20.2 20.2 4.40 30.4 5.4 37.6 9.0 69.0 1.0 1.0 8.8 8.8 6.69 9.7 8.1 11.8 3.0 2054.0 23.0 1.7 22.3 22.3 4.16 16.7 5.2 20.7 0 .,, 0 ...... .,, N :!: 0 ~ 0 In/Hr cfs In/Hr cfs 6.6 26.6 7.5 30.5 6.2 42.6 7.1 48.8 9.1 13.2 10.4 15.1 5.9 23.5 6.7 26.9 0 !.!? In/Hr 8.5 8.0 11.7 7.6 0 0 0 0 .,, 0 ...... 0 :!: 0 cfs In/Hr cfs 34.6 9.6 39.0 55.4 9.1 62.6 17.1 13.2 19.2 30.6 8.6 34.6 8/28/2000 0008-dra.xls Exhibit B-1
Exhibit "B-2"
i ••••• •• •••••••••• ••• ••••• •••••• •••••••••• • ••••••••••••••••••••••••••••••••••••••
n,Q()D HYDROGRAPH PACKAGE (HEC-1)
KAY 1991
VERSION 4. 0. lE
Lahey £77L-EM/32 version 5.01
Dodson ' Associates, Inc.
RUN DATE 07/18/00 TIME 15 :01:55
x x xxxxxxx
x x x
x x x
xxxxxxx xxxx
x x x
x x x
x x xxxxxxx
xxxxx
x x
x
x xxxxx
x
x x
xxxxx
x
xx
x
x
x
x
xx x
U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(9161 5Sl -l 748
THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC -l KNOWN AS HECl (Jl\N 731, HEClGS, HEClDB, AND HEClKW.
THE DEFINITIONS OF VARIABLES -RTIHP-AND -RTIOR-RAVE CHANGED !1'.a< THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.
THE DEFINITION OF -AKSKK-ON RM-cARD llAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION
llEN OPTIONS: Dl\MBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT lll\lil\GE CALCULATION, DSS:llRITE STAGE FREQUENCY,
DSS:l\El\D TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AHPT INFILTRATION
KINEMATIC NAVE: NEW FINITE DIFFERENCE ALGORITHM
HEC -1 INPUT
LINE ID ••••••• l. ...... 2 ••••••• 3 ••••••• 4 ••••••• 5 ••.•••• 6 ••••••• 7. ....•• 8 ••••••• 9 ••.••• 10
1
2
3
4
5
6
7
8
9
10
ll
12
13
14
15
16
l7
18
19
20
21
22
23
24
2S
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4l
ID
IT
IO
JR
KK
KM
KM
BA
PB
IN
PC
PC
PC
PC
PC
LS
UD
KK
BA
LS
OD
KK
HC
KK
RS
RC
RX
RY
KK
BA
LS
UD
KK
RS
RC
RX
RY
KK
BA
LS
UD
EX CONDITION OF HOPES CREEK
3 01FEB98 0000 481
s 0 0
PREC 13 .5 ll 9.8 8 .8 7 .4 6 .2 4.S
EVENT 500 100 so 25 10 5 2Yr. Stono
Dl\.l
P4 IS EXISTING CONDITIONS TRIBUTARY C-100 AND C-110
.13S8
l
30 01FEB98 0000
.0053 .0108 .0164 .0223 .0284 .0347 .0414 .0483 .OS5S .0632
.0712 .0797 .0887 .0984 .1089 .1203 .1328 .1467 .162S .1808
.2042 .2351 .2833 .6632 . 73Sl . 7724 .7989 .8197 .8380 .8538
.8676 .8801 .8914 .9019 .9115 .9206 .9291 .9371 .9446 .9519
.9588 .9653 .9717 .9777 .9836 .9892 .9947 1.000
0 82.98 0
.SS
DA2
.0336
0 80 0
.3
CULl
2
Rl ROUTE CULi TO PT A
l STOR -1
.075 .OS .07S 729 .0082
0 . 44 .8 59 .6 86 .8 9S .8 109 .2 116.9 12 4 . 4
300 298 296 294 293 294 296 298
DAJA
.0915
0 82.85 l7 . 78
.S2
R2 ROUTE DA3A TO PTA
STOR -1
.075 .OS .07S 341 .0235
0 44.2 74 .8 91.6 9S.6 105 139. 7 163. s
298 296 294 293 . l 293.l 294 296 298
DAJB
.oos
0 80 0
.18
HEC -1 INPUT
PAGE
PAGE
LINE IO •••.... l. ...... 2 •....•• 3 ......• 4 ....••. 5 ......• 6 •...... 7. ..•.•. 8 ..•...• 9 .•.... 10
42 KK DA5A
43 BA .0266
44 LS 0 80 0
45 UD .24
46 KK R3 ROUTE DA5A TO PTA
47 RS 1 STOR -1
48 RC .015 .05 .015 129 .0082
49 RX 0 44 .8 59.6 86. 8 95 .1 109.2 116.9 124.4
50 RY 300 298 296 294 293 294 296 298
51 KK DA5B
52 BA .0115
53 LS 0 80 0
54 UD .2
55 KK PTA
56 HC 5
51 KK R4 ROUTE PTA TO CUL6
58 RS 1 STOR -1
59 RC .015 .05 .015 1021 .0039
60 RX 0 109.5 116.5 123. 4 121. 4 136. 6 150. 4 110. 9
61 RY 292 290 288 281. l 281. l 288 290 294
62 KK DA6
63 BA .0201
64 LS 0 80 0
65 UD .33
66 KK CUL6
61 HC 2
68 KK R5 ROUTE CUL6 TO CUL?
69 RS l STOR -1
10 RC .015 .05 .015 1160 .0043
11 RX 0 18.25 156.5 165.2 169.2 111.3 211.3 246
12 RY 291.8 289.9 281.9 218.1 278. l 283.2 285.6 288
73 KK DA4
74 BA .01033 l. &,
75 LS 0 81.15 7 .2
76 UD .3 1
77 KK DA7
78 BA .079
79 LS 0 80
80 UD .59
HEC-1 INPUT PAGE
LINE IO •..•••• l. ...... 2 ..•.... 3 •.••••• 4 ••..•.. 5 ••....• 6 ••.•.•. 7 ••.•••• 8 •.•.••• 9 ••...• 10
81 KK DA8A
82 BA • 0196· It
83 LS 0 80 0
84 UD .25
85 KK DABS 2. (,, 86 BA .0041
87 LS 0 80 0
88 UD .35
89 KK PTC
90 HC 5
91 KK DA9
92 BA .0265
93 LS 0 81.8 11.29
94 UD .29
95 KK R6 ROUTE DA9 TO CU Ll O
96 RS 1 S TOR -1
97 RC .075 .05 .075 2 400 .0111
98 RX 0 22.55 48 .35 67. 81 88 .55 92 .55 99.54 110 .32 120
99 RY 292.61 292.03 290.60 284. 96 2 78 . 01 278. 01 286.06 266 .12 286. 90
100 KK DA10A
101 BA .067
102 LS 0 60 0
103 UD .54
104 KK DA10B
105 BA .2507
106 LS 0 80.98 6.1
107 UD .92
108 KK PTO
109 HC 3
110 KK DAll
111 BA . 015 4
112
113
114
115
116
117
118
119
120
LS
UD
((!(
HC
((!(
RS
RC
RX
RY
0 80
.58
PTE
3
R7 ROUTE PTO
l STOR
.075 .05
0 4. 7
281 2 78
0
TO PTE
-1
.075 2387 .0034
9 .5 23.5 27.5 44 .4 79 .5 90 .3
276 270 270 274 276 28 1
HEC -1 INPUT PAGE
LINE IO ••.•••• l. ...... 2 ••.•••• 3 ••••••• 4. ...... 5 ••••••• 6 ••••••• 7 •.••••• 8 ••••••• 9 •••••• 10
121
122
123
12 4
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
KK
BA
LS
UD
((!(
BA
LS
UD
((!(
BA
LS
UD
((!(
HC
((!(
RS
RC
RX
RY
zz
DA12
.304
0 81.84
l. 59
DA13
.03 49
0 82.36
• 8
DA14
• 0349
0 80
.42
PTF
RS Route to
l STOR
.075 .05
0 18 . 73
274. 7 273.7
i········································· .
FLOOD HYOROGRAPH PACKAGE (HEC -1)
HAY 1991
VERSION 4 .0 .lE
Lahey F77L-El<!32 version 5.01
Dodson ' Associates, Inc.
RUN DATE 07/18 /00 TIME 15:01:55 .........................................
11. 52
14 . 76
0
the end
-1
.075
36.46
271. l
EX CONDITION OF HOPES CREEK
3 IO OUTPUT CONTROL VARIABLES
200
70.12
262.4
IPRNT 5 PRINT CONTROL
0 PLOT CONTROL
.0034
89.17
262
I PLOT
QSCAL 0. HYDROGRAPH PLOT SCALE
IT HYDROGRAPH TIME DATA
105.47
2 70.8
NKIN MINUTES IN COMPUTATION INTERVAL
JP
JR
I DATE 1FEB98 STARTING DATE
ITIME 0000 STARTING TIME
NO 481 NUMBER OF HYDROGRAPH ORDINATES
NDDATE 2FEB98 ENDING Dl\TE
NDTIME 0000 ENDING TIME
I CENT 19 CENTURY HARK
COMPUTATION INTERVAL 0. 05 HOURS
TOTAL TIME BASE 24.00 HOURS
ENGLISH UNITS
DRAINAGE AREA SQUARE HILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE -FEEY
SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT
MULTI -PLAN OPTION
NP LAN NUMBER OF PLANS
MULTI-RATIO OPTION
RATIOS OF PRECIPITATION
13.50 11.00 9.80 8.80 7 .40 6 .20
132.9
27 4 .9
4 .so
150
277 .5
U .S . ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 551-1748
PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN -RATIO ECONC>IIC CC>IPUTATIONS
FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE HILES
TIME TO PEAK IN HOURS
OPERATION STATION PLAN
HYDROGRAPH AT
DAl 0.14
HYDROGRAPH AT
+ DA2 0.03
2 CCMBINED AT
+ CULl 0.17
ROUTED TO
Rl 0 .17
HYDROGRAPH AT
DA3A 0.09
ROUTED TO
R2 0.09
HYDROGRAPH AT
DA3B 0.00
HYDROGRAPH AT
+ DA5A 0.03
ROUTED TO
+ R3 0.03
HYDROGRAPH AT
DA5B 0 .01
5 CCMBINED AT
PTA 0.30
ROUTED TO
+ R4 0.30
HYDROGRAPH AT
DA6 0.02
2 CCMBINED AT
+ CUL6 0 .32
ROUTED TO
+ RS 0.32
HYDROGRAPH AT
DA4 0.01
HYDROGRAPH AT
+ DA7 0. 08
HYDROGRAPH AT
+ DA8A 0 .02
RATIOS APPLIED TO PRECIPITATION
RATIO l RATIO 2 RATIO 3 RATIO 4 RATIO 5 RATIO 6 RATIO 7
13.50 11.00 9 .80 8.80 7 .40 6.20 4.50
FLOW
TIME
FLOW
TIME
FLOW
TIME
FLOW
TIME
534.
11. 85
171.
11. 60
662.
11. 80
661.
11 . 80
PEAK STAGES IN FEET
4 23.
11. 85
134.
11 . 60
523.
11. 80
521.
11. 80
STAGE 296 . 84 296. 51
TIME 11.80 11.80
FLOW
TIME
FLOW
TIME
376 .
11.80
376 .
11.85
PEAK STAGES IN FEET
299.
11. 80
299.
11. 85
STAGE 295.17 294.98
TIME 11.85 11.85
FLOW
TIME
FLOW
TIME
FLOW
TIME
29 .
11. 55
145.
11.55
143 .
11. 60
PEAK STAGES IN FEET
23.
11.55
114.
11. 60
112.
11. 60
STAGE 295 .14 294. 94
TIME 11.60 11.60
FLOW
TIME
FLOW
TIME
FLOW
TIME
66.
11.55
1192.
11. 75
1166.
11. 85
PEAK STAGES IN FEET
52.
11.55
942.
11. 75
915.
11. 85
STAGE 292. 74 292. 32
TIME 11 .85 11.85
FLOW
TIME
FLOW
TIME
FLOW
TIME
102.
11.65
1244.
11.80
1221 .
11. 90
PEAK STAGES IN FEET
80.
11. 65
977.
11. 85
952.
11. 95
STAGE 287. 93 287 . 20
TIME 11. 90 11. 95
FLOW
TIME
FLOW
TIME
FLOW
TIME
53.
11. 65
290.
11. 90
106.
11.60
42.
11. 65
227.
11. 90
83.
11. 60
369.
11. 85
117.
11.60
456.
11. 80
454 .
11.80
296.35
11. 80
262.
11. 80
262.
11. 85
294. 88
11 .85
20.
11.55
99.
11.60
97.
11.65
294.84
11.65
45.
11.55
821.
11. 75
792 .
11.85
292.08
11. 85
70.
11.65
846.
11. 85
826.
11.95
286 .80
11.95
36.
11.65
197.
11. 90
73 .
11.60
324.
11.85
102.
11.65
401.
11. 80
398.
11.80
296.19
11. 80
231.
11. 80
231.
11. 85
294. 79
11.85
18.
11.55
87.
11. 60
85.
11. 65
294. 73
11. 65
40.
11.55
721.
11 . 75
694.
11. 90
291. 88
11. 90
61.
11. 65
739.
11. 85
723.
11.95
286 .41
11.95
32.
11.65
172.
11. 90
63.
11. 60
261.
11.85
82.
11 .65
322.
11. 80
320.
11. 85
295.96
11. 85
188.
11.85
188.
11.85
294.66
11. 85
14.
11.55
70.
11. 60
68.
11.65
294.59
11. 65
32.
11.55
580.
11.80
557.
11.90
291. 52
11.90
49.
11.65
591.
11.85
579.
11.95
285.82
11. 95
26.
11. 65
137.
11. 90
51.
11.60
207.
11.85
64.
11.65
255.
11.80
253.
11. 85
295. 69
11. 85
151.
11.85
151.
11. 85
294. 52
11.85
11.
11.55
55.
11.60
53.
11. 65
294. 4 5
11.65
25.
11.55
461.
11. 80
442.
11.90
291.16
11. 90
38.
11.65
469 .
11. 90
459.
11.95
285. 22
11. 95
21.
11. 65
107 .
11 . 90
40 .
11. 60
132.
11. 85
40.
11. 65
161.
11. 80
160.
11.85
295.24
11. 85
99.
11. 85
99 .
11. 85
294. 29
11. 85
7.
11. 55
34 .
11. 60
33.
11. 65
294.20
11.65
16.
11. 55
293.
11. 80
283.
11.90
290 .49
11.90
24.
11 . 65
300.
11.90
294.
11.95
284 .12
11.95
13.
11. 65
66.
11.95
25.
11. 60
HYDROGRAPH AT
DABS 0.00 FLOW 20. 1 5. 13. 12. 9. 7. 5.
TIME II. 65 11.65 II. 65 II. 65 11. 65 11. 70 11. 70
5 COMBINED AT
PTC 0. 44 FLOW 1607. 1255 . 1086. 948. 757 . 599. 381.
TIME 11. 85 11.90 11. 90 11. 90 11. 90 II. 95 11.95
HYDROGRAPH AT
DA9 0.03 FLOW 140. Ill. 97 . 86. 69. 55. 36.
TIME 11. 60 ll. 60 11. 60 11. 60 11.60 11. 60 11. 65
ROUTED TO
R6 0.03 FLOW 130. 102. 89 . 77. 62 . 49 . 31.
TIME ll . 70 ll. 70 11. 70 11. 75 11. 75 ll. 75 11. 75
PEAK STAGES IN FEET
STAGE 280. 95 280. 62 280.46 280. 3 1 280 . 04 279.81 279 .43
TIHE 11. 70 11. 70 11. 70 l l. 75 11 .75 ll . 75 11. 75
HYDROGRAPH AT
DAlOA 0.07 FLOW 259. 203. 176. 154. 122. 96. 59.
TIME ll.85 11.85 11.85 ll. 85 ll .85 11.85 11.85
HYDROGRAPH AT
DAlOB 0.25 FLOW 700. 551. 480. 420. 337. 266. 168.
TIME 12.25 12 .25 12 .25 12.25 12.25 12. 25 12.30
3 COMBINED AT
+ PTO 0. 34 FLOW 960. 757. 659. 577. 462. 365. 230 .
TIME 12 .05 12 .05 12. 05 12.05 12.05 12.10 12 .10
HYDROGRAPH AT
DAil 0.02 FLOW 57. 45 . 39. 34. 27. 21. 13 .
TIME ll.90 ll.90 11.90 ll. 90 11. 90 11. 90 11. 90
3 COMBINED AT
PTE 0.80 FLOW 2593. 2032. 1766. 1544. 1236. 975. 617.
TIME ll. 90 ll. 95 11.95 ll. 95 11. 95 ll.95 12. 00
ROUTED TO
R7 0. 80 FLOW 2527. 1978. 1714. 1495. ll93. 936. 584.
TIME 12. 00 12.05 12 .05 12.05 12 .10 12.10 12 .15
PEAK STAGES IN FEET
STAGE 280.14 279.21 278. 7l 278. 27 277 . 62 276.99 275 .95
TIME 12. 00 12.05 12. 05 12.05 12.10 12.10 12.15
HYDROGRAPH AT
DA12 0.30 FLOW 586. 463. 404. 355. 286 . 228. 146.
TIME 12.95 12.95 1 2.95 12.95 12. 95 12.95 13. 00
HYDROGRAPH AT
DA13 0.03 FLOW 109. 87 . 76. 6 7 . 54. 43. 28.
TIME 12 .10 12 .10 12 .10 12.10 12 .10 12 .15 12 .15
HYDROGRAPH AT
0Al4 0.03 FLOW 154 . 121. 105. 92. 73. 57. 35.
TIME 11. 70 11. 75 11. 75 11. 75 11. 75 11.75 11. 75
4 COMBINED AT
PTF 1.17 FLOW 3064 . 2401. 2087. 1825. 1458. ll49 . 721.
TIME 12.05 12. 05 12.1 0 12.10 12 .15 12.15 12. 20
ROUTED TO
RS 1.17 FLOW 3064. 2402 . 2087. 182 4 . 1459. ll49. 721.
TIME 12. 05 12.10 12 .10 12.1 0 12 .15 12.15 12.20 GANDY ROAD
PEAK STAGES IN FEET CROSSING
STAGE 272 .51 271. 55 271.05 270. 52 269. 68 268.86 267. 49
TIME 12.05 12 .10 12 .10 12.1 0 12.15 12.15 12. 20
••• NORMAL END OF HEC-1 ...
i •••• •••••••••••••••••••••••••••••••••••••
FLOOD HYDROGRAPH PACKAGE (HEC-1)
MAY 1991
VERSION 4 . 0. lE
Lahey F77L-EM/32 version 5.01
Dodson ' Associates, Inc.
RUN DATE 09/13/00 TIME 15:09:35
x x
x x
x x
xxxxxxx
x x
x x
x x
EXHIB I T B-3
xxxxxxx xxxxx
x x x
x x
xx xx x
x x
x x x
xxxxxxx xxxxx
x
xx
x
xxxxx x
x
x
xxx
U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 551-1748
THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73), HEClGS, HEClDB, AND HEClKW.
THE DEFINITIONS OF VARIABLES -RTIHP-AND -RTIOR-HAVE CHANGED FROH THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.
THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION
NEW OPTIONS: DAHBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION , DSS:WRITE STAGE FREQUENCY,
DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE: GREEN AND AMPT INFILTRATION
KINEMATIC WAVE : NEW FINITE DIFFERENCE ALGORITHM
LINE
2
3
4
5
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
LINE
42
HEC-1 INPUT
ID ....... 1. •••••• 2 .•.•.•• 3 •...... 4. ...... 5 ....... 6 ...••.. 7 ....... 8 .••••.. 9 ...... 10
ID PROP CONDITION OF HOPES CREEK
IT 3 01FEB98 0000 481
IO 5 0 0
JR PREC 13.5 11 9. 8 8.8 7.4 6.2 4. 5
EVENT 500 100 50 25 10 5 2Yr. Storm
KK DA!
KM PS IS PROPOSED CONDITIONS TRIBUTARY C-100 AND C-110
KM
BA .1358
PB 1
IN 30 01FEB98 0000
PC • 0053 .0108 • 0164 .0223 .0284 .0347 .0414 .0483 .0555 .0632
PC .0712 .0797 • 0887 .0984 .1089 .1203 .1328 .1 467 .1625 .1 808
PC • 2042 .2351 .2833 .6632 • 7351 • 7724 .7989 • 8197 .8380 • 8538
PC • 8676 • 8801 .8914 .9019 • 9115 .9206 • 9291 . 9371 .9446 .9519
PC • 9588 .9653 .9717 .9777 .9836 . 9892 .9947 1.000
LS 83.2 20
UD . 54
KK DA2
BA .0336
LS 0 80 .27
UD .3
KK CUL!
HC 2
I<K Rl ROUTE CULl TO PT A
RS 1 STOR -1
RC .075 .05 .075 729 .0082
RX 0 44 .8 59.6 86 .8 95.8 109.2 116. 9 124. 4
RY 300 298 296 294 293 294 296 298
KK DA3A
BA . 0903
LS 0 83. 2 20
UD • 51
KK R2 ROUTE DA3A TO PTA
RS 1 STOR -1
RC .075 .05 .075 341 .0235
RX 0 44. 2 74.8 91. 6 95. 6 105 139.7 163 .5
RY 298 296 294 293.l 293.1 294 296 298
KK DA3B
BA .0050
LS 0 83 .2 20
UD .16
HE C-1 INPUT
ID ....... 1. •.•.•. 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10
KK DASA
PAGE
PAGE
43 BA .0266
44 LS 0 81.S4 9. 6
4S UD .23
46 KK R3 ROUTE CASA TO PTA
47 RS l STOR -l
48 RC .07S .OS .07S 729 .0082
49 RX 0 44.8 S9.6 86. 8 9S. 7 109. 2 116 .9 1 2 4 .4
so RY 300 298 296 294 293 294 296 298
Sl KK DASB
S2 BA .OllS
S3 LS 0 83. 2 20
S4 UD .18
SS KK PTA
S6 HC s
S7 KK R4 ROUTE PTA TO CUL6
S8 RS l STOR -l
S9 RC . 07S .OS .07S 1027 .0039
60 RX 0 109. s 116.S 123. 4 127.4 136. 6 lSO . 4 170. 9
61 RY 292 290 288 287.l 287.l 288 290 294
62 KK DA6
63 BA . 0207
64 LS 0 82.8 20
6S UD . 3
I 66 KK CUL6
67 HC 2
68 KK RS ROUTE CUL6 TO CUL7
69 RS l STOR -1
70 RC .07S .OS .07S 1160 .0042
7l RX 0 78.3 lS6.S 16S. 2 169.2 177.3 211. 3 246
72 RY 291.8 289.9 287.9 278.1 278.l 283.2 28S.6 288
73 KK DA4
74 BA .OllS
7S LS 0 83.2 20
76 UD .29
77 KK DA7
78 BA .079
79 LS 0 82.8 20
80 UD • S4
HEC-1 INPUT PAGE
LINE ID .•••..• 1. •.••.• 2 .••••.• 3 ••••.•• 4 •••.... S .••.••• 6 ••..... 7 •...••• 8 •....•• 9 .••... 10
81 KK BA
82 BA .0196
83 LS 0 83. 2 20
84 UD .14
as KK 88
86 BA .0041
87 LS 0 83 .2 20
88 UD .22
89 KK PTB
90 HC s
91 KK CUL7
92 RS 1 STOR -l
93 SV 0 . 001 .02 . l .22 • 64 l. ll 1.8 4.46 9.62
94 SE 273 274 27S 276 277 2 7 8 279 280 282 284
9S SQ 0 42 119 218 336 4770 617 778 ll2S 2000
96 KK OA9
97 BA . 026S
98 LS 0 83.2 20
99 UD .28
100 KK R6 ROUTE DA9 TO CULlO
101 RS 1 STOR -l
102 RC .07S .OS .07S 2400 .Oll 7
103 RX 0 22.SS 48.3S 67.81 88.SS 92. SS 99. S4 110. 32 120
104 RY 292. 61 292. 03 290. 6 284 .96 278.0l 278. 01 286. 08 288. 72 288.9
lOS KK DAlOA
106 BA .0718
107 LS 0 82 .6 20
108 UD .s
109 KK 9 AND l OA COMBINED
110 HC 2
111 KK DAlOB
112 BA .2S07
113 LS 0 BO. 08 6. 54
114 UD . 92
115 KK PTD
116 HC 2
117 KK CUL l O
118 RS 1 FLOW -1
119 SV 0 .004 • 01 .03 .07 .14 .25 . 4 6 1. 41 3.35
120 sv 5. 86 10 .28 16.81
121 SE 27 0 2 7 0.25 270 .5 2 71 271.5 272 27 3 27 4 276 278
122 SE 280 282 284
123 so 0 4 .5 1 2. 73 36 66 .14 102 187 288 529 71 6
124 so 853 1714 5475
HE C-1 INPUT PAGE
LINE ID ....... 1. ..•... 2 ....... 3 .••.... 4 ..••••. 5 ••••••• 6 ••..•.. 7 ..••.•• 8 •••••.. 9 ..•.•• 10
125 KK DAll
126 BA .015
127 LS 0 80 0
128 UD .58
129 KK PTE
130 HC
131 KK R7 PT E TO PT F
132 RS 1 STOR -1
133 RC .0 7 5 .05 • 075 2387 .0034
134 RX 0 4. 7 9 .5 23.5 27 .5
135 RY 281 278 276 270 270
136 KK DA1 2
137 BA .3038
138 LS 0 ai. a 11. 52
139 UD 1.59
140 KK DAI3
141 BA • 0349
142 LS 0 83.2 20
143 UD • 78
144 KK DA14
145 BA • 0159
146 LS 0 80
147 UD .42
148 KK PTF
149 HC
150 KK RB PT F TO PT G
151 RS 1 STOR -1
152 RC .075 .05 .075 200 .0034
153 RX 0 1 8. 73 36 .46 70 .12 89 .17
154 RY 274. 7 273.7 2 7 1.1 262. 4 262
155 zz
i ••••••••••••• ••••••••••••••••••••••••••••
FLOOD HYDROGRAPH PACKAGE (HEC-1)
MAY 1991
VERS I ON 4.0 .lE
Lah ey F77L-EM /32 version 5. 01
Dodson & As sociates , Inc .
RUN DATE 09/13 /00 TIME 15:09:35 ** * * ••• * * ** ••••••••••••••••••••••••••••••
.PROP CONDITION OF HOPES CREEK
3 IO OUTPUT CONTROL VARIABLES
IPRNT 5 PRINT CONTROL
I PLOT
OS CAL
0
0.
PLOT CONTROL
HYDROGRAPH PLOT SCALE
IT HYDROGRAPH TIME DATA
44 . 4
27 4
105. 47
270.8
NMIN MINUTES IN COMPUTAT ION INTERVAL
I DAT E 1FEB98
I TIME 0000
NO 481
NDDATE 2 FEB9 8
ND TIME 000 0
I CE NT 19
COMPUTAT ION I NT ERVAL
TOTAL TIME BASE
ENGLISH UNITS
STARTING DATE
STARTING TIME
NUMBER OF HYDROGRAPH
ENDING DATE
ENDING TIME
CENTURY MARK
0 .05 HOURS
24. 00 HOURS
DRAINAGE AREA SQUARE HILES
PRECIPITATION DEPTH INCHES
LE NGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT
ORD INATES
79. 5 9 0. 3
276 281
132. 9 150
274.9 277.5 . ......................................
U.S. ARMY CORP S OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND S TREET
DAVIS , CALIFORNIA 95616
(916) 551-1748
·······································
JP
JR
OPERATION
HYDROGRAPH AT
+
HYDROGRAPH AT
2 COMBINED AT
ROUTED TO
HYDROGRAPH AT
+
ROUTED TO
+
HYDROGRAPH AT
+
HYDROGRAPH AT
+
ROUTED TO
+
HYDROGRAPH AT
+
5 CCMBINED AT
+
ROUTED TO
HYDROGRAPH AT
2 CCMBINED AT
ROUT ED TO
MULTI-PLAN OPTION
NP LAN NUMBER OF PLANS
MULTI-RATIO OPTION
RAT IOS OF PRECIPITATION
13.50 ll.00 9.80 8 .80 7.40 6 .20 4.50
PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECO NOMIC COMPUTATIO NS
FLOWS IN CUBIC FEET PER SECOND , AREA IN SQUARE MI LE S
TIME TO PEAK IN HOURS
RATIOS APPLIED TO PRECIPITATION
STATION PLAN RATIO l RATIO 2 RATIO 3 RATIO 4 RATIO 5 RATI O 6 RATI O 1
DAl 0 .14
DA2 0 . 0 3
CULl 0 .17
Rl 0 .17
DAJA 0.09
R2 0.09
DAJB o.oo
DASA 0.03
R3 0 .03
DASB 0 . 01
PTA 0.30
R4 0 . 30
DA6 0 . 02
CUL6 0 .32
RS 0. 32
13.50 11 .0 0 9 .80 8.80 7 .4 0 6 .20 4.50
FLOW
TIME
FLOW
TIME
FLOW
TIME
FLOW
TIME
549.
ll. 8 5
111.
ll. 6 0
680.
ll. 75
679.
11.80
PEAK STAGES IN FEET
S TAGE 296.88
TIME 11 . 80
FLOW
TIME
FLOW
TIME
377.
11. 80
376.
11. 80
PEAK STAGES IN FEET
STAGE 295 .17
TIME ll.80
FLOW
TIME
FLOW
TIME
FLOW
TIME
31.
11.50
150.
ll.55
148 .
ll. 60
PEAK STAGES IN FEET
STAGE
TIME
FLOW
TIME
FLOW
TIME
FLOW
TIME
295.17
ll. 60
69.
ll.50
121 l.
11. 75
1183 .
11.85
PEAK STAGES IN FEET
STAGE
TIME
FLOW
TIME
FLOW
TIME
FLOW
TIHE
292. 76
11. 85
110.
11.60
1265 .
ll. 80
1239 .
11 . 90
PEAK S TAGES IN FEET
438.
l l. 8 5
1 34 .
ll. 60
541.
ll. 8 0
539 .
ll. 8 0
296.56
11.80
301.
11.80
300.
11.85
294. 98
ll.85
25 .
ll.50
119.
11.55
117.
ll. 60
294.97
ll. 60
55.
11.55
962.
11. 75
93 5.
11 .85
292. 35
11 . 85
88 .
ll. 60
99 5 .
11 . 85
973.
11 .9 0
384.
ll. 85
117.
11. 60
473.
ll. 80
472.
ll. 80
296. 39
ll.80
264.
11 .80
263.
ll. 85
294. 88
11.85
22.
ll. 50
104.
ll.55
102.
ll. 60
294. 87
ll. 60
49 .
ll.55
843.
11 . 75
813.
ll. 85
292 .13
ll. 85
77.
ll. 60
866.
l l. 85
845.
11.90
339.
ll. 85
102.
11 .65
417.
ll. 80
415.
ll. 80
296.2 4
ll. 80
233.
11.80
232.
11.85
294. 79
11. 85
19.
11.50
92.
11.55
89.
11. 60
294. 77
11.60
43.
11.55
742.
ll. 75
714.
ll. 85
291. 92
11 . 85
68.
11. 60
160 .
11.85
742.
l l. 95
276 .
11. 8 5
82.
11. 65
339.
11.80
337.
ll. 80
2 96 . 01
11 . 80
189 .
11.80
1 89 .
ll. 85
294. 66
11.85
16 .
11.50
74.
ll.55
72.
11 . 60
294. 62
ll. 60
35.
ll.55
600 .
11. 75
577 .
11. 90
29 1 . 58
11. 90
55.
11 . 60
613.
l l. 85
600 .
11 . 9 5
222.
ll. 85
64.
ll. 65
271.
ll.80
269.
ll. 85
295 . 76
ll.85
152.
11.80
152.
ll. 85
294 . 52
11.85
13 .
ll.50
59.
ll.55
57.
ll. 65
29 4 . 49
ll.65
29.
11.55
4 80.
ll. 80
462 .
11. 90
291. 23
ll. 90
44.
ll. 60
491.
l l. 85
480 .
11 . 95
146.
ll. 85
4 0 .
11 .65
177.
ll. 80
175.
11 .8 5
295.3 2
11. 85
100 .
11.80
100.
11.85
294. 30
11.85
8.
ll.55
38.
ll. 60
37 .
ll. 65
294.25
ll. 65
19.
ll. 55
313.
ll. 80
3 03 .
ll. 9 0
290.59
ll. 90
2 9.
ll. 65
3 2 1.
11. 85
315 .
ll. 9 5
HYDROGRAPH AT
DA4 0 .01
HYDROGRAPH AT
DA7 O.OB
HYDROGRAPH AT
+ BA 0.02
HYDROGRAPH AT
BB 0. 00
S COMBINED AT
PTB 0.44
ROUTED TO
CUL7 0. 44
HYDROGRAPH AT
+ DA9 0.03
ROUTED TO
+ R6 0.03
HYDROGRAPH AT
+ DA l OA 0.07
2 COMBINED AT
+ 9 AN 0.10
HYDROGRAPH AT
+ DAlOB 0.2S
2 COMBINED AT
PTO 0.3S
ROUTED TO
CULlO 0. 35
HYDROGRAPH AT
+ DAll 0.01
3 COMBINED AT
+ PTE O.BO
ROUTED TO
R7 O.BO
HYDROGRAPH AT
DA12 0.30
HYDROGRAPH AT
DA13 0.03
HYDROGRAPH AT
DA14 0.02
STAGE
TIME
FLOW
TIME
FLOW
TIME
FLOW
TIME
FLOW
TIME
FLOW
TIME
FLOW
TIME
2BB.Ol
11. 90
62.
11. 60
319.
11. BS
123.
11. so
24.
11. SS
1634.
11. BS
163S.
11. BS
PEAK STAGES IN FEET
2B7. 31
11.90
49.
11. 60
2S4.
11. BS
9B.
11.SO
19.
11. SS
12B2.
11. 90
12B6.
11. 90
STAGE
TIME
277 .29 277 .21
11.BS 11.90
FLOW
TIME
FLOW
TIME
144 .
11. 60
134.
11 . 70
PEAK STAGES IN FEET
llS.
11. 60
106.
11. 70
STAGE 2Bl.OO 2B0.67
TIME 11 . 70 11. 70
FLOW
TIME
FLOW
TIME
FLOW
TIME
FLOW
TIME
302.
11. BO
430.
11. 7S
694 .
12.2S
972.
12.00
FLOW 959.
TIME 12 .10
PEAK STAGES IN FEET
STAGE 2BO. 25
TIME 12 .10
FLOW
TIME
FLOW
TIME
FLOW
TIME
56.
11. 90
2SlS.
12.00
2476.
12 . 05
PEAK STAGES IN FEET
241.
11. BO
342.
ll. 7S
S46.
12.2S
76B.
12.00
743.
12.20
27B.40
12.20
44.
11. 90
2019.
11. 90
1967.
12.05
STAGE 2B0.06 279.19
TIME 12 . OS 12. 05
FLOW
TIME
FLOW
TIME
FLOW
TIME
5B6.
12. 95
112.
12.10
70.
11. 70
463.
12.95
B9.
12.10
55.
11. 75
2B6.90
11. 90
43.
11. 60
222.
11. BS
B6.
11.SO
17.
11 .SS
1116.
11. 90
1114.
11. BS
2B6.S2 2B5 .9S
ll.9S ll.9S
3B.
11. 60
196.
11. BS
76.
11.SO
lS.
11.SS
9BO.
11.90
9BO.
11.90
31.
11. 60
160.
11. B5
62.
11. 50
12.
11.55
792.
11. 90
7B9.
11. 9S
277.lB 277.lS 277.10
11.BS 11.90 ll.9S
101.
11. 60
93.
11. 70
B9.
11.60
Bl.
11. 70
73.
11. 60
66.
11 . 70
2BO.SO 2B0.36 2BO.l0
11. 70 11. 70 11. 70
211.
11. BO
299.
11. 7S
474 .
1 2.2S
669.
12. 00
656.
1 2.15
277. 36
12 .15
3B.
11. 90
1769 .
11. 95
1722.
12. 05
lB6.
11. BO
264.
11. 7S
41S.
12.2S
SB7.
12 .00
577.
12.15
276.52
12.15
33.
11. 90
1562.
11. 95
1519.
12.05
27B. 73 27B.32
12.05 12.05
404.
1 2.95
78.
12 .10
4B.
11. 75
3S5.
12.95
69.
12.10
42.
11. 75
lSl.
11. BO
214.
11. 75
332.
12 . 25
471.
12.00
470.
12.0S
275.51
12.05
26 .
11. 90
1276.
11. 95
1230.
12 .10
277. 70
12. 05
2B6 .
12.95
S6.
12 .10
33.
11. 75
2B5.37
11. 95
25.
11. 60
12B.
ll.B5
51.
11.50
10 .
11. 55
634.
11. 90
637.
11. 90
277 .07
11.90
59.
11. 60
52.
11. 70
279.B 7
11. 70
121.
1 1. BO
172.
11. BO
261.
12.25
373.
12.05
372.
12.10
274. 70
12.10
21.
11. 90
1013.
11. 90
977.
12.10
277 .1 0
12.10
227 .
12.95
45.
12 .10
26 .
11. 75
2B4. 31
11. 95
17.
11.60
B4.
11. B5
34.
11. so
6.
11.55
417.
11. 90
419.
11. 90
277. 02
11. 90
39.
11.60
33.
11. 75
279.51
11. 75
BO .
11.BO
112.
11.BO
163.
12. 30
23B .
12.05
237.
12.05
273. 50
12.05
13.
11. 90
660.
11. 90
626.
12 .1 0
276. 09
12 .10
146.
13. 00
30 .
12.10
16.
11. 75
CROSSING AT
CULVERT 1 0
4 COMBINED AT
PTF 1.16 FLOW 2971. 2353. 2062. 1817. 1472. 1170. 751.
TIME 12 .10 1 2.10 12.10 12 .10 12 .10 12 .15 12 .15
ROUTED TO
RB 1.16 FLOW 2972. 2353. 2062. 1817. 1471. 1170. 750.
TIME 1 2 .1 0 12 .10 12 .10 12 .10 12 .10 12 .15 12 .15 GANDY ROAD
PEAK S TAGES IN FEET CROSSING
STAGE 272. 38 271. 47 271.01 270.50 269 .71 268 . 92 267 . 60
TIME 1 2 .10 12 .10 12 .10 12 .10 12 .10 12.15 12 .1 5
••• NORMAL END OF HEC-1 •••
CULVERT #4
Culvert Description
2-30" CSP at
Intersection of
Great Oaks Drive
and Arboleda Lane
CI D I CI u vert es111n r teria
Circular
Pipe No.
I Dia. (ft.) Pipes
2.50 2
Cl I CI I ti u vert Analvs s a cu a ons
Total Flow per Critical
Des ign Flow Pipe Depth(ft.)
Storm (cts) (cts ) de
5 23 .50 11 .75 1.15
10 26 .60 13 .30 1.20
25 30 .50 15 .25 1.30
50 34 .60 17 .30 1.36
100 39 .00 19 .50 1.50
n
0.020
Normal
Depth
(ft .)
1.20
1.28
1.38
1.48
1.56
Invert
Elev. (Eli)
(ft .)
305.25
EXHIBIT C-1
CULVERT ANALYSIS
GREAT OAKS SUBDIVISION
ELhi ~ ~ Top of Road ELho
1Hw; :-::-1-0---------~~
_Jf---------~~
Eli Proposed Culvert ~ - - - - --'-
ELo
Outfall Channel Design Criteria
Outlet Culvert Top Lt. Side Rt. Side Bottom
Elev. (ELo) Length Slope of Slope Slope Slope Width n
(ft.) (ft.) (Mt) Road ke I (ft/ft) (?:1\ (?:1) (ft .)
305 .00 50.00 0.0050 309 .52 0.50 I 0.0050 5.00 4 .00 0.00 0.024
HEADWATER CALCULATIONS Control Type Outlet
INL ET CONTROL OUTLET CONTROL HW of Velocity Freeboard
HWVD HWi ELhl TW de Cdc + D\/2
0.67 1.68 306 .93 0.94 1.15 1.83
0.72 1.81 307 .06 1.00 1.20 1.85
0.79 1.97 307 .22 1.08 1.30 1.90
0.85 2.13 307 .38 1.12 1.38 1.94
0.92 2 .30 307.55 1.16 1.50 2 .00
ho H ELho Elev .
1.83 0.23 307 .06 307 .06
1.85 0.29 307.14 307 .14
1.90 0.39 307 .29 307 .29
1.94 0 .50 307.44 307.44
2 .00 0 .63 307 .63 307 .63
Control (fps)
Outlet 5.33
Outlet 5.71
Outlet 5.91
Outlet 6.23
Outlet 6.34
(ft.)
2.46
2.38
2.23
2 .06
1.69
9/11/2000
cul-p .lds
.;.• > ~ •I c ( '' • • ' • "• • '-• "~ ~ '"" 4' ':., ;~ ~ • '• • )" ·" '. ~ ~ ' y •"" ,• • • tv~ ,. •'
CULVERT#8A
Culvert Deslc:in Criteria
Culvert Description
2-30" CSP
at the Intersection of
Great Oaks Drive
Circular
Pipe
Dia. (ft .)
2 .50
u v ert and Kingwood Lane C I
Design
Storm
5
10
25
50
100
No.
Pipes
2
A I . CI I . na1vs1s a cu at1ons
Total Flow per Critical
Flow Pipe Depth{ft.)
(cfs) (cfs) de
37.60 18 .80 1.45
46 .60 23.30 1.63
48 .80 24 .40 1.68
55 .40 27 .70 1.80
62 .60 31 .30 1.90
n
0 .020
Normal
Depth
(ft.)
2 .04
2 .50
2 .50
2 .50
2 .50
Invert Outlet
Elev . (Eli) Elev. (ELo)
(ft.) (ft.)
284.84 284 .56
EXHIBITC-2
CULVERT ANALYSIS
Great Oaks Subdivision
Culvert Top
Length Slope of
(ft.) (ft/ft) Road
56 .00 0 .0050 288 .85
ELhi V--Top of Road ELho ~:==ro--------~~
_J -------~~
Eli Proposed Culvert ~ - - - - -'--
ELo
0 tf II Ch u a anne ID I C It I es1Qn r er a
Lt . Side Rt. Side Bottom
Slope Slope Slope W idth n
ke I (ft/ft) (?:1) (?:1) (ft .)
0 .50 I 0 .0050 5 .00 4 .00 0 .00 0 .024
HEADWATER CALCULATIONS Control Type Outlet
INLET CONTROL OUTLET CONTROL
HWi/D HWi ELhi TW de Ide+ Dl/2 ho
0 .90 2 .24 287.08 1.17 1.45 1.98 1.98
1.03 2 .58 287.42 1.27 1.63 2 .07 2 .07
1.07 2 .67 287 .51 1.29 1.68 2 .09 2 .09
1.16 2.91 287.75 1.35 1.80 2 .15 2.15
1.50 3 .75 288 .59 1.42 1.90 2 .20 2.20
HW
H ELho Elev .
0 .62 287 .15 287 .15
0 .95 287.58 287 .58
1.0 4 287 .69 287.69
1.34 288 .05 288 .05
1.72 288 .48 288 .59
of Velocity
Control (fps)
Outlet 6.37
Outlet 6 .87
Outlet 6 .96
Outlet 7 .32
Inlet 6 .38
Freeboard
(ft.)
1.70
1.27
1.16
0 .80
0 .26
9/11/2000
cul-Sa .xis
CULVERT#8b
Culvert Description
2-24" CSP
at the Intersection of
Great Oaks Drive
and Kingwood Lane
CI D . C. u vert es1gn ntena
Circular
Pipe No .
Dia. (ft.) Pioes
2.00 2
Culvert Analysis Calculations
Total Flow per Critical
Design Flow Pi pe Depth (ft .)
Storm (cfsl (cfsl de
5 11.80 5.90 0 .80
10 13 .20 6.60 0.90
25 15 .10 7.55 1.00
50 17 .10 8.55 1.05
100 19 .20 9.60 1.15
n
0.020
Normal
Depth
(ft.)
1.08
1.15
1.26
1.38
1.52
Invert Outlet
Elev. (Eli) Elev. (Ela)
(ft.) (ft.)
284 .83 284 .55
EXHIBITC-3
CULVERT ANALYSIS
Great Oaks Subdivision
Culvert Top
Length Slope of
{ft.) {ft/ft) Road
56 .00 0.0050 288 .30
Elhi ~ Top of Road Elho ~==E::::: -~~
Eli_/' Proposed Culvert ~ - - - - -'----
Elo
Outfall Channel Desicm Criteria
Lt. Side Rt. Side Bottom
Slope Slope Slope W idth n
ke I {ft/ft) {?:1) {?:1) (fl)
0 .50 I 0.0050 5.00 4 .00 0 .00 0.024
HEADWATER CALCULATIONS Control Type Outlet
INLET CONTROL OUTLET CONTROL
HWi/D HWi El hi TW de (de+ Dl/2 ho
0 .62 1.25 286.08 0.76 0.80 1.40 1.40
0.66 1.33 286.16 0.79 0.90 1.45 1.45
0.72 1.44 286.27 0.83 1.00 1.50 1.50
0.78 1.55 286 .38 0 .87 1.05 1.53 1.53
0.84 1.67 286.50 0.91 1.15 1.58 1.58
HW
H Elho Elev .
0.17 286 .12 286 .12
0.21 286.21 286.21
0 .28 286 .33 286.33
0 .36 286 .44 286 .44
0.45 286 .58 286 .58
of Velocity
Control (fosl
Outlet 5.03
Outlet 4 .81
Outlet 4 .81
Outlet 5.12
Outlet 5.14
Freeboard
(ft.)
2.18
2.09
1.97
1.86
1.72
9/11/2000
cu l-Sb .xis
CULVERT#10A
Culvert Desctiption
2-30" CSP at
Intersection of
Great Oaks Drive
and Durrand Drive
c ulvert Deslan c rlterla
Circular
Pipe No .
~ Pipes
2.50 2
Culvert Analvsls Calculations
Tota l Flow per Critical
Design Flow Pipe Depth(ft.)
Storm {cfs) {cfs ) de
5 20 .70 10 .35 1.05
10 23 .50 11 .75 1.15
25 26 .90 13.45 1.20
50 30 .60 15 .30 1.30
100 34 .60 17 .30 1.38
n
0.020
Normal
Depth
(ft.)
1.12
1.20
1.29
1.38
1.48
Invert
Elev. (ELI)
(ft.)
283 .42
EXHIBITC-4
CULVERT ANALYSIS
GREAT OAKS SUBDIVISION
Outlet Culvert Top
Elev. (ELo) Length Slope of
(ft.) (ft.) (ft/ft) Road
283 .22 40 .00 0.0050 287 .50
ke I
0.50 I
HEADWATER CALCULATIONS
Outfall Channel Dealan Criteria
Ll Side Rt. Side
Slope Slope Slope
CMll C?:1l (?:1)
0 .0050 5 .00 4 .00
INLET CONTROL OUTLET CONTROL
HWVD HWi EL hi TW de (de+ D)/2 ho H EL ho
0 .62 1.56 284.98 0 .88 1.05 1.78 1.78 0.16 285 .16
0.67 1.68 285 .10 0.94 1.15 1.83 1.83 0.21 285 .26
0 .73 1.82 285.24 1.01 1.20 1.85 1.85 0.28 285 .35
0.79 1.97 285.39 1.09 1.30 1.90 1.90 0.36 285.48
0.85 2.13 285.55 1.12 1.38 1.94 1.94 0.46 285.62
Bottom
Width n
(ft .)
0 .00 0.024
Control Type
HW of
Elev. Control
285 .16 Outlet
285 .26 Outlet
285.35 Outlet
285.48 Outlet
285 .62 Outlet
Outlet
Velocity
(fps )
5 .29
5.33
5.77
5.93
6 .23
Freeboard
(ft.)
2 .34
2 .24
2.15
2.02
1.88
9/11/2000
eul-p .lds
CULVERT#13
Culvert Description
42" Alum inized Steel
Pipe (n=.0 14 )
at intersection of
Culvert Des i gn Criteria
Circular
Pipe No.
Dia. (ft.) Pi pes
3 .50 1
Gandy Road and C I rt A I ' C I I f uve na1vs1s a cu a ions
Great Oaks Drive Total Flow per Critica l
Design Flow Pi pe Depth (ft .)
Storm (cfs) (cfsl de
5 45 .00 45 .00 2 .13
10 56 .00 56 .00 2 .35
25 69 .00 6 9 .00 2 .60
50 78 .00 78 .00 2 .75
100 89 .00 89 .00 2 .92
n
0 .0 14
Normal
Depth
(ft.)
2.12
2.48
3 .05
3.50
3.50
Invert Outlet
Elev. (Eli) Elev . (Elo)
(ft.) (ft.)
27 1.77 271 .00
EXHIBITC-5
CULVERT ANALYSIS
Great Oaks Subdivision
Culvert Top
length Slope of
(ft.) lft/ft\ Road
155.00 0 .0050 278.77
ke
0 .50
0 tf Cha I D . C . u all nne es1gn riter a
Lt. Side Rt. Side Bottom
Slope Slope Slope W idth
I (ft/ft\ 1?:1\ 1?:1\ lft.\
I 0 .0050 5.00 4 .00 0 .00
HEADWATER CALCULATIONS Control
INLET CONTROL OUTLET CONTROL HW
HWi/D HWi Elhi TW de (de+ Dl/2 ho H EL ho Elev .
0 .89 3 .13 274.90 1.62 2 .13 2 .82 2 .82 0 .87 274 .68 274 .90
1.04 3 .64 275.41 1.75 2 .35 2 .93 2 .93 1.34 275.27 275 .41
1.2 1 4 .25 276.02 1.91 2 .60 3 .05 3 .05 2 .04 276 .09 276 .09
1.29 4 .50 276 .27 1.99 2.75 3 .13 3 .13 2 .61 276 .73 276 .73
1.45 5 .08 276.85 2 .09 2 .92 3.21 3.21 3 .39 277.60 277.60
n
0 .024
Type
of
Con trol
In let
Inlet
Outlet
Outlet
Outlet
Outlet
Velocity
(fps )
7 .38
7 .69
9.00
9.25
9 .25
Freeboard
(ft .)
3.87
3.36
2 .68
2 .04
1.17
9/11/2000
cu l-13 .xis
EXHIBITD-1
Great Oaks Subdivision
HEC RAS ANALYSIS: Pre-Dev 100-yr Water
Surface Elevations
Reach River Sta Q Total Min Ch El W .S. Elev Crit W .S.
(cfs) (ft) (ft) (ft)
West Branch 18 102 296 298.25
West Branch 17 102 295 296.47
West Branch 16 102 294 295.17
West Branch 15 102 291 293.67
We st Branch 14 102 290 291.79 291.79
We st Branch 13 102 284 287.07
West Branch 12 102 284 286.81
West Branch 11 102 283 285.95
West Branch 10 102 281 283.78
West Branch 9 102 278 283.75
West Branch 8 757 272 278.08
West Branch 7 757 270 277.84
West Branch 6 757 268 277.63
West Branch 5 2032 266 277.52
East Branch 506 977 280 286.11
East Branch 505 977 278 285.68
East Branch 310 1255 274 283 .02
East Branch 309 1255 273 282.09
East Branch 308 1255 273 280.94
East Branch 307 1255 272 278.99
East Branch 4.75 1255 268 276.78
Main Channel 4.5 2402 268 276.18
Main Channel 4.25 2402 266 275.3
Main Channel 4 2402 261.8 275.44
Main Channel 3 2402 261.8 275.41 268.27
Main Channel 2 .5 Culvert
Main Channel 2 2402 261.8 270.27
Main Channel 1 2402 261.8 269.41 268.27
Exhibit D-2
Great Oaks Subdivision
HEC-RAS ANALYSIS: Post Dev 100-yr Water Surface
Elevations with Culvert 10
Reach River Sta Q Total Min Ch El W.S. Elev Crit W.S. Increase fro m
(cfs) (ft) (ft) (ft) Pre Dev .
West Branch 18 106 296 298.30 0.05
West Branch 17 106 295 296.48 0.01
West Branch 16 106 294 295.20 0.03
West Branch 15 106 291 293 .71 0.04
West Branch 14 106 290 291.82 291.82 0.03
West Branch 13 106 284 287.20 0.13
West Branch 12 106 284 286.97 0.16
West Branch 11 106 283 286.34 0.39
West Branch 10 106 281 282.99 282.99 -0.79
West Branch 9 106 278 282.57 -1.18
West Branch 8 768 272 279.63 1.55
West Branch 7 768 270 279.39 274.76 1.55
West Branch 6.5 Culvert 10 - -
--
West Branch 6 743 268 277.55 -0.08
West Branch 5 1953 266 277.43 -0.09
East Branch 506 973 280 286.23 0.12
East Branch 505 973 278 285.73 0.05
East Branch 310 1286 274 283.12 0.10
East Branch 309 1286 273 282.17 0.08
East Branch 308 1286 273 281.00 0.06
East Branch 307 1286 272 279.04 0.05
East Branch 4.75 1286 268 276 .65 -0.13
Main Channel 4.5 2339 268 276.09 -0.09
Main Channel 4.25 2339 266 275.20 -0.10
Main Channel 4 2339 261.80 275.34 -0.10
Main Channel 3 2339 261.80 275.30 268.17 -0.11
Main Channel 2.5 Culvert at Gandy Rd. -
Main Channel 2 2339 261.80 270.20 -0.07
Main Channel 1 2339 261.80 269.34 268.17 -0 .07
Top of Road at Culvert 10 281.37
WSEL at Culvert (100-yr storm) 279.39
Free board 1.98