Loading...
HomeMy WebLinkAbout13 Great Oaks Subd. 500-43( • McCLURE ENGINEERING, INC. ______ __ September 15 , 2000 Mr. Ted Mayo , P.E.~ 'f-l:)....(?{J Development Engineer City of College Station P.O. Box 9960 College Station, Texas 77842 Re: Revised Drainage Report for Great Oaks Subdivision DearTed: Since the submittal of our initial drainage report , we have been working with the developer and contractor to reduce the construction cost for this project. The primary change we made is with two of the drainage structures that were proposed. Initially, Culvert 10 was to consist of dual, 6'x 5' reinforced concrete box culverts and Culvert 13 was to be a single 42 " RCP . We are now proposing these structures be replaced with aluminized steel pipes that have Manning's "n" values that are the same as concrete pipe. Using this material, Culvert 10 will become dual 78 " round culverts and Culvert 13 will remain a 42 " pipe . In the revised drainage report for this project we evaluated the system using these new structures. This analysis indicates that the same objectives for :freeboard and detention can be achieved using the alurninized steel structures. We have also addressed the comments you made during your review of the original report. Attached you will find a letter that responds to each of the comments you gave us. As always , please feel free to call us with any questions. Thank you . Sincerely, &!_ Kent Laza, P.E. r- Project Administrator 1 008 Woodcreek Drive, Suite 1 03 • College Station, Texas 77845 (979) 693-3838 •FAX (979) 693-2554 •email: mcclure@tca.net \ Great Oaks Subdivision Response to Drainage Report Comments Note: EXHlBIT C-1 in the original drainage report has been deleted and replaced with EXHlBIT D-2 . EXHlBIT C-1 was a spreadsheet analysis for the dual 6 'x 5 ' RCBC, which are no longer being proposed in this development. EXHlBIT D-2 is a summary of the post-development HEC-RAS analysis using dual 78 " aluminized steel culverts. All other "C " exhibits in the revised report have been renumbered to reflect that change. 1. Comment : Page ii-CSP C ULVERT ANALYSIS: Clarify-JOA or JOB -see Exhibit "A " Response: The correct culvert designation is 1 OA. This culvert drains the front hal f of the lots on the northeast side of Durrand Street. The correction has been made to the Table of Contents and Exhibit C-4. 2. Comment: Page 2-Flowrates (cfe) from Drainage Areas: add area J 3 (42 " ACP) Response: The flowrates for Drainage Area 13 have been added to the chart. The figures for thjs chart come from the HEC-1 analysis in Exhibit B-3. 3. Comment: Page 3-Add area J 3, JOA or JOB ? Response: The chart has been expanded to include the crossing for Drainage Area 13 . The correction for Culvert l OA has also been made. 4 . Comment: EXHIBIT B-J -Add area J3 Response: EXHlBIT B-1 is a spreadsheet developed to compute stormwater flowrates from small watersheds using the Rational Formula method. Area 13 drains 22 .36 acres, which is approaching the Hmit for accurate application of the Rational Formula (generally 25 acres). Since the HEC-1 model had already been developed for tills project, flowrates from that model for Drainage Area 13 were used to design Culvert 13 in Exhibit C-5 . Therefore, since the Rational Formula flowrates were not used, it would be mjsJeading to list flowrates from Drainage Area 13 on EXHlBIT B-1. 5. Comment: EXHIBIT C-5 (now C-4) -Clarify-JOA or JOB Response: As noted in No. 1 above, the correct culvert designation is 1 OA. Tills correction has been made to the report . 6 . Comment: EXHIBIT C-6 (now C-5) -re-examine total flow values vs. flow p er pipe. Response: The "Flow Per Pipe" figures li sted in Column 3 of the original submittal are the correct values taken from the HEC-1 analysis in Exhibit B-3. All of the subsequent calculations are based on those figures so the culvert design does not change. The "Total Flow'' figures listed in Column 2 have been changed to match those in Column 3 . ENGINEERING REVIEW COMMENTS No. 1 Great Oaks Subdivision Phase One Final Plat 1. Sheets 1 &2-everything looks fine Infrastructure Drawings 1. Sheet 2-note: sta. 10+61 .57 install two 4x2 RCB see profile this sheet ??? 2 . Sheet 3-3" W-3 should be W-2 ; 2-30" esp ? cmp 3 . Sheet 4-Cheneau Street should be Kingswood Drive ; 2-24" esp ? cmp ; Drainage from 2-30" & 2-24" cmp's -to creek-no defined path . 4. Sheet 5-Arboleda Lane or Drive-see master preliminary plat. 5 . Sheet 7,8 &9-ditto 6. Sheet 9-street centerline intersection sta .-Great Oaks Drive-50+25,3 or 50+21.3 ; waterline intersection sta . 82+24.91or82+ 27.91 7 . Sheet S-2-Grate inlet detail-3' 3" ID will not accommodate 42" ASP ; add detail for single sloped headwall for 42 " ACP . Drainage Report 1.Page ii-CSP CUL VERT ANALYSIS : Clarify-1 OA or 1 OB -see Exhibit "A" 2. Page 2-Flowrates (cfs) from Drainage Areas : add area 13 (42"ACP) 3. Page 3-Add area 13; 10Aor 108? 4 . EXHIBIT B-1-Add area 13 5. EXHIBIT C-5-Clarify-10Aor 10B 6 . EXHIBIT C-6-re-examine total flow values vs . flow per pipe. Engineer's Cost Estimate 1. Everyth ing looks fine Reviewed by: Ted M~ Date : 08-2 1-00 McCLURE ENGINEERING INC , e, Suite 103 1008 Woodcreek Driv College Station, Tex (979) 693-3838, FAX as 77845 693-2554 . TRANSMITTAL LETTER 1#1 ()/M TO: Mr. Ted Mayo, P.~ D A R ate: 9/14/2000 Proj. # Development Services ttn: CITY OF COLLEGE STATION E: GREAT OAKS SUBDIVISION We are sending you the following : C8J Attached 0 Under Separate Cover Via : 0 Invoice 0 Prints C8J Plans 0 Contractor Invoice 0 B id Books 0 Specifications 0 Change Order 0 Contracts 0 Other Copies Date Description Sets of Revised Constructio n Plans 1----~---------~ Copies of Revised Drainage Report These are transmitted as follows 0 For Approval C8J Approved as Submitted Sets to be approved and returned to me C8J For your use 0 Approved except as noted 3 Copies for your files Corrected Prints 0 As Requested 0 Resubmitted after Revisions --- 0 For Review Comments 0 Other REMARKS: PLEASE CALL WHEN OUR COPY OF THE DRAINAG E REPORT IS READY TO BE PICKED UP. THANX COPY TO: SIGN ED:® :ael R. McClure, P.E ., R.P .L.S. President '. .,. ·~. - I - Drainage Report FOR GREAT OAKS SUBDIVISION VICINITY MAP NTS JULY, 2000 Re vised : SEPTEMBER, 2000 Prepared By. McClure Engineering, Inc. 1008 WOODCREEK DRIVE SUITE 103 COL LEGE STATION, TEXAS 7 7845 (979) 693-3838 Dra1nage Report FOR GREAT OAKS SUBDIVISION NTS JULY, 2000 Revised : SEPTEMBER, 2000 Prepared 8 y. McClure Engineering, Inc. 1008 WOODCREEK DRIVE SUITE 103 COLLEGE STATION, TEXAS 77845 (979) 693-3838 CERTIFICATION I , Kent M. Laza, Registered Professional Engineer No. 65923 , State of Texas , certify that this report for the drainage design for GREAT OAKS SUBDIVISION located in the Cit y of College Station Extraterritorial Jurisdiction, was prepared by me using the guidelines of the Cit y o f College Station Drainage Policy and Design Standards for the owners thereof As agreed by the Development Engineer, post-development runoff rates for the 5 and 10 year design storms are not detained to the pre-developed runoff rates. DRAINAG E REPOR T GREAT OAKS SUBDIVISION I I Kent M. Laza, P.E. No . 65923 INTRODUCTION TABLE OF CONTENTS GREAT OAKS SUBDIVISION GENERAL LOCATION AND DESCRIPTION FLOOD HAZARD INFORMATION PRIMARY DRAINAGE SYSTEM DESCRIPTION DRAINAGE DESIGN CRITERIA DETENTION DESIGN CONCLUSION EXHIBITS DRAINAGE AREA MAP -PROPOSED CONDITIONS RATIONAL FORMULAS DRAINAGE AREA CALCULATIONS HEC-1 ANALYSIS: PRE-DEV 100-YR HEC-1 ANALYSIS: POST-DEV 100-YR CSP CUL VERT ANALYSIS: CUL VERT 4 CSP CUL VERT ANALYSIS: CUL VERT 8A CSP CUL VERT ANALYSIS: CUL VERT 8B CSP CULVERT ANALYSIS: CULVERT lOA CSP CUL VERT ANALYSIS: CUL VERT 13 HEC-RAS SUMMARY: PRE-DEV WATER SURFACE ELEVATIONS HEC-RAS SUMMARY: POST-DEV WATER SURFACE ELEVATIONS WITH CULVERT 10 DRAINAGE REPORT GREAT OAKS SUBDIVISION 1 1 1 1 2 3 4 "A" "B-1" "B-2" "B-3" "C-1" "C-2" "C-3" "C-4" "C-5" "D-1" "D-2" II INTRODUCTION: STORM DRAINAGE REPORT GREAT OAKS SUBDIVISION This storm drainage report is intended to analyze the drainage infrastructure proposed for the development of the Great Oaks Subdivision. The existing and proposed conditions are included to show how the design will achieve the desired drainage objectives of Brazos County and the City of College Station. GENERAL LOCATION AND DESCRIPTION: Great Oaks Subdivision is located in southwest portion of the extra territorial jurisdiction of College Station in Brazos County. Great Oaks is bounded by the Quail Run Subdivision to the North, property owned by M.S. and Vada Kavanaugh to the West, Gandy Road to the South, and property owned by David Borsack to the East. FLOOD HAZARD INFORMATION: No portion of the site is shown to be within the 500-year floodplain on the FEMA Flood Insurance Rate Maps (FIRM) for Brazos County, Texas and Incorporated Areas, Map Number 48041CO182C, effective July 2, 1992. As such, this site is not currently regulated under the National Flood Insurance Program. It should be noted that the portion of Hopes Creek in the Great Oaks Subdivision was not included in previous flood studies by FEMA and no attempt was made by them to prepare a FIRM for this area. The floodplain analysis prepared with this study indicates the presence of a 100-year floodplain through the subdivision based on current conditions in the drainage basin. The limits of this floodplain are contained within the drainage easements shown on the plat but they are subject to change as further development occurs in the drainage basin. PRIMARY DRAINAGE SYSTEM DESCRIPTION: Exhibit "A" is a drainage area map that shows contours and proposed drainage areas for the STORM DRAINAGE REPORT GREAT OAKS SUBDIVISION PAGEl site. The proposed street will have a 24' wide paved surface with ditches. Storm water from the site will be captured in the ditches along the roads and conveyed to Hopes Creek. Corrugated metal pipe culverts and aluminized steel culverts will be used at the street crossings. DRAINAGE DESIGN CRITERIA: Since this project falls within the ETJ of College Station, the drainage system for Great Oaks was designed using the criteria in College Station's Drainage Policy and Design Standards. The design storm is a 25-year rainfall event for all drainage structures. Flow calculations for minor structures are based on the Rational Method (Exhibit "B-1 "). Flow calculations for the major structures are based on the U.S. Army Corp of Engineer's HEC-1 program (Exhibit "B-2"). Pipe sizes were determined by analyzing culvert capacity under inlet and outlet control or HEC-RAS modeling . Requirements for freeboard and road overtopping were met by all proposed culverts. Exhibits "B-1" and "B-3" indicate the peak runoff calculations for the post-development conditions of the drainage areas shown in Exhibit "A". A summary of these results is shown below: Flowrates (cfs) from Dra inage Areas Drainage Area 4 8A 8B lOA Culvert 10* 13 STORM DRAINAGE REPORT GREAT OAKS SUBDIVISION 5 year 23.5 37.6 11.8 20.7 372 45 In Great Oaks Sub division 10 year 25 y ear 50 year 100 year 26.6 30 .5 34.6 39.0 42.6 48 .8 55.4 62 .6 13.2 15 .1 17.1 19 .2 23.5 26 .9 30.6 34.6 470 57 7 656 743 56 6 9 78 89 •Culvert I 0 is th e co mbination of drainage areas 9, IOA, and JOB PAGE2 These runoff rates were used to design the roadway crossings shown in Exhibits "C-1" through "C-5". The resulting culvert sizes are as follows: Drainage Area Culvert Size 4 2 -30" Corrugated Steel Pipes 8A 2 -30" Corrugated Steel Pipes 8B 2 -24" Corrugated Steel Pipes IOA 2-30" Corrugated Steel Pipes 10 2 Bbl. 78" Aluminized Steel Pipe 13 42" Aluminized Steel Pipe DETENTION DESIGN: The dual 78" aluminized steel culverts shown above are designed to detain water in the channel upstream of the crossing on Great Oaks Drive. These culverts reduce the 100, 50 and 25-year events below the existing peak outflow from the site, but they do not provide detention for the 2, 5, and 10-year events. The following excerpts from Exhibits "B-2" and ''B-3" show this detention for the larger storms as well as the small increases in water surface elevation from the smaller storms. These small increases are easily contained within the channel banks and do not pose a threat to surrounding property. Great Oaks Subdivision Comparison of Pre vs Post Development Runoff Rates From HEC-1 at Gandy Road Crossing Storm Pre-Dev Post-Dev Difference Event Eievation (ft) 2 267.49 5 268.86 10 269.68 25 270.52 50 271.05 100 271.55 STORM DRAINAGE REPORT GREAT OAKS SUBDIVISION Flowrate Elevation (cfs) (ft) 721 267.60 1149 268.92 1459 269.71 1824 270 .50 2087 271.01 2402 271.47 Flowrate Elevation Flowrate (cfs) (ft) (cfs) 750 0.11 29 1170 0.06 21 1471 0.03 12 1817 -0.02 -7 2062 -0.04 -25 2353 -0.08 -49 PAGE 3 CONCLUSION: Great Oaks is a rural subdivision for single family residences on lots that are approximately 1 acre in size. The change in impervious area from the development ofthis subdivision is small and has minimal effects on the existing drainage system. Proposed improvements at the street crossings are designed using guidelines in the City of College Station's Drainage Policy and Design Standards . Exhibits "C-1" through "C-5" show that all drainage structures in the Great Oaks Subdivision are capable of passing the 25-year rainfall event with one foot of freeboard. The dual 78" culverts on Great Oaks Drive serve to detain the post- development runoff from the 25, 50 and 100-year rainfall events. The small increases in water surface elevations from the lesser storms are contained within the channels and do not threaten surrounding property. Exhibits "D-1" and "D-2" are summaries of the HEC-RAS analyses for the pre and post- development, 100-year rainfall event. Water surface elevations and top widths from the post development analysis were used to define the drainage easements shown on the plat. However, since this section of Hopes Creek is currently unregulated by FEMA, the floodplain boundaries are subject to change as further development occurs upstream. STORM DRAINAGE REPORT GREAT OAKS SUBDIVISION PAGE4 ~ ~ w c g .. 0::: w ...J ~ ~ 0.. ~ LL.. w w 0 t:= I-c (!) 0::: ...J z ~ z ~ w z w u 5 J: ~ ...J > w :E ...J z ~ w~ c w ~ 0::: I-~ cw ii) > w (!) >z 0 z 0::: w ~ 0 o~ c I-:::> ~ 0::: 0.. I-NO. AC. 0.4 0.55 0.9 ft. 4 7.36 0.00 7.36 0.00 4.05 909.0 8A 12.54 0.00 12.54 0.00 6.90 752.0 88 2.65 0.00 2.65 0.00 1.46 482.0 10A 7.29 0.00 7.29 0.00 4.01 267.0 13 (see HEC-1 data in Exhibit B-3) EXHIBIT 8-1 Rational Formula Drainage Area Calculations Great Oaks Subdivision ~ 0 ~ ~ ...J LL.. 0 0 c ...J ...J z LL.. LL.. ~ 5 0::: J: 0::: w I-w (3 ~ ~ 0::: ...J ~ (!) ~ ...J 0 w ...J ...J u w :::> z :::> ...J >~ (!) ~ (!) ~ ~ iij U) N .,, 0 LL.. u :::> ~ 0 !.!? 0 ft. ft. ft. ft/s min min In/Hr cfs In/Hr cfs 13.0 1.0 1.0 0.8 17.9 17.9 4.71 19.1 5.8 23.5 13.0 800.0 8.0 1.3 20.2 20.2 4.40 30.4 5.4 37.6 9.0 69.0 1.0 1.0 8.8 8.8 6.69 9.7 8.1 11.8 3.0 2054.0 23.0 1.7 22.3 22.3 4.16 16.7 5.2 20.7 0 .,, 0 ...... .,, N :!: 0 ~ 0 In/Hr cfs In/Hr cfs 6.6 26.6 7.5 30.5 6.2 42.6 7.1 48.8 9.1 13.2 10.4 15.1 5.9 23.5 6.7 26.9 0 !.!? In/Hr 8.5 8.0 11.7 7.6 0 0 0 0 .,, 0 ...... 0 :!: 0 cfs In/Hr cfs 34.6 9.6 39.0 55.4 9.1 62.6 17.1 13.2 19.2 30.6 8.6 34.6 8/28/2000 0008-dra.xls Exhibit B-1 Exhibit "B-2" i ••••• •• •••••••••• ••• ••••• •••••• •••••••••• • •••••••••••••••••••••••••••••••••••••• n,Q()D HYDROGRAPH PACKAGE (HEC-1) KAY 1991 VERSION 4. 0. lE Lahey £77L-EM/32 version 5.01 Dodson ' Associates, Inc. RUN DATE 07/18/00 TIME 15 :01:55 x x xxxxxxx x x x x x x xxxxxxx xxxx x x x x x x x x xxxxxxx xxxxx x x x x xxxxx x x x xxxxx x xx x x x x xx x U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (9161 5Sl -l 748 THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC -l KNOWN AS HECl (Jl\N 731, HEClGS, HEClDB, AND HEClKW. THE DEFINITIONS OF VARIABLES -RTIHP-AND -RTIOR-RAVE CHANGED !1'.a< THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AKSKK-ON RM-cARD llAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION llEN OPTIONS: Dl\MBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT lll\lil\GE CALCULATION, DSS:llRITE STAGE FREQUENCY, DSS:l\El\D TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AHPT INFILTRATION KINEMATIC NAVE: NEW FINITE DIFFERENCE ALGORITHM HEC -1 INPUT LINE ID ••••••• l. ...... 2 ••••••• 3 ••••••• 4 ••••••• 5 ••.•••• 6 ••••••• 7. ....•• 8 ••••••• 9 ••.••• 10 1 2 3 4 5 6 7 8 9 10 ll 12 13 14 15 16 l7 18 19 20 21 22 23 24 2S 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4l ID IT IO JR KK KM KM BA PB IN PC PC PC PC PC LS UD KK BA LS OD KK HC KK RS RC RX RY KK BA LS UD KK RS RC RX RY KK BA LS UD EX CONDITION OF HOPES CREEK 3 01FEB98 0000 481 s 0 0 PREC 13 .5 ll 9.8 8 .8 7 .4 6 .2 4.S EVENT 500 100 so 25 10 5 2Yr. Stono Dl\.l P4 IS EXISTING CONDITIONS TRIBUTARY C-100 AND C-110 .13S8 l 30 01FEB98 0000 .0053 .0108 .0164 .0223 .0284 .0347 .0414 .0483 .OS5S .0632 .0712 .0797 .0887 .0984 .1089 .1203 .1328 .1467 .162S .1808 .2042 .2351 .2833 .6632 . 73Sl . 7724 .7989 .8197 .8380 .8538 .8676 .8801 .8914 .9019 .9115 .9206 .9291 .9371 .9446 .9519 .9588 .9653 .9717 .9777 .9836 .9892 .9947 1.000 0 82.98 0 .SS DA2 .0336 0 80 0 .3 CULl 2 Rl ROUTE CULi TO PT A l STOR -1 .075 .OS .07S 729 .0082 0 . 44 .8 59 .6 86 .8 9S .8 109 .2 116.9 12 4 . 4 300 298 296 294 293 294 296 298 DAJA .0915 0 82.85 l7 . 78 .S2 R2 ROUTE DA3A TO PTA STOR -1 .075 .OS .07S 341 .0235 0 44.2 74 .8 91.6 9S.6 105 139. 7 163. s 298 296 294 293 . l 293.l 294 296 298 DAJB .oos 0 80 0 .18 HEC -1 INPUT PAGE PAGE LINE IO •••.... l. ...... 2 •....•• 3 ......• 4 ....••. 5 ......• 6 •...... 7. ..•.•. 8 ..•...• 9 .•.... 10 42 KK DA5A 43 BA .0266 44 LS 0 80 0 45 UD .24 46 KK R3 ROUTE DA5A TO PTA 47 RS 1 STOR -1 48 RC .015 .05 .015 129 .0082 49 RX 0 44 .8 59.6 86. 8 95 .1 109.2 116.9 124.4 50 RY 300 298 296 294 293 294 296 298 51 KK DA5B 52 BA .0115 53 LS 0 80 0 54 UD .2 55 KK PTA 56 HC 5 51 KK R4 ROUTE PTA TO CUL6 58 RS 1 STOR -1 59 RC .015 .05 .015 1021 .0039 60 RX 0 109.5 116.5 123. 4 121. 4 136. 6 150. 4 110. 9 61 RY 292 290 288 281. l 281. l 288 290 294 62 KK DA6 63 BA .0201 64 LS 0 80 0 65 UD .33 66 KK CUL6 61 HC 2 68 KK R5 ROUTE CUL6 TO CUL? 69 RS l STOR -1 10 RC .015 .05 .015 1160 .0043 11 RX 0 18.25 156.5 165.2 169.2 111.3 211.3 246 12 RY 291.8 289.9 281.9 218.1 278. l 283.2 285.6 288 73 KK DA4 74 BA .01033 l. &, 75 LS 0 81.15 7 .2 76 UD .3 1 77 KK DA7 78 BA .079 79 LS 0 80 80 UD .59 HEC-1 INPUT PAGE LINE IO •..•••• l. ...... 2 ..•.... 3 •.••••• 4 ••..•.. 5 ••....• 6 ••.•.•. 7 ••.•••• 8 •.•.••• 9 ••...• 10 81 KK DA8A 82 BA • 0196· It 83 LS 0 80 0 84 UD .25 85 KK DABS 2. (,, 86 BA .0041 87 LS 0 80 0 88 UD .35 89 KK PTC 90 HC 5 91 KK DA9 92 BA .0265 93 LS 0 81.8 11.29 94 UD .29 95 KK R6 ROUTE DA9 TO CU Ll O 96 RS 1 S TOR -1 97 RC .075 .05 .075 2 400 .0111 98 RX 0 22.55 48 .35 67. 81 88 .55 92 .55 99.54 110 .32 120 99 RY 292.61 292.03 290.60 284. 96 2 78 . 01 278. 01 286.06 266 .12 286. 90 100 KK DA10A 101 BA .067 102 LS 0 60 0 103 UD .54 104 KK DA10B 105 BA .2507 106 LS 0 80.98 6.1 107 UD .92 108 KK PTO 109 HC 3 110 KK DAll 111 BA . 015 4 112 113 114 115 116 117 118 119 120 LS UD ((!( HC ((!( RS RC RX RY 0 80 .58 PTE 3 R7 ROUTE PTO l STOR .075 .05 0 4. 7 281 2 78 0 TO PTE -1 .075 2387 .0034 9 .5 23.5 27.5 44 .4 79 .5 90 .3 276 270 270 274 276 28 1 HEC -1 INPUT PAGE LINE IO ••.•••• l. ...... 2 ••.•••• 3 ••••••• 4. ...... 5 ••••••• 6 ••••••• 7 •.••••• 8 ••••••• 9 •••••• 10 121 122 123 12 4 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 KK BA LS UD ((!( BA LS UD ((!( BA LS UD ((!( HC ((!( RS RC RX RY zz DA12 .304 0 81.84 l. 59 DA13 .03 49 0 82.36 • 8 DA14 • 0349 0 80 .42 PTF RS Route to l STOR .075 .05 0 18 . 73 274. 7 273.7 i········································· . FLOOD HYOROGRAPH PACKAGE (HEC -1) HAY 1991 VERSION 4 .0 .lE Lahey F77L-El<!32 version 5.01 Dodson ' Associates, Inc. RUN DATE 07/18 /00 TIME 15:01:55 ......................................... 11. 52 14 . 76 0 the end -1 .075 36.46 271. l EX CONDITION OF HOPES CREEK 3 IO OUTPUT CONTROL VARIABLES 200 70.12 262.4 IPRNT 5 PRINT CONTROL 0 PLOT CONTROL .0034 89.17 262 I PLOT QSCAL 0. HYDROGRAPH PLOT SCALE IT HYDROGRAPH TIME DATA 105.47 2 70.8 NKIN MINUTES IN COMPUTATION INTERVAL JP JR I DATE 1FEB98 STARTING DATE ITIME 0000 STARTING TIME NO 481 NUMBER OF HYDROGRAPH ORDINATES NDDATE 2FEB98 ENDING Dl\TE NDTIME 0000 ENDING TIME I CENT 19 CENTURY HARK COMPUTATION INTERVAL 0. 05 HOURS TOTAL TIME BASE 24.00 HOURS ENGLISH UNITS DRAINAGE AREA SQUARE HILES PRECIPITATION DEPTH INCHES LENGTH, ELEVATION FEET FLOW CUBIC FEET PER SECOND STORAGE VOLUME ACRE -FEEY SURFACE AREA ACRES TEMPERATURE DEGREES FAHRENHEIT MULTI -PLAN OPTION NP LAN NUMBER OF PLANS MULTI-RATIO OPTION RATIOS OF PRECIPITATION 13.50 11.00 9.80 8.80 7 .40 6 .20 132.9 27 4 .9 4 .so 150 277 .5 U .S . ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-1748 PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN -RATIO ECONC>IIC CC>IPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE HILES TIME TO PEAK IN HOURS OPERATION STATION PLAN HYDROGRAPH AT DAl 0.14 HYDROGRAPH AT + DA2 0.03 2 CCMBINED AT + CULl 0.17 ROUTED TO Rl 0 .17 HYDROGRAPH AT DA3A 0.09 ROUTED TO R2 0.09 HYDROGRAPH AT DA3B 0.00 HYDROGRAPH AT + DA5A 0.03 ROUTED TO + R3 0.03 HYDROGRAPH AT DA5B 0 .01 5 CCMBINED AT PTA 0.30 ROUTED TO + R4 0.30 HYDROGRAPH AT DA6 0.02 2 CCMBINED AT + CUL6 0 .32 ROUTED TO + RS 0.32 HYDROGRAPH AT DA4 0.01 HYDROGRAPH AT + DA7 0. 08 HYDROGRAPH AT + DA8A 0 .02 RATIOS APPLIED TO PRECIPITATION RATIO l RATIO 2 RATIO 3 RATIO 4 RATIO 5 RATIO 6 RATIO 7 13.50 11.00 9 .80 8.80 7 .40 6.20 4.50 FLOW TIME FLOW TIME FLOW TIME FLOW TIME 534. 11. 85 171. 11. 60 662. 11. 80 661. 11 . 80 PEAK STAGES IN FEET 4 23. 11. 85 134. 11 . 60 523. 11. 80 521. 11. 80 STAGE 296 . 84 296. 51 TIME 11.80 11.80 FLOW TIME FLOW TIME 376 . 11.80 376 . 11.85 PEAK STAGES IN FEET 299. 11. 80 299. 11. 85 STAGE 295.17 294.98 TIME 11.85 11.85 FLOW TIME FLOW TIME FLOW TIME 29 . 11. 55 145. 11.55 143 . 11. 60 PEAK STAGES IN FEET 23. 11.55 114. 11. 60 112. 11. 60 STAGE 295 .14 294. 94 TIME 11.60 11.60 FLOW TIME FLOW TIME FLOW TIME 66. 11.55 1192. 11. 75 1166. 11. 85 PEAK STAGES IN FEET 52. 11.55 942. 11. 75 915. 11. 85 STAGE 292. 74 292. 32 TIME 11 .85 11.85 FLOW TIME FLOW TIME FLOW TIME 102. 11.65 1244. 11.80 1221 . 11. 90 PEAK STAGES IN FEET 80. 11. 65 977. 11. 85 952. 11. 95 STAGE 287. 93 287 . 20 TIME 11. 90 11. 95 FLOW TIME FLOW TIME FLOW TIME 53. 11. 65 290. 11. 90 106. 11.60 42. 11. 65 227. 11. 90 83. 11. 60 369. 11. 85 117. 11.60 456. 11. 80 454 . 11.80 296.35 11. 80 262. 11. 80 262. 11. 85 294. 88 11 .85 20. 11.55 99. 11.60 97. 11.65 294.84 11.65 45. 11.55 821. 11. 75 792 . 11.85 292.08 11. 85 70. 11.65 846. 11. 85 826. 11.95 286 .80 11.95 36. 11.65 197. 11. 90 73 . 11.60 324. 11.85 102. 11.65 401. 11. 80 398. 11.80 296.19 11. 80 231. 11. 80 231. 11. 85 294. 79 11.85 18. 11.55 87. 11. 60 85. 11. 65 294. 73 11. 65 40. 11.55 721. 11 . 75 694. 11. 90 291. 88 11. 90 61. 11. 65 739. 11. 85 723. 11.95 286 .41 11.95 32. 11.65 172. 11. 90 63. 11. 60 261. 11.85 82. 11 .65 322. 11. 80 320. 11. 85 295.96 11. 85 188. 11.85 188. 11.85 294.66 11. 85 14. 11.55 70. 11. 60 68. 11.65 294.59 11. 65 32. 11.55 580. 11.80 557. 11.90 291. 52 11.90 49. 11.65 591. 11.85 579. 11.95 285.82 11. 95 26. 11. 65 137. 11. 90 51. 11.60 207. 11.85 64. 11.65 255. 11.80 253. 11. 85 295. 69 11. 85 151. 11.85 151. 11. 85 294. 52 11.85 11. 11.55 55. 11.60 53. 11. 65 294. 4 5 11.65 25. 11.55 461. 11. 80 442. 11.90 291.16 11. 90 38. 11.65 469 . 11. 90 459. 11.95 285. 22 11. 95 21. 11. 65 107 . 11 . 90 40 . 11. 60 132. 11. 85 40. 11. 65 161. 11. 80 160. 11.85 295.24 11. 85 99. 11. 85 99 . 11. 85 294. 29 11. 85 7. 11. 55 34 . 11. 60 33. 11. 65 294.20 11.65 16. 11. 55 293. 11. 80 283. 11.90 290 .49 11.90 24. 11 . 65 300. 11.90 294. 11.95 284 .12 11.95 13. 11. 65 66. 11.95 25. 11. 60 HYDROGRAPH AT DABS 0.00 FLOW 20. 1 5. 13. 12. 9. 7. 5. TIME II. 65 11.65 II. 65 II. 65 11. 65 11. 70 11. 70 5 COMBINED AT PTC 0. 44 FLOW 1607. 1255 . 1086. 948. 757 . 599. 381. TIME 11. 85 11.90 11. 90 11. 90 11. 90 II. 95 11.95 HYDROGRAPH AT DA9 0.03 FLOW 140. Ill. 97 . 86. 69. 55. 36. TIME 11. 60 ll. 60 11. 60 11. 60 11.60 11. 60 11. 65 ROUTED TO R6 0.03 FLOW 130. 102. 89 . 77. 62 . 49 . 31. TIME ll . 70 ll. 70 11. 70 11. 75 11. 75 ll. 75 11. 75 PEAK STAGES IN FEET STAGE 280. 95 280. 62 280.46 280. 3 1 280 . 04 279.81 279 .43 TIHE 11. 70 11. 70 11. 70 l l. 75 11 .75 ll . 75 11. 75 HYDROGRAPH AT DAlOA 0.07 FLOW 259. 203. 176. 154. 122. 96. 59. TIME ll.85 11.85 11.85 ll. 85 ll .85 11.85 11.85 HYDROGRAPH AT DAlOB 0.25 FLOW 700. 551. 480. 420. 337. 266. 168. TIME 12.25 12 .25 12 .25 12.25 12.25 12. 25 12.30 3 COMBINED AT + PTO 0. 34 FLOW 960. 757. 659. 577. 462. 365. 230 . TIME 12 .05 12 .05 12. 05 12.05 12.05 12.10 12 .10 HYDROGRAPH AT DAil 0.02 FLOW 57. 45 . 39. 34. 27. 21. 13 . TIME ll.90 ll.90 11.90 ll. 90 11. 90 11. 90 11. 90 3 COMBINED AT PTE 0.80 FLOW 2593. 2032. 1766. 1544. 1236. 975. 617. TIME ll. 90 ll. 95 11.95 ll. 95 11. 95 ll.95 12. 00 ROUTED TO R7 0. 80 FLOW 2527. 1978. 1714. 1495. ll93. 936. 584. TIME 12. 00 12.05 12 .05 12.05 12 .10 12.10 12 .15 PEAK STAGES IN FEET STAGE 280.14 279.21 278. 7l 278. 27 277 . 62 276.99 275 .95 TIME 12. 00 12.05 12. 05 12.05 12.10 12.10 12.15 HYDROGRAPH AT DA12 0.30 FLOW 586. 463. 404. 355. 286 . 228. 146. TIME 12.95 12.95 1 2.95 12.95 12. 95 12.95 13. 00 HYDROGRAPH AT DA13 0.03 FLOW 109. 87 . 76. 6 7 . 54. 43. 28. TIME 12 .10 12 .10 12 .10 12.10 12 .10 12 .15 12 .15 HYDROGRAPH AT 0Al4 0.03 FLOW 154 . 121. 105. 92. 73. 57. 35. TIME 11. 70 11. 75 11. 75 11. 75 11. 75 11.75 11. 75 4 COMBINED AT PTF 1.17 FLOW 3064 . 2401. 2087. 1825. 1458. ll49 . 721. TIME 12.05 12. 05 12.1 0 12.10 12 .15 12.15 12. 20 ROUTED TO RS 1.17 FLOW 3064. 2402 . 2087. 182 4 . 1459. ll49. 721. TIME 12. 05 12.10 12 .10 12.1 0 12 .15 12.15 12.20 GANDY ROAD PEAK STAGES IN FEET CROSSING STAGE 272 .51 271. 55 271.05 270. 52 269. 68 268.86 267. 49 TIME 12.05 12 .10 12 .10 12.1 0 12.15 12.15 12. 20 ••• NORMAL END OF HEC-1 ... i •••• ••••••••••••••••••••••••••••••••••••• FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1991 VERSION 4 . 0. lE Lahey F77L-EM/32 version 5.01 Dodson ' Associates, Inc. RUN DATE 09/13/00 TIME 15:09:35 x x x x x x xxxxxxx x x x x x x EXHIB I T B-3 xxxxxxx xxxxx x x x x x xx xx x x x x x x xxxxxxx xxxxx x xx x xxxxx x x x xxx U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-1748 THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73), HEClGS, HEClDB, AND HEClKW. THE DEFINITIONS OF VARIABLES -RTIHP-AND -RTIOR-HAVE CHANGED FROH THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAHBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION , DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE: GREEN AND AMPT INFILTRATION KINEMATIC WAVE : NEW FINITE DIFFERENCE ALGORITHM LINE 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 LINE 42 HEC-1 INPUT ID ....... 1. •••••• 2 .•.•.•• 3 •...... 4. ...... 5 ....... 6 ...••.. 7 ....... 8 .••••.. 9 ...... 10 ID PROP CONDITION OF HOPES CREEK IT 3 01FEB98 0000 481 IO 5 0 0 JR PREC 13.5 11 9. 8 8.8 7.4 6.2 4. 5 EVENT 500 100 50 25 10 5 2Yr. Storm KK DA! KM PS IS PROPOSED CONDITIONS TRIBUTARY C-100 AND C-110 KM BA .1358 PB 1 IN 30 01FEB98 0000 PC • 0053 .0108 • 0164 .0223 .0284 .0347 .0414 .0483 .0555 .0632 PC .0712 .0797 • 0887 .0984 .1089 .1203 .1328 .1 467 .1625 .1 808 PC • 2042 .2351 .2833 .6632 • 7351 • 7724 .7989 • 8197 .8380 • 8538 PC • 8676 • 8801 .8914 .9019 • 9115 .9206 • 9291 . 9371 .9446 .9519 PC • 9588 .9653 .9717 .9777 .9836 . 9892 .9947 1.000 LS 83.2 20 UD . 54 KK DA2 BA .0336 LS 0 80 .27 UD .3 KK CUL! HC 2 I<K Rl ROUTE CULl TO PT A RS 1 STOR -1 RC .075 .05 .075 729 .0082 RX 0 44 .8 59.6 86 .8 95.8 109.2 116. 9 124. 4 RY 300 298 296 294 293 294 296 298 KK DA3A BA . 0903 LS 0 83. 2 20 UD • 51 KK R2 ROUTE DA3A TO PTA RS 1 STOR -1 RC .075 .05 .075 341 .0235 RX 0 44. 2 74.8 91. 6 95. 6 105 139.7 163 .5 RY 298 296 294 293.l 293.1 294 296 298 KK DA3B BA .0050 LS 0 83 .2 20 UD .16 HE C-1 INPUT ID ....... 1. •.•.•. 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK DASA PAGE PAGE 43 BA .0266 44 LS 0 81.S4 9. 6 4S UD .23 46 KK R3 ROUTE CASA TO PTA 47 RS l STOR -l 48 RC .07S .OS .07S 729 .0082 49 RX 0 44.8 S9.6 86. 8 9S. 7 109. 2 116 .9 1 2 4 .4 so RY 300 298 296 294 293 294 296 298 Sl KK DASB S2 BA .OllS S3 LS 0 83. 2 20 S4 UD .18 SS KK PTA S6 HC s S7 KK R4 ROUTE PTA TO CUL6 S8 RS l STOR -l S9 RC . 07S .OS .07S 1027 .0039 60 RX 0 109. s 116.S 123. 4 127.4 136. 6 lSO . 4 170. 9 61 RY 292 290 288 287.l 287.l 288 290 294 62 KK DA6 63 BA . 0207 64 LS 0 82.8 20 6S UD . 3 I 66 KK CUL6 67 HC 2 68 KK RS ROUTE CUL6 TO CUL7 69 RS l STOR -1 70 RC .07S .OS .07S 1160 .0042 7l RX 0 78.3 lS6.S 16S. 2 169.2 177.3 211. 3 246 72 RY 291.8 289.9 287.9 278.1 278.l 283.2 28S.6 288 73 KK DA4 74 BA .OllS 7S LS 0 83.2 20 76 UD .29 77 KK DA7 78 BA .079 79 LS 0 82.8 20 80 UD • S4 HEC-1 INPUT PAGE LINE ID .•••..• 1. •.••.• 2 .••••.• 3 ••••.•• 4 •••.... S .••.••• 6 ••..... 7 •...••• 8 •....•• 9 .••... 10 81 KK BA 82 BA .0196 83 LS 0 83. 2 20 84 UD .14 as KK 88 86 BA .0041 87 LS 0 83 .2 20 88 UD .22 89 KK PTB 90 HC s 91 KK CUL7 92 RS 1 STOR -l 93 SV 0 . 001 .02 . l .22 • 64 l. ll 1.8 4.46 9.62 94 SE 273 274 27S 276 277 2 7 8 279 280 282 284 9S SQ 0 42 119 218 336 4770 617 778 ll2S 2000 96 KK OA9 97 BA . 026S 98 LS 0 83.2 20 99 UD .28 100 KK R6 ROUTE DA9 TO CULlO 101 RS 1 STOR -l 102 RC .07S .OS .07S 2400 .Oll 7 103 RX 0 22.SS 48.3S 67.81 88.SS 92. SS 99. S4 110. 32 120 104 RY 292. 61 292. 03 290. 6 284 .96 278.0l 278. 01 286. 08 288. 72 288.9 lOS KK DAlOA 106 BA .0718 107 LS 0 82 .6 20 108 UD .s 109 KK 9 AND l OA COMBINED 110 HC 2 111 KK DAlOB 112 BA .2S07 113 LS 0 BO. 08 6. 54 114 UD . 92 115 KK PTD 116 HC 2 117 KK CUL l O 118 RS 1 FLOW -1 119 SV 0 .004 • 01 .03 .07 .14 .25 . 4 6 1. 41 3.35 120 sv 5. 86 10 .28 16.81 121 SE 27 0 2 7 0.25 270 .5 2 71 271.5 272 27 3 27 4 276 278 122 SE 280 282 284 123 so 0 4 .5 1 2. 73 36 66 .14 102 187 288 529 71 6 124 so 853 1714 5475 HE C-1 INPUT PAGE LINE ID ....... 1. ..•... 2 ....... 3 .••.... 4 ..••••. 5 ••••••• 6 ••..•.. 7 ..••.•• 8 •••••.. 9 ..•.•• 10 125 KK DAll 126 BA .015 127 LS 0 80 0 128 UD .58 129 KK PTE 130 HC 131 KK R7 PT E TO PT F 132 RS 1 STOR -1 133 RC .0 7 5 .05 • 075 2387 .0034 134 RX 0 4. 7 9 .5 23.5 27 .5 135 RY 281 278 276 270 270 136 KK DA1 2 137 BA .3038 138 LS 0 ai. a 11. 52 139 UD 1.59 140 KK DAI3 141 BA • 0349 142 LS 0 83.2 20 143 UD • 78 144 KK DA14 145 BA • 0159 146 LS 0 80 147 UD .42 148 KK PTF 149 HC 150 KK RB PT F TO PT G 151 RS 1 STOR -1 152 RC .075 .05 .075 200 .0034 153 RX 0 1 8. 73 36 .46 70 .12 89 .17 154 RY 274. 7 273.7 2 7 1.1 262. 4 262 155 zz i ••••••••••••• •••••••••••••••••••••••••••• FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1991 VERS I ON 4.0 .lE Lah ey F77L-EM /32 version 5. 01 Dodson & As sociates , Inc . RUN DATE 09/13 /00 TIME 15:09:35 ** * * ••• * * ** •••••••••••••••••••••••••••••• .PROP CONDITION OF HOPES CREEK 3 IO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT OS CAL 0 0. PLOT CONTROL HYDROGRAPH PLOT SCALE IT HYDROGRAPH TIME DATA 44 . 4 27 4 105. 47 270.8 NMIN MINUTES IN COMPUTAT ION INTERVAL I DAT E 1FEB98 I TIME 0000 NO 481 NDDATE 2 FEB9 8 ND TIME 000 0 I CE NT 19 COMPUTAT ION I NT ERVAL TOTAL TIME BASE ENGLISH UNITS STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ENDING DATE ENDING TIME CENTURY MARK 0 .05 HOURS 24. 00 HOURS DRAINAGE AREA SQUARE HILES PRECIPITATION DEPTH INCHES LE NGTH, ELEVATION FEET FLOW CUBIC FEET PER SECOND STORAGE VOLUME ACRE-FEET SURFACE AREA ACRES TEMPERATURE DEGREES FAHRENHEIT ORD INATES 79. 5 9 0. 3 276 281 132. 9 150 274.9 277.5 . ...................................... U.S. ARMY CORP S OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND S TREET DAVIS , CALIFORNIA 95616 (916) 551-1748 ······································· JP JR OPERATION HYDROGRAPH AT + HYDROGRAPH AT 2 COMBINED AT ROUTED TO HYDROGRAPH AT + ROUTED TO + HYDROGRAPH AT + HYDROGRAPH AT + ROUTED TO + HYDROGRAPH AT + 5 CCMBINED AT + ROUTED TO HYDROGRAPH AT 2 CCMBINED AT ROUT ED TO MULTI-PLAN OPTION NP LAN NUMBER OF PLANS MULTI-RATIO OPTION RAT IOS OF PRECIPITATION 13.50 ll.00 9.80 8 .80 7.40 6 .20 4.50 PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECO NOMIC COMPUTATIO NS FLOWS IN CUBIC FEET PER SECOND , AREA IN SQUARE MI LE S TIME TO PEAK IN HOURS RATIOS APPLIED TO PRECIPITATION STATION PLAN RATIO l RATIO 2 RATIO 3 RATIO 4 RATIO 5 RATI O 6 RATI O 1 DAl 0 .14 DA2 0 . 0 3 CULl 0 .17 Rl 0 .17 DAJA 0.09 R2 0.09 DAJB o.oo DASA 0.03 R3 0 .03 DASB 0 . 01 PTA 0.30 R4 0 . 30 DA6 0 . 02 CUL6 0 .32 RS 0. 32 13.50 11 .0 0 9 .80 8.80 7 .4 0 6 .20 4.50 FLOW TIME FLOW TIME FLOW TIME FLOW TIME 549. ll. 8 5 111. ll. 6 0 680. ll. 75 679. 11.80 PEAK STAGES IN FEET S TAGE 296.88 TIME 11 . 80 FLOW TIME FLOW TIME 377. 11. 80 376. 11. 80 PEAK STAGES IN FEET STAGE 295 .17 TIME ll.80 FLOW TIME FLOW TIME FLOW TIME 31. 11.50 150. ll.55 148 . ll. 60 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 295.17 ll. 60 69. ll.50 121 l. 11. 75 1183 . 11.85 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIHE 292. 76 11. 85 110. 11.60 1265 . ll. 80 1239 . 11 . 90 PEAK S TAGES IN FEET 438. l l. 8 5 1 34 . ll. 60 541. ll. 8 0 539 . ll. 8 0 296.56 11.80 301. 11.80 300. 11.85 294. 98 ll.85 25 . ll.50 119. 11.55 117. ll. 60 294.97 ll. 60 55. 11.55 962. 11. 75 93 5. 11 .85 292. 35 11 . 85 88 . ll. 60 99 5 . 11 . 85 973. 11 .9 0 384. ll. 85 117. 11. 60 473. ll. 80 472. ll. 80 296. 39 ll.80 264. 11 .80 263. ll. 85 294. 88 11.85 22. ll. 50 104. ll.55 102. ll. 60 294. 87 ll. 60 49 . ll.55 843. 11 . 75 813. ll. 85 292 .13 ll. 85 77. ll. 60 866. l l. 85 845. 11.90 339. ll. 85 102. 11 .65 417. ll. 80 415. ll. 80 296.2 4 ll. 80 233. 11.80 232. 11.85 294. 79 11. 85 19. 11.50 92. 11.55 89. 11. 60 294. 77 11.60 43. 11.55 742. ll. 75 714. ll. 85 291. 92 11 . 85 68. 11. 60 160 . 11.85 742. l l. 95 276 . 11. 8 5 82. 11. 65 339. 11.80 337. ll. 80 2 96 . 01 11 . 80 189 . 11.80 1 89 . ll. 85 294. 66 11.85 16 . 11.50 74. ll.55 72. 11 . 60 294. 62 ll. 60 35. ll.55 600 . 11. 75 577 . 11. 90 29 1 . 58 11. 90 55. 11 . 60 613. l l. 85 600 . 11 . 9 5 222. ll. 85 64. ll. 65 271. ll.80 269. ll. 85 295 . 76 ll.85 152. 11.80 152. ll. 85 294 . 52 11.85 13 . ll.50 59. ll.55 57. ll. 65 29 4 . 49 ll.65 29. 11.55 4 80. ll. 80 462 . 11. 90 291. 23 ll. 90 44. ll. 60 491. l l. 85 480 . 11 . 95 146. ll. 85 4 0 . 11 .65 177. ll. 80 175. 11 .8 5 295.3 2 11. 85 100 . 11.80 100. 11.85 294. 30 11.85 8. ll.55 38. ll. 60 37 . ll. 65 294.25 ll. 65 19. ll. 55 313. ll. 80 3 03 . ll. 9 0 290.59 ll. 90 2 9. ll. 65 3 2 1. 11. 85 315 . ll. 9 5 HYDROGRAPH AT DA4 0 .01 HYDROGRAPH AT DA7 O.OB HYDROGRAPH AT + BA 0.02 HYDROGRAPH AT BB 0. 00 S COMBINED AT PTB 0.44 ROUTED TO CUL7 0. 44 HYDROGRAPH AT + DA9 0.03 ROUTED TO + R6 0.03 HYDROGRAPH AT + DA l OA 0.07 2 COMBINED AT + 9 AN 0.10 HYDROGRAPH AT + DAlOB 0.2S 2 COMBINED AT PTO 0.3S ROUTED TO CULlO 0. 35 HYDROGRAPH AT + DAll 0.01 3 COMBINED AT + PTE O.BO ROUTED TO R7 O.BO HYDROGRAPH AT DA12 0.30 HYDROGRAPH AT DA13 0.03 HYDROGRAPH AT DA14 0.02 STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 2BB.Ol 11. 90 62. 11. 60 319. 11. BS 123. 11. so 24. 11. SS 1634. 11. BS 163S. 11. BS PEAK STAGES IN FEET 2B7. 31 11.90 49. 11. 60 2S4. 11. BS 9B. 11.SO 19. 11. SS 12B2. 11. 90 12B6. 11. 90 STAGE TIME 277 .29 277 .21 11.BS 11.90 FLOW TIME FLOW TIME 144 . 11. 60 134. 11 . 70 PEAK STAGES IN FEET llS. 11. 60 106. 11. 70 STAGE 2Bl.OO 2B0.67 TIME 11 . 70 11. 70 FLOW TIME FLOW TIME FLOW TIME FLOW TIME 302. 11. BO 430. 11. 7S 694 . 12.2S 972. 12.00 FLOW 959. TIME 12 .10 PEAK STAGES IN FEET STAGE 2BO. 25 TIME 12 .10 FLOW TIME FLOW TIME FLOW TIME 56. 11. 90 2SlS. 12.00 2476. 12 . 05 PEAK STAGES IN FEET 241. 11. BO 342. ll. 7S S46. 12.2S 76B. 12.00 743. 12.20 27B.40 12.20 44. 11. 90 2019. 11. 90 1967. 12.05 STAGE 2B0.06 279.19 TIME 12 . OS 12. 05 FLOW TIME FLOW TIME FLOW TIME 5B6. 12. 95 112. 12.10 70. 11. 70 463. 12.95 B9. 12.10 55. 11. 75 2B6.90 11. 90 43. 11. 60 222. 11. BS B6. 11.SO 17. 11 .SS 1116. 11. 90 1114. 11. BS 2B6.S2 2B5 .9S ll.9S ll.9S 3B. 11. 60 196. 11. BS 76. 11.SO lS. 11.SS 9BO. 11.90 9BO. 11.90 31. 11. 60 160. 11. B5 62. 11. 50 12. 11.55 792. 11. 90 7B9. 11. 9S 277.lB 277.lS 277.10 11.BS 11.90 ll.9S 101. 11. 60 93. 11. 70 B9. 11.60 Bl. 11. 70 73. 11. 60 66. 11 . 70 2BO.SO 2B0.36 2BO.l0 11. 70 11. 70 11. 70 211. 11. BO 299. 11. 7S 474 . 1 2.2S 669. 12. 00 656. 1 2.15 277. 36 12 .15 3B. 11. 90 1769 . 11. 95 1722. 12. 05 lB6. 11. BO 264. 11. 7S 41S. 12.2S SB7. 12 .00 577. 12.15 276.52 12.15 33. 11. 90 1562. 11. 95 1519. 12.05 27B. 73 27B.32 12.05 12.05 404. 1 2.95 78. 12 .10 4B. 11. 75 3S5. 12.95 69. 12.10 42. 11. 75 lSl. 11. BO 214. 11. 75 332. 12 . 25 471. 12.00 470. 12.0S 275.51 12.05 26 . 11. 90 1276. 11. 95 1230. 12 .10 277. 70 12. 05 2B6 . 12.95 S6. 12 .10 33. 11. 75 2B5.37 11. 95 25. 11. 60 12B. ll.B5 51. 11.50 10 . 11. 55 634. 11. 90 637. 11. 90 277 .07 11.90 59. 11. 60 52. 11. 70 279.B 7 11. 70 121. 1 1. BO 172. 11. BO 261. 12.25 373. 12.05 372. 12.10 274. 70 12.10 21. 11. 90 1013. 11. 90 977. 12.10 277 .1 0 12.10 227 . 12.95 45. 12 .10 26 . 11. 75 2B4. 31 11. 95 17. 11.60 B4. 11. B5 34. 11. so 6. 11.55 417. 11. 90 419. 11. 90 277. 02 11. 90 39. 11.60 33. 11. 75 279.51 11. 75 BO . 11.BO 112. 11.BO 163. 12. 30 23B . 12.05 237. 12.05 273. 50 12.05 13. 11. 90 660. 11. 90 626. 12 .1 0 276. 09 12 .10 146. 13. 00 30 . 12.10 16. 11. 75 CROSSING AT CULVERT 1 0 4 COMBINED AT PTF 1.16 FLOW 2971. 2353. 2062. 1817. 1472. 1170. 751. TIME 12 .10 1 2.10 12.10 12 .10 12 .10 12 .15 12 .15 ROUTED TO RB 1.16 FLOW 2972. 2353. 2062. 1817. 1471. 1170. 750. TIME 1 2 .1 0 12 .10 12 .10 12 .10 12 .10 12 .15 12 .15 GANDY ROAD PEAK S TAGES IN FEET CROSSING STAGE 272. 38 271. 47 271.01 270.50 269 .71 268 . 92 267 . 60 TIME 1 2 .10 12 .10 12 .10 12 .10 12 .10 12.15 12 .1 5 ••• NORMAL END OF HEC-1 ••• CULVERT #4 Culvert Description 2-30" CSP at Intersection of Great Oaks Drive and Arboleda Lane CI D I CI u vert es111n r teria Circular Pipe No. I Dia. (ft.) Pipes 2.50 2 Cl I CI I ti u vert Analvs s a cu a ons Total Flow per Critical Des ign Flow Pipe Depth(ft.) Storm (cts) (cts ) de 5 23 .50 11 .75 1.15 10 26 .60 13 .30 1.20 25 30 .50 15 .25 1.30 50 34 .60 17 .30 1.36 100 39 .00 19 .50 1.50 n 0.020 Normal Depth (ft .) 1.20 1.28 1.38 1.48 1.56 Invert Elev. (Eli) (ft .) 305.25 EXHIBIT C-1 CULVERT ANALYSIS GREAT OAKS SUBDIVISION ELhi ~ ~ Top of Road ELho 1Hw; :-::-1-0---------~~ _Jf---------~~ Eli Proposed Culvert ~ - - - - --'- ELo Outfall Channel Design Criteria Outlet Culvert Top Lt. Side Rt. Side Bottom Elev. (ELo) Length Slope of Slope Slope Slope Width n (ft.) (ft.) (Mt) Road ke I (ft/ft) (?:1\ (?:1) (ft .) 305 .00 50.00 0.0050 309 .52 0.50 I 0.0050 5.00 4 .00 0.00 0.024 HEADWATER CALCULATIONS Control Type Outlet INL ET CONTROL OUTLET CONTROL HW of Velocity Freeboard HWVD HWi ELhl TW de Cdc + D\/2 0.67 1.68 306 .93 0.94 1.15 1.83 0.72 1.81 307 .06 1.00 1.20 1.85 0.79 1.97 307 .22 1.08 1.30 1.90 0.85 2.13 307 .38 1.12 1.38 1.94 0.92 2 .30 307.55 1.16 1.50 2 .00 ho H ELho Elev . 1.83 0.23 307 .06 307 .06 1.85 0.29 307.14 307 .14 1.90 0.39 307 .29 307 .29 1.94 0 .50 307.44 307.44 2 .00 0 .63 307 .63 307 .63 Control (fps) Outlet 5.33 Outlet 5.71 Outlet 5.91 Outlet 6.23 Outlet 6.34 (ft.) 2.46 2.38 2.23 2 .06 1.69 9/11/2000 cul-p .lds .;.• > ~ •I c ( '' • • ' • "• • '-• "~ ~ '"" 4' ':., ;~ ~ • '• • )" ·" '. ~ ~ ' y •"" ,• • • tv~ ,. •' CULVERT#8A Culvert Deslc:in Criteria Culvert Description 2-30" CSP at the Intersection of Great Oaks Drive Circular Pipe Dia. (ft .) 2 .50 u v ert and Kingwood Lane C I Design Storm 5 10 25 50 100 No. Pipes 2 A I . CI I . na1vs1s a cu at1ons Total Flow per Critical Flow Pipe Depth{ft.) (cfs) (cfs) de 37.60 18 .80 1.45 46 .60 23.30 1.63 48 .80 24 .40 1.68 55 .40 27 .70 1.80 62 .60 31 .30 1.90 n 0 .020 Normal Depth (ft.) 2 .04 2 .50 2 .50 2 .50 2 .50 Invert Outlet Elev . (Eli) Elev. (ELo) (ft.) (ft.) 284.84 284 .56 EXHIBITC-2 CULVERT ANALYSIS Great Oaks Subdivision Culvert Top Length Slope of (ft.) (ft/ft) Road 56 .00 0 .0050 288 .85 ELhi V--Top of Road ELho ~:==ro--------~~ _J -------~~ Eli Proposed Culvert ~ - - - - -'-- ELo 0 tf II Ch u a anne ID I C It I es1Qn r er a Lt . Side Rt. Side Bottom Slope Slope Slope W idth n ke I (ft/ft) (?:1) (?:1) (ft .) 0 .50 I 0 .0050 5 .00 4 .00 0 .00 0 .024 HEADWATER CALCULATIONS Control Type Outlet INLET CONTROL OUTLET CONTROL HWi/D HWi ELhi TW de Ide+ Dl/2 ho 0 .90 2 .24 287.08 1.17 1.45 1.98 1.98 1.03 2 .58 287.42 1.27 1.63 2 .07 2 .07 1.07 2 .67 287 .51 1.29 1.68 2 .09 2 .09 1.16 2.91 287.75 1.35 1.80 2 .15 2.15 1.50 3 .75 288 .59 1.42 1.90 2 .20 2.20 HW H ELho Elev . 0 .62 287 .15 287 .15 0 .95 287.58 287 .58 1.0 4 287 .69 287.69 1.34 288 .05 288 .05 1.72 288 .48 288 .59 of Velocity Control (fps) Outlet 6.37 Outlet 6 .87 Outlet 6 .96 Outlet 7 .32 Inlet 6 .38 Freeboard (ft.) 1.70 1.27 1.16 0 .80 0 .26 9/11/2000 cul-Sa .xis CULVERT#8b Culvert Description 2-24" CSP at the Intersection of Great Oaks Drive and Kingwood Lane CI D . C. u vert es1gn ntena Circular Pipe No . Dia. (ft.) Pioes 2.00 2 Culvert Analysis Calculations Total Flow per Critical Design Flow Pi pe Depth (ft .) Storm (cfsl (cfsl de 5 11.80 5.90 0 .80 10 13 .20 6.60 0.90 25 15 .10 7.55 1.00 50 17 .10 8.55 1.05 100 19 .20 9.60 1.15 n 0.020 Normal Depth (ft.) 1.08 1.15 1.26 1.38 1.52 Invert Outlet Elev. (Eli) Elev. (Ela) (ft.) (ft.) 284 .83 284 .55 EXHIBITC-3 CULVERT ANALYSIS Great Oaks Subdivision Culvert Top Length Slope of {ft.) {ft/ft) Road 56 .00 0.0050 288 .30 Elhi ~ Top of Road Elho ~==E::::: -~~ Eli_/' Proposed Culvert ~ - - - - -'---- Elo Outfall Channel Desicm Criteria Lt. Side Rt. Side Bottom Slope Slope Slope W idth n ke I {ft/ft) {?:1) {?:1) (fl) 0 .50 I 0.0050 5.00 4 .00 0 .00 0.024 HEADWATER CALCULATIONS Control Type Outlet INLET CONTROL OUTLET CONTROL HWi/D HWi El hi TW de (de+ Dl/2 ho 0 .62 1.25 286.08 0.76 0.80 1.40 1.40 0.66 1.33 286.16 0.79 0.90 1.45 1.45 0.72 1.44 286.27 0.83 1.00 1.50 1.50 0.78 1.55 286 .38 0 .87 1.05 1.53 1.53 0.84 1.67 286.50 0.91 1.15 1.58 1.58 HW H Elho Elev . 0.17 286 .12 286 .12 0.21 286.21 286.21 0 .28 286 .33 286.33 0 .36 286 .44 286 .44 0.45 286 .58 286 .58 of Velocity Control (fosl Outlet 5.03 Outlet 4 .81 Outlet 4 .81 Outlet 5.12 Outlet 5.14 Freeboard (ft.) 2.18 2.09 1.97 1.86 1.72 9/11/2000 cu l-Sb .xis CULVERT#10A Culvert Desctiption 2-30" CSP at Intersection of Great Oaks Drive and Durrand Drive c ulvert Deslan c rlterla Circular Pipe No . ~ Pipes 2.50 2 Culvert Analvsls Calculations Tota l Flow per Critical Design Flow Pipe Depth(ft.) Storm {cfs) {cfs ) de 5 20 .70 10 .35 1.05 10 23 .50 11 .75 1.15 25 26 .90 13.45 1.20 50 30 .60 15 .30 1.30 100 34 .60 17 .30 1.38 n 0.020 Normal Depth (ft.) 1.12 1.20 1.29 1.38 1.48 Invert Elev. (ELI) (ft.) 283 .42 EXHIBITC-4 CULVERT ANALYSIS GREAT OAKS SUBDIVISION Outlet Culvert Top Elev. (ELo) Length Slope of (ft.) (ft.) (ft/ft) Road 283 .22 40 .00 0.0050 287 .50 ke I 0.50 I HEADWATER CALCULATIONS Outfall Channel Dealan Criteria Ll Side Rt. Side Slope Slope Slope CMll C?:1l (?:1) 0 .0050 5 .00 4 .00 INLET CONTROL OUTLET CONTROL HWVD HWi EL hi TW de (de+ D)/2 ho H EL ho 0 .62 1.56 284.98 0 .88 1.05 1.78 1.78 0.16 285 .16 0.67 1.68 285 .10 0.94 1.15 1.83 1.83 0.21 285 .26 0 .73 1.82 285.24 1.01 1.20 1.85 1.85 0.28 285 .35 0.79 1.97 285.39 1.09 1.30 1.90 1.90 0.36 285.48 0.85 2.13 285.55 1.12 1.38 1.94 1.94 0.46 285.62 Bottom Width n (ft .) 0 .00 0.024 Control Type HW of Elev. Control 285 .16 Outlet 285 .26 Outlet 285.35 Outlet 285.48 Outlet 285 .62 Outlet Outlet Velocity (fps ) 5 .29 5.33 5.77 5.93 6 .23 Freeboard (ft.) 2 .34 2 .24 2.15 2.02 1.88 9/11/2000 eul-p .lds CULVERT#13 Culvert Description 42" Alum inized Steel Pipe (n=.0 14 ) at intersection of Culvert Des i gn Criteria Circular Pipe No. Dia. (ft.) Pi pes 3 .50 1 Gandy Road and C I rt A I ' C I I f uve na1vs1s a cu a ions Great Oaks Drive Total Flow per Critica l Design Flow Pi pe Depth (ft .) Storm (cfs) (cfsl de 5 45 .00 45 .00 2 .13 10 56 .00 56 .00 2 .35 25 69 .00 6 9 .00 2 .60 50 78 .00 78 .00 2 .75 100 89 .00 89 .00 2 .92 n 0 .0 14 Normal Depth (ft.) 2.12 2.48 3 .05 3.50 3.50 Invert Outlet Elev. (Eli) Elev . (Elo) (ft.) (ft.) 27 1.77 271 .00 EXHIBITC-5 CULVERT ANALYSIS Great Oaks Subdivision Culvert Top length Slope of (ft.) lft/ft\ Road 155.00 0 .0050 278.77 ke 0 .50 0 tf Cha I D . C . u all nne es1gn riter a Lt. Side Rt. Side Bottom Slope Slope Slope W idth I (ft/ft\ 1?:1\ 1?:1\ lft.\ I 0 .0050 5.00 4 .00 0 .00 HEADWATER CALCULATIONS Control INLET CONTROL OUTLET CONTROL HW HWi/D HWi Elhi TW de (de+ Dl/2 ho H EL ho Elev . 0 .89 3 .13 274.90 1.62 2 .13 2 .82 2 .82 0 .87 274 .68 274 .90 1.04 3 .64 275.41 1.75 2 .35 2 .93 2 .93 1.34 275.27 275 .41 1.2 1 4 .25 276.02 1.91 2 .60 3 .05 3 .05 2 .04 276 .09 276 .09 1.29 4 .50 276 .27 1.99 2.75 3 .13 3 .13 2 .61 276 .73 276 .73 1.45 5 .08 276.85 2 .09 2 .92 3.21 3.21 3 .39 277.60 277.60 n 0 .024 Type of Con trol In let Inlet Outlet Outlet Outlet Outlet Velocity (fps ) 7 .38 7 .69 9.00 9.25 9 .25 Freeboard (ft .) 3.87 3.36 2 .68 2 .04 1.17 9/11/2000 cu l-13 .xis EXHIBITD-1 Great Oaks Subdivision HEC RAS ANALYSIS: Pre-Dev 100-yr Water Surface Elevations Reach River Sta Q Total Min Ch El W .S. Elev Crit W .S. (cfs) (ft) (ft) (ft) West Branch 18 102 296 298.25 West Branch 17 102 295 296.47 West Branch 16 102 294 295.17 West Branch 15 102 291 293.67 We st Branch 14 102 290 291.79 291.79 We st Branch 13 102 284 287.07 West Branch 12 102 284 286.81 West Branch 11 102 283 285.95 West Branch 10 102 281 283.78 West Branch 9 102 278 283.75 West Branch 8 757 272 278.08 West Branch 7 757 270 277.84 West Branch 6 757 268 277.63 West Branch 5 2032 266 277.52 East Branch 506 977 280 286.11 East Branch 505 977 278 285.68 East Branch 310 1255 274 283 .02 East Branch 309 1255 273 282.09 East Branch 308 1255 273 280.94 East Branch 307 1255 272 278.99 East Branch 4.75 1255 268 276.78 Main Channel 4.5 2402 268 276.18 Main Channel 4.25 2402 266 275.3 Main Channel 4 2402 261.8 275.44 Main Channel 3 2402 261.8 275.41 268.27 Main Channel 2 .5 Culvert Main Channel 2 2402 261.8 270.27 Main Channel 1 2402 261.8 269.41 268.27 Exhibit D-2 Great Oaks Subdivision HEC-RAS ANALYSIS: Post Dev 100-yr Water Surface Elevations with Culvert 10 Reach River Sta Q Total Min Ch El W.S. Elev Crit W.S. Increase fro m (cfs) (ft) (ft) (ft) Pre Dev . West Branch 18 106 296 298.30 0.05 West Branch 17 106 295 296.48 0.01 West Branch 16 106 294 295.20 0.03 West Branch 15 106 291 293 .71 0.04 West Branch 14 106 290 291.82 291.82 0.03 West Branch 13 106 284 287.20 0.13 West Branch 12 106 284 286.97 0.16 West Branch 11 106 283 286.34 0.39 West Branch 10 106 281 282.99 282.99 -0.79 West Branch 9 106 278 282.57 -1.18 West Branch 8 768 272 279.63 1.55 West Branch 7 768 270 279.39 274.76 1.55 West Branch 6.5 Culvert 10 - - -- West Branch 6 743 268 277.55 -0.08 West Branch 5 1953 266 277.43 -0.09 East Branch 506 973 280 286.23 0.12 East Branch 505 973 278 285.73 0.05 East Branch 310 1286 274 283.12 0.10 East Branch 309 1286 273 282.17 0.08 East Branch 308 1286 273 281.00 0.06 East Branch 307 1286 272 279.04 0.05 East Branch 4.75 1286 268 276 .65 -0.13 Main Channel 4.5 2339 268 276.09 -0.09 Main Channel 4.25 2339 266 275.20 -0.10 Main Channel 4 2339 261.80 275.34 -0.10 Main Channel 3 2339 261.80 275.30 268.17 -0.11 Main Channel 2.5 Culvert at Gandy Rd. - Main Channel 2 2339 261.80 270.20 -0.07 Main Channel 1 2339 261.80 269.34 268.17 -0 .07 Top of Road at Culvert 10 281.37 WSEL at Culvert (100-yr storm) 279.39 Free board 1.98