HomeMy WebLinkAbout75 DP Castlegate Sec 2 Ph 1 00-500079((~
COlllC.l STATION
DEVELOPMENT PERMIT
PERMIT NO. 500079
DP-CASTLEGA TE SUB SEC 2 PH 1
FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA
RE: CHAPTER 13 OF THE COLLEGE ST A TI ON CITY CODE
SITE LEGAL DESCRIPTION:
CASTLEGA TE SECTION 2, PHASE 1
DATE OF ISSUE: January 05 , 2001
OWNER:
WALLACE PHILLIPS
GREENS PRAIRIE INVESTORS , LTD .
5010 AUGUSTA
COLLEGE STATION , TE XAS 77845
SITE ADDRESS:
2270 GREENS PRAIRIE RD W
DRAINAGE BASIN:
SPRING CREEK
VALID FOR 12 MONTHS
CONTRACTOR:
TYPE OF DEVELOPMENT: FULL DEVELOPMENT PERMIT
SPECIAL CONDITIONS:
All construction must be in compliance with the approved construction plans
All t rees must be barricaded, as shown on plans, prior to any construction. An y trees not barricaded will not count
towards landscaping points. Barricades must be l ' per caliper inch of the tree diameter.
The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site
in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design
Criteria. The Owner and/or Contractor shall assure that all disturbed areas are sodden and establishment of vegetation
occurs prior to removal of any silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor
shall also insure that any disturbed vegetation be returned to its original condition , placement and state . The Owner
and /or Contractor shall be responsible for any damage to adjacent properties, city streets or infrastructure due to heavy
machinery and/or equipment as well as erosion , siltation or sedimentation resulting from the permitted work .
An y trees required to be protected by ordinance or as part of the landscape plan must be completely fenced before an y
operations of this permit can begin.
In accordance with Chapter 13 of the Code of Ordinances of the City of College Station , measures shall be taken to
insure that debris from construction , erosion , and sedimentation shall not be deposited in city streets , or ex isting drainage
fa cilities .
I hereby grant this permit for development of an area outside the special flood hazard area. All development shall be in
accordance with the plans and specifications submitted to and approved by the City Engineer in the development permit
a pplication for the above named project and all of the codes and ordinances of the City of College Station that apply .
Date
p/~t(29-t2/
STAFF REVIEW COMMENTS
No. 2
Project: CASTLEGATE SUB SEC 2 PH 1 (FP)-FINAL PLAT (0-216)
PLANNING
1. Final Plat-ok
Reviewed by: Ted M~ Date : 12/27/00
ENGINEERING
1. Construction Documents-Everything is ok .
2 . Drainage Report-Everything is ok .
3. Engineer's Estimate-ok
Reviewed by: Ted~ Date: 12/27/00
NOTE: Any changes made to the plans, that have not been requested by the
City of College Station , must be explained in your next transmittal letter and
"bubbled" on your plans . Any additional changes on these plans that have not
been pointed out to the City, will constitute a completely new review.
Staff Review Comments Page 1 of 1
{ "\
ENGINEER'S COST ESTIMATE
CASTLEGATE SUBDIVISION
COLLEGE STATION, TEXAS
SECTION 2 -PHASE 1
Item Estimated
No. Description Quantity
Sitework
1 Mobilization/Layout 1.0
2 Erosion /Seeding/bale dams/constr. Entr. 1.0
3 Site Preparation 2.5
4 Topsoil Stripping & Replacement 2,000
5 Excavation/Grading 9,100
6 Lime Stabilized Subgrade 6,500
7 Concrete Curb and Gutter 4,400
8 Base Material -6" depth 6,000
9 Base Material -7" depth 0
10 Asphalt Paving -1 1 /2" depth 6,000
11 Concrete Apron 2,000
Storm Drainage
12 18" RCP -structural backfill 27
13 24" RCP -structural backfill 344
14 24" RCP -non-structural backfill 257
15 27" RCP -structural backfill 35
16 27" RCP -non-structural backfill 117
17 36" RCP -non-structural backfill 140
18 Junction boxes 2
19 Inlets 5' wide 0
20 Inlets 1 O' wide 3
21 Inlets 15' wide 4
22 Rip Rap at Road End 120
23 Channel Excavation 1,600
Page 1 of 2
07-Dec-OO
Unit Estimated
Price Cost
LS $10,000.00 $10,000 .00
LS $10,000.00 $10,000 .00
AC $5,000.00 $12,500.00
CY $4.00 $8,000.00
CY $3.50 $31,850.00
SY $3.00 $19,500.00
LF $7.00 $30,800.00
SY $5.75 $34,500.00
SY $6.50 $0.00
SY $4.25 $25,500.00
SF $5.00 ~10,000.00
Subtotal $192,650.00
LF $36.00 $972.00
LF $42.00 $14,448.00
LF $32.00 $8,224.00
LF $46.00 $1,610.00
LF $36.00 $4,212.00
LF $50.00 $7,000.00
EA $2,500.00 $5,000.00
EA $2,500.00 $0.00
EA $3,200.00 $9,600.00
EA $4,000 .00 $16,000.00
TN $40.00 $4,800.00
Cy $3.00 ~4,800.00
Subtotal $76,666.00
REVIEWED FO
Cf' ,, I I/\ ICE
DEC 2 7 2000
C OLLE.bl:: c 1A1 lu
ENGINEERING
Waterline
24 8" Waterline -PVC-Cl 200 (C900)-structural back
25 8" Waterline -PVC-Cl 200 (C900)-non-structural
26 Gate Valves -8"
27 M.J . Bends and Tees 8"
28 Connect to Existing
29 Water Services
30 Fire Hydrant Assembly
31 2" Blow off Assembly
Sanitary Sewer
32 8" SOR 26 Pipe (10-14')
33 6" SOR 26 Pipe -6-8' depth
34 Tie-in to existing Manhole
35 Construct drop to existing manhole
36 Sewer Services
37 6" Stack Pipe Riser
38 5' Stub out@ -Manhole
39 Manholes -10-12' depth
Page 2 of 2
200 LF $30.00
1,740 LF $26.00
5 LF $600 .00
11 EA $300.00
2 EA $350.00
18 EA $700.00
3 EA $2,000.00
3 EA $400.00
Subtotal
1,487 LF $30 .00
1,271 LF $20.00
2 LF $300.00
2 LF $500.00
14 LS $600.00
14 LS $250.00
2 LS $400.00
14 EA $2,200 .00
Subtotal
Total Sitework
Total Storm Drainage
Total Water
Total Sanitary Sewer
TOTAL CONSTRUCTION
Engineering @5%
Contingency @5%
TOTAL CONSTRUCTION
$6,000.00
$45,240.00
$3,000 .00
$3,300.00
$700.00
$12,600 .00
$6,000 .00
~1,200.00
$78,040.00
$44,610.00
$25,420.00
$600.00
$1,000.00
$8,400.00
$3,500.00
$800.00
~30,800.00
$115, 130.00
$192,650.00
$76,666.00
$78,040.00
$115, 130.00
$462,486.00
$23,124.30
$23,124.30
$508, 734.60
Scale = 1: 377
Feet
3
24
23
22
42
40
38
37
-
3
4
5
6
7
8
1 N 86 ° 50' 18" E 307 .38
2 S 3° 19' 47" E 375.35
3 S 5° 12' 37 " E 104.44
4 S4°16"W154.89
5 S 9° 33' 9" W 130 .94
6 s 21 ° 29' 42" w 147 .37
7 S 70 ° 12' 52" E 120.85
8 S22°40'16"W111.46
9 S 66 ° 17' 46 " W , ch 34.41 , r 25 R
10 s 17 ° 59' 53" w 60 .03
11 S 28 ° 52' 9" E, ch 33.03 , r 25 R
12 S 5° 20' 29"W, ch 121 .72 , r490 L
13 S1 °47'37"E13.85
14 S 43 ° 3' 8" W , ch 35 .26 , r 25 R
15 S 66 ° 9' 15" W , ch 359 .34 , r 485 L
16 S44°24'37"W134.93
17 N 88 ° 28' 20" W, ch 36 .64 , r 25 R
18 N 45 ° 44' 2" W , ch 105 .37 , r 690.00 L
19 N 51 ° 17' 29" W , ch 20 .56 , r 500 L
20 N 11 ° 36 ' 47"W, ch 32 .71 , r25 R
21 N 60 ° 12' 35" W 50.43
22 N68°26'44"W131 .14
23 N 24 ° 18' 53" E 74 .69
24 N 7° 54' 30" E 66.48
25 N 11 °26'44"W79.27
26 N 72 ° 20' 36" E 49 .81
27 N 17 ° 39' 38" W 60.00
28 N 24 ° 41' 24" W 134 .82
29 N 53 ° 15' 23" E 71 .91
30 N 35 ° 27' 15" E 93 .33
31 S 80 ° 21' 14" E 86 .01
32 S 77 ° 10' 37" E 89 .83
33 N 80 ° 50' 18" E 101 .38
34 N3°53'19"E31.77
35 N 30 ° 42' 32 " E 120 .91
36 N 23 ° 45' 34" E 65.45
37 N 4 ° 16" E 159 .55
38 N 4 ° 39' 47" E 73.48
39 N 60 ° 51'W 56.40
40 N 8° 52' 8" E 128.53
41 N 5° 30' 18" E 60 .08
42 N 8° 2' 40" E 138 .57
43 N16°6'11 "W51 .30
c .astlegate Subdivision
Section 2, Phase 1
College Station, Texas
Developer:
Greens Prairie Investors, Ltd.
By Greens Prairie Associates, LLC
5010 Augusta
College Station, Texas '77845
(979) 693-7830
Prepared By:
TEXCON General Contractors
1707 Graham Road
College Station, Texas 77845
(979) 690-7711
CERTIFICATION
I, Joseph P. Schultz, Licensed Professional Engineer No. 65889, State of Texas , certify that this
report for the drainage design for the Castlegate Subdivision, Section 2 , Phase 1 was prepared
by me in accordance with the provisions of the City of College Station Drainage Policy and
Design Standards for the owners hereof
_,,,,,,,
--""\~OF ?'. \\ ~~!>-••••••••• ~~ , ..
1'"7 •• *•• 1
"")1 Va '* .. ·· ·· .. <J> '•
'-*: ···' ~·············· ~ * ~ ~ JOSEPH ••••••....••••.•.•••. rd '~\ .......... f: .. ~£~.V.~!.~ ... .J ~ 0. L\ 65889 //J:iJ
... ;..{\ •~T~ Q • ;;;' ' . t,~;~.~~~.If.~~··;~'l \\~~ONAL ~~--~~--
ll-z.1--ou
REVIEWED FOR
l COl\,,DI I/\"' 'SE
DEC 2 7 2000
COLLE Gt:: ~ ,,..... 1v1-.J
ENGINEERING
TABLE OF CONTENTS
DRAINAGE REPORT
CASTLEGATE SUBDIVISION
SECTION 2, PHASE 1
CERTIFICATION .................................................................................................................................................................. 1
TABLE OF CONTENTS ........................................................................................................................................................ 2
LIST OF TABLES .................................................................................................................................................................. 3
INTRODUCTION .................................................................................................................................................................. .4
GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 4
FLOOD HAZARD INFORMATION .................................................................................................................................... 4
DEVELOPMENT DRAINAGE PATTERNS ...................................................................................................................... .4
DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 5
STORM WATER RUNOFF DETERMINATION ............................................................................................................... 5
DETENTION FACILITY DESIGN ...................................................................................................................................... 7
STORM SEWER DESIGN .................................................................................................................................................... 7
CONCLUSIONS ..................................................................................................................................................................... 8
APPENDIX A .......................................................................................................................................................................... 9
Storm Sewer Inlet Design Calculations
APPENDIX B ........................................................................................................................................................................ 11
Storm Sewer Pipe Design Calculations
APPENDIX C ........................................................................................................................................................................ 25
Temporary Drainage Channel Design Calculations
EXHIBIT A ............................................................................................................................................................................ 29
Offsite Infrastructure Plan for Castlegate Subdivision
EXHIBIT B ............................................................................................................................................................................ 31
Post-Development Drainage Area Map
2
LIST OF TABLES
TABLE 1 -Rainfall Intensity & Time of Concentration Calculations .............................................. 6
TABLE 2 -Post-Development Runoff Information ............................................................................ 6
3
DRAINAGE REPORT
CASTLEGATE SUBDIVISION
SECTION 2, PHASE 1
INTRODUCTION
The purpose of this report is to provide the hydrological effects of the construction of the
Castlegate Subdivision, Section 2, Phase 1 , and to verify that the proposed storm drainage
system meets the requirements set forth by the City of Co ll ege Station Drainage Policy and
Design Standards.
GENERAL LOCATION AND DESCRIPTION
The project is located on a 162 acre tract located west of State Highway 6 along the north side
of Greens Prairie Road in College Station, Texas. This report addresses Section 2, Phase 1 of
this subdivision , which consists of 15.71 acres . The site is wooded with the vegetation
primarily consisting of oak trees and yaupons. The existing ground elevations range from
elevation 310 to elevation 330. The general location of the project site is shown on the vicinity
map in Exhibit B.
FLOOD HAZARD INFORMATION
The project site is loc ated in the Spring Creek branch of the Lick Creek Drainage Basin. The
site is locat ed in a Zone X Area according to the Flood Insurance Rate Map prepared by the
Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated
areas dated July 2 , 1992, panel number 48041 C0205-C. Zone X Areas are determined to be
outside of the 500-year floodplain. LJA Engineering & Surveying, Inc. submi tted a Request
for Conditional Letter of Map Revision (CLOMR) to FEMA to outline a proposed 100-year
floodplain area . This CLOMR No. 00-06-844R was approved by FEMA on 9/8/2000 . The
proposed floodplain area does not affect Section 2, Phase 1. Phase 1 will continue to be in a
ZoneXArea.
DEVELOPMENT DRAINAGE PATTERNS
The storm water runoff from the site prior to development flows in one general direction. For
Section 2, Phase 1, the acreage flows toward the west-northwest boundary of the tract and into
existing drainage channels and Spring Creek and ultimately flows north to the proposed
regional detention facility . Refer to the Offsite Infrastructure Plan in Exhibit A for the location
of this proposed detention facility .
4
DRAINAGE DESIGN CRITERIA
The design parameters for the storm sew er ar e as follows:
• The Ration al Method is utili zed to d etermine peak storm water runoff rates for the storm
sewer design.
• Design Storm Frequency
Storm Sewer system
• Runoff Coefficients
Pre-development
10 and 100-year storm events
Post-development (singl e family residential)
c = 0.30
c = 0 .55
• Rainfall Intensity values for Brazos County for a minimum time of concentration of 10
minutes can be found in Table 1. Where a longer time of concentration was necessary, it is
noted in the respective table , and the intensities are calculated with the higher values where
required.
• Time of Concentration, tc -Due to the small sizes of the drainage areas, the calculated
times of concentration, tc, are less than 10 minutes. Therefore, a minimum tc of 10 minutes
is used in most cases to determine the rainfall intensity values . Where a longer time of
concentration was necessary, it is not ed and used accordingly. Refer to Table 1 for
calculations.
ST ORM WATER RUN OFF DETERMINATION
The peak runoff values were determined in accordance with the criteria presented in the
previous section for the 5, 10 , 25, 50, and 100-year storm events. The runoff coefficients are
based on the future development of this tract. The drainage areas for post-development are
shown in Exhibit B . Post-development runoff conditions are summarized in Table 2.
5
TABLE 1 -R a in fa ll I ntens ity & T ime of C oncentration Calcul atio ns
Rai nfall Int e n s ity Values (i n /hr)
St orm t = c
Event 10 m i n
15 7 .693
110 8.635
125 9.861
150 11 .148
1100 11 .639
Brazos County:
51'.'.ear storm 10 l'.'.ear storm
b = 76 b = 80
d = 8 .5 d = 8 .5
e = 0 .785 e = 0 .763
I = b I (tc+d)0
I = Rainfa ll Intensity (i n/h r)
tc = U(V*60)
to= Time of co ncentrati o n (min)
L = Length (ft)
V =Velocity (ft/sec)
251'.'.ear storm 50 l'.'.ear storm 100 l'.'.ear storm
b = 89 b = 98 b = 96
d = 8 .5 d = 8 .5 d = 8 .0
e = 0 .754 e = 0 .745 e = 0 .730
(Data taken from State Department of Hiqhwal'.'.S and Public Transportation Hl'.'.drau lic Manual, page 2-16)
TABLE 2 - P ost -Deve lopmen t Runoff Information
A c t c Q 5 Q 10 Q 25 Q 50 A r ea#
(acres ) (min ) (c f s) (c fs) (cfs ) (c fs)
5 1.74 0 .55 1 0 7 .36 8 .26 9.44 1 0 .67
38 2 .27 0 .55 1 0 9 .60 1 0 .78 1 2 .31 1 3 .92
39 1 . 61 0 .55 1 0 6 .81 7 .65 8.73 9 .87
40 1 . 7 8 0.55 1 0 7 .53 8 .45 9 .65 1 0 .91
41 2 .1 3 0 .55 1 0 9.01 1 0 .1 2 11 .5 5 1 3 .06
42 1 .38 0 .55 1 0 5.84 6 .55 7 .48 8 .46
43 1 .36 0 .55 1 0 5.7 5 6 .46 7 .38 8 .34
44 1 .69 0 .55 10 7 .1 5 8 .03 9 .1 7 1 0 .36
49 1 . 7 1 0 .55 1 0 7 .24 8 .1 2 9 .27 1 0 .48
50 1 .06 0 .55 1 0 4 .49 5 .03 5 .7 5 6 .50
58 1 . 1 2 0 .55 1 0 4.74 5 .32 6 .07 6 .87
59 1 .32 0 .55 1 0 5 .59 6 .27 7 .1 6 8 .09
60 1 .50 0 .55 1 0 6 .35 7 .1 2 8 .14 9.20
61 1 . 1 7 0 .55 1 0 4 .95 5 .56 6 .35 7.17
62 1 . 7 5 0 .55 1 0 7 .40 8 .3 1 9 .49 10 .7 3
90 1 .32 0 .55 1 0 5 .59 6.27 7 .1 6 8 .09
6
Q 100
(c f s)
1 1 . 1 4
14 .53
1 0 .31
11 .3 9
1 3 .64
8 .83
8 . 71
10 .82
1 0 .95
6 . 79
7 .17
8 .45
9.60
7 .49
11.20
8 .45
DETENTION FACILITY DESIGN
The detention facility handling the runoff from this site will be a regional facility designed by
LJA Engineering & Surveying, Inc. Refer to the Offsite Infrastructure Plan in Exhibit A for the
location of this proposed detention facility. The runoff from this project flows into existing
drainages and then into Spring Creek. The detention facility is located adjacent to Spring
Creek prior to Spring Creek entering the State Highway 6 right-of-way.
STORM SEWER DESIGN
The storm sewer piping for this project has been selected to be Reinforced Concrete Pipe
(RCP) meeting the requirements of ASTM C-76, Class III pipe . The curb inlets and junction
boxes will be cast-in-place concrete.
Appendix A presents a summary of the storm sewer inlet design parameters and calculations .
The inlets were designed based on a 10-year design storm. As per College Station guidelines ,
the capacities of inlets in sump were reduced by 10% to allow for clogging.
Inlets were located to maintain a gutter flow depth of 5" or less , which will prevent the spread
of water from reaching the crown of the road for the 10-year storm event. The runoff
intercepted by the proposed storm sewer inlets was calculated using the following equations.
The depth of flow in the gutter was determined by using the Straight Crown Flow equation.
The flow intercepted by Inlets 201-206 & 224 was calculated by using the Capacity of Inlets
On Grade equation. There are no inlets in sump for this phase of construction. The equation
used for on-grade inlets and the resulting data are summarized in Appendix A.
Appendix B presents a summary of the storm sewer pipe design parameters and calculations.
All pipes are 18" in diameter or larger. For pipes with 18" and 24" diameters, the cross-
sectional area is reduced by 25%, as per College Station requirements. A summary of how this
was achieved is shown in Appendix B as well. The pipes for the storm sewer system were
designed based on the 10-year storm event; however, all will also pass the 100-year storm event
without any headwater. Based on the depth of flow in the street determined for the 100-year
storm event, this runoff will be contained within the street right-of-way until it enters the storm
sewer system. As required by College Station, the velocity of flow in the storm sewer pipe
system is not lower than 2 .5 feet per second, and it does not exceed 15 feet per second. As the
data shows , even during low flow conditions, the velocity in the pipes will exceed 2.5 feet per
second and prevent sediment build-up in the pipes. The maximum flow in the storm sewer pipe
system will occur in Pipe No. 206. Appendix B contains a summary of the Manning pipe
calculations as well as flow diagrams mapping the flows through the storm sewer system for
the 10 and 100-year events. The maximum velocity for the pipe system in Section 2, Phase 1
will be 11.06 feet per second and will occur in Pipe 205 . Pipes 206 & 233 will be stubbed out
for this phase of construction. A temporary drainage channel will be constructed from the end
of each of these stubbed out pipes. The locations of these channels are shown in Exhibit B. A
temporary blanket easement has been provided to the City for the future development of
adjacent areas and the construction of off-site drainage and utility facilities . The velocity in
Channel No. 1is3 .6 feet per second for the 10-year event, and 3.8 feet per second for the 100-
year event. The velocity in Channel No. 2 is 3 .1 feet per second for the 10-year event , and 3 .3
feet per second for the 100-year event. These velocities are within the requirements for a
7
seeded grass channel outlined on page 60 of the City of Co ll ege Station Drainage Policy &
Design Standards manual. Refer to Appendix C for details.
CONCLUSIONS
The construction of this project will significantly increase th e storm water runoff from this site.
The proposed storm sewer system should adequately contro l the runoff and release it into
existing drainages. Also, the regional detention facility and the proposed ponds in the park area
(addressed in Section 1, Phase 1) should adequat ely reduce the peak post-development runoff
to less than the pre-development runoff for the design storm event. This will prevent any
impact on the properties downstream of this project.
8
APPENDIX A
Storm Sewer Inlet Design Calculations
9
Castlegate Subdivision
Section 2 -Phase 1
Inlet Length Calculations
No Inlets i n sump for this phase.
Inlets On Grade
Inlet# Length & Type F~wfro m
Area#
Section 21Phase 1 .,.
201 15' Reces sed 38
202 1 O' Recessed 5
203 10' Recessed 39
204 15' Recessed 62
205 1 O' Recessed 61
206 15' Recessed 60
224 15' Recessed 40
Y10
(ft) (In)
0 .364 4.37
0 .329 3.95
0.380 4.56
0.408 4.90
0.333 3.99
0.355 4.26
0.380 4.56
Transverse (Crown ) slo pe (fVft) = 0 .038
Q JMr foot Q C:llpllClty
(fl) (cfs)
0.66 9.85
0.62 6.23
0.66 6.57
0.67 10.03
0.63 6.26
0.65 9.72
0.67 10.10
Stra ight Crown Flow (Sol ved to find actual depth of flow . yl :
Q byp ...
(cfs)
0.93
2.03
1.07
-1 .72
-0 .70
-2 .59
-1.64
a= o .56 • (zln) • s "' • y'" q y = {Q / (o .ss • (zln) • s 112n'"
n =Roughness Coefficient= 0 .018
z = Reciprocal of crown slope = 26
S = StreeVGutter Slope (fVft)
y = Depth of flow at inlet (ft )
Capacity of Inlets on grade:
Oc = 0 .7 '(1/(H, - H,)] '[H ,512 • H,'"J
Oc = Flow capacity of inlet (els)
H 1 ~a+ y
H2 =a = gutter depression (2" Standard ; 4" Recessed)
y = Depth of flo w in approach gutter (ft)
1 O year storm
O uptuM Q C.rry'OHr Q byp-tot.i C c9f)t-tot•
(cfs ) (cfs) from Inlet# (cfs) (cfs)
9.85 0.00 0.93 9.85
6.23 0.00 2.03 6.23
6.57 0.93 201 2.00 6.57
8.31 2.03 202 0.31 10.03
5.56 0.00 0.00 5.56
7.12 0.00 204, 205 0.00 7.12
8.45 0.00 0.00 8.45
Q 10·T01al y,.,
(cfs ) (fl) (in )
10.78 0.407 4.89
8.26 0.368 4.42
8.57 0.461 5.54
10.35 0.478 5.73
5.56 0.372 4.47
7.12 0.475 5.69
8.45 0.425 5.10
100 year storm
O i-1oc11 <l.;..,,llClty Obyp•• O uptured
(fl) (cfs) (cfs) (cfs)
0 .70 10.50 4 .03 10 .50
0 .66 6.6 1 4.52 6.61
0 .70 7.0 1 3.30 7.01
0 .71 10.71 0.49 10.71
0 .67 6.65 0.84 6 .65
0 .69 10.35 -0 .75 9.60
0.72 10.78 0.61 10.78
In lets in sumps. Weir Flow :
L = QI (3 'y312) q y = (QI 3L)213
L = Length of inlet opening (ft)
Q =Flow at inlet (els)
y = total depth of flow on inlet (ft)
ma x y for inlet in sump = 7" = 0 .583'
C urry__,
(cfs ) from inlet#
0.00
0.00
4.03 201
4.52 202
0.00
5.86 204 , 205
0.00
Q byp..:ot.i O c:119l -toc1 0 100.Tot• s L..e1u.,
(cfs) (cfs) (cfs) (tuft ) (fl )
4.03 10.50 14 .53 0.0380 15 ,____
4.52 6.61 11 .14 0.0380 10
7.33 7.01 14 .33 0.0190 10
5.02 10.71 15.73 0.0 190 15
0.84 6.65 7.49 0 .0 163 10
5.11 10.35 15.46 0 .0190 15
0.61 10.78 11 .39 0.0185 15
APPENDIXB
Storm Sewer Pipe Design Calculations
11
Castlegate Subdivision
Pipe Calculations -Section 2 , Phase 1
Inlet Outlet 10 yea r storm 100 year storm
Pipe# Size Length Slope Invert Invert
Elev Elev *Actual Flow Design Fl ow V10 % Full
Travel Time , lT1o *Actu al Flow Desig n Flow V100 % Full
(in) (ft) (%) {ft) {ft) {cfs) {cfs) (fps) {sec) (min) {cfs) (cf s) (fps)
200 24 30 .9 0 .60 314.81 3 14 .62 9 .85 15 .91 5.9 0 80 .0 5 0 .09 10 .50 16.96 5 .88 86.4
201 24 99 .8 1.50 313.65 312.15 16 .08 25.97 9.33 82 .8 11 0 .18 17 .11 27.63 9 .12 92.3
202 24 156.9 1.50 31 1.48 309.13 16 .08 25 .97 9 .33 82 .8 17 0 .28 17 .11 27 .63 9 .12 92.3
203 18 27.0 1.20 309 .95 309 .63 6 .57 10.6 1 6 .89 8 1.3 4 0 .07 7 .0 1 11 .32 6 .82 88 .8
204 27 94 .2 1.30 308 .85 307 .63 32 .68 9.40 81 .7 10 0 .17 34 .83 9 .29 89 .3
205 27 57 .2 1.80 307 .56 306.53 38.24 11 .06 81 .2 5 0 .09 41.48 10.77 92 .9
206 36 139.4 0 .65 305.78 304 .87 45 .36 8.00 74 .8 17 0 .29 51 .83 8.02 85.9
232 24 181 .3 1.75 305 .28 302.11 8.45 13.65 8.81 49 .5 21 0 .34 10 .78 17.41 9 .34 57.4
233 24 130.5 2 .00 308 .01 305.40 8 .45 13.65 9.26 47.6 14 0 .23 10 .78 17.41 9 .83 55.0
*These values reflect th e actual flow for the 18" & 24" pipes . The desig n flow for these pipe sizes reflects a 25% reduction in pipe area .
(Refer to attached calculation for specific information .)
Travel Time , 11100
(sec) (min)
5 0 .09
11 0 .18
17 0 .29
4 0 .07
10 0 .17
5 0 .09
17 0 .29
19 0 .32
13 0 .2 2
City of College Station requirement to Reduce Cross-Sectional Area of 18" & 24" Pipes by 25%
Using Mannings Equation from page 48 of the College Station Drainage Policy & Design Standards Manual :
Q = 1.49/n * A * R213 * S 112
Q =Flow Capacity {cfs)
18" Pipe:
Pipe size (inches) =
Wetted Perimeter W P, (ft)=
Cross-Sectional Area A , (W) =
Reduced Area A R, (ft2 ) =
Hydraulic Radius R = A/WP• (ft) =
Reduced Hydr Radius RR = A R/WP• (ft) =
Roughness Coefficient n =
Friction Slope of Conduit Sr. (ft/ft)=
Example Calculation:
Slope Flow Capacity Reduced Flow Ca paci ty
s Q
0 .005 6 .91
0.006 7.57
0 .007 8 .18
24" Pipe:
Pipe size (inches) =
Wetted Perimeter W P, (ft)=
Cross-Sectional Area A , (W) =
Reduced Area A R, {W) =
Or educed
4.28
4.69
5.06
Hydraulic Radius R = A/WP• (ft) =
Reduced Hydr Radius RR = A R/W P• (ft) =
Roughness Coefficient n =
Friction Slope of Conduit Sr. (ft/ft) =
Example Calculation:
Slope Fl ow Capacity Reduce d Fl ow Ca pacit y
s Q Oreduced
0 .005 14 .89 9 .22
0.006 16.31 10 .1
0 .007 17 .61 10 .9
Conclusion :
18
4 .71
1.766
1 .325
0 .375
0 .281
0 .014
0.01
% Difference
Oreduced /Q
0.619
0.619
0.619
24
6.28
3 .14
2 .355
0 .5
0 .375
0.014
0 .01
% Difference
OreduceiO
0.619
0.619
0.619
Multiply actual Q in 18" & 24" pip es by 1.615 to reflect a 25% reduction in the
cross-sectiona l area called for on page 47, paragraph 5 of the College Station
Drainage Policy & Design Standards manual.
Castlegate Subdivision
Section 2, Phase 1 -Pipe Flow Diagram
Inlet 201 I 9 .85
J.,
Pipe 200 1 9.85
J.,
Inlet 202 1 6.23
J.,
Pipe201 I 16.08
J.,
June Box 200
J.,
Pipe 202 1 16 .08
J.,
Inlet 204 1 10 .03
J.,
Pipe 204 1 32 .68
J.,
Inlet 205 1 5.56
J.,
Pipe 205 1 38 .24
J.,
Inlet 206 1 7 .12
i
llPipe 206 1 45.36 11
(Into Phase 2)
010 (cfs)
Inlet 203 6.57
J.,
---1
~ Pipe 203 6.57
Inlet 224 1 8.45
J.,
Pipe 233 1 8.45
J.,
June Box 209
llP ipe 232 1 8.45 II
(Into Phase 2)
Castlegate Subdivision
Section 2, Phase 1 -Pipe Flow Diagram
In let 201 I 10 .50
J,
Pipe 200 1 10 .50
J,
Inlet 202 1 6.61
J,
Pipe201 l 17 .11
J,
J un e Box 200
J,
Pipe202 l 17 .11
J,
Inlet 204 1 10 .71
J,
Pipe 204 1 34 .83
J,
Inlet 205 1 6.65
J,
Pipe 205 1 41.48
J,
Inlet 206 1 10.35
J,
llP ipe 206 1 51.83 11
(Into Phase 2)
0 100 (cfs)
Inlet 203 1 7 .01
J,
Pipe 203 1 7.01
Inlet 224 1 10 .78
J,
Pipe 233 1 10 .78
J,
Ju ne Box 209
llPipe 232 1 10 .78 II
(Into Phase 2)
Pipe 2 00 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
S o l v ing for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow v elocity ............. .
Circular
Depth of Flow
2 4.0000 in
15.9100 cfs
0.0060 ft/ft
0. 0140
19.2062 in
3.1416 ft2
2 .6951 ft2
53.1588 in
75.3982 in
5.9032 fps
7.3007 in
80 .0 2 60 %
16 .2716 cfs
5.1794 fps
Pipe 200 -100 Year Storm
Manning Pipe Calculator
Giv en Input Data :
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hy draulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow v elocity ............. .
Circular
Depth of Flow
24.0000 in
16.9600 cfs
0.0060 ft/ft
0. 0140
20.7336 in
3 .1416 ft2
2 .8850 ft2
57.2616 in
75.3982 in
5.8786 fps
7 .2552 in
86.3 899 %
16 .2 71 6 cfs
5 .1 79 4 fps
Castlega t e Subdiv i s i o n, Section 2 , Ph ase 1
College Stati o n, Texas
Pipe 201 -10 Year Sto rm
Manning Pipe Calculator
Giv e n Input Data:
S hape .......................... .
Solv ing for .................... .
Diameter ....................... .
F l owrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hy draulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow v elocity ............. .
Circul ar
Depth of Flow
24 .0000 in
2 5 .9700 cfs
0.0150 ft/ft
0 .0140
19.8826 i n
3 .141 6 ft2
2.78 2 8 ft2
54 .89 9 4 in
75 .3982 in
9.33 2 5 fps
7.2991 in
82 .844 2 %
25.7 2 76 cfs
8 .189 4 fps
Pipe 201 -100 Year Storm
Manning Pipe Cal c ulator
Giv en Input Data:
Shape .......................... .
Solv ing for .................... .
Diameter ....................... .
Flowrate ....................... .
S l ope .......................... .
Manning ' s n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hy draulic Radius ............... .
Pe rc e nt Full ................... .
Full flow Flowrate ............. .
Full flow ve locity ............. .
Circ ular
Depth o f Flow
24 .0000 in
27 .6300 cfs
0.015 0 ft/ft
0. 014 0
22 .1468 in
3 .1416 ft2
3.0 2 98 ft2
61 .88 2 0 in
75 .39 8 2 in
9. 11 93 fps
7 .0505 in
92.27 8 2 %
2 5 .7 276 cfs
8 .18 9 4 fps
Ca s t legat e Subd ivi s i o n, Sec t ion 2 , Phase 1
Co l lege Stat ion, T exas
Pipe 2 0 2 -10 Year Storm
Manning P i pe Calculator
Giv en Input Data:
Shape .......................... .
S o l v ing for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results:
Depth .......................... .
Area ............. .' ............ · ·
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24 .0000 in
25 .9700 cfs
0.0150 ft/ft
0. 0140
19.8826 in
3.1416 ft2
2.7828 ft2
54.8994 in
75.3982 in
9.3325 fps
7.2991 in
82.8442 %
25 .7276 cfs
8.1894 fps
Pipe 202 -100 Year Storm
Manning Pipe Calculator
Giv en Input Data:
Shape .......................... .
Solv ing for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope ......... · ................. .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hy draulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow v elocity ............. .
Circular
Depth of Flow
24.0000 in
27.6300 cfs
0.0150 ft/ft
0. 0140
22.1468 in
3 .1416 ft2
3.0298 ft2
61.8820 in
75 .3982 in
9. 1193 fps
7.0505 in
92 .278 2 %
25.727 6 cfs
8.18 9 4 fps
Castlegate Subdiv ision, S ect ion 2 , Pha s e 1
Co l leg e Statio n, Texa s
Pipe 203 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area .......................... · ·
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Veloci ty ....................... .
Hydr aulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
18.0000 in
10.6100 cfs
0.0120 ft/ft
0. 0140
14.6397 in
1.7671 ft2
1.5392 ft2
40 .4645 in
56.5487 in
6.8932 fps
5.4775 in
81.3318 %
10.6850 cfs
6.0465 fps
Pipe 203 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full fl ow veloc ity ............. .
Circular
Depth of Flow
18.0000 in
11.3200 cfs
0.0120 ft/ft
0. 0140
15 .988 3 in
1.7671 ft2
1.6589 ft2
44.2775 in
56.5487 in
6.8238 fps
5.3951 in
88.8241 %
10.6850 cfs
6.0465 fps
Castlegate Subdivision, Section 2, Phase 1
College Station , Texas
Pipe 204 -10 Year Storm
Manning Pipe Calculator
Given Input Data :
Shape .......................... .
Solving for .................... .
Diame ter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Dept h .......................... .
Area ........................... .
Wette d Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Veloci ty ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow ve locity ............. .
Circular
Depth of Flow
27.0000 in
32.6800 cfs
0. 0130 ft/ft
0. 0140
22 .0484 in
3 .9761 ft2
3.4761 ft2
60.9254 in
84 .8230 in
9 .40 12 fps
8.2160 in
81.6607 %
32.7893 cfs
8.2466 fps
Pipe 204 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimet er ...................... .
Veloci ty ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow veloc ity ............. .
Circular
Depth of Flow
27.0000 in
34.8300 cfs
0.0130 ft/ft
0. 0140
24.1144 in
3.9761 ft2
3.7479 ft2
66.8388 in
84.8230 in
9 .2 931 fps
8.0747 in
89.3124 %
32 .7893 cfs
8.2466 fps
Castlegate Subdivision, Section 2, Phase 1
College Station, Texas
Pipe 205 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Ve locity ....................... .
Hy draulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow ve locity ............. .
Circular
Depth of Fl ow
27.0000 in
38.2400 cfs
0. 0180 ft/ft
0. 0140
21.9150 in
3.9761 ft2
3.4567 ft2
60.5825 in
84.8230 in
11.0626 fps
8.2163 in
81.1667 %
38.5831 cfs
9.7038 fps
Pipe 205 -100 Year Storm
Manning Pipe Calculator
Give n Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Veloc ity ....................... .
Hy draulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow ve locity ............. .
Circular
Depth of Flow
27.0000 in
41.4800 cfs
0.0180 ft/ft
0. 0140
25.0871 in
3.9761 ft2
3.8515 ft2
70.2743 in
84.8230 in
10.7697 fps
7.8922 in
92.9152 %
38.5831 cfs
9.7038 fps
Castlegate Subdivision, Sec tion 2, Phase 1
College Station, Texas
Pipe 206 -10 Year Storm
Manning Pipe Calculator
Given Input Data :
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Veloc ity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow veloc ity ............. .
Circular
Depth of Flow
36.0000 in
45.3600 cfs
0.0065 ft/ft
0. 0140
26.9121 in
7.0686 ft2
5.6676 ft2
75.1956 in
113.09 73 in
8.0034 fps
10.8535 in
74.7559 %
49 .9330 cfs
7 .0641 fps
Pipe 206 -100 Year Storm
Manning Pipe Calculator
Given I nput Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Veloci t y ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow ve locity ............. .
Circular
Depth of Flow
36.0000 in
51.8300 cfs
0.0065 ft/ft
0. 0140
30.9114 in
7.0686 ft2
6.4586 ft2
85 .34 56 in
113.09 7 3 in
8.0249 fps
10.8974 in
85 .8649 %
49.9330 cfs
7.0641 fps
Castlegate Subdivision, Section 2 , Phase 1
Coll ege Station, Texas
Pipe 232 -10 Year Storm
Manning Pipe Calculator
Given Input Data :
Shape .......................... .
Solv ing for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Mann i ng' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hy draulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow v elocity ............. .
Circular
Depth of Flow
24.0000 in
13.6500 cfs
0.0175 ft/ft
0. 0140
11.8754 in
3.1416 ft2
1.5500 ft2
37 .4500 in
75.3982 in
8.8062 fps
5.9601 in
49.4810 %
27.7890 cfs
8.8455 fps
Pipe 232 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solv ing for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hy draulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow v elocity ............. .
Circular
Depth of Flow
24.0000 in
17.4100 cfs
0.0175 ft/ft
0.0140
13.7675 in
3.1416 ft2
1 .8643 ft2
41.2470 in
75.3982 in
9.3386 fps
6.5086 in
57.3645 %
27.7890 cfs
8.8455 fps
Castl e gate Subdiv ision, Sectio n 2, Phase 1
Coll e ge Station, Tex as
Pipe 233 -10 Year Storm
Manning Pipe Calculator
Gi ven Input Data :
Shape .......................... .
Solv ing f or .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Veloc ity ....................... .
Hy draulic Radius ............... .
Percent Ful 1 ................... .
Full flow Flowrate ............. .
Full flow veloci t y ............. .
Circular
Depth of Flow
24.0000 in
13.6500 cfs
0.0200 ft/ft
0. 0140
11.4 2 30 in
3.1416 ft2
1.4747 ft2
36.5446 in
75.3982 in
9.2563 fps
5.8107 in
47.5958 %
29.7077 cfs
9.4563 fps
Pipe 233 -100 Year Storm
Manning Pipe Calculator
Giv en Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrat e ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hy draulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow ve locity ............. .
Circular
Depth of Flow
24 .0000 in
17 .4100 cfs
0.0200 ft/ft
0.0140
13.2046 in
3.1416 ft2
l. 7712 ft2
40.1124 in
75.3982 in
9.8293 fps
6.3586 in
55.0193 %
29.7077 cfs
9 .4563 fps
Castlegate Subdivision, Sec tion 2 , Phase 1
College Station, Texas
APPENDIXC
Temporary Drainage Channel Design Calculations
25
Castlegate Subdivision
Temporary Drainage Channel Calculations -Section 2, Phase 1
Temporary Drainage Channel No. 1
A c tc 010 Area#
(acres) (min) (cfs)
58 1.12 0 .55 10 5 .32
59 1.32 0 .55 10 6 .27
From Pipe 206 : 45 .36
Total Flow to Temp Drainage Channel : 56.94
T emporary D . ramage Ch anne IN 2 0.
Area#
A c tc
(acres) (min)
41 2 .13 0 .55 10
42 1.38 0.55 10
From Pipe 232 :
Total Flow to Temp Drainage Channel :
The Rational Method:
Q=CIA
Q =Flow (cfs)
A= Area (acres)
C = Runoff Coeff.
I = Rainfall Intensity (in/hr)
010
(cfs)
10 .11
6 .55
8.45
25.11
0100
(cfs)
7 .17
8.45
51 .83
67.45
0100
(cfs)
13 .64
8 .83
10 .78
33.25
Temporary Dr ai nage Channel No. 1 -10 Year Storm
Channel Ca l c u lator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manni ng' s n .................... .
Height ......................... .
Bottom wi dth ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Ve l oc ity ................... · .... .
Full Flowrate .................. .
Flow area ...................... .
Flow peri meter ................. .
Hy draulic radius ............... .
Top width ...................... .
Area ........................... .
Perimete r ...................... .
Percent full ................... .
Trapezoidal
Depth of Fl ow
56.9400 cfs
0.0040 ft/ft
0.0 300
42.0000 in
0 .0000 in
0.5000 ft/ft (V/H)
0.5 000 ft/ft (V/H)
33.5718 in
3.6375 fps
103.4703 cfs
15.6537 ft2
150.1378 in
15.0 138 in
134 .2873 in
24.5000 ft2
187.8297 in
79.9329 %
Temporary Drainage Channe l No. 1 -100 Year Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solv ing for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bottom widt h ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Veloc ity ....................... .
Full Flowra t e .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perime ter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
67.4500 cfs
0.0040 ft/ft
0 .030 0
42.00 00 in
0.0000 in
0.5000 ft/ft (V/H)
0.5000 ft /f t (V/H)
35.7735 in
3.7948 fps
10 3.4703 cfs
17.7742 ft 2
159.9840 in
15.9984 in
14 3 .0941 in
24.5000 ft2
18 7.8297 in
85 .1750 %
Castl e g ate Subdiv ision, Section 2, Phase 1
Coll ege Stat ion, Texas
Temporary Drainage Channel No. 2 -10 Ye ar Storm
Channel Calculato r
Given Input Data :
Shape .......................... .
Solv ing for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hy draulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
25.1100 cfs
0.0045 ft/ft
0.0 300
36.0000 in
0.0000 in
0.5000 ft/ft (V/H)
0.5000 ft/ft (V/H)
24.1571 in
3.0981 fps
72.7557 cfs
8 .1051 ft2
108 .0338 in
10 .8034 in
96.6284 in
18.0000 ft2
160.99 69 in
67.10 31 %
Temporary Drainage Channel No. 2 -100 Ye ar Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Righ t slope .................... .
Computed Results:
Depth .......................... .
Ve locity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hy draulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
33.2500 cfs
0.0045 ft/ft
0 .0300
36 .0000 in
0. 0000 in
0.5000 ft/ft (V/H)
0.5000 ft/ft (V/H)
26.8395 in
3.3233 fps
72 .755 7 cfs
10.0050 ft2
120.0298 in
12.0030 in
107.3 579 in
18.0000 ft2
160 .9969 in
74.5541 %
Castlegate Subdiv ision, Section 2, Phase 1
College Station, Texas
EXHIBIT A
Offsite Infrastructure Plan for Castlegate Subdivision
29
I
I
I
I
I
I
I
I
I
I
' '
, 7? T~B • k I
E 1 -Rainfall Intensity & Time of Concentration Calculations
~I A c tc as a1o Q 2S
Area#
(acres) (min) (cfs) (c fs) (c fs)
,., 5 1 . 7 4 0 .55 1 0 7 .36 8 .26 9.44
/38 2 .27 0 .55 1 0 9 .60 1 0.78 1 2 .31
y-3 9 1 .61 0 .55 1 0 6 .81 7 .65 8 .73
..r40 1 . 7 8 0 .55 1 0 7 .53 8.45 9 .65
""41 2 .1 3 0 .55 10 9 .01 10 .1 2 11 .55
..,...42 1 .38 0.55 10 5 .84 6 .55 7 .48
/43 1 .36 0 .55 10 5 .75 6 .46 7 .38
/44 1 .69 0.55 10 7 .15 8 .03 9 .17
/49 1. 71 0 .55 10 7 .24 8 .12 9 .27
......s o 1 .06 0 .55 10 4 .49 5 .03 5 . 75
/58 1 . 1 2 0.55 1 0 4 .74 5.32 6 .07
-'$ 9 1 .32 0 .55 1 0 5 .59 6 .27 7 .16
/60 1 .50 0 .55 1 0 6 .35 7 .1 2 8.14
,...,.-61 1 .17 0 .55 1 0 4 .95 5 .56 6 .35
.,,.. 62 1 . 7 5 0 .55 1 0 7 .40 8 .31 9.49
....... 90 1 .32 0 .55 1 0 5.59 6 .27 7 .1 6
TABLE 2 -Post-Development Runoff Information
A c tc as 010 Q 2S Area#
(acres) (min) (c fs) (cfs) (cfs)
5 1 .74 0 .55 1 0 7 .36 8 .26 9.44
38 2 .27 0 .55 1 0 9 .60 10 .78 1 2 .31
39 1 .61 0 .55 1 0 6 .81 7 .65 8 .7 3
40 1 .78 0 .55 1 0 7 .53 8 .45 9 .65
41 2 .1 3 0 .55 1 0 9 .01 1 0 .1 2 11 .55
42 1 .38 0 .55 1 0 5 .84 6.55 7 .48
43 1 .36 0 .55 1 0 5 .7 5 6 .46 7 .38
44 1 .69 0 .55 1 0 7 .1 5 8 .03 9.17
49 1 . 71 0 .55 1 0 7 .24 8 .12 9 .27
50 1 .06 0 .55 1 0 4 .49 5 .03 5.75
58 1 .1 2 0 .55 1 0 4 .74 5 .32 6.07
59 1 .32 0.55 1 0 5 .59 6 .27 7 .1 6
60 1 .50 0 .55 1 0 6 .35 7 .12 8 .14
61 1 .17 0 .55 1 0 4 .95 5.56 6.35
62 1.75 0 .55 1 0 7.40 8 .31 9.49
90 1 .32 0 .55 1 0 5 .59 6.27 7 .16
6
p,,'(J /J.
a so a 100
(c fs) (c fs)
10 .67 11 .1 4
13.92 14 .53
9 .87 1 0 .31
1 0 .91 11 .39
13 .06 13 .64
8 .46 8 .83
8 .34 8 .71
10 .36 1 0 .82
10.48 1 0 .95
6 .50 6 .79
6 .87 7 .17
8.09 8 .45
9 .20 9 .60
7 .17 7 .49
1 0 .73 11 .20
8 .09 8 .45
Oso Q 100
(cfs) (c fs)
10 .67 11 .1 4
13 .92 14 .53
9 .87 1 0 .31
1 0 .91 11 .39
13 .06 13 .64
8 .46 8 .83
8 .34 8 . 71
10 .36 1 0 .82
10 .48 10 .95
6 .50 6 .79
6 .87 7 .17
8 .09 8 .45
9 .20 9 .60
7 .17 7 .49
10 .7 3 11 .20
8 .09 8 .45
--- -
Castlegate Subdivision
Section 2 -Phase 1
Inlet Length Calculations /
No Inlets In sump for this phase.
Inlets On Gnido
Inlet# Length & Type Flow"°"' y,.
Area# (ft) (In)
Section 21imas• 1 ~\'-"''~,..;.'> ·><.-.c'~ ·~~ <'&·~··'
"2Q1 ' "'.)-5' Recessed 38 v 0.364 4.37
~02 V /1 O' Recessed 5 -0.329 3.95
v2Q3 v ,,ro· Recessed 39 ,,... 0.380 4.56
~04 V 15' Recessed 62 v 0.408 4.90
"'205 .V)O/Recessed 61 ,/ 0.333 3,99
"'206 v 15' Recessed 60 ~ 0.355 4.26
;124 V 15' Recessed 40V 0.380 4.56
Transverse (Crown) slope (fVft) = 0 .038
Q~loot Qc•-*Y o..,,. ••
(ft) (cfs) (cfs)
llW"' 'R-. YJ!~'71 -,~~~:~~~
0.66 9.85"' 0.93 "'
0.62 6.23 -2.03 .--
0.68 6.57 .,.. 1,07
0.67 10,03 .... -1.72
0,63 6.26" -0 .70.,,
0.65 9.72<" -2 .59.
0.67 10,10 .... ·1 .64 "
Straight Crown Flow (Solved to find actual depth of flow, yl :
a• o .56 • (zin) • s"' • y"' ¢ y" {O / co.5s • (zin) • s"2n'11
n = Roughness Coefficient =
z = Reciprocal of crown slope =
S = StreetlGutter Slope (ft/ft)
y = Depth of flow at inlet (ft )
Capacity of Inlets on grade :
Oc • 0 .7 '(11(H1 • H2))' [H 1"2· H2
512]
Oc =Flow capacity of inlet (cfs)
H, "a+ y
0 .018
26
H2 = a = gutter depression (2" Standard; 4" Recessed )
y = Depth of flow in approach gutter (ft)
1 O yoor storm
a. ...... a.....,_ Qbyp-cat.r
(cfs) (cfs) from Jni.tt (cfs)
:---~~ ,< ... ~ ~.;~:,-~~~ I ~~,,·~
9.8&' 0.00 /0.93 ¥
6.23 .... 0.00 .. 2.03 /
6,57 ./ 0.93 201 l '2 .0ff)
8,31 .... 2.03 202 1[;().,;lJj
5.56 ... 0.00 ... 0.00 .....
7.12 v 0.00 211'1', 2es· "-0.00
8.45 ... ~ 0.00 0.00
--- ----
Q • ..,t-totl 010-Too• y,.,
(cfs) (cfs) (ft) (In)
»\~,:" <.•· l};'...;,·i"' !-, -:> .. ;;x.,s;:-.' ~~ ..... -·"'-
9.85 / 10.78/ 0.407 4.89
6.23/ 8.26 ... 0.368 4.42
6.57"" .S .57" 0,461 5,64
10.03.' ,..{o.35 0.478 5.73
5,56 .. 5.56 0.372 4.47
7.12 .. 1.12....-0.475 5.69
8.45~~ -8.45 .... 0.425 5.10
100 year storm
o ....... a. .. -QbrP•• o .......
(ft) (cfs) (cfs) (cfs)
,.~_-, .. ~:~1;;,_r;.; ·' .. ,.
0.70 10.50 4.03 10.50
0 .66 6,61 4.52 6.61
0 ,70 7.01 3.30 7.01
0.71 10.71 0.49 10.71
0.67 6.65 0.64 6.65
0 .69 10 .35 -0 .75 9.60
0.72 10 .78 0.61 10.78
Inlets In sumps. Weir Flow :
L = Q I (3 • y"2) ¢ y • (Q I 3L)213
L = Length of Inlet open ing (ft)
Q = Flow at inlet (els)
y = total depth of flow on inlet (ft)
max y for Inlet in sump = 7" = 0 .583'
Co....,_
(cfs) from lnlrtt l
~ •i' '·--.~
0.00
0.00
4.03 201
4.52 202
0.00
5.86 204, 205
0.00
-- -
Qbyp.tol .. <le..,. .... 0100-11111 "' s L-...
(cfs) (cfs) (cfs) (ft/ft) (ft)
-~ ,,, ./!;, ..,...,. . .,, ....... 'lj ":.-~-.~~
4.03 10 .50 14.53 0,0380 15
4.52 6.61 11 .14 0.0380 10
7.33 7.0 1 14 .33 0 .0190 10
5.02 10 .71 15.73 0.0190 15
0.64 6.65 7.49 0.0163 10
5.11 10 .35 15.46 0.0190 15
0.61 10.78 11 .39 0.0185 15
Castlegate Subdivision
Pipe Calculations -Section 2 , Phase 1
In let outlet 10 year storm 1 oo year storm
Pipe# Size Length Slope Invert Invert
Elev Elev *ActualAow Deslgn Flow v,. 'lo Full
Travel Time, t,,. *Actual Flow Design Flow v, .. %Full Travel Time, •t-
(In) (ft) (%) (ft) (ft) (cfs) (cfs) (fps ) (sec) (min) (cfs) (cfs) (fps) (sec) (min)
/ 200 24 " 30.9 0 .60 314.81 .I 314.62 • 9 .85 >' / 15.91 5 .90 80 .0 ,.... 5 0 .09 10.50 16.96 5.88 86.4 y 5 0 .09
y 201 24"' 99 .8 1 .50 .. 313.65/ 312.1 5" 16.08 ,, 25.97 9 .33 82.8 / 11 0 .18 17.11 27 .63 9 .12 92.3 ,,, 11 0 .18
,/ 202 24..--156.9 1 .5CV 311.48..-309.13 . 16 .08 25.97 9 .33 82 .8 _/ -17 0 .28 17.11 27 .63 9 .12 92.3 .,. .,%1 0 .29
"' 203 18 y 27.0 1 .2ov 309.95>' 309.6 3/ 6 .57 v 10 .61 6 .89 81 .3 ...-4 0 .07 7 .01 11.32 6 .82 88 .8 .. 4 0 .07
,~04 27 " 94 .2 1 .30 308.8 51' 307.6:V ? 32.68 9.40 81 .7 _. 10 0 .17 34.83 9 .29 89.3 .V 10 0 .17
205 27V 57.2 1 .80 307.56J" 306.53>' 38.24 / (.11 '.'06__,,, 81.2 V 5 0 .09 41.48 10.77 92 .9 "' ~ 5 0 .09
~v 206 36 " 139.4 " 0 .65" 305.78 >' 304.8 7"' 45.36 v 8 .00 74 .8 v 17 0 .29 51 .83 8 .02 85 .9 v
, /
232/I 24 1 181 .3 '{ 1 .75 ._f 305.28"1 302.11 .IJ 8 .45 ./ 13.65 8 .81 49 .5 '1° 21 0 .34 10.78 17.41 9 .34 57 .4 vi
233./ 24 LI 130.5 cl-2 .00 rl 308.01 /1 305.40 /1 8 .45 v 13 .65 9 .26 I 47 .6 ,; 14 0 .23 10.78 17 .41 9 .8 3 55.o v l -
*These values reflect the actual flow for the 18" & 24" pipes . T he design flow for th ese pipe sizes reflects a 25 % reduction in pipe area .
(Refer to attached calculation for specific information.)
17 0.29
19 0 .32
13 0.22
C'-$?L.e: ~ ·~_:"("l t"V '2., p~ 1..
Is-; 7 / Acr---...-
O~---
;?V-/z_---O& -------
---/ 7~?--01~-----------1
--~/f~ --_t2tf: ___ _
\
'
\
(
'"
•,r
•·
.•. >\
... ·-:.
----
... .. ~. ·" -
..
----
\' \.-.
·.
----
\
' .
---------
---------
----------------
..-.+----
- - -----~---+:-+-----
;/O JI // -----------------~ o--,JI /'IJ
---------------------------------------
7/t? -}/ 17<
-------------------~'-----
------------------
------------;~--
--------------
%·~~""
~'tL+-Lel /..t -//2 ~ //i.fl'-~ --=$W _=:: /J-/7_{ /
---of
~-------------7/0 iY'-17.! ~
-++ IrrtP{
?/0
~--------------
-L-/7~
..
..........
--~"<
r-.
. ..
'
~-~
CO LL lC.l STATIO!ll
DEVELOPMENT PERMIT
PERMIT NO. 500079
DP-CAS1LEGA TE SUB SEC 2 PH 1
FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA
RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE
SITE LEGAL DESCRIPTION:
CAS1LEGA TE SECTION 2, PHASE 1
DATE OF ISSUE: January 05, 2001
OWNER:
WALLA CE PIIlLLIPS
GREENS PRAIRIE INVESTORS, LTD.
5010 AUGUSTA
COLLEGE STATION, TEXAS 77845
SITE ADDRESS:
2270 GREENS PRAIRIE RD W
DRAINAGE BASIN:
SPRING CREEK
VALID FOR 12 MONTHS
CONTRACTOR:
TYPE OF DEVELOPMENT: FULL DEVELOPMENT PERMIT
SPECIAL CONDITIONS:
All construction must be in compliance with the approved construction plans
All trees must be barricaded, as shown on plans, prior to any construction. Any trees not barricaded will not count
towards landscaping points. Barricades must be l' per caliper inch of the tree diameter.
The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site
in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design
Criteria. The Owner and/or Contractor shall assure that all disturbed areas are sodden and establishment of vegetation
occurs prior to removal of any silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor
shall also insure that any disturbed vegetation be returned to its original condition, placement and state. The Owner
and/or Contractor shall be responsible for any damage to adjacent properties, city streets or infrastructure due to heavy
machinery and/or equipment as well as erosion, siltation or sedimentation resulting from the permitted work.
Any trees required to be protected by ordinance or as part of the landscape plan must be completely fenced before any
operations of this permit can begin.
In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to
insure that debris from construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage
facilities.
I hereby grant this permit for development of an area outside the special flood hazard area. All development shall be in _
accordance with the plans and specifications submitted to and approved by the City Engineer in the development permit ·
application for the above named project and all of the codes and ordinances of the City of College Station that apply.
Date
/')l~p9-0J
'
oo -!:;o607q
~ l\-~d.-00
\ I',~ AM
SUPPLEMENTAL DEVELOPMENT PERMIT INFORMATION
Jplication is hereby made for the following development specific site/waterway alterations:
S~Ai"~~aY\ ~ko stt v..L.--b.v-e Co111 <A·n&~c-Yl
ACKNOWLEDGMENTS:
I, --~-A._lio.u_~_--p-=-~--"lti,"""'4"'p"--~.;;;._.. ____ ., design engineer/~, hereby acknowledge or affirm that:
The information and conclusions contained in the above plans and supporting documents comply with the current requirements of
the City of College Station, Texas City Code, Chapter 13 and its associated Drainage Policy and Design Standards.
As a condition of approval of this permit application, I agree to construct the improvements proposed in this application according to
~~~ Q.
these documenlS and the req~nlS of Chap<er 13 of the College Station w ~
Property Owner(s) ' Contra
CERTIFICATIONS: (for proposed alterations within designated flood hazard areas .)
A. I, , certify that any nonresidential structure on or proposed to be on this site as part
of this application is designr,ted to prevent damage to the structure or its contents as a result of flooding from the 100 year storm.
Engineer Date
L , certify that the finished floor elevation of the lowest floor, including any
..ement, of any residential structure, proposed as part of this application is at or above the base flood elevation established in the
latest Federal Insurance Administration Flood Hazard Study and maps, as amended.
Engineer Date
C. L Jo ~ X . S c.b\A.-\ ~ , certify that the alterations or development covered by this permit shall not
diminish the flood:cadYiflg capacity of the waterway adjoining or crossing this permitted site and that such alterations or
development are consistent with requirements of the City of College Station City Code, Chapter 13 concerninL~nts of
floodwaysandoffloodwayfring~ ~-:.._"'\t:.. OF !~!,.''•
.fl ;~-<.. ~~.··*··········:'-<i'c51 •• r _ t I r-c.. c -o u r .. l ·· ...• •,.
.< ~ * • • * ·~ Eng1neer Date ~··································i l JOSEPH P. SCHULTZ J
D. L jo~9'v-i Y. Scbv....~\:L , do certify that the proposed alterations do not rai*~~:i;i{tfisegoo·;.~}
flood ve elevation established in the atest Federal Insurance Administration Flood Hazard Study. ffO-<'···~G/sT""~~~·· ~.I J\ ,,~~ ....•.•• ;. .• ·· <3-t#' ---->-1r~-=~___,V_·__;=--'----=""""--[ ( ,__ '2. z._ -o ~ '\~~~tt~
Engineer Date
Conditions or comments as part of approval :
--------------------------~
.:cordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to insure that debris
rrom construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage facilities .
All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer for the
above named project. All of the applicable codes and ordinances of the City of College Station shall apply.
FINAL PLAT APPLICATION
FNLPAPP.DOC Jn~/99
3 of3
. ' ,
I
.. .If\ FOR OFFICE USE ONLY
I '·7-p&z CASE NO.: 00-02) (o
DATE SUBMITTED: l b:l ;);oo
FINAL PLAT APPLICATION
(check one) Minor _Amending /Final _Vacating _Replat
1be following items must be submitted by an established filing deadline date for P & Z Commission consideration .
MINIMUM SUBMITTAL REQUIREMENTS:
__.:::::_Filing Fee of $200.00. ,
~Development Permit Application Fee of $100 .00 (if applicable).
~Infrastructure Inspection Fee of $300.00 (applicable if any public infrastructure is being constructed .).
~ Application completed in full .
__:::::__Thirteen (13) folded copies of plat. (A signed mylar original must be submitted after staff review .)
---=::One (1) copy of the approved Preliminary Plat and/or one (1) Master Plan (if applicable).
v" Paid tax certificates from City of College Station, Brazos County and College Station I.S.D .
._....... A copy of the attached checklist with_ all items checked off or a brief explanation as to why they are not.
v Two (2)copies of public infrastructure plaps associated with ~s plat (if applicable).
APPLICATION DATA
-\ME OF SUBDMSION LOlzf~4 <S.J:Ji vi:~~ 1 Stoh'ru 2 1 7~ \
jECIFIED LOCATION OF PROPOSED SUBDMSION N'Pv-}k of bi#JA. ~ Prollv-~ ~ }2~ ,
vJRfik o£ ~o\'°W sra-h ~'1w%j 40. .,
APPLICANT/PROJECT MANAGER'S INFORMATION (Primary Contact for the Project):
Name Gx-.. g • .g...rys-Piro..-\<"~ ~\J'=£)>tov---s) Ltd-. -wo1\~ -Pk\li'?~
StreetAddress i::,o \O ~vsk CJ""~ City C()L~e StoJ,'l5YI
State TA. Zip Code · 11co4-? E-Mail Address -----------
Phone Number q1't-la'12 ~ l'i)~Q FaxNumber 11Cf-let::to-/i}JOO / 2'5S-44-fo~
PROPER1Y OWNER'S INFORMATION:
7
Wta:>l:n'k
Name ("Av=-~ \) v-o.lc ~ ,J:._v"1eJur7 1 L+J ·
Street Address 'Co\ o /v.°Jvs\:-o. G ~c.&. City Cc \Lea~e S5\a.b'Jr"Vl
State rt Zip Code 11<t4? E-Mail Address
~~~~~~~~~~~-
Phone Number 'l=r=l-la9 3-1 <03n Fax Number 9 7q -'19Q-I 4fX>
ARCHITECT OR ENGINEER'S INFORMATION:
Name l-t..X.c on -~ Sdu.J. -\-t. J J?. 'S .
Street Address 1101 6v-°'-'~t2-Jl\0 ~ . City (p ~e S}-~ DYl
State }L Zip Code .:ntA5 E-Mail Address :;:; ~cJ,,;,+;: @ ~ . Yle:J
Phone Number °t1C\.-l/tO -11 t\ Fax Number W j 1 'l -__ 'O - _ ]
FINAL PLAT APPLICATION
FNLPAPP.DOC 3/2.5199
l ofJ
. ,,
TOTAL ACRES OF SUBDIVISION 15 . J \
TUMBER OF LOTS BY ZONING DISTRICT
R-0-W ACREAGE '2.. SS TOTAL# OF LOTS 1-1 ---'---'---
2..1 I Yl>b -\-\ /__ ----''--
AVERAGE ACREAGE OF EACH RESIDENTIAL LOT BY ZONING DISTRICT:
D • ?;21 \?"QQ~1-t I I I __
FLOODPLAIN ACREAGE 0 -----
PARKLAND DEDICATION ACREAGE 4,3') OR FEE AMOUNT ____ _
A STATEMENT ADDRESSING ANY DIFFERENCES BE1WEEN THE FINAL PLAT AND APPROVED MASTER
DEVELOPMENT PLAN AND/OR PRELIMINARY PLAT (IF APPLICABLE):
~o ..e._,
REQUESTED VARIANCES TO SUBDIVISION REGULATIONS & REASON FOR SAME _______ _
Htev ..\-c TDD ·\\-1:-chA.o; ~J~
REQUESTEDOVERSIZEPARTICIPATION ~±..... i.Ja\.u~no a-AaVl~ oov--Jb "R· O·W o.£-
~o~o~ S\cw\& -x\;J~JL\o
TOTAL LINEAR FOOTAGE OF PROPOSED :
__ 1.."'--o""-A(e-=<--1
_ STREETS
o SIDEWALKS --~--2~26' SANITARYSEWERLINES
-~~~-
I'\ /Jr{)' WATER LINES ~~,%~2-'-CHANNELS(}~~
_ __..?~l~...._'_STORMSEWERS
__ \ .c\_o~o~'_DIKE LANES I PATHS
NOTE: DIGITAL COPY OF PLAT (IF APPLICABLE) MUST BE SUBMITTED PRIOR TO FILING.
The applicant has prepared this application and certifies that the facts stated herein and exhibits attached
hereto are true, co"ect and complete. The undersigned hereby requests approval by the City of College Station
of the above identified final plat.
FINAL PLAT APPLICATION
F'Nl .PA PP nnr '\ n ~ /QQ
Date
2 of3
Castlegate Subdivision ·., ,
Section 2, Phase 1
College Station, Texas
November 2000
Developer:
Greens Prairie Investors, Ltd.
By Greens Prairie Associates, LLC
· 5010 Augusta
College Station, Texas 77845
(979) 693-7830
Prepared By:
TEXCON General Contractors
1707 Graham Road
College Station, Texas 77845
(979) 690-7711
~
l'di/qd~C}o()
~: 3.o \\: *' ~
CP~q
CERTIFICATION
I, Joseph P . Schultz , Licensed Professional Engineer No . 65889, State of Texas, certify that this
report for the drainage design for the Castlegate Subdivision, Section 2, Phase 1 was prepared
by me in accordance with the provisions of the City of College Station Drainage Policy and
Design Standards for the owners hereof.
_,....,,,,,,
--\E. OF '!' \\ ...c::~~ ········· ~J... , .. "'"' .. * .. ,..., " , •• •• 1,(\ t, '* .• '• v · ' "*: ·. *" ~············· ~ * ~ "-JOSEPH ··;»··st ........... ,,_ 'l_::.::: .. ••• ...... : ...... ~ULTZ ~
"I \,I .. ···········~ i~·~ esaag //:t:.!
!.I '<' •• ~ ""' • ,;v #7 "t ~ ··lJ1srE?.~--::··~-v,,;f .,.s.s-1 •••••••••• 0".#' \~.._()NAL 'E..~-~~._.-
TABLE OF CONTENTS
DRAINAGE REPORT
CASTLEGATE SUBDIVISION
SECTION 2, PHASE 1
CERTIFICATION .................................................................................................................................................................. 1
TABLE OF CONTENTS ........................................................................................................................................................ 2
LIST OF TABLES .................................................................................................................................................................. 3
INTRODUCTION ................................................................................................................................................................... 4
GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 4
FLOOD HAZARD INFORMATION .................................................................................................................................... 4
DEVELOPMENT DRAINAGE PATTERNS ....................................................................................................................... 4
DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 5
STORM WATER RUNOFF DETERMINATION ............................................................................................................... 5
DETENTION FACILITY DESIGN ...................................................................................................................................... 7
STORM SEWER DESIGN .................................................................................................................................................... 7
CONCLUSIONS ..................................................................................................................................................................... 8
APPENDIX A .......................................................................................................................................................................... 9
Storm Sewer Inlet Design Calculations
APPENDIX B ........................................................................................................................................................................ 11
Storm Sewer Pipe Design Calculations
APPENDIX C ........................................................................................................................................................................ 25
Temporary Drainage Channel Design Calculations
EXHIBIT A ............................................................................................................................................................................ 29
Of/site Infrastructure Plan for Castlegate Subdivision
EXHIBIT B ............................................................................................................................................................................ 31
Post-Development Drainage Area Map
2
LIST OF TABLES
TABLE 1 -Rainfall Intensity & Time of Concentration Calculations .............................................. 6
TABLE 2 -Post-Development Runoff Information ............................................................................ 6
3
DRAINAGE REPORT
CASTLEGATE SUBDIVISION
SECTION 2, PHASE 1
INTRODUCTION
The purpose of this report is to provide the hydrological effects of the construction of the
Castlegate Subdivision, Section 2, Phase 1 , and to verify that the proposed storm drainage
system meets the requirements set forth by the City of College Station Drainage Policy and
Design Standards.
GENERAL LOCATION AND DESCRIPTION
The project is located on a 162 acre tract located west of State Highway 6 along the north side
of Greens Prairie Road in College Station , Texas. This report addresses Section 2, Phase 1 of
this subdivision, which consists of 15.71 acres. The site is wooded with the vegetation
primarily consisting of oak trees and yaupons. The existing ground elevations range from
elevation 310 to elevation 330 . The general location of the project site is shown on the vicinity
map in Exhibit B.
FLOOD HAZARD INFORMATION
The project site is located in the Spring Creek branch of the Lick Creek Drainage Basin. The
site is locat ed in a Zone X Area according to the Flood Insurance Rate Map prepared by the
Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated
areas dated July 2, 1992, panel number 48041C0205-C. Zone X Areas are determined to be
outside of the 500-year floodplain . LJA Engineering & Surveying, Inc. submitted a Request
for Conditional Letter of Map Revision (CLOMR) to FEMA to outline a proposed 100-year
floodplain area. This CLOMR No . 00-06-844R was approved by FEMA on 9/8/2000. The
proposed floodplain area does not affect Section 2, Phase 1. Phase 1 will continue to be in a
Zone X Area .
DEVELOPMENT DRAINAGE PATTERNS
The storm water runoff from the site prior to development flows in one general direction. For
Section 2, Phase 1, the acreage flows toward the west-northwest boundary of the tract and into
existing drainage channels and Spring Creek and ultimately flows north to the proposed
regional detention facility . Refer to the Offsite Infrastructure Plan in Exhibit A for the location
of this proposed detention facility.
4
DRAINAGE DESIGN CRITERIA
The design parameters for the storm sewer are as follows:
• The Rational Method is utili zed to determine peak storm water runoff rates for the storm
sewer design.
• Design Storm Frequency
Storm Sewer system
• Runoff Coefficients
Pre-development
10 and 100-year storm events
Post-development (single family residential)
c = 0 .30
c = 0 .55
• Rainfall Intensity values for Brazos County for a minimum time of concentration of 10
minutes can be found in Table 1. Where a longer time of concentration was necessary, it is
noted in the respective table , and the intensities are calculated with the higher values where
required.
• Time of Concentration, tc -Due to the small sizes of the drainage areas, the calculated
times of concentration , tc , are less than 10 minutes. Therefore, a minimum tc of 10 minutes
is used in most cases to determine the rainfall intensity values. Where a longer time of
concentration was necessary, it is noted and used accordingly. Refer to Table 1 for
calculations.
STORM WATER RUNOFF DETERMINATION
The peak runoff values were determined in accordance with the criteria presented in the
previous section for the 5, 10, 25, 50, and 100-year storm events . The runoff coefficients are
based on the future development of this tract. The drainage areas for post-development are
shown in Exhibit B. Post-development runoff conditions are summarized in Table 2.
5
TABLE 1 -Rainfall Intensity & Time of Concentration Calculations
Rainfall Intensity Values (in/hr)
Storm t = c
Event 10 min
Is 7.693
110 8.635
l2s 9.861
lso 11 .148
1100 11 .639
Brazos County:
5 }'.'.ear storm 10 }'.'.ear storm
b = 76 b = 80
d = 8 .5 d = 8.5
e = 0 .785 e = 0 .76 3
I = b I (tc+d)e
I = Rainfall Intensity (in/hr)
tc = U(V*60)
le= Time of concentration (min)
L = Length (ft)
V =Velocity (ft/sec)
25 }'.'.ear storm 50 }'.'.ear storm 100 }'.'.ear storm
b = 89 b = 98 b = 96
d = 8.5 d = 8.5 d = 8.0
e = 0.754 e = 0 .745 e = 0.730
(Data taken from State Department of Hiqhwa}'.'.S and Public Transportation H}'.'.draulic Manual , page 2-16)
TABLE 2-Post-Development Runoff Information
A c tc Os Q 10 Q 2S Q so
Area#
(acres) (min) (cfs) (cfs) (cfs) (c fs)
5 1.74 0.55 1 0 7 .36 8.26 9 .44 1 0 .67
38 2.27 0 .55 1 0 9 .60 10.78 12 .31 1 3 .92
39 1 .61 0 .55 10 6 .81 7 .65 8. 7 3 9 .87
40 1. 7 8 0 .55 1 0 7 .53 8.45 9 .65 10 .91
41 2 .1 3 0 .55 10 9.01 1 0 .1 2 11 .5 5 1 3 .06
42 1 .38 0 .55 1 0 5 .84 6.55 7 .48 8 .46
43 1 .36 0 .55 10 5. 7 5 6.46 7 .38 8 .34
44 1 .69 0 .5 5 10 7 .1 5 8 .03 9 .1 7 1 0 .36
49 1 . 7 1 0.55 10 7 .24 8 .1 2 9 .27 1 0 .48
50 1 .06 0 .55 1 0 4 .49 5.03 5. 7 5 6.50
58 1 . 1 2 0 .55 1 0 4 .74 5 .32 6.07 6 .8 7
59 1 .32 0 .55 1 0 5 .59 6.27 7 .1 6 8 .0 9
60 1 .50 0 .55 1 0 6 .35 7 .1 2 8 .1 4 9 .20
61 1 . 1 7 0 .55 1 0 4 .95 5 .56 6 .35 7 .17
62 1 . 7 5 0 .55 1 0 7 .40 8 . 31 9 .49 10 .73
90 1 .32 0 .55 1 0 5 .59 6 .27 7 .1 6 8 .09
6
Q 100
(cfs)
1 1 . 1 4
14 .53
1 0 .31
11 .39
13 .6 4
8 .83
8. 71
1 0 .8 2
10 .95
6 . 79
7 .1 7
8.45
9.60
7 .49
11 .2 0
8 .45
DETENTION FACILITY DESIGN
The detention facility handling the runoff from this site will be a regional facility designed by
LJA Engineering & Surveying, Inc. Refer to the Offsite Infrastructure Plan in Exhibit A for the
location of this proposed detention facility. The runoff from this project flows into existing
drainages and then into Spring Creek. The detention facility is located adjacent to Spring
Creek prior to Spring Creek entering the State Highway 6 right-of-way.
STORM SEWER DESIGN
The storm sewer piping for this project has been selected to be Reinforced Concrete Pipe
(RCP) meeting the requirements of ASTM C-76, Class III pipe. The curb inlets and junction
boxes will be cast-in-place concrete.
Appendix A presents a summary of the storm sewer inlet design parameters and calculations.
The inlets were designed based on a 10-year design storm. As per College Station guidelines,
the capacities of inlets in sump were reduced by 10% to allow for clogging.
Inlets were located to maintain a gutter flow depth of 5" or less , which will prevent the spread
of water from reaching the crown of the road for the 10-year storm event. The runoff
intercepted by the proposed storm sewer inlets was calculated using the following equations.
The depth of flow in the gutter was determined by using the Straight Crown Flow equation.
The flow intercepted by Inlets 201-206 & 224 was calculated by using the Capacity of Inlets
On Grade equation . There are no inlets in sump for this phase of construction . The equation
used for on-grade inlets and the resulting data are summarized in Appendix A.
Appendix B presents a summary of the storm sewer pipe design parameters and calculations .
All pipes are 18" in diameter or larger. For pipes with 18" and 24" diameters , the cross-
sectional area is reduced by 25%, as per College Station requirements. A summary of how this
was achieved is shown in Appendix B as well. The pipes for the storm sewer system were
designed based on the 10-year storm event; however, all will also pass the 100-year storm event
without any headwater. Based on the depth of flow in the street determined for the 100-year
storm event, this runoff will be contained within the street right-of-way until it enters the storm
sewer system. As required by College Station, the velocity of flow in the storm sewer pipe
system is not lower than 2.5 feet per second, and it does not exceed 15 feet per second. As the
data shows, even during low flow conditions, the velocity in the pipes will exceed 2.5 feet per
second and prevent sediment build-up in the pipes. The maximum flow in the storm sewer pipe
system will occur in Pipe No. 206. Appendix B contains a summary of the Manning pipe
calculations as well as flow diagrams mapping the flows through the storm sewer system for
the 10 and 100-year events. The maximum velocity for the pipe system in Section 2, Phase 1
will be 11.06 feet per second and will occur in Pipe 205. Pipes 206 & 233 will be stubbed out
for this phase of construction. A temporary drainage channel will be constructed from the end
of each of these stubbed out pipes. The locations of these channels are shown in Exhibit B . A
temporary blanket easement has been provided to the City for the future development of
adjacent areas and the construction of off-site drainage and utility facilities. The velocity in
Channel No. 1 is 3.6 feet per second for the 10-year event, and 3.8 feet per second for the 100-
year event. The velocity in Channel No . 2 is 3.1 feet per second for the 10-year event , and 3.3
fe et per second for the 100-year event. These velocities are within the requirements for a
7
seeded grass channel outlined on page 60 of the City of College Station Drainage Policy &
Design Standards manual. Refer to Appendix C for details.
CONCLUSIONS
The construction of this project~ 1 significantly increase the storm water runoff from this site.
The proposed storm sewer systen 3hould adequately control the runoff and release it into
existing drainages . Also , the regional detention facility and the proposed ponds in the park area
(addressed in Section 1, Phase 1) should adequately reduce the peak post-development runoff
to less than the pre-development runoff for the design storm event. This will prevent any
impact on the properties downstream of this project.
8
APPENDIX A
Storm Sewer Inlet Design Calculations
9
Cas tlegate Subd iv ision
Section 2 -Phase 1
Inlet Length Calculations
No Inle ts in sump for this phase.
Inlets On Grado
Inl et # Length & Typo FlowfTom
Area#
Sec tion 21Phase 1
201 15" Recessed 38
202 1 o· Recessed 5
203 1 O' Recessed 39
20 4 15· Rece ssed 62
205 10· Reces sed 6 1
206 15' Recessed 60
224 15· Recessed 40
y,,
(ft) (i n)
0.364 4.37
0.329 3.95
0.380 4.56
0.408 4.90
0.333 3.99
0.355 4.26
0.380 4.56
Transv erse (C rown) slope (fVft) = 0 .038
Q J)91'foot O cap.e1ty
(ft) (cf s)
0.66 9.85
0.62 6.23
0.66 6.57
0.67 10 .03
0.63 6.26
0.65 9.72
0.67 10.10
Stra ight Crown Flow (S o lved to find actual dep th of flow , y l :
Q bYPM•
(cfs)
0.93
2.03
1.07
-1 .72
-0.70
-2 .59
-1.64
Q = 0.56 ' (zl n)' 5 112 ' y'" c:> y ={Q I [0 .56 ' (zl n) 'S112]}31'
n = Roughness Coefficient =
z = Reciprocal of crown slope =
S = StreeVGutter Slope (fVft)
y = Depth of flow at inlet (ft)
Ca pacity o f Inl ets on grade :
O c = 0.7 '[1 1(H 1 -H2)]' [H 1
512
• H,'12]
Oc =Flow ca pacity of inlet (els)
H 1 ~a + y
0 .0 18
26
H2 =a = gutter depression (2" Standa rd ; 4" Recessed)
y = Depth of flow in approach gutter (ft)
10 y ear storm
O eaptur•d O catryOY.r Q byp-toCal Q C::9Pl-tOCJ
(cf s) (cfs) from Inlet # (cf s) (cf s)
9.85 0.00 0.93 9.85
6.23 0.00 2.03 6.23
6.57 0.93 201 2.00 6.57
8.31 2.03 202 0.31 10 .03
5.56 0.00 0.00 5.56
7.12 0.00 204 . 205 0.00 7.12
8.45 0.00 0.00 8.45
010-Tolal Y 100
(cf s) (ft) (In )
10 .78 0.407 4.89
8.26 0.368 4.42
8.57 0.461 5.54
10 .35 0.478 5.73
5.56 0.372 4.47
7.12 0.475 5.69
8.45 0.42 5 5.10
100 yea r storm
OJM,,oot O capaclty Q bYP•• O eal)lur•d
(ft) (cfs ) (cfs) (cfs )
0.70 10.50 4.03 10.50
0.66 6.61 4.52 6.61
0.70 7.01 3.30 7.01
0.71 10.71 0.49 10.71
0.67 6.65 0.84 6.65
0.69 10.35 -0 .75 9.60
0.72 10.78 0.61 10 .78
Inlets in sumps, Weir Fl ow :
L = Q I (3 ' y 312) c:> y = (Q I 3L)213
L = Length of inlet opening (ft )
Q =Flow at in le t (cfs)
y = total dep th of flow on in let (ft)
m ax y for inl et in s um p = 7" = 0 .583'
O cwryover
(cf s) from In let #
0.00
0.00
4.03 201
4.52 202
0.00
5.86 204 . 205
0.00
O byp-1co1m1 O c1191-10U 0 100 .roea1 s LllCll••I
(cf s) (cfs) (c fs ) (ft/ft) (ft)
4.03 10.50 14 .5 3 0.0380 ~
4.52 6.61 11 .14 0.0380 ~
7.33 7.0 1 14 .33 0.0190 10
5.02 10.71 15.73 0.0190 15
0.84 6.65 7.49 0.0 163 10
5.11 10.35 15.46 0.0190 15
0.61 10.78 11 .39 0.0185 15
APPENDIXB
Storm Sewer Pipe Design Calculations
11
Castlegate Subdivision
Pipe Calculations -Section 2 , Phase 1
Inlet Outlet 10 yea r s torm 100 y ear storm
Pipe# Size Length Slope Invert Invert
Elev Elev *Actual Flow Design Fl ow V10 % Full
Tra ve l Time, tTto *Actual Flow Design Flow V 100 % Full
(in) (ft) (%) (ft) (ft) (cfs) (cfs) (fps) (sec) (min) (cfs) (cfs) (fps)
200 24 30.9 0 .60 314.81 314 .62 9 .85 15 .91 5 .90 80 .0 5 0 .09 10 .50 16.96 5 .88 86.4
20 1 24 99.8 1 .50 313.65 312.15 16.08 25.97 9 .33 82.8 11 0 .18 17.11 27 .63 9 .12 92 .3
202 24 156.9 1 .50 311.48 309.13 16.08 25.97 9 .33 82 .8 17 0 .28 17.11 2 7 .63 9 .12 92 .3
203 18 27 .0 1 .20 309.95 309.63 6 .57 10 .61 6 .89 81 .3 4 O.D7 7 .01 11 .32 6 .82 88 .8
204 27 94 .2 1 .30 308.85 307.63 3 2 .68 9.40 81 .7 10 0 .17 34 .83 9 .29 89 .3
205 27 57 .2 1 .80 307.56 306.53 38.24 11 .06 81 .2 5 0 .09 41.48 10.77 92.9
206 36 139.4 0 .65 305.78 304 .87 45 .36 8 .00 74 .8 17 0 .29 51 .83 8 .02 85.9
232 24 181 .3 1 .75 305.28 302.11 8.45 13 .65 8 .81 49 .5 21 0 .34 10.78 17.41 9 .34 57.4
233 24 130.5 2 .00 308.01 305.40 8.45 13 .65 9 .26 47 .6 14 0 .23 10 .78 17.41 9 .83 55.0
*T hese values reflect the actual flow for the 18" & 24" pipes . The design flow for these pipe sizes reflects a 25% reduction in pipe area.
(Refer to attached calculation for specific information .)
Travel Time, lnoe
(sec) (min)
5 0 .09
11 0 .18
17 0 .29
4 0 .07
10 0 .17
5 0 .09
17 0 .29
19 0 .32
13 0 .22
City of College Station requirement to Reduce Cross-Sectional Area of 18" & 24" Pipes by 25%
Using Mannings Equation from page 48 of the College Station Drainage Policy & Design Standards Manual :
Q = 1.49/n *A* R213 * S 112
Q = Flow Capacity (cfs)
18" Pipe:
Pipe size (inches) =
Wetted Perimeter W P, (ft)=
Cross-Sectional Area A , (tt2) =
Reduced Area AR, (ft2 ) =
Hydraulic Radius R = NW P· (ft) =
Reduced Hydr Radius RR = AR/WP • (ft) =
Roughness Coefficient n =
Friction Slope of Conduit S1o (ft/ft)=
Example Calculation :
Slope Fl ow Capacit y Reduce d Fl ow Ca pacity
s Q
0 .005 6 .91
0.006 7 .57
0.007 8.18
24" Pipe:
Pipe size (inches) =
W etted Pe rimeter W P, (ft)=
Cross-Sectional Area A, (tt2) =
Reduced Area A R, (tt2) =
Oredu ced
4 .28
4 .69
5 .06
Hydraulic Radius R = NW P' (ft) =
Reduced Hyd r Radius RR = A R/W P• (ft) =
Roughness Coefficient n =
Friction Slope of Conduit S1, (ft/ft)=
Example Calculation:
Slope Flow Capaci ty Red uce d Fl ow Ca pa cit y
s Q Oreduce d
0 .005 14 .89 9.22
0 .006 16 .31 10 .1
0 .007 17 .61 10 .9
Conclusion :
18
4 .71
1.766
1 .325
0 .375
0 .281
0 .014
0 .01
% Difference
O re du ced/Q
0.619
0.619
0.619
24
6 .28
3.14
2.355
0.5
0 .375
0.014
0 .01
% Difference
O redu ceiO
0.619
0.619
0.619
Multiply actual Q in 18" & 24" pipes by 1 .615 to reflect a 25% reduction in the
cross-sectional area called for on page 47, paragraph 5 of the College Station
Drainage Policy & Design Standards manu a l.
Castlegate Subdivision
Section 2, Phase 1 -Pipe Flow Diagram
Inlet 201 I 9.85
i
Pipe 200 1 9 .85
i
Inlet 202 1 6.23
i
Pipe201 I 16 .08
i
June Box 200
i
Pipe 202 1 16 .08
i
Inlet 204 1 10 .03
i
Pipe 204 1 32.68
i
Inlet 205 1 5.56
i
Pipe 205 1 38.24
i
Inlet 206 1 7 .12
J,
llPipe 206 1 45 .36 II
(Into Phase 2)
010 (cfs)
Inlet 203 6.57 i -4
~ Pipe 203 6 .57 ...
Inlet 224 1 8.45
i
Pipe 233 1 8.45
i
June Box 209
llPipe 232 1 8.45 II
(Into Phase 2)
Castlegate Subdivision
Section 2, Phase 1 -Pipe Flow Diagram
Inlet 201 I 10 .50
J,
Pipe 200 1 10 .50
J,
Inl et 202 1 6 .61
J,
Pipe201 l 17 .11
J,
Jun e Box 200
J,
Pipe202 l 17 .11
J,
Inlet 204 1 10 .71
J,
Pipe 204 1 34 .83
J,
Inlet 205 1 6.65
J,
Pipe 205 1 41.48
J,
In let 206 I 10 .35
J,
llP ipe 206 1 51 .83 II
(I nto Phase 2)
0 100 (cfs)
Inlet 203 1 7 .01
J,
Pipe 203 1 7 .01
Inlet 224 1 10 .78
J,
Pipe 233 1 10 .78
J,
Ju ne Box 209
J,
llPipe 232 1 10 .78
(I nto Phase 2)
Pipe 200 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24.0000 in
15.9100 cfs
0.0060 ft /ft
0 .0140
19.2062 in
3.1416 ft2
2.6951 ft2
53.1588 in
75.3982 in
5.9032 fps
7 .3007 in
80.0260 %
16 .2716 cfs
5.1794 fps
Pipe 200 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hy draulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24.0000 in
16.9600 cfs
0.0060 ft /ft
0.0140
20.7336 in
3.1416 ft2
2.8850 ft2
57.2616 in
75.3982 in
5.8786 fps
7.2552 in
86.3899 %
16 .2716 cfs
5.1794 fps
Castlegate Subdivision, Section 2, Phase 1
College Station, Texas
Pipe 2 01 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solv ing for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results :
Depth .......................... .
Area ........................... ·
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24 .0000 in
25 .9700 cfs
0.0150 ft/ft
0.0140
19.8826 in
3 .1416 ft2
2.7828 ft2
54.8994 i n
75.3982 in
9 .3 325 fps
7.2991 in
82.8442 %
2 5 .727 6 cfs
8.1894 fps
Pipe 201 -100 Year Storm
Manning Pipe Ca l culator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hy draulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow v elocity ............. .
Circular
Depth of Flow
24.0000 in
27.6300 cfs
0.0150 ft/ft
0. 0140
22.1468 in
3.1416 ft2
3.0298 ft2
61.8820 in
75.3982 in
9. 1193 fps
7.0505 in
92.2782 %
25.7276 cfs
8.18 9 4 fps
Castlegate Subdivision, Section 2 , Phase 1
College Station, Texas
Pipe 202 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perime t er ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24.0000 in
25.9700 cfs
0.0150 ft/ft
0. 0140
19 .8826 in
3.1416 ft2
2.7828 ft2
54 .8994 in
75 .3982 in
9.3325 fps
7.2991 in
82.8442 %
25.7276 cfs
8.1894 fps
Pipe 202 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrat e ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow ve locity ............. .
Circular
Depth of Flow
24.0000 in
27 .6300 cfs
0.0150 ft/ft
0. 0140
22.1468 in
3 .1416 ft2
3.0298 ft2
61.8820 in
75.3982 in
9 .1193 fps
7.0505 in
92.2782 %
25.7276 cfs
8.18 94 fps
Castlegate Subdivision, Section 2, Phase 1
College Station, Texas
Pipe 203 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
18.0000 in
10.6100 cfs
0 .0120 ft/ft
0. 0140
14.6397 in
1.7671 ft2
1. 5392 ft2
40.4645 in
56.5487 in
6.8932 fps
5.4775 in
81.3318 %
10.6850 cfs
6.0465 fps
Pipe 203 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow veloci t y ............. .
Circular
Depth of Flow
18.0000 in
11.3 200 cfs
0.0120 ft/ft
0. 0140
15.9883 in
1.7671 ft2
1.6589 ft2
44.2775 in
56.5487 in
6.8238 fps
5.3951 in
88 .8241 %
10.6850 cfs
6 .0465 fps
Castlegate Subdivision, Section 2 , Phase 1
College Station, Texas
Pipe 204 -10 Year Storm
Manning Pipe Calculator
Given Inpu t Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Veloc ity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow veloci t y ............. .
Circular
Depth of Flow
27 .0000 in
32.6800 c fs
0. 0130 ft/ft
0.0140
22.0484 in
3.9761 ft2
3.4761 ft2
60.9254 in
84.8230 in
9.4012 fps
8.2160 in
81.6607 %
32 .7893 cfs
8 .2466 fps
Pipe 204 -100 Year Storm
Manning Pipe Calculator
Given Input Data :
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Veloc ity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowra te ............. .
Full flow velocity ............. .
Circular
Depth of Flow
27.0000 in
34.8300 cfs
0. 0130 ft/ft
0.0140
24.1144 in
3.9761 ft2
3.7479 ft2
66.8388 in
84.8230 in
9.2931 fps
8.0747 in
89.3124 %
32.7893 cfs
8.2466 fps
Castlegate Subdivision , Section 2, Phase 1
College Station , Texas
Pipe 205 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow v elocity ............. .
Circular
Depth of Flow
27.0000 in
38.2400 cfs
0.0180 ft/ft
0. 0140
21.9150 in
3.9761 ft2
3.4567 ft2
60 .5825 in
84 .8230 in
11.0626 fps
8.2163 in
81.1667 %
38.5831 cfs
9.7038 fps
Pipe 205 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow v elocity ............. .
Circular
Depth of Flow
27.0000 in
41.4800 cfs
0.0180 ft/ft
0. 0140
25.0871 in
3.9761 ft2
3.8515 ft2
70.2743 in
84.8230 in
10.7697 fps
7.8922 in
92.9152 %
38 .5831 cfs
9.7038 fps
Castlegate Subdivision, Section 2, Phase 1
College Station, Texas
Pipe 206 -10 Year S t orm
Manning Pipe Calculator
Given Inpu t Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Res ult s:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Pe rime te r ............... .
Perime te r ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow ve loci t y ............. .
Circular
Depth of Flow
36 .0 000 in
45 .3 600 cfs
0 .0065 ft/ft
0 .0140
26.9121 in
7.0686 ft2
5.6676 ft2
75 .1956 in
113. 097 3 in
8.0034 fps
10.8535 i n
74 .755 9 %
49.9330 cfs
7.0641 fps
Pipe 206 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Compu ted Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Per imeter ............... .
Perimete r ...................... .
Veloci t y ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow ve locity ............. .
Circular
Depth of Flow
36 .00 00 i n
51.8300 cfs
0 .0065 ft/ft
0. 014 0
30.9114 in
7.0686 ft2
6.4586 ft2
85.3456 in
113 .0973 i n
8.0249 fps
10.8974 in
85.8649 %
49.9330 cfs
7.0641 fps
Castlegate Subdivision, Section 2, Phase 1
College Station , Texas
Pipe 232 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24.0000 in
13.6500 cfs
0.0175 ft/ft
0. 0140
11.8754 in
3.1416 ft2
1.5500 ft2
37.4500 in
75.3982 in
8.8062 fps
5.9601 in
49.4810 %
27.7890 cfs
8.8455 fps
Pipe 232 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow ve locity ............. .
Circular
Depth of Flow
24.0000 in
17.4100 cfs
0.0175 ft/ft
0.0140
13.7675 in
3.1416 ft2
1.8643 ft2
41.2470 in
75.3982 in
9.3386 fps
6.5086 in
57.3645 %
27.7890 cfs
8.8455 fps
Castlegate Subdivision, Section 2, Phase 1
College Station, Texas
Pipe 233 -10 Year Storm
Manning Pipe Ca l culator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Dep t h .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24.0000 in
13. 6500 cfs
0.0200 ft/ft
0 . 0140
11. 4230 i n
3 .1416 ft2
1.4747 ft2
36.5446 in
7 5 .3 982 in
9.2563 f p s
5.8107 i n
47.5958 %
29 .7077 cfs
9.4563 fps
Pipe 233 -100 Year Storm
Manning Pipe Calculator
Given Inpu t Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Res u lts :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydrau lic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24.0000 in
17.4100 cfs
0.0200 ft/ft
0. 0140
13.2046 in
3.1 416 ft2
1 .7712 ft2
40 .1124 in
75 .3982 in
9 .8293 fps
6.3586 in
55.0193 %
29.7077 cfs
9.4563 fps
Castlegate Subdivision , Section 2, Phase 1
College Station, Texas
APPENDIXC
Temporary Drainage Channel Design Calculations
25
Castlegate Subdivision
Temporary Dra i nage Channel Calculations -Section 2, Phase 1
Temporary Drainage Channel No. 1
A c t c 010 Area#
(acres) (min) (cfs)
58 1.12 0 .55 10 5 .32
59 1.32 0 .55 10 6 .27
Fro m Pipe 206: 45.36
Total Fl ow to Temp Dra inage Chan ne l: 56.94
Temporary Drainage Channel No. 2
A c t c Area#
(acres) (min)
4 1 2.13 0 .55 10
42 1.38 0 .55 10
Fro m Pip e 232 :
Tota l Fl ow to Temp D rainage Channel :
The Rational Method :
Q=CIA
Q = Flow (cfs )
A = Area (ac res )
C = Run off Coeff.
I = Rai nfall Inte nsi ty (i n/hr)
010
(cfs)
10.11
6 .55
8 .45
25.11
0100
(cfs)
7 .17
8.45
5 1.83
67.45
0100
(cfs)
13.64
8.83
10.78
33.25
Temporary Drai n age Channe l No. 1 -1 0 Year Storm
Ch a n ne l Calcul ato r
Given Inpu t Data :
Shape .......................... .
S o l v i ng f o r .................... .
Flowrate ....................... .
Slope .......................... .
Manni n g' s n .................... .
Height ......................... .
Bo ttom width ................... .
Left slope ..................... .
Righ t s l o p e .................... .
Compu ted Resu l t s :
Dep th .......................... .
Veloc i ty ....................... .
Full F l owra t e .................. .
Flow area ...................... .
Flow p erimeter ................. .
Hy draulic rad i us ............... .
To p width ...................... .
Area ........................... .
Perime t er ...................... .
Percent full ................... .
Trapezoidal
De pth o f Fl ow
56.9400 c f s
0.0 040 ft /ft
0 .0300
42 . 0 000 in -k
0.0 000 in
0.5 0 00 ft/ft (V/H)
0 .500 0 f t /ft (V/H)
33.5718 i n
3 .6 375 fp s
103 .4703 cfs
1 5 .6537 f t 2
150 .1 378 i n
1 5 .0 138 i n
134 .2873 in
24 .5000 ft 2
187.8297 in
79 .9329 %
-
Temporary Drain a g e Ch anne l No . 1 -1 00 Yea r S t orm
Chan nel Calcul ator
Given Input Data:
Shape .......................... .
Solv ing for .................... .
Fl o wrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Heigh t ......................... .
Bot t o m wi d t h ................... .
Le ft slope ..................... .
Right s l ope .................... .
Co mpu ted Res u lts:
Dept h .......................... .
Velocity ....................... .
Full Flowra t e .................. .
Flow area ...................... .
F low perimeter ................. .
Hy draulic rad i u s ............... .
To p width ...................... .
Area ..................... ·.· .... .
P e r i meter ...................... .
Perc ent full ................... .
T r ap ezoidal
De p t h of F low
67.4500 c f s
0.0 040 f t /f t
0 .0 300
42. 0000 i n ~
0.0 000 i n
0 .50 00 f t /ft (V/H)
0.50 00 f t /f t (V/H)
35 . 7735 i n d>-
3 . 7948 fps
10 3.4703 cfs
17 .7742 ft 2
15 9 .9840 i n
15 .9984 i n
1 4 3.0941 in
2 4 .5000 ft2
187.82 9 7 in
85 .1 7 50 %
Ca s t legate Subdiv ision, Section 2 , Phase 1
College Statio n, Tex as
Temporary Drainage Channel No. 2 -10 Year Storm
Channel Calculator
Given Input Data :
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
25.1100 cfs
0.0045 ft/ft
0.0300
36 .00 00 in
0 .0000 in
0.5000 ft/ft (V/H)
0.5000 ft/ft (V/H)
24.1571 in -
3.0981 fps
72.7557 cfs
8.1051 ft2
108.0338 in
10.8034 in
96.6284 in
18.0000 ft2
160 . 9969 in
67.1031 %
Temporary Drainage Channel No. 2 -100 Year Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solv ing for .................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Height ......................... .
Bottom width ................... .
Trapezoidal
Depth of Flow
33.2500 cfs
0 .0045 ft/ft
0.0300
36.0000 in
0.0000 in
Left slope ..................... .
Right slope .................... .
0.5000 ft/ft (V/H)
0 .5000 ft/ft (V/H)
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hy draulic radius ............... .
Top width ...................... .
Area ........................... .
26.8395 in
3.3233 fps
72.7557 cfs
10.0050 ft2
120 .0298 in
12.0030 in
107.3579 in
18 .0000 ft2
Perimeter . . . . . . . . . . . . . . . . . . . . . . . 160.9969 in
Percent full .................... 74.5541 %
Castlegate Subdivis ion, Section 2, Phase 1
College Station, Texas
-
EXHIBIT A
Offsite Infrastructure Plan for Castlegate Subdivision
29
EXHIBIT B
Post-Development Drainage Area Map
3 1