Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
5 Development Permit 464 TAMU Stormwater Mgmt Plan 1997
INTERLOCALAGREEMENT BETWEEN TEXAS A&M UNIVERSITY AND COLLEGE STATION This agreement, made and entered into by and between TEXAS A&M UNIVERSITY (hereinafter referred to as "TAMU"), acting herein by and through the T AMU President, and the CITY OF COLLEGE STATION, TEXAS (hereinafter referred to as "COLLEGE STATION') a body corporate and politic, organized and existing under the Home Rule Laws of the State of Texas, acting herein by and through its Council thereunto duly authorized : WITNESSETH: WHEREAS, COLLEGE STATION has enacted a Drainage Utility District pursuant to the Municipal Drainage Utility Systems Act, Texas Local Government Code, Section 402.041 et seq.; and WHEREAS, T AMU is an institution of higher education established by the State, and is within the service area of the Drainage Utility District; and WHEREAS, T AMU does not have a wholly sufficient and privately owned drainage system within its campus that would entitle it to exemption from the fees charged pursuant to this ordi- nance; and WHEREAS, the parties herein are engaged in discussions concerning the potential of entering into joint cooperative water and sewer utility projects that include but are not limited to: (1) water supply and water transmission; (2) wastewater treatment, and (3) the proposed construction of a joint fire station at Easterwood Airport that would provide neighborhood fire protection while also providing airport crash fire rescue services at Easterwood Airport; and WHEREAS, TAMU and COLLEGE STATION, pursuant to the provisions of the Interlocal Cooperation Act, Chapter 791, Texas Government Code, as amended, have determined that to further continuing efforts on joint cooperative projects between the parties it would be in the best interest of TAMU and COLLEGE STATION to enter into this agreement specifying the terms and conditions under which COLLEGE STATION will exempt TAMU from drainage fees; NOW THEREFORE, for and in consideration of the mutual covenants and agreements herein expressed, TAMU and COLLEGE STATION agree that COLLEGE STATION, acting by and through its governing body, agrees to exempt T AMU from drainage fees under the following terms and conditions : 1. T AMU shall prepare, at its sole cost and expense, a stormwater management plan to detain and/or wholly retain stormwater drainage on its property. 2. The plan shall be prepared and sealed by a professional registered engineer licensed to practice in the State of Texas and shall meet the requir~ments f?r stormwater ma~agemet?-t under any applicable federal or state laws and any applicable City of College Statton ordi- nance. The plan shall include an implementation schedule that specifies the commence- ment and completion of all drainage improvements detailed in the stormwater management plan as well as any phasing for construction of improvements. jslcljuly961tamu.doc 819196 3. The parties agree that T AMO will use its best efforts to complete and provide the plan to the City of College Station City Manager or his delegate for comment on or before March 15, 1997 . College Station shall provide comments on the plan within thirty (30) days of submission by T AMU. 4. TAMU represents that it will use its best efforts to implement the stormwater management plan in accordance with t he schedule contained therein . 5. T AMU' s stormwater management plan shall be updated no later than March 1999 and every two years thereafter or more frequently if necessary . Any update shall be provided to the City Manager or his delegate, according to the procedure described in Paragraph 3 (above). 6. If T AMU fails to submit a mutually agreeable plan, fails to implement the plan, or fails to update or revise the plan as agreed herein, then COLLEGE STATION shall remove the exemption from the drainage utility fees . 7. Unless otherwise specified, written notice shall be deemed to have been duly served if delivered in person to the individual or to any officer of the corporation for whom it is intended or if it is delivered or sent certified mail to the last business address as listed herein . Each party has the right to change its business address by giving at least thirty (30) days advance written notice of the change to the other party in writing . COLLEGE STATION: City of College Station Attn: George K. Noe, City Manager 1101 Texas Avenue College Station, TX 77842-0960 TAMU : Texas A&M University Attn: Jerry Gaston College Station, TX 77843-1246 It is understood and agreed that this Agreement may be executed in a number of identical coun- terparts, each of which shall be deemed an original for all purposes. EXECUTED on this the 3 0 fl TEXAS A&M UNIVERSITY BY !Jic/ff.~ OWEN, President j slclmay9611a11111 .. doc 819196 day of_5_c_f_r;_~_M._13_G'_K_-=-__ 1996. CITY OF COLLEGE STATION BY ~.~ogd,._,,,0 L McIL Y, Mayor -2- , ATTEST : Co~/)llJ_~ ')~J CONNIE HOOKS, City Sec.retary APPROVED: STATE OF TEXAS ) ) ACKNOWLEDGMENT COUNTY OF BRAZOS ) This instrument was acknowledged on the c-9 \St day of \\,},_\_\'~ , 1996, by LYNN McILHANEY, in her capacity as Mayor of the City of College Statts>n. Texas, a Texas home rule municipal corporation, on behalf municipality. STATE OF TEXAS COUNTY OF BRAZOS ) ) ) Public in and for te of Texas ACKNOWLEDGMENT This instrument was acknowledged on the 3o 'f-A _ day of 6eD f t' rvib~ r .-1996, by RAY BOWEN in his capacity as President of Texas A&M University, oti'behalf of said university. jslc/may961tamu .. doc 819196 POlU D. SATTERWHIT E NDlalY Publlc , state of Te)(as MV C01T1mls sl on · expires . JULY 13, 1999 -3 - c(J . ~'--/ . ~ -·-· r UJj d<71//ft,{[:[<-~ Notary Public in and for the State of Texas • I • : • · ... ,.,·· TurnerColliecDBraden Inc. in association with . . . . ' Esmond. f ngineering, .Inc. ·rexas A_&M .University .. . Stormwater Manag,ement Pl.an · . . . . . - Fl .NAL REPORT , . . Physical ·rlant Assignm e n t No. 96.2497 · .. •. · rc&BJob .' No . 31-0_ .03_ eo.,006---ru~·e . ··· · · 1L1·rcP ~ . ~ 1 l~.;. 7&0 -' ' Ole .. · . . . . .. . . ... M a rch 1997 .. ' .... · .. · EN.GINEERS • !>LANNERS • PROJECT MANAGERS · Texas. Austin/Da ll as/Fort WorthiHoustbn Colorado. De.nver Florida .,· '· ... '· TurnerCollie©'Braden Inc. in association with Esmond Engineering, Inc. Texas A&M University Stormwater Management Plan FINAL REPORT Physical Plant Assignment No. 962497 TC&B Job. No. 31-00380-006 College Station, Texas March 199 7 Stanley J. Sarman .E., R.P.L.S. Senior Projec t Manager Alan J. P ~ , P.E. Vi ce President SECTIO N I SECTIO N II SECTIO N III SECTION IV SECTIO NV TEXAS A&M UNIVER SITY STORMWATER MANAGEMENT PLAN TABLE OF CONTENTS PARTICIPANTS EXECUTIVE SUMMARY 1.1 Development Impact on Stormwater Since 1987 1.2 Sub-Basin Detention of 1996 Peak Flows 1.3 Drainage Project Investments INTRODUCTION 2 .1 Background 2 .2 Stormwater Management Plan 2.2.1 On-Site Detention 2.2.2 Sub-Basin Detention DESIGN CRITERIA 3.1 Methodology 3.2 Hydrologic Parameters 3.2.1 Drainage Basin 3.2.2 Precipitation Data 3.2 .3 Unit Hydrograph 3.2.4 Runoff Curve Numbers (RCNs) 3 .2 .5 Lag Time 3.2.6 Hydrographs RESULTS 4 .1 Runoff Hydrographs 4 .2 Sensitivity 4.3 Storrnwater Detention COSTS TurnerCo llie0Braden Inc. lll I-1 I-2 I-4 II-1 II-2 11-3 III-1 111-1 111-2 IIl-3 111-4 111-5 111-6 IV-1 IV-2 IV-2 V-1 APPENDICES TEXAS A&M UNIVERSITY STORMWATER MANAGEMENT PLAN TABLE OF CONTENTS (CONTINUED) A Hydro graphs B HEC-1 Input/Output C Reference Material D Exhibits TurnerCollie0Braden Inc. ii PARTICIPANTS Ill The following is a list of individuals/companies who were instrumental in the development of the Texas A&M University Stormwater Management Plan. Participant Thomas M . Hagge, P .E. James C . Harless, P .E. Todd A. Bading, P.E . Dennis Corrington Mark Smith , P .E. Stan J . Sarman, P.E . William J . Thaman, E.I.T. Edward R . McDow, Jr., P .E . TurnerCollie©'Braden Inc. Organization Texas A&M University Texas A&M University Texas A&M Uni versity Texas A&M University City of College Station Turner Collie & Braden, Inc. Turner Collie & Braden , Inc . Esmond Engineering, Inc. Title/Function Associate Director for Utilities -Physical Plant Assistant Director for Utilities -Physical Plan Manager for Utilities Planning -Physical Plant Director of Recreational Sports Director of Public Services Project Manager Project Engineer Subconsultant Project Engineer SECTION I -EXECUTIVE SUM1\1ARY I-1 1.1 DEVELOPMENT IMPACT ON STORMWATER SINCE 1987 In 1996 the C ity of College Station established a stormwater utility fee ordinance assessing a fee based on the contribution of runoff from property into the City of College Station storm drainage system. The purpose of this fee is to partially offset financing of continued operation , maintenance, and capital construction of its drainage facilities . A substantial portion of the University's main (East) campus drain into two major drainage systems in the City of College Station: Bee Creek and Wolf Pen Creek . In October 1996 , the City of College Station and Texas A&M University (TAMU) reached an agreement whereby TAMU would either contribute its pro-rata share of the utility fee or, alternatively, in stall such drainage improvements as necessary to mitigate the increases in stormwater runoff due to campus development since 1987. The City of College Station has established that 1987 is the baseline and the basis of this report. The analysis was conducted by comparing the runoff hydrograph resulting from a 100-year storm on the watershed in 1996, to the runoff hydrograph that would have occurred based on development conditions in 1987 . Actual photographs taken near the two dates were supplemented by building records and site inspection in order to . evaluate changes in impervious cover. The analysis, summarized in Section IV of this report shows that the changes in impervious cover were not due to campus activities, but rather the offsite activities. Resulting increases in peak flow rates were minimal, less than one percent from 1987 to 1996 in the Bee Creek and Wolf Pen Creek Basins . The increase in runoff through Wolf Pen Creek Tributary C was due to development offsite, with runoff flow actually decreasing one cfs during the period due to development on campus resulting in a net removal of impervious cover. Although there has been considerable growth on the main campus of T AMU since 1987 , most can be considered as replacing previous impervious cover with new impervious cover , resulting in little change overall, i.e., replacing parking lots with parking garages. Proposed future development will increase 1987 Bee Creek peak flows less than three percent with increases in Wol f Pen Creek peak flows remaining less than one percent. Based on the model's findings , there is no immediate need for detention of current dischar ged runoff. TurnerCollie0Braden Inc. SECTION I -EXECUTIVE SUMMARY 1-2 1.2 SUB-BASIN DETENTION OF 1996 PEAK FLOWS Developing a policy to manage stormwater is of importance to the City of College Station and to TAMU . Also , the City of College Station's Stormwater Management Plan requires that when development occurs, post-development discharges should not exceed the pre-development discharges . A detention facility could be designed to store the excess volume of stormwater runoff and discharg e it at an attenuated rate . The City of College Station has ranked the three sub-basins in terms of need for flood control measures. The focus is on Bee Creek . Given this priority T AMU proposes through the use of a detention facility, the peak flow in Bee Creek be reduced by 10%. In addition, TAMU proposes to reduce the peak flow in Wolf Pen Creek Tributary C by 5 % . Detention is not recommended at this time for Wolf Pen Creek Natural because of its low priority and excessive implementation costs . Table 1.1 shows a summary of the peak flows for 1987, 1996, and in the future with the proposed peak flow reductions in place . Table 1.1 -Peak Flow Summary Future Peak 1987 Peak Flow 1996 Peak Flow Flow w/ Basin (cfs) (cfs) Detention (cfs) % Reduction Bee Creek 419 420 378 10 Wolf Pen Creek Tributary C 1975 1974 1875 5 Wolf Pen Creek Natural 537 540 540 --- TurnerCollie0Braden Inc. SECTION I -EXECUTIVE SUMMARY 1-3 The volume of detention required for each peak flow and percentage detained, preliminary location of detention basins, and costs associated with construction were determined. Table 1 .2 is a summary of probable sub-basin volumes and estimated construction costs. Table 1.2 -Sub-Basin Detention Summary Basin Storage, Estimated $/cfs 1996 Peak Flow %Red. ac-ft Cost,$ Removed 5 4.6 30,000 1,400 Bee Creek 420 cfs 10 6.5 50,000 1,200 Wolf Pen Creek Tributary C 2 10 70,000 1,600 1974 cfs 5 23 165,000 1,700 The detention facilities for each sub-basin have aesthetical, safety, and maintenance impacts which are not a part of the probable costs. After these impacts are known, a more detailed and exact construction cost can be addressed if TAMU desires . The Bee Creek detention facility could be constructed in 1997, and the Wolf Pen Creek Tributary C detention facilities in 1998, pending acceptance of this plan by the City of College Station. The proposed sites and configurations of the detention basins were chosen to serve a specific function, which is to reduce the peak flow. There are other configurations and sites available that are functionally equivalent to what is proposed in this report. While the final designs of these detention basins are not required to be physically identical to what is recommended, they must perform the same function . TAMU will manage future development on the main campus to not exceed the peak flows remaining after completion of the Wolf Pen Tributary C peak flow reduction project. On West Campus, TAMU will manage future development to not exceed 1997 peak flows. Additionally, in a consortium with the TurnerCollie@'Braden Inc. SECTION I -EXECUTIVE SUMMARY 1-4 City of College Station and Brazos County, TAMU is participating in the United States Geological Survey (USGS) stream flow gaging program . 1.3 DRAINAGE PROJECT INVESTMENTS Te xas A&M has participated in and has future plans to participate in drainage-related projects that benefit everyone. Texas A&M has either completed or could commit to the following drainage-related projects : Project Engineering fees for Stormwater Management Plan Bee Creek detention pond Wolf Pen Creek Trib. C detention pond Golf course culvert replacement between green #3 fairway #5 (complete) Main campus future development mitigation West campus stormwater study USGS streamflow gaging Total Proposed Commitment: TurnerCollie0Braden Inc. Amount $73,000 $50,000 $165,000 $48,000 ongoing $65 ,000 to be determined $401,000 plus SECTION II -INTRODUCTION II - 1 2.1 BACKGROUND In 1996 the City of College Station established a stormwater utility fee ordinance assessing a fee based on the contribution of runoff from property into the City of College Station storm drainage system . The purpose of this fee is to partially offset financing of continued operation , maintenance , and capital construction of its drainage facilities . A substantial portion of the University 's main (East) campus drain into two major drainage systems in the City of College Station: Bee Creek and Wolf Pen Creek. In October 1996 , the City of College Station and Texas A&M University (TAMU) reached an agreement whereby TAMU would either contribute it5 pro-rata share of the utility fee or , alternatively , install such drainage improvements as necessary to mitigate the increases in stormwater runoff due to campus development since 1987 . The purpose of this study is to identify the magnitude of improvements that would be necessary to accomplish the City's objectives for runoff management. Allowing that runoff increases with increased impervious cover, this study is an attempt to determine and compare rainfall runoff discharged in 1987, at present day (1996), and under future development. Due to the aforementioned agreement, the study' s recommendations will be founded in the reduction of current and future runoff volumes to those produced in 1987 . Of the two watersheds associated with T AMU, the Bee Creek drainage basin originates on the University's main campus . However, rainfall runoff from off-campus contributes to the amount of runoff generated by the Wolf Pen Creek basin . To accurately quantify the impact attributable to the University, contribution of stormwater runoff from the campus as well as two major Texas Department of Transportation (TxDOT) improvement projects, currently being constructed adjacent to the main campus and contributing to the total runoff, will be determined . 2.2 STORMWATER MANAGEMENT PLAN De veloping a policy to manage stormwater is of importance to the City of College Station and to TAMU . The City of College Station's Stormwater Management Plan require s that when developme nt TurnerCollie0Braden Inc SECTION II -INTRODUCTION II - 2 occurs, post development discharges should not exceed the pre-development discharges for 5-, 10-, 25- , 50-and 100-year storm events . A detention facility could be designed to store the excess volume of stormwater runoff and discharge it at an attenuated rate . Some stormwater management plans are outlined below for TAMU's consideration in implementation: 1. On-site detention for each new development, and or facility . 2. Sub-Basin or watershed detention for each drainage basin or watershed. 3 . Combinations of 1 and 2 . The implementation of the Stormwater Management Plan should be carried out by the Physical Plant and Facilities Planning and Construction Departments . Other departments, such as the Office of Planning and Institutional Research should be familiar with the policy for planning purposes . 2.2.1 On-Site Detention This is a program to provide on-site detention for all proposed and constructed improvements and facilities . Pre-developed and post developed hydrographs would be prepared to determine on-site detention required for each project. Detention would be site-specific and make use of site topography. Solutions such as depressed parking lots and landscaped swales are just two of many solutions. The cost for stormwater management for each facility would be included as part of the site development costs in the Program of Requirements (POR). This plan provides uniform policy for all which helps TAMU manage the flow of excess stormwater through, and off of, its own lands. This type of management policy also assists in keeping current stormwater discharge at the present flows . 2.2.2 Sub-basin Detention In some cases, and in cases where there is a desire to reduce present stormwater discharges, designing and constructing a sub-basin, or watershed, detention facilities are the proper solution. Topographical features of Bee Creek drainage basin near George Bush Drive and Wolf Pen Creek Tributary C drainage basin at George Bush driv e and at New Main Drive, lend favorable consideration for locating sub-basin detention facilities. TurnerCollie©'Braden Inc. SECTION II -INTRODUCTION II - 3 An attempt to determine the general magnitude of detention volume available and the magnitude of the associated costs to construct the recommended detention facilities has been included in this study. The design criteria for this study is set forth in Section 3, and the analysis and costs are given in Sections 4 and 5 respectively. TurnerCollie0Braden Inc SECTION ill -DESIGN CRITERIA ill-1 3.1 METHODOLOGY The analysis procedure used is as follows : • Determine from photos and building records the extent of development that occurred on campus between 1987 and 1996 . • Input into a Geographic Information System (GIS) the land cover for the two reference years 1987 and 1996. The software program ARC/INFO is used in this process. • Establish watershed and subwatershed boundaries based on detailed topography and storm sewer layouts provided by Texas A&M University (TAMU). • Determine the amount of impervious cover on campus for 1987 and 1996 conditions by intersecting the subwatersheds with the GIS land cover using ARC/INFO. • Construct hydrologic models using the a U .S . Army Corps of Engineers Hydrologic Engineering Center's HEC-1 model and the Soil Conservation Service (SCS) runoff methodology. • Calculate runoff hydrographs for both 1987 and 1996 conditions. • Estimate the detention requirement based on the runoff hydrographs. TurnerCollie0Braden Inc. SECTION ill -DESIGN CRITERIA ill-2 3.2 HYDROLOGIC PARAMETERS 3.2.1 Drainage Basin Rainfall runoff on the majority of the Texas A&M University (TAMU) Main Campus enters one of two watersheds, Bee Creek or Wolf Pen Creek (see Exhibit 1, Appendix D). The area ofTAMU's Main Campus which contributes runoff flow to the box culvert at George Bush Drive and Throckmorton Street, a point of interest in the Bee Creek study, was delineated as a single basin . With respect to T AMU , the Wolf Pen Creek watershed receives runoff from two independent basins which flow into either Wolf Pen Creek's natural course or Tributary "C ". Wolf Pen Creek's natural course (WPNl) originates entirely on the TAMU campus. Drainage into Tributary "C " was divided into four sub - basins (WPCl-4) on campus and five (5) sub-basins from off-campus (Offsite 1-5). The points of interest in the Wolf Pen Creek study were the George Bush Drive bo x culverts near Anderson Stree t and South Texas Avenue , for the Wolf Pen Creek natural course and Tributary "C", respectively . Used in the delineations were the City of College Station Drainage Basin Map and Topographic Maps which were further refined with T AMU and Texas Department of Transportation (TxDOT) storm water collection system layouts . Topographic maps of the University were also provided by its GIS Department which were field verified. With ARC/INFO drainage areas could then be computed for each basin and sub -basin. ARC/INFO computations are presented in tabular form following Section 3.2 .6 . The TAMU Bee Creek basin encompasses 116 .38 acres (0 .18 square miles). The TAMU Wolf Pen Creek sub-basins WPNl and WPCl-4 , enclose 139 .53 acres (0 .22 square miles) and 390.1 acres (0 .61 square miles), respectively. Offsite runoff is contributed by 173.00 acres (0.27 square miles). Typical basin land cover is comprised of landscaped fields, golf course, buildings, sidewalks , and streets. TurnerCollie0Braden Inc. SECTION ill -DESIGN CRITERIA III - 3 3.2.2 Precipitation Precipitation data for the Bee Creek and Wolf Pen Creek watersheds were determined from rainfall intensities and durations which are found in TP-40 (3) and HYDR0-35 (4). In a 1988 drainage study on Wolf Pen Creek and its tributaries, Maier (5) tabulated the frequency-duration rainfall amounts for the area, whose values are presented in Table 3.1. HEC-1 computed a hypothetical storm over the basin area according to these depth and duration data. The hypothetical storm distribution was developed for a 24-Hour, 100-Year Storm. Table 3.1 -Precipitation Data Duration Amounts, Inches Frequency 5Min 15 Min 60 Min 2Hr 3Hr 6Hr 12Hr 24Hr 2-Year 0.53 1.15 2.20 2.6 2 .75 3 .3 3.8 4.5 10-Year 0 .65 1.45 3.00 3.8 4.3 5.2 6.25 7 .5 25-Year 0.74 1.64 3.49 4 .6 5 .05 6 .25 7 .5 8 .75 50-Year 0.80 1.80 3.88 5 .1 5 .65 6 .9 8.5 9.75 100-Year 0 .87 1.95 4 .26 5 .7 6.3 7 .8 9 .6 11.0 500-Year 1.05 2.22 5 .12 6.95 7 .8 9.5 12.0 13.5 The total 100-year rainfall depth of 11.0 inches is distributed such that the most intense periods of rainfall occur in the center of the storm's duration. Figure 3 .1 shows the 100-y ear, 24-hour distribution discretized into 15-minute incremental depths with each value representing the depth of rain that falls in that 15-minute period. Depths start at 0.02 inches at the beginning of the storm, rise to the peak of 1.95 inches near the 12-hour mark, and then descend to 0.02 inches at the end of the 24-hour period . The 100-year storm is the event for which most major drainage systems are designed . As a point of reference, the 1994 storm which cau sed a great deal of flooding produced rou ghl y 18 inches of rainfall depth over a 24-hour period . This amount far exceeds the 100-year depth of 11 inches and even the TurnerCollie0Braden Inc. SECTION ill -DESIGN CRITERIA III -4 500-year depth of 13 .5 inches. An event of the same magnitude as the 1994 event , then, is statistically expected to occur no more than once in at least a 500-y ear period . TurnerCollieeb'Braden Inc. -c c 0 ....... 1.5 -~ Figure 3 .1 -Rainfall Distribution: 100-Year, 24-Hour Storm cu 1 -~ ....... 0 .5 -~ o ,.~1 ·1'1"~~~~~·~~~~·~mf'1'1'1'1 •~1i1~1 ·~µ~mmll 11 l~~mmmi1i1i1i1~~~1 ~'1'~1 ·1 '1'~'i'l'l'~~~~~i'I"~~~~ 0.00 4 .00 8.00 12 .00 16 .00 20 .00 24 .00 T ime (hr) 8 I (Ji SECTION III -DESIGN CRITERIA ill-6 3.2.3 Unit Hydrographs Rainfall excess is the difference between total rainfall and rainfall losses. To convert rainfall excess to runoff or outflow, the unit hydrograph method was used which describes numerically the timing of runoff for the drainage area as a whole. A unit hydrograph is the sub-basin outflow due to a 1 inch rainfall excess generated uniformly over a sub -basin area at a uniform rate in a specific time period . For this study , unit hydrographs were developed for each basin by the HEC-1 program utilizing Soil Conservation Commission (SCS) computations. The SCS dimensionless unit hydrograph method uses sub-basin area lag time to generate the unit hydrographs . 3.2.4 Runoff Curve Numbers Runoff Curve Numbers (RCN) were developed by the Soil Conservation Service (SCS) to relate soil group type, land use, land treatment, hydrologic condition, and antecedent soil moisture . Described below are the parameters used to determine a weighted RCN for the TAMU Bee Creek basin. The T AMU Bee Creek and Wolf Pen Creek basins are situated in Zack-Urban Land Complex, Booneville-Urban Land Complex, and Sandow -Urban Land Complex soils as delineated in the U .S . Department of Agriculture's Soil Conservation Service , Soil Description Report for Brazos County (6). The permeability of Zack Series and Booneville Series soils is very slow with a moderate available water holding capacity. Within the Soil Conservation Commission (SCS) classification system, the Zack and Booneville soils are identified as Hydrologic Group D. Group D soils swell significantly when wet, are low in organic content, and usually high in clay . Under average antecedent soil moisture conditions (Condition II), the RCN for open spaces, parks, cemeteries , etc., type land use of Class D soils in which grass cover is greater than 75 percent, is 80 (7). Sandow Series soils line the Wolf Pen Creek tributary beds and are classified in Hydrologic Group C which include clay loams, shallow sandy loam, soils low in organic content, and soils usually high in clay. A moderately slow permeability and hi gh available water holding capacity are characteristic of the Sandow soil type. Under average antecedent soil moisture conditions (Condition II), the RCN for open spaces, parks, cemeteries, etc., type land use of Class C soils in which grass cover is greater than TurnerCollie0Braden Inc. SECTION III -DESIGN CRITERIA ill-7 75 percent , is 74 (7). However, for this study a Hydrologic Class D with RCN 80 was used in the HEC -1 model. The majority of the soils within the study are of Class D, so an assumption of this type is more conservative. The City of College Station's Table IIl-4 (see Appendix C) shows a Runoff Curve Number of 77 for landscaped areas. Discussions with the Assistant City Engineer revealed that the 77 RCN is an average for of the area's characteristic soil classes. The City did not object to the use of an RCN of 80 (8). Areas of impervious cover were determined from aerial photographs and land use maps taken during this study's periods of interest, 1987 and 1996. ARC/INFO software was utilized to calculate impervious and pervious area totals which are presented in tables included at the end of Section 3.2 .6 . The most current aerials were flown in 1994 and were used along with T AMU 's basemap of the main campus to develop the 1996 impervious cover total. The 1994 aerials were acquired from the City of College Station . The 1987 aerial, dated January 11, 1988, was obtained from the Aerial Photography Section of the Information Systems Office , Texas Department of Transportation . Planned land use provided by the Texas A&M University Office of Planning and Institutional Research was also considered in determining the future impervious cover percentages . Refer to Appendi x D for exhibits showing land use. Exhibits 2-4 show the land use on campus for 1987 , 1996, and proposed future conditions respectively. Exhibits 5 shows just the changes that occurred from 1987 to 1996 , and Exhibit 6 shows the proposed changes from 1996 to the future. Using the impervious and pervious cover percentages, a weighted RCN was calculated for use in the HEC-1 model. Weighted RCNs for 1987, 1996, and future conditions are presented in tabular form at the end of this section . 3.2.5 Lag Time La g time, T1ag• which is used in the HEC-1 model , is defined as the time from the center of mass of rainfall runoff to the peak discharge. Calculation of the la g time was via the Lag Method (6) which relate s the lag time to hydraulic length (L), slope (Y), and maximum retention (S) of the basin or sub- ba si n, Equation 1. Hydraulic length is the distance a particle of water travels from th e most TurnerCollie0Braden Inc. .. SECTION ill -DESIGN CRITERIA ill-8 hydrologically distant point in the drainage basin to the point of interest, or flow convergence. The slope is taken as the average slope along the hydraulic length. Maximum retention is a function of runoff curve number (RCN) and is estimated by Equation 2. Lo.a (S+l)o .1 T = lag 1900 y0.5 s = 1000 -1 RCN Equation 1 Equation 2 Basin and sub-basin lag times ranged from 0.156 to 0 .954. Tabulated values, along with associated parameters are shown at the end of Section 3.2 .6. 3.2.6 Hydrographs Runoff hydrographs were computed by the HEC-1 program for each basin and sub-basin by convoluting rainfall excess amounts with each sub-basin unit hydrograph. Sub-basin hydrographs were summed and routed to their respective points of interest. Rainfall amounts and Runoff Curve Numbers (RCN) were used by the HEC-1 model to generate excess rainfall amounts or runoff from each sub- basin. A five (5) minute tabulation interval was specified for the HEC-1 calculations . The area under the hydrograph is equal to the volume of runoff contributed by the basin . Peak flow is the largest computed flow within the hydrograph. TurnerCollie0Braden Inc. Land Use Commercial SFR(low-dens .) Open Space Impervious Subwatershed Offsite1 Offsite2 Offsite3 Offsite4 Offsite5 Subwatershed WPN1 WPC1 WPC2 WPC3 WPC4 Be e Cree k SCS CN and Lag Calculations: 1987 Conditions SGS CN 94 84 80 98 Commercial (acres) 29 .2 8.48 28 8 .06 7 Impervious (acres) 63 .87 96 .5 5 .56 5.55 9.06 62 .97 SFR (acres) 0 0 29 44 0 Open Space (acres) 74.01 102 .38 58 .63 91 .8 20 .62 53.41 Off-Campus Subwatersheds Open Space Total Area Total Area Hyd. Watershed (acres) (acres) (sq mi) CN Length (ft) Slope(%) 6.5 35.7 0 .056 91.5 1,650 1.7 1.72 10.2 0 .016 91 .6 1,850 1.1 8 65 0.102 87.8 3 ,600 1.2 2.94 55 0 .086 85.3 3,700 1.1 0 .1 7 .1 0.011 93 .8 800 1.0 Campus Subwatersheds Total Area Total Area Hyd . Watershed (acres) (sq ml) CN Length (ft) Slope(%) s 137 .88 0 .215 88.3 4,400 1.4 1.32 198.88 0.311 88 .7 5,400 0 .9 1.27 64 .19 0 .100 81 .6 3 ,100 1.1 2.26 97 .35 0.152 81 .0 3 ,000 1.6 2.34 29 .68 0 .046 85 .5 1,500 1.0 1.70 116.38 0 .182 89.7 4 ,820 1.0 1.14 SGS Lag s (hrs) 0 .93 0.240 0.91 0 .325 1.39 0.618 1.73 0 .725 0.66 0 .158 SGS Lag (hrs) 0 .659 0 .953 0 .713 0 .586 0 .366 0 .793 Land Use Commercial SFR(low-dens .) Open Space Impervious Subwatershed Offsite1 Offs ite2 Offsite3 Offsite4 Offsite5 Subwatershed WPN1 WPC1 WPC2 WPC3 WPC4 Bee Cree k SCS CN and Lag Calculations: 1996 Conditions SCS CN 94 84 80 98 Commerci al (acres) 29 .51 10.2 29 .21 11 7 .1 Impervious (acres) 64 .92 96 .32 5 .54 5 .55 9 .22 64.3 SFR (acres) 0 0 29 44 0 Open Space (acres) 72.96 102 .56 58 .65 91 .8 20.46 53 .41 Off-Campus Subwatersheds Open Space Total Area Total Area Hyd. Watershed (acres) (acres) (sq mi) CN Length (ft) Slope ("lo) 6 .19 35 .7 0 .056 91 .6 1,650 1.7 0 10.2 0 .016 94 .0 1,850 1.1 6.79 65 0 .102 88 .1 3.600 1.2 0 55 0.086 86 .0 3,700 1.1 0 7 .1 0.01 1 94 .0 800 1.0 Campus Subwatersheds Total Area Total Area Hyd. Watershed (acres) (sq mi) CN Length (ft) Slope ("lo) s 137.88 0 .215 88 .5 4.400 1.4 1.30 198 .88 0.311 88 .7 5.400 0.9 1.27 64 .19 0.100 81 .6 3 ,100 1.1 2 .26 97 .35 0 .152 81 .0 3 ,000 1.6 2 .34 29 .68 0 .046 85 .6 1,500 1.0 1.68 116.38 0.182 90 .0 4 ,820 1.0 1.12 SCS Lag s (hrs) 0 .92 0 .239 0 .64 0.291 1.35 0.612 1.63 0 .706 0 .64 0.156 SCS Lag (hrs) 0.655 0.954 0.713 0 .586 0 .365 0 .786 Land Use Commercial SFR(low-dens .) Open Space Impervious Subwatershed Offsite1 Offsite2 Offsite3 Offsite4 Oifsite5 Subwatershed WPN1 WPC1 WPC2 WPC3 WPC4 Bee Creek SCS CN and Lag Calculations: Planned Future Conditions SGS CN 94 84 80 98 Commercial (acres) 29 .51 10.2 29 .21 11 7 .1 Impervious (acres) 65 .72 97.99 8 .01 5 .55 9.22 68 .2 SFR (acres) 0 0 29 44 0 Open Space (acres) 72 .16 100 .89 56.18 91 .8 20.46 53.41 Off-Campus Subwatersheds Open Space Total Area Total Area Hyd . Watershed (acres) (acres) (SO mil CN Length (ft) Slope(%) 6.19 35 .7 0.056 91.6 1,650 1.7 0 10.2 0.016 94 .0 1,850 1.1 6 .79 65 0.102 88 .1 3,600 1.2 0 55 0.086 86 .0 3 ,700 1.1 0 7 .1 0 .011 94.0 800 1.0 Campus Subwatersheds Total Area Total Area Hyd. Watershed (acres) (sq mi) CN Length (ft) Slope(%) s 137 .88 0 .215 88 .6 4,400 1.4 1.29 198.88 0 .311 88.9 5,400 0.9 1.25 64.19 0 .100 82 .2 3,100 1.1 2.16 97 .35 0 .152 81 .0 3,000 1.6 2.34 29 .68 0.046 85.6 1,500 1.0 1.68 116 .38 0.182 90.5 4,820 1.0 1.04 SGS Lag s (hrs) 0 .92 0 .239 0.64 0.291 1.35 0.612 1.63 0 .706 0.64 0.156 SGS Lag (hrs) 0.653 0.948 0.697 0 .586 0.365 0 .767 SECTION IV -RESULTS IV -1 4.1 RUNOFF HYDROGRAPHS Peak rainfall runoff hydrographs were computed by the HEC-1 model for each of the study's delineated basins during each period of interest and are presented in Table 4.1. The hydrographs are included in Appendix A with the HEC-1 input and output files located in Appendix B. Table 4.1 -Hydrograph Summary Basin Period of Interest Peak Flow, cfs 1987 419 Bee Creek 1996 420 Future 427 1987 537 Wolf Pen Creek Natural 1996 540 Future 541 1987 1975 1996 1974 Wolf Pen Creek Tributary C 1996 * 1977 Future 1985 * Includes development off-campus. Resulting increases in peak flow rates were minimal, less than one (1) percent from 1987 to 1996 in the Bee Creek and Wolf Pen Creek Basins. Calculated 1987 and 1996 peak flow rates for Bee Creek, Wolf Pen Creek, and Wolf Pen Creek Tributary C were 406 versus 407, 537 versus 540, and 1975 versus 1977 cubic feet per second (cfs), respective ly . The increase in runoff through Wolf Pen Creek Tributary C was due to development offsite, with runoff flow actually decreasing one (1) cfs during the period due to on-campus development resulting in a net removal of impervious cover. Although there has been considerable growth on the main campus of TAMU since 1987, most can be considered as replacing previous impervious cover with new impervious cover, resulting in little change overall, i .e., TurnerCollie<'.O'Braden Inc SECTION IV -RESULTS IV -2 replacing parking lots with parking garages. Table 4 .2 itemizes the changes that have occurred since 1987 and those that are planned for the furore , Planned future development will increase 1987 Bee Creek peak flows less than three (3) percent W!t h increases in Wolf Pen Creek peak flows remaining less than one (1) percent. Based on the model's findings, there is no immediate need for detention of current discharged runoff. 4.2 SENSITIVITY Some concern over the sensitivity to impervious cover of the HEC-1 model has been expressed . An attempt to evaluate the sensitivity of the HEC-1 model with respect to changes in impervious cover was made . Bee Creek was modeled due to its single basin delineation. A 40 to 80 range of percent impervious cover was plotted against resulting peak flows in Figure 4.1. Due to the area soil type's high Runoff Curve Number, 80, in comparison with impervious cover, RCN 98, the model is not highly sensitive. A 10% increase in impervious cover results in only a 2.5% increase in peak runoff flow rate for the Bee Creek basin . TurnerCollie©'Braden Inc. cl Table 4.2 -Net Changes in Impervious Cover by Watershed rJ1 ., tr1 :J (j) (j ., 1987-96 (") ~ 0 NET 1-i BASIN INDEX IMPERVIOUS (AC) DESCRIPTION 0 (i)" z 6: WPC1 1 0 .00 REMOVE EXISTING PARKING, CONSTRUCT BLDG 388 2 -0 .04 BUILDING 387 MODIFICATION , ADDITIONAL OPEN SPACE 1-i o:i WPC1 ~ ~ WPC1 3 -0 .12 CONVERT PARKING LOT TO BUILDING 353 AND OPEN SPACE (j) WPC1 4 0 .00 REMOVE BUILDING 686, REPLACE WITH PARKING LOT ~ :J WPN1 5 -1.07 REMOVE PARKING , ADD BUILDINGS 290,291,292,378 :J WPN1 6 -0 .02 REMOVE PARKING , ADD BUILDING 293 rJ1 0 WPN1 8 0.13 ADDED BUILDING 377, REMOVED SOME OPEN SPACE , REVISED PARKING ~ WPN1 9 0 .21 REMOVED PARKING LOT , ADDED BUILDINGS 379,383,384, REVISED STREET WPN1 10 1.60 ADDED PARKING , REMOVED OPEN SPACE ~ BEE CREEK 7 0 .00 REMOVED PARKING, ADDED BUILDING rJ1 BEE CREEK 9 1.82 REMOVED PARK!NG LOT, ADDED BUILDINGS 379 ,383,384, REVISED STREET BEE CREEK 10 0 .14 ADDED PARKING , REMOVED OPEN SPACE BEE CREEK 11 -0.51 DEMOLISHED BUILDING 452 BEE CREEK 12 0 .00 REPLACED ARTIFICIAL TURF WITH NATURAL TURF WITH UNDERDRAIN 1996-FUTU RE NET BASIN INDEX IMPERVIOUS (AC) DESCRIPTION WPC1 1 1.66 PARKING LOT ADDITION WPC2 1 2.47 PARKING LOT ADDITION WPN1 2 0 .81 FUTURE CONSTRUCTION SITE , ESTIMATED AT 55% IMPERVIOUS COVER BEE CREEK 2 5 .28 FUTURE CONSTRUCTION SITE , ESTIMATED AT 55% IMPERVIOUS COVER BEE CREEK 3 0.26 DEMOLISH POLICE STATION , NEW DEVELOPMENT BUILDING , PARKING AND ACCESS BEE CREEK 4 -0.05 DEMOLISH BUILDING 666 BEE CREEK 5 -1.59 REMOVE TENNIS COURTS, INSTALL PLAYFIELDS NOTE: Refer to Appendix D, Exhibits 5 & 6 for locations of changes. 500 CJ) 480 4- 0 <D-460 ......... Ctl cc 3 440 0 LL 420 ~ Ctl \l) a.. 400 380 30 Figure 4. 1 -Bee Creek Basin HEC-1 Model Sensitivity to Impervious Cover / v I / v v / v v 40 50 60 70 80 Impervious Cover , percent 90 SECTION IV -RESULTS IV - 5 4.3 STORMW ATER DETENTION The term "stormwater detention" refers to the process of temporarily storing rainfall runoff so that it can be released at a slower, predetermined rate. The amount of storage volume necessary is a function of the reduction of peak flow desired: higher reductions in peak flow require larger volumes of detention storage. The amount of water being stored at any given time is a function of the inflow hydrograph (refer to Appendix A). In this analysis, the 100-year design storm used has a duration of 24-hours, meaning that some magnitude of flow will occur for more than 24-hours, with or without detention. In a storm such as this , appreciable detention storage will not occur until the more intense part of the storm (see Figure 3 .1). The storage volumes discussed in this report represent the maximum storage volume that can be expected . Once this maximum storage value is reached, more water cannot be stored because the outflow becomes greater than the inflow, causing the water level to subside . The length of time that water remains in the detention basin depends on the inflow hydrograph: in small basins such as these, the water, once it starts to subside, should remain in the basin less than a day. Table 4 .3 shows a summary of the peak flows for 1987, 1996, and in the future with proposed peak flow reduction measures in place. Table 4.3 -Peak Flow Summary Future Peak 1987 Peak Flow 1996 Peak Flow Flow w/ Basin (cfs) (cfs) Detention (cfs) % Reduction Bee Creek 419 420 378 10 Wolf Pen Creek Tributary C 1975 1974 1875 5 Wolf Pen Creek Natural 537 540 540 --- SECTION IV -RESULTS IV - 6 Storage volumes required to detain 10% of the peak flow from Bee Creek, a flow on Wolf Pen Creek Tributary C were calculated and are presented in T detention required for each peak flow and percent detained, preliminary lac and costs associated with construction were determined and may be used as management by Texas A&M University. Construction costs are discussed nd up to 5 % of the peak able 4.4. The volume of ation of detention basins , a tool in stormwater in Section V and the detention site locations are shown on Exhibit 7 in Appendix D. Table 4.4 -Reduced Flow Summary Basin Storage, 1996 Peak Flow %Red. ac-ft 5 4.6 Bee Creek 420 cfs 10 6.5 Wolf Pen Creek Tributary C 2 10 1974 cfs 5 23 ated Estim Cost ' $ 30,0 00 50,0 00 70,0 00 165,0 00 $/cfs Removed 1,400 1,200 1,600 1,700 atural channel and for Detailed storage and cost calculations were also made for Wolf Pen Creek n larger peak flow reduction s in Tributary C . These options are not shown du are discussed in Section V) as related to their benefit to TAMU and the City should also be noted that storage and cost calculations related to the detentio are rough approximations based on a cursory review of the topography in th analysis could not be performed due to time constraints of the plan developm detaile d analysis must be performed before de sig n of detention facilities north commences . The proposed detention basin sites and configurations are inten reducing the peak runoff. They are not the only sites and co nfigurations tha this purpose. While the final designs of these detention basins are not requir identical to what is recommended, they mus t be functionally equivalent. e to prohibitive costs (costs of College Station . It n site north of New Main at area. More detailed ent. A more thorough and of New Main ded to serve the purpose of t can be used to accomplish ed to be physically Storage volumes were derived by estimating the area between the 1996 hydr ograph produced by HEC- TurnerCollie 0 Braden Inc. - SECTION IV -RESULTS IV - 7 1 (inflow hydrograph) and a straight-line approximation of the rising limb of the outflow hydrograph . This area represents the volume that would be required to attenuate the peak flow to the level where the straight line intersects the receding limb of the inflow hydrograph . Experience shows that 10% should be added to this volume to more closely approximate the final pond volume required. Hydrographs used to compute these volumes are p r esented in Figures 4 .2 through 4.10. Detention storage volumes and storage capacities that could potentially be achieved are presented in Table 4 . 5 and Figures 4 .11 through 4 .13 . The table and figures show detention storage that could be obtained, regardless of cost, given the natural topography of the land and in some cases the construction of berms . Costs are discussed in detail in Section V. T AMU proposes a 10 % peak flow reduction in Bee Creek and a 5 % reduction in Wolf Pen Creek Tributary C. The detention site for Bee Creek basin was selected with an intent to determine the general magnitude that could possibly be developed by slightly raising the existing berm and adding outlet control features. Wolf Pen Creek Tributary C detention can be accomplished on the site north of New Main alone or in combination with the site just north of George Bush Dr . A reduction in peak flow of 2 % can be met without earthwork by using a combination of the two av ailable sites and adding outlet control features. A reduction in flow of 5% can be met using only tlie site north of New Main , but with approximately 11 , 100 cubic yards of earthwork required to provide the necessary 23 acre-fee t. In our analys is, depths were not considered crucial. In the case of the Bee Creek detention site , the depth needed is 8 feet, exceeding the depth of 4.5 feet set by the City of Colleg e Station. TurnerCollie 0 Braden Inc ,...-...., ~ u Figure 4.2 -Bee Creek: 5°/o Reduction in Peak Flow Volume+ 10% = 4.6 ac-ft '--'300 -J---~----t------+---t--~--+-__,, a Q) en I.-cu £200 --1------+-------+--H-----+--~---'<--+-----1 u CJ) 0 100 -!-·------+--- 0 -L----- 10 ----"---- 11 12 13 14 15 Time (hrs) Q) 0) ,_ 400 Figure 4.3 -Bee Creek: 1 Oo/o Reduction in Peak Flow Volume+ 10 % = 6 .5 ac-ft co ~200 -+-~~~~-+---~~-~~-+----+-r~~~-+---~~---''<---+---~~-u (/) 0 10 11 12 13 14 15 Time (hrs) ,..-...., ~ () Figure 4.4 -Bee Creek: 20°/o Reduction in Peak Flow Volume+ 10% = 10.0 ac-ft '-'300 -1-~-~~~-+---~~~-t-~-1-~~-j7~~~~-t-~~~~~ a Cl) ~ C'O ~200 -1--~~~~-+-~~~~--+---+--r-~~-t-~~--~-+~~-~~~ () (/) 0 10 11 12 13 14 15 Time (hrs) l Figure 4.5 -Wolf Pen Creek: 5°/o Reduction in Peak Flow Volume+ 10% = 5 ac-ft ,_ ~ 400 -+-----· u .._. a ~300 ~------r------ 1.... co ..c u .~200 -J------r---------ti------t-----',,----j-----~ 0 0 -J------+-------j------+-----t------~ 10 11 12 13 14 15 Time (hrs) .-..... Figure 4.6 -Wolf Pen Creek: 10°/o Reduction in Peak Flow Volume+ 10% = 7 .2 ac-ft 500 -+--------,-- 2400 -t------t--------r----,>----1-------t--'.-------+---·~----1 (.) a ~300 ~------t---------t----t-i'-----t----T----~----~I I- CU ..c (.) -~ 200 -f-------+--------------4--~~-----+--o 100 _,_ ____ _,__ 0 .... ,------t--- 10 11 12 13 14 . Time (hrs) 15 .---- Figure 4.7 -Wolf Pen Creek: 20°/o Reduction in Peak Flow 600 r _ Volume+ 10% = 11.5 ac-ft ~ 400 -----() ...__, a Q) 300 -!--------1---------+---+---+---------+---\-t? t-0 ...c (.) -~200 -------1-------~-------t------>,,-----t-------l 0 o -~-----+--------+-------~----j------ 10 11 12 13 14 15 Time (hrs) a Figure 4.8 -Wolf Pen Creek Trib "C": 5°/o Reduction in Peak Flow Volume+ 10 % = 2 3 ac- & 1000 -+----- I-cu ..c:: {) CJ) 0 10 11 12 13 14 Time (hrs) 15 a Figure 4.9 -Wolf Pen Creek Trib "C": 10°/o Reduction in Peak Flow 2000 -,.-----------,---- Volun1e + 10 % = 31 ac-ft Q)-1000 J-----+-- 0> l.... (1j ..c u Cf) 0 500 0 --1----------t-----i----------;-------+--_J 10 11 12 13 14 15 Time (hrs) ---------------------------------~ a Figure 4.10 -Wolf Pen Creek Trib "C": 20°/o Reduction in Peak Flow 2000 ~----~----~-----~---------~ Volume+ 10 % = 50 ac-ft ~ 1000 L... cu ...c (.) Cf) 0 500 _,____ ___ _ O _,__------+-~ ·---1-------1-------+-----l 10 11 12 13 14 15 Time (hrs) SECTION IV -RESULTS IV -17 Table 4.5 -Detention Volume Calculations Change in V =( h/3)(A 1+A2+(A1 *A2)A0 .5) Net Avail. Elevation h Area Volume Gross Accum . Berm Vol. Det. Vol. (Ft.) (Ft.) (Ac .) (Ac.Ft.) Volume (Ac .Ft.) (Ac .Fl.) 5% Req 10% Req 20% Req WPCN : @GEO. BUSH DR . 302 0 .09 0.00 304 2 0 .52 0.55 0.55 306 2 1.39 1.84 2.39 308 2 2 .55 3 .88 6 .27 310 2 5.64 7.99 14 .26 14.26 3 .42 10.84 5 7 .2 11 .5 @MAINT. RD . 310 0 .05 312 2 0.60 0.55 0.55 313 1 0.98 0.78 1.33 314 1 1.40 1.18 2 .51 315 1 1.66 1.53 4 .04 316 1 2.09 1.87 5 .91 5.91 TOTAL 20 .17 WPC-TRIBUTARY C: @ GEORGE BUSH DR. -BERM USED 290 0.80 294 4 4.28 9.24 9.24 296 2 8 .03 12 .11 21 .36 298 2 13.24 21 .05 42.41 300 2 19.75 32.77 75.18 75.18 7 .01 68 .17 23 31 50 @NEW MAIN 308 2 0 .16 310 2 3.66 3.06 312 2 11 .54 14.47 17 .53 6.88 24.41 23 NOTE: Assume benn volume is excavated material from detention basin . BEE CREEK: @ GEO . BUSH DR . 325 0.06 326 0.24 0 .14 0 .14 327 0.52 0 .37 0 .51 328 0 .87 0 .69 1.20 329 1.19 1.03 2 .22 330 1.53 1.36 3.58 331 1.90 1.71 5.29 332 2 .34 2 .11 7 .40 Top of existing benn 333 2 .82 2.58 9.98 334 3.30 3.06 13 .04 13 .04 NIA 13 .04 4 .6 6 .5 10 TurnerCollie<'.b'Braden Inc Figure 4.11 -Stage vs. Volume Bee Creek -George Bush Drive I _ -· ___ I ___________ J _ _ _ _ _ _ ____ I_ ___________ I_ _ _ _ _ _ ____ l _ _ _ _ _ _ ____ I ___________ J ____ _ I I I I I I I I I I I 335 Proposed top 'for 20% · 334' ' ' ~ 333 I ---: ----:.--.-~---1---~-~---:-i _: ___ -,-----:-' ~ r ~~~ o_~ e~1stln~~ -b~rm -~}-~~--1-_:_ - - - - --i 20% :--------~-- ........, I t I I I Cf) I I I I I ._-331 + I 10% -t--~--t--~--+--~--j ~ t --+------_;__ -----:-----1 ---:--------:---·---- ~ 329 t-I I I UJ I I 327 325 0 - - - --1-- - - - --- --, - - - --- --- -r - - - ---- ----1 ---- ---- - -T - - - -- - ----1----- -------, - -- - - I I I I I I I I I --~--1---.--+---,---1-----~-------+-----,---1-~-~ I I -- - - _ ,_ - - - - --- -- -J --- - - I I I -- ---\-- - ----.. - - -~ -- --_ fl - - - --~-- - - - _ 11_ - - --+----j-----t ----- I I I I I I I I I I -!--+----~ 2 4 6 8 10 12 14 Volume (ac-ft) ------------------------------------------' Figure 4.12 -Stage vs. Volume WPC Natural Course -George Bush Drive 314 I ___ + u [ 1 ____ \-_ -+ u L~_ I ____ ~ _ _ __ -:-_ _ _ _ ;-_ _ _ _ -:-___ _ 312 r -: I : : : I 1 I I I I £ -Proposed top for 20% = 31 O' · -----_,_ -------· -:---------~ ---- ____ !_ ___ _ I I I ----+----- ' I I a) 310 -I I I : ----- fill 1 ____ ----.----__ -:--------L~~w-%--+---1--:---- §.308 ~-: : -' : : • i 306 ij---·: -------?L1:----~ O% ---;---------:------~ -----~--- (1) I v I t w t y --: ---:-------" -----:----------~----; __ 304 fl-· __ , ____ ; ________ ; ____ -----:-------_________ · _________ L __ 302 I 0 2 4 6 I 8 Volume (ac-ft) 10 12 14 16 Figure 4.13 -Stage vs. Volume Wolf Pen Trib "C" -George Bush Drive ::: t---------. ------... -1---------" --------------------!----------I --- -----• --u -- - -- t --Proposed top for 20 % = 300' ----------'--------------------~ --------- £300 . I ~- -: I I -----: Q) r--· --- - - - - -r - - --- - - - -- -- - --- --1 - --- -- - - - -- - - -- - -- --1--- - - - - -- - - --- --·-r - - - - - - - -- 0) L I 2 298 ---I -'------! ~ L--------~----------------------------------------~---------c i : .Q 296 I ...... cu > Q) I I ----------t---- I I - - --- -- - - - - -- - --- - - -r-- - - --- - - ----------r --------- w 294 __ l_ ________ _ I I I I - - --- -----I - - --·-- - --- - ---- -----t -- -.• ---- - - - - - - - - - - - -- -- - - - - - -- I 292 -+-~,/--~~~---+-~~~~-~~---+-~~~~-~~-+~~~~~~~ I I -- -- - -- -+-- -- - -- - ---- --- -- - -4 -- - - - -- - ------ -- ----1 -- - ---- - - -- - - - -- -- --.. ---- -- I I I I I I 290 -l'-~~~f--~~-i-~~~~-~~~f--~~-l-~~~4-~~--1~--~-< 0 20 40 Volume (ac-ft) 60 80 .. N 0 I I I SECTION V -COSTS v -1 Probable costs for construction of the recommended detention basins were estimated for each basin and percent of peak flow. Table 5. 1 presents a summary of these costs . A breakdown of the costs is presented in tabular form on the following pag es. Table 5.1 -Summary of Probable Costs Basin Storage ' Estimated $/cfs 1996 Peak Flow %Red. ac-ft Cost,$ Removed 5 4 .6 30,000 1,400 Bee Creek 420 cfs 10 6 .5 50 ,000 1,200 Wolf Pen Creek Tributary C 2 10 70,000 1,600 1974 cfs 5 23 165,000 1,700 The unit costs for detaining peak flows varies for each basin based on the current topographical features . The Bee Creek cost is somewhat lower because minimal earthwork is required and existing outlet works which can be utilized. The Wolf Pen Creek Tributa ry C cost for 2 % peak flow reduction considers using both detention sites shown in Appendix D, Exhibit 7 . In this case , th e only construction required is the modification or addition of outlet works. The cost for the 5 % peak flow reduction in Wolf Pen Creek Tributary C considers only the site north of New Main . The detention configuration involves modification of the outlet device and approximately 11 , 100 cubic yards of earthwork . Costs do not consider possible aesthetical and safety impacts for any of the proposed op ti ons . De tention is not recommended at this time for Wolf Pen Creek Natural because of its low priority and exce ssive implementation costs . The cost of reducing the peak flow in Wolf Pen Creek Natural channel by 5 %, not shown in Table 5.1 , is $100 ,000 to remove 27 cfs . The $/cfs removed value is $3 ,700 for Wolf Pen Creek Natural : more than twice th at of the $1,700 /cfs removed fo r Wolf Pen Creek Tributary C 5 % reduction . Turner Collie0Braden Inc. SECTION V ·· COSTS V-2 ---·-.. ------·----------·-----·------·-----·------------- Further sLudy to determine more exacting and detailed costs can be performed afte r· the impacts of safety, maintenance and aesthetic parameters are known. Turner Collie ©'Braden Inc. SECTION V -COSTS V-3 --------------------·----------·----------··------··----------- TAMU -Storrnwater Management Plan Detention Ba in Engineer's Opinion of Probable Costs Bee Creek Quanti ty Unit 5 % Detention 1. No Earthwork 2. Outlet Works 10 % Detent ion 1. Mobilization 0 I LS Total Construct ion Engir.eering & Contingency "'* TOTAL LS 2 . Stripping Sod & Fi ne Grading 646 SY 3. Compacted Fill 4 . Sodding 5 . Outlet Works 100 64 6 1 Total Construction Engineering & Contingency"" TOTAL CY SY LS Unit Price Extended Amoun ts 25,()()().00 $25,000 5 ,000 .00 J.00 $646 10.00 $1,000 9.00 $5,81 4 25 ,000.00 $25,~ $25,000 $5 ,000 $30 ,000 $32 ,000 $18,000 $50,000 "Outlet Works includes removing existing headwall, providing new headwall and providing outlet contr "" Engineering & Contingency -Construction Contingencies, Design Surveying, Geotechical. Investigati and Engineering Design Fees. TurnerCollie0Braden Inc. SECTION V -COSTS Texas A&M University Storrnwater Management Plan Cost Estimate WPC -Trib utary C llnll Extended Qu 3.nt ic y Unit Price Amoun ts 2 % Detemion North of New Main and North of George Bush Dr. 1. Outlet work s @ George Bush 1 LS 35,000.00 $35 ,000 2. Outlet works@ New Main 1 LS 10,000 .00 _ _1!_9..!QQQ_ Total construction Engineering & Co nti ngency TOTA L 5 % Deteniion North of New Main St. Only 1. Mobilizat ion 6. Stripping Sod & Fine Grading 1 LS 9,000 SY 11,100 CY 9,900 SY 7. Excavat ed and Compacted Fill 8. Seeding 9. Outlet Works 1 LS Subtotal construction Total Construct ion Engineering & Contingency TOTAL 5,000 .00 0.50 9.00 0.50 25,000.00 '' Omlet Works includes providing new headwall, RCP c ulve rt, a nd outlet contro l dev ices . $5,000 $4,500 $99 ,900 $4,950 $25 ,000 ---·-------·--------·--- Turner Collie0Braden Inc. $45,000 $70,000 $5 ,000 $134 ,000 $139,000 $26,000 $165,000 V-4 REFERENCES 1 U.S. Army Corps of Engineers , The Hydrologic Engineering Center, "HEC-1 Flood Hydrograph Package ," September, 1981 (Revised January, 1985). 2 . Dodson and Associates, Inc., "The Dodson Professional HEC-1 System, PROHECl Plus ," 1995. 3. U.S. Department of Commerce, Weather Bureau, "Technical Paper No. 40 ," May, 1961. 4. National Oceanographic and Atmospher ic Administration, "Technical Memorandum NWS H YDR0-35," June, 1977 . 5 . Nathan D. Maier Consulting Engineers , Inc., ,.Flood Pl a:in Ev aluation, Reused Existing Conditions on Wolf Pen Creek a nd T ri buta rie s," March, J 988. 6. U.S . Departmen t of Agricultme, Soil Conservation Service, "Soil Survey of Brazos County , Texas ," issued 1978. 7. Richard H . McCuen , "A Guide to H ydrolog ic Analysis using SCS Methods ," Prentice-Hall, Inc., 1982. 8. Veronica Morgan, Telecom. ADDITI ONAL SOURCES · l. U.S . Army Corps of Enginee r s, The H ydrologic E ng ineering Center, "HEC-2 Water Surface Profiles," Septembe r, 1982. 2 . Daniel H. Hoggan, "Computer-Assist ed Floodpl ain Hydro logy & Hydraulics ," McGraw-Hill Publi shing Company, 1989 . -------·----·--·--------- TurnerCollie0Braden Inc. .APPENDIX A HYDROGRAPHS Wolf Pen Creek and Bee Creek 1987 Hydrographs 2000 ~------------------------, /\ -----1500 ~ u ..__... a ~ 1000 1-. m ...c u t CJ) 0 500 I I I I ' \ I ' ' I \ I \ : I I I : I I \ . \ / \ I '"" ' Ji\ \ / / \.\-. '·~--~ -----~ '-.~ --------=:::============-==~~! 0 -!----~-=--I . ---r 0 4 ! 8 12 Time (hrs) i6 I I - --VVP Trib "C" (\/VPC) ----\/V P Natural (WPf\J) --Bee Creek L ___ L . 20 24 ~ 1500 1 ~ u ..__, 0 - <l) 1000 0) ~ CU I ...!:: I u ! (Jj 1 0 500 I I I 0 0 Wolf Pen Creek and Bee Creek 1996 Hydrographs 4 8 12 Time (hrs). 16 20 [ ---WP Trib "C" (WPC) --~ --WP Natural (WPN) -Bee Creek l 24 2000 0 Wolf Pen Creek and Bee Creek · Future Conditions Hydrographs 4 8 /\ I \ ' \ . I 12 Time (hrs) 16 E WP Trib "C" (WPC) ----WP Natural (WPN)-_:=_ Bee Creek 20 24 Bee Creek Hydrographs at George Bush Drive 500 ~----------------------·-~ i I 400 -i- Cf) ,..--... 1i ~-300 v I Q)-i E1 I ~ 200 + r.n I o I ·100 + ! I 0 I \ I . . \ I \ I i ! \ I \ J \ I \ \.'-, '~--------------------0 -+-----.==----.-----,---------,----.----~ 0 4 8 20 2 4 12 Time (hrs) I I l__ ___________ [_~_--_1_9-_s'_, __ -_-_--_1_9 _96_-~---F_u_tu_re __ I __ ~---~ Wolf Pen Creek Natural Channel Hydrographs at George Bush Drive 600 ~-----l 500 ...-. Cf) t5 400 -..-! a I ~300 t cu -5 I .w 200 -1-1' 0 I 100 I 1\ I \ I \ I I i I I i j \\ I I I , \ I \ I \.'"--......... ____ I _________ ----!I I --~-----1 0 +-----..-====::::= -~--~-------r 0 4 8 12 16 20 24 Time (hrs)· --1987 ----1995 ---F~tLir:e) ---------__J I I i 2000 T I I c;; 1soo + "+--Ii u ._..._.,, i a I ~ 1000 t ~ I {.) ! (./j ,. I n I -500 -+- i i I Wolf Pen Creek Trib -_"C" Hydrographs at George Bush Drive I~ I \ I \ I \ : I i \ I \ I \ I I , \ I \ / \\ '~ ~-..._ i I I 0 -J------.--===----=-----.-------- I ----------! 0 4 8 12 Time (hrs) ----.-----~ I Ar" . 10 .20 l-1987 ----1996 -~-~~~ L __ --------------------------- I 24 APPENDIX B HEC-1 INPUT/OUTPUT BEE CREEK ·························~··············· FLO OD HYDROGRAPH PACKJ\GE (HEC -1 ) MAY 1991 VERSION 4. 0. lE RUN DATE 02/25/97 TIME 13:17:39 .............•...••..••.....••...•••••••• x x xxxxxxx x x x x x x xxxxxxx xx xx }'. x x x x x x x xxxxxxx xxxxx x x x x xxxxx x x x xxxxx x xx x x x x xxx *************************************** • • U .S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-1748 . ••••.•...........•.•.•...•............ THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73), HEClGS, HEClDB, AND HEClKW. THE DEFINITIONS OF VARIABLES -RTIMP-AND -RTIOR-HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVI S IONS DATED 28 SEP 81. THIS IS THE FORTRAN?? VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS :READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOS S RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM LINE 2 3 4 5 6 7 8 9 10 11 12 13 14 15 HEC-1 INPUT PAGE 1 ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 ID TAMU MAIN CAMPUS STORMWATER MANAGEMENT PLAN ID BEE CREEK WATERSHED TO G BUSH DRIVE ID 1987 ID 24-HOUR I 100-YEAR FLOOD ID FILENAME : TAMUBCl .IHl IT 5 01JAN87 0000 288 IO 5 0 0 KK TAMUBC KM COMPUTE RUNOFF HYDROGRAPH FOR TAMU BEE CREE K KO 1 21 BA 0.1818 PH 0.87 1. 95 4 .26 5.7 6 .3 7 .8 9.6 11 .C LS 0 89.7 UD .79 zz ***************************************** FLOOD HYDROGRAPH PACKAGE (HEC -1) MAY 1991 VERSION 4. 0. lE RUN DATE 02/25/97 TIME 13:17:39 ............•............................ TAMU MAIN CAMPUS STOP.MWATER MANAGEMENT PLAN BEE CREEK WATERSHED TO G BUSH DRIVE 7 IO IT OUTPUT 1987 24-HOUR / 100-YEAR FLOOD FILENAME: TAMUBCl.IHl CONTROL VARIABLES IPRNT 5 PRINT CONTROL !PLOT 0 PLOT CONTROL QSCAL o. HYDROGP.APH PLOT HYDROGRAPH TIME DATA SCALE NMIN 5 MINUTES IN COMPUTATION INTERVAL !DATE 1JAN87 STARTING DATE I TIME 0000 STARTING TIME NQ 288 NUMBER OF HYDROGRAPH NDDATE 1JAN87 ENDING DATE NDTIME 2355 ENDING TIME I CENT 19 CENTURY MARK COMPUTATION INTERVAL TOTAL TIME BASE 0.08 HOURS 23. 92 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH , ELEVATION FLOW STORAGE VOLUME SURF.l\CE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE-FEET ACRES DEGREES FAHRENHEIT ORDINATES *************************************** U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 GECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-1748 *** *** *** *** *** *** *** ••• *** *** *** *** w•• *** ••• *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** **• 8 KK 10 KO TAMUBC ************** OUTPUT CONTROL VARIABLES IPRNT !PLOT QSC:AL IPNCH IOUT ISAVl ISAV2 TIMI NT l PRINT CONTROL 0 PLOT CONTRO L 0 . HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 21 SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED 288 LAST ORDINATE PUNCHED OR SAVED 0 .083 TIME INTERV~L IN HOURS 11 BA 12 PH 13 LS 14 UD SUBBASIN RUNOF F DATA SUBBASIN CHARACTERISTICS TAREA 0.18 SUBBASIN AREA PRECIPITATION DATA DEPTHS FOR 0 -PERCENT HYPOTHETICAL STORM HYDR0-35 5 -MIN 15-MIN 60-MIN 0 .87 1 .95 4.26 2 -HR 5 .70 3-HR 6 .30 TP-40 6-HR 7.80 12-HR 9 .60 STORM AREA = 0.18 SCS LOSS RATE STRTL CRVNBR RT IMP 0.23 INITIAL ABSTRACTION 89 .70 CURVE NUMBER 0.00 PERCENT IMPERVIOUS AREA SCS DIMENSIONLESS UNITGRAPH TLAG 0 .79 LAG 24 -HR 11 . 00 UNIT HYDROGRAPH 3. 104. 26. 5 . 1 . 11. 98. 22 . 4. 1. 20. 9 1. 19 . 4 . 1. 33. 82. 15. 3 . 1. 49 END -OF-PER IOD ORDINATES 50. 71. 13. 3 . 1. 70. 59. 11. 2 . 0 . 87. 48 . 10 . 2 . o . 2-DAY 0.00 98. 41. 8 . 2 . 0. TP-49 .......... . 4-DAY 0.00 7-DAY 0 .00 105. 35 . 7. 1. o . 10-DAY 0 .00 106. 29. 6 . 1. .....•.....•.......••..•••.•.•.•••••••••........•.........•........•••.••.••••••..••.•••.••••••••.•••••••••.•...........•..•....... HYDROGRAPH AT STATION TAMUBC ................................................................................................................................... DA MON HRMN ORD JAN 0000 JAN 0005 JAN 0010 JAN 0015 JAN 0020 JAN 0025 JAN 0030 JAN 0035 JAN 0 010 JAN 0045 JAN 0050 JAN 0055 JAN 0100 JAN 0105 JAN 0110 JAN 0115 JAN 0120 JAN 0125 JAN 0130 JAN 0135 JAN 0140 JAN 014 5 JAN 0150 JAN 0 155 1 2 3 4 5 6 7 e 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 RAIN 0.00 0.01 0.01 0.01 0.01 0 .01 0 .01 0 .01 0 .01 0 .01 0.01 0.01 0 .01 0 .01 0 .01 0.01 0 .01 0.01 0 .01 0 .0 1 0.01 0 .01 0.01 0 .01 LOSS EXCESS 0 .00 0.01 0.01 0.01 0.01 0.01 0.0 1 0 .01 0 .01 0 .01 0.0 1 0 .01 0 .01 0.01 O .ll l 0.01 0.01 0 .01 0.01 0 .01 0.01 0 .01 0 .01 0 .01 0.00 0.00 0.00 0 .0 0 0.00 0.00 0.00 0 .00 0.00 0.00 0.00 0 .00 0 .00 0.00 0 .00 0 .00 0.00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 COMP Q o. o. o . o. o . 0 . o . 0 . 0 . o. o . 0. o . o. o . 0 . o. o . o . o. o . 0. 0 . o. * DA MON HRMN ORD 1 JAN 1200 145 1 JAN 1205 146 JAN 1210 l47 JAN 1215 148 1 JAN 1220 149 1 JAN 1225 150 1 JAN 123 0 151 1 JAN 1235 152 1 JAN 1240 153 1 JAN 1 245 154 1 JAN 1250 155 1 JAN 1255 156 1 JAN 1300 157 1 JAN 1305 158 1 JAN 1310 159 1 JAN 1315 160 JAN 1320 161 JAN 1325 162 JAN 1330 163 JAN 1335 164 1 JAN 1340 165 JAN 1345 166 JAN 1350 167 1 JAN 1355 168 RAIN 0 .87 0 .44 0.37 0.23 0.20 0.18 0 .15 0 .13 0.12 0.12 0.11 0 .10 0.06 0.05 0 .05 0 .05 0.05 0.04 0.05 0.05 0.05 0 .05 0 .05 0 .05 LOSS EXCESS 0 .03 0.01 0.01 0 .00 0.00 0 .00 0 .00 0.00 0 .00 0.00 0 .00 0.00 0 .00 0 .00 0.00 0.00 0.00 0 .00 0.00 0 .00 0 .00 0.00 0.00 0 .00 0 .84 0 .43 0 .37 0 .23 0.20 0.17 0 .14 0 . 13 0.1 2 0 .11 0.11 0 .10 0 .06 0 .05 0 .05 0 .05 0.05 0 .04 0 .05 0.05 0.05 0.05 0 .05 0 .04 COMP Q 151. 179. 213. 251. 293 . 334. 369. 396. 412 . 41'9. 417 . 406. 390. 368. 343 . 316. 290. 265. 242. 221. 202 . 184. 168. 154. JAN 0200 JAN 0205 1 JAN 0210 1 JAN 0215 1 JAN 0220 JAN 0225 JAN 0230 JAN 0235 JAN 0240 JAN 0245 1 JAN 0250 1 JAN 0255 JAN 0300 JAN 0305 JAN 0310 JAN 0315 1 JAN 0320 JAN 0325 JAN 0330 1 JAN 0335 1 JAN 0340 JAN 0345 l JAN 0350 JAN 0355 1 JAN 0400 l JAN 0405 1 JAN 0410 1 JAN 0415 JAN 0420 JAN 0425 JAN 0430 JAN 0435 JAN 0440 ,JAN 0445 JAN 0450 JAN 0455 JAN 0500 1 JAN 0505 1 JAN 0510 1 JAN 0515 JAN 0520 JAN 0525 JAN 0530 ,JAN OS3S 1 JAN OS40 1 JAN OS45 JAN OSSO JAN OSSS 1 JAN 0600 JAN 0605 JAN 0610 1 JAN 061S l JAN 0620 JAN 062S JAN 0630 JAN 0635 JAN 0640 l JAN 064S l JAN 06SO JAN 06SS JAN 0700 JAN 070S l JAN 0710 l JAN 071S l JAN 0720 JAN 072S 2S 26 27 28 29 30 31 32 33 34 3S 36 37 38 39 40 41 42 43 44 4S 46 47 48 49 so Sl S2 53 54 SS 56 57 58 S9 60 61 62 63 64 6S 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 8S 86 87 88 89 90 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0. OJ. 0.02 0.02 0.02 0. o. o. o. o. 0. 0. o. 0. o. o. 0. o. o. o. o. o. 1. 1. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 4. 4. 4. 4. s. s. 5. s. s. 6. 6. 6. 6. 6. 7. 7. 7. 8. 8. 9. 9. 10. 11. 11. 12. 13. 14. 14. 15. 15. 16. * * 1 JAN 1400 169 1 JAN 140S 170 1 JAN 1410 171 JAN 1415 172 JAN 1420 173 1 JAN 1425 174 1 JAN 1430 17S 1 JAN 143S 176 1 JAN 1440 177 JAN 144S 178 1 JAN 1450 179 1 JAN 14SS 180 1 JAN lSOO 181 1 JAN lSOS 182 1 JAN 1510 183 1 JAN lSlS 184 JAN 1S20 l8S 1 JAN 1S2S 186 1 JAN 1S30 187 1 JAN 1535 188 JAN 1540 189 JAN 154S 190 1 JAN 1550 191 1 JAN lSSS 192 1 JAN 1600 153 1 JAN 1605 194 1 JAN 1610 195 JAN 1615 196 JAN 1620 197 JAN 162S 198 JAN 1630 199 JAN 1635 200 JAN 1640 201 JAN 1645 202 1 JAN 16SO 203 l JAN 16SS 204 1 JAN 1700 20S 1 JAN 170S 206 1 JAN 1710 207 1 JAN 171S 208 1 JAN 1720 209 JAN 1725 210 1 JAN 1730 211 1 JAN 1735 212 1 JAN 1740 213 1 JAN 1745 214 1 JAN 1750 215 1 JAN 17S5 216 JAN 1800 217 JAN lAOS 218 1 JAN 1810 219 JAN 181'; 220 1 JAN 1820 221 1 JAN 1825 222 1 JAN 1830 223 JAN 1835 224 J!>.N 1840 22S 1 JAN 1845 226 1 JAN 18SO 227 1 JAN 185S 228 1 JAN 1900 229 1 JAN 1905 230 1 JAN 1910 23J. 1 JAN 1915 232 1 JAN 1920 233 1 JAN 1925 234 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 O.Ol 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 141. 130. 120. 112. lOS. 99. 93. 88. 84. 80. 76. 73. 70. 67. 6S. 62. 60. S8. S6. SS. 53. 51. 50. 48. 47. 46. 45. 44. 43. 42. 41. 41. 40. 39. 39. 38. 37. 37. 36. 36. 35. 35. 34. 34. 33. 33. 33. 32. 32. 31. 31. 30. 30. 29. 28. 27. 26. 25. 24. 23. 22. 21. 21. 20. 19. 19. 1 JAN 0730 91 1 JAN 0735 92 1 JAN 0740 93 1 JAN 0745 94 1 JAN 0750 95 1 JAN 0755 96 JAN 0800 97 JAN 0805 98 JAN 0810 99 1 JAN 0815 100 1 JAN 0820 101 1 JAN 0825 102 JAN 0830 103 JAN 0835 104 1 JAN 0840 105 1 JAN 0845 106 JAN 0850 107 JAN 0855 108 JAN 0900 109 JAN 0905 110 JAN 0910 111 JAN 0915 112 1 JAN 0920 113 1 JAN 0925 114 1 JAN 0930 115 1 JAN 0935 116 1 JAN 0940 117 JAN 0945 118 JAN 0950 119 JAN 0955 120 JAN 1000 121 1 JAN 1005 122 1 JAN 1010 123 JAN 1015 124 JAN 1020 125 JAN 1025 126 JAN 1030 127 JAN 1035 128 JAN 1040 129 JAN 1045 130 1 JAN 1050 131 1 ,JAN 1055 132 1 JAN 1100 133 JAN 1105 134 JAN 1110 135 1 JAN 1115 136 JAN 1120 137 JAN 1125 138 JAN 1130 139 1 JAN 1135 140 JAN 1140 141 JAN 1145 142 1 JAN 1150 143 1 JAN 1155 144 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.06 0.10 0.11 0 .11 0.12 0.13 0.14 0.17 0.19 0.21 0. 35 0.4i. 0.64 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.09 0.10 0.10 0 .11 0.12 0 .13 0.16 0.18 0.20 0.33 0.39 0.61 17. 17. 18. 18. 19. 19. 20. 21. 21. 22. 22. 23. 24. 24. 25. 25. 26. 27. 27. 28. 29. 30. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 43. 44. 45. 47. 48. 50. 51. 52. 53. 55. 57. 60. 63. 68. 74. 82. 90. 101. 113. 130. • 1 JAN 1930 235 1 JAN 1935 236 JAN 1940 237 1 JAN 1945 238 1 JAN 1950 239 JAN 1955 240 1 JAN 2000 241 1 JAN 2005 242 1 JAN 2010 243 1 JAN 2015 244 1 JAN 2020 245 1 JAN 2025 246 1 JAN 2030 247 JAN 2035 248 JAN 2040 249 JAN 2045 250 1 JAN 2050 251 JAN 2055 252 1 JAN 2100 253 JAN 2105 254 JAN 2110 255 JAN 2115 256 JAN 2120 257 JAN 2125 258 JAN 2130 259 1 JAN 2135 260 1 JAN 2140 261 1 JAN 2145 262 JAN 2150 263 JAN 2155 264 JAN 2200 265 JAN 2205 266 JAN 2210 267 l JAN 2215 268 l JAN 2220 269 1 JAN 2225 270 1 JAN 2230 271 1 JAN 2235 272 1 JAN 2240 273 1 JAN 2245 274 l JAN 2250 275 1 JAN 2255 276 1 JAN 2300 277 JAN 2305 278 JAN 2310 279 JAN 2315 280 1 JAN 2320 281 1 JAN 2325 282 1 JAN 2330 283 JAN 2335 284 JAN 2340 285 JAN 2345 286 1 JAN 2350 287 1 JAN 2355 288 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 19. 18. 18. 17. 17. 17. 17. 16. 16. 16. 16. 16. 15. 15. 15. 15. 15. 15. 15. 14. 14. 14. 14. 14. 14. 14. 14. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 11. 11. 11. ****************••················································································································· TOTAL RAINFALL = PEAK FLOW (CFS) 419. TIME (HR) 12.75 10.99, TOTAL LOSS= (CFS) (INCHES) (AC-FT) 6-HR 144. 7.379 72. CUMULATIVE AREA = 1.27, TOTAL EXCESS = MAXIMUM AVERAGE FLOW 24-HR 47. 9.626 93. 0.18 SQ MI 72-HR 47. 9.626 93. 9.72 23.92-HR 47. 9.626 93. FLOW TIME IN PEAK TIME OF OPERATION STATION FLOW PEAK HYDROGRAPH AT TAMUBC 419. 12 .75 ••• NORMAL END OF HEC-1 ••• RUNOFF SUMMARY IN CUBIC FEET PER SECOND HOURS, AREA IN SQUARE MILES AVERAGE FLOW FOR MAXIMUM PERIOD 6-HOUR 24 -HOUR 72-HOUR 144. 47. 47. BASIN AREA 0 .18 MAXIMUM STAGE TIME OF MAX STAGE ......................................... FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1991 VERSION 4. 0. lE RUN DATE 02/25/97 TIME 13:18:25 .................•..••........••..•.•.... x x xxxxxxx x x x x x x xxxxxxx xx xx x x x x x x x x xxxxxxx xxxxx x x x x xxxxx x x x xxxxx x xx x x x x xxx . ..................................... . U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-1748 . ..................................... . THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73), HEClGS, HEClDB , AND HEClKW. THE DEFINITIONS OF VARIABLES -RTIMP-AND -RTIOR-HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81 . THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM LINE 2 3 4 5 6 7 8 9 10 11 12 13 14 15 HEC -1 INPUT PAGE l ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 ID TAMU MAIN CAMPUS STORMWATER MANAGEMENT PLAN ID BEE CREEK WATERSHED TO G BUSH DRIVE ID 1996 ID 24-HOUR I 100-YEAR FLOOD ID FILENAME : TAMUBC2 . IHl IT 5 01JAN96 0000 288 IO 5 KK TAMUBC KM COMPUTE RUNOFF HYDROGRAPH FOR TAMU BEE CREEK KO 1 21 BA 0 .1818 PH 0.87 1. 95 4 .26 5 .7 6 .3 7.8 9 .6 11. 0 LS 0 90.0 UD .79 zz FLOOD HYDROGRAP H PACKAGE (HEC -1) MAY 1991 VERSION 4.0 .lE RUN DATE 02/25/97 TIME 13:18 :25 ........................•...•...........• 7 IO IT TAMU MAIN CAMPUS STORMWATER MANAGEMENT PLAN BEE CREEK WATERSHED TO G BUSH DRIVE 1996 24-HOUR I 100-YEAR FLOOD FILENAME: TAMUBC2.IH1 OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL !PLOT QSCAL HYDROGRAPH TIME DATA 0 PLOT CON'l'ROL 0. HYDROGRAPH PLOT SCALE NMIN 5 MINUTES IN COMPUTATION INTERVAL !DATE 1JAN96 STARTING DATE !TIME 0000 STARTING TIME NQ 288 NUMBER OF HYDROGRAPH NDDATE 1JAN96 ENDING DATE NDTIME 2355 ENDING TIME !CENT 19 CENTURY MARK COMPUTATION INTERVAL TOTAL TIME BASE 0.08 HOUR S 23. 92 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE-FEET /\CRES DEGREES FAHRENHEIT ORDINATES ....................................... U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551 -1748 . •..•....••••......••...••••........... ••••••••••••••• *** *** *** *** •••••• *** ••••••••• *** *** •••••• *** *** *** *** *** *** *** *** ••••••••• ·~· *** *** 8 KK 10 KO TAMUBC .............. OUTPUT CONTROL VARIABLES IPRNT l PRINT CONTROL I PLOT QSCAL IPNCH !OUT ISAVl ISAV2 TI MINT 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 21 SAVE HYDROGRAPH ON THIS UNIT l FIRST ORDINATE PUNCHED OR SAVED 288 LAST ORDINATE PUNCHED OR SAVED 0.083 TIME INTERVAL IN HOURS 11 BA 12 PH 13 LS 11 UD SUDBASIN RUNOFF DATA SUBBASIN CHARACTERISTICS TAREA 0.18 SUB BASIN AREA PRECIPITATION DATA HYDR0-35 5-MIN 15 -MIN 60-MIN 0 .87 1 .95 4.26 SCS LOSS RATE STRTL CRVNBR RT IMP 0 .22 90.00 0.00 DEPTHS FOR 0-PERCENT HYPOTHETICAL STORM 2 -HR 5 .70 3-HR 6 .30 TP-40 6-HR 7 .80 12-HR 9.60 STORM AREA s 0 .18 INITIAL ABSTRACTION CURVE NlJMBER PERCENT IMPERVIOUS AREA 24-HR 11 . 00 SCS DIMENSIONLESS UNITGRAPH 3 . 104. 26. 5 . 1. TLAG 11. 98. 22. 4 . 1. 0.79 LAG 20. 91. 19. 4 . 1. 33 . 8::!. 15. 3. 1. UNIT HYDROGRAPH 49 END-OF-PERIOD ORDINATES 50 . 70 . 87 . 71. 59 . 48 . 13 . 11. 10. 3 . 1. 2. o. 2 . o . 2 -DAY 0 .00 98. 41. 8. 2. o . TP-4 9 .......... . 4-DAY 0 .00 7-DAY 10-DAY 0 .00 0 .00 105 . 35 . 7. 1. o. 106. 29. 6. 1. **••······························································································································· HYDROGRAPH AT STATION TAMUBC **•**********••···································~················································································ DA MON HRMN ORD JAN 0000 l JAN 0005 2 1 JAN 0010 l JAN 0015 4 JAN 0020 5 JAN 00 25 6 JAN 0030 7 JAN 0035 8 JAN 0'.l40 9 JAN 0045 10 l JAN 0050 11 l JAN 0055 12 l JAN 0100 13 l JAN 0105 14 JAN 0 11 0 15 l JAN 011 5 16 l JAN 0120 17 l JAN 0125 18 l JAN 0130 19 l JAN 0135 20 l JAN 0140 21 l JAN 0145 22 l JAN 0150 23 l .JAN 0155 24 RAIN 0 .00 0 .01 0.01 0.01 0.01 0 .01 0.0 1 0.01 0 .01 0 .0 1 0.01 0.01 0 .01 0.01 0.01 0 .01 0 .01 0 .01 0 .01 0 .01 0.01 0.01 0.01 0.01 LOSS 0 .00 0 .01 0 .01 0 .01 0.0 1 0.0 1 0.0 1 0 .01 0. 01 0 .01 0.01 0 .01 0.01 0 .0 1 0 .01 0 .01 0.01 0.01 0 .01 0 .01 0.0 1 0.0 1 0 .01 0 .01 EXCESS 0 .00 0.00 0 .00 0 .00 0. 00 0.00 0 .00 0 .00 0 .00 0 .00 0.00 0.00 0 .00 0.00 0.00 0 .00 0.00 0 .00 0.00 0 .00 (i.00 0.00 0.00 0.00 COMP Q 0 . 0. 0. 0 . 0. 0. o . 0 . o . 0. o . o. 0 . o. 0. o. 0. 0. 0 . 0. 0. 0. o. 0. DA MON HRMN ORD l JAN 1200 145 l JAN 1205 HG l JAN 1 2 10 147 l ,TAN 121 5 140 l JAN 1220 14 9 l JAN 12 25 150 l JAN 1230 151 l JAN 1235 152 l JAN 1240 15 3 l JAN 12 45 154 l JAN 1 250 155 l JAN 1255 156 l JAN 1300 157 l JAN 1305 158 l JAN 1310 159 l JAN 1315 160 l JAN 132 0 161 JAN 132 5 162 l JAN 1330 163 l JAN 1335 164 l JAN 1340 165 l JAN 1345 166 l JAN 1350 167 l JAN 1355 168 RAIN 0 .87 0.44 0.37 0.23 0.20 0.18 0.15 0.13 0.12 0 .12 0.11 0.10 0.06 0 .05 0.05 0 .05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0 .05 LOSS 0.02 0.01 0 .01 0.00 0.00 0.00 0.00 o.oo 0.00 0 .00 0.00 0.00 0 .00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .0 0 0.00 EXCESS 0 .84 0 .43 0 .3 7 0.23 0.20 0.17 0.14 0 .13 0 .12 0.11 0.11 0 .10 0 .06 0 .05 0.05 0.05 0.05 0 .04 0.05 0.05 0.05 0.05 0.05 0 .04 COMP Q 152 . 180. 214. 252 . 294 . 335. 370 . 397. 413. 420. 417 . 407. 391. 369. 344 . 317. 290. 266. 243. 222. 202. 184. 16 8 . 154 . 1 JA."l 0200 1 JAN 0205 JAN 0210 JAN 0215 JAN 0220 1 JAN 0225 1 JAN 0230 JAN 0235 1 JAN 0240 1 JAN 0245 1 JAN 0250 1 JAN 0255 1 JAN 0300 1 JAN 0305 1 JAN 0310 1 JAN 0315 1 JAN 0320 1 JAN 0325 1 JAN 0330 1 JAN 0335 1 JAN 0340 1 JAN 0345 1 JAN 0350 1 JAN 0355 1 JAN 0400 1 JAN 0405 JAN 0410 1 JAN 0415 JAN 0420 JAN 0425 1 JAN 0430 JAN 0435 l JAN 0440 1 JAN 0445 1 JAN 0450 1 JAN 0455 1 JAN 0500 1 JAN 0505 1 JAN 0510 1 JAN 0515 JAN 0520 1 JAN 0525 1 JllN 0530 1 JAN 0535 l JAN 0540 l JAN 0545 1 JAN 0550 1 JAN 0555 l JAN 0600 JAN 0605 JAN 0610 JAN 0615 1 JAN 0620 1 JAN 0625 JAN 0630 JAN 0635 JAN 0640 1 JAN 0645 1 JAN 0650 JAN 0655 JAN 0700 1 JAN 0705 1 JAN 0710 1 JAN 0715 JAN 0720 JAN 0725 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 SS 86 87 88 89 90 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.QO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0. 01. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0. o. 0. o. o. o. 0. 0. o. o. 0. o. o. 0. o. o. 1. 1. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 4. 4. 4. 4. 4. 5. 5. 5. 5. 5. 6. 6. 6. 6. 6. 7. 7. 7. 8. 8. 9. 9. 10. 10. 11. 12. 13. 13. 14. 15. 15. 16. 16. JAN 1400 169 JAN 14o5 170 1 JAN 1410 171 1 JAN 1415 172 1 JAN 1420 173 1 JAN 1425 174 1 JAN 1430 175 1 JAN 1435 176 1 JAN 1440 177 1 JAN 1445 178 1 JAN 1450 179 l JAN 1455 180 l JAN 1500 181 l JAN 1505 182 1 JAN 1510 183 JAN 1515 184 JAN 1520 185 l JAN 1525 186 l JAN 1530 187 1 JAN 1535 188 l JAN 1540 189 JAN 1545 190 l ,JAN 1550 191 JAN 1555 192 JAN 1600 193 1 JAN 1605 194 1 JAN 1610 195 JAN 1615 196 JAN 1620 197 1 ,JAN 1625 198 1 JAN 1630 199 1 JAN 1635 200 1 JAN 1640 201 1 JAN 1645 202 1 JAN 1650 203 1 JAN 1655 204 1 JAN 1700 205 JAN 1705 206 1 JAN 1710 ~07 JAN 1715 208 JAN 1720 209 1 JAN 1725 210 1 JAN 1730 211 1 JAN 1735 212 1 JAN 1740 213 1 JAN 1745 214 1 JAN 1750 215 1 JAN 1755 216 1 JAN 1800 217 JAN 1805 218 JAN 1810 219 JAN 1815 220 1 JAN 1820 221 1 JAN 1825 222 1 JAN 1330 223 1 JAN 1835 224 1 JAN 1840 225 JAN 1845 226 1 JAN 1850 227 JAN 1855 228 JAN 1900 229 l JAN 1905 230 JAN 1910 231 JAN 1915 232 1 JAN 1920 233 1 JAN 1925 234 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0. 02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 O.Cl 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (). 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0. 03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 O.Ol 0.01 0.01 0.01 0.01 0.01 141. 130. 120. 112. 105. 99. 93. 88. 84. 80. 76. 73. 70. 67. 65. 62. 60. 58. 56. 55. 53. 51. 50. 48. 47. 46. 45. 44. 43. 42. 41. 41. 40. 39. 39. 38. 37. 37. 3'5. 36. 35. 35. 34. 34. 33. 33. 33. 32. 32. 31. 31. 30. 30. 29. 28. 27. 26. 25. 24. 23. 22. 21. 21. 20. 19. 19. JAN 0730 91 1 JAN 0735 92 1 JAN 0740 53 1 JAN 0745 94 1 JAN 0750 95 1 JAN 0755 96 1 JAN 0800 97 1 JAN OBOS 98 1 JAN 0810 99 1 JAN 0815 100 1 JAN 0820 101 1 JAN 0825 102 1 JAN 0830 103 1 JAN 0835 104 1 JAN 0840 105 1 JAN 0845 106 1 JAN 0850 107 1 JAN 0855 108 1 JAN 0900 109 1 JAN 0905 110 1 JAN 0910 111 1 JAN 0915 112 1 JAN 0920 113 1 JAN 0925 114 1 JAN 0930 115 1 JAN 0935 116 1 JAN 0940 117 JAN 0945 118 JAN 0950 119 JAN 0955 120 JAN 1000 121 1 JAN 1005 122 1 JAN 1010 123 JAN 1015 124 JAN 1020 125 1 JAN 1025 126 1 JAN 1030 127 1 JAN 1035 128 1 JAN 1040 129 1 JAN 1045 130 1 JAN 1050 131 JAN 1055 132 JAN 1100 133 1 JAN 1105 134 1 JAN 1110 135 1 JAN 1115 136 1 JAN 1120 137 1 JAN 1125 138 1 JAN 1130 139 JAN 1135 140 1 JAN 1140 141 1 JAN 1145 142 JAN 1150 143 1 JAN 1155 144 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.06 0.10 0.11 0.11 0.12 0.13 0.14 0.17 0.19 0.21 0.35 0.41 0.64 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0 02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.09 0.10 0.10 0 .11 0.12 0 .13 0.16 0.18 0.20 0.33 0.39 0.61 17. 18. 18. 19. 19. 20. 20. 21. 22. 22. 23. 23. 24. 25. 25. 26. 26. 27. 28. 28. 29. 30. 31. 32. 32. 33. 34. 35. 36. 37. 38. 40. 41. 42. 43. 45. 46. 47. 49. 50. 51. 52. 54. 55. 57. 60. 64. 69. 75. 82. 91. 101. 114. 130. • • • 1 JAN 1930 235 1 JAN 1935 236 1 JAN 1940 237 1 JAN 1945 238 1 JAN 1950 239 JAN 1955 240 1 JAN 2000 241 1 JAN 2005 242 1 JAN 2010 243 1 JAN 2015 244 1 JAN 2020 245 1 JAN 2025 246 1 JAN 2030 247 1 JAN 2035 248 1 JAN 2040 249 1 JAN 2045 250 1 JAN 2050 251 1 JAN 2055 252 1 JAN 2100 253 1 JAN 2105 254 1 JAN 2110 255 1 JAN 2115 256 1 JAN 2120 257 1 JAN 2125 258 1 JAN 2130 259 1 JAN 2135 260 1 JAN 2140 261 1 JAN 2145 262 1 JAN «150 263 1 JAN 2155 264 1 JAN 2200 265 1 JAN 2205 266 JAN 2210 267 1 JAN 2215 268 1 JAN 2220 269 1 JAN 2225 270 1 JAN 2230 271 1 JAN 2235 272 1 JAN 2240 273 1 JAN 2245 274 1 JAN 2250 275 1 JAN 2255 276 1 JAN 2300 277 1 JAN 2305 278 1 JAN 2310 279 1 JAN 2315 280 1 JAN 2320 281 1 JAN 2325 282 JAN 2330 283 JAN 2335 284 1 JAN 2340 285 1 JAN 2345 286 1 JAN 2350 2!l7 1 JAN 2355 288 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 19. 18. 18. 18. 17. 17. 17. 16. 16. 16. 16. 16. 15. 15. 15. 15. 15. 15. 15. 14. 14. 14. 14. 14. 14. 14. 14. 14. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 11. 11. 11 . ...........................•.•.......................••.......•.•........••••••..............•..........••••.......•.....•......... TOTAL RAINFALL g PEAK FLOW (CFS) 420. TIME (HR) 12.75 10.99, TOTAL LOSS = (CFS) (INCHES) (AC-FT) 6-HR 145. 7 .398 72. CUMULATIVE AREA = 1.23, TOTAL EXCESS = MP.XIM\JM AVERAGE FLOW 24-HR 47. 9.664 94. 0.18 SQ MI 72-HR 47. ~.664 94. 9.76 23. 92-HR 47. 9.664 94. OPERATION STATION HYDROGRAPH AT TAMUBC *** NORMAL END OF HEC-1 *** PEAK FLOW 420. RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS , AREA IN SQUARE MILES TIME OF PEAK 12 .75 AVERAGE FLOW FOR MAXIMUM PERIOD 6-HOUR 24-HOUR 72-HOUR 145. 47 . 47. BASIN AREA 0 .18 MAXIMUM STAGE TIME OF MAX STAGE ········································* ................................•.•.... FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1991 VERSION 4. 0. lE RUN DATE 02/25 /97 TIME 13:19:11 * * U.S . ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-1748 * .........................•...••.•......•. . .......•..••••••••••................•. x x xxxxxxx xxxxx x x x x x x xx x x x x x xxxxxxx xx xx x xxxxx x x x x x x x x x x x x x x xxxxxxx xxxxx xxx THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73), HEClGS, HEClDB, AND HEClKW. THE DEFINITIONS OF VARIABLES -RTIMP-AND -RTIOR-P.AVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81 . THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS :W RITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM LINE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 HEC-1 INPUT PAGE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 ID TAMU MAIN CAMPUS STORMWATER MANAGEMENT PLAN ID BEE CREEK WATERSHED TO G BUSH DRIVE ID FUTURE ID 24-HOUR I 100-YEAR FLOOD ID FILENAME : TAMUBC3 . IHl IT 5 OlJANOO 0000 288 IO 5 KK TAMUBC KM COMPUTE RUNOFF HYDROGRAPH FOR TAMU BEE CREEK KO 1 21 BA 0 .1818 PH 0 .87 1. 95 4 .26 5 .7 6.3 7.8 9 .. 6 11. 0 LS 0 90.5 UD . 77 zz ••+••·······················~············ FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1991 VERSION 4. 0 . 1E • RUN DATE 02/25/97 TIME 13 :19:11 ........•.••...............••...•........ 7 IO IT TAMU M1\IN CAMPUS STORMWA'fER MANAGEMENT PLAN BEE CREEK WATERSHED TO G BUSH DRIVE OUTPUT FUTURE 24-HOUR I 100-YEAR FLOOD FlLENAME : TAMUBC3 .IH1 CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT 0 PLOT CONTROL QSC1\L o . HYDROGRAPH PLOT HYDROGRAPH TIME DATA SCALE NMIN 5 MINl'TES IN COMPUTATION INTERVAL IDA TE lJAN 0 STARTING DATE I TIME 0000 STARTING TIME NQ 288 NUMBER OF HYDROGRAPH NDDATE lJAN 0 ENDING DATE NDTIME 2355 ENDING TIME I CENT 19 CENTURY MARK CCMPUTATION INTERVAL TOT1\L TIME BASE 0 .08 HOURS 23.92 HOURS ENGI,ISH UNITS DRAIN1\GE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE-FEET ACRES DEGREES FAHRENHEIT ORDINATES *** •••••• *** *** ••• *~· ..••••••.••• *** •••••••••••••••••••••••••••••• *** 8 KK ~O KO TAMUBC ••••..•....... OUTPUT CONTROL VARIABLES I PRNT J. PR INT CONTP.OL I PLOT QSCAL IPNCH IOU'l' ISAVl ISAV2 TIMI NT 0 PWT CONTROL 0 . HYDROGRAPH PLOT SCALE ~ PUNCH COMPUTED HYDROGRAPH 21 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 288 LAST ORDI~ATE PUNCHED OR SAVED 0 .0 8 3 TIME INTERVAL IN HOURS ····························*·········· U .S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-1748 . .••.......•.•..............•.•.•...... •...•..........•••...... 11 BA 12 PH 13 LS 14 UD SUBBASIN RUNOFF DATA SUBBASIN CHARACTERISTICS TAREA 0.18 SUBBASIN AREA PRECIPITATION DATA DEPTHS FOR 0-PERCENT HYPOTHETICAL STORM HYDR0-35 5-MIN 15-MIN 60-MIN 0 .87 1.95 4.26 SCS LOSS RATE STRTL CRVNBR RTIMP 0.21 90.50 0.00 2-HR 5.7 0 3-HR 6.30 TP-40 6-HR 7.80 12-HR 9.60 STORM AREA= 0.18 INITIAL ABSTRACTION CURVE tlUMBER PERCENT IMPERVIOUS AREA SCS DIMENSIONLESS UN ITGRAPH TLAG 0.77 LAG UNIT HYDROGRAPH 24-HR 11. 00 48 END-OF-PERIOD ORDINATES 3. 105. 24. 4 . 11. 98. 21. 4. 1. 22. 90. 17. 3. 1. 35. 80. 15. 3. 1. 54. 68. 12. 2. o. 74. 56 . 10. 2. o. 91. 46. 9. 2. 0. 2-DAY 0.00 1 02 . 39. 7. 1. o. TP-49 .......... . 4-DAY 0.00 7-DAY 1 0 -DAY 0 .00 0.00 107. 33. 6. 1. 108. 28. 5 . 1. *********************************************************************************************************************************** HYDROGRAPH AT STATION TAMU13C *********************************************************************************************************************************** DA MON HRMN ORD JAN 0000 JAN 0005 JAN 0010 JAN 0015 JAN 0020 JAN 0025 JAN 0030 JAN 0035 JAN 0040 1 ,JAN 0045 JAN 0050 1 JAN 0055 1 JAN 0100 JAN 0105 JAN 0110 JAN 0115 JAN 0 1 20 JAN 0125 JAN 0130 1 JAN 0135 JAN 0140 JAN 0145 JAN 0 15 0 JAN 0155 2 3 4 5 6 7 8 9 10 11 12 1:3 14 15 16 17 18 19 20 21 22 23 24 RAIN 0.00 0 .0 1 0 .01 0.01 0.01 0.01 0.01 0 .01 0.01 0.01 0.01 0 .01 0 .01 0.01 0.01 0.01 0.01 0.01 0 .01 0 .01 0 .01 0.01 0.01 0.01 LOSS EXCESS 0.00 0.01 0.01 0.01 0.01 0.0 1 0.0 1 0.01 0 .01 0.01 0.01 0.01 0.01 0.01 0.01 0 .01 0.01 0.01 0 .01 0.01 0 .01 0.0 1 0.0 1 0.01 0.00 0.00 0.00 0.00 0.00 0 .00 0.00 0 .00 0 .00 0 .00 0.00 0.00 0 .00 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 0 .00 0.00 0.00 0.00 COMP Q 0 . 0 . 0 . 0 . o. 0 . 0. o. o . 0. 0. o. 0. 0. o. 0 . 0 . o. o: o. 0. 0. 0. 0. DA MON HRMN ORD 1 JAN 1200 14 5 1 JAN 1205 14 6 1 J 'AN 1210 147 1 JAN 1215 148 1 JAN 1220 1 49 1 JAN 1225 150 1 JAN 123 0 151 1 JAN 1235 152 1 JAN 1240 153 JAN 1245 15 4 1 JAN 1250 155 1 JAN 1255 156 1 JAN 1300 157 JAN 1305 158 1 JAN 1310 159 JAN 1315 160 1 JAN 1320 161 JAN 1325 162 JAN 1330 163 JAN 1335 164 JAN 1 340 165 JAN 1345 166 JAN 1350 1 67 JAN 1 355 H8 RAIN 0 .87 0.44 0.37 0 .23 0.20 0.18 0 .15 0 .13 0 .1 2 0.12 0 .11 0 .10 0 .06 0.05 0 .05 0.05 0.05 0.04 0 .05 0.05 0.05 0.05 0.05 0.05 LOSS EXCESS 0.02 0.01 0 .01 0.00 0.00 0 .00 0.00 0.00 0.00 0.00 0 .00 0.00 0.00 0.00 0 .00 0.00 0.00 0.00 0 .00 0.00 0.00 0.00 0.00 0 .00 0.85 0 .43 0 .37 0 .23 0.20 0.1 8 0.14 0.1 3 0.12 0 .11 0 .11 0.1 0 0.06 0.05 0 .05 0.05 0.05 0.04 0 .05 0 .05 0 .05 0.05 0.05 0 .04 COMP Q 158. 187. 222. 262. 305. 347. 382. 407. 422. 427 . 422. 409. 390. 367. 340. 312 . 286. 261. 238. 217. 197. 180. 164. 150. 1 JAN 0200 25 1 JAN 0205 26 l J.'\N 0210 27 1 JAN 0215 28 JAN 0220 29 1 JAN 0225 30 1 JAN 0230 31 1 JAN 0235 32 1 JAN 0240 33 1 JAN 0245 34 1 JAN 0250 35 1 JAN 0255 36 JAN 0300 37 JAN 0305 38 JAN 0310 39 JAN 0315 40 JAN 0320 41 JAN 0325 42 JAN 0330 43 JAN 0335 44 1 JAN 0340 45 1 JAN 0345 46 1 JAN 0350 47 1 JAN 0355 48 1 JAN 0400 49 1 JAN 0405 50 1 JAN 0410 51 JAN 0415 52 JAN 0420 53 JAN 0425 54 JAN 0430 55 JAN 0435 56 1 JAN 0440 57 1 JAN 0445 56 JAN 0450 59 JAN 0455 60 1 JAN 0500 61 J JAN 0505 62 1 JAN 0510 63 1 JAN 0515 64 JAN 0520 65 JAN 0525 66 1 JAN 0530 67 1 JAN 0535 68 JAN 0540 69 JAN 0545 70 JAN 0550 71 JAN 0555 72 1 JAN 0600 73 1 JAN 0605 74 1 JAN 0610 75 JAN 0615 76 JAN 0620 77 JAN 0625 78 JAN 0630 79 JAN 0635 80 JAN 0640 81 JAN 0645 82 JAN 0650 83 JAN 0655 84 JAN 0700 es JAN 0705 86 JAN 0710 87 JAN 0715 88 JAN 0720 89 1 JAN 0725 90 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 O.Ol 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 ·o. 01 0.01 0.01 0.01 0.01 0.01 o.o: 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 O.Cl 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 C.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 . 0. 0. 0. o. o. o. 0. 0. o. o. o. 0. o. 0. 1. 1. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 4. 4. 4. 4. 4. 5. 5. 5. 5. 5. 5. 6. 6. 6. 6. 7. 7. 7. 7. 8. 8. 9. 9. 10. 10. 11. 12. 13. 13. 14. 15. 15. 16. 17. 17. 1 JAN 1400 169 JAN 1405 :C70 1 JAN 14:0 171 1 JAN 1415 172 1 JAN 1420 173 JAN 1425 174 1 JAN 1430 175 1 JAN 1435 176 1 JAN 1440 177 1 JAN 1445 178 ,JAN 1450 179 JAN 1455 180 1 JAN 1500 181 1 JAN 1505 182 1 JAN 1510 183 1 JAN 1515 184 JAN 1520 185 JAN 1525 186 1 JAN 1530 187 1 JAN 1530. 188 1 JAN 1540 189 1 JAN 1545 190 1 JAN 1550 191 1 JAN 1555 192 1 JAN 1600 193 1 JAN 1605 194 JAN 1610 195 1 JAN 1615 196 JAN 1620 197 1 JAN 1625 198 1 JA..~ 1630 199 1 JJ>.N 1635 200 JAN 1640 201 JAN 1645 202 JAN 1650 203 1 JAfl 1655 2 04 1 JA..~ 1700 205 1 JAN 1705 206 1 JAN 1710 207 JAN 1715 208 1 ,JAN 1720 209 1 JAN 1725 210 1 JAN 1730 211 1 JAN 1735 212 1 .JAN 1740 213 1 JAN 1745 214 JAN 1750 215 JAN 1755 216 1 JAN 1800 217 1 JAN 1805 218 1 JAN l.810 219 1 JAN 1815 220 JAN 1820 221 1 JAN 1825 222 1 JAN 1830 223 1 JAN 1835 224 1 JAN 1840 225 1 JAN 1845 226 1 JAN 1850 227 JAN 1855 228 1 JAN 1900 229 1 JAN 1905 230 1 J.l\N 1910 231 1 JAN 1915 232 1 JAN 1920 2B JAtl 1925 234 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 O.Ol 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 a.co 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.0~ 0. (\2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 O.Cl 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.1)1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 137. 126. 117. 109. 102. 96. 91. 86. 82. 78. 75. 71. 69. 66. 64. 61. 59. 57. 56. 54. 52. 51. 49. 48. 47. 46. 45. 44. 43. 42. 41. 40. 40. 39. 38. 38. 37. 37. 36. 36. 35. 35. 34. 34. 33. 33. 32. 32. 32. 31. 31. 30. 29. 29. 28. 27. 26. 25. 24. 23. 22. 21. 20. 20. 19. 19. 1 JAN 0730 91 1 JAN 0735 92 1 JAN 0740 93 1 JAN 0745 94 1 JAN 0750 95 1 JAN 0755 96 1 JAN 0800 97 JAN 0805 98 JAN 0810 99 JAN 0815 100 l JAN 0820 101 JAN 0825 102 JAN 0830 103 JAN 0835 104 1 JAN 0840 105 1 JAN 0845 106 1 JAN 0850 107 1 JAN 0855 108 1 JAN 0900 109 1 JAN 0905 110 1 JAN 0910 111 1 JAN 0915 112 1 JAN 0920 113 1 JAN 0925 114 1 JAN 0930 115 1 JAN 0935 116 1 JAN 0940 117 1 JAN 0945 118 1 JAN 0950 119 1 JAN 0955 120 1 JAN 1000 121 1 JAN 1005 122 JAN 1010 123 JAN 1015 124 1 JAN 1020 125 1 JAN 1025 126 1 JAN 1030 127 JAN 1035 128 JAN 1040 129 JAN 1045 130 JAN 1050 131 JAN 1055 132 JAN 1100 133 JAN 1105 134 1 JAN 1110 135 1 JAN 1115 136 1 JAN 1120 137 JAN 1125 138 1 JAN 1130 139 1 JAN 1135 140 1 JAN 1140 141 l JAN 1145 142 1 JAN 1150 143 JAN 1155 144 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.01 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.06 0.10 0.11 0.11 0.12 0.13 0.14 0.17 0.19 0.21 0.35 0. 41 0.64 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.09 0.10 0.10 0.11 0.12 0.13 0.16 0.18 0.20 0.33 0.39 0.62 18. 18. 19. 20. 20. 21. 21. 22. 22. 23. 24. 24. 25. 25. 26. 27. 27. 28. 29. 29. 30. 31. 32. 32. 33. 34. 35. 36. 37. 38. 39. 40. 42. 43. 44. 46. 47. 48. 50. 51. 52. 54. 55. 56. 59. 61. 65. 70. 77. 85. 94. 104. 118. 135. JAN 1930 235 1 JAN 1935 235 1 JAN 1940 237 1 JAN 1945 238 1 JAN 1950 239 1 JAN 1955 240 1 JAN 2000 241 1 JAN 2005 242 1 JAN 2010 243 1 JAN 2015 244 1 JAN 2020 245 1 JAN 2025 246 1 JAN 2030 247 1 JAN 2035 248 1 JAN 2040 249 1 JAN 2045 250 1 JAN 2050 251 1 JAN 2055 252 1 JAN 2100 253 1 JAN 2105 254 1 JAN 2110 255 1 JAN 2115 256 1 JAN 2120 257 1 JAN 2125 258 1 JAN 2130 259 1 JAN 2135 260 1 JAN 2140 261 1 JAN 2H5 262 1 JAN 2150 263 1 JAN 2155 264 1 JAN 2200 265 1 JAN 2205 266 1 JAN 2210 267 1 JAN 2215 268 1 JAN 2220 269 1 JAN 2225 270 1 JAN 2230 271 1 JAN 2235 272 1 JAN 2240 273 1 JAN 2245 274 1 JAN 2250 275 1 JAN /.255 276 1 JAN 2300 277 1 JA!l 2305 278 1 JAN 2310 279 1 JAN 2315 280 1 JAN 2320 281 1 JAN 2325 282 1 JAN 2330 283 1 JAN 2335 284 1 JAN 2340 285 JAN 2345 286 JAN 2350 287 1 JAN 2355 288 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0. 01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 18. 18. 18. 17. 17. 17. 17. 16. 16. 16. 16. 16. 15. 15. 15. 15. 15. 15. 15. 14. 14. 14. 14. 14. 14. 14. 14. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 11. 11. 11. 11. ···~···································~··························································································· TOTAL RAINFALL • PEAK FLOW (CFS) 427. TIME (HR) 12.75 10.99, TOTAL LOSS • (CFS) (INCHES) (AC-FT) 6-HR 145. 7.429 72. CUMULATIVE AREA = 1.17, TOTAL EXCESS• MAXIMUM AVERAGE FLOW 24-HR 48. 9.729 94. 0.18 SQ MI 72-HR 48. 9. 729 94. 9.82 23.92-HR 48. 9. 729 94. FLOW TIME IN PEAK TIME OF OPERATION STATION FLOW PEAK HYDROGRAPH AT TAMUBC 427. 12 .75 ••• NORMAL END OF HEC-1 ••• RUNOFF SUMMARY IN CUBIC FEET PER SECCND HOURS, AREA IN SQUARE MILES AVERAGE FLOW FOR MAXIMUM PERIOD 6-HOUR 24 -HOUR 72-HOUR 145 . 48 . 48. BASIN AREA 0.18 MAXIMUM STAGE TIME OF MAX STAGE WOLF PEN CREEK NATURAL CHANNEL ......................•.................. . ••.........................•........•. FLOOD HYDROGRAPH PACKAGE MAY 1991 VERSION 4.0.lE (HEC -1 ) RUN DATE 02/25/97 TIME 13:13:15 • • • • U .S . ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551 -1 748 * ························••k••············ ...............•.....•.............•... x x xxxxxxx xxxxx x x x x x x xx x x x x x xxxxxxx xxxx x xxxxx x x x x x x x x x x x x x x xxxxxxx xxxxx xxx THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73), HEClGS, HEClDB, AND HEClKW . THE DEFINITIONS OF VARIABLES -RTIMP-AND -RTIOR-HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE . THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP Bl . THIS IS THE FORTRAN?? VERSION NEW OPTIONS : DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE : NEW FINITE DIFFERENCE ALGORITHM LINE 2 4 5 6 7 8 9 10 11 12 13 14 15 16 HEC-1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 ID ID ID ID ID ID IT IN IO KK KO BA PH LS UD zz HYDROLOGIC ANALYSIS OF WOLF PEN CREEK MAIN CHANNEL, COLLEGE STATION, TX BASIN UPSTREAM OF GEORGE BUSH DRIVE -1987 WATERSHED CONDITIONS TEXAS A&M UNIVERSITY MAIN CAMPUS STORM WATER MANAGEMENT PLAN TURNER COLLIE & BRADEN JOB NO. 31-00380 -006, BJT 1987 CONDITIONS -FILENAME ~ WPN87.DAT, FEBRUARY 1997 100 YEAR, 24 HOUR STORM , HYPOTHETICAL DISTRIBUTION 5 01JAN97 0000 288 15 01JAN97 0000 5 0 0 WPNl WOLF PEN CREEK MAIN CHANNEL -SUBBASIN ABOVE GEORGE BUSH DRIVE 1 21 0 .215 0 1 1 0 .87 1. 95 4.26 5 .7 6.3 7.8 9.6 0 88.3 0 .659 11 . 0 PAGE ...................................•....• FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1991 . ..................................... . VERSION 4.0 .lE * U .S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-1748 * RUN DATE 02/25/97 TIME 13:13:15 .....................................••.. . .....................•................ 9 IO IT HYDROLOGIC ANALYSIS OF WOLF PEN CREEK MAIN CHANNEL, COLLEGE STATION, TX BASIN UPSTREAM OF GEORGE BUSH DRIVE -1987 WATERSHED CONDITIONS TEXAS A&M UNIVERSITY MAIN CAMPUS STORM WATER MANAGEMENT PLAN TURNER COLLIE & BRADEN JOB NO. 31-00380-006, BJT 1987 CONDITIONS -FILENAME g WPN87 .DAT, FEBRUARY 1997 100 YEAR, 24 HOUR STORM, HYPOTHETICAL DISTRIBUTION OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE HYDROGRAPH TIME DATA NMIN 5 MINUTES IN COMPUTATION INTERVAL IDATE 1JAN97 STARTING DATE ITIME 0000 STARTING TIME NQ 288 NUMBER OF HYDROGRAPH NDDATE 1JAN97 ENDING DATE NDTIME 2355 ENDING TIME I CENT 19 CENTURY MARK COMPUTATION INTERVAL TOTAL TIME BASE 0 .08 HOURS 23. 92 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH , ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND A<:RE-FEET ACRES DEGREES FAHRENHEIT ORDINATES *** •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 10 KK WPNl WOLF PEN CREEK MAIN CHANNEL -SUBBASIN ABOVE GEORGE BUSH DRIVE .............. 11 KO OUTPUT CONTROL VARIABLES IPRNT l PRINT CONTROL I PLOT 0 PLOT CONTROL QSCAL o. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAVl l FIRST ORDINATE PUNCHED OR SAVED ISAV2 288 LAST ORDINATE PUNCHED OR SAVED 12 BA 13 PH 14 LS 15 UD TI MINT 0. 083 TH1E INTERVAL IN HOURS SUBBASIN RUNOFF DATA SUBBASIN CHARAcrERISTICS TAREA 0.22 SUBBASIN AREA SNAP RATIO 0.00 NORMAL ANNUAL PRECIPITATION 1.00 RATIO OF HYDROGRAPH PRECIPITATION DATA HYDR0-35 5 -MIN 15 -MIN 60-MIN 0.87 1.95 4.26 SCS LOSS RATE STRTL CRVNBR RT IMP 0.27 88.30 0 .00 DEPTHS FOR 1-PERCENT HYPOTHETICAL STORM 2 -!I R 5.70 3 -HR 6 . 30 TP-40 6 -HR 7.80 12 -HR 9.60 STORM AREA = 0.22 INITIAL ABSTRAcrION CURVE NUMBER PERCENT IMPERVIOUS AREA 24 -HR 11 . 00 SCS DIMENSIONLESS UNITGRAPH 6. 126 . 19 . 3 . 0 . TLAG 0. 66 LAG 20. 112. 15 . 2. o. 38 . 9 3. 13 . 2. 64 . 73 . 11. 2 . UNIT HYDROGRAPH 42 END-OF-PERIOD ORDINATES 96 . 124. 141. 59 . 49 . 40. 9. 7. 6 . 1. 1. 2 -DAY 0.00 148 . 34 . 5. 1. TP -4 9 .......... . 4 -DAY 0 .00 7 -DAY 10 -DAY 0 .00 0 .00 147 . 28 . 4 . 1. 139 . 23 . 3 . 0. .................................................................................................•................................. HYDROGRAPH AT STATION WPNl ...............•.•....•.....................•.•.•...•••.........................•.....•......••...•................................ DA MON HRMN ORD JAN 0000 JAN 0005 JAN 0010 JAN 0015 JAN 0020 JAN 0025 l JAN 0030 l JAN 0035 l JAN 0040 JAN 0045 JAN 0050 JAN 0055 JAN 0100 JAN 0105 JAN 0110 JAN 0115 l JAN 0120 l JAN 0125 l JAN 0130 JJ>..N 0135 l JAN 014 0 l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 RAIN 0.00 0.01 0.01 0.01 0.01 0 .01 0.01 0 .01 0 .01 0 .01 0 .01 0 .01 0.01 0 .01 0.01 0.01 0 .01 0.01 0.01 0.01 0.01 LOSS EXCESS 0.00 0.01 0 .01 0.01 0.01 0 .01 0.01 0.01 0.01 0.01 0.01 0 .01 0.01 0.01 0 .01 0.01 0 .01 0.01 0.01 0.01 0 .01 0.00 0 .00 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 0.00 0 .00 0.00 0.00 0.00 0 .00 0 .00 0 .00 0.00 0.00 0 .00 0.00 COMP Q o. o. 0 . o. 0 . 0 . 0. 0. o. 0 . o . o. o. o. 0. o . o. 0 . 0 . o. o. • DA MON HRMN ORD l JAN 1200 145 1 JAN 1205 146 1 JAN 1210 147 l JAN 1215 148 JAN 1220 149 1 JAN 1225 150 1 JAN 1230 151 JAN 1235 152 JAN 1240 153 JAN 1245 154 JAN 1250 155 JAN 1255 156 JAN 1300 157 JAN 1305 158 JAN 1310 159 1 JAN 1315 160 JAN 1320 161 1 JAN 1325 162 JAN 1330 163 JAN 1335 164 JAN 1340 165 RAIN 0.87 0 .44 0.37 0 .23 0 . 20 0.18 0.15 0.13 0 .12 0 .12 0 .11 0 .10 0.06 0.05 0 .05 0.05 0.05 0.04 0.05 0.05 0.05 LOSS EXCESS 0.03 0.01 0.01 0.01 0.00 0.00 0 .00 0 .00 0 .00 0.00 0 .00 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 0.00 0.00 0.00 0 .84 0.43 0 .36 0.22 0 .19 0.17 0 .14 0 .13 0.12 0 .11 0 .11 0.10 0.06 0.05 0.05 0 .05 0.05 0 .04 0.05 0 .05 0.05 COMP Q 214 . 259. 312 . 372. 432. 482. 518. 536. 537. 524 . 500. 468. 431. 392. 356. 323. 293. 264 . 238. 2H. 193 . 1 JAN 014S 1 JAN OlSO 1 JAN OlSS 1 JAN 0200 1 JAN 020S 1 JAN 0210 1 JAN 021S JAN 0220 JAN 022S 1 JAN 0230 1 JAN 023S JAN 0240 1 JAN 024S 1 JAN 02SO 1 JAN 02SS JAN 0300 1 JAN 030S 1 JAN 0310 1 JAN 031S 1 JAN 0320 1 JAN 032S 1 JAN 0330 JAN 033S 1 JAN 0340 1 JAN 034S JAN 03SO 1 JAN 03SS 1 JAN 0400 JAN 040S JAN 0410 JAN 041S JAN 0420 JAN 042S 1 JAN 0430 1 JAN 043S 1 JAN 0440 1 JAN 044S 1 JAN 04SO JAN 04SS l. JAN OSOO JAN OSOS JAN OSlO 1 JAN OSlS 1 JAN OS20 1 JAN OS2S 1 JAN OS30 1 JAN 053S 1 JAN OS40 JAN OS4S JAN OSSO 1 JAN OSSS 1 JAN 0600 1 JAN 060S 1 JAN 0610 1 JAN 061S 1 JAN 0620 JAN 062S JAN 0630 1 JAN 063S 1 JAN 0640 JAN 064S JAN 06SO 1 JAN 06SS 1 JAN 0700 1 JAN 070S JAN 0710 22 23 24 2S 26 27 28 29 30 31 32 33 34 3S 36 37 38 39 40 41 42 43 44 4S 46 47 48 49 so Sl S2 S3 S4 SS S6 S7 S8 S9 60 61 62 63 64 6S 66 67 68 69 70 71 72 73 74 7S 76 77 78 79 80 81 82 83 84 8S 86 87 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 O.Gl 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. O(J 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 o. o. 0. o. o. 0. o. o. o. o. 0. o. 0. o. o. o. 0. o. o. o. o. 0. 1. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 4. 4. 4. 4. s. s. s. s. 6. 6. 6. 6. 7. 7. 7. 8. 8. 9. 9. 10. 11. 12. 12. 13. 14. lS. 16. 16. • 1 JAN 134S 166 1 JAN 13SO 167 1 JAN 13SS 168 1 JAN 1400 169 1 JAN 140S 170 1 JAN 1410 171 1 JAN l41S 172 1 JAN 1420 173 1 JAN 142S 174 1 JAN 1430 17S 1 JAN 143S 176 1 JAN 1440 177 1 JAN 144S 178 JAN 14SO 179 1 JAN 14SS 180 1 JAN lSOO 181 1 JAN lSOS 182 1 JAN lSlO 183 1 JAN lSlS 184 1 JAN 1S20 18S JAN 1S2S 186 JAN 1S30 187 JAN 1S3S 188 1 JAN 1S40 189 1 JAN 1S4S 190 1 JAN lSSO 191 1 JAN lSSS 192 1 JAN 1600 193 1 JAN 160S 194 1 JAN 1610 19S 1 JAN 161S 196 JAN 1620 197 1 JAN 162S 198 1 JAN 1630 199 1 JAN 163S 200 1 JAN 1640 201 JAN 164S 202 JAN 16SO 203 JAN 16SS 204 JAN 1700 20S 1 JAN 170S 206 JAN 1710 207 1 JAN 1715 208 1 JAN 1720 209 1 JAN 172S 210 1 JAN 1730 211 1 JAN 173S 212 1 JAN 1740 213 1 JAN 174S 214 1 JAN 17SO 21S 1 JAN 17SS 216 1 JAN 1800 217 1 JAN 180S 218 1 JAN 1810 219. 1 JAN 181S 220 1 JAN 1820 221 1 JAN 182S 222 1 JAN 1830 223 1 JAN 183S 224 1 JAN 1840 22S 1 JAN 184S 226 1 JAN 18SO 227 1 JAN 18SS 228 1 JAN 1900 229 1 JAN 190S 230 1 JAN 1910 231 o.os o.os o.os 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.os o.os 0.04 0.04 0.04 0.04 0.04 0. 04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 C.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 174. 1S8. 144. 133. 123. llS. 108. 103. 97. 93. 88. 8S. 81. 78. 7S. 73. 70. 68. 66. 64. 62. 60. S8. S7. S6. S4. S3. S2. Sl. so. 49. 48. 47. 47. 46. 4S. 44. 44. 43. 42. 42. 41. 11. 40. 40. 39. 39. 38. 38. 37. 37. 36. 36. 3S. 34. 33. 32. 31. 30. 28. 27. 26. 2S. 24. 23. 23. JAN 071S 88 l JAN 0720 89 JAN 072S 90 JAN 0730 91 JAN 073S 92 JAN 0740 93 JAN 074S 94 JAN 07SO 9S JAN 07SS 96 JAN 0800 97 JAN 080S 98 JAN 0810 99 JAN 081S 100 JAN 0820 101 JAN 082S 102 JAN 0830 103 JAN 083S 104 JAN 0840 lOS JAN 084S 106 JAN 08SO 107 JAN 08SS 108 JAN 0900 109 JAN 090S llO JAN 0910 lll JAN 091S ll2 l JAN 0920 ll3 l JAN 092S 114 l JAN 0930 llS l JAN 093S ll6 JAN 0940 ll7 JAN 094S ll8 JAN 09SO ll9 JAN 09SS 120 l JAN 1000 121 l JAN lOOS 122 JAN 1010 123 JAN lOlS 124 JAN 1020 12S l JAN 102S 126 l JAN 1030 127 JAN 103S 128 JAN 1040 129 JAN 104S 130 l JAN lOSO 131 l JAN lOSS 132 l JAN llOO 133 l JAN llOS l.34 JAN lllO 13S l JAN lllS 136 1 JAN ll20 137 l JAN ll2S 138 JAN ll30 139 JAN ll3S 140 JAN ll40 141 JAN ll1S 142 1 JAN llSO 143 JAN llSS 144 0.02 0.02 0.02 0.02 0.02 0.03 0 .03 0.03 0 .03 0 .03 0 .03 'l .03 0.03 0 .03 0 .03 0.03 0.03 0.03 0.03 0.03 0.03 0 .03 0 .03 0 .03 0.04 0.04 0.04 0 . 04 0.04 0.04 C.04 0 .04 0 .04 0 .04 o.os o.os o.os o .os o.os 0.04 o.os o.os o.os o.os 0 .06 0 .10 O. ll 0. ll 0 .12 0 .13 0.14 0.17 0 .19 0 .2 1 0 .3S 0.41 0 .64 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 .01 0 .01 0 .01 0 .01 0.01 0.01 0 .01 0 .01 0.01 0 .01 0 .01 0 .01 0.01 0.01 0.01 0.01 0.01 0.01 0 .01 0 .0 1 0 .01 0 .01 0.01 0 .01 0.01 0.01 0.01 0 .01 0.01 0.01 0 .01 0 .01 0 .01 0 .01 0 .01 0.01 0 .01 0 .01 0 .01 0.02 0.02 0.02 0 .02 0.03 0 .01 0.01 0.01 0 .02 0.02 0.02 0.02 0 .02 0.02 0.02 0 .02 0.02 0.02 0 .02 0 .02 0.02 0.02 0 .02 0.02 0 .02 0.02 0.03 0 .03 0.03 0.03 0.03 0 .03 0.03 0 .03 0.03 0.03 0 .03 0 .04 0 .04 0.04 0 .04 0.04 0.04 0.04 0.04 0 .04 0.04 0 .04 o .os o.os 0 .09 0 .09 0.10 0 . ll 0.12 0 .13 O .lS 0 .17 0.20 0 .33 0 .38 0 .€1 17 . 18. 18. 19. 20 . 20 . 21. 22. 22. 23. 24 . 24 . 2S . 26 . 26. 27. 28. 29. 29. 30. 31. 32. 33 . 34 . 34 . 3S. 37. 38. 39 . 40. 41. 42 . 44 . 4S. 47 . 48 . so . Sl. S3 . SS. S6. S8. 60 . 61. 62. 64. 66. 69. 73. 80. 87. 97 . 108. 121. 136. lSS . 180. • • • • • l JAN 191S 232 l JAN 1920 233 l JAN 192S 234 l JAN 1930 23S l JAN 193S 236 l JAN 1940 237 l JAN 194S 238 l JAN 19SO 239 l JAN 19SS 2~0 l JAN 2000 241 l JAN 200S 242 l JAN 2010 243 l JAN 201S 244 l JAN 2020 24S l JAN 2025 246 l JAN 2030 247 l JAN 203S 248 l JAN 2040 249 l JAN 204S 2SO l JAN 20SO 2Sl l JAN 20SS 2S2 l JAN 2100 2S3 l JAN 210S 2S4 l JAN 2ll0 2SS l JAN 2llS 2S6 l JAN 2120 2S7 l JAN 212S 2S8 l JAN 2130 2S9 l JAN 213S 260 l JAN 2140 261 l JAN 214S 262 l JAN 21SO 263 JAN 21SS 261 JAN 2200 26S 1 JAN 220S 266 l JAN 2210 267 1 JAN 221S 268 1 JAN 2220 269 1 JAN 2/.2S 270 1 JAN 2230 271 l JAN 223S 272 l JAN 2240 273 l JAN 224S 274 1 JAN 22SO 27S l JAN 22SS 276 1 JAN 2300 277 JAN 230S 278 1 JAN 2310 279 1 JAN 231S 280 l JAN 2320 281 l JAN 232S 282 JAN 2330 283 JAN 233S 284 l JAN 2340 28S l JAN 234S 286 l JAN 23SO 287 l JAN 23SS 288 0.01 0.01 0.01 0 .01 0.01 0.01 0.01 0.01 0.01 0.01 0 .01 0.01 0 .!)l 0 .01 0 .01 0 .01 0.01 0.01 0.01 0.01 0.01 0.01 0 .01 0 .01 0.01 0.01 0.01 0 .01 0.01 0.01 0.01 0.01 0.01 0.01 0 .01 0.01 0.01 0 .01 0 .01 0.01 0.01 0.01 0 .01 0 .01 0 .01 0.01 0.01 0.01 0.01 0.01 0 .01 0 .01 0.01 0 .01 0.01 0.01 0.01 0.00 0.00 0.00 0 .00 0 .00 0.00 0.00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0.00 0.00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 0 .00 0.00 0.00 0.00 0 .00 0 .00 0.00 0 .00 0 .00 0.00 0.00 0 .00 0 .00 o .oo 0.00 0 .00 0 .00 o .oo 0 .00 0 .00 0.00 0 .00 0.00 0 .00 0.00 0.01 0.01 0.01 0.01 0.01 0 .01 0 .01 0 .01 0 .01 0 .01 0 .01 0.01 0.01 0 .01 0 .01 0 .01 0 .01 0 .01 0 .01 0.01 0 .01 0.01 0.01 0.01 0.01 0.01 0 .01 0 .01 0.01 0 .01 0.01 0.01 0.01 0 .01 0.01 0.01 0.01 0 .0 1 0 .01 0.01 0 .01 0.01 0 .01 0.01 0.01 0 .01 0.01 0 .01 0.01 0.01 0.01 0.01 0 .01 0 .01 0 .01 0 .01 0 .01 22. 22. 21. 21. 20 . 20 . 20. 19 . 19 . 19 . 19. 18. 18. 18. 18 . 18 . 18. 17 . 17. 17 . 17. 17. 17. 17. 16. 16. 16. 16. 16. 16. 16. 16. lS . lS . lS. lS. lS. lS. lS . lS. lS. 14. 14. 14. 14 . 14 . l.1 . 14. 14. 14. 14. 14. 13. 13 . 13 . 13. 13. *S********************•************************************************************************************************************ TOTAL RAINFALL = PEAK FLOW (CFS ) S37. TIME (HR) 12.67 10.99, TOTAL LOSS = (CFS) (INCHES) 6-HR 169 . 7 .298 1 .44, TOTAL EXCESS • MAXIMUM AVERAGE FLOW 24-HR SS. 9.46S 72-HR SS. 9 .46S 9 .S4 23.92-HR SS. 9 .. 4 6S (AC-FT) 84. 109. 109 . 109. CUMULATIVE AREA = 0.22 SQ MI HYDROGRAPH MULTIPLIED BY 1 .00 *********************************************************************************************************************************** HYDROGRAPH AT STATION WPNl .....................................•..........•......•.........•...........................•..................................... DA ~ON HRMN ORD JAN 0000 JAN 0005 2 JAN 0010 3 JAN 0015 4 1 JAN 0020 5 1 JAN 0025 6 JAN 0030 7 JAN 0035 8 JAN 0040 9 JAN 0045 10 JAN 0050 11 JAN 0055 12 JAN 0100 13 JAN 0 10 5 JAN 0110 JAN 0115 JAN 0120 JAN 0125 JP.N 0130 1 JAN 0135 JAN 0140 JAN 0145 JAN 0150 JAN 0155 1 JAN 0200 1 JAN 0205 1 JAN 0210 1 JAN 0215 1 JAN 0220 1 J AN 0225 JAN 0230 JAN 0235 JAN 0240 JAN 0245 JAN 0250 JAN 0255 1 JAN 0300 1 JAN 0305 1 JAN 0 310 1 JAN 03 15 JAN 0320 JAN 0325 1 J AN 0330 1 JAN 0335 JAN 0 34 0 1 JAN 0345 1 J .AN 035 0 l JAN 0355 1 JAN 0400 1 JAN 0405 1 ,JAN 0410 14 1 5 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3 0 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4 6 47 48 49 50 51 FLOW o. 0. 0. o. 0 . 0. o. o . 0. o. 0 . o . o . 0. o. 0 . o. o . o. 0. o. o. 0. o. o. o. o. o. o. o. o. o. 0. 0. o . 0. 0 . 0. 0. o. 0 . 0. o. 1. 1. 1. 1. 1. 1. 2 . 2. DA MON l!RMN ORD JAN 0600 73 JAN 0605 74 1 JAN 0610 75 1 JAN 0615 76 1 JAN 0620 77 1 JAN 0625 78 JAN 0630 79 JAN 0635 80 JAN 0640 81 1 JAN 0645 8 2 1 JAN 0650 83 1 JAN 0655 84 1 JAN 0700 85 1 JAN 0705 86 1 JAN 0710 87 1 JAN 0715 88 l JAN 0720 89 1 JAN 0725 90 1 JAN 0730 91 JAN 0735 92 l JAN 0740 93 l JAN 0745 94 1 JAN 0750 95 JAN 0755 96 JAN 0800 97 JAN 0805 98 JAN 0810 99 JAN 0815 100 JAN 0820 101 JAN 0825 102 JAN 0830 103 1 JAN 0835 104 l JAN 0840 105 1 JAN 0815 106 JAN 0850 107 JAN 0855 108 1 JAN 0 900 109 l JAN 0905 llO l JAN 0910 111 1 JAN 0915 112 l JAN 0 920 113 JAN 0 925 114 1 JAN 0930 115 l JAN 0935 116 l JAN 0940 117 l JAN 0945 118 l JAN 0950 119 l JAN 09~5 120 1 JAN 1000 121 l JAN 1005 122 1 JAN 1010 123 FLOW 7 . 7. 8. 8. 9. 9 . 10 . 11. 12 . 12 . 13. 1 4 . 15 . 16. 16. 17. 18 . 18 . 19. 20 . 20. 21. 22. 22. 23 . 24 . 24. 25 . 26 . 26. 27. 2 8. 29. 29 . 30. 31. 32 . 33. 34. 34. 35. 37. 38 . 39. 40. 41. 42 . 44. 45. 47. 48. • • DA MON HRMN ORD JAN 1200 145 l JAN 1205 146 l JAN 1210 147 1 JAN 1215 148 1 JAN 1220 149 JAN 1225 150 JAN 1230 151 JAN 1235 152 JAN 1240 153 1 JAN 1245 154 1 JAN 1250 155 1 JAN 1255 156 JAN 1300 157 JAN 1305 158 JAN 1310 15 9 JAN 1315 160 JAN 1320 161 JAN 1325 162 1 JAN 1330 163 1 JAN 1335 164 1 JAN 1340 165 1 JAN 1345 166 1 JAN 1350 167 1 JAN 1355 1 68 1 JAN 1400 169 1 JAN 1405 17 0 1 JAN 1410 171 1 JAN 1415 172 1 JAN 1420 173 1 JAN 1425 174 1 JAN 1430 17 5 JAN 1435 17 6 1 JAN 1440 177 JAN 1445 178 l JAN 1450 179 JAN 1455 180 JAN 15 00 181 1 JAN 1505 182 1 JAN 151 0 183 JAN 1515 1 84 JAN 1520 185 JAN 1525 186 l JAN 1530 187 1 JAN 1535 188 JAN 1540 189 JAN 1545 190 JAN 1550 191 1 JAN 1555 192 1 JAN 1600 193 1 JAN 160 5 194 JAN 1610 195 FLOW 2 14 . 259 . 312. 372 . 432 . 482. 518. 536. 53 7. 524 . 500. 468. 431. 392. 356. 323. 293. 264 . 238. 214 . 193 . 174. 158. 144. 133 . 123 . 115. 108 . 103. 9 7 . 93. 88 . 85. 81. 78 . "/5 . 73. 70. 68. 66. 64 . 62. 60. 58. 5 7 . 5 6 . 54. 53 . 52. 51. 50. DA MON HRMN ORD 1 JAN 1800 217 1 JAN 1805 218 1 JAN 1810 219 JAN 181 5 220 1 JAN 182 0 221 1 J .?\N 18 25 222 1 JAN 1830 223 JAN 1835 224 JAN 1840 225 JAN 1845 226 l JAN 1850 227 1 JAN 1855 228 JAN 1900 229 JAN 1905 230 JAN 1910 231 1 JAN 1915 232 JAN 1920 233 JAN 1925 234 1 JAN 1930 235 1 JAN 1935 236 1 JAN 1940 2·37 1 JAN 1945 238 1 JAN 1950 239 1 JAN 1955 240 1 JAN 2000 241 1 JAN 2005 242 1 JAN 2010 243 1 JAN 2015 244 1 JAN 2020 245 JAN 2025 246 JAN 2030 247 JAN 2035 248 JAN 2040 249 JAN 2045 250 JAN 2050 251 JAN 2 055 252 JAN 2100 253 1 JAN 2105 254 1 JAN 2110 255 JAN 2115 256 JAN 2120 257 1 JAN 2125 258 l JAN 2130 259 JAN 2135 260 . 1 JAN 2140 261 JAN 2145 262 1 JAN 2150 263 1 JAN 2155 264 1 JAN 2200 265 JAN 2205 266 JAN 2210 267 FLOW 36 . 36. 35. 34 . 3 3 . 32 . 31. 30. 28. 27. 26. 25. :?4. 23 . 23 . 22. 22. 21. 21. 20 . 20. 20 . 19. 19. 19. 19. 18. 18. 18. 18 . 18. 18 . 17. 17. 17 . 17 . 17. 17 . 11 : 16. 16. 16. 16. 16 . 16. 16 . 16 . 15. 15. 15 . 15 . 1 JAN 0415 JAN 0420 l JAN 0425 JAN 0430 1 JAN 0135 1 JAN 0440 1 JAN 0445 l . JAN 0450 1 JAN 0 4 55 JAN 0 500 JAN 0505 JAN 0510 JAN 0515 JAN 0520 JAN 052 5 JAN 0530 JAN 0535 JAN 0540 JAN 0545 JAN 0550 JAN 0555 52 53 54 55 56 5 7 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 2. 2 . 2. 3 . 3. 3. 3. 3 . 4 . 4. 4 . 4 . 5 . 5 . 5 . 5 . 6. 6. 6. 6 . 7. 1 JAN 1015 124 1 JAN 1020 125 1 JAN 1025 126 JAN 1 0 30 127 JAN 1035 128 JAN 1040 129 1 JAN 1045 130 JAN 1050 131 JAN 1055 132 l JAN 1100 133 l JAN 1105 134 l JAN 1110 135 JAN 1115 136 JAN 112 0 137 JAN 1125 138 JAN 1130 139 JAN 113 5 140 JAN 1140 141 JAN 1145 142 JAN 1150 143 l JAN 1155 144 50. 51. 53 . 55 . 56 . 58. 60. 6 1. 62 . 64. 66. 69. 73. 80. 87 . 97 . 108 . 121. 136. 155 . 180. 1 JAN 1615 196 l JAN 1620 197 l JAN 1625 198 l JAN 1E'30 199 JAN 1635 200 JAN 1640 201 JAN 1 6 45 202 l JAN 16 5 0 203 l JAN 1655 204 l JAN 1700 205 JAN 1705 206 JAN 1710 207 JAN 1715 208 JAN 1720 209 J AN 1725 210 JAN 1730 211 JAN 1735 212 l JAN 1740 213 l JAN 1745 214 l JAN 17SO 215 JAN 175S 216 49. 48 . 47. 47. 46. 45. 44 . 44. 43 . 42 . 42. 41. 41. 40. 40 . 39 . 39. 38 . 38 . 37. 37 . • JAN 221 5 268 JAN 2220 269 l JAN 2225 270 l JAN 2230 271 l JAN 2235 272 JAN 2240 273 JAN 2245 274 JAN 22SO 27S JAN 2255 276 JAN 2300 277 l JAN 230S 278 l JAN 2310 279 JAN 2315 280 l JAN 2320 281 l JAN 2325 282 l JAN 2330 283 l JAN 2335 284 l JAN 2340 285 l JAN 2345 286 l JAN 23SO 287 l JAN 2355 288 15 . 15 . 15 . 15 . 15. 14 . 14 . 14 . 14 . 14 . 14. 14 . 14 . 14. 14 . 14 . 13 . 13. 13. 13 . 13. ·················································~················································································· PEAK FLOW (CFS) S37. TIME (HR) 12 .67 (CFS ) (INCHES ) (AC -FT) 6-HR 169. 7.298 84 . CUMUL.~TIVE AREA = MAXIMUM AVERAGE FLOW 24-HR 55. 9.46S 109. 0 .22 SQ MI 72-HR SS. 9.465 109 . 23.92-HR 55. 9 .465 109 . OPERATION STATION HYDROGRAPH AT WPNl *** NORMAL END OF HEC-1 *** PEAK FLOW 537 . RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS , AREA IN SQUARE MILES TIME OF PEAK 12 .67 AVERAGE FLOW FOR MAXIMUM PERIOD 6-HOUR 24 -HOUR 72-HOUR 169 . 55 . 55 . BASIN AREA 0.22 MAXIMUM STAGE TIME OF MAX STAGE ...........•....•••........•............. FLOO D HYDROGRAPH PACKAGE (HEC -1 ) MAY 1991 VERSION 4. 0. lE RUN DATE 02/25/97 TIME 19 :02 :51 ......................................... x x x x xxxxxxx x x x x xxxxxxx xxxx x x x x x x x x xxxxxxx x x x x x xxxxx xxxxx x x xxxxx x xx x x x x xxx U .S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVI S, CALIFORNIA 95616 (916) 551-1748 THIS PROGRAM REPLACES ALL PREVIOUE VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73), HEClGS, HEClDB, AND HEClKW . THE DEFINITIONS OF VARIABLES -RTIMP-AND -RTIOR -HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE . THE DEFINITION OF -AMSKK-ON RM -CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS :WRITE STAGE FREQUENCY , DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GR~EN AND AMPT INFILTRATION KINEMATIC WAVE : NEW FINITE DIFFERENCE ALGORITHM LINE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lG HEC -1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 ID ID ID ID ID ID IT IN IO KK KO BA PH LS UD zz HYDROLOGIC ANALYSIS OF WOLF PEN CREEK MAIN CHANNEL, COLLEGE STATION, TX BASIN UPSTREAM OF GEORGE BUSH DRIVE -1996 WATERSHED CONDITIONS TEXAS A&M UNIVERSITY MAIN CAMPUS STORM WATER MANAGEMENT PLAN TURNER COLLIE & BRADEN JOB NO. 31 -00380-006, BJT PRESENT CONDITION ANALYSIS -FILENAME • WPN96 .DAT, FEBRUARY 1997 100 YEAR, 24 HOUR STORM, HYPOTHETICAL DISTRIBUTION 5 01JAN97 0000 288 15 01JAN97 5 0 0000 0 WP Nl WOLF PEN CREEK MAIN CHANNEL -SUBBASIN ABOVE GEORGE BUSH DRIVE 1 21 0.215 0 1 0 .87 1. 95 4.26 5 .7 6 .3 7 .8 9 .6 0 88.5 0.655 11 .0 PAG E 1 ······························~·········· FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1991 VERSION 4 . 0 . lE RUN DAT E 02/25/97 TIME 19 :02 :51 ......................................... .••..••..•..••••.....................•. U .S . ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551 -1748 HYDROLOGIC ANALYSIS OF WOLF PEN CREEK MAIN CHANNEL, COLLEGE STATION, TX BASIN UPSTREAM OF GEORGE BUSH DRIVE -1996 WATERSHED CONDITIONS 9 IO IT TEXAS A&M UNIVERSITY MAIN CAMPUS STORM WATER MANAGEMENT PLAN TURNER COLLIE & BRADEN JOB NO. 31-003 80 -0 06, BJT PRESENT CONDITION ANALYSIS - F ILENAME • WPN96.DAT, FEBRUARY 1997 100 YEAR, 24 HOUR STORM, HYPOTHE T ICAL DISTRIBUTION OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL !PLOT QSCAL HYDROGRAPH TIME DATA 0 PLOT CONTROL 0 . HYDROGRAPH PLOT SCALE NMIN 5 MINUTES IN COMPUTATION INTERVAL IDA TE 1JAN97 STARTING DATE !TIME 0000 STARTING TIME NQ 288 NUMBER OF' HYDROGRAPH NDDATE 1JAN97 ENDING DATE NDTIME 2355 ENDING 'l'IME !CENT 19 CENTURY MARK COMPUTATION INTERVAL TOTAL TIME BASE 0 .08 HOURS 23.92 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITAT I ON DEPTH LENGTH, ELEVATI ON FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE-FEET ACRES DEGREES FAHRENHEIT ORDINATES ~·· ••• *** *** •••••• *** ••••••••••••••••••••••••••••••••••••••••••••••••••• *** ••• *** *** ••••••••• *** ••• 10 KK WPNl WOLF PEN CREEK MAIN CHANNEL -SUBBASIN ABOVE GEORGE BUSH DRIVE * 11 KO OUTPUT CONTROL VARIABLES IPRNT 1 PRINT CONTROL !PLOT 0 PLOT CONTROL QSCAL o. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH !OUT 21 SAVE HYDROGRAFH ON THIS UNIT ISAVl l FIRST ORDINATE PUNCHED OR SAVED ISAV2 288 LAST ORDINATE PUNCHED OR SAVED 12 BA 13 PH 14 LS 15 UD TIMI NT 0 .08 3 TIME INTERVAL IN HOURS SUBBASIN RUNOFF DATA SUBBASIN CHARACTERISTICS TAREA SNAP RATIO PRECIPITATION DATA HYDR0 -35 0 .22 SUBBASIN AREA 0.00 NORMAL ANNUAL PRECIPITATION 1.00 RATIO OF HYDROGRAPH DEPTHS FOR 1-PERCENT HYPOTHETICAL STORM 5 -MIN 15 -MIN 60 -MIN 2 -HR 5 .70 3-l!R 6 .30 TP -40 6-HR 7.80 12-HR 9 .60 24-HR 11 . 00 0 .87 1.95 4 .26 STORM AREA = 0 . 22 SCS LOSS RATE STRTL CRVNBR RT IMP 0 .26 INITIAL ABSTRACTION 88 .50 CURVE NUMBER 0 .00 PERCENT IMPERVIOUS AREA SCS DIMENSIONLESS UNITGRAPH 7. 12 6 . 19. 3. o . TLAG 0. 65 LAG 20 . 111. 15 . 2 . 39 . 92 . 13 . 2. 65 . 72. 10. 2. UNIT HYDROGRAPH 41 END -OF-PERIOD ORDINATES 98 . 125. 142 . 59 . 48 . 40 . 8. 7. 6. 1. 1 . 1 . 2-DAY 0 .00 148. 33 . 5. 1. TP-49 .......... . 4-DAY 0 .0 0 7 -DAY 0 .00 148 . 28 . 4 . 0. 10-DAY 0.00 139 . 22 . 3. o . ................................................................................................................................... HYDR08RAP!l AT STATION WPNl ................................................................................................................................... DA MON HRMN ORD 1 JAN 00 0 0 1 1 JAN 0005 2 1 JAN 0010 3 1 JAN 0015 4 1 JAN 0020 5 JAN 0025 6 JAN 0030 7 JAN 0035 8 JAN 00 4 0 9 JAN 0045 10 1 JAN 0050 11 1 JAN 0055 12 1 JAN 0100 l 3 1 JAN 0105 14 1 JAN 0 11 0 15 1 JAN 0115 16 1 JAN 012 0 17 1 JAN 0125 18 1 JAN 0130 19 JAN O:i.35 20 1 JAN 0140 21 RAIN CJ.00 0.01 0 .01 0 .01 0.01 0 .01 0.01 0.01 0 .01 0 .01 0 .01 0.01 0.01 0.01 0 .01 0 .01 0.01 0 .01 0.01 0.01 0 .01 LOSS 0 .00 0 .01 0 .01 0.01 0 .01 0 .0 1 O.Ol 0 .01 0 .01 0.01 0.01 0.01 0 .01 0 .01 0.01 0 .01 0 .01 0 .01 0.01 0.01 0 .01 EXCESS 0 .00 0 .00 0 .00 0 .00 0 .00 0 .0 0 0.00 0.00 0 .00 0 .00 0.00 0 .00 0.00 0.00 0.00 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 COMP Q o . 0 . 0. o. o . o. 0 . o. 0 . o . o . 0 . 0. 0 . o . o. 0. o. o. o. o . DA MON HRMN ORD 1 JAN 1200 145 1 JAN 1205 146 1 JAN 1210 147 1 JAN 1215 148 1 JAN 1220 1-19 1 JAN 1225 1 5 0 1 JAN 1230 1 5 1 1 JAN 1235 152 1 JAN 1240 153 1 JAN 12 4 5 154 1 JAN 1250 155 1 JAN 1255 156 1 JAN 1300 157 1 JAN 1305 158 1 JAN 1310 159 1 JAN 1315 160 1 JAN 1320 161 1 JAN 1325 162 1 JAN 1330 163 1 JAN 1335 164 JAN 1 3 40 165 RAIN 0 .87 0.44 0. 37 0.23 0 .20 0 .18 0 .15 0 .13 0.12 0 .12 0 .11 0 .10 0.06 0 .05 0 .05 0 .05 0.05 0 .04 0.05 0.05 0 .05 LOSS 0 .03 0 .01 0.01 0 .01 0 .00 0 .00 • 0. 00 0 .00 0.00 0 .00 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 0.00 0.00 0.00 0.00 EXCESS 0 .84 0.43 0.36 0 .22 0 .19 0.17 0 .14 0 .1 3 0 .12 0 .11 0 .11 0 .10 0.06 0 .05 0 .05 0 .05 0 .05 0.04 0.05 0 .05 0 .05 COMP Q 216 . 261. 315 . 376. 436 . 486 . 521. 539. 540 . 5 2 6 . 501. 468. 430 . 391. 355 . 322. 291. 263 . 237. 213 . 192. JAN 0145 JAN 0150 JAN 0155 JAN 0200 1 JAN 0205 1 JAN 0210 1 JAN 0215 1 JAN 0220 1 JAN 0225 1 JAN 0230 1 JAN 0235 1 ,JAN 0240 1 JAN 0245 1 JAN 02SO l JAN 02SS l JAN 0300 1 JAN 030S l JAN 0310 1 JAN 0315 l JAN 0320 JAN 0325 JAN 0330 1 ,JAN 033S l JAN 0340 JAN 034S JAN 03SO JAN 03SS JAN 0400 JAN 040S 1 JAN 0410 JAN 041S JAN 0420 JAN 042S JAN 0430 1 JAll 043S JAN 0440 JAN 044S 1 JAN 04SO l JAN 04SS JAN OSOO 1 JAN OSOS JAN OSlO 1 JAN 051S 1 JAN OS20 1 JJl.N 052 s JAN 0530 JAN OS3S JAN OS40 JAN 0545 1 JAN OSSO l JAN OSSS 1 JAN 0600 JAN 0605 JAN 0610 Jl\N 061S l JAN 0620 JAN OE2S JAN 0630 JAN 063S 1 JAN 0640 JAN 064S JAN 06SO JAN 06SS JAN 0700 JAN 070S JAN 0710 22 23 24 2S 26 27 28 29 30 31 32 33 34 3S 36 37 38 39 40 41 42 43 44 4S 46 4'1 48 49 50 Sl S2 53 S4 5S S6 S7 S8 S9 60 61 62 63 64 6S 66 67 68 69 70 7l 72 73 74 75 76 77 78 79 80 81 82 83 84 8S 86 87 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0. OJ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 o.o: 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 C.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oc 0.00 0.00 0.00 C.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 o.o: 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0J 0.01 0.01 0.01 0.01 0.01 o. 0. o. . 0. o. 0. o. 0. 0. 0. o. 0. 0. o. o. o. 0. o. 0. 0. o. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 4. 4. 4. 4. 5. s. 5. 5. 6. 6. 6. 6. 6. 7. 7. 7. 8. 8. 9. 9. 10. 11. 12. 13. 14. 14. lS. 16. 17. * * JAN 1345 166 1 JAN 1350 167 l JAN 13SS 168 1 JAN 1400 169 l JAN 140S 170 JAN 1410 171 l JAN 1415 172 1 JAN 1420 173 1 JAN 142S 174 l JAN 1430 175 1 JAN 143S 176 l JAN 1440 177 l JAN 1445 178 1 JAN 14SO 179 l JAN 14SS 180 l JAN lSOO 181 l JAN lSOS 182 l JAN lSlO 183 l JAN lSlS 184 l JAN 1S20 18S l JAN 1S2S 186 l JAN 1S30 187 l JAN 1S3S 188 l JAN 1S40 189 l JAN 154S 190 l JAN lSSO 191 JAN lSSS 192 JAN 1600 193 1 JAN 160S 194 JAN 1610 195 l JAl• 161S 196 JAN 1620 197 JAN 162S 198 JAN 163() 199 JAN 163S 200 1 JAN 1640 201 1 JAN 164S 202 l JAN 16SO 203 l JAN 16SS 204 JAN 1700 2C5 1 JAN 1705 206 l JAN 1710 207 JAN 1715 208 JAN 1720 209 l JAN 172S 210 1 JAN 1730 211 1 JAN 1735 212 1 JAN 1740 213 l J.r..N 174S 214 l JAN 17SO 21S 1 JAN 175S 216 1 JJl.N 1800 217 ,JAN 180S 218 1 JAN 1810 219 1 J.1:\N 181S 220 l JAN 1820 221 1 JAN 1825 222 1 JAN 1830 223 1 JAN 183S 224 l JAN 1840 225 1 JAN 184S 226 1 JAN 18SO 227 1 JAN 18SS 228 1 JAN 1900 229 JAN 190S 230 l JAN 1910 231 0.05 o.os o.os 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 o. o:;: Q.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 C.01 0.01 0.01 0.01 0.01 0.01 173. 157. 143. 132. 123. 115. 108. 102. 97. 92. 88. 84. 81. 78. 75. 72. 70. 68. 66. 64. 62. 60. S8. 57. S6. 54. S3. S2. Sl. 50. 49. 48. 47. 47. 46. 45. 44. 44. 43. 42. 42. 41. 41. 40. 40. 39. 39. 38. 38. 37. 37. 36. 36. 35. 34. 33. 32. 31. 29. 28. 27. 26. 25. 24. 23. 23. JAN 071S 88 l JAN 0720 89 JAN 072S 90 JAN 0730 !ll JAN 073S 92 JAN 0740 93 JAN 074S 94 JAN 07SO 9S JAN 07SS 96 JAN 0800 97 JAN 080S 98 JAN 0810 99 JAN 081S 100 JAN 0820 101 JAN 082S 102 JAN 0830 103 JAN 083S 104 l JAN 0840 lOS l JAN 084S 106 l JAN 08SO 107 JAN 08SS 108 JAN 0900 109 l JAN 090S 110 JAN 0910 111 JAN 091S 112 JAN 0920 113 JAN 092S 114 JAN 0930 llS 1 JAN 093S 116 JAN 0~40 117 JAN 094S 118 l JAN 09SO 119 l JAN 09SS 120 JAN 1000 121 l JAN lOOS 122 l JAN 1010 123 l JAN lOlS 124 JAN 1020 12S l JAN 102S 126 l JAN 1030 127 l JAN 103S 128 JAN 1040 129 JAN 104S 130 l JAN lOSO 131 l JAN lOSS 132 JAN 1100 133 JAN 11 OS 134 JAN 1110 13S JAN lllS 136 l JAN 1120 137 l JAN 112S 138 JAN 1130 139 JAN 113S 140 l JAN 1140 141 l JAN 114S 142 l JAN llSO 143 JAN llSS 144 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 o.os o.os o.os o.os o.os 0.04 o.os o.os o.os o.os 0.06 0.10 0.11 0 .11 0.12 0.13 0.14 0.17 0.19 0.21 0.3S 0 .41 0.64 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 O.Ol 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01. 0.02 0.02 0.02 0.03 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0. 02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 o.os o.os 0.09 0.09 0.10 0.11 0.12 0.13 0.16 0.17 0.20 0.33 0.38 0.61 17. 18. 19. 19. 20. 21. 21. 22. 23. 23. 24. 2S. 2S. 26. 27. 27. 28. 29. 30. 30. 31. 32. 33. 34. 3S. 36. 37. 38. 39. 40. 42. 43. 44. 46. 47. 48. so. S2. S3. SS. S7. S8. 60. 61. 63. 64. 66. 69. 74. 80. 88. 98. 109. 122. 137. 156. 181. • l JAN 1915 232 l JAN 1920 213 JAN 192S 234 JAN 1930 23S JAN 193S 236 JAN 1940 237 JAN l94S 238 JAN 19SO 239 JAN 195S 240 l JAN 2000 241 1-JAN 2005 242 l JAN 2010 243 l JAN 201S 244 l JAN 2020 24S JAN 2025 246 l JAN 2030 247 l JAN 2035 248 l JAN 2040 249 l JAN 2045 250 l JAN 20SO 251 l JAN 205S 252 l JAN 2100 253 l JAN 210S 254 JAN 2110 255 l JAN 2115 256 l JAN 2120 257 JAN 2125 258 l JAN 2130 259 l JAN 2135 260 l JAN 2140 261 l JAN 2145 262 JAN 2150 263 l JAN 2155 264 JAN 2200 265 l JAN 2205 266 l JAN 2210 267 l JAN 2215 268 l JAN 2220 269 l JAN 2225 270 l JAN 2230 271 l JAN 2235 272 l JAN 2240 273 l JAN 2245 274 l J/.N 2250 275 l JAN 2255 276 l JAN 2300 277 l JAN 2305 278 l JAN 2310 279 l JAN 2315 280 l JAN 2320 281 l JAN 2325 282 l JAN 2330 283 l JAN 2335 284 l JAN 2340 285 l JAN 2345 286 l JAN 2350 287 l JAN 2355 288 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 22. 21. 21. 21. 20. 20. 20. 19. 19. 19. 19. 18. 18. 18. 18. 18. 18. 17. 17. 17. 17. 17. 17. 17. 16. 16. 16. 16. 16. !6. 16. 16. 15. 15. lS. 15. 15. lS. lS. 15. 15. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14. 13. 13. 13. 13. 13 . ..............................•..................••....•.....................................••..•.........•......•................ TOTAL RAINFALL • PEAK FLOW (CFS) 510. TIME (HR) 12.67 10.99, TOTAL LOSS • (CFS) (INCHES) 6-HR 169. 7. 311 1.42, TOTAL EXCESS• MAXIMUM AVERAGE FLOW 24-HR 55. 9.491 72-HR 55. 9. 491 9.S7 23.92-HR 55. 9.491 (AC-FT) 84 . 109. 1 09. 109. CUMULATIVE AREA = 0.22 SQ MI HYDROGRAPH MULTIPLIED BY 1 .00 .....................•...•..........................•.............•.•.................•..•...........••.........•..........••...... HYDROGRAPH AT STATION WP Nl ....................................•.•..............•..................•.......•...........•..•.........•......................... D.!\ MON HRMN ORD JAN 0000 1 JAN 0005 2 JAN 0010 3 1 JAN OOl.5 4 JAN 0020 5 JAN 0025 6 JAN 0030 7 JAN 0035 8 1 JAN 0040 9 JAN 0045 1 0 1 JAN 0050 11 JAN 0055 1 2 JAN 0100 13 JAN 0 105 14 JAN 0 110 15 JAN 0 115 16 JAN 0120 17 JAN 0125 18 JAN 0130 19 ,JAN 0135 20 JAN 0140 21 JAN 0145 22 JAN 0150 23 1 ,J AN 0155 24 JAN 0200 25 JAN 0205 26 JAN 0210 2 7 JAN 02 15 28 1 JAN 0220 29 JAN 0225 30 JAN 0230 31 JAN 0235 32 JAN 0240 33 JAN 0245 34 JAN 0250 35 JAN 0255 36 JAN 0300 37 JAN 0305 38 l JAN 0 310 39 l JAN 0315 40 1 JAN 0320 41 JAN 0325 42 JAN 0330 43 JAN 033 5 44 JAN 0340 45 JAN 0345 46 J AN 0350 47 JAN 0355 48 JAN 0400 49 JAN 040 5 50 JAN 0410 51 FLO W o. o. c. o. c. o. 0 . o. 0. 0. 0. 0. o. o. o. 0. 0. o. 0. o. 0. 0. 0 . 0 . o . o. 0. o. o . o . o. o. 0. 0. 0. 0 . o. 0. o . o. 0 . o. 1. 1. 1. 1. 1. 1. 2 . 2. 2 . DA MON HRMN ORD 1 JAN 0600 73 1 JAN 0605 74 1 JAN 0610 75 1 JAN 0615 76 1 JAN 0620 77 1 JAN 0625 78 JAN 06 30 79 JAN 0635 80 JAN 064 0 81 1 J .llli 0645 82 1 JAN 0650 83 JAN 0655 84 JAN 0700 85 JAN 0705 86 JAN 0710 87 JAN 0715 88 1 JAN 07 20 89 J AN 0725 90 JAN 0730 91 1 JAN 0735 92 JAN 0740 93 JAN 0745 94 1 JAN 0750 95 1 JAN 0755 96 1 JAN 0800 97 JAN 0805 98 1 JAN 0810 99 1 JAN 081 5 100 JAN 0820 1 01 JAN 0825 102 JAN 0830 103 JAN 0835 104 JAN 0840 1 05 JAN 0845 106 1 JAN 0850 107 1 JAN 0855 108 1 JAN 0900 10 9 1 JAN 0905 110 1 JAN 0910 111 1 JAN 0915 112 JAN 092 0 113 1 JAN 0925 114 JAN 0930 115 JAN 0935 116 JAN 0940 117 JAN 0945 118 JAN 0950 119 JAN 0955 120 JAN 1000 121 1 JAN 1005 122 1 JAN 1010 1 23 FIDW 7. 7. 8 . 8 . 9. 9. 10 . 11. 1 2. 13 . 14 . 14. 15 . 16. 17 . 17. 18 . 19 . 19 . 20. 21. 21. 22 . 23. 23. 24 . 25. 25. 26 . 27. 27. 28. 29 . 30. 30. 31. 32. 33. 34. 35 . 36 . 37. 38. 39. 40. 42. 43. 44. 16 . 47. 48. DA MON HRMN ORD 1 JAN 1200 145 1 JAN 1205 146 1 JAN 1210 147 1 JAN 1215 148 1 JAN 1220 149 1 JAN 1225 150 JAN 1230 151 JAN 1235 152 JAN 1240 153 l JAN 1245 154 1 JAN 1250 155 JAN 1255 156 JAN 1300 157 JAN 1305 158 JAN 1310 159 JAN 1315 16 0 JAN 1320 1 61 JAN 1325 1 62 JAN 1330 163 JAN 1335 164 1 JAN 1 340 165 1 JAN 134 5 166 1 JAN 1350 167 1 JAN 1355 168 1 JAN 1400 169 1 JAN 1405 17 0 l JAN 1410 171 1 JAN 1415 172 1 JAN 1420 17 3 1 JAN 1425 174 1 JAN 143 0 1 75 1 JAN 1435 176 1 JAN 1440 177 1 JAN 1445 178 JAN 1450 17 9 JAN 1455 18 0 JAN 1500 181 1 JAN 1505 182 1 JAN 1510 183 1 JAN 1515 184 1 JAN 1520 185 1 JAN 1525 186 1 JAN 1530 187 1 JAN 15 3 5 188 1 JAN 1540 189 1 JAN 1545 1 90 1 JAN 1550 191 1 JAN 1555 192 1 JAN 1600 193 l JAN 1605 194 JAN 1610 195 FLOW 216. 261. 315. 376 . 436. 486. 521. 539. 540. 526 . 501. 468 . 430 . 391. 355. 322. 29 1. 263 . 2 37 . 213 . 192. 173. 157 . 143. 132 . 123 . 115. 108. 102. 97 . 92 . 83. 84. 81. 78. 7 5. 72 . 70. 6 8. 66. 64. 62. 60 . 58. 57. 56 . 54 . 53 . 52. 51. 50. DA MON HRMN ORD JAN 1800 217 JAN 1805 218 JAN 1810 219 JAN 1815 220 JAN 1820 221 JAN 1825 222 JAN 1830 223 JAN 1835 224 JAN 1840 225 JAN 1845 226 l JAN 1850 227 1 JAN 1855 2 28 1 JAN 1900 229 JAN 1905 230 1 JAN 191 0 231 1 JAN 191 5 232 1 JAN 1920 233 JAN 1925 234 1 JAN 1930 235 1 JAN 1935 236 JAN 1940 237 JAN 1945 238 JAN 1 950 239 JAN 1 955 240 JAN 2000 2 1 1 JAN 2005 242 JAN 2010 243 1 JAN 2015 244 1 JAN 2020 2 4 5 1 ,JAN 2025 246 1 JAN 2C30 247 JAN 2035 248 1 JAN 2040 249 1 JAN 2045 250 JAN 2050 251 JAN 2055 252 JAN 2100 253 1 JAN 2105 254 1 JAN 2110 255 JAN 2115 256 1 JAN 2120 257 1 JAN 2125 258 1 JAN 2130 259 1 JAN 2135 260 l JAN 2140 261 1 JAN 2145 262 1 JAN 2150 263 1 JAN 2155 264 1 JAN 2200 265 1 JAN 2205 266 1 JAN 2210 26 7 FLOW 36 . 36 . 35 . 34 . 33. 32 . 31. 29 . 28 . 2 7 . 26 . 25. 24. 23 . 23. 22. 2 1. 21. 21. 20. 20 . 20. 19 . 19. 1 9. 19 . 18. 18 . 18. 18. 18 . 18 . 17 . 17 . 17 . 17 . 17 . 17 . 17. 16 . 16 . 16 . 16 . 16 . 16 . 1 6 . 16 . 15 . 15 . 15. 15. JAN 041S JAN 0420 l JAN 042S JAN 0430 l JAN 0435 l JAN 0440 l JAN 044S JAN 0450 l JAN 045S l JAN OSOO l JAN 0505 l JAN OSlO l JAN OS15 l JAN OS20 l JAN OS2S l JAN OS30 JAN 053S JAN OS40 JAN 054S JAN 0550 l JAN 055S S2 S3 54 SS S6 57 S8 S9 60 61 62 63 64 6S 66 67 68 69 70 71 72 2. 2. 3. 3. 3. 3. 3. 4. 4. 4. 4. 5. 5. s. 5. 6. 6. 6. 6. 6. 7. • l JAN 1015 124 l JAN 1020 125 l JAN 102S 126 l JAN 1030 127 l JAN 1035 128 l JAN 1040 129 l JAN 104S 130 l JAN lOSO 131 l JAN lOSS 132 l JAN 1100 133 l JAN 1105 134 l JAN 1110 13S l JAN 1115 136 l JAN 1120 137 l JAN 1125 138 l JAN 1130 139 l JAN 113S 140 l JAN 1140 141 l JAN 114S 142 l JAN 1150 143 l JAN 1155 144 50. S2. S3. 5S. S7. S8. 60. 61. 63. 64. 66. 69. 74. 80. 88. 98. 109. 122. 137. 156. 181. • JAN 161S 196 JAN 1620 197 JAN 162S 198 l JAN 1630 199 l JAN 163S 200 l JAN 1640 201 1 JAN 1645 202 l JAN 1650 203 1 JAN 1655 204 JAN 1700 205 1 JAN 1705 206 1 JAN 1710 207 l JAN 1715 208 1 JAN 1720 209 JAN 1725 210 JAN 1730 211 JAN 1735 212 l JAN 1740 213 JAN 1745 214 l JAN 1750 21S l JAN 1755 216 49. 48. 47. 47. 46. 4S. 44. 44. 43. 42. 42. 41. 41. 40. 40. 39. 39. 38. 38. 37. 37. • • • • • • l JAN 221S 268 l JAN 2220 269 l JAN 222S 270 l JAN 2230 271 l JAN 2235 272 l JAN 2240 273 l JAN 224S 274 l JAN 22SO 27S l JAN 2255 276 l JAN 2300 277 l JAN 2305 278 l JAN 2310 279 l JAN 2315 280 l JAN 2320 281 l JAN 2325 282 1 JAN 2330 283 l JAN 233S 284 l JAN 2340 28S l JAN 2345 286 l JAN 2350 287 l JAN 23S5 288 lS. 15. lS. lS. lS. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14. 13. 13. 13. 13. 13. ********************************************************************************~**********r*************************************** PEAK FLOW (CFS) 540. TIME (HR) 12.67 (CFS) (INCHES) (AC-FT) 6-HR 169. 7. 311 84. CUMULATIVE AREA = MAXIMUM AVERAGE FLOW 24-HR SS. 9.491 109. 0. 22 SQ MI 72-HR SS. 9. 491 109. 23.92-HR SS. 9.491 109. FLOW TIME IN PEAK TIME OF OPERATION STATION FLOW PEAK HYDROGRAPH AT WPNl 54 0 . 12.67 ••• NORMAL END OF HEC-1 *** RUNOFF SUMMARY IN CUBIC FEET PER SECOND HOURS , AREA IN 8 QUARE MILES AVERAGE FLOW FOR MAXIMUM PERIOD 6-HOUR 24-!lOUR 72-HOUR 169 . 55 . 55 . BASIN AREA 0.22 MAXIMUM STAGE TIME OF MAX STAGE *********************•••················· FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1991 VERSION 4 .0.lE RUN DATE 02/25/97 TIME 19:06:55 • ......•..•............•..••.............• x x xxxxxxx x x x x x x xxxxxxx xxxx x x x x x x x x xxxxxxx xxxxx x x x x xxxxx x x x xxxxx x xx x x x x xxx ....................•.................. • U .S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-1748 ...••..••••••.......................... THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73 ), HEClGS , HEClDB, AND HEClKW . THE DEFINITIONS OF VARIABLES -RTIMP-AND -RTIOR-HAVE CHANGED FROM THOSE USED WITH THE 1973 -STYLE INPUT STRUCTURE . THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN 77 VERSION NEW OPTIONS : DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS :WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM LINE l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 HEC-1 INPUT !D ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 ID ID ID ID ID ID IT IN IO KK KO BA PH LS UD zz HYDROLOGIC ANALYSIS OF WOLF PEN CREEK MAIN CHANNEL, COLLEGE STATION, TX BASIN UPSTREAM OF GEORGE BUSH DRIVE -FUTURE CONDITION WATERSHED CONDITIONS TEXAS A&M UNIVERSITY MAIN CAMPUS STORM WATER MANAGEMENT PLAN TURNER COLLlE & BRADEN JOB NO. 31-00380-006, BJT FUTURE CONDITIONS ANALYSIS -FILENAME • WPNFC.DAT, FEBRUARY 1997 100 YEAR, 24 HOUR STORM, HYPOTHETICAL DISTRIBUTION 5 01JAN97 0000 288 15 01JAN97 5 0 0000 0 WPNl WOLF PEN CREEK MAIN CHANNEL -SUBBASIN ABOVE GEORGE BUSH DRIVE 1 21 0.215 0 1 1 0 .87 1. 95 4 .26 5 .7 6 .3 7.8 9 .6 0 88.6 0 .653 11. 0 PAGE ··········*······························ .....................................•. FLOO D HYDROGRAPH PACKAGE (HEC-1 ) U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-1748 MAY 1991 VERSION 4. 0. lE RUN DATE 02/25/97 TIME 19 :06:55 ...............•...............•••..••... . ••..••...•............................ 9 IO IT HYDROLOGIC ANALYSIS OF WOLF PEN CREEK MAIN CHANNEL, COLLEGE STATION, TX BASIN UPSTREAM OF GEORGE BUSH DRIVE -FUTURE CONDITION WATERSHED CONDITIONS TEXAS A&M UNIVERSITY MAIN CAMPUS STORM WATER MANAGEMENT PLAN TURNER COLLIE & BRADEN JOB NO . 31-00380-006, BJT FUTURE CONDITIONS ANALYSIS -FILENAME = WPNFC .DAT, FEBRUARY 1997 100 YEAR, 24 HOUR STORM, HYPOTHETICAL DISTRIBUTION OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL !PLOT QSCAL HYDROGRAPH TIME DATA 0 PLOT CONTROL 0 . HYDROGRAPH PLOT SCALE NMIN 5 MINUTES IN COMPUTATION INTERVAL !DATE 1JAN97 STARTING DATE I TIME 0000 STARTING TIME NQ 288 NUMBER OF HYDROGRAPH NDDATE 1JAN97 ENDING DATE NDTIME 2355 ENDING TIME !CENT 19 CENTURY MARK COMPUTATION INTERVAL TOTAL TIME BASE 0.08 HOURS 23 .92 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE-FEET ACRES DEGREES FAHRENHEIT ORDINATES *** •••••••••••• *** ......... ••k ••••••••••••••• *** *** •••••• *** ••••••••••••••••••••• *** ••• *** ••• *** ••• ................ 10 KK WPNl WOLF PEN CREEK MAIN CHANNEL -SUBBASIN ABOVE GEORGE BUSH DRIVE 11 KO OUTPUT CONTROL VARIABLES IPRNT 1 PRINT CONTROL I PLOT 0 PLOT CONTROL QSCAL 0 . HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGR.~PH ON THIS UNIT ISAVl FIRST ORDINATE PUNCHED OR SAVED ISAV2 288 LAST ORDINATE PUNCHED OR SAVED 12 BA 13 PH 14 LS 15 UD TIMINT C .083 TIMF. INTERVAL IN HOURS SUBBASIN RUNOFF DATA SUBBASIN CHARACTERISTICS TAREA 0 .22 SUBBASIN AREA SNAP 0.00 NORMAL ANNUAL PRECIPITATION RATIO 1.00 RATIO OF HYDROGRAPH PRECIPITATION DATA DEPTHS FOR 1-PERCENT HYPOTHETICAL STORM HYDR0-35 5-MIN 15-MIN 60-MIN 0 .87 1 .95 4.26 2 -HR 5.70 3 -HR 6. 30 TP-40 6 .. HR 7.80 12 -HR 9.60 STORM AREA= 0.22 24-HR 11. 00 SCS LOSS RATE STRTL CRVNBR RT IMP 0 .26 INITIAL ABSTRACTION 08.60 CURVE NUMBER 0.00 PERCENT IMPERVIOUS AREA SCS DIMF.NSIONLESS UNITGRAPH 7. 126 . 18 . 3. 0 . TLAG 20. 111. 15 . 2. 0. 65 LAG 39. 91. 12 . 2. 65. 72. j 0. 2 . UNIT HYDROGRAPH 41 END-OF-PERIOD ORDINATES 99. 126 . 143. 58 . 8. 1. 48 . 7 . 1. 40. 6. 1. 2-DAY 0.00 149. 33. 5. 1. TP -49 .......... . 4 -DAY 0 .00 7 -DAY 0.00 148. 27. 4. o. 10-DAY 0 .00 139 . 22 . 3. o. .................................................................•..•...................................................•.......... DA MON HRMN ORD JAN 0000 l JAN 0005 2 JAN 0010 3 JAN 0015 4 JAN 0020 5 JAN 0025 6 JAN 0030 7 1 JAN 0035 R 1 JAN 0040 9 l JAN 0045 10 l JAN 0050 11 l JAN 0055 12 l JAN 0100 13 JAN 0105 14 JAN OllO 1 5 l JAN 0115 16 JAN 0120 17 JAN 0125 18 JAN 0130 19 JAN 0135 20 JAN 0140 21 RAIN 0.00 0.01 0.01 0.01 0 .01 0 .01 0.01 0.01 0.0 1 0.01 0.01 0.01 0.01 0.01 0 .01 0.01 0.01 0.01 0.01 0.01 0.01 LOSS 0.00 0.01 0 .01 C.01 0.01 0.01 C.01 0.01 0 .01 0.01 0.01 0.01 0.01 0.01 0.01 0 .0 1 0 .01 0 .01 0 .01 0 .01 0 .01 EXCESS 0.00 0.00 0.00 0 .00 0.00 0.00 0 .0 0 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 0 .00 0 .0 0 0.00 0.00 0 .00 0.00 0 .00 HYDROGRAPH AT STATION COMP Q 0. o. o. 0. (J. o. 0. 0. o. 0. 0 . 0. o . o . 0 . o . 0 . 0. o. 0. 0 . WPNl DA MON HRMN ORD l JAN 1200 145 1 JAN 1205 146 l JAN 1210 147 1 JAN 1215 148 1 JAN 1220 14 9 1 JAN 1225 1 50 1 JAN 1230 151 l JAN 1235 152 1 JAN 1210 153 1 JAN 1245 154 ·JAN 1250 155 JAN 1255 156 l JAN 1300 157 l JAN 1305 158 1 JAN 1310 159 1 JAN 1315 160 l JAN D20 161 1 JAN 1325 162 l JAN 1330 163 JAN 1335 164 1 JAN 1340 165 RAIN 0.87 0.44 0.37 0 .23 0.20 0.18 0.15 0.13 0.12 0.12 0 .11 0 .10 0.06 0.05 0 .05 0 .05 0.05 0.04 0 .05 0 .05 0.05 LOSS 0 .03 0.01 0.01 0 .01 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0.00 0 .00 o .oc 0 .00 0.00 0 .00 0.00 0.00 0 .00 EXCESS 0.84 0.43 0.36 0.2/. 0.19 0.17 0 .14 0 .13 0 .12 0 .11 0.11 0 .10 0.06 0.05 0 .05 0.05 0.05 0.04 0 .05 0 .05 0.05 COMP Q 217 . 262 . 317. 377 . 438. 488. 523. 540 . 541. 526. 501. 468 . 429. 390. 354 . 321. 291. 262 . 236. 212 . 191. 1 JAN 0145 22 1 JAN 0150 23 J.IL"I 0155 24 1 JAN 0200 25 Jl\N 0205 26 l Jl'.N 0210 27 JAN 0215 28 1 Jl'~'l 0220 29 1 JAN 0225 30 1 ,TAN 0230 31 i JAN 0235 32 1 JAN 0240 33 l JAN 0245 34 JAN 0250 35 JAN 0255 36 JAN 0300 37 1 JAN 0305 39 Jl'.N 0310 39 JAN 03<5 40 1 ,TAN 0320 41 JAN 0325 42 JAN 0330 43 l JAN 0335 44 1 JAN 0340 45 1 JAN 0345 46 1 JAN 0350 47 J.".N 0355 48 l JAN 0400 49 JAN 0405 50 JM! 0410 51 JAJ.J 04 !5 52 l JAN 0420 53 JAN 0425 54 JAN 04JC 5~ JAN 0435 56 JAN 0410 57 JP. .. N 0-&45 58 l J/'.N U4SO 59 l .J~.N 0455 60 Jl\N OSCO 61 JAN 0505 62 JAN 0510 63 l JAN 0515 64 l JAN 0520 o5 JAN 0525 66 Jb.N 0530 67 1 JAN 0535 68 1 JAN 0540 69 JAN 0545 ?rJ Jl>.N 0550 7l i JAN 0555 72 1 JAN 0600 73 l JAN 0605 71 l .TAN 0610 75 1 JAN 0615 't6 1 JMJ 0620 77 JAN 0625 78 JAN 0630 79 JAN 0635 80 JAN 0640 81 JAN 0615 82 l JAN 0650 83 JAN 0655 84 JAN 0700 85 JA..~ 0105 86 1 JAN 0710 87 0.01 0.01 0.01 c. 01 G.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 G.01 0.01 0.01 0.01 0.01 0.01 0.01 C.01 0.01 0.01 0. 01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 o. 02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0. l 0. l 0. l n.01 0.01 o.cn 0.01 0.01 0.01 0.01 0.01 0.()1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 01 0.01 0.01 0.01 0.01 0.01 0. o::.. O.Dl 0. OJ. C.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 n.01 0.01 0.01 0.01 !.1.01 0.01 C.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01) CLOG 0.00 G.00 0 -0.G 0.00 0.00 0.00 0.00 0.GC 0.00 o.oo 0.00 0.00 0.00 o. ao 0.00 0.00 0.0V o.oo 0.00 o.oc 0.00 0.00 0.00 0.00 o.oo o.ou o.uc o.oo o.oo 0.00 c.ou 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oc o.oo O.QO 0.00 o.oo o.oc 0.01 0.01 0.01 0.01 0.01 ('. 01 0.01 0.Cl c.ci 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 C.01 0. 0. 0. 0. 0. 0. o. o. 0. 0. 0. o. 0. 0. o. o. o. o. 0. 0. 0. l. l. l. 1. 1. 1. 2. 2. 2. 2 2. ; . ] . 3. 3. 3. 4. 4. 4. 4. 5. 5. 5. 5. 6 6. 6. 6. 7. 7. 7. 7 LJ. B. 9. 10. 10. 11. 12. 13. 1·1. 15. 15. 16. 17. JAN 1345 !G6 JAN 1350 167 JAN 1355 168 l JAN 14'00 1&9 l JAN 1405 170 l J.l\,N 14l0 171 l JAN 1415 112 l Jhll 1420 173 l JAN 1425 174 1 JAN 1430 175 1 JA.."l 14·35 176 1 JAN 1410 177 1 JAM 1445 178 l JAN 1450 l 79 l JAN H55 180 l JAN 1500 131 1 JAN 1505 192 JAN 1510 183 l JA.'l 1515 184 l JAN 1520 185 l JAN 1525 186 l JAN 15JO 187 1 JA.'l 1535 186 l JAN 1541; 169 1 JAN 154~ 190 l JAN 1550 Bl l Jk'J 1555 192 JAN 1600 J '..':l l Ji'.N 1605 1~4 1 JAN 1610 1~5 1 J.1\N 1515 J 96 l JAN 1620 197 l .JA.a'"'.! 1625 198 !. J.D·...:.'J 1630 19? 1 Jfu~ 1635 ?.00 1 JJU•.Z 1640 201 l Ji\.N 1645 207. l JAN 1650 203 l JJ>..N 1655 204 1 JAN 1700 20:, l JAN J705 2Q6 l JA.'l 1710 207 1 JA-~ 171.C) 200 l .J.l\N 1720 209 l JAN 1725 210 l JAN l.730 21' l JAN 1735 212 l JAl• 1711) 213 l JAN 1745 2H l JAN 1750 215 1 Jl'.N l 755 216 l JAN 1800 2i7 1 JAN 1805 218 J. JAN 1810 )19 l JA.t.'1 1815 220 l JAN 1820 221 l ;:::iu; J 825 222 JAlJ i630 223 .JAl< 1835 224 l JAfl 18~0 225 1. JAN 1845 22G l ,JA_'l 1850 227 1 JAN lB55 no l JA.'< 1900 229 1 JAN 190~ 2JO 1 J/\N 1!)10 2:ii 0.05 C.-05 0.05 0. 04. (!. U4 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 1).03 0.03 0.03 0.03 0.03 0.03 0.03 C.03 0.03 0.03 0. 03 0.03 0.03 0.03 0.03 a. 03 0.03 0.03 0. 02 0.02 0.02 0.02 0.02 0.02 0.02 Cl. 02 0.L-2 0.02 0.02 0 .02 0.02 0.0?. 0.02 0.02 0.02 0.02 0.02 O.Ul 0.01 (I.Cl 0.01 0.01 0.01 0.01 0.01 0.01 Q.01 0.01 0.01 0.01 O.CJ. C.01 C.00 0.00 0.00 0.00 0.00 o.oo 0.00 CJ.00 0.00 0.00 c.oo o.oo 0.00 o.co 0.00 0.00 (). 00 o.oo 0.00 o.oo 0 .110 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 U.00 u.oo 0.00 0. •)0 0.00 C.00 o.oo c.oo u.oo o.oo 0. (IQ 0.00 0.00 C.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo •J. 00 0.00 o.oo 0.00 o:oo 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0. O'i 0.05 0.04 0.04 0. 04 0.04 0.04 0 04 0.04 0.04 o·. o.; 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.01 0.01 o.o~ 0.03 0.03 0.0) 0.03 0.03 0.0) O.OJ 0.03 0.02 U.02 0.02 C.Q2 0.02 0.02 0. 02 0.02 0.02 0.02 0.02 0.02 C.02 0.02 0.02 0.02 0.02 0.02 0. 02 0.()2 11.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.91 O.vl 0.01 0.01 0.01 0.01 172. 156. 143. 132. 122. 114 .. lOR. 102. 97. 92. 88. 84. 61. "18. 75. 72. 70. 68. 65. 63. 62. 60. 58. 57. 56. ~4. 53. 5/. 51. ~u. 49. 1&. 47. 47. 46. 45. 44 ~1. 43. 4:..!. 42. t;l. 41. 40. 40. 39. 39. 38. 38. 37. 37. 36. 36. 35. 34. 33. 32. 31. 29. 26. 27. 26. 25. 24. 23. 23. 1 JAN 0715 1 JAN 0720 1 JAN 0725 1 JAN 0730 1 JAN 0735 1 JAN 07 40 l JAN 0745 1 JAN 0 750 1· JAN 0755 l JAfl 0800 ~ JAN oa os 1 JAN 0810 JAN 0815 l JAN 0820 1 JAN 0825 1 JAN 0 83 0 l JAN 0835 JAN 0840 1 JAN 0845 l JAN 0850 1 JAN OBSS 1 JAN 0 900 JAN 090S JAN 0910 1 JAN 0915 1 JAN 09 20 1 .JAN 0925 1 JAN 0930 l JAN 0935 l .J.>.N 0940 J AN 0945 1 JAN 0950 1 JAN 0955 l JAN 1000 JAN lOOS l JAN 10 10 1 JAN 1015 1 JAN 1020 J ,TAN 1025 JAN 103 0 JAN 1 03 5 J. Jl\N 1040 l JAN 1045 l JMI 1050 JA.~ 1 055 l .Tl'.N llOO 1 JAN 1105 1 JAN 1110 l JAN 1.llS J.AN 1 12 0 J1.\..t.,; 1125 1 JAN 1130 l JAN 1135 1. JAN 1140 JAN 114S 1 JAN 1150 1 JAN 1155 TOTAL RAINFALL • PEAK F L.Q I·/ (CFS} 541 . TIME {HR) 12 .57 as 89 90 91 92 93 94 95 96 57 98 99 1 0 0 101 102 J 0 3 104 105 106 107 103 109 110 111 112 11 3 114 21 5 lJ.6 11 7 11 8 11 9 120 121 122 123 1 24 12S 1 2 15 1 27 128 12 9 130 131 132 133 134 DS 136 137 138 139 140 Hl 142 143 144 0 .02 0.02 0.02 0 .02 0 . 02 0 .03 0.03 :J.03 0.03 0 .03 0 .1)3 0.0 3 0.0 3 0 .03 0.03 0.03 0 .03 0.03 0.03 0.03 0.0 3 0.0 3 U.03 ().03 0 .04 0 .04 0 .04 0.04 0 .01 0.04 0 .0 4 0.04 0. 04 0.04 0.05 0.05 0.05 0.05 0.05 0.04 o.os o.o s o.os 0.05 0 .06 0.10 0.11 0 .11 0 .12 0 .13 0.14 0 .17 0 .19 0.21 O.JS 0 .4 1 0.6 4 O .OL 0.01 0 .01 0.01 0 .01 0.01 0.01 0 .01 0 .01 0 .01 0.0 1 0.01 0 .01 0.01 0.01 0 .01 0 .01 0.01 0.01 0.01 0 .0 1 0 .01 0.01 0.01 0 .01 0.01 0 . OJ 0. 01 0.01 0.01 0.0 1 0.01 0. Ol 0.0 1 0 .0 1 0.01 0. (11 (>. 01 0 .0 1 c .. 01 0.01 0.01 0 .01 0.01 0 .01 0.01 0.01 0.01 0 .01 0 .01 0.01 0 .01 0.01 0.02 0.02 0.02 0.03 10.99, TOTAL LOSS ~ (CFS) {INCHES) 6 ·HR 169 . ·1. 318 O.Ol 0.01 0 .02 0. 02 0 . 02 U.02 0 .02 0.02 0 .02 0.02 0.02 0.02 0 .02 0. 02 0.04! C.02 0 .02 i). 0 2 0.02 0.02 0 .0 2 0 .03 0 .03 C.03 0 .0) 0.03 0.03 U.03 C.03 0 .03 0.03 C.0 3 0. •)4 u.01 0 .0 4 (L04 C.04 O .G~ 0.04 0 .04 0.01. C.04 0.01 o .os 0 .05 o .c~ 0.09 0 .1 0 0.11 0.12 0.13 0 .1 6 c . !.7 0 .20 0.33 0 38 0 .6l 17. 18. . 19 ' 20. 20. 21. 21. 22. 23 . 23. 24. 2S. 25 . 26. 27 . 2R. 28 . 29. 3 0. 31. 31. 32 . 33 . 34 . 35 . 36. 3 7 . 38. 39. 41. 42. 43. 44 . 46 . 47. 49. so. S2 ~4 . SS . S7. :,9 . 60. 62 . 63. 64 . 6 7 . 70. 74 . 80 . 89 . 98 . 109. 122. 13i!. 1S7 . 1 82 . * * * • * * * .. * 1 .4 1, TOTAL EXCESS • MA:-:IMUM AVERAGE FLOW 24 -HR 72 -HR s-. SS . 9 .504 9 .S 0 4 l JAN 1915 1 JAN 1920 1 J AN 192S 1 JAN 193 0 . l JAN 1935 1 J AN 19 4 0 .• J Afl 194S 1 JAN 19SO 1 J AN 1955 1 JAN 20 00 l JAN 2 0 0S 1 ,JAN 2010 1 JAN 2015 1 J AN 2020 l J!\N 2 02 5 1 JA.'l 2030 1 JAN 2035 1 JAN 2040 l JAN 2 04S _ JAN 2 0S O 1 JAN 20'i 5 1 JAN 7.100 1 J.a.N :.nos 1 JAN 2110 1 JAN 211 5 1 JAN 2120 1 JAN 2 125 1 JAN 2130 l J.!'.N 213S 1 JAN 2140 l JAN 214S 1 J AN 2JSO 1 .JMl 215S • J !\N 2200 l JAN 220S 1 J .'\N 2210 1 JAN 2215 l JAN 2 220 t J M! 2:!2S l J AN 2230 9 .58 JAU 2235 l J.'.N 2240 1 JA.'1 224S 1 .J AN 2250 1 JAN 22S5 1 JAN 2 30 0 l JA.'I 2 3 0S l JA.'I 2310 l JAN 2 315 1 JA.~ 2 32 0 1 JAN 23<'5 1 JAN ?330 J. JAN 2J3<; 1 JAN 23'!!) l JAN 2HS 1 JP.N 2350 1 JAN 23 55 2 3 .92-HR SS. 9.S04 232 233 234 235 ·2 3G 237 2Ja 239 21iti 241 ::!42 243 244 24S 2~6 217 248 249 ?.SO 251 252 253 25-t 2S5 25E 25 7 2s e 259 260 261. 262 2b3 2E4 '.i6 5 2 GG 2n 7 2 58 269 270 271 272 2'1.3 '..!74 275 2 76 27 7 276 27~ 26C 281 282 2B3 2R-% 2HS 285 ~S7 0 ,01 O.OJ 0 . lil 0.01 0.01 O.Cl 0 .01 0.Gl 0. 01 0 .01 0 .01 0.01 0.01 0.01 0.01 0 .0 1 0.01 o .cn 0.01 0 .01 0 .01 0 .0 1 0.01 C.01 0.01 0 .0 1 C.0 1 0 .0 1 0 .01 0.01 0.01 0 .01 0.01 0.01 0 .01 0 .0 1 O.Ol 0.01 0. 01 0.01 n n-: 0.0 1 0 .01 0.01 0 .0 1 0 .01 0.01 0.01 u.0 1 0.01 1).0 1 0.01 0 . 01 0 .01 0 .01 0.01 0. (Jl 0.00 0.00 0.00 C .00 •). 00 0.00 0.00 0 .00 0 .00 0 .00 C .00 0.00 o .oo 0.0 0 0.00 0.00 0.00 0.00 0.00 o.oo 0 .00 o .o o 0.00 0 .00 0.00 0.00 o.oo o .o o 0 .00 C.00 0.00 0 .00 0.00 Q.CC 0.00 0.0 0 a.co o.co o .oc 0.00 0 .00 0.00 o.oo 0.00 0.00 0 .00 0 .00 0 .00 0.00 o.oo 0.00 0 .00 0.00 0.00 0.00 o.oo C .00 0 .01 0.0 1 0 .0 1 0.01 0 .01 0.Ul 0 .0 1 0.01 0 .01 0 .01 0 .01 0 .01 0 .01 0.01 0.01 0 .0 1 0 .01 0 .01 0 .01 0.0 1 0.01 0.01 0 .0 1 0 .0 1 O.OJ 0 .0 1 0 .0 1 0.0 1 0.01 0.01 Q .01 0.01 0.01 0 .01 0 .01 0.01 0.01 O.Ol 0 .01 0.01 0.01 0 .01 0 .01 0 .0 1 0 .0 1 0.01 0 .01 0.01 0 .01 0.0 1 n .01 0.0 1 0 .01 0 .01 0 .01 •J. 01 0 .01 22 . 21. 21. 21. 20 . 20. '.10 . 19 . 19 . 19. 19. 18. 18 . 18 . lS . 1il . 18. 17 . 17 . 17 . 17. 17 . 17. 17 . 16 . 16 . 16. 16. 16. 16 . 1 6 . 16. lS . 15 . lS . 15. lS . lS . J S. 15 . 15. 14. 14. 11. 14 . 14 . 14. H. 14. 14. 14. 14 . 13. 13 . 13. 13 . 13 . or, MON HRl'U'I ORD JAN 0000 •. JAN 0005 l JAN 0010 1 J.:W 0015 l JAN 0020 J. JAN 0025 1 JAN 0030 1 JAN 00 35 .!A...'1 0040 JAN 0045 l JAN 0050 Ji'.N 0055 J'.N 0100 JAN 0105 JAN 0110 1 JAN 0 115 JAN 0120 JJi...N 0 125 JAN 0130 JAN 0135 l JAN 0140 l J AN Cl45 1 J!\N 0 15 0 J AN 01 55 JJ\N 02 0 0 1 JAN 0205 JAf! 02 10 JAN 0215 cTAfl 0 220 J .".N 02 25 ~ J.W 0230 1 JAN 0235 -JA...'l 0240 ,JAN 0245 JAN 0250 JAN 02Sc; J AN 0300 J AN 0)05 1.1AN 0 31 0 JAN 0315 JAN 0320 JAN 0325 JAN 033 0 JAN 0 335 l JAN 0340 1 JAN 034 5 JAN 0350 l JAN 0355 JAN 0400 JAN 0405 1, JAN 0 410 1 2 4 5 6 7 a 9 10 11 12 )3 l "' 15 16 17 lG i9 20 21 22 23 7.1 /5 2 6 27 28 29 30 31 32 33 34 15 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 (AC-FT) 84 . 1 0~. 109. 10 9. CUMU LA TIVE AREi'. = !J.22 SQ MI 0. o . o. 0 . o. 0. o. o. c . o. 0 . 0 . o. o. 0. 0. o. o. 0. 0 . 0 . 0. 0 . o. l/. o . o. 0. o. 0. o . o. 0 . 0 o . o . o. o. 0. o. o . 0 . 1. 1. 1. 1. 2. 2. 2 . BYDROGRJ>.PH MULTIPLIED BY 1 . 00 HYDROGRJ\PH .AT STATION WPNl DA MON HP~"IH ORD 1 JAN 0600 73 1 JAN 0605 74 1 JAN 061 0 75 1 JAN 0615 76 1 JAN 0620 Ti 1 JAN 0625 78 JAN 0630 79 1 JAN OG35 BO l JAN 0 64 C 81 1 JAN 0645 82 l JA..."I 0650 83 1 J J>..N 0655 84 JAN 0700 85 JJ\N 07 05 86 JAN 0710 87 JAN 0715 86 JAN 0720 89 1 JAN 0725 90 ;J.71.N 0730 91 1 JAN 0735 92 J.o.N 0740 93 1 JAN 0745 94 1 JAN 0750 95 1 JAN 075 S 96 1 JAN 0800 97 1 J'.N 08 O~ 9R 1 JAL~ 0810 99 l JAN 0615 100 1 ,1AN 0820 1 01 1 JAN 0825 102 1 JAN 0830 103 l JAN 0835 104 1 JAN 08 4 0 105 1 JAN 02 1 5 106 1 JAN 0350 107 JAN oass 108 JAN 0900 10 9 JAN 0905 110 1 JAN 0910 111 1 JAN 0915 112 1 JAN 0920 1 13 l JAN 09~5 114 JAN 09 30 l iS l JAN 0935 116 1 JAN 0~40 ll7 1 JAN 0945 118 l jAN 0950 119 i JA.1'/ 09 5 5 120 l JAN 100 0 1 2 1 JAN 1005 122 1 JAN 1010 123 FLOW 7. 7. 8 . 6. 9. 10. 10 . 11. 12. 13 . 14. 15 . 15. 16 . 17. 17. 18 . 19. 20. 20 . 21. 21. 22 . 23 . 23 . 24. 2 5 . 25. 26 . 27. 28 . 28. 29. 30. n . 31. 32 . 3 3. 34. 35. 36. 3 7 . 38. 3?. 4 1 . 42. 43. 44. 4 6 . 47 . 49. * DA MON HRMN ORD 1 J AN 1200 145 1 JAN 1 205 146 JAN 1210 147 l J l>.N 12 1 5 148 1 JAN 1 22 0 1 49 1 cTAN ) 225 150 l JAN 123 0. 151 l JAN 1235 15/ 1 JAN 1240 1S3 1 JAN 1245 '.l 54 l JAN 1250 155 l JAN 1255 1 5 6 JAN 1 300 1~1 JAN lJOS J 58 JAN 1310 159 1 JAN i315 1 60 1 JAN 1320 l.61 1 .J AN 3 25 152 l J AN 1330 JF.3 1 JAN 1335 164 1 J l>-"1 1 340 165 JAN 1345 166 1 JAN 1350 167 J ]l.N 135 5 168 "/AN 1400 1G9 JAN 1 405 170 JAN 1410 171 1 JAN 1415 1 72 1 JAN 142 0 1 73 JAN 1425 174 JAN H.30 1 7 5 1 J.71.N 1435 176 1 JAN 1440 l'/7 1 J &'l 1445 l 7& l J.!\i./ 1450 17 9 1 JAN 1455 180 JAN 1500 18 1 JAN 1505 1 82 J.l\N 15:LO 18 3 l JAN 15 15 1':S4 1 JAN 15 2 0 185 1 JAN l.525 186 1 JAN 1530 .8? 1 JAN 1535 188 1 J AN 1540 189 1 JAN 15;5 1 90 1 JAN 1550 191 JJ>..N l sss in 1 j)l,;.J 1600 1 93 JAN 16 05 194 ,TAN lGIO 195 FLOl"i 2 17 . 2 62. 317. 3 7 7 . 4J8. 488. 5~3. 540. '>11. -26. SOl . 4.G8. 4.2 9 . 39C. 35'1. 32 1 . ~91. ~G2. 2J6. 212 . 191. 172. 156. l43. 132. l?.2. 114. 108 . 10 2 . 97. 92 . 88. 8 4 . 81. 78. 75. 72 . 70. 69. 65 . 63. 62 . 60 . 58 . 57 . 5 6 . 54. 5 3 . 52. 51. 50. DA MON HRMN ORD 1 JAN 1800 217 l JAN 1805 218 JAN 1810 219 1 JAN 1615 22 0 l JAN 1820 221 JAN 18 2 5 222 l JAN 1830 223 l JAN 1835 224 1 JAN 1840 225 1 JAN 1645 226 1 JAN 1850 227 1 JAN 1855 228 1 JAN 1900 229 JJ>..1'! 1 905 230 JAN 191 0 231 1 JAN 1915 232 1 JAN 1920 23 3 1 J.'<."I 192 5 234 1 JAN 1 930 235 JA..-...:: 1 935 236 JJ>..N 1940 237 1 JAN 1 945 238 1 Jl'.N 1950 23tJ l JA.1'/ 1955 2 40 l JAN 200 0 2·~1 1 J.>..."J 2005 242 1 JAN 2010 243 JAN 2015 244 JAN 2020 2 4 5 1 JAN 20 25 246 l JAN 2030 247 1 JAN 2035 248 JAN 2040 249 1 JAN 204~ 2 5 0 l J AN 205 0 2 51 l JAN 2055 25 2 JA.i'I 2 1 00 2 ro 1 JAN 2105 254 JAN 2110 25S l ,1 AN 2115 256 l JAN 2120 257 1 JAN 2125 258 1 JAN :2130 259 J!'~~ 2135 260 JAN 2140 261 1 JAN 2 1 4 5 262 1 JAN 2150 253 l Jl>_li/ 2155 264 1 JAN 2200 265 JAN 2205 26 6 l JAN 2210 267 FLOW 36 . 36. 35. 34. 33. 32. 31. 29. 28. 27 . 26. 25 . 24. 2 3. 23 . 2 1. 2 1. 2 1. 20 . 20. 20. 1 9 . :i.9 . 19 . 1 9 . 18. 18 . 18. 18 . 18. 16. 1 7 . 17. 17 . 17. 17 . 17. 17 .. 16. 16 . 1 6. 16 .. 1 6. 16 . 16. lC . 15 . 15. 15. 15. l JAN 0415 l JAN 0420 l JAN 0425 l JAN 0430 JAN 0435 l JAN 0440 l JAN 0445 1 JAN 0450 l JAN 0455 l JAN 0500 l JAN 0505 l JAN 0510 1 JAN 0515 l JAN 0520 l JAN 0525 l JAN 0530 l JAN 0535 JAN 0540 JAN 0545 l JAN 0550 1 JAN 0555 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 611 69 70 71 72 2. 2. 3. 3. 3. 3. 3. 4. 4. 4. 4. 5. 5. 5. 5. 6. 6. 6. 6. 7. 7. • * • ~ • JAN 1015 124 l JAN 1020 l25 l JAN 102!> 126 1 JAN 1030 127 l Ji'.N 1035 128 l JAN 1040 129 1 JAN 1045 130 1 JAN 1050 131 1 JAN 1055 132 l JAN 1100 133 l JAN 1105 134 l JAN 1110 135 1 JAN 1115 136 1 JAN 1120 137 l JAN 1125 138 1 JAN 1130 139 1 JAN 1135 140 1 JAN 1140 141 1 JAN 1145 142 1 JAN 1150 143 l JAN 115S 144 so. 52. S4. 5S. S7. 59. 60. 62. 63. 64. 67. 70. 74. 80. 69. 98. 109. 122. 138. 1S7. 182. • • • 1 JAN 1615 196 l JAN 1620 in 1 JAN 1625 198 1 JAN 1630 199 1 JAN 1635 200 1 J~ 1640 201 l JAN 1645 202 l JAN 16SO 203 l JAN 1655 204 1 JAN 1700 205 1 JAN 1705 206 l JAN 1710 207 l JAN 1'115 208 l JAN 1720 209 1 JAN l 72S 210 1 JAN 1730 211 l JAN 1735 212 1 JAN 1740 213 1 JAN 1745 7.14 1 JAN 1750 21S l JAN 17SS 216 49. 48. 47. 47. 45. 4S. 44. 44. 43. 42. 42. 41. 41. 40 . 40. 39. 39. 38. 38. 37. 37. • • • • l JAN 221S 268 l JAN 2220 269 l JAN 2225 :l?O l JAN 2230 271 1 JAN 223S 272 1 JAN 2240 273 1 JAN 224S 274 l JAN 22SO 27S l JAN 22SS 276 l JAN 2300 277 1 JAN 230S 278 l JAN 2310 279 l JAN 2315 280 l JAN 2320 281 1 JAN 232S 282 l JAN 2330 283 l JAN 233S 284 1 JAN 2340 28S l JAN 2345 286 l JAN 23SO 287 l JAN 2355 288 lS. 15. lS. lS. lS. 14. 14. 14. 14. l4. 14. 14. 14. 14. 14. 14. 13. 13. 13. 13 . 13 . ~*******************************•***********w***************************************~••••****************************************** PEAK FLOW (CFS) S41. TIME (HR} 12.67 (CFS} (INCHES} (AC-F'T} 6-HR 169. 7.:ns 84. CUMUL.~TIVE AREA ~ MAXIMUM AVERAGE FLOW 24-HR 72-HR 5S. SS. 5.504 9.S04 109. 109. ll.22 SQ MI 23.92-HR 55. 9.S04 109. FLO~/ TIME IN PEAK TIME OF OPERATION STATION FL.OW PEAK HYDROGRAPH AT WPNl 541. 12.67 ••• NORl'.AL END OF H£C-l *** RUNOFF SUMMARY IN C..1JBIC FEET PER SECOND HOURS, AREA IN SQU!>.RE MILES AVERAGE FLOW FOR MAXIMUM PERIOD 6-HOUR 24-HOIJR 72-HOUR 169. 55. 55. BASIN ARE/\ 0.22 MAXIMUM S'!AGE TIME OF MAX STAGE WOLF PEN CREEK TRIBUTARY ~'C" ···~····••***********•··················~ FLOOD HYDROGRAPH PACKAGE (HEC -1) 1".l\Y 1991 VERSION 4. 0. lE RUN DATE 02/25/97 TIME 13:10:21 x x xxxxxxx x x x x x x xx xxxxx xx xx x x x x x x x x xxxxxxx xxxxx x x x x xxxxx x x x xxxxx x xx x x x x xxx U.S . ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CEN'!'ER 609 SECOND STREET D~VIS, CALIFORNIA 95616 (916) 551-1748 ***************~······················· THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-l KNOWN AS HE Cl (JAN 73), HEClGS, HEClDR , AND HEClKW . THE DEFINITIONS OF VARIABLES -RTIMP-AND -RTIOR -HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPL'T STRUCTURE. THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REV ISIONS 01'.TED 28 SEP 31. THIS IS THE FORTR!J'77 VERSION NEW OPTIONS: DAMBREAK Oi.JTFLOW SUBMERGENCE , SINGLF. EVENT DAMAGE CP.LCUL.''\TION, DSS: WRITE STAGE FREQUENCY , DSS: READ T I ME SERIES AT DESIRED CALCULll.TI ON INTl::RVAL LOSS RAT E : Gl{EEN AND AM?r INfILT RATICN KINEMATIC WAVE : NEW FINITE DIFFERENCE ALGORITP.M LINE l ~ 3 4 5 6 7 a 9 10 11 12 13 14 15 15 17 18 19 20 21 22 23 24 25 2 6 27 28 29 30 31 3 2 33 34 35 }G HEC -1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... a ....... 9 ...... 10 ID HYDROLOG I C ANALYSIS OF WOLF PEN CREEK TRIBUTARY "C ", COLLEGE STATION, TX ID BASIN UPSTREAM OF GEORGE BUSH DRIVE -1987 WATERSHED CONDITIONS ID TEXAS A&M UNIVERSITY MAIN CAMPUS STORM WATER MANAGEMENT PLAN ID TURNER COLLIE & BRADEN JOB NO. 31-00380 -006 , BJT ID 1 98 7 CONDITIONS -FILENAME • WPC87 .DAT, FEBRUARY 1997 ID 100 YEAR, 24 HOUR STORM, HYPOTHETICAL DISTRIBUTION TT 5 Ol·JAN97 CO OO 288 IN 15 01JAN97 0000 IO 5 0 0 K" WPC4 BASIN AEOVE UNIVERSITY CONTAINING MARRI ED STUDENT HOUSING KM BEGIN HYDROLOG!C ANALYSIS OF WOLF PEN CREE K TRIBUTARY "C" BA 0 .046 0 PH LS UD 1 0 0.366 0 8 5 .5 .8 7 1. 95 4 .26 5.7 6.3 KK OFST5 OFF c.n..MPUS AR EA EAST OF MARRIED STUD ENT HOUSING BA 0.011 O LS 0 93 .B UD 0.158 KK Cl COMBIN E WPC 4 P-"ID OF ST5 HC 2 7 .8 KK RTl ROUTE COMB HYDRO Cl THROUGH BASIN WPC2 USING NORMAL DF.:PTH RS RC RX RY KK BA LS UD KK HC KK BA LS UD 6 FLOW -1 0 .03 0 0.030 0.03 0 27 5 0 . 0 .011 0.00 905 1165 1165 1190 1215 32 7. 31 6 316 314 314 316 WPC:.1 I'CL.Q FIELD 0.100 c l 0 91.6 0.7 13 C2 CO~B ROUTED HYDRO RTt AND WPC2 OFST2 OFF-CAMPUS BASIN JUST EA ST OF POLO FIELDS 0 .016 ~ 1 0 0 .325 9 1. 6 142C 1C65 320 321 9 .6 STORAGE 11. c PAGE l LINE 37 38 39 40 41 42 13 44 45 46 47 4 8 49 50 5 1 52 5) 54 55 56 5 7 SB 59 60 61 6 2 63 64 65 66 6 7 HEC-l INPUT ID ....... 1 ....... :<. ••.••.. 3 ....... 4 ....... 5 ....... Ii ....... 7 ....... 8 ....... 9 ...... 10 KK BA LS UD KK RT KK HC KK B.'1. LS UD KK BA LS UD KK HC K.K R S RC RX RY KK BA LS UD Kl<. BA LS LID * OFS'l'l OFF-CAMP IJS RP.SIN ACROSS UNIVERSITY FROM THE NORTH SIDE P1'..;{l<I NG GARAGE 0.05 6 D l 0 91. 5 0.240 RT2 ROUTE Ol'STl THROUGH BASIN WPCl USING LAG ROUTING 0 0 7 CJ CO MB I NE ROUTED HYD. RT2, OFST2, AND CO~~INED HYD C2 3 WPCl BASIN CO!-iTAINING NORTHEAST PORTION OF MiUN CllHPUS l\J'ID LOT 5 0 0 .3 1 1 0 l 0 88.7 0 .953 OFSTJ OFF -CAMPUS BASIN AT NORTHEASTERN CORNER OF WOLF PEN C;l.EEK Wl\TERSHED 0 .102 0 1 87.8 0.6 18 C4 COMBINE OF ST3 , WPCl , AND CO MBINED HYD. CJ 3 R'l'3 ROUTE COMB I NED HYO . C4 THROUGH BASIN WPC3 4 li'LO W -1 0 .035 0 .06 0.035 2200 .016 0 375 6:.10 640 6~0 675 305 300 296 295 295 299 USING NORM.'.L DEPTH 7S5 lCOC 300 3oc; WPC3 DO WN STREAM HAS IN OUTFALL ING AT GEORGE BUSH DRI 'v'P. Ct.TI..\!eRT 0.152 0 1 0 Bi . 0 0 .5 8 6 OFST4 OFF-CAMPUS BASIN AT CORNER OF TEXAS !\.ND GEORGE BU S!! 0.086 0 1 0 85.3 G. 725 STORAGE PAGE 2 LINE 68 69 70 7~ i2 HEC -1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK KM KO HC zz CS COMBINE ALL HYDROGRAPHS **END COMPUTATIONS OF WOLF PEN CREEK TRIBUTARY "C" 1 21 3 PAGE 3 ::'LOOD HYDROGRAPl'I PACKAGE (HEC-1) MAY 1991 VERSION 4. 0 , lE * l<UN D1'TE 02/25/97 T IME 13 :i0:21 U.S. ARMY CORPS OF ENG I NF.ERS l'IYDROLOGIC ENGINEErrING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551 -1748 **•********w•••~~••~•••~************•***• ······························-···~···· 9 IO IT l'IYDROLOGIC ANALYS lS OF WOLF PEN CREEK TRIBUTARY "C", COLLt::m: STA'rlON, TX BASIN UPSTREAM OF GEORGE BUS H DRIVE -19 87 WATERSHED CONDITION S TEXAS A&M UN I VERSITY MAIN CAMPUS STORM WATER MANAGEMENT P!,1\N TURN ER COLLIE & BPJ>.DEN JOB NO . 31-00380 -006, BJT 1 987 CONDITIONS -F ILENAM E c WPC 8 7.DAT, F EB RUAR Y 1997 100 YEAR, 24 HOUR STORM , l'IYl?OTH ET ICAL DISTR I BUTION OUTPUT CONTROL VAR!.>.BLES IPRNT 5 PPINT CONTROL I PLOT QSC!\L HYDROGR.~PH TIME DATA 0 !?LOT CONTROL 0 . HYDROGRAPH PLOT SCALE NMIN 5 MINUTE S IN COMPUTATION INTERVAL I DATE I'l:'IME NQ ND Dl\TF: NDT!ME I CENT ~JAN97 STARTI NG DATE: 0000 STARTING TIMI:: 260 NUMBER OF HYDROGRAPH ORDINATES 1JAN97 ENDING DATE 2355 END I NC T IME 19 CENTUR~ MA. .. ~K COMPUTAT ION I NTERVAL TOTAL TIME !lASE o.oe HOURS 23 . 92 l-lOURS ENGLISH UNITS DRl\INAGE MF.A PRECIPITATION DE PTH LENGTH , ELEVATION FLOW S1'C•RAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MJT..ES INCHES FE ET CUBI C FEET i'ER SECOND ACRE -FEET AC!lES DEG REE S F AHRENHEIT HYDROGRAPH MULT I PL IED HYDROGRAPH MULTIPLIED HYDROGRAPH MULTIPLIED EYDROGRAPH MULTIPLIED P.YDROGRAPH MULTIPLIED HYDROGRAPH MULTIPLIED HYDROGP-APH MULTIPLIED HY DROGRAPH MULTIPLIED HYDROGRAPH MULTIPLIED BY l. 00 BY l. 00 UY l. co EY 1.00 BY 1. 00 BY l. 00 BY l. 00 BY 1. oo. BY 1. 00 ·~· ~·· ...... *** *** ............... *** ••••••••••••••••••••• *** i+• *** ••••••••••••.••• ***·*** ••• **" *** 6E KK 70 KO 71 HC cs COMBINE ALL HYDROGRAPHS ~··*••••******" OUTPUT CONTROL VARIABLES I?RNT l I PLOT 0 QSCAL 0 . IPNCH 0 PRiNT CO!JTRO I. PLO'!? CONTROL HYDROO!<APH PLOT SCALE PUNCH COMP UT ED HYDROGRAPH IOUT ISAVl ISAV2 TIMI NT 21 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 288 l.J>.ST ORDINATE PUNCHED OR SAVED 0. 093 TIME JNTERVAL IN HOURS HYDROGRAPH COMBINATION ICOMP 3 NUMBER OF HYDROGRA?HS TO COMBINE *********•·······~··················~···*·······························~·············~···············~···············~············ HYDROGRAPH AT STATION CS SUM OF 3 HYDROGRJ\PHS ·······~··················~·······················~··································~···~~···~····························~·~···~· D.l\ MON HRMN JAN 0000 JAN 0005 JAN 0010 JAN 0015 JAN 0020 Jl>J• 0025 JAN 0030 JAN 0035 JAN 0 0 40 l JAN 0045 JAN 0050 .JAN 0055 JAN 0100 JAN 0105 l JAN OllO JAN 0115 1 JAN 0120 . ' JAN 0125 JAN 0130 JAN 0135 J,\N 0140 JIU'l 0145 1 JAN 0150 1 JAN 0155 1 JAN 0200 JAN 0205 1 JAN 0210 JAN 0215 1 JAN 0220 JAN 0225 J .l\N 0230 ORD 2 3 4 5 6 7 A 9 10 11 12 13 H 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 FLOW o. 0. 0 . 0. 0. 0. 0. 0. o . 0. 0 . 0. 0. o. 0. 0. o. o . 0 . 0. 0. 0 . 0 . ··o. 0. o. o. o. o. o. 0. DA MON HRi4N 1 JAN 01>00 1 JAN 0605 l JAN 0610 1 JAN 0615 1 JAN 06?.0 JAN 0625 1 JAN 0630 l JAN 0 53S JAN 05 •\0 1 .JAN 0645 1 JAN 0 650 JAN 0655 JAN 0700 JAN 0705 1 JAN 0710 l JAN O?iS l JAN 0'120 J JAN 072S 1 JAN 0'130 1 JAN 0735 1 JAN 0740 1 JAN 0745 1 JAN 0750 1 JAN 0755 l JAN 0800 1 JAN 060 5 1 JAN 0810 1 JAN 0815 l JAN oa20 1 JAN 0825 JAN 0830 ORD 73 74 75 7 6 77 78 79 80 81 82 83 84 8S 86 87 88 89 90 91 92 93 94 95 96 97 9S 99 10.0 101 l 02 103 FLOW 19. 20 . 21. 22. 24. 25 27. 29. 31. 34 . 36. 39. 42. 4S . 48. 51. 53. 56. 59 . 61. 64. 66. 69. 72. 74. 77. BO . 63. 86. 89. 91 . DA MON HRMN ORP JAN 1200 145 Jl>.N 1205 146 l JAN 1210 147 1 ,JAN 1215 148 1 JAN 1220 l.49 1 JAN 1225 lS O l JAN 1230 151 1 JAN 1235 152 1 JAN 1240 153 1 JAN 1245 154 1 JAN 1250 155 1 JAN 1255 156 1 JAN 1300 1S7 1 JAN BO S 158 1 JAN 1310 159 1 JAN 1315 160 1 JAN 1320 161 1 JAN 1325 162 1 JAN 1330 lc3 JAN 1335 164 l JAN 1340 165 1 JAN 134S 166 1 JAN 1350 1G7 JAN 1355 168 JAN 1400 169 1 JAN 140S 170 JAN 1410 171 JAN 1415 172 Jl'.N 1420 J.73 JAN 1425 174 l. JAN H30 175 FLOW 1>71. ~11. 977. 1175. 139e. 1592. 1738. 1853. 1933. 1975. 1969. 1910. . 1ao.5. 1'100. 1578. 14(.0. 1346. 1236. 1132 . 1037. 955. 872. 7YS. 7?7. 66C. 618. 575. 538. 509. 48 2 . 456. DA MON HRMN JAN 1600 JAN 1805 1 JAN 1810 1 JAN 181S JAN 11;20 1 JAN 1825 1 JAN 1830 l JAN 1835 1 JAN 1840 1 JAN 1845 1 JAN 1850 1 JAN 1855 JAN 1900 JAN 1905 1. JAN 1910 1 JAN 1915 1 JAN 1920 l JAN 1925 l J!lli 1930 1 JAN 1935 1 JAN 1940 1 JAN 1945 JJ>..N 1950 l JAN 1955 1 JAN 2000 1 JAN 200S 1 JA.'l :!010 1 JAN 2015 1 JAN 2020 1 JAN 20<5 l. JAN 2030 ORD 217 218 219 220 2 21 222 223 224 ~25 2 26 227 228 229 230 231 232 233 234 23S 236 237 238 239 240 2H 242 243 244 245 246 247 FLOW 1 54. 151. 149. 147. 144 140. 136. 132. 128. 123. 118. l.13. 109. lOS. 101. 98. 9S. 93 . 91. 89. 87 . as. 54 . 82. Sl. 80 . 7 9. 78. 77. 76 . 75. .JAN 0235 J AN 0240 JAN 0245 JAN 0250 JAN 0255 JAN 0300 JAN 030S JAN 0310 JAN 031S l JAN 0320 JAN 032S 1 JAN 0330 JAN 0335 l J/>.N 0340 ' J _l\N 0345 l JAN 03SO 1 JAN 0355 l JAN 0400 1 ,IAN 04 05 JAN 0410 JAN 0415 1 ~iA.N 0420 l J/l..N 0425 L ,TAN 0430 JAN 0435 -JAN 0440 1 JAN 044S 1 JAN 0450 JAN 0455 l J.'\N 0500 JAN 0505 JAN 0510 JAN 05 15 JAN 0520 ~ JAN 052~ ). JA..'l 053 0 -.;1\N 053 5 ~ JAN 0540 • JAN 054S JAN 0550 JA..N 0555 P E!'~ FLOW 3 2 33 34 35 36 37 38 3 9 40 41 42 43 44 45 46 47 49 49 s o Sl S2 S3 54 55 55 57 58 59 60 6 1 6 2 63 61 65 66 67 68 6 9 7 0 '71 72 TIME :CFS) 1 9 7S. (HR) . 12 . 75 o . 0. 0. o. o. o. 0 . 0 o. 1. 1. 1. 1. 1. l. 2. 2 . 2. 3 . 3 . 3. 4 . 4 . 5. 6 . 6. 7. 3. e. 9. 1 0. 10 . il. 12. 13. 13 . 14 . 15. 16. 17. (CFS) (INCHES) {AC-FT) * i .JAN on35 104 l ,JAN 0840 105 1 JAfJ 0845 10 6 1 JAN oe.so 107 l JA.l'l 0855 108 1 JAN 0 900 109 1 JAN 0905 110 1 J/>.N 0910 111 1 JAN 0915 112 1 JAN 0920 11 3 l .J/.\N 0925 114 JAN 0930 115 1 JAN 0935 116 1 JAN 09-<0 117 1 JAN 094 5 118 1 JAN 0950 119 1 ·JAN 0955 120 1 JAN 1000 121 l JJ>.N 1005 122 1 J ... N 1010 123 JAN 1015 124 JAN 1020 125 l JJUI 1025 12 6 1. JAN 103 0 127 1 JAN 10 35 128 l JAN 1 040 129 i JAN 1045 130 1 JAN 1 050 13 1 1 JAN 1055 132 l J J>..N 1100 133 1 JAN 1105 1.34 ,.JAJ~ J.l l C :i 15 JA.~ lllS 136 JAN j 120 137 JAN l.i25 138 1 Jl..\N :i..130 139 JAN 1135 140 JAN 1140 111 1 Jl\N 1145 142 l JAN 1150 143 l J/.'.N 1 155 144: 9 4. 9 7 . J.00 . 103. 106. 109. 112 . 116. 119 . 123. 12 7 . Dl. 13 S . 139. 144. 148 . lC.3. 158 . 163. 169 . 174. 180. 186. 192. 199. 20s. 212 . 216 . 22L 230. 237. 247. 260. ;:76. :!9 7 . 323 . 3S4. 39:.l. 437. 494. 567. MAXIMUM AVERAGE FLOW 6-HR 6 7 5 . 7.125 334. 24 -Hk 72-HR 219. 218. 9 .170 43•}. 9 .170 430. CU-!1UT..AT IV~ 1\.REJ', = 0 .33 SQ MI * 1 JAN 1435 176 1 JAN lHO 177 1 JJ>..N 1445 178 1 JAN 1450 179 1 J A.'I 1455 180 1 J.n.N 1500 181 Jlill 1505 182 1 JAN 1510 183 1 JAN lSlS ! 84 1 ,JAN 1S20 185 1 JAN l S?,S 186 1 JA.N 1S30 18°1 JAN 1S35 i88 1 JAN 1S40 lil'.l JAN l.545 1 90 1 JA,'i 1550 191 1 J AN lSSS 192 1 J AN 160 0 193 1 JAN 1605 194 l JA.\l 1 610 1 95 1 JAN 1 615 1% 1 JAN 1620 197 1 JAN 1625 198 1 J.1'.N 1 630 199 1 JAN 163S 200 1 J.'ili 16~0 201 1 JAN 1645 202 JAN 1650 203 1 Ji'.N 16S5 204 l JAN 1700 205 1 ,!.1>.N l 7CiS 206 1 J J\_1'j 1710 207 l J ,'>,N 1715 208 1 Jiu'\; 1/20 209 1 JAN 1725 21 0 1 JA,'I 1730 21! 1 Jl~.N 1735 212 l JAN 1740 2 l3 JAN 1 7 4S 211 1 J .?\.N 1750 21.S 1 JAN 1 7S 5 21G 23. 92 -HR 21~. 9 .170 430 : 432. 410. 391. 373. 357. J42 . 32S. ~17. 30S. 295. 205. 275. 267. 259. 25 1. 244. :ne. ?3 2 . 228. 222. 217. 21 2. 2oa. 204. 1!19. 19G . 192. l~S . 185 . J ;;2 . 1 79. 176. 173. 1 7 1. 168. 1G 6 . 164. 1E2 . 159 . 157. 15 5. * 1 J!W 20 35 248 JAN 2040 249 1 JAN 204.5 2SO 1 JAN 2050 251 _ JAN 205 5 252 " JA."< :.!100 2 53 1 JAN 210S 2S 4 1 ,JAN 2110 255 1 JA."1 211S 256 1 JAN 2 120 2S 7 JAN 212S 258 l JAN 2130 i 59 1 JAJ< 2135 260 1 JAN 2140 261 l JAN 214S 262 1 JAN 2150 263 l JAN 215S 264 JAN 2200 26S 1 JJ>..N 220 5 266 l JAN 2210 267 l JAN 221S 263 1 JAN 22 20 269 1 JAN 222S 2 70 1 JAN 2230 271 1 JA..'1 2235 272 1 JAN 2 240 273 1 JAN 2245 2 74 JAM 2250 27 5 1 JAN 22 55 275 JAN 2300 277 1 .Jl.N 2305 '.l75 1 JAN 2310 279 1 JAN 2 3 15 290 i JAN 2320 2 81 J JAN 2 325 282 l JAN 2330 ;>33 1 .TAN 2 33 5 284 1 JAN 2340 2as 1 J .l\N 234S 2il6 1 JAN 2350 2~7 1 JAN 2355 288 75. 74 . 73 . 72. 72. 71. ·10. 70 . 69. 68 . 68. 67. 67. 66 . 6S. 65. 64 . 64. 6J. 63. 62 . 62. 62. 61. 61. 60. 60 59. 5 9 . 59. SC . so. S7 . 5 7. 57 . ~5 - 56. :56 . 55. SS. !.JS. RUNOFF S\Jl'l.MARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS , AREA IN SQUARE MILES PE AK 'l.'IMi' OF AVERAGE FLOW FO R MAXIMUM PE RIOD BA SIN MAXIMUM T I ME OF OPERATION STATION FLOW PEAK 6-HOUR 24 -HOUR 72-HOUR AREA ST1'.GE MJl.X STAGE HYDROGRAPH AT WPC4 149. 12 . 3) 35. 11. ll. 0.05 HYDROGRA PH AT OFSTS 5 0 . 12..08 9. 3 . 3 . 0.01 2 COMB INED AT Cl l.B3 . 12.25 44 . 14. 11 . 0 .06 ROUTED TO R~' ·~ 181. 12.42 44 . 14 . 14 . 0 .0 6 315.60 12 .42 HYDROGRAP H AT WPC 2 225. 1 2.67 73 . 2 3. 2" ~-0 .10 2 COMBINED AT C2 381. 1 2.50 117 . 3B. 38. 0 .16 HYl.JROGHAPH A T OFST2 56 . 12.25 1 3. 4 . 4 . 0.07. HYDROGRAPH AT OFSTl 220 . :!.2 .17 4 5. 15. JS. 0.06 ROUTED TO RT2 220. 12 .75 45 . 15. 15. 0 .06 3 COMBINED AT C3 595 . 12.75 175 . 57 . 57. 0 .23 HYDROGRAP H l>.T WPCl 640. 12 .92 244. BO. Bll . 0. 3:1 HY[)ROGRAPH AT OFST3 2 63 . 12.58 ao . 26. 26. 0 .10 3 COMBINED AT C4 1157. 1 £.75 499. 162. 16?.. 0.64 RO UTE D TO RT3 1 451. 12 .R3 499. i62. 16 2 . 0.64 298 .16 12.B3 HYDRCGR.7\PH AT WPC3 37C. 12.58 110. 3S. 35. 0 .15 HYDROGRAPH AT OFST4 199 . 12 .75 66 . 2 1. :.n. 0.09 ) C:OMBINED A'l' c s 1975. 12 .7 5 '57~. 21.8. 218. 0.88 ··-NORMAL END OF HEC -1 ... FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1991 VERSION 4. 0. lE RUN D.'<T~; 02/2 5 /97 TIME 13 : 11: 32 x x xxxxxxx x x x x ){ x ~xxxx xx xx xx x x x -~ x x x x xxxxxxx xxxxx x x x x xxxxx x x x xxxxx x xx x ,_ x x xxx • U.S. ARMY CORPS OF' ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAV S, C."'LIFORNIA ?5616 (916i 551 -1748 THIS PROGRAM REPLACES ALL PREVlOUS VERSIONS Or HE C -1 KNOWN AS HECl (JA.N 73). EECl GS , HEClDB , P-"UJ HEClKW. T!fE DEFINITIONS OF VARIABLES -RTI!'.P-AN D -RTIOR-HAVE CHANGED FR0~4 THOSE USED \·!ITH THE 1973 -STYLE INPUT STRUC"TURE - THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHP-'<GED WITH REVISIONS DATED 2ti SEP Si . THIS IS THE FORTR1\N77 VER ::: ION NEl'I OPTIONS: DAM9REAK OllTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS: WRIT£ STAGE FREQUENCY, DSS:REi>.D TIME SERIES l\T DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AM?T lN ~'ILTRATION :GNEMATIC WAVE: NEW FINITE DIFFERENCE IUJJORITHM * LINE 1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 16 17 18 19 20 2 1 22 23 24 25 26 28 29 30 31 32 33 34 35 3 6 HEC -1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 ID ID ID ID ID ID IT IN IO KK KM BA PH LS UD KK Bi1. LS UD KK HC KK RS RC RX RY KK BA LS UD Kl< HC KK BA LS UD HYDROLOGIC AN~LYSil:: OF WOLF PEN CREEK TRIBUTARY "C", COLLEGE STATION, TX BASIN UPSTREAM OF GEORGE BUSH DRI VE -1996 WATERSHED CONDITIONS TEXAS A&M UNIVERSITY MAIN CAMPUS STORM WATER M.Al~AGEMENT PLAN TURNER COLLIE & BRADEN .JOB NO. 31 -00380-006, BJT PRESENT CONDITION ANALYSIS -FILENAME • WPC96 .DAT, FEBRUARY 1997 100 YEAR, 24 HOUR STORM, HYPOTHETICAL DISTRIBUTION 5 01JAN97 0000 288 15 01JAN97 0000 5 0 0 WPC4 BASIN ABOVE UNIVERSITY CONTAINING MARRIED STUDENT HOUSING BEGIN HYDROLOGIC ANALYSIS OF WOLF PEN CREEK TRIBUTARY "C" 0.046 0 1 l 0 0 .365 0 85.6 .67 1.95 4.26 5.7 6.3 OFST5 OFF CAMPUS AREA EAST OF MARRIED STUDENT nOUSlNG 0.011 c l 0 93.8 0.158 Cl COMBINB WPC4 AND OFST5 2 RTl RC UTE COMB HYDRO Cl THROUGH BASIN G FLOW -1 C.030 0.030 0.030 2750. 0.011 o.oo 905 1165 1135 11 9 0 3 2 2 315 316 314 314 WPC2 POLO FIE!..D O.J.00 0 1 0 81.6 o . 713 C2 COMB ROUTED HYDRO RTl AND "IPC2 2 WPC.:2 USING NORMAL 1215 1420 316 320 OFST2 OFF-CA."'IPUS RAS IN JUST E .~ST OF POLO FIELDS 0.016 0 1 0 91. 6 0 .325 7.8 DEPTH 1865 J:ll 9.6 s-ror..AGE 11. 0 PAGB l LI NE 37 38 39 40 41 4 2 43 44 45 46 47 48 49 5 0 5 1 5 2 53 55 56 57 58 59 60 61 62 63 64 65 66 67 HEC-1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4 ....... S ....... 6 ....... ? ....... 6 ....... 9 ...... tO KK BA LS UD KK RT KK HC l'JC BA UD KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD KK BA LS ;.JD OFSTl OFF-CAMPUS BAS IN ACROSS UNIVERSITY FROM THE NOR TH SIDE PARKING GARAGE 0.056 0 1 0 0 .24 0 9 1. 5 RT2 ROU"rE OFSTl THROUGH DASIN WPCl USING LAG ROUTING 0 0 C3 COMBI NE ROUTFD HYD. RT2 : OFST2, AND COMBINE D HYD. C2 3 WPCl BASIN CCNTAINHIG NORTH EAST PORTION OF MAIN CJ\MPUS .?\ND LOT 50 0 .311 c 1 0 SS.7 0.954 OFST3 OFF-CAMPUS Bl>,SIN AT NORTHE!>.STERN CORNER OF WOLF PEN c~.EE:< w~.TERSHED 0.102 0 1 O 87.S 0.6 18 C~ COMBINE OFSTJ , l~PCl, AND COMBINED HYD . C3 RT3 ROUT E COMBINED HYO . C4 T HROUGH BASIN WPC:l USING NCR.t-4-~ DEPTH STORAGE 4 FLOW -1 0.035 0 .06 0.035 220 0 .016 0 3 7 5 6 20 640 650 675 7 55 100 0 305 30!) 29 6 29 5 295 299 300 305 WPCJ DOWNST RP.AJ'. BAS I N OUT FALL ING AT GEORGE BUS !l DRIVE CULVE RT 0 .152 0 0 8 1. 0 o . 566 OFST4 OFF-CAMPUS BASIN AT CORNER OF TEXAS AND GEORGE BUS;-! 0 .086 0 l 0 SS.3 0. 725 Pl'.GE 2 LIN S 68 69 71) 7l n HEC-1 INPUT ID ....... l ....... 2 ....... 3 ....... 1 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 Kl< KM KO HC zz CS COMBINE ALL EYDROGRAPHS **END COMPUTATIONS OF WOLF PEN CREEK TRIBUT.'\RY "C " 1 21 3 !?AG£ 3 fl.DOD HYDROGRJ\PH PACl{AGE i HEC-1 ) MAY 1991 VE RSION 4.0.lE llt..'N DATE 02 /25i97 T IME l3 : 11: 32 *·~··•****************•······~··········· U .S . ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STRE ET DAV IS , CALIFORNIA 95616 (916j 551-1748 HYDROLOGIC A..~ALYSIS OF WOLF PEN CREEK TRIBUTA..~Y "C ", COLLEGE STATION, TX BASIN UPSTREAM OF GEO .GE BUSH lJRIVE -199 6 WATERSHED CONDI IONS 9 IO IT TEXAS A&.M UNIVERSITY MAIN CAMPUS STORM WATER MANAGEMENT PLAN TURNER COLLIE & BRP.D EN JOB NO. 31 -00380-0 06, BJT PRESENT CONDITION l'.NALYSIS -FILENAME R WPC9 6 .DAT, FEBRUARY Jqq7 100 YEAR, 24 HOUR STORM, HYPOTHETICAL DISTRI"B U't'ION OUTPUT CONTROL VARI!'.BLES I PRNT 5 PR INT CONTROL IPLO'!' QSCAT, 0 P!..OT CO ;..""TROL 0 . HYDROGRAPH PLOT SCALE HYDROGRAPH TIME DATA NMIN 5 IDA TE I'!'IME 1JAN!?7 0000 MINUTES IN CO='!PUT.h.TION INTERVAL STA...~TJNG DATE NQ NDDAT E NDT IME l:c €NT 2 86 1JAN97 ~355 19 STA "RTING T I ME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING T IM!:: C!.::N'lt;~Y MARK COMPUT!\TION INTERVAL TOTAL TI ME BASE 0. OS HOUllS 23. 92 liOURS El.;GLI SH UNITS DRAINAGE AR.EP. PRECI PIT!'.TIO!~ DEPTH LENGTH , ELE VATION FI .OW STORAGE VO LUME SURFA CE JI.REA TEMPERATURE: SQUARE MILSS INCHE S FEE T CUBIC FI::.ST PER SECOND ACRE -FEET AC RBS DEGREES FAHRENHEIT H'.Wil OGRAPH MULTIPLIED HYDROGRAPH MULTIPLIED HYDROGRAPH MULTIPLIED HYDROGRAPH MULTIPLIED HYDROGRAPH MULTIPLIED HYDROORAPH MULTIPL I ED HYDROORAPH MULTIPLIED HYD!i.OGRAP!l MULTIPLIED HYD ROGRAPH MULTIPLED " BY 1 .00 BY 1. 00 BY .:..uo SY 1 .\10 BY 1. 00 BY l. 00 BY l. 00 BY 1. 00 . BY 1. 00 *** •••••••••••••••••• •** *** ~·· *** *** ··~ •••••• *** *** *** *** *** ••~ *** ••w *** *** *** *** *** ~•• *** **~ *** ***•*******w** 6S Kl< cs COMBINE ALL FYDROGRAPHS ••...•..••...• 70 KO "11 HC OUTPUT CONTROL VARIABI,ES IPRNT 1 I PLOT 0 QSCAL 0. IPNCH 0 IOUT ISAVl !SAV2 TI MINT 21 l 288 0 .083 HYDROGRAPH COMBINATION PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS ICOMP 3 NUMBER OF HYDROGRAPHS TO COMBINE HYDROGRP.PH AT STATION SUM OF 3 HYDROGRAPHS C5 DI\ MON HRMN ORD FLOW DA MO"I i-lRl't"I ORD FLOW DA MON HRMN ORO JAN 0000 1 JhN 0005 l ,JAN 0010 1 JAN 0015 1 JAN 0020 JAN 002S JAN 0030 JA.N 003S JAN 0040 J!>N 004S JAN COSO JAN OOS5 JAN 0100 JAN 0105 JAN OllO JAN Oli5 JAN 0120 JJ>.N 0125 JAN 0130 JAN 013!; 1 JAN 0140 JAN 014S 1 JAN OlSO JAN 015S JAN 0200 JAN 020S JAN 0210 l JAN 021S JAN 0220 JAN 022S JAN 0230 l ~ 4 5 6 7 8 9 1 0 ll 12 13 14 15 16 · 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 o. o . o. 0 . o. 0. 0 . o . o . o. o. 0 . o. 0 . 0. o . 0. 0. 0. o. o. 0 . 0. o . 0. o. o . 0. u. o. 0 . 1 JAN 0600 l JAN 0605 l JAN 0610 1 JAN 061'.i 1 JAN 0620 l JAN 0625 l JAN 0630 1 JAN 063 5 JAN 0640 l JAN 054S l JAN 0650 l JAN 06S5 l JAN 0700 1 JAN C70S l JAN 0710 1 JAN 0715 JAN 0720 JAN 0725 JAN 0730 1 JAN C73S 1 JAN 0740 1 JAN 0 '145 l JAN 0750 1 JAN 0755 JAN 0800 l JAN 0805 l J 'AN 0810 l JAN 0815 l JAN 0820 l JAN 082S 1 JAN 0830 73 74 7S 76 77 76 79 80 Bl 82 83 84 BS 86 87 88 89 90 91 92 93 94 9S 96 97 98 99 100 . 101 102 103 19. 20. 21. 22. 24. 25. 27. 29. 31. 34. 36. 39. 42. 4S. 48. Sl. 53. S6. 59. 61. 64 . 66. 69 . 72. 74. '??. 80. 83 . 06. 89. 91. l JJ>..N 1200 14S l JAN 1205 146 1 J.O~'J 121 0 14 7 l JAN 121S 148 l JAN 1220 149 l JAN 1225 15 0 l JAN 1230 lSl JAN 1235 152 l JAN 1240 153 l JAN 1245 J.54 l JAN 1250 lSS JAN 12 SS 156 JAN 1300 157 JA.."I 130S lSB JAN 1310 159 JAN 1315 160 JAN 1320 161 JAN 1325 162 l JAN 1330 16} l JAN 1335 164 JAN 1340 16~ JAN 134 5 166 JAN 1350 167 JAN 13SS 168 l JAN 1400 169 l JAN 1405 170 JAN 1410 l'/J l JAN 141S 172 l Ji\}! 1420 173 l JAN 142S 174 l JAN 1430 175 FLCW 671 . 811 . 9'/7. ) l 7c;. 1398. 1591. 1738. 1853. 1932. 19'/1. l %8. 1 909 . 1214. 1G9~. 1578. 141)0 . i316. U37. 11}2 . J.037 . ::lS6. 3'12. 795. 727. G69. 618. 575. 538 510 . 463. ~56 . DA MO HRMN ORD JA.N 1600 1 JA1J 180 5 JAN 1810 l JAN 181S JJ>.N 1820 l JAN 1825 l JA.'J 1830 l JllN 183 5 l JAN 1840 l JJ>..N 184 5 l JAN lBSO l JAN 105S l JAN 1900 JAN 1905 JAN 1910 l JAN 191S 1 JAN 1920 1 JAN 1925 l JAN 1930 l JAN 1935 l JAN 1940 l JAN 1945 l JAN 1950 l JAN 195S 1 JAN 2000 JAN 200S l JAN 2010 1 JAN 2015 -JAN 2020 JAN 202S JAN 2030 217 218 219 220 22 1 222 223 224 225 226 227 228 229 230 231 232 233 234 23S 236 237 238 239 240 241 2~2 243 2'\4 24S 246 247 FLOW 154 . 1S2 J.49 . 147. 14•!. 140 . 136. 132. 128. 123. 118. 113 . 10 9 . lOS. 101. 98 . 9S. 93 . 91. 89 . 87 . as. 84. 82. 81. eo. 79. ?8. 77. 76. 7S. .J.o.N 0235 JAN n4.0 .JAN 0245 J.1'\N 0250 JAN 0255 JAN 0300 l JAN 0Ju5 JAN 0310 ,TJ>,N 0315 JAN 0320 i JAN 0325 c1AN 0330 ,]AN 03 35 JAN CHO JAN 0345 JJ>.N 0350 JAN 0355 JAN 0400 JAN 0405 JAN 0410 1 JAN 0415 1 JAN 0420 l JJ>.N 0425 JAN 0430 -Jf..N 0435 A JAN 0440 l JAN 0 445 l JAN 0450 JJ>.N 0455 JAN 0500 JA.."i 05C5 JAN 0510 JAr.: 0515 JAN C520 l JJ\N C525 JAN 0530 JP..N C~35 J ji...J.'-: 0540 JAN 0545 1 JJ>.N 0550 JAN 0555 ?C:l>.K FLOW {C:F S) 1974. 32 33 34 35 36 37 38 3 9 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 59 59 60 El 62 63 64 65 66 67 68 69 70 71 72 'l'IME (HR) 12.7 5 0 . o . o. o . o. o . 0. 0. 0. l. l. l. l. 1. 1. 2. 2. 3. 3. 3 . 4. 4. 5. s. 6. 6. 7. 8. 8. 9. 10 . iO. 11 . 12. 1 3 . 13 . 14. 15. H 17 . (CFS) !INCHES) (AC-F'T) l Jl\.N 0035 104 l JAN 0840 105 l JJ>.N 0845 1 06 1 JA..'I 0850 107 l JAN 065!:> 1 08 l JAN 0900 109 1 JAl< 0905 1 10 l JAN 0910 111 l JAN ons 112 1 JAN ono 113 1 JM 0!,125 114 JA.~ 0930 115 1 JA..'< 0935 116 l JA..'I 0940 117 l JAl< 09~'.:> 118 l JAN 0950 119 1 JM 0955 12 0 1 JAN 1000 121 l JAN iov; i22 l JAN 10:0 123 l JJ>.N 1 015 124 l JAN 1020 125 l JAN l•J25 126 JA....'l l(lj(j 1 27 l JM 1035 128 l JAN 1040 129 JAi•J 1015 130 1 JAN 1050 131 1 J~"'f !U ~S 132 1 JA.i.~ 1100 1 33 l Jfu~ !105 134 JAN 1110 135 l J!\N 1115 136 1 JAN 11 20 137 1 JAN 11~5 138 1 Jl>.N 1130 1J9 l. J:>_r.j 1135 140 1 ,JM 1!40 141 1 JAN 1145 142 l JAN 1150 143 JJ~N 115 5 144 94. 97. 100 . 103 . 106. 109. 112 . 116. 119. 123 . 127. 131 . 13 5 . 139. 144. 148. 1 53 . 1 58 . 163. 169. 1 74 . 180. 186. 192 . 199. 205. 212. 218. '.224. 23C. 237. 247 . 260. 276. 297. 323. 354. 392. 07. -:94. 567. MJtXI!-11.lM AVERAGE FLOW 6-HR 675. 7 . 12 "7 334. 24-HR 218 . 9.1?1 <!30. 72-HR 218 . 9.1 71 430. CUMULATIVE AR.EA r o.aa so MI * l JAN 1435 176 1 JAN 1440 177 l Jlu'< 1445 178 1 JM 1450 179 J.•.N 1455 180 l JAN 1500 181 l JAN 1505 182 l JM 1510 183 l J.1'\N 1515 184 l JJ\N 1520 185 l JAN 1525 186 1 JA.'\I 1530 18 7 1 JAN 1535 138 l JAN 1540 189 l JAN 1545 190 1 J.O..>l 155 0 191 l JA..'\I 1555 192 l JAN 1600 193 1 ·JAN 1605 194 l JAN 1610 195 l JAN 1615 196 l JAN 1620 197 l JAN 1625 196 1 JAN 1630 199 1 JAN 1635 200 l JAN 1640 201 1 JAfl 1645 20 2 1 J AN 1650 203 l JAN 1655 204 1 JAN 1700 20 5 1 JAN 1705 206 JJ>.N J 710 207 JAN 1715 203 .;AN 1720 209 l JAN 1725 210 1 JAN 1730 211 1 JAN 1 735 212 l ,JAN 1740 213 1 JAN 1'745 214 JAN 1750 2 1S JAN 1"155 216 23. 92-HR 2 1R, 9 .171 430. 432. 410. 391. 373. 357. 342. 329 . 317. 305. 29S. 285 . 27 G. 267 . 25~. 2Sl. 24 ·1. 2 38. 232. 228. 222. 21 7. 212. 208. 204. 200. 196. 192. 18:3. 185. 162. 179. 176. 173. 171. 166 . 166. 164. 162 . 159. 1 5 ~,.. 155. l JAN 2035 248 l JAi~ 2040 24~ l J.ll._>l 2045 2 50 l JAN 2050 2 51 l ,Jru< 2055 252 1 JAN 2100 253 l J.1'\N 2105 25~ l JAN 2110 255 l JAN 2115 256 1 JAN 2120 257 1 JM 2125 258 1 JAN 2130 259 l JAN 21 3 5 260 1 JAN 2140 261 l JA....'\I 2145 262 1 JAN 2150 263 1 JM 2155 264 1 JJ>.N 2200 265 l .JAN 2205 266 l JAN 22 10 26 7 l J.o.N 2215 268 l JAN 2220 269 l JAN 222 5 270 l JAN 2230 271 l JAN 2235 272 1 JM 2240 2 7 3 1 JAN 2245 274 l JJ>.N 2250 275 JAN 2 25 5 :!76 JAN :!300 277 l JAN 2<0 5 278 1 JAN 2Jl0 2?9 JAN 2315 280 1 JAN 23 20 2~1 1 J.l\N 2325 282 l JA'I 2330 283 l JJ\N 2335 2;.4 l J.l\N 2340 285 l JM 2:?.45 286 1 ,J,\N 2350 287 1 JA..'I 2355 288 75 . 74. 73. 72 . 72 . 71. 70 . 70 . 69. 68 . 68. 67. 67. 66. 65. 65. 64. 64. 63 . 63. 63. 62. 62. 61. 61. 60. 60. 59. 59. 59. 59. 58. ~7. 57. 57. 56. 56 . 56. 55. SS. 55. RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND T IME I N HOURS, AREA IN SQUARB MILES PSAI< TIME OF AVERAGE FLOW FOR MAXIMUi~ PERIOD BASIN MAXIMUM TIME OF OPERATION STA'!'ION FLO W ?EAK 6-HOUR 24-HOUR 72-HOUR AREA STAGE MAX STAGE IIYDROGRAPH AT WPC4 14~. 12.33 35 . l l . ll . 0 .05 HYDROGRAPH AT Oi'ST5 so. 12.08 9. 3. 3. 0.01 2 COMB INED 11.T Cl 184 . 12.25 44. 14 . 14. 0.06 ROUTED TO !<Tl 182. 1 ~.42 4-t. 14 . H . 0.05 315. 60 12 .42 HYDROGRAPH AT WPC2 225. i2. 67 73. 23. 23. 0.10 2 COMBINED AT C2 381. 12.50 117 . 38. 38. 0.16 HYDROGRAPH AT OFST2 56. 12.2 5 13. 4. 4. 0.02 HYD ROGRAPH AT OFSTl 220 . 12.17 45. 15 . 15. 0.06 ROUTED TO RT2 220 . 1 2 . 75 45 . lS. 15. 0.06 3 COMBINED .'l.T C3 595. 12.75 175. 57. 57. o .:;3 HYVROGPJ,PH AT WPCl 639. 12. 92 244. so. eo. 0 .31 HYDROGRAPH A'l" OFST3 263. 12.SB 80 . 26 . 26. 0 .10 J CO MBINED AT C4 1456. 12.75 499. 162. 162. 0.&4 ROUTED TO RT3 1450. 17.. 33 .;99. 162. 162. 0 .64 298 .lG 12 .93 HYDROGRAPH AT wPC3 3 76 . 12.56 110 . 3~ )5. 0 .1 5 HYDll.OGRAPH .'\T OFST4 199. l~. '/5 66 . 21. 21. 0.09 3 CO MBINED AT cs 197 4. 12.75 675 . 218. 21a. C.B8 -·· NORNP..~ END OF HEC-l ... FLOOD HYDRCGRAPH PACKAGE ( HEC-l ) MAY 1 99 1 VERSION 'i.O .lE RUN DATE: 0 2 /25i97 TIME 19•00:42 x x xxxxxxx x x x x x x XXXXXXK xx xx ~-x x x x x " x xxxxxxx xxxxx x x x x x x ){ xxxx x x xx x xxxxx :< x x xxx U.S . ARMY CORPS OF li:NG !NEERS HYDROLOGIC ENGINEERI NG CEN'l.'ER 6C9 SECOND STRi.;ET DAVIS, CALlFORNIA 95616 (916) 551 -1748 THIS PROGRAM REPLACES .O.LL PREV !OUS VER::.roNS OF HEC -1 KNOWN AS HECJ. (JAN 73) • HEClG!':. HEClDB' A.'ID HEClKW. THE DEFINITIONS OF VAR IABI..ES -RTIM P-.~L> -RTIOR-HAVE CHANGED FRUM Tt-t OSE i.!SEfi W!T;{ '!'l-i'R 1 973-STYL£ INPU:' S'r~Ut:ll_!R.£. THE DEF!NI TI ON OF -1-.MSKK-ON RM -(:Jl.R.D WAS CHANG.ED WITH REVISIONS DATED 2R SEP f.1. THIS I~ '£1-IE FOR1'P~N7? ~..,'RRSIQN NSW O PTIONS: DAMBREAK Oi.JTFLO~ SUBMERGENCE I SINGLE EVENT DAM/t GE C:.~C'.,.,~1'.\.'l~r oN . DS S ! WRIT)]! STAGE F REQUENCY , DSS , REJ>.D TIME SERI ES AT DESIRED CAL C:~:...A T ION Hl1'i::RVAL LOSS RATi.:: GRE:EN AND ;.Mf'':" H!FILT!U,TION KINEMATIC WAVE: NE W FINITE DI FFE R E!~CE ALGORITHM LINE 1 2 4 5 6 7 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 1 32 33 34 35 36 HEC -1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 ID ID ID ID ID ID IT IN IO KK KM BA PH LS UD KK EA LS UD KK J-!C KK F_S RC RX RY KK BA LS UD KK HC KK BA LS UD HYDROLOGIC ANALYSIS OF WOLF PEN CR EE K TRIBUTARY "C", COLLEGE STATION, TX BASIN UP STREAM OF GEORGE BUSH DRIVE -FUTURE WATERSHED CONDITIONS TEXAS A&M UNIVERSITY MAIN Cl'.MPUS STORM WATER MANAGEMENT PI.AN TURNER COLLIE & BRADEN JOB NO. 31-00380-006, BJT FUTURE CONDITIONS ANALYSIS -FILENAME • WPCFC.DAT, FEBRUARY 1997 100 YEAR, 2 4 HOUR STORM, HYPOTHETICAL DISTRIBUTION 5 0 1 JAN97 0000 288 15 01JAN97 GO OO 5 0 0 WP24 BEGIN BASIN ABOVE HYDRO LOG I C u"NIVERSITY CONTAINING MARRIED STUDENT HOUSING A.."IALYSIS OF WOLF PEN CREEK TRIBUTARY "C" 0 . 046 0 l l 0 .8 7 1. 95 4.26 5.7 6.3 0 85 .6 0.365 OFSTS OFF CAMPUS ARE~ EAST OF MARRIED STUDENT HOUSING 0 .011 0 1 0 93.8 0 .158 Cl COMBINE WPC4 AND OFSTS 2 7 .8 RTl ROUTE COMB HYDRO Cl THROUGH BASIN WPC2 USING NORMAL DEPTH 6 FLOW -1 0.030 C.030 0.030 2750 . 0 .011 (). 00 905 1165 1105 11 90 .1.215 1420 1965 322 316 316 314 314 316 320 ::21 WPC2 POI,() FIELD 0.100 0 1 0 82.2 0. 697 C2 CO MB ROUTElJ •WDRO RTl AND WPC2 2 OFST2 OFF-CAMPUS BASIN JUST EA ST OF POLO FIELDS 0.016 0 l (J 91. 6 C .325 9.6 STORAGE 11 . 0 FAG!': l ~iNE 37 313 39 4 0 41 42 43 44 45 1 G 47 48 49 50 5 1 52 5 l 54 55 56 57 r,a 5 9 60 51 62 6 3 64 55 06 67 HEC -1 INPUT ID ....... 1 ....... 2. . .... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK BA LS UD KK RT Kl< HC KK BA LS uo KK BA LS UD KK Kl< RS RC RX RY KK BA LS UD Kl< BA LS UD OFSTl OFF -C1'MPUS BASIN ACR OSS UNIVERSITY FROM THE NORTH SI!)E PARKING GARAGE 0 .0 56 0 0 91. 5 0.240 RT2 ROUTE OFS T l THROUGH BA S IN WPCl USING LAG ROUTING 0 0 7 C3 COMBINE RO UTE D HYD. RT2, OFST2, AND COMBINED HYD. C2 3 \'IPCl 81>.SIN CONT.l\INING NORTHEAST PORTION OF MAIN CAMP US AND LOT 50 0 .3 11 0 1 () 0 .948 88 9 OFST3 UF F -CAMPU S BASIN AT NORTHEASTERN CORNER OF WOT,F PEN C!'.EEK WATER;>HED 0 .102 0 \ •j 87. 8 0.6!8 C4 COMBI NE OFST 3, \·;PCl : AND CO ME I NED HYD -C3 RT3 4 0 .0 35 0 )fJ5 WPCJ o. 52 0 0.586 OFST4 0.086 c 0.725 ROUTE COMBINE!) HYD. C4 THROUGH BAS IN WPC3 USING l'JORl-'.AL DEPTH S1'0RAGE FLOW -1 0.05 0 .035 2200 375 f.20 640 30 0 296 295 DOWNSTREJ!.!>~ BA S IN OUTFALL ING 0 l 81.0 OF F-CJl.Mi'i.JS BASIN AT CORNER 0 1 BS .3 .016 65 0 7.95 6 75 299 1000 300 30~ .1:1..T GEORG E BUSH DR IVE CULVE RT OF TEXAS ,!\ND GEORGE BUSH PAGE 2 LINE 68 G9 7iJ 71 72 HEC-1 I NPUT ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... e ....... 9 ...... 10 KK KM KO HC zz CS COMBINE ALL HYDROGRAPHS **END COMPUTATIONS OF WOLF PEN CREEK TRIBUTARY 1 3 21 "C .. PAGE J FLOOD HYDROGRAPH PACKAGE (HEC-1) MJ>.l' 1991 VERSION 4 .0.l E Rt..'N DATE 02/25j97 TIME 19:00:42 * U .S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENG INE ERING CENTER 609 SE CO ND STREET DAVIS. CAL IFORNIA 95616 (9 15) 55 1-1 748 ···~··~·········*······················ HYDROLOGIC 1'.NALYSIS OF WOLF PEN CREEK TRIBUTARY "C", COLLEGE ST.O.TION , TX BASIN UP STREAM OF GEOR GE BU SH DRIVE -FUTURE WATERSHED CONDITWN S 9 10 IT TEXAS A&M UNIVERSITY MAIN CAMPUS STORM WATER MANAGEMENT PLAN TURNER CO LLI E & BRADEN JOB NO. 31-00380-006, B·JT FUTURE COND ITI ONS ANALYSIS · FILENAME • WPCFC .DAT , FEBRUARY 1 99 7 1 00 YEAR , 24 EOUF. ~TO ?-Y., HY POTHETICAL DISTRIBUTIO N OUTPU T CONTROL VARIABLES !PRNT l?LOT QS CAL HYDROGRA PH TIME DATA NMIN 5 PRIN'!' CONTROL 0 PLOT CONTRO L 0. HYDROGRAPH PLOT SCALE MJNUTES IN C-OM?UTJ>.TION IN'fERVJ.L STP-Q~T ING DATE STAR TING TI ME IDA'l'E I TIME NQ !'-.TDD.\ TE 5 1JAN97 0000 298 1JAN97 2355 19 Nl.Trifl~P.. OF' HYD ROGRAPH ORDINATES ENDING DAT E H!.,.-OJ.NG 'I'TME rCENT CEt-.~Ll RY t-AJ'lFJ·~ COMPUTATION INTE RVJ>.L TOTAL TI ME BI'.SE 0 .0 8 HOURS 23.92 HOURS ENG L!SH UNITS DRAINAGE ARE;>.. PRE CI PITATION DEPTH LENGTH , ELEVi'.T ION FLOW STOR.l\c;E VO LUME S'JRF.l\CE ARE;>. TEMPERATURE SQwJ>.RF.: MILES !NCH £S FE BT CUBIC FEET PER SE COND ACll.E-Fc l::T ACRE S DEGREES F AH.'<ENHE I T HYDROGRAPH HYDROGP.APH HYDROGRAPH HYDROGRJ>.PH H'lDROGRAl'H HYDROGR.l\PH HYDROGRAPH HYDROGRAPH HYDROGRAPH MULTIPLIED MULTIPLIED MULTIPLI ED MULTIPLIED MULTIPLIED MULT IPLIED MULTIPLIED MULTIPLIED MULTIPLI ED BY 1. co BY j . 0 0 BY 1 .UC BY l .00 BY 1. uo BY 1 .00 EY l. 00 BY l .00 BY 1. co ••k •••••• ·~· ••• ·~· ••••••••• *** *** *** ·~· •••••• ··~ *** ••• *** ••• ·-· ••••••••• ·~· *** •••.••• *** •• ,, •••••• **• 68 KK cs COMBINE ALL }:YD ROGRAPHS ............... 70 KO 71 HC OUTPUT CONTROL VARIABLES IPRNT l I PLOT 0 QSCAL 0. IPNCH !OUT ISAVl ISAV2 TI MINT 0 21 1 288 0.083 HYDROGRAPH COMBINATION I COMP PRINT CONTROL PLOT CONTROL HYCROGRAPH PLOT SCALE PIJNCH COMP UTE D HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED !..AST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS NUMBER OF HYDROGRAPHS TO COMBINE HYOROGRA PH AT STATION SUM OF 3 HYDROGRAPHS cs D,b. M0 N HPJ-"J·! ORD FLOW DA MON HRNN OR D FL.OW DA MON HP.MN OR::l J/'..N 0000 JAN OC05 .T.'.N 0010 JAN 0015 J AN 0020 l Jll..'i 0025 J AN 0 0 30 JAN 0 0 35 l Jll..'I 0040 J AN 0045 J A.."I 00 5 0 JAN 0055 JAN 0 100 JAN 0105 JAN 0110 Jll..'I 0115 JAN 0120 JAN 0125 JAN 0 1 30 JAN 0135 JAN 0140 JAN 0145 JAN Ol SO l JAN 0155 1 JAN 0200 JAN 0 205 JAN 0210 JAN 0215 JAN 0220 J!>.N 0225 JAN 0230 l 2 3 ~ 6 7 8 9 1 0 11 12 · 1) 14 15 16 17 lA 19 20 21 22 23 24 25 26 27 28 29 30 31 0. c. 0. 0. o. 0. 0 . G. o . c . 0 . o. 0. 0. 0. o . o . 0 . 0 . c . o . o. o. o. 0 . 0. 0 . o. o. 0. l ,JAJJ 0600 1 JAN 0605 1 JAN 06j 0 1 JAN 0 6 1 5 1 JAN 0 6 20 JAN 0 62 5 JAN 06J O l JAN QhjS 1 JAN 0 6 ~ 0 1 JAN 0645 1 JAN 0 6 SO 1 JAN 0 5 55 1 J AN 070 0 1 JA.."I 0705 i JAN ono l JAN 071 5 l JAN on e 1 JAN 0725 1 JAN 0730 l JAN 0 7.15 l JAN 0 740 JAN 0"/45 JAN 0750 JAN 0755 JAN 0800 JAN OBOS i JAN oa10 1 JAN 0815 1 JAN 0320 1 ·JAN 0825 1 JAN 08 30 73 7,1 75 '/6 7 7 'le 79 so Bl 82 63 84 85 86 87 88 e9 90 91 92 93 94 9 5 96 97 98 99. 100 101 1 02 103 19. 21. 22. 2 3. 24. 26. 28 . 30. 32. 34. 37. 40. 43. 46. 49. 51. 54. 57 . 60. 62 . 65. 6'1 . 70. 72. 75. 78 . . 81. 84. 8 7 . 90. 92 . 1 JAN 12 00 145 JAN 1205 146 JAN 1 210 JAN 12Ei JAN 1220 JAN 1225 JAN 1230 JAN 1235 JAN 1240 JAN 1 2 ·15 JAN 1250 1 JAN 1255 1 JAN 1300 1 JAN 1305 1 J AN 1310 JAN 1315 JAN 1320 JAN 1325 JAN 1330 JAN 1335 1 Jll..'l 1340 1 J[\}! 1345 1 JAN 1350 1 ,JAN 13 55 1 JAN 1100 1 JAN 1405 1 JAN 14 1 0 1 JAN 1415 1 JAN 1420 1 JAl'I 1425 1 JAN 143 0 147 148 149 150 15 1 152 153 154 1.55 156 157 158 159 160 1 61 162 163 164 165 1 65 16 7 1 68 109 i.70 17: 172 17 ] 174 175 6 77 . 815. 983. lle3. 1409. 1602. 175 0. 186 5. 194 •1. 1985. 197 7 . 1914. 1818. 17 02. 1 5 79. 1459 . 1345. 1234. 1129 . 1034. 952. !368. 7Yl . 7~4. 665. 615 . s n. 515. $07. 480 . 4 S -1. DA MON HRHN ORD JAN 1800 /.17 ,JAN 1805 21S JAN 1810 1 JAN 181 5 1 ,JAN 1920 1 JAN 182 5 1 JJ\...'I 1830 J/'..N 1835 JAN 1840 JAN 1845 JAN 1850 1 JAN 18 5 5 ., JAN 1900 ,JAN 1905 JJ\..."I 1 910 1 JAN 1915 1 JAN 1920 1 JAN 1925 Jilli 1 930 JAN 193 5 1 JAN 1940 1 JAN 1945 1 J!>.N 1950 l JAN 195 5 JAN 2000 J .'<N 2 005 JAN 2010 Jll..'i 2015 JAN 2020 l JP..N 2025 JAN 2030 219 220 221 222 223 224 225 226 727 228 229 230 231 232 233 234 23 5 236 23 7 238 239 240 241 242 243 244 245 246 247 FLOW ;,53 . 151. 119 . l 7. 14 4 . 14.0 . 13 6. 132. 127. 1 23 118 113. 1 0 9. 1 05. 10 1. 98 . 95. 93 . 91. 89 . 87 . 95 . 84 . 8/.. 81. 6 0 . 79. 78. 77. 76. 7 5 . 1 JAN 0235 l JAN O:HO ,JAN 0'.i.45 1 ·JAN 0250 ' J AN 0255 J AN 0300 ·' JAN 0305 JAN 0310 1 JAN 0 315 JAN 0320 l .JAN 0325 .JAN 0330 J;..N 0335 JAN 0340 JJ>..N 0345 1 J P._"l 0350 JAN v355 l J .h.N 04 00 ·JAN 0405 l. J.l\N 0410 ,JAN 0415 JAN 04 20 JAN 0425 JAN 0430 JAN 0435 JAN 0440 ·JAN 0415 JAN 0450 JAN 0155 JAN 0500 J.'\N 0505 JAN 0510 J k N 051:::; J;\N 0520 J J\N 0525 JAN 0530 ,]AN 0535 1 JJU.! 054 0 JAN 0545 1 JAii 0550 JAN 0555 PEAK FLOW (CFS ) 1 985 . 32 3 3 34 35 36 37 38 39 40 41 42 43 44 45 4 6 47 46 4 9 50 51 52 53 54 55 56 57 58 59 60 61 52 63 S6 67 €8 ">9 'JO 7 1 TIME (HR) 12.75 o. o. 0 . 0. 0. o. 0. o. 0 . l. 1. 1. 1. J . 1. 2 . 2 . 2. 3. 3. 3. 4. ~- 5. 5. 6. 7. 7. 3 . s. 9 . 1 0 . 11 . il. 12 . 13 14. 15. 16. 17 . 18. (CFS) (INCH ES) (AC -FT) l JAN 08 3 5 104 l JAN 0840 1 05 l Jl\N 08~5 1 06 l JAN oa:;o ; 01 1 J.l\.N OBS S 108 1 JAN 0900 109 l. JAN 0905 1 10 l JAN 0910 l! l l JAN 091..5 1 12 1 JAN 0920 1 13 l JAN 0925 114 1 J.o.N 0930 115 JAN 0935 116 1 JAN 0940 1 17 JAN 094 5 118 JAN 0950 119 l J.Z\N 0 955 :20 1 JAN 100 0 121 1 JJU~ 1005 122 JAN 1 010 J.2 J l ·11'-"< 1015 124 1 Ji\N 0 20 12 S 1 JAN 10 25 1 26 l JAN lo;o !27 l JAN iC 35 128 1 JAN lO~G 129 1 JAN Hl45 1 30 l JAN 1050 131 .. .iAN 105 5 132 JAN 1.100 133 JAN 1105 134 1 JJ>-.N 1110 J3 5 1 J.!!..N l lJ 5 l3G 1 ·J'A...'l 1120 137 l JAN 1125 13a 1 JAN 11 .:0 139 1 JAN 1135 HO l JAN lHO 141 JAN 114:' 1 42 JAN 1 1~0 143 JA.V 11 55 1 4 4 95 . 98 . 10 1. 104. 10 7. 110 . l.13. 117. 120 . 12 ·4 . 128. 132. 136. 140. 145. 149 . 154. 159 . 164. 170. 175. 181. 197. 194. 200. 207. 2 13. 219 . 225 . 231 . 239. 249 . 261. 277. 299 . 325. 356. 394. HO . 4)17. 571 . MAXI MUM AVEJ<AGF. FLOW 6 -HR 675 . 7.138 335. 24-HR 7 2 -HR J.18 . ~.189 431 . . 218. 9 .189 431. CUMULATIVE AREA • . 0. 8 8 SQ MI * * * JAN 1435 176 1 ,j'AN 1440 1 7? 1 JAN 1445 1?8 l .J/\N H SO l 79 1 J .Z\N !4 5 5 1 80 l JAN 1500 181 1 .. TAN 1505 182 JAN 15 1 0 183 1 J AN 15 15 184 1 JAN 1520 185 l JAN 1525 186 l JAN 1530 187 1 JAN 1535 18 8 1 JAN 1540 189 JAN 1545 190 l JAN 1550 191 l JAN 15 55 192 l Jl>N 1600 193 l JAN 1605 l94 l JA."< 1610 19 5 1 JAN 1615 19€ 1 Jl'_"l 1620 197 1 JAN 162 5 J 98 1 JAN 1630 199 l JAN 1 635 200 l ,!.W 1640 '.20 1 l JAN 1645 202 l JAN 1650 203 l JAN 1655 204 l. JAN 1700 2 05 l J .1'-.ll 1 70 5 20 6 l J AN 1.710 20 7 lJ.~N1 7 i5 20 ~ J A."i 1720 209 l JAN 17?,5 2 10 1 JAN 1730 211 l J AN 1735 :<12 1 J AN 1740 213 l JAN 1745 214 JAN 1750 215 JAN 1755 ~1 6 23 . 9 :l -HR 2 i 8 . 3.189 431. 13 0 . 108. 389 . 372 . 356. 3H. 323 . 316. 304. 294 . 2 8 4 . ~6 6. 258 . 2 51. 2 44 . 237 . 2J 2 . 227. 222 . 217. 212. 208. 203 . 199 . 195 . 1 9 2. HlD. 1 85. l 7'J. 17b. 17J . 171. 1GfJ . 16 6. 1 04 . lGl . 159. 157 . 15 5. JAN 2035 24D l JAN ?.040 2 49 1 JAN 204 5 250 1 JAN 2050 251 1 J AN ?.0 55 252 JAN 2jQQ 253 1 JAN 2l OS 254 1 JAN 2110 255 1 JAN 2 11 5 256 1 JAN 21/.C 25 7 \ JJ\.N 2125 25S 1 ,TAN 2130 259 1 JAN 2135 2GO JAN 2 140 261 l JAN 2145 262 l JAN 2150 263 l JAN 2 1 55 264 l JA."l 2200 2 65 l ,JAN 2205 266 1 JAN 22 '10 267 l JA."< 2215 268 l JAN 2220 269 l JAN 2225 270 1 JAN 2230 271 l Jl'.N 2235 272 1 JAN 2240 273 l JAN 2245 /.74 JAN 2250 27~. J·;.-"< 225 5 2 '/G l J /\.N 2300 2"!7 1 J AN 2305 ~7 E l JAN 23 l •J 279 l J.•.N 2315 230 1 JAN 2320 :!Bl !. JA."t 23:.!5 282 1 J P.N 2330 283 JAN 2335 264 Jl".N 23 .SU 285 1 J AN 2345 286 l JAN 2 3 50 287 1 JAN 23~5 288 75. 74.. 73. 72 . 72 . 71. 70. 70. 69. 68. 68. 67. 67 . 66 . 65. 65 . 64. 64 . 63. 63. 62 . 62. 62. 61. 61 . 60. 60. 59. 5 9. 5 9 . SS. SE. 57. 57. SG . ~6. 56. 55. 5~. 55 . RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FO R MAXIMUM PERIOD BASIN M.».XIMUM J'IME OF OPERATION ST.l\TION FLOW PEAK 6-HOUR 24-HOUR 72-HOlTR AREA STAGE MAX ST.l\GE HYDROGRAPH .!\.T WPC4 149 . 12 .JJ JS. 11 . 11. a.as HYDROGRAPH AT OFSTS so. 12 .08 9. 3. 3 . 0.01 2 COMBINED AT Cl 184. 1::!. 25 44. 14 . J..4 . 0 .06 ROUTED TO RTl 162. 12 .4 ?. 44 . 14. 14. 0.06 31S .60 12.42 HYDROGRAPH AT WPC2 229. 1:!.67 74. 23 . 23. 0. 1.0 2 COMBINED AT C2 368 . J.2 .SO ll8. 38. 3~. 0.16 HYDROGRAPH . 1\T OFST2 56. 12.2S 13. 4. 4 . 0.02 HYDROGRAPH AT OFSTl .220 . 12.17 4S. lS . lS. U.06 ROUTED TO RT2 220. 12.75 45 . lS . l~ 0.06 3 COMBINED AT CJ S9S. 12.75 176. S7 . S7 . 0. :?3 HYDROCRA PH AT WP Cl 643. 12.92 245 . 80. BO. 0 .3 1 HYiJROGRA.PH /l.T OFST3 263. 12.SG BO. 26. 26. 0 .10 3 COMSrnED AT C4 1464 . 12 .7 5 500. 163. 1G3. 0 64 ROUTED TO RT3 14S9. 1 2 .83 soo. 162. 162 . 0.64 29B.1 7 12.83 HYDROGRAPH AT WI'C3 3'76. 12 .SB 110. 3S . 35. (\. 15 HYDROGRAPH AT OFS'.1'4 199 . 12.7 5 66. 21. 21. 0.0~ 3 COMBINED AT cs 1985 . 12 .75 676. 2 18 . na. 0.68 ... NOJ?J°'1AL END OF HEC-1 ... ' .. • "'' ' ' -' • • • " .. • • • • ,. • • • •• ~ ' ~ -· ~ • ' .... • • • -...... .. ~-'~ ' ~ ~ ., ""' ' ~ -' • I: FLOOD HYDROGRJl.PH PACKAGE (HEC -1) MAY 1 991 VERSICN .; . 0 .1E RUN D.l'\TE 02/25i 9 7 TIME 13: 16: 17 v x xxxxxxx )( x x x x x xxxxxxx xxxx ~ x x x x x >( x xxxxxxx xxxxx x x x x x x '' xxxxx '· xx x xxxxx x x x xxx U.S. ARMY CORPS OF ENGINEERS HYDROLOGlC ENGINEERING CENTER 6Q9 S ECOND STR.EF:.."! DAVIS, CALIFORNIA 95616 (9:i.6) 551 -17'.S '!'HI S PROGRAM REPLACES ALL PREVIou~ VERSIONS OF HEC-1 KNOWN AS HEC:l (JAl~ 73)' HEClCS, HEClDB, AND HEClKW. THE DEFIN1'1'1CNS OF VARIA9L~S -RTIMP-A.il..I~ -RTIOR -HAVE CHANGED .. ROM T:·IO~E USED \'-iITH THE 1973-STYLF. INPUT STRUCT!JIH~. THE DEFIH!TIO!'I OF -AMSKK -ON RM-CARD w.;s CHJ>..NGED WITH REVISIONS DATED 28 SEP el. THIS ZS THE FClRTRM:77 'vE;<STQN NEW OPTIONS • Dl'.MBRE/>.K OCJTFL.QW SUB!'!ERGENCE ; S INGLE EVENT DAMAGE CJ>.LCULATION, DSS: •1RITE STAGE FREQ!!ENCY, DSS:READ TJ.ME SERIES AT DESIRED C!LCU U>.TION INTERVAL LOSS RATE.GREEN />.ND -".i-il>'f I NPILTRJ>..TElN KINEMATIC WAV E: NBW ::-INITE DIFFERENCB Al.OOR !THM LINE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 9 20 21 22 23 24 2~ 26 27 28 29 30 31 32 33 34 35 36 HEC-1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 ID ID ID ID ID ID IT IN IO KK KM Bl>. PH LS UD KK B.!\. LS \JD KK HC K" " RS RC R.". RY KK BA LS UD Kl<. HC \JD HYDROL.QGIC ANALYSIS OF WOLF PEN CREEK TRIB\ITARY "C ", COLLEGJ:: STATION, TX BASIN UPSTREA.~ OF GEORGE BUSH DRIVE -1996 WATERSHED CONDITIONS TEXAS A&M UNIVERSITY 1-f.AIN CAMPUS STORM WAT ER MANAGEMENT PL.\.."< TURNER COLLIE & EP.fl_DEN JOB NO. 31-00380-006; BJT 1996 CONDIT I ONS BOTH ON ~.ND OFF CAMPUS -FILENAME s OFFC96.DAT, FEBRUARY 1997 100 YEAR, 24 HOUR STORM, HYPOTHETICAL DISTRIB\ITION 5 01JAN97 0000 289 15 01JAN97 5 0 0000 0 WPC4 BASIN ABOVE UNIVERSITY CONTAINING MARRIED STUDENT HOUSING BEGIN HYDROLOGIC ANALYSIS OF WOLF PEN CREEK TRIB\ITARY "C" 0 . 04 6 0 1 0 0.365 0 85.6 .87 1. 95 4.26 5 .7 6.3 OFST5 OFF CAMPUS AllEA EAST OF MARRIED STUDENT HOUSING o. 011 0 1 0 94 0.156 Cl COMBINE WPC4 AND OFST5 2 RTl ROUTE COMl' HYDRO Cl 'l'HROl!Gll BASIN WPC2 IJSING !WRMAL € FLOW -1 0.030 U.030 0.030 2750. 0.011 !l. 00 905 1165 l.185 1190 1215 1420 322 316 316 314 314 316 320 WPC2 POLO FIELD 0.1 00 0 0 91. 6 0 . 713 C?. COMB ROUT ED HYD RO RTl AND ~</PC2 2 OFST2 OFF-CAMPUS BASIN JUST EAST OF POLO FIELDS 0 .0 16 0 1 () . 9 4 0.291 7.8 DEP'T'H 1865 321 9.G 11. 0 ST0RAGE PAGE LINE 37 38 39 4 0 41 42 4J 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 H 65 66 67 HEC-1 INPUT PAGE 2 ID ....... 1 ....... 2 ....... 3 ....... ~ ....... 5 ....... 6 ....... '/ ....... 3 ....... 9 ...... 10 KK OFSTl OFF-CAMPUS B .0.SIN />.CRO SS UNIVERSITY FROM THE NORTH S I!JB P.;RKlNG GARAGE BA Q_Q5€ 0 1 LS 0 91.6 UD 0.239 KK RT.2 ROUTE OF STl THROUGH BASH! WPCl USING LAG ROUTING RT 0 0 7 KK C3 COMBINE ROUTED HYD. RT2, OFST2, AND COMBINED HYD. C2 HC 3 KK WPCl BASIN C0!"1'l'.INING NORTHEAST PORTION OF MAIN CAM PUS AND I.OT 50 BA 0.311 C l LS 0 88.7 UD 0.954 KK OFST3 OFF-CAMPTJS BASIN .O.T NORTHEA STER.N CORNER OF WOLF PEN Cri.EEK WATERSHED BA G .1 02 0 l LS 0 88.08 UD 0.61 2 KK C1 CUMBINE C-F:;T3, WPC l, ."u','D COMBINED HY!). C3 EC 3 KK RT:: ROlJTE: COMBINED l-!Y D. C4 THROUGH BASIN WPC3 USING t-.;Qfil?tP.L DEPTH STORAGF. RS 4 FLOW -, RC 0.035 0.05 0.C3S 27.00 .016 RX (j 375 520 640 650 675 755 1000 RY 305 300 296 295 295 299 300 305 KK WP C3 OOWNSTRBAM DAS IN OllTFl>.LLING AT GBORGE BUSH DRIVE CULVERT BA C .1S2 0 l LS 0 81. 0 UD 0 .5'S6 * KK OFST4 OFF-CAMPUS B!\SIN AT CORNER OF TEXA S AND GEORGE BUSH Bl< 0.086 0 LS 0 86 UD 0.706 LINE 68 69 70 71. 72 HEC-1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK KM KO HC zz CS COMBINE fJ.L HYDROGRAPH S **END COMPUT;.TIUNS OF WOL F PEN CREEK TRIBUTARY "C" 1 21 3 PAGE 3 FLOOD HYDROGRAPl! PACKAG E (l-l EC-1 ) MAY 1991 ll. S . AI<MY CORPS Of ENGINEERS HYUROLOGIC ENGINEF:IUNG CENTER 609 SECONI) STRE ET DAVIS , CAL IFORNIA 95616 (916) 55] -1748 VERSION 4.0 .lE R.t..'N DATE 02/25 i9 7 TIME 13' 16' 17 9 IO IT **•******•••*················~********* HYDROLOGIC ANALYSIS OF wOLF P£N CREEK TRIBUTARY "C ", COLI,EGE S'!ATION, TX BASIN UPSTREAM OF GEORGE BUSH DR I VE -1996 WAT.ERSHED CONDITIONS TEXAS A&M UNlVERSI TY MAIN CAMPUS STORM WATER MANAGEMENT PLA....; TURNER COLLIE & BR.WEM JOB NO. 31-00380-006, BJT 1 996 CONDITIONS BOTH ON AND OFF CAMPUS -FILENAME a OFFC96.DAT, FEERUARY 1997 100 YEAR, 21 HOUR STORM, HYPOTHETICAL DISTRIBUTION OC:TPUT CO NTROL VARIABLES IPRNT 5 !PLOT 0 QSC~L C . PR:~:r CO NTROL PL.OT C-ONTROL HYT,RCGRi\PH PL()'f S~~LE HYDROGRAPH TIME DATA NMIN 5 MINUTES IN COMPUT.l\TION INTERVAL ST? ... ?:lTING DATE IDA TE !TIME 1JAN97 0000 288 NQ NDI:'P.'!'E ND'l'Ii·1E 1CEN1' 1JA.N97 2355 19 SThRT lNG 'f!ME NU!·!BER OF HYD ROGR/l.PH ORDINATES ENDING l)l\TE END ING TIM!:: CEJJTURY MJ\RK COMPUTATION INTERVAL "lOTAL TIME BASE G.08 HOURS 23. 92 !!OURS ENGLlS H UrlI TS DRAINAGE AR EA PRE CIP ITATION DEPTH LENGTH , ELE VA TI ON FLOW STORAGE VOLUME SUR FACE AREA TEM PER.ll,TURE SQU.».RE MILES INCH ES FEET Ct.J"BIC FEST p;;:R SECOND ACRE-FEB:' ACRES DEGREES FAHRl';l'<t!EIT HYDROGRAPH MULTIPLIED HYD ROG RAPH MULTIPLIED HYDROGRP.PH MULTIPLIED HYDROGRAPH MULTIPLIED HYDROGRAl?i-1 MULTIPLIED HYDROGRAPH MUL7IPLIED HYDROGRP,PH MULTIPL IED HYDROGRP.PH MULTIPLIEJ:) HYDROGRA!?H MULTIPLIED B" l .0 0 BY 1.00 BY l .0 0 BY l. 00 BY l. lJO BY l. 00 BY l. co BY l. 00 BY 1.QO *** *** *** ••* ••• *** ••• -••• *** *** ··~ *** **• *** *** *** ••• *** ~·· *** *** *** *** *** •+-• *** ••• *** *** ~·· **• *** *** **********ll:c*** 68 KK cs COMBINE ALL HYDROGRAPHS ************** 7 0 KO 7l HC n ;.. MON HRMN J AN 0000 l JAN 00 0~ J.'.N 00 1 0 l JAN OO lS JAN 0 02 0 JAN 002S JAN 00 3 0 JAN 003S JAN 0010 JAN 0045 JAN OOSO JAN OOSS JAN 0100 JAN OlOS l JAN 0110 JAN OllS JAN 0120 JAN 012S JAN 0130 JAN 013S l J1'.N 0140 JAN 0145 l JAN 0150 JAN 0155 JAN 0200 JAN 0205 l JAN 0210 JAN 0215 JAN 0220 JAN 0225 • TAN 0230 OUTPUT CONTROL VARIABLES IPRNT l PRINT CONTROL I PLOT QSCAL IPNCH IOUT I S AVl ISAV2 TI MINT 0 0. 0 21 l 288 0 .083 PLO T CONTROL HYDROGRAPH Pl.OT SCALE PUNCH COMPUTED HYDROGRAP H SAVE HYDROGRAPH ON THIS UNIT FI RST OR DINATE PUNCHED OR SAVED L."'S T OR DINATE PUN CHED OR SAVED TIME INTERVAL IN HOURS HYDROGRAPH COMBINATION ORD 2 3 4 5 6 7 9 1 0 11 12 13 14 15 16 i 7 18 19 2 0 21 22 ~3 24 25 26 27 28 29 30 31 ICOMP 3 NUMBER OF HYDROGRAPHS TO COMBINE FLOW 0 . 0. o. 0 . o. 0. 0. o . 0. o . 0. 0. o . o. o. o . 0. 0 . o . 0. 0 o. c. 0 . . 0. 0 . o . o . 0 . 0. 0 . DA MON H!>_"'IN l JAN 0600 l .JAN 060 S l JAN 0610 l J .•.N 0 51 S l JAN 0620 JAN 067.5 l JAN 0 6 }0 l J .t\.N 0635 1 JAN 064 0 1 J1'.N 0 1:>45 l JAN 0 6 '>0 l JAN 0 5 55 1 JA.i.~ 0 7 00 l J A."l 070S 1 JAN 0 710 JAN 0715 JAN 0720 JAN 0725 J.1\N 0730 JAN 0 73 S 1 JAN 074 0 l JAN 074S l JAN 07SO l JAN 0 7 S5 l JAN OSO O l JAN 0 00 5 l JAN 0810 1 JAN 0 81 5 JAN 0820 l JAN 0 62 5 l JAN 0~30 HYDROGRAPH AT STATION CS ORD 73 74 75 76 7 7 78 79 80 81 82 63 84 85 86 67 88 09 90 91 92 93 94 95 96 97 98 99 100 101 102 10~ SUM OF 3 HYDROGRAPHS FT..O~I 20 . 21. 2 2 23. 24 . 26 . 28. 30 . 32. 35 . 37. 40. 43. 46. 4 9. 52. S4. 57. 60 . 62. 65 . 68. 70. 73 . 75. 78 . BL 84. S I . 90. 93. DA MON HR.'11'! .J.?\N 1200 l JAN 1205 JAN 1210 1 JAN 1215 l JAN 1220 l JAN 1 22 5 JAN 1230 J1'.N 1235 JAN 1 240 JAN 1245 JAN 1250 l J AN 1255 1 J.l\N 1300 l JAN l30S l JAN 1310 l JAN 1315 l JAN 1320 J1'.N 132 5 l JAN 1 330 J.~ 1335 JAN 1340 Jl'.N 1345 J1'.N 1350 JAN 1355 1 J AN 1400 l JAN 1 105 l JAN 11 1 0 J "AN 1415 ,TAN 1420 J.t\N 1425 JAN 1430 ORD H S 146 14 7 118 149 1 50 1 5 1 1 5 2 15 3 1 5 4 lSS 1 5 6 1 57 158 159 160 161 1 67 1 63 1 6 4 1 6 5 1 6 6 167 168 169 17 (\ 171 1 7 2 173 174 l ?S S79 . R21 . 98 9 . 118~. i4; 2. l b 0 3. 1747_ 1~60. 1 937. 1 9 "17 . 1 969 . 1 9 0 8. 1811. 1 6 95. 15 7 4 . 1456. 1)42. 123 2 - ll.28. 1 0 3 4. 952 . 869. 792. 725. 666. Gl6 . 573. 5 36 . 508. 481. ~5 5 . DA MON H~"'J JAN l~OO JA N 1 805 JAN 1010 J1'.N 1815 l JA..>; 1 020 l JAN 1325 l JAN 183 0 1 JAN 1~35 J.'\N 184 0 l JAN 1815 l JAN 1850 l JAN 1 85 5 l ,JAN 1900 l JAN 1905 l JAN 1910 JAN 1915 JAN 1920 JAN 1925 l JAN 1930 l JAN 1935 JAN 1940 JAN 1945 1. JAN 1950 l JA."' 1955 l JAN 2000 l JA.."1 2005 l JAN ?.010 l JAN 2015 l JAN 2 0 20 l JAN 2025 l .TAN 2030 ORD 2 1 7 218 2 19 220 2 21 22 2 223 224 225 226 227 228 2 29 230 231 232 233 234 235 23 6 237 23 8 239 240 241 242 243 241 245 2~6 2n FL.O t·i l.S4 . 151. 1~9 . 147. 14.;. 14 0. 135 . 132. 127. 123. 118 113 . 109. 1 05 . 101. 98. 95. 93. 91. 89 . 87. 85 . 84. 82. u . 80. 79 . 78 . 77. 76. 75. .JAN 0235 1 JAN 0240 JAN 0245 l JAN 0250 l JAN 0255 JAN 0300 JA..1'/ 0305 JAN 0310 JAN 0315 1 JAN 0320 l JA.."i 0325 1 JA..111 03~0 l JAN 0335 JAN 0340 J!'.N 0345 JAN 0350 JAN 0355 JAN 0400 1 JAN 0405 JAN 0410 JAN 0415 I. JAN 0420 JAN 0425 JAN 0430 JAN 0435 J.!\N 0140 JAN 0445 JAN 0450 J.a.JJ 04 55 ~ JAN 0500 l JAN 0505 ,JAN 0510 JAN 0515 JAN 0520 l Ji'.N 0525 JP.N 0530 JAN 0535 JAN OS40 JA;J 054 5 JA."l 0550 Jp.N 0555 32 3) 34 35 36 37 38 39 40 41 42 43 44, 45 46 47 48 19 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 1$8 6S 70 "'Ii. 72 0. c. 0. Q_ o. o. o. 1. 1. 1. 1. 1. 1. 2. 2. 2. 3. . L 3. 4. 1-5 _ 5. G. 6. 7. 7. 8. 9. 9 10. 11. 12. 12. 13. 1.4. , c ·J· 16. 17. 18. * J. JA."J 0835 04 JAN 06'10 C'.i 1 JAN os.;.~ oo 1 JAN 0950 07 1 JAN 0855 106 JAN 0900 1 09 JAN 0905 110 l JAN 0'.)10 111 JAN 09!'> 112 1 JAN ono 113 l JAN 0925 114 1 JAN 0930 115 JAN 0935 116 1 JAN 0940 ll 7 l JAN 0945 118 l JAN 0950 11~ JAN 0955 120 1 JAN 1000 121 l JAN 1005 122 l Jfu'J lOlC• 123 1 JAN 101!'> ~24 JAN io;rn 125 JAN 1025 126 ,TAN lOJO 127 1 JAN 1035 128 l JAN 1010 129 1. Jk~ 1045 l 3G l JAN 1050 131 JAN 1055 132 JAN ll.00 133 l JAN 1105 134 l JAN l'-l 0 135 JAN 1115 U6 JAN 1-;.20 237 JAN 1125 138 l JM! 1130 139 J. JAN 1135 HO 1 JAN lHO 141 JAN 1145 142 l JAN 1150 143 JAN 11:;:, lH 95 98. 101. 104. 107. 110. 1l4. 117. 120. 124. 128. 132. 136. 140. 145. 150. 154. 159. 165 . 170. 176. 181. 187. 194. 200. 207. 213. 219. 225. 231. 238. 248. 262. 278. 299. 326. 357. 395. 441. 498. ~'i3. * • * 1 JAN 1435 176 l JAN 1410 177 1 ,JAN 1445 178 1 JAN 1450 179 l JAN 1455 180 l JAN 1500 181 1 JAN 1505 192 JAN 1510 183 JAN 1515 184 JAN 1520 185 1 JAN 1525 186 1 JAN 1530 167 l JAN 1535 188 l JAN 1540 189 1 JAN 1545 190 l JAN 1550 191 l JAN 1555 197. l JAN 1600 193 l JAN 1605 194 JAN 1610 195 1 JAN 1615 196 1 JAN 1620 197 1 JAN 1625 198 1 JAN 1630 1~9 1 ,TAN 1635 200 1 JAN 1640 201 1 JAN 1645 202 1 JAN 1650 203 l JAN 1/;55 204 1 JAN l70G 20<; 1 JAN 1705 206 1 .JAN 1710 2C7 JA.'1 1715 208 1 JAN 1720 209 1 JP,_~ !725 210 l ,JAN 1730 2cl 1 Ji'o.N 1735 212 1 JAN 1740 213 1 JAN 1745 2H 1 Jf.J.j 1750 215 l JAN 1755 216 431. 409. 390. 372. 356. 342. 328. 31G. 30~. /.94. :lB4. ~-,,,_ 1:J. 2h7. :.!59. 251. 244. 238. 232. 227. n2. 217. 212. 2ue. 99. 96. 92. lB6. 185. 1 R2. 179. 176. 1 7.1. 171. 1G6. 1G6. lG4. 162. 159. 157. 155. 1 JAN 20J5 248 JAN 2040 249 JAN 2045 2~0 JAN 2050 251 JAfl 2055 252 JA.."I 2100 253 JAN 2105 251 JAN 2110 255 JAN 2115 256 1 JAN 2120 257 JAN 2125 258 1 JAN 2130 259 l JAN 2135 260 JAN 2140 261 JAN 2145 262 l JAN 2150 263 1 JAN 2155 264 1 JAN 2200 265 JAN 2205 266 l JAN 2210 267 l J'Af.j 2215 268 JAN 2220 269 JAN 2225 270 JAN 2230 271 JAN 2235 272 1 JAN 2240 273 1 JA.'1 2245 274 i JA.'1 2250 275 l JA..~ 2255 276 l JA.t.I 2300 277 1 JJ>..N 2305 276 JAN 2:l10 279 1 JI'_"/ 2315 280 l JAN 2320 281 l JAN 2325 282 1 JAN 2330 263 J_;.."I 2335 284 JAN 23-tO 285 Jl\N 2345 286 JAN 2350 287 l JAN 2355 288 'i'S. 74. 73. 72. 72. 71. 70. 70, 69. 68. 68. 67. 67. 66. 65. 65. 64. 64. 63. 63. 62. 62. 62. 61. 61. 60. 60. 59. 59. 59 59. 5B. 57. 57 57. 55. 56. 56. 55. 5S. 55. *************~**********~······••••£••********•~··~·~k·~··********************•~·~····*·····~·············~*·······~···••••k•••**** PEAK FLOW (CFS) 19?7. TIME (HR) 12.75 (CFS) (INCHES) (AC-FT) 6-HR 675. 7.~~6 335. CUMULATIVE A..~EA • MAXIMUM AVRRAGE FLOW ?4-HR 218. 9.191 431. 0.88 SO MI 72-HR 218. 9.191 . 431. 23.92-HR 216. 9.191 431. RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARB MILES PEJl.K TIME OF AVERAGE FLOW FOR MAXnf;JM PERIOD BASIN MAXIMUM TIME OF OPERATION STATION FLOW PEAK fi-HOUR 24-HOUR 72-HOUR AREA STAGE MAX STAGE HYDROGRAPH AT WPC4 149 . 12 ."'.\3 35. 11. 11. 0.05 HYDROGRJ\PH AT OFST5 50. 1~_0s 9. 3. ' 0.01 2 COMBINED AT Cl 183. 12 .25 41. 14. 14. 0 .06 ROUTED TO RTl 181 . 12 .12 44-14. 1'i . 0.06 315.60 12.42 l!YDROGRAPH AT WPC2 225. 12.67 73. 23 . 23. (1. 10 2 COMBINED AT C2 381. 12 -50 117 . 38. 38. 0.16 HYDROGRAPH P..T OFST2 60 . 12.25 13. 4 -~ -0.02 HYDROGRAPH AT OFSTl 2n. 12. 17 45. 15. JS. 0.06 ROUTED TO RT2 221. 12.75 45. 15 -15. 0.06 3 CO MB INED AT C3 593. 12 .7 5 175 . 57 . 57. 0.23 HYOROGRAPH /l.T WPCl 619. 1 2. 92 244. ao. no . (). 'll H'IDROGiU>.PH J..T OFST.3 265. 12 .58 co . 26. 2 G. 0.10 3 COMJ:II 'ED AT C:4 14 5 5. 12.?5 499. 162. 162. 0 .64 ROUTED TO RT3 1449. 12 .83 199. H:2. 162 . 0.64 298.16 12.83 HYDROGRAPH AT WPC3 376 . 12.58 110. 35 . " ~~-0 .15 HYDROGRAPH AT OFST4 20·1. 1?.. 57 66. 21. 2 1. 0 .09 3 C'OMDINED l>.T <'.:5 1977 . 1 2.75 675. 218-2 18. 0 .8 8 ........ ~!O RMAL END OF HEC-1 ... APPEN.DIX C REFERE1'1"CE MATERIAL Date: With: Subject : Discussion : RECORD OF' TELEPHONE COMMUNICATION February 18, 1997 Ms . Veronica Morgan, P.E . Assist. City Engineer City of College Station, Texas T AMU Stornwrnter Study CN ;¥'s for HEC-l Modelir1g The City's design manual shows a CN of 77 for landscape areas. This number is an average valu e for Class C and D soils across the Carters Creek Drainage basin. A CN value of 80 may be used for lawns, golf courses, etc. in lieu of 77. Be consistent and use the same CN value from 1987 to 1996. If possible , Veronica would also like to see wl.at the sensitivity is between 77 and. 80. ·------- Ed McDow ,. P .E. 1318/l /!486VERO .TEL (3) This metho d shall only appl y to analysis of the secondary drainage system. (4) This method shall not be used to construct a hydrogra.ph fo r a. natural watercourse, stream , or channel. b. Tabular Method of SCS Technical Release No. SS (1) The method shall be applied a ccording to the instr ~Jc tions and limi ta ti on outlined in Technical Release No. 55, and the latest updates and revisions issued by the Soil Conservation Service. (2) This method shall o nly app ly to analysis of the Secondary drainage system. c. SCS Dimensionless Unit Hydrograph (1) This method is adopted for use in the Primary System and is the method used in the hydrologic anal ysi s for the adopted College Station Flood Study. (2) The method shall be used to compute hydrographs at locations in the Primary System where the adopted Col lege Station Flood Study does not determine a hydrograph. (3) The method shall only be applied using the Generalized Co mpu t:er P rogram, ffF.C···l, Fl ood Hydrogra ph Package developed by the Hydrologic Engineering Center of the U.S. Army Corps of Engineers. ( 4) Data from the adopted College Station Flood Study shall be u.s eci with ·only the necessary modifications to account for the location of the hydrograph d esire d. Typ icall y this will involve deletion of data for areas outside of or downstream of the s t:ud y location., and modification of the mos t downstream drainage basin and/or routing re a c h . 3. Computer Analysis and Si mulatio n a. A comprehensiv e h ydrologic model of the Pr i.mary System has been adopted by the City of Coliege Stati.on.. The 21 model is applied using Generalized Computer Program, HEC.-1, Flood Hydrograph Package of t he U.S. Ar.my Corps of Engineers. b. The model uses the following methods available in HEC- l : (J.) Preci pi ta ti on is com p u t:ed using the 24 hour rainfall depths (see Table III-3) distributed according to the Soi l Conservation Service Type II Distribution. (2) Basin Hydrographs are co mputed using t he SCS Dimensionless Unit Hydrograph Method. (3) Ro uLing ·of hydrographs is c.o rnputecl by Normal Depth Storage and Outflow ("Cl &.nnel Ifouting"). c. Amendment of the adopted flood study wil l be made b y the Administrator as condi t.ions in the drainage basins change. The model consists of analyses of the 10 year, 25 year , 50 year and 100 year storms for two basin conditions. The existing condition analysis reflects the existing land uses and channel conditions in the basins. The ultimate condition analysis reflects the fully developed basin conditions defined by the adopted Comprehensive Land Use Plan for development within the c ity and the existing channel an d f l oodplain condi t ion s at the time of the study. No allowance for channelization was made to determine the ultimate condition flood discharges or elevations . ') ') Storm Table III·-3 24 Hour Rainfall Dep t hs for 1Selected Storm Re turn Per·iod s Return Period, II t rt 24 Hour Rainfall (Years ) r (Inches) 2 4.5 5 6.2 10 7.4 25 8 .8 50 9.8 100 11. 0 Depth, From National Weather Service Isohyetal Charts For Selected R~turn Periods II P" Ta.ble 1II -4 Curve Numbe rs and Percent Impervious Area For Various Land Cover and Lan d Use Categor1'. Land Cove r: Natural Woodlands Natural Grasslands Lan dscap ed Areas Impe rv ious Areas (Pavements, Rooftops, e t c.) Land Us es: Low Den sity Re siden ti al Medium Density Residential High De nsi t y Res id ential Business/Commercial IndL1stri a 1 0 0 0 38 52 65 85 72 Cu rve Number 75 75 77 98 84 87 9·1 94 92 From rrUr ban Hydro logy For Sma 11 Watersh•=c..s, Techni ca 1 Re.I ease No. 55" of the Soil Conservation Servic e 26 ~e c~~ 1 \2 :c~) I+. J SC <; VV\eA-~ od ~, u JI 4 6-(A i Je . 1q8''2-- SECTICJN 7 ESTIMATING THE T HIE-OF-CONCE NTR ATION Time is an important element in hydr olog i c forecasting. This is re- flected in tl1e fact that most hydrologic method s include a time v a riabl e as input . The SCS methods are no differen t , a nd th e time-of-concentration was sel ected as the best indicator of the effects of time. The time-of-concentrition (tc) is a measure of the time for a particle of water to travel from the hydrologically most distant poin t in the w a t ~r shed to the point where the design is to b e made. Additiona.lly, t he follow- ing operat iona l d efinition i s sometimes us e d wi th respect to u nit hydro- graphs: the tim e -of-concentration is t h e t j_me f rom ·::he e n::! of r:aii1fa ll ex - cess to t he p oin t of inflect:i on on the re c ess ion. l1'hile t his ope~:a.t iona l def inition wil 1 be used in d e velop ing t he SCS t nit hydrograph, th e fonner definition should be understood for th e c omputation of t i ne-of~~c n ce n t~a t:i on estimates . Hydrologists have developed numero us met hods for estimating the time -. of-concentration. Two methods are recant. ended within NEH-4 and TR-55 .• ::h e la g method and the upland, or v eloc :ty, met hod. Almost al l methods of e s t i- mating the time-of-concentration use the slope, the hydraulic length, and some measure of land use; the lag and velocity methods are no different in that they use these three factors . The h ydraulic length is the dis t ance from the hydrologically most distant point in the watershed to the point where the design is t o be made. The lag met hod relates the time lag (L) whic l is defined a~, the tim e in hour s from the center of mass of r ainfa ll excess to the p eak discharge , to the s lop e (Y ) in percent, the hydraulic length (£.) in fee t, and the maximum retention (S) : 100 0 ----· ~· 1 ~ c A) (9) in which S is given by Eq. 8 . The time lag can also be det ermin e d fiom the n6mograph of Fig. 7. Empirical e v idence us ed in devel o ping th e SCS methods resulted in th e fol l ow ing relatio n sh ip between the time -of-concen tration and the lag : in whic h tc is mea s ured i n hour s. t c = S L 3 1 9 '-~ =-O. lo tc (10) Ha. ;.,.~.s · ~~-f\&&U;;}C.:J~r:r·-~~+:;:~., '' c .. i+fH;tj £tVi~tJ,J · ~V' +~ lJ.e~\~I\ of f\w<~ c~·-. .,.. .. 1 0/1-..J ·o (~~ -n~;-t f~.J t fl'es 11 J 1 {1 i/- I 3: 0 _J l.J... ..---Prr~li minory Storage _,,// Volume Required Maximum A l owable ---------- Outflow Rote ,, ...................... --....... --·----•-•w•••----·-----·--·-•-·•-·,..•---·---••.,--.,~ .. -•••·-----•.,-••'--·-----·-•••••••-·- DESIGN CRITERIA MANUAL --------------- TH~E --• PROCEDURE FOR ESTIMA.TING REQUIRED DETENT I ON STORAGE VOLUME APPENJJIX D EXHIBITS