HomeMy WebLinkAbout5 Williams Creek Ph4 DP 05-24 9500 Rock Prairie Rd.Date:
To:
From :
Subject:
Remarks:
TEX CON
TRANSMITTAL
October 21 , 2005
Carol Cotter
Development Services
City of Coll ege Station
Joe Schultz, P .E.\\~
Texcon General 2~ractors
1707 Graham Road
College Station , Texas 77845
Phone : (979) 764-7743
Driveway Culvert Design Summary
Wi ll iams Creek Subdiv ision -Phase 4
College Station, Texas
Attached is a summary of the driveway cu lvert design for Williams Creek
Phase 4 . The culverts were designed to pass the 10-year storm event runoff
with headwater equal to or less than the diameter of the pipe.
Please contact me if you hav e any qu es tions .
Williams Creek Subdivision -Phase 4
Driveway Culvert Summary
Blo c k# Lot# Street #of Pipe size
Bar rels (in)
1 38 Williams Crk Dr 1 24 - -
39 Williams Crk Dr 1 18 -
40 Williams Crk Dr 1 15 --
41 Williams Crk Dr 1 24 -
42 Williams Crk Dr 1 12 -
43 Williams Crk Dr 1 12
44 Williams Crk Dr 1 12
45 W illiams Crk Dr 1 12
46 Williams Crk Dr 1 15
47 Williams Crk Dr 1 15
4 10 W illiams Crk Dr 1 12
11 W illiams Crk Dr 1 12 --
12 Williams Crk Dr 1 12 -------
13 Lanham Dr 1 12
5 1 Wayne Court 1 12
2 Wayne Court 1 12 -
3 Wayne Court 1 15
4 Wayne Court 1 18
5 Wayne Court 1 18
6 Wayne Court 1 18
7 Williams Crk Dr 1 15 -------
8 Wayne Court 1 18
9 Wayne Court 1 18
10 Wa yne Court 1 15 -
11 Wayne Court 1 15
Notes :
1. All driveway pipes shall be RC P, T&G , Class 3 .
Slope Tc Contribu ti ng
(%) (m in) Are a No .
1.02 15 .9 1358-D, 1,2 ,2A -------
1.97 19 .0 4,3A ---
0 .60 17 .0 29 --
1.44 19 .9 29 ,30 -
1.85 11.9 31
4 .70 10 .0 35
6 .00 12 .2 35 ,36
4.83 12 .2 35 ,36
4.83 13.4 35 ,36 ,37
1.59 14.4 35 ,36 ,37 ,38
0 .60 10.0 136 ,5
0 .78 10 .0 136 ,5,6 ,7
1.26 10.0 136 ,5,6 ,7 ,8
1.18 10 .0 10 ,11
1.09 10 .0 16,17
1.09 10 .0 16,17
3 .53 10.0 16,17 ,18
5 .52 10.0 16 ,17 ,18 ,19
4 .00 10 .0 16 ,17 ,18,19 ,20
2 .00 17.1 22 ,23 ,24 ,25 ,26 ,27
1.59 10 .0 40,41,42
5 .52 16 .5 22 ,23 ,24,25,26
3.53 16 .5 22 ,23 ,24 ,2 5 ,26
4.3 8 15 .7 22 ,23 ,24 ,25
1.09 15 .0 22 ,23 ,24
2. All S.E.T.s sh all be pre-cas t and in accordance w ith Tx DO T Sta ndard Sheet PS ET -RC ,
PR ECAST SAF ETY END T R EATM ENT , TY II -C RO SS DRAI NA G E.
Cont ributing
Are a (ac)
3 .25 -
2 .36
1.13
3.57
0 .50
0.46
0 .63
0 .63 -
0 .88
1.02
0 .10
0 .30
0.46
0 .22
0.42
0.42
0.71
1.01
1.21
1.50
0.64
1.34
1.34
1.12 -
0 .89
3 . Refer to Exhi bit D from t he Drainage Report for W illiam s C reek S ubd iv ision , Ph ase 4 , dated June , 2005 .
0 10
(cfs)
11 .36
7 .~
4.00
11.00
2 .00
1.99
2 .50
2 .50
3 .34
3 .74
0.43
1.30
1.99 --
0 .95
1.81
1.81
3 .07
4.36
5 .22
5 .05
2 .76
4 .60
4.60
3.94 --
3 .2 0
Draina ge R e port
for
Williams Creek Subdivision -Phase 4
College Station, Texas
June 2005
D evelop e r :
Joe and Janet Johnson Land and Investments , LP
1400 South Commercial Street
Coleman, Tex a s 7 6834
(325) 625-2124
Prep a red B y:
T EX C ON G eneral Contractors
1 70 7 Graham Ro ad
C oll ege St a ti on , T exas 77 845
(979) 764-7 74 3
CERTIFICATION
I certify that this report for the drainage design for the Williams Creek Subdivisiou -Phase 4,
was prepared by me in accordance with the provisions of the City of College Station Drainage
Policy and Design Standards for the owners hereof, with the exception that stom1 water runoff
detention is not being proposed for a portion of this project since the runoff will discharge
directly into existing drainages which flow into the 100-year floodplain limits.
·-------
TABLE OF CONTENTS
DRAINAGE REPORT
WILLIAMS CREEK SUBDIVISION -PHASE 4
CERTCFICA Tl ON .................................................................................................................................................................. 1
TABLE OF CONTENTS ........................................................................................................................................................ 2
LIST OF TABLES .................................................................................................................................................................. 3
INTRODUCTION ................................................................................................................................................................... 4
GENERAL LOCATION AND DESCRIPTCON ................................................................................................................. .4
FLOOD HAZARD lNFORMATION ................................................................................................................................... .4
DEVELOPMENT DRAINAGE PATTERNS ...................................................................................................................... .4
DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 4
STORM "VATER RUNOFF DETERMINATION ............................................................................................................... S
DETENTION FACILITY DESlGN ...................................................................................................................................... 7
STORM CULVERT & DRAINAGE CHANNEL DESIGN ................................................................................................ 8
CONCLUSIONS ..................................................................................................................................................................... 9
APPENDIX A ........................................................................................................................................................................ 10
Time of Co11centration Data & Calculations
APPENDIX B ........................................................................................................................................................................ 17
Storm Sewer Culvert Data & Design Calculations
APPENDIX C ........................................................................................................................................................................ 21
Drainage Channel Design Data & Calculations
APPENDIX D ........................................................................................................................................................................ 26
Drainage Ditch Data & Lining Material
APPENDIX E ........................................................................................................................................................................ 30
Detention Pond #3 Design Information
EXHIBIT A ............................................................................................................................................................................ 35
Pre-Development Drai11age Area Map -Dete11tio11 Pond
EXHIBIT B ............................................................................................................................................................................ 37
Post-Developme11t Drai11age Area Map -Dete11tio11 Pond
EXHIBIT C ............................................................................................................................................................................ 39
Po st-Develop111 e 11t Drainage Area Map -Culverts & Cha1111els
EXHIBIT D ........................................................................................................................................................................... .41
Po st-Develop111 e 11t Drainage Area Map -Ditc/1 Velocities
LIST OF TABLES
TABLE l -Rainfall Intensity Calculations .............................................................................................. 5
TABLE 2 -Time of Concentration (tc ) Equations .................................................................................. 5
TABLE 3A -Post-Development Runoff Information (Exhibit C) .......................................................... 6
TABLE 3B -Drainage Structure Flow Summary .................................................................................... 6
TABLE 4 -Pre-& Post-Development Runoff Information -Detention Evaluation .............................. 7
TABLE 5 -Pre-& Post-Development Peak Discharge Comparison -Discharge Point No . 2
with Detention Pond .......................................................................................................................... 8
TABLE 6 -Summary of Maximum Pond Water Levels ......................................................................... 8
DRAINAGE REPORT
WILLIAMS CREEK SUBDIVISION -PHASE 4
INTRODUCTION
The purpose of thi s report is to provide the hydrol ogica l effects of the construction of the
Williams Creek Subdivision -Phase 4, and to verify that the proposed storm drainage system
meets th e requirements set forth by the City of College Station Drainage Policy and Design
Standards.
GENERAL LOCATION AND DESCRIPTION
The proj ect is located on a portion of a 213.91 acre tract located east of Rock Prairie Road an d
sou th of Greens Prairie Road in College Station, Texas. This report addresses Phase 4 of this
subdivision, which is made up of 35 .96 acres. The site is predominantly wooded. The existing
gro und elevations range from Elevation 218 to Elevation 276. The general lo cation of the
project site is shown on the vicinity map in Exhibit A.
FLOOD HAZARD INFORMATION
The proj ect site is located in the Carters Creek Drainage Basin. Most of the propos ed dev eloped
area of the site is located in a Zone X Area according to the Flood Insurance Rate Map
prepared by the Federal Emergency Management Agency (FEMA) for Brazos Co unty, Texas
and incorporated areas, Community No . 481195 and 480083 , Panel No . 205D , Map No.
48041 C0205D, effective dated February 9, 2000 . Zone X areas are determined to be outside of
the 500-year floodplain.
DEVELOPMENT DRAINAGE PATTERNS
Prior to development, the storm water runoff for Phase 4 flows in two directions. The western
portion of the development flows south to Rock Prairie Road to an existing culvert and then to
Lick Creek. This is noted on Exhibit A as Discharge Point No . 2. The remainder of Phase 4
flows into existing drainages , which flow to the east or northeast, then discharge into a tributary
flowing north into Carters Creek. The pre-development drainage area for the detention pond
design is shown on Exhibit A.
DRAINAGE DESIGN CRITERIA
The design parameters for the stmm drainage analysis are as fo llows :
• The Rational Method is utili zed to determine peak storm water runoff rates for the storm
drainage design for cul verts, ditches and channels .
• HEC-1 Program -Utilized to determine peak storm water runoff rates for the d ete ntion
facility design.
• Desi g n Storm Frequency
Storm culverts
Detention facil it y a na lys is
• Ru no ff Coefficients
10 and I 00-yea r storm even ts
5, I 0 , 25, 50 and I 00-year s tom1 eve nt s
Post-developm e nt (I acre minimum lo t s iz e) c = 0.50
• Run off C ur ve Number (CN) -Detentio n Pond
-1
The Brazos Co unt y Soil Survey s how s th e so i Is in the area to be classifi e d as h ydro logic
gro up D so ils . Th e pre-d eve lopmen t CN is b ase d on no developm e nt on th e s it e. The
post-development C N is b ased on deve lopme nt of Phas e 4 of th e s ubdi v is ion . The CN
calculations are found in Appendix E.
• Rainfall Intensity eq u at ions a nd va lu es for Brazos Co unt y can be found in Tabl e I .
• T im e of Concentration, tc -Calculations are based o n th e m e thod found in the TR-55
publi cation. Refer to Table 2 for the equations and Appendix A for ca lcu lat ion s . The
run off flow path used for calc ul atin g the pre-a nd post-development times of concentratio n
for th e larger drainage a reas are shown on th e ex hibits . Small er drainage areas use a
minimum tc of 10 minutes to determine th e rainfa ll intensity va lu es . Exhibit B h as the
runo ff flow paths used for the drainage areas for the d etention pond desi g n . Exhibit C has
the runoff flow paths used for th e drainage areas for th e cu lv ert and chann e l designs .
Exhibit D has the runoff flow paths used for the drainage areas for the roadside ditch
evaluation an d design .
STORM WATER RUNOFF DETERMINATION
The peak runoff values were determined in accordance with the criteria presented in th e
previou s section for the 10 , 25, 50, and 100 -year storm events. The drainage areas for th e pre-
deve lopment condition are shown on Exhibit A . Post-development runoff conditions for the
storm culvert design drainage areas are s ummari zed in Tables 3A & 3B. The pre-a nd post-
develop ment runoff information for th e detention pond evaluation is shown in Table 4.
TABLE 1 -Rainfall Intensity Calculations
Rainfall Intensity Values (in/hr)
Storm t c =
Event 10 min
110 8 .635
'2s 9 .861
lso 11 .148
1100 11 .639
Brazos County:
10 year storm 25 year storm
b= 80 b = 89
d= 8 .5 d= 8.5
e= 0 .763 e= 0.754
I = b I (tc+d)e
I = Rainfall Intensity (in/hr)
tc = U(V*60)
tc = Time of concentra tion (min)
L = Le ngth (ft)
V =Velo c ity (ft/s ec )
50 year storm 100 year storm
b= 98 b = 96
d = 8.5 d= 8 .0
e= 0 .74 5 e= 0 .7 30
(Da ta taken from State Departm en t of Hiqhwavs and Public Transportation Hydraulic Manual , page 2-16)
TABLE 2 -Time of Concentration (tc) E quations
Tli e ti 111 e of con cent ra ti o n 11:as d e te r111i n e d using 111 e 1h odsfound in TR -55. "'U rhun
Hy drol ogr for S 111 all Wat e rsh e d s. ·· Th e equa tions a re a sfol/0 1vs:
Time of C oncen t ration : ... re = T ,(,hl·l·1 ll o"1 + T1 (1.:om·l·111 r :11tt1 shl'l'I no"'
w here: T , =T ra ve l Time. minut es
For Sheet Flow : 0.007 (n L)0·8
(Pz)o .s S0.4 where : T 1 =travel time , hours
n = Manning 's roughness coefficient
L = flow length, feet
For Shallow Concentrated Flow:
P2 = 2-year, 24-hour rainfall = 4 .5"
s = land s lope , ft /ft
T 1 = LI (60*V)
where: T 1 =travel time , minutes
V =Velocity, fps (See Fig 3-1 , App . A)
L = flow length, feet
Refer to Appendix A for calculations .
TABLE 3A-Post-Deve lopment Runoff Information (Exhibit C)
Area 5 year storm 1 O year storm 25 year sto rm 50 year storm c le Area# (acres) Is Os
A (min) (in/hr) (cfs)
302 9 .01 0.50 31.5 4 .199 18.92
302+304A 10.12 0.50 32.6 4 .111 20 .80
302+304A+304 14 .75 0.50 36 .1 3.856 28.43
304A 1.11 0.50 10 7.693 4 .27
304 4 .63 0.50 21.2 5.305 12 .28
305 1.37 0 .50 10 7 .693 5.27
401 4 .39 0 .50 27.4 4 .572 10 .03
402 1.61 0 .50 23 .8 4 .967 4 .00
403 1.23 0 .50 10 7 .693 4 .73
The Rationa l Method:
Q=CIA I = b I (tc+d)e
tc = Time of concentration (min)
110
(in/hr)
4 .794
4 .696
4.412
8 .635
6 .017
8 .635
5.207
5.644
8.635
010 l2s
(cfs) (in/hr)
21 .60 5.514
23 .76 5.402
32 .54 5.079
4 .79 9 .861
13 .93 6 .901
5.91 9 .861
11.43 5.982
4 .54 6.478
5 .31 9 .861
tc = L/(V*60)
L = Length (ft
02s lso Oso
(cfs) (in/hr) (cfs)
24 .84 6.276 28 .27
27 .33 6.151 31 .12
37.46 5.787 42 .68
5.47 11 .148 6 .19
15 .98 7 .835 18 .14
6.76 11 .148 7 .64
13 .13 6 .803 14 .93
5.21 7.360 5.92
6 .06 11 .148 6 .86
Q = Flow (cfs)
A= Area (acres)
C = Runoff Coeff.
V =Velocity (ft/sec)
I = Rainfall Inte n sity (in/hr)
Brazos County:
5 year storm 1 O year storm
b = 76 b = 80
d = 8 .5 d = 8 .5
e = 0.79 e = 0.763
25 year storm
b = 89
d = 8 .5
e = 0 .75
50 year storm
b = 98
d = 8 .5
e = 0 .745
TABLE 3B -Drainage Structure Flow Summary
Culvert# #of Pipe size Co ntr ibuting Contributing Area 010
Barrels (in) Area No. Acreage (A.,) (cfs)
27 302 9 .01 21.60
2 18 401 4 .39 11.4 3
Channel#
7 402 ,403 2.84 9 .85 -----·-------
8 302, 304A 10 .12 23 .76
100 year storm
b = 96
d = 8 .0
e = 0.730
02s Oso
(cfs) (cfs)
24.84 28 .27
13 .13 14 .93
11 .2 8 12 .78
27 .33 31 .12
100 year storm
1100 0100
(in/hr) (cfs)
6 .558 29 .54
6.428 32 .52
6 .051 44 .63
11 .639 6.46
8 .176 18 .93
11 .639 7.97
7.104 15 .59
7 .682 6 .18
11 .639 7.16
0100
(cfs)
29.54
15 .59
13 .34
32 .52
TABLE 4 -Pre-& Post-Deve lopment R un off Informatio n -Detent ion Evaluation
A rea# Area C N tc Lag
(acres) (min) (hrs)
Pre 102 17 .74 73 .2 44 .7 0.447
Post 500 14 .75 79 .0 36 .1 0 .361
Post 501 1 .37 78 .5 10.0 0 .100
DETENTION FACILITY DESIGN
The runoff from Phase 2 that drains to Rock Prairie Road and ultimately to Lick Cree k must be
detained to pre-development flow levels at the Discharge Point No . 2 location s hown on
Exhibits A & B .
Discharge Point No. 2 is where the runoff from the western portion of the Phase 4 development
discharges into a culvert on Rock Prairie Road . Detention Pond No. 3 will be constructed
adjacent to Rock Prairie Road. The post-development runoff at Discharge Point No . 2 is
determined by combining the discharge hydrographs from Detention Pond No . 3 and Drainage
Area 50 l , which does not drain into the detention pond.
The pond outlet structure is the discharge pipes . The discharge pipes are 2-24" HOPE pipes, 35
feet in length, with a concrete S.E.T. 'sat the both ends of each pipe. The upstream invert
elevation of the concrete S .E.T. is 261.5 . Concrete riprap will be placed at the discharge end to
control erosion. The pipe has a design slope of 1.0 %. The top of the pond berm is at Elevation
266 .0 .
The peak flow out of the detention facility was determined by the HEC-1 program using the
depth discharge data for the pond outlet structure and the pond volume data as provided in
Appendix E . As shown in Table 5, the post-development peak outflow at Discharge Point No.
2 is less than the allowable peak outflow for the design storm event. Additionally, Table 6
presents the maximum water surface in the pond for each storm event, as well as the amount of
freeboard provided .
The data shown in Tables 5 & 6 are from the HEC-1 computer model. The summary printout
of the model is not included in this report . This data can be provided if necessary.
A comparison of the pre-& post-development peak discharge values for Disch a rge Point No. 2
shows an increase of 7 cfs in the runoff for the 100-year storm event, from 68 cfs to 61 cfs .
Table 5 a lso shows the increases in runoff for the other storm ev ents if there w as not a
detention pond to control the runoff. Because of this increased runoff, a detention pond is
proposed , w hich will reduce the peak runoff to less than or equal to th e pre-d eve lopment
runoff, as the "Post-Development with Pond " data in Table 5 shows.
7
TABLE 5 -Pre-& Post-Development Peak Disc h arge Comparison -
· Discharge Point No. 2 with Detention Pond
Location Os 010 02s Oso 0100
(cfs) (cfs) (cfs) (cfs) (cfs)
Pre -Development
Total@ Discharge Pt. No . 2 26 33 44 52 61
Post-Development without Pond
Total@ Discharge Pt. No . 2 33 40 51 59 68
Post-Development with Pond
Into Pond 31 38 48 56 64
Out of Pond 20 25 32 36 41
Total@ Discharge Pt. No . 2
21 26 34 38 42 (Pond Discharge & Area 501)
The area-capacity data and the depth-discharge data for the Detention Pond No. 3 are provided
in Appendix E. The detention pond grading plan is shown in the construction drawings
TABLE 6 -Summary of Maximum Pond Water Levels
Storm Event W ater Surface Freeboard,
Elevation, ft. ft.
5-year 263 .3 2 .7
10-year 263 .5 2 .5
25-year 263 .9 2 .1
50-year 264 .2 1.8
100-year 264.6 1.4
Note : Detention Pond Top of Berm Elevation= 266 .0
STORM CULVERT & DRAINAGE CHANNEL DESIGN
The storm culverts for this project have been selected to be Reinforced Concrete Pipe (RCP)
meeting the requirements of ASTM C-76, Class III pipe meeting the requirements of ASTM C-
789. There will be sloped safety end treatment at the end of each culvert.
Runoff from the proposed streets will be collected by the roadside ditches and conveyed to the
culvert structures. Due to the open-ditch design, no inlets will be used for this development.
The drainage areas for the culvert design are shown on Exhibit C.
Appendix B presents a summary of the storm culvert design parameters and calculations . All
pipes are 18" in diameter or larger. The culverts were designed based on the 25-year stonn
event, and data is also given for the 100-year storm event. As shown in the summary, all of the
culverts have a headwater elevation that is at least one foot below the roadway e levation for the
25-year storm event. Also, all of the culverts pass the l 00-year storm event without
ove1iopping the roadway. As required by College Station, the velocity of flow in th e pip e s is
not lower than 2.5 feet per second , and it does not exceed 15 feet per second . As the data
shows , ev e n during low flow conditions, the velocity in the pip e s will e xc ee d 2 .5 fee t p e r
second and pre vent sedim e nt build -up in the culverts. The ma x imum flow in th e storm cul ve rts
will occur in Culvert No . I . Th e maximum velocit y for the cul ve rts in this d e ve lo pm e nt w ill be
8.8 fe et pe r second and will occ ur in C ul ve rt No . 2 . Appendi x 8 conta in s a s ummary o f th e
c ul vert c al c ul a tor dat a for th e 2 5 a nd 100-year storm e vents . Co ncr e te riprap w ill be pl aced a t
the end C ulv e rt No. 2, since the velocity exceeds 4 .5 fps for th e 25-year sto 1m event. (Culve rt
No. I h as concrete riprap placed at the outlet where it discharges into C h a nn e l No. 8 ).
The storm water runoff for a portion of the road s ide ditches of Williams Creek Drive will
discharge into an improved drainage channel to convey the water from the street right-of-way
to Detention Pond No 3 . This channel , Channel No . 8, will have a concrete flum e in the bottom
to control eros ion . Appendix C contains a summary of the channel desi g n param e ters a nd
calculations. The velocity for the design storm event (25-year storm) for Channel No. 8 is 4.1
fps . Althou g h it is not required , a concrete flum e is proposed for the bottom of the channel to
control erosion. Channel No . 7 is a grass seeded channel with a 2 ' wide bottom and 4H: IV
side slop e s . [t starts at 3.6% slope and then brea ks to 2.2% slope, before dischargin g into a
natural drainage . The 25-year storm velocity for this channel ranges from 3 .5 fps to 4.2 fps.
Since the velocity of flow in this channel is less than 4 .5 feet p e r second, this will be a grass-
seeded channel. Appendix C contains the channel calculator data for the 25-and 100-year
stom1 events for both channels.
The velocity of the flow in the roadside ditches was evaluated for the 10 -year a nd 100-year
stom1 events. The drainages are shown on Exhibit D , and the data is summari zed in Appendix
D .
The city requirements for ditch lining material are as follows :
Maximum Design Velocities of Variou s
Surface Treatments 1
Surface Treatment
Exposed Earth*
Grass -Seeded
Gra ss -Sodded
Impe rmeable
(C oncrete, Gunite, Etc.)
*Temporary Channels Only
Ma x imum Design Velocity, (ft/sec )
3.0
4 .5
6 .0
10.0
'From "Eros ion and Sediment Control G uidelin es for Deve loping
Areas in Texas" b y the Soil Conserva ti on Service
In Appendix D the ditch velocities are summarized including comments stating the ditch lining
m a terial used . The ditch velocities for the propose d ditches do not exceed 4 .5 fps, th erefo re no
lining m ate ri a l other than grass is propose d .
CONCLUSIONS
The construction of this project will increase the stom1 water runoff from thi s s ite . However,
so m e of th e runoff will be carried throu g h a drainage system to ex istin g drainage channels and
then direct ly to Carters Creek and into the 100-year floodpl a in . Du e to th e lo cation of this
project a nd its proximity to Carters Creek's conflu e nce with the Navasota Ri ver, the p eak
runoff fr om thi s d eve lo pm e nt will occur much sooner than th e pea k run off in Ca rt e rs Creek ,
the refo re, th e increase in runoff ha s no affec t on th e wa te r s ur face e leva tion in Ca rt e rs C reek.
The increased flow dire ctl y into Ca rt e rs C reek will not hav e a s ig nific ant imp ac t o n th e
s u1Toundin g prope rt y . Th e portion o f th e s it e w hi ch flows to Lick C reek w ill ha ve a dete ntion
fac ility to redu ce th e post -d eve lopm e nt fl ow to th e pre-d eve lo pm e nt va lu e. No flood dam age
to d ow ns tr ea m o r adj ace nt la nd ow ne rs is ex p ec ted as a res ult of thi s d eve lo pm e nt.
APPENDIX A
Time of Concentration Data & Calculations
I 0
+-' ..... -+-' .....
CLI a.
0 ..-
VI
CV
VI
I-
::::I
0
0
I-
GJ ..... .,
:JC
3-2
.so
.20 -
.10
.06
.04
. 02 -
.01 -
.005
I
1
)
• I
I
I
I
' ,
' ' ~ ' ' b
~q, Lo-:: I
'?1 ~) !!-; ~ ~ q_
I
I
I
' I
2
•
I
4
I
)
IJ
.I
J
I
lj
.
I
6
I
I
'
j
J
•
'
Average velocity, ft/sec
j
.· . .
j
I
I
I
'
I I
10
. .
F i icu~ :J -1.-Av~raic~ vdociti~s for C•l i mali nic lrJvd lim~ for ~hallow conc~nlral~d now .
(210-Vl -TR -55 . Seco nd Ed .. Ju ne 198Gl
I
20
1
}
Drainage Area #102
Sheet Flow :
L= 240
n=
P=
T1= 0 .007(L *n (0 =
(P)o s*{S)04
Concentrated Flow1 : V=
L= . 232
U(60*V) =
Concentrated Flow2 : V=
L= 242
U(60*V) =
Concentrated Flow3 : V =
L=
U(60*V) =
Pre-Development Tc Calculations
Elev 1=
0.4 (wood ed)
4 .5
0 .593 hours =
2 fps (unpaved)
Elev 1=
1.9 min
2.5 fps (unpaved)
Elev 1=
1.6 min
1.8 fps (unpaved)
Elev 1=
5 .6 min
44.7 min
279.4 Slope= 0.021
35 .6 min
276 Slope= 0.015
270 Slope= ----0.025
0 .012
Post-Development Tc Calculations
Drai n age Area #3 02
Sheet Flow : n= 0.24 (dense grass)
P= 4.5
L= 250 Elev 1= Elev2 = Slope= 0 .0150
T1 = 0 .007(l*n (0 = 0.468 hours= 28 .1 min
(P)os*(S )°4
Concentrated Flow 1 : V= 2 .1. fps (unpaved)
L= 100 Elev 1 = Elev2= Slope= 0.0170
T1= U(60*V ) = 0.8 min
Concentrated Flow 2 : V= 2.65 fps (unpaved)
L= 211 Elev 1= Elev2 = Slope= 0 .0270
T1= U(60*V ) = 1.3 min
Concentrated Flow 3 : V= 2 .1 fps (unpaved )
L= 165 Elev 1= Elev2 = Slope= 0 .0170
T1= U(60*V) 1.3 min
j Tc= 31.5 m i n
Dra in age A rea #30 4
Sheet Flow : n= 0.24 (dense grass)
P= 4 .5
L= 190 Elev 1= Ele v2 = Slope= 0.0290
T1= 0 .007(l *n(0 = 0 .289 hours= 17 .3 min
(P)o s*(S )°4
Concentrated Flow 1: V= 2 .05 fps (unpav ed)
L= 476 Elev 1= Elev2 = Slope= 0.0150
T1= U(60*V) 3.9 min
I Tc= 21 .2 min
Drainage Area #3 02 & 304 A
Sheet Flow: n= 0 .24 (d e nse grass)
P= 4 .5
L= 250 Elev 1= Elev2 = S lope= 0 .0 150
T,= 0 .00 7(L *n(0 = 0.468 ho urs= 28 .1 min
(P)o s*(S)o.4
Con ce ntrate d Flow 1: V = 2 .1 fps (un pa ved)
L= 100 Elev 1= Elev2 = Slope= 0.0170
T,= U(60*V) = 0 .8 min
Concentrated Flow 2: V= 2 .65 fps (unpav ed)
L= 211 Elev 1= Elev2 = Slope= 0 .0270
T,= U(60*V) 1.3 min
Concentrated Flow 3 : V= 2.1 fps
L= 165 Elev ,= Elev2 = Slope = 0 .0 170
T,= U(60*V ) 1.3 min
Concentrated Flo w 4 : V = 1.45 fps
L= 85 Elev ,= Elev2 = Slope = 0.0080
T,= U(60*V) = 1.0 min
Flow through c ulvert : V = 8 .25 fps (Mann ing's)
L= 68 Etev 1= Elev2 = Slo pe= 0.0 100
T,= U(60*V) = 0 .1 min
jTc= 32 .6 min
D rain age Area #302 , 304A & 30 4 (Are a 500 )
Sheet Fl ow : n= 0 .24 (dens e grass)
P= 4 .5
L= 250 Elev 1= Elev2 = Slope = 0.0150
T,= 0 .00 7(L *n(0 = 0.468 hours = 28 .1 mi n
(P)os*(S)o.4
Con centrated Flow 1: V = 2 .1 fp s (unp ave d)
L= 100 Elev 1= Elev2 = Slope= 0.0170
T,= U(60*V ) = 0.8 min
Con ce ntrated Flow 2: V= 2.6 5 fp s (u npave d)
L= 211 Elev 1= Elev2 = Slope = 0 .02 70
T,= L/(60'V) 1.3 min
i:::o n c~r_lj_[a t ed i:::_1ow ;t V= 2.1 f ps (u1111 <1ve d)
L= 165
T,~ L/(60*V)
Concentrated Flow 4: V=
L= 85
T,= L/(60*V)
Flow through cu lvert : V=
L= 68
Ti= L/(60*V)
Concentrated Flow 5 : V=
L= 435
Ti= L/(60*V)
Drai n age Area #305 (Area 501)
Sheet Flow: n=
P=
L= 52
0.007(L*n (0 =
(P)o .s *(S)oA
Concentrated Flow 1: V=
L= 501
L/(60*V)
Drainage Area #401
Sh eet Flow : n=
P=
L= 200
0 .007(L *n (0 =
(P)os *(S)oA
Concentrated Flow 1: V=
L= 525
L/(60'V)
Elev,= Elev 2=
1.3 min
1.45 fps (unpaved)
Elev ,= Elev2 =
1.0 min
8.25 fps (M anning's)
Elev,= Elev2 =
0.1 min
2.1 fps (unpaved)
Elev,= Elev2 =
3 .5 min
36.1 min
0.24 (dense grass)
4.5
Elev ,=
0.078 hours=
2 fps (unpaved)
Elev,=
4 .2 min
8.9 min
0 .24 (dense grass)
4 .5
Elev ,=
Slop e=
Slope=
Slope=
Slope =
268 Slope=
4.7 min
260.5 Slop e=
Use 10 minutes
Slope=
0 .376 hours= 22 .6 min
2 .2 fps (unpaved)
Slope=
4 .0 min
0 .0170
0.0080
0 .0100
0.0090
0 .0577
0.0150
0 .0166
0.0190
Concentrated Flow 2: V= 1.25 fps (unpaved)
L=· 60 Elev 1= Elev2 = Slope= 0.0060
T,= U(60*V) 0 .8 min
ITc= 27 .4 m in
D ra i nage Area #402
Sheet Flow: n= 0 .24 (dense grass)
P= 4 .5
L= 170 Elev 1= Elev2 = Slope= 0 .0166
T,= 0 .007(L*n(0 = 0 .330 hours= 19 .8 min
(P )os*(S)o4
Concentrated Flow 1 : V= 1.7 fps (unpaved)
L= 150 Elev 1= Elev2 = Slope = 0 .0109
T,= U(60*V) 1.5 min
Concentrated Flow 2: V= 3.4 fps (unpaved)
L= 150 Elev 1= Elev 2 = Slope= 0 .0438
T,= U(60*V) = I 0 .7 min
Concentrated Flow 3 : V= 3.0 fps (unpaved)
L= 150 Elev 1= Elev2= Slope= 0 .0353
T1 = U(60*V) 0 .8 min
Concentrated Flow 4: V= 3 .8 fps (unpaved)
L= 225 Elev 1= Elev2 = Slope= 0 .0552
T,= U(60*V) 1.0 min
I Tc= 23 .8 m i n
------------------------"'
APPENDIXB
Storm Sewer Culvert Data & Design Calculations
17
Williams Creek Subdivision -Phase 4
Culvert Summary
Length Slope Inlet Invert Outl et Size Elev Invert Elev Culvert#
(i n) (ft) (%) (ft) (ft)
27 48.0 1.00 265.42 264 .94 -----------
2 18 40 .0 1.00 266 .60 266 .20
Top of Road
(ft)
270.00
270.60
25
Design Flow
(cfs)
24 .84
13 .10
year storm
v,. HW
(fps) (ft)
8 .1 268 .2 -----·--·
7.4 269.4
-
100 y ear storm
Desig n . .Flow V 100 HW
(cf s) (fps) (ft)
29 .54 7.4 268 .7 -
15.56 8 .8 270 .1
Culvert 1 -25 Year Storm
Culvert Calculator
Entered Data:
Shape ....... .
Numbe r of Barrels .............. .
Solving for .................... .
Chart Number ................... .
S cale Number ................... .
Chart Description .............. .
Scal e Description .............. .
Overtopping .................... .
Flowrat e ....................... .
Manning's n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevat ion ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss ......... .
Tailwater ............. .
Computed Results:
Headwater ...................... .
Slope .......................... .
Veloci ty ....................... .
Circular
1
Headwater
1
3
CONC RETE PIPE CULVER T; NO BEVELED RING ENTRAN CE
GROOV E END ENTRANCE, PIPE PROJECTING FROM FILL
Off
24.8400 cfs
0. 0140
270.000 0 ft
265.4200 ft
264.9400 ft
2 7.0000 in
48.0000 ft
0.0000
2.2 500 ft
268.1985 ft Inlet Control
0 .0100 ft/ft
8 .1436 fps
Culvert 1 -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowra te ....................... .
Manning's n .................... .
Roadway Eleva tion .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Lengt h ......................... .
Entrance Loss .................. .
T ailwater ...................... .
Co mpu ted Resu lt s:
Headwater
Slope ...
Velocity .
Willi am s Cr e k S ubdi v ision -Phase 4
Co l.l eg e S lc-1ti o 11 , Te ;-:as
Circular
1
Headwater
1
3
CONCRE TE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOV E END ENTRANCE, PIPE PROJECTING FROM FILL
Off
29.5400 cfs
0.0140
270.0000 ft
265 .4 200 ft
26 4 .9400 ft
27 .0000 in
48 .0000 ft
0 .0000
2.2 500 ft
268 .711 0 ft Inlet Co nt rol
0.0 100 ft/ft
7.4294 fps
Culv ert 2 -25 Year Storm
Cul v ert Calculator
Entered Data :
Shape .......................... .
Number of Barrels .............. .
Solv ing for ................ .
Chart Nu mb e r ......... .
Scale Numbe r .... .
Chart Descripti o n .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Ma nning's n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Co mputed Res ults :
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Ci rcular
1
Headwater
1
3
CO NCRETE PIPE CULVERT ; NO BEVELED RING ENTRAN CE
GROOV E END ENTRAN CE, PI PE PROJECTI NG r RO M r!LL
Off
13.1000 cfs
0 .0140
270 .6000 ft
266 .6000 ft
266.2 000 ft
18.0 000 in
40 .0000 ft
0.0 000
1 .50 00 ft
269 .3695 ft I nl et Cont r ol
0 .0100 ft/ft
7 .4131 fps
Culvert 2 -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Descript i on .............. .
Overtopping .................... .
Flowrate ....................... .
Manning 's n .................... .
Roadway Elev ation .............. .
Inlet Elevation ................ .
Outlet Elev ation ............... .
Diameter ....................... .
Length ......................... .
Entra nce Loss .
Tail water .....
Computed Re sult s:
He adwat e r
Slope ... .
Veloc i t y .......... .
\·Ji 11 iams C r ee k .S ubd i v i si o n
Col l e ~J e Stn ·i.c m , '1'<~>:<1~0
Phase 4
Circular
1
Headwat er
1
3
CO NCRETE PIPE CULVERT ; NO BEVELED RI NG EN TRANCE
GROO VE END ENTRAN CE , PI PE PROJ ECT ING r RO M rI LL
Off
15 . 5600 . cfs
0 .0140
2 70 .600 0 ft
266 .6000 ft
266.2000 ft
18.0000 in
40 .0000 ft
0 .0000
1.5000 ft
27 0.085 2 ft Inl et Contro l
0 .0 100 ft/ft
8 .8 05 2 fps
APPENDIXC
Drainage Channel Design Data & Calculations
2 1
Williams Creek Subdivision -Phase 4
Channel Summary
Bottom Width Side Slopes
Channel#
(i n) (H :V)
7 -Segment 1 24 4 :1
7 -Segment 2 24 4 :1 --··--·---
8 0 4:1
Slope
(%)
3.60
2.20
0.9 0
25
Design Flow
(cfs)
11.27
11 .2 7
27 .33
-
year storm 100 year storm
Depth V 25 Design Flow Depth V100
(in) (fps) (cfs) (in) (fps)
7 .2 4.2 13 .34 7 .8 4.4
8.1 3.5 13 .3 4 8.8 3.7 --
15 .5 4.1 32 .52 16 .5 4 .3
Channel 7 -25 Year Storm (Segment 1, 3.6% Slope)
Chann el Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
11.2700 cfs
0.0360 ft/ft
0.0350
18.0000 in
24.0000 in
0.2500 ft/ft (V/H)
0 .2500 ft/ft (V/H)
7.2346 in
4.2374 fps
85.7262 cfs
2.6596 ft2
83.6581 in
4.5780 in
81.8769 in
12.0000 ft2
172 .4318 in
40.1923 %
Channel 7 -100 Year Storm (Segment 1, 3.6% Slope)
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent f u ll ................... .
l>i_i ll.i.a ms Creek Subcli.visio11
Co.llege Statio11 , Te:·:aE
Trapezoidal
Depth of Flow
13.3400 cfs
0.0360 ft/ft
0 .0350
18.0000 in
24.00 00 in
0 .2500 ft/ft (V/H)
0.2500 ft/ft (V/H)
7.8355 in
4.4299 fps
85.7262 cfs
3.0113 ft2
88.6132 in
4.8935 in
86.6840 in
12.0000 ft 2
172.4318 in
43.5 30 6 %
Channel 7 -25 Year Storm (Segment 2, 2.2% Slope)
Channel Calculator
Giv en Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
11. 2700 cfs
0.0220 ft/ft
0 .0350
18.0000 in
24.0000 in
0.2500 ft/ft (V/H)
0.2500 ft/ft (V/H)
8.1264 in
3.5343 fps
67.0152 cfs
3.1888 ft2
91.0116 in
5.0453 in
89 .0108 in
12 .0000 ft2
172.4318 in
45.1464 %
Channel 7 -100 Year Storm (Segme nt 2, 2.2% Slope)
Channel Calculator
Given Input Data :
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Fl ow area ...................... .
Flow perimeter ................. .
Hy draulic radius ............... .
Top width ...................... .
Ar ea ........................... .
Peri meter ...................... .
Percent full ................... .
Ii-I :i l l i. a 111 s Cree k S u b d j v i s :i o n
Cc•l lege .Statio n, Te:-:cis
P h i1Se 4
Trapezoidal
Depth of Flow
13. 3400 cfs
0.0220 ft/ft
0.0350
18.0000 in
24.00 00 in
0 .2 500 ft/ft (V/H)
0.250 0 ft/ft (V/H)
8 .7908 in
3.6935 fps
67.0 152 cfs
3.61 18 ft 2
96 .4909 in
5.3901 in
94.3265 in
12 .0000 ft2
172.4318 i n
48.8378 %
Channel 8 -25 Year Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bottom width ................... .
Lef t slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Dept h of Flow
27.33 00 cfs
0.0090 ft/ft
0 .0250
18.0 000 in
0 .0000 in
0 .250 0 ft/ft (V/H)
0.250 0 ft/ft (V/H)
15 .4524 in
4.12 05 fps
41.0 557 cfs
6.6327 ft2
127.4241 in
7.4955 in
123.6196 in
9.0000 ft2
148.4318 in
85.8469 %
Channel 8 -100 Year Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Height ......................... .
Bo ttom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Per imeter ...................... .
Pe rce nt ful l ................... .
W.i lJ .i ams e r-ee k Subd i" is io n
College Stat .i on, Te~a~
Phase ,1
Trapezoidal
Depth of Flow
32.5200 cfs
0 .0090 ft/ft
0 .0 25 0
18.0000 in
0.0 000 in
0 .2500 ft/ft (V/H)
0 .25 00 ft/ft (V/H)
16.4935 in
4.3035 fps
41.0557 cfs
7 .5566 ft2
136. 0092 in
8 .0005 in
131.9483 in
9.0000 ft2
148.4318 i n
9 1 .6308 %
APPENDIXD
Drainage Ditch Data & Lining Material
Williams Creek Drive
Le ft Ditch (n = 0 .035)
From To Slope Drainag e Area # Station Statio n
34+65 .61 35+25.00 -0.60% 1358 ,C,D , 1
r-·-· ---------·-----
35+25 .00 37+00 .00 -1.87 % 1358,C,D ,1,2 ------------- -
37+00 .00 37+68 .87 -0.78% 1358-D , 1,2 ,2A ------·----
37+68 .87 39+72 .87 -1.02% 1358-D, 1,2,2A,3 ----------------------
39+72 .87 41+68 .87 1.97 % 3A,4 --------------
41+68 .87 42+42 .26 0 .93 % 4 --·--·-----------
42+42 .26 43+66.00 -0 .60% 135A,29 ----------------------·-
43+66 .00 45+70 .00 -1.45% 135A,29,30 ------
45+70 .00 46+35 .00 1.86 % 31 ------------------
46+35 .00 48+50 .00 -----·
48+50 .00 50+50 .00
50+50 .00 53+00 .00 -----
53+0 0 .00 54+13 .34
Lanham Drive
Left Ditch
Fro m To
Station Station
0 +00 .00 1+50.00
-4 .70 % 35 ---
-6 .00% 35 ,36 --------
-4 .83 % 35,36,37
-1 .59 % 35 ,36 ,37,38
(n = 0 .035)
Sl ope Drainage Area #
1.30 % 10,11 ,12 ,13
-
------------
1+50.00 2+75 .00
2+75 .00 4+50 .00
4+50 .00 5+26 .35
Wayne Court
Left Ditch
From To
Stati on Station
0 +35.43 2+75.00 ------
2+75 .00 4+00 .00 ------------
4+00 .00 5+49 .14 -------------
5+49 .14 6+67 .26
2 .35 % 10 ,11,12 -----
1.18% 10 , 11 - -
----
2 .86 % 10
(n = 0.035)
Slo pe Drainage Area #
-1.09 % 22 ,23,24
-4 .38 % 22 ,23,24 ,25 -----------
-3.53 % 22 ,23 ,24 ,25 ,26 ----
-5 .52 % 22 ,23 ,24,25,26 ,27
0 10
(els )
4 .04
6 .4 9 --
11 .36
2 1.82 -
7 .53 -
3 .25 ---
4 .09 -
11 .36 --
2 .00 --
1.99
2 .50 ---
3 .34 ---
3.74
0 10
(els)
1.90 ---
1.42 -
0 .95 ----
0 .35
0 10
(els)
3.20
3 .94 -
4 .60 -
505
V 10 d 10 0100 V 100 d 100 Ditch Lin i ng Materia l
(fp s ) (i n ) (els ) (fps) (in )
1.7 9 .2 5 .47 1.8 10 .3 Grass seeded -----
2.9 8 .9 8 .78 3 .2 10 .0 Gra ss seeded ---
2.4 13 .0 15 .38 2 .6 14 .5 G ra ss seeded -.
3 .2 15.7 29 .61 3.4 17 .6 Gra ss seeded ------
3.1 9 .3 10 .22 3 .4 10.5 Gra ss seeded --------
1.9 7 .8 4.41 2 .1 8 .8 Grass seeded ---
1.7 9 .3 5.54 1.8 10.4 Gra ss seeded
J -----
3 .1 11 .5 15.43 3.3 12 .9 Grass seeded -----------
2 .2 5 .7 2 .70 2 .4 6 .4 Grass seed ed -----------------
3 .1 4 .8 2 .68 3 .3 5.4 Gra ss seeded --------------·-
3 .6 5.0 3.37 3 .9 5.6 Grass seeded -------------· -------
3 .6 5 .8 4 .5 1 3 .8 6 .5 Grass seed ed
·--------------------
2.4 7 .5 5 .06 2 .6 8 .4 Grass seeded
V 10 d lo 0 100 V 100 d 100 Ditch Lin ing Materi al
(fp s) (in) (els ) (fp s) (in)
1.9 6 .0 2.56 2.0 6 .7 Grass seed ed -------
2 .2 4 .8 1.92 2.4 5.4 Grass seeded --------------
1.5 4.7 1.28 1.6 5.3 Grass seed ed -------------
1.7 2.8 0 .47 1.8 3 .1 Gra ss seed ed
V 10 d 10 01 00 V 100 dl oo Ditc h Lini ng Material
(fp s) (in) (els ) (fps) (in)
2 .0 7 .6 4 .33 2.2 8.5 Grass seeded ------------
3 .6 6 .3 5.33 3 .9 7.1 Gra ss seeded --------------------
3.4 7.0 6 .23 3.7 7.8 Grass seeded ------------
4 .1 6 .6 6 .85 4 .5 7.4 Grass seeded
Williams Creek Drive
Right Ditch (n = 0 .035)
From To Slope Drainage Area # 0 10 V 10 d 10 0 100 V 100 d 100 Ditch Lining Material Station Station (cfs) (fps) (in) (e ls) (fps) (in)
34 +65 .6 1 35+25.00 -0.60% 136,5 0.43 1.0 4.0 0.58 1.0 4 .5 Grass seeded
35 +25 .00 37+00.00 -1 .87% 13 6,5,6 1.04 1.9 4 .5 1.40 2.0 5 .0 Grass seeded
37+00 .00 37+68.87 -0 .78 % 136 ,5,6,7 1.30 1.4 5.7 1.75 1.5 6.4 Grass seeded
37+68 .87 39+72.87 -1 .26 % 136,5,6.7 ,8 1.99 1.9 6.2 2.68 2 .0 6.9 Grass seeded -
39+72.87 41+68.87 2 .2 1% 9 0 .91 1.9 4 .1 1.22 2 .1 4 .6 Grass seeded .. -
------- - -
---
42+42 .26 43+66.00 -0.60% 32 0.43 1.0 4 .0 0.58 1.0 4 .5 Grass seeded --·-. -
43+66 .00 45+70.00 -1 .55% 32,33 1.12 1.8 4 .8 1.51 1.9 5 .3 Grass seeded --·-·-·----· --· -----~-------·--
45+70 .00 46+35 .00 2 .14 % 34 0 .26 1.4 2 .6 0 .35 1.5 2 .9 Grass seed ed --. ---·------
46+35 .00 48+50 .00 -4 .70% 40 0 .73 2.4 3 .2 0.99 2 .6 3 .7 Grass seeded
~---·------------------·-
48+50 .00 50+50.00 -6 .00% 40,41 1.51 3 .2 4 .1 2.04 3.4 4 .6 Grass seeded ·-----· -· ---
50+50 .0 0 53+00.00 -4 .83% 40 ,41,42 2.76 3.4 5.4 3.72 3 .7 6 .1 Gra ss seeded ----------------------
53+00.00 54+13 .34 -1 .59% 40,41,42,43 5 .31 2 .6 8 .5 7 .16 2 .8 9 .5 Grass seeded
Lanham Drive
Right Ditch (n = 0 .035)
From To Slope Drainage Area # 0 10 V 10 d 10 0100 V100 d100 Ditch Lining Material Station Station (cfs) (fps) (in) (els) (fps) (in )
0+00.00 1+50.00 1.30% 14, 15 0.91 1.6 4 .6 1.22 1.7 5 .1 Grass seeded ----------
1 +50 .00 2+75.00 2 .35% 14 0.47 1.7 3 .2 0.64 1.9 3 .6 Grass seeded -----
3+50 .00 4+50.00 1.18% 22,23 0 .78 1.5 4.4 1.05 1.6 4 .9 Grass seeded -
4+50 .00 5+26.35 2 .86 % 22 0.35 1.7 2.8 0.47 1.8 3 .1 Grass seeded
Wayne Court
Right Ditch (n = 0 .035 )
From To Slope Drainage Area # 0 10 V 10 d 10 0100 V 100 d100 Ditc h Lining Material Station Station (els) (fp s ) (in) (cfs) (fp s) (in)
0+35.43 2+75.00 -1 .09% 16, 17 1.81 1.7 6 .1 2.44 1.9 6 .8 Grass seeded -
2+75.00 4+00 .00 -4 .38% 16 , 17 , 18 3.07 3.4 5 .7 4 .13 3 .6 6.4 Grass seeded -----------· -
4+00 .00 5+49 .1 4 -3 .53% 16,17,18,19 4 .36 3.4 6.8 5.88 3 .6 7 .6 Grass seeded ·--
5+49 .14 6+67.26 -5.52% 16,17,18,19,20 5 .22 4 .2 6.7 7 04 4 .5 7 .5 Grass seeded
Williams Cre ek Subdivision -Phase 4
Ditch Evaluati on Data
Area,
Area# A
c le
(acres) (min)
1358 0 .54 0 .50 10 .0
1358,C 0 .69 0 .50 11 .3
1358,C .D 0 .82 0 .50 130
1358,C ,D . 1 1.08 0 .50 13 .8
1358,C .D, 1.2 1.81 0 .50 15 .1
1358-D, 1.2 .2A 3.25 0.50 15 .9 --1358-D.1.2 .2A.3 6 .84 0 .50 19 .0
136 0 .05 0 .50 10 .0 ------ -
136.5 0 .10 0 .50 10 .0 -----
136 .5,6 0 .24 0 .50 10 .0 -----.
136 ,5.6 .7 0 .30 0 .50 10 .0
---------------
136,5 .6,7,8 0.46 0.50 10 .0 -· ---------------
9 0 .2 1 0.50 10 .0 -....._ __ . -· ---
4 0 .98 0.50 17.6 ---------4 ,3A 2.36 0 .50 19 .0
-----------
135A.29 1.21 0 .50 17 .0 - -
135A.29 ,30 3.65 0 .50 19 .9 -
31 0 .50 0 .50 11 .9 --
32 0.10 0 .50 10.0 -·------
32 .33 0 .26 0 .50 10.0 -
34 0 .06 0 .50 10 .0 -- --------·-
35 0 .46 0 .50 10.0 -
35.36 0 .63 0 .50 12 .2 ----------
35,36.37 0 .88 0 .50 13.4 --------
35 ,36 ,37 ,38 1.02 0 .50 14.4 ----------
35.36 .37 .38.39 1.1 5 0 .50 15.4 ----------
40 0 .17 0.50 10.0
40 ,41 0.35 0 .50 10 .0 ------------
40 ,41.42 0 .64 0 .50 10 .0
5 y ear sto r m 10 y ea r storm 25 yea r s torm 50 ye ar sto r m
Is O s 1,. o ,. l2s o,, lso O so
(in /hr) (cfs) (in /hr) (cfs) (in/hr) (cfs) (in /hr) (cfs )
7.693 2.08 8 .635 2.33 9.86 1 2.66 11 .148 3.01
7.293 2.52 8 .199 2.83 9.369 3.23 10 .598 3.66
6 .837 2.80 7.69 9 3.16 8.805 3.61 9.967 4 .09
6.643 3 .59 7.487 4.04 8.566 4 .63 9.699 5 .24
6 .354 5 .75 7.171 6.49 8.208 7.43 9 .298 8.42 -
6 .190 10 .06 6 .99 1 11 .36 8 .004 1301 9 .070 14 .74
5 .636 19 .27 6 .381 21 .82 7.314 25 .0 1 8 .297 28 .38
7 .693 0 .19 8.635 0.22 9 .86 1 0.25 11 .148 0 .28 ---
7.693 0 .38 8.635 0.43 9 .86 1 0.49 11 .148 0 .56 --
7.693 0 .92 8.635 1.04 9.861 1.18 11 .148 1.34 ----. --
7 .693 1.15 8.635 1.30 9 .86 1 1.48 11 .148 1.67 -------·-
7.693 1.77 8 .635 1.99 9 .861 2.27 11 .148 2 .56 -----
7.69 3 0 .8 1 8.635 0.9 1 9 .861 1.04 11.148 1.17 -----
5.872 2.88 6 .640 3.25 7.608 3 .73 8 .626 4 .23 -----------
5.636 6 .65 6 .381 7.53 7.314 8.63 8 .297 9 .79 ---------------
5.980 3.62 6 .759 4 .09 7.742 4 .68 8.777 5.31 --
5.495 10.03 6 .226 11 .36 7.138 13 .03 8 .100 14 .78 ------
7.124 1.78 8.014 2.00 9.16 1 2.29 10.365 2.59
7.693 0 .38 8.635 0.43 9.86 1 0.49 11 .148 0 .56 ----------
7.693 1.00 8.635 1.12 9.861 1.28 11 .148 1.45 -----------·
7.693 0.23 8.635 0.26 9.861 0 .30 11.148 0 .33 --------
7.693 1.77 8.635 1.99 9.861 2.27 11 .148 2 .56 -------
7.043 2.22 7.925 2.50 9.060 2.85 10.252 3.23 -· --- -
6 .739 2 .96 7.592 3.34 8.684 3.82 9 .831 4.33 -------
6.506 3 .32 7.337 3.74 8.396 4.28 9 .509 4 .85 -· --------
6.292 3.62 7.102 4 08 8.130 4 .67 9.211 5.30 -. -- ---
7.693 0 .65 8.635 073 9.86 1 0 .84 11 .148 0 .95 ----------------- -
7.693 1.35 8.635 1.51 9 .861 1.73 11 .148 1.95 --------
7.693 2.46 8.635 2.76 9.861 3.16 11 .148 3.57
-·---· ----
40 ,41.42.43 1.23 0 .50 10 .0 7.693 4 .73
-·----
40.41.42.43.4 4 1.40 0 .50 10 .0 7 .693 5.38 ------
10 0.08 0 .5 0 10 .0 7.693 0.3 1 --
10,11 0.22 0 .50 10.0 7.693 0.85 - -10 ,11 ,12 0 .33 0.50 10 .0 7 .693 1.27 ---
10,1 1.12 ,13 0.44 0 .50 10 .0 7.693 1.69 -------
22 0.08 0 .50 10 .0 7.693 0.3 1 ------· -----
22 ,23 0.18 0 .50 10 .0 7.693 0 .69 -- --·-----·
22 ,2 3.24 0.89 0 .50 15 .0 6 .376 2.84 --- --------
22.23.24.25 1.12 0 .50 15 .7 6.230 3.49 ------- ---
22 .23 .24 .25 .26 1.34 0 .50 16 .5 6 .073 4 .07 - -- ---
22.23 .24 .25 .26.27 1.50 0 .50 17 .1 5.961 4.47 -----
22.23.2 4 .25.26.27,28 1.57 0 .50 17 .5 5.889 4 .62 --·----
16 0.05 0 .50 10 .0 7.693 0 .19 -----. ·-·----
16 .17 0.42 0 .50 10.0 7.693 1.62 --·-· -
16,17 ,18 0 .71 0 .50 10 .0 7.693 2 .73
16,17 .18 ,19 1.01 0 .50 10 .0 7.693 3 .88
16,17 .18.19 .20 1.21 0 .50 10 .0 7.693 4 .65 -
16 .17.18.19 .20 .21 1.26 0 .50 10 .0 7.693 4 .85
14 0 .11 0 .50 10 .0 7.693 0.42
14 .15 0 .2 1 0 .50 10.0 7 .693 0 .8 1
The Ratio na l Method :
Q =C I A I = b I (lc +d)"
Q = Fl ow (cfs ) le = T ime of conce nt ra tio n (min)
A = Area (ac res )
C = Runoff Coe ff .
I = Ra infall Inte n s it y (in /h r )
Brazos Coun ty:
2._yea r sto rm 10 ear sto rm
b = 7fi b = 80
<l =SS cl =8 .'.»
!! = O 79 e = 0 7 f.i 3
25 year s to r111
I) = ('.~1
8.635 -·
8.635 ---
8.635 --
8.635
8.635
8.635
8.635
8.635
7.194
7.035
6 .86 2
6 .739
6 .660
8.635
8.635
8.635
8.635
8.635
8.635
8.635
8.635
5 .3 1 9.861
6 .04 9.861 -
0 .35 9.861 -
0.95 9.86 1 -
1.42 9.86 1
1.90 9.86 1
0 .35 9 .861
0 .78 9.861
3.20 8.234
3.94 8.054
4 .60 7 .859
5 .05 7 .71 9
5.23 7.630
0 .22 9.861
1.8 1 9.86 1
3 07 9 .861
4 .36 9 .86 1
5.22 9 .861
5.44 9.861
0.47 9 .86 1
0 .9 1 9.86 1
tc = L/(V *60 )
L = Le ngth (ft
6.06 11 .148 6.86 --------· -
6.90 11.148 7.80 -----
0.39 11.148 0.45 ---------
1.08 11.148 1.23 ---------
1.63 11 .148 1.84 ----
2.17 11 .148 2.45 ---
0 .39 11 .148 0.45 --
0 .89 11.148 1.00
3.66 9.328 4 .15
4 .5 1 9.126 5.1 1
5 .27 8.908 5.97 --5 .79 8 .752 6.56
5 .99 8.651 6 .79
0 .25 11.148 0 .28
2.07 11.148 2.34
3.50 11 .148 3.96
4 .98 11 .148 5.63
5.97 11 .148 6 .74
6 .21 11 .148 7.02
0.54 11 .148 0 .6 1
1.04 11 .148 1.17
V =Velocity (ft /sec )
50 yea r storm
[1 = 91\
100 yea r sto r111
b = 96
I ! = (.I 7](•
100 y ea r storm
1, •• a , ••
(in /hr) (cfs )
11 .639 3.14
11.062 3 .82
10.400 4 .26
10 .120 5.47
9.701 8 .78
9.463 15 .38
8 .657 29.6 1
11.639 0 .2 9
11 .639 0 .58
11 .639 1.40 --
11.639 1.75
11 .639 2 .68
11 .639 1 22
9.000 4.41
8.657 10.22
9.157 5.54
0 8.452 15.43
10 .817 2 .70
11 .639 0 .58
D 11 .639 1.51 .. -
11 .639 0 .35 ·
11 .639 2 .68
10 .700 3.37
10 .258 4 .51
9.922 5 .06 -
9.610 5.53
11 .639 0 .99
11.639 2 .04
11 .639 3.72
11 .6 39 7.16
11 .639 8 .15
11 .639 0.47 ----
11.639 1.28
11 .639 1.92
11 .639 2.56
11.639 0.47
11.639 1.05
9.732 4 .33
9.521 5 .33
9.294 6 .23
9.131 6 .85
9.026 7.09
11 .639 0 .29
11 .639 2 .44
11 .639 4 .13
11 .639 5.88
11 .639 7.04
11 .6 39 7.33
11.639 0.64
11 .639 1.22
APPENDIXE
Detention Pond #3 Design Information
.~n
SCS Curve Number C alculations
Pond -Pre-Development
Drainage A rea -102
Area -Ac . 17 .74
sq . mi . 0 .0277
T c = 44.7
Lag = L = 0 .6Tc = 26 .8 min= 0.447 hrs
Land Use
Gravel Road
Woods-Good
Pasture-Fair
Total -CN II
Average Runoff condition CN =
CN I= 61
Area -Ac.
0 .12
14 .10
3 .52
17 .74
ARC CN = CN I+ 0 .70(CN II -CN I)
Weighted
CN II CN
89 0 .6
77 61 .2
84 16 .7
78 .5
73.2
SCS Curve Numbe r Calculations
Pond -Post Developm en t
Drainage Area -500
Area -Ac .
sq . m i.
14 .75
0 .0230
Tc= 36 .1
Lag = L = 0 .6Tc =
Land Use
1 Acre Lots
1 Acre Lots
Total -CN II
21 .7 min=
Soil Type Area -Ac .
c
0
0.47
14 .28
14 .75
Average Runoff condition CN =
CN I= 67 .8
ARC CN = CN I+ 0 .70(CN II -CN I)
Drainage Area -501
Area -Ac.
sq . m i.
1.37
0 .0021
T c = 10.0
Lag = L = 0 .6Tc = 6 .0 min=
Land Use Soil Type Area -Ac .
Gravel Road
1 Acre Lots
1 Acre Lots
Pasture-fair
Total -CN II
0
c
0
0
Average Runoff condition CN =
CN I= 67 .3
ARC CN = CN I+ 0 .70(CN II -CN I)
0 .12
0 .32
0 .53
0.40
1.37
0 .361 hrs
Weighted
CN II CN
79 2.5
84 81 .3
83 .8
79 .0
0 .1 hrs
Weighted
CN II CN
89 7 .8
79 18 .5
84 32 .5
84 24 .5
83 .3
78.5
Williams Creek Subdivision Phase 4 Detention Pond
Pond Area-Capacity Data with Proposed Contours
V = H * {[A1+A2 + (A1*A2)112] / 3}
V = volume , ft 2
A= area , ft 2
H = difference in elevation, ft
Detention Pond 3
Area -Capacity Data
Elevation Depth Area Area Volume Cumulative 90% Cumulative
Volume Volume
(ft) (ft) (ft2) (acres) (ac-ft) (ac-ft) (ac-ft)
261 .50 0 .00 0 .00 0 0 0 0 .00
262 .00 0 .50 12 ,015 .00 0 .2758 0 .046 0 .05 0 .04
263 .00 1.50 32,162.00 0 .7383 0.488 0 .53 0 .48
----
264 .00 2.50 36,056.00 0 .8277 0 .783 1.32 1.19
265.00 3 .50 41,972 .00 0 .9635 0 .895 2 .21 1.99
Williams Creek Subdivision -Phase 4
Detention Pond No. 3 Outlet Pipe
2-24" HOPE Pipes @ 1.0% with concrete S .E .T.'s
Elevation -Discharge Data
Inlet Control
Elevation Culvert
Depth Q
(ft) (ft) (cfs)
261 .5 0 0 --
262 0 .5 2.0 ·-----
263 1.5 15 .2 ----------
264 2 .5 33 .2
265 3 .5 46 .2
EXHIBIT A
Pre-Development Drainage Area Map -Detention Pond
, -' ~
Donnie Willis
From: Carol Cotter
Sent:
To:
Wednesday, November 05 , 2014 4:28 PM
Donnie Willis
Cc: Alan Gibbs
Subject: Filling of Pond -Williams Creek Ph4, Lot 10 , Blk 5
Donnie,
In talking with the Design Engineer on the project, this is what I found out;
The flow through the culvert under Williams Creek was allowed to continue into the pond to provide enough runoff to
keep the pond full. The Developers kept the pond because they considered it an amenity for the lot. There were 2
drainage swales across Lots 8 and 9 that join together on Lot 7 after one of them crosses Lot 6. Drainage easements
were not defined since the outfall from the pond could go through either of these swales and since Lots 8 and 9 have
frontage on 2 streets, it was not known where those houses would go. It was assumed that the house construction
would require one of the swales to be filled in and re-routed around the house . We were concerned that if drainage
easements had been defined , it would make the lots unbuildable without abandoning one of the easements .
There is concern with the pond being filled. An evaluation should be done to determine how the fill affects the flow on
the downstream properties.
Simply diverting the flow from the culvert under Williams Creek Drive so that it stays in the roadside ditch and diverting
the flow from Lot 10 into the Williams Creek Drive roadside ditch might not be an option because the increased flow
could cause erosion in the ditch since it is very steep . Also, the culvert for the Lot 7 driveway was not sized for the
additional area and flow . This scenario should be evaluated also if it is considered as an option to reduce the flow onto
the downstream properties.
Respectfully,
Carol L. Cotter, P.E.
Sr . Assistant City Engineer
Planning & Development Services
PO Box 9960
1101 Texas Avenue S
College Stati on , Texas 77842
Office: (979) 764-3570
Fax : (979) 764-3496
Ema i l: ccotter@cstx.gov
City of College Station
Home of Te xas A&M University ®
1
DEVELOPMENT PERMIT
PERMIT NO . 05-24 ~-~ Project: WILLIAMS CREEK SUBDIVISION
COLllGl STATION FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA
RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE
SITE LEGAL DESCRIPTION:
WILLIAMS CREEK
PHASE 4
DATE OF ISSUE: 07/08/05
OWNER:
JOHNSON LAND
1400 SOUTH COMMERCIAL ST
COLEMAN , TX 76834
TYPE OF DEVELOPMENT:
SPECIAL CONDITIONS:
SITE ADDRESS:
ROCK PRAIRIE AT GREENS PRAIRIE
DRAINAGE BASIN:
Carter's Creek
VALID FOR 9 MONTHS
CONTRACTOR:
Full Development Permit
All construction must be in compliance with the approved construction plans
All trees required to be protected as part of the landscape plan must be completely barricaded in accordance with Section
7.5 .E., Landscape/Streetscape Plan Requirements of the City's Unified Development Ordinance, prior to any operations of
this permit. The cleaning of equipment or materials within the drip line of any tree or group of trees that are protected and
required to remain is strictly prohibited . The disposal of any waste material such as, but not limited to, paint, oil, solvents,
asphalt, concrete , mortar, or other harmful liquids or materials within the drip line of any tree required to remain is also
prohibited .
TCEQ PHASE II RULES IN EFFECT . SEE PLAN . NO EXCAVATION IN SPECIFIED AREAS W/O COE PERMIT .
The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site
in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design
Criteria . If it is determined the prescribed erosion control measures are ineffective to retain all sediment onsite , it is the
contractors responsibility to implement measures that will meet City, State and Federal requirements . The Owner and/or
Contractor shall assure that all disturbed areas are sodden and establishment of vegetation occurs prior to removal of any
silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor shall also insure that any
disturbed vegetation be returned to its original condition , placement and state. The Owner and/or Contractor shall be
responsible for any damage to adjacent properties, city streets or infrastructure due to heavy machinery and/or equipment
as well as erosion, siltation or sedimentation resulting from the permitted work .
In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to insure
that debris from construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage
facilities.
01-os -ois-
Date
7 -/'Zr-OS
0 Date
t •
CONSTRUCTION COST ESTIMATE 27 -Jun-05
WILLIAMS CREEK SUBDIVISION
COLLEGE STATION , TEXAS
PHASE 4 -25 Lots
Item Estimated Unit Estimated
No . Description Quantity Price Cost
Sitework
1 Mobilization/Layout LS $7,500 .00 $7 ,500
2 Site Preparation 7 .1 AC $2,000 .00 $14 ,200
3 Si lt Fence 1,400 LF $2 .00 $2 ,800
4 Construction Exit-Rock 20 TONS $55 .00 $1 , 100
5 Erosion Control/Seeding/Hydromulch 1 LS $10,000.00 $10 ,000
6 Topsoil Stripping & Replacement 1,590 CY $6 .00 $9,540
7 Excavation/Grading 5 , 100 CY $3.50 $17,850
8 Lime Stabilized Subgrade 11,226 SY $3.00 $33,678
9 Asphalt Paving -1 1/2" depth 9 ,075 SY $5.50 $49 ,913
10 Base Material -6" depth 10 ,865 SY $6.90 $74,969
11 Ribbon Curb 595 LF $7 .25 $4,314
12 End of Roadway sign -red/black 3 EA $200 .00 $600
Subtotal $226,463
Storm Drainage
13 18" RCP -T & G -structural 40 LF $38.00 $1 ,520
14 27" RCP -T & G -structural 32 LF $60 .00 $1 ,920
15 27" RCP -T & G -structural -Remove & Relocate 16 LF $24 .00 $384
16 18" Concrete S .E .T. (4:1) 2 EA $1,250 .00 $2,500
17 27" Concrete S.E.T. (4:1)-Remove & Relocate 2 EA $600 .00 $1,200
18 Remove Existing Rock Riprap 96 SF $2 .00 $192
19 Concrete riprap 200 SF $4.50 $900
20 Concrete Flume (4:1 sides, V-bottom) 790 SF $5 .00 $3,950
21 C hannel # 7 -Excavatio n & Grading 165 LF $5 .00 $825
22 Sod Channel Lining (4:1 sides 2' bottom) 260 SY $3 .00 $780
Subtotal $14,171
Detention Pond s
23 Excavation/Grading 2,250 CY $3 .50 $7,875
24 Topsoil Stripping & Replacement 675 CY $6 .00 $4,050
25 Concrete riprap 55 SF $4 .50 $248
26 24" HOPE -T & G -non-structural 70 LF $40 .00 $2,800
27 24" Concrete S.E.T. (4:1) 4 EA $1,400 .00 ~5,600
Subtotal $20,573
Wa ter Lines
28 3" Water PVC SOR 21 0-2241 non-structural 375 LF $12 .00 $4 ,500
29 6" Water PVC CL200 (C909) structural 60 LF $24 .00 $1,440
30 6" Water PVC CL200 (C909) non-structural 383 LF $20 .00 $7,660
31 10" Water PVC CL200 (C909) non-structura l 1,200 LF $28 .00 $33 ,600
32 12" Water PVC CL200 (C909) non-structura l 510 LF $32 .00 $16 ,320
33 3" Gate Valves EA $400 .00 $400
34 6" Gate Valves 1 EA $700 .00 $700
35 1 O" Gate Valves 3 EA $1,000 .00 $3 ,000
36 3" 45 deg. M .J . Bend EA $200 .00 $200
37 6" 11 .25 deg . M .J . Bend EA $250 .00 $250
38 6" 2 2 .5 deg . M .J. Bend EA $250 .00 $250
39 6" 45 deg . M .J . Bend 1 EA $2 50.00 $2 50
40 12 " 11 .25 de g . M .J. Be nd 2 EA $5 00 .0 0 $1,00 0
41 12"x6 " M .J . Tee 2 EA $550 .00 $1, 100
4~~ 1 O"xG " M .J . Tee
J •c:i~=ie I r I : EA 5500 .00 5500
l -•
43 6"x6" M.J. Tee 1 EA $350 .00 $350
44 6"x3" M.J . Reducer 1 EA $200 .00 $200
45 12"x10" M.J . Reducer 1 EA $450 .00 $4 50
46 2" Blowoff Assembly 2 EA $600 .00 $1 ,200
47 Fire Hydrant Assembly 3 EA $2,250 .00 $6 ,750
48 Fire Hydrant Vertical Extension 3 EA $250 .00 $750
49 Remove Blowoff -Tie-in to existing 12" line 1 EA $200 .00 $200
50 1.5" Short Service 7 EA $600 .00 $4,200
51 1" Long Service 5 EA $600 .00 $3 ,000
52 1.5" Long Service 2 EA $600 .00 $1 ,200
53 Meter Boxes 25 EA $140.00 ~3,500
Subtotal $92 ,970
Rock Excavation -Waterline
54 Rock Excavation 2 ,000 LF/FT $5 .00 ~10,000
Subtotal $10 ,000
Items Not Included: Total Sitework $226,463
1. Phone and cable conduit Total Storm Drainage $14,171
2. Electrical distribution Total Detention Pond $20,573
3. Street lights Total Water $92,970
Total Rock Excavation $10,000
TOTAL CONSTRUCTIONj $364,1761
Cost/Lot $14,567
Page 2 o f 2
/ D ·. 4-b
• 1' (o -d-1 ... o-s-
0547
CONSTRUCTION COST ESTIMATE ~27-Jun-05
WILLIAMS CREEK SUBDIVISION
COLLEGE STATION, TEXAS
PHASE 4 -25 Lots
Item Estimated Unit Estimated
No . Description Quantity Price Cost
Sitework
1 Mobilization/Layout 1 LS $7,500.00 $7,500
2 Site Preparation 7 .1 AC $2,000 .00 $14,200
3 Silt Fence 1,400 LF $2 .00 $2,800
4 Construction Exit-Rock 20 TONS $55 .00 $1, 100
5 Erosion Control/Seeding/Hydromulch 1 LS $10,000.00 $10,000
6 Topsoil Stripping & Replacement 1,590 CY $6 .00 $9,540
7 Excavation/Grading 5, 100 CY $3 .50 $17,850
8 Lime Stabilized Subgrade 11 ,226 SY $3 .00 $33 ,678
9 Asphalt Paving - 1 1/2" depth 9,075 SY $5 .50 $49 ,913
10 Base Material -6" depth 10,865 SY $6 .90 $74,969
11 Ribbon Curb 595 LF $7.25 $4 ,314
12 End of Roadway sign -red/black 3 EA $200 .00 $600
Subtotal $226,463
Storm Drainage
13 18 " RCP -T & G -structural 40 LF $38 .00 $1,520
14 27" RCP - T & G -structural 32 LF $60 .00 $1,920
15 27" RCP -T & G -structural -Remove & Relocate 16 LF $24 .00 $384
16 18" Concrete S.E.T . (4 :1) 2 EA $1 ,250 .00 $2 ,500
17 27'' Concrete S.E.T. (4 :1) -Remove & Relocate 2 EA $600 .00 $1 ,200
18 Remove Existing Rock Riprap 96 SF $2 .00 $192
19 Concrete riprap 200 SF $4 .50 $900
20 Concrete Flume (4:1 sides, V-bottom) 790 SF $5 .00 $3 ,950
21 Channel # 7 -Excavation & Grading 165 LF $5 .00 $825
22 Sod Channel Lining (4 :1 sides 2' bottom) 260 SY $3 .00 $780
Subtotal $14,171
Detention Ponds
23 Excavation/Grading 2,250 CY $3 .50 $7 ,875
24 Topsoil Stripping & Replacement 675 CY $6 .00 $4 ,050
25 Concrete riprap 55 SF $4 .50 $248
26 24 " HOPE -T & G -non-structural 70 LF $40.00 $2 ,800
27 24" Concrete S.E.T . (4 :1) 4 EA $1,400.00 ~5,600
Subtotal $20,573
Water Lines
28 3" Water PVC SOR 21 D-2241 non-structural 375 LF $12.00 $4 ,500
29 6" Water PVC CL200 (C909) structural 60 LF $24.00 $1,440
30 6" Water PVC CL200 (C909) non-structural 383 LF $20 .00 $7 ,660
31 1 O" Water PVC CL200 (C909) non-structural 1,200 LF $28 .00 $33 ,6 00
32 12" Water PVC CL200 (C909) non-structural 510 LF $32 .00 $16,320
33 3" Gate Valves EA $400.00 $400
34 6" Gate Valves 1 EA $700 .00 $700
35 10" Gate Valves 3 EA $1,000 .00 $3,000
36 3" 45 deg. M .J . Bend EA $2 00 .00 $20 0
37 6" 11 .25 deg . M .J . Bend EA $250 .00 $25 0
38 6" 22.5 deg. M .J. Bend EA $250 .00 $250
39 6" 45 deg . M .J . Bend 1 EA $250 .00 $250
40 12" 11 .25deg . M .J . Bend 2 EA $500 .00 $1 ,000
41 12"x6" M .J . T ee 2 EA $550 .00 $1.100
42 1 O"x6 " M ,J. T ee P ;·1 ~c I u l ::· EA $500 00 $500
" .
43 6"x6" M.J. Tee EA $350 .00 $350
44 6"x3" M .J . Reducer EA $200 .00 $200
45 12"x10" M.J. Reducer 1 EA $450 .00 $450
46 2" Blowoff Assembly 2 EA $600 .00 $1 ,200
47 Fire Hydrant Assembly 3 EA $2 ,250 .00 $6,750
48 Fire Hydrant Vertical Extension 3 EA $250 .00 $750
49 Remove Blowoff -Tie-in to existing 12" line 1 EA $200 .00 $200
50 1.5" Short Se rv ice 7 EA $6 00.00 $4 ,200
51 1" Long Service 5 EA $600.00 $3,000
52 1.5" Long Service 2 EA $600.00 $1 ,200
53 Meter Boxes 25 EA $140 .00 ~3,500
Su btotal $92,970
Rock Excavati o n -Water line
54 Rock Excavation 2 ,000 LF /FT $5 .00 ~10,000
Subtotal $10,000
Items Not Included: Total Sitework $226,463
1. Phone and cable conduit Total Sto rm Drainage $14,171
2. Electrical distribution Total Detention Pond $20,573
3. Street lights Total Water $92,970
Total Rock Excavation $10 ,000
TOTAL CONSTRUCTION! $364,1761
Cost/Lot $14,567
Date:
To:
From:
Subject:
Remarks:
TEX CON
TRANSMITTAL
June 27, 2005
Caro l Cotter
Development Services
City of College Station
Joe Schultz, P .E.
Texcon General Contractors
1707 Graham Road
College Station, Texas 77845
Phone : (979) 764 -7743
R evised Construction Drawings
Wi lli ams Creek Subdivision -Phase 4
College Station, Texas
Attach ed are 4 sets of the rev ised Construction Drawings for the above-
mentioned project, 2 copies of th e Engineer's Cost Estimate, and the
information requested in the fo llo wing responses to yo ur comments dated
June 17 , 2005. Please return the extra copies of approved constru ction
drawings to us. Our responses to your comments are as follows:
1. What is the size/condition of the cul vert at Rock Prairie?
It appears to b e a 24 " CMP plugged with silt.
Can it handle flow from the 2-24" RCP out let?
No, not in its current condition.
2. Provide HEC-1 runs. Th ey are attach ed to this resubmitted.
3. Re-title Sheet 1. Don e.
4 . Vertical curve in fom1a tion is miss ing from Sta 37+00:
Th e missing information has bee n added to Sh ee t 2.
Provide water d es ign report:
2 copies are attached to this resubmitta l.
5. Surface tr eatm ent for th e de tention pond b erm ? Grass.
6. Sewer minimum finished floor elevations ?
Previous ly resub mi tt ed on the Final Plat.
Let m e knovv if yo u nee d anything e lse o r hav e any qu es ti ons.
Design Report
Waterline Fire Flow Analysis
for
Williams Creek Subdivision -Phase 4
College Station, Texas
June 2005
Prepared By:
TEXCON General Contractors
1707 Graham Road
College Station, Texas 77845
(979) 764-7743
\ "
) \ { '· ..
1.0 INTRODUCT l ON & DESCRIPTION
The purpose of thi s repo rt is to pro v id e a descripti o n of th e proposed wate rlin es to be
constructed with th e Williams Creek Subdivisio11, Phase 4, and to pro v id e th e res ult s of the
analysis of the wate rlines under fire flow conditions. An existing Wellborn Special Utility
District (SUD) 16" waterline is located along the north right-of-way of Greens Prairie Road
adjacent to the project site. Wellborn SUD is th e water supplier for this subdivision. The
waterline to supply the site connects to this 16 " waterline and was constructed with Pha ses 1
and 2 of the Subdivision . The waterlines for Pha se 4 will connect to th e 12 " lin e along
Wi ll iams Creek Drive. The water main for the fire hydrant flow will be constructed using
12", 1 O" and 6" diameter pipe . The waterlines for this project will be constructed of DR-14,
PVC pipe meeting the requirements of A WW A C-9 09 with m ec hanical joint fittings.
2.0 FIRE FLOW REQUIREMENTS
The flow required for fire hydrant flow for the subdivision is 1,000 gallons per minute
(gpm), for the fire hydrant proposed for this subdivision .
3.0 WATERLINE SYSTEM ANALYSIS
The waterline system was analyzed using the WaterCAD computer program developed by
Haestad Methods, Inc. Two computer models were run for this project. One model
analyzes the flow in the 12" waterline along Williams Creek Drive from the connection
with 16" waterline to the street intersection of Williams Creek Drive and Moses Creek
Court and Joseph Creek Court in Phase 1 of the Subdivision . Ex hibit" l" is a sc hematic of
this proposed waterline . The second mode l analyzes the flow in the water mains within
Phase 4 of the Subdivision. Exhibit "5" is a schematic of th e proposed waterlines which
shows the locations of the fire hydrants . A normal domestic use flow of 1.5 gpm was
included in the analysis for each of the proposed 112 residential lots . This results in a
normal demand of 168 gpm, which was included in the analysis .
The residual pressure in the existing 16" waterline was determined by calculating the
headloss at a flow of 1,667 gpm for the existing 16" line based on a fire hydrant flow te s t.
Appendix A has data on the fire hydrant flow test on the ex is ting 16" water! ine . The test
was perfom1ed by Wellborn SUD and City of College Station personnel. The static
pressure in the l ine was 100 psi and there was a pressure drop of 13 psi at a flow of 1,3 50
gpm .
The re s idual pressure at a flow of 1,6 67 gpm was c alcu lated us in g the following equation:
Where : QR = Q available @ desired residual pressure
QF = Q during fire flow test
HR = pressure drop to desired residual press ure
H F= pressure drop during fir e flow tes t
This res ult s in a res idu a l press ure of 80.8 p s i wh e re the prop ose d wa te rlin e w ill co nn ec t to
th e 16 " wa te rlin e . A co nse rva ti ve value of 65 ps i wa s used in thi s anal ys is. T he hydrauli c
grade was se t at thi s press ure at the s tart of th e propo se d water lin e , .I un c ti o n R-1 , Ex hibit
"l ". Th e mode l was run with a to ta l fl ow of 1,66 7 g prn . Ex hibit ''2" is a s umm ary of th e
pip e sys te m junc ti o n nodes for thi s mod e l. Th e res idual press ur e a t .Jun c ti o n .1 -10 is 63 .3
ps i. Th is pr ess ur e was used a s the start o f the seco nd mod e l. .Jun c ti o n R-1 o n Exh ibit ")".
Exhibits "3" and "4" are summaries of the pipe sectio ns for the system under thi s demand
scenario. The maximum velocity for the 12" water main is 4 . 7 fps.
The computer model was run with a fire flow of 1,000 gpm at the fire hydrant proposed for
this project. Exhibit "6" is a s ummary of the pipe system junction nodes with a fire flow of
1,000 gpm from Fire Hydrant No. 3 . The low est resid ual pressure occurred in the system at
Junction J-40, which is at the end of the proposed 3" lin e . The pressure at this point is
estimated by the model to be 36.7 psi , which exceeds the minimum of 20 psi required by th e
TCEQ regulations.
Ex hibi ts "7" & "8" are summaries of the pipe sections for the system under thi s demand
scenario. The maximum velocity for the l O", 6" and 3" water mains is 0 .2, 11.5, and 0.4
feet per second, respectively, occurring in Pipes P-24 thru P-27, P-35 thru P-40 , and P-41
thru P-42, respectively.
A separate analysis was run for the domestic use of 1.5 gpm per unit for the entire
s ubdi vision, and the minimum residual pressure was 45.4 psi , which exceeds the minimum
pressure of 35 psi required by TCEQ . Minor losses in this system were not calculated, as
they were assumed to be insignificant.
4.0 CONCLUSIONS
The waterlines proposed for this development should adequately provide the fire flow
required with acceptable values for headloss and velocity. This ana lysis was done assuming
adequate residual pressure in the existing 16" water main, as determined by the fire hydrant
flow test.
Appendix A
Fire Hydrant Flow Test Data
.'
--·
Date :
Location :
Williams Creek Subdivision
Flow Test Report
Fire Hydrant on 16 " Wellborn SUD Waterline
August 6, 2004
Approximately 1,750 ' east of Rock Prairie Road on the north s id e o f
Greens Prairie Road
Static Pressure* - l 00 psi
*Air gauge on l" water service approximately 300' east of the Fire Hydrant
Pitot Reading -65 psi
1,350 gpm
Residual Pressure -87 psi
Fire Hydrant opened by Wellborn SUD personnel. Flow Test and pressure readin gs
performed by City of College Station personnel.
Exhibits
.I
l '
/
£-1:, ~\~.,.~ lb''
R -1 \J\h \1.. r \....: "" <
P -1
J-1
P-2
Till e : Willi;;1111 s Cre<!k S ul><Jiv1 s 1on
c :\1'1a es l <ld \w ll'C\t'.:O~~G · 12 111 w e <!
J -2
Scenario: Base
\Ne..\\"''" ~u-0
c. \ ...... ) C.:,cce.,. 5 (J ' . ro ~r'~ (l() .. J
P -3
P -4
J -4
P-5
J-5
P -6
P -7
J-7
J-8
f I I "1'' ~ V\; I() i -\-
TEXCON GENERAL CONTRACTORS
()710 l ill·1 II) :1-1 ;•:!. /\11.1 .:.-)I l;o (,,;1;·111 M c lil(l<I S . Inc 37 IJ1 0<1k ~~1 rfr~ Rr1 :-ul W ;tl<:fl1t1fy . C 1 Clf~/(l:! l t:?.I\
P-9
J-9
P-10
J -10
P ~el
r>r o tpcl E n\Jll1CC< .IOE SC HUL r z
W ;o l •:rC/\lJ v :\ I !'1 7 1<:1
I ',1qf : I 111 1
Node Elevation Demand
Label (ft) Type
J-1 242.00 demand
J -2 236.00 de mand
J -3 233.50 demand
J-4 2 31 .00 demand
J -5 229.00 demand
J-6 226.00 demand
J-7 235.00 demand
J-8 230.00 demand
J -9 220.00 demand
J -10 234.00 demand
T i lle : Willia1ns C reek Suhclivis ion
' '.l 1;:11·!s l <1d\wl,.c\e02fi· 12in wr:d
Demand
(gpm)
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
1,667.00
(I .~{/ l(~/().:I ng :~~1 ·;;~1 Atv1 (•) H ;11 ~~1 ::1fl l'vl1 ~l l1qd~. !tic
Scenario: Base
Steady State Analysis
Junction Report
Demand Calculated Hydraulic Pressure
Pattern Demand Grade (psi)
(gpm) (ft)
Fixed 0 .00 390.4 0 64 .17
Fixed 0 .00 389.48 66.37
Fixed 0 .00 388.55 67 .05
Fixed 0 .00 387.81 67 .81
Fixed 0 .00 387 .00 68.32
Fixed 0 .00 385 .95 69.17
Fixed 0 .00 384 .37 64.59
Fixed 0 .00 383.51 66.38
Fixed 0 .00 382.59 70.31
Fixed 1,667.00 380.46 63 .34
,, • f
TEXCO NGENERALC ON TRACTOR S
:~7 Hf t 1 ~1 k~;1d (: r ~(1 ;1 rl W ;11ed11 1rv . C I IH)/!ltl USA
l -'<1>1,.•.I F llq 11 -.eer .JOE SC H UL r z
W;111 o(C/\f"l ... :1 I 111 7 l(:j
,,,11 ;1 · 1 i·I I
Link Length Diameter Material
Label (ft) (in)
P-1 318 .00 12 PVC
P-2 183 .00 12 PVC
P-3 183.00 12 PVC
P-4 147 .00 12 PVC
P-5 162 .00 12 PVC
P-6 208.00 12 PVC
P-7 313 .00 12 PVC
P-8 171 .00 12 PVC
P-9 182.00 12 PVC
P-10 422 .00 12 PVC
Titl e W1ll 1;.111 1s C ree k s ,1t 1rl1v 1s io 11
(~ •l1 ;1 !·~ . .1 ;1 1 fl.•::l ft :\(:ei :~(',. 1:·.,1 '.'.'(f l
Roughnes~ Minor Los!
150 .0 0 .00
150.0 0 .00
150.0 0 .00
150.0 0 .00
150.0 0 .00
150.0 0 .00
150.0 0.00
150.0 0 .00
150.0 0 .00
150.0 0.00
n :->./ 1 r-·.,.().:1 1 ··:-1. ;~!., J 1 r. ~ .. 1 · .1 H :11. ·s t;.,, 1 11.'l f !1111 H !·: 11 •1
Scenario: Base
Steady State Analysis
Pipe Report
Initial Current Discharge Start
Status Status (gpm) Hydraulic
Grade
(ft)
Open Open 1,667.00 392 .00
Open Open 1,667 .00 390.40
Open Open 1,667.00 389.48
Open Open 1,667.00 388 .55
Open Open 1,667 .00 387 .81
Open Open 1,667.00 387 .00
Open Open 1,667 .00 385 .95
Open Open 1,667 .00 384.37
Open Open 1,667.00 383 .51
Open Open 1,667.00 382 .59
cl ''
F--r-h.:b:f-3
f FXC ('N G f N ER /\l. CONTRAC TO RS
End Headless Friction
Hydraulic (ft) Slope
Grade (IV1000ft)
(ft)
390.40 1.60 5 .04
389.48 0.92 5.04
388 .55 0 .92 5 .04
387 .81 0 .74 5 .04
387 .00 0 .82 5.04
385.95 1.05 5 .04
384 .37 1.58 5.04
383 .51 0 .86 5 .04
382 .59 0 .92 5 .04
380.46 2 .13 5 .04
l '•111t·~ 11 ~1 1 1 1 11 1 1 :,·r .IC)I SC I tl ll. I Z
'" 11• .t /\{ I '. 1 '1II I 1 I
I ' 111 4 I 1•1 I
Analysis Results
Scenario: Base
Steady State Analysis
Pipes @ 0.00 hr
Label Status Constituent Flow Velocity From To Friction Minor Total Head loss
(mg/I) (gpm) (fUs) Grade Grade Loss Loss Headloss Grad ient
(ft) (ft) (ft) (ft) (ft) (fU1000ft)
P-1 Open NIA 1,667 .00 4 .73 392 .00 390.40 1.60 0 .00 1.60 5.04
P-2 Open NIA 1,667.00 4 .73 390.40 389.48 0 .92 0 .00 0.92 5.04
P-3 Open NIA 1,667 .00 4.73 389.48 388 .55 0 .92 0.00 0 .92 5.04
P-4 Open NIA 1,667 .00 4 .73 388 .55 387 .81 0 .74 0 .00 0 .74 5 .04
P-5 Open NIA 1,667 .00 4 .73 387 .81 387 .00 0 .82 0.00 0.82 5 .04
P-6 Open NIA 1,667 .00 4 .73 387 .00 385 .95 1.05 0 .00 1.05 5 .04
P-7 Open NIA 1,667 .00 4 .73 385 .95 384 .37 1.58 0 .00 1.58 5.04
P-8 Open NIA 1,667.00 4 .73 384 .37 383.51 0 .86 0 .00 0.86 5 .04
P -9 Open NIA 1,667.00 4 .73 383 .51 382 .59 0 .92 0 .00 0 .92 5.04
P-10 Open NIA 1,667.00 4.73 382 .59 380.46 2 .13 0 .00 2 .13 5.04
• I 11
G~h :L :+ 4-
I FXCO N GE N E R A L C:O NTR A C T C>H S
1·.,,,, ....
Label Elevation Zone Type Base Flow
(ft) (gpm)
J-1 235.00 Zone Demand 0 .00
J-2 238.00 Zone Demand 0 .00
J-3 240.00 Zone Demand 0 .00
J-4 242 .00 Zone Demand 0 .00
J-5 244.00 Zone Demand 0 .00
J-6 246.00 Zone Demand 0 .00
J-7 251 .00 Zone Demand 24.00
J-8 260 .00 Zone Demand 0 .00
J-9 262.00 Zone Demand 0.00
J-10 266.00 Zone Demand 0 .00
J-11 272.00 Zone Demand 0 .00
J-12 272.00 Zone Demand 24 .00
J-13 274.00 Zone Demand 0.00
J-14 275.00 Zone Demand 0 .00
J-15 275.00 Zone Demand 0 .00
J-16 275.00 Zone Demand 0.00
J-17 274.00 Zone Demand 0 .00
J-18 274 .00 Zone Demand 24 .00
J-19 270 .00 Zone Demand 24.00
J-20 268.00 Zone Demand 0 .00
J-21 269.00 Zone Demand 0.00
J-22 269.00 Zone Demand 0 .00
J-23 273 .00 Zone Demand 21 .00
J-24 270 .00 Zone Demand 0.00
J-25 269.00 Zone Demand 0 .00
J-26 268.00 Zone Demand 0 .00
J-27 267 .00 Zone Demand 21 .00
J-28 265.00 Zone Demand 0 .00
J-29 263.00 Zone Demand 0 .00
J-30 261.00 Zone Demand 0 .00
J-31 259.00 Zone Demand 0 .00
J-32 257 .00 Zone Demand 0 .00
J-33 254 .00 Zone Demand 0 .00
J-34 248.00 Zone Demand 0 .00
J-35 224 .00 Zone Demand 21 .00
J-36 269.00 Zone Demand 0 .00
J-37 269.00 Zone Demand 0 .00
J-38 268.00 Zone Demand 0 .00
J-39 268.00 Zone Demand 0 .00
J-40 268.00 Zone Demand 1 ,000 .00
J -41 252 .00 Zone Demand 0 .00
J-42 251 .00 Zone Demand 9 .00
Title : E '14 2 Williarn s Cree k Ph 4
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fi xed
Fixed
Fixed
Fi xed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fi xed
Fixed
Fixed
Fixed
Fixed
Fixed
Fi xed
Fixed
Scenario: Base
Steady State Analysis
Junction Report
Pattern Demand Calculated
Calculated Hydraulic Grad
(gpm) (ft)
0 .00 379.95
0 .00 379 .66
0 .00 379 .53
0 .00 379.42
0 .00 379.31
0 .00 379 .22
24.00 378.82
0 .00 378.27
0 .00 378.17
0 .00 377 .97
0.00 377 .80
24.00 377 .75
0 .00 377.42
0.00 377 .16
0 .00 377.08
0.00 376.88
0 .00 376.80
24 .00 376.68
24 .00 376.11
0 .00 375.94
0.00 375.79
0 .00 375.66
21 .00 375.04
0 .00 375.04
0 .00 375.04
0 .00 375.04
21.00 375.04
0 .00 375.04
0.00 375.04
0 .00 375.04
0 .00 375.04
0 .00 375.04
0 .00 375.04
0 .00 375.04
21 .00 375.04
0 .00 362.26
0.00 360.81
0 .00 357 .40
0 .00 354 .80
1,000 .00 352 .83
0 .00 352.72
9 .00 352.71
Pressure
e (psi)
62.71
61 .29
60.37
59.45
58 .54
57.64
55.30
51 .17
50 .26
48.45
45.77
45.75
44 .75
44 .20
44 .17
44 .08
44.48
44.42
45.91
46.70
46.20
46.15
44 .15
45.45
45.88
46.31
46.74
47 .61
48.47
49.34
50 .20
51 .07
52 .37
54 .96
65.35
40.35
39.72
38.68
37 .55
~
43.58
44 .01
P roJCC I E n 9 111 e~" Joe Scl11ilt 2
~1 \ '.e 1 .:1 2 ff ;~na l y s i~; ... P11 4-re po rl.wccl Tex con Gcne r ;i l Co11lr;tc:l ors W;1t1•r(:t\D v" :, I'~!) J:~(l 1J
OC/2.'.I /()~; 0 ·~·2G 5 1 PM '1~>H aes l a cl M E~lll oc l s.111 c :~? D ro<)k ~i cle R o;HI \fJ;ll t ~rl )1wy . Cl (Hi70H U SA .. 1 ·~'((~-7 !°">:,-l'i'~'i P r 1 ~ic I o l I
Label Length Diameter Material Hazen-Check
(ft) (in) Williams Valve?
c
P-1 20 .00 12 .0 PVC 150.0 false
P-2 112 .00 12 .0 PVC 150.0 false
P-3 49 .00 12 .0 PVC 150.0 false
P-4 44 .00 12 .0 PVC 150 .0 false
P-5 42.00 12.0 PVC 150.0 false
P-6 32 .00 12.0 PVC 150 .0 false
P-7 156.00 12.0 PVC 150.0 false
P-8 222 .00 12.0 PVC 150.0 false
P-9 37 .00 12.0 PVC 150 .0 false
P-10 80.00 12.0 PVC 150.0 false
P-11 70 .00 12.0 PVC 150.0 false
P-12 22 .00 12.0 PVC 150.0 false
P-13 134.00 12 .0 PVC 150 .0 false
P-14 112.00 12 .0 PVC 150.0 false
P-15 31 .00 12 .0 PVC 150 .0 false
P-16 85 .00 12 .0 PVC 150.0 false
P-17 33.00 12.0 PVC 150.0 false
P-18 51 .00 12 .0 PVC 150.0 false
P-19 247 .00 12.0 PVC 150.0 false
P-20 73 .00 12 .0 PVC 150.0 false
P-21 69 .00 12.0 PVC 150.0 false
P-22 58 .00 12 .0 PVC 150.0 false
P-23 280.00 12 .0 PVC 150.0 false
P-24 325 .00 10 .0 PVC 150.0 false
P-25 51 .00 10 .0 PVC 150.0 false
P-26 33 .00 10 .0 PVC 150.0 false
P-27 47 .00 10 .0 PVC 150.0 false
P-28 37.00 10 .0 PVC 150.0 false
P-29 30 .00 10 .0 PVC 150.0 false
P-30 41 .00 10 .0 PVC 150.0 false
P-31 34 .00 10.0 PVC 150.0 false
P-32 40.00 10 .0 PVC 150.0 false
P-33 3 1.00 10.0 PVC 150.0 false
P-34 117 .00 10.0 PVC 150.0 false
P-35 413 .00 10.0 PVC 150.0 fal se
P-36 221 .00 6.0 PVC 150.0 false
P-37 25 .00 6 .0 PVC 150.0 false
P-38 59 .00 6.0 PVC 150.0 false
P-39 45 .00 6 .0 PVC 150.0 false
P-40 34 .00 6 .0 PVC 150.0 fal se
P-41 408 .00 3 .0 PVC 150.0 fal se
P-42 21 .00 3.0 PVC 150.0 false
Ti l le : E 14 2 W 1lli ;11 n s C ree k P ll d
q \ . I {! 1,1 ;'.'.11 ~111 ~ tl y~·.1 ~:;_ I i1 1 .. 1 -fl 'Pl 11 I '."!( d
Scenario: Base
Steady State Analysis
Pipe Report
Minor Control Pischarg( pstream Struch..li
Loss Status (gpm) Hydraulic Grade
:Coefficien (ft)
0 .00 Open 1,168.00 380 .00
0 .00 Open 1 ,168.00 379 .95
0 .00 Open 1 ,168.00 379 .66
0.00 Open 1 ,168.00 379.53
0 .00 Open 1 ,168.00 379.42
0.00 Open 1, 168.00 379 .31
0.00 Open 1 ,168.00 379 .22
0 .00 Open 1,144.00 378 .82
0.00 Open 1,144.00 378 .27
0 .00 Open 1,144 .00 378 .17
0.00 Open 1,144.00 377 .97
0 .00 Open 1,144 .00 377 .80
0 .00 Open 1,120.00 377 .75
0 .00 Open 1 ,120.00 377.42
0 .00 Open 1 ,120 .00 377 .16
0 .00 Open 1,120.00 377 .08
0 .00 Open 1 ,120 .00 376.88
0 .00 Open 1 ,120.00 376 .80
0 .00 Open 1 ,096 .00 376 .68
0 .00 Open 1 ,072.00 376 .11
0 .00 Open 1 ,072 .00 375 .94
0 .00 Open 1 ,072.00 375 .79
0 .00 Open 1 ,072.00 375.66
0 .00 Open 42.00 375 .04
0 .00 Open 42.00 375 .04
0 .00 Open 42.00 375 .04
0 .00 Open 42.00 375 .04
0 .00 Open 21 .00 375 .04
0 .00 Open 21.00 375.04
0 .00 Open 21 .00 375.04
0 .00 Open 21 .00 375 .04
0 .00 Open 21.00 375 .04
0 .00 Open 21 .00 375 .04
0 .00 Open 21 .00 375 .04
0 .00 Open 2 1 .00 375 .04
0 .00 Open 1,009.00 375 .04
0 00 Open 1 ,009.00 362 .26
0 .00 Open 1 ,009.00 36 0 .81
0 .00 Open 1 ,009.00 357.40
0 .00 Open 1 ,009 .00 354 .80
0 00 Open 9 .00 352 .83
0 .00 Open 9 .00 352 .72
lflwn s tream Structu E'ress ure Headloss
Hydraulic Gra de Pipe Gradient
(ft) Headlos ~ (fU1000ft)
(ft)
379 .95 0 .05 2 .59
379.66 0 .29 2 .59
379.53 0 .13 2 .59
379.42 0 .11 2 .59
379 .31 0 .11 2 .59
379 .22 0 .08 2 .59
378 .82 0.40 2.59
378 .2 7 0 .55 2.49
378 .17 0 .09 2 .50
377.97 0.20 2.49
377 .80 0 .17 2.49
377 .75 0 .05 2.49
377.42 0 .32 2.40
377.16 0 .27 2.40
377 .08 0 .07 2 .40
376 .88 0 .20 2.40
376.80 0 .08 2.40
376.68 0 .12 2.40
376 .11 0 .57 2 .30
375.94 0.16 2 .21
375 .79 0 .15 2 .21
375 .66 0 .13 2 .21
375 .04 0 .62 2 .21
375 .04 0 .00 0 .01
375 .04 0 .00 0.01
375 .04 0 .00 0 .01
375.04 0.00 0.01
375.04 0 .00 0 .00
375.04 0.00 0 .00
375 .04 0 .00 0.00
375.04 0 .00 0 .00
375.04 0.00 0 .00
375.04 0.00 0 .00
375.04 0 .00 0 .00
375 .04 0 .00 0.00
362.26 12 .79 57.85
360.81 1.45 57 .85
357 .40 3.41 57 .85
354 .80 2 .60 57 .85
352 .83 1 .97 57 .85
352 .72 0 .11 0.27
352.7 1 0 .01 0.27
Pr•1 1 1~<:1 E 111 11 tH !'!' .IC lf~ Scl 1111 17
l e x c nn G ene 1 ;:ii C o 1tt r ;H :t oi s. '.11.'. 11 1 "1 : r.r 1 '."; '.·, l (i :i I :-'OJI
... !l 1 •l'1~·.11J 1 :f ~(1 ;)1 ! VV;1 l t ·1l11 1f';' <~11 11 1 /!JH LJ~;,'\ t J-~·11.·~ /'.',.J .,.,;; r·,i~n · 1 1 11 1
Analysis Results
Scenario: Base
Steady State Analysis
Title : E142 Williams Creek Ph 4
Project Engineer: Joe Schultz
Project Date : 05/24/05 03 :36 : 18 PM
Comments :
Scenario Summary
Scenario Base
Active Topology Alternative Base-Active Topology
Physical Alternative
Demand Alternative
Initial Settings Alternative
Operational Alternative
Age Alternative
Constituent Alternative
Trace Alternative
Fire Flow Alternative
Capital Cost Alternative
Energy Cost Alternative
User Data Alternative
Liquid Characteristics
Base-Physical
Base-Demand
Base-Initial Settings
Base-Operational
Base-Age Alternative
Base-Constituent
Base-Trace Alternative
Base-Fire Flow
Base-Capital Cost
Base-Energy Cost
Base-User Data
Liquid
Kinematic Viscosity
Water at 20C(68F)
1.0804e-5 ft2/s
Specific Gravity
Network Inventory
Pressure Pipes 42
Number of Reservoirs
Number of Pressure Junctic 42
Number of Pumps
-Constant Power:
-One Point (Design Point):
-Standard (3 Point):
-Standard Extended :
-Custom Extended:
-Multiple Point:
Number of Spot Elevations
Pressure Pipes Inventory
3.0 in
6 .0 in
Total Length
0
0
0
0
0
0
0
0
429.00 ft
384 .00 ft
4 ,071 .00 ft
Number of Tanks
-Constant Area :
-Variable Area :
Number of Valves
-FCV's :
-PBV's :
-PRV's :
-PSV's:
-TCV's :
-GPV's :
10.0 in
12 .0 in
Pressure Pipes @ 0 .00 hr
0
0
0
0
0
0
0
0
0
0
1.00
1 , 199.00 ft
2,059 .00 ft
Label ControOischargeVelocit\l)pstream StrucfDrnvnstream StructtJDalculatec:CalculatecPressun:Headloss
Sta tu s (gpm) (fUs) Hydraulic Grade H ydraulic Grade Friction Minor Pipe Grad ie nt
(ft) (ft) He ad loss HeadlossH e adlos~fU1 OOOfl)
(fl) (fl) (fl)
P-1 Open 1,168.00 3 .31 380 .00 379 .9 5 0 .05 0 .00 0 .05 2 .59
P-2 Open 1,168 .00 3 .3 1 379 .95 379 .66 0 .29 0 .00 0 .29 2 .59
P-3 Open 1,168 .00 3 .3 1 379 .66 379 .53 0 .13 0 .00 0 .13 2 .59
P-4 O pe n 1,168.00 3 .31 379 .53 379 .4 2 0 .11 0 .00 0 .11 2 .59
P-5 Ope n 1,168 .00 3 .3 1 379 .4 2 379 .3 1 0 .11 0 00 0 .11 2.59
T ille : E 14 2 W illi am s C re e k Ph 4 P 1o ier:1 En ~J11 •ec r J oe S c l 1u l l z
q:\ ... \e 1 ·l2 t f;-1n ;11 ysis __ ph4 -re 1>o rt .w 1'.t.1 Tex con Ge n e ral Con tr ac to 1 s l.'Vc l!<•1 C/\D v(i :, 11 :; '.i 1 l-CIJI
(l(i/~'.'1 /0~·, (Jd .:~tt ~i (i Pf\.1 1 ~;· H ;:1 e~:.t.l d flv 1<:11 1t.11ls hu : :·:/ H1P'l~~;11lc f ~n;.1d W;1l(:rl 1ur y. C T ()G/ng US/\ • 1-;,.(l:~-,·:,~,.11 ! 1 ) ~1.111 1 · I n f /
Analysis Results
Scenario: Base
Steady State Analysis
Pressure Pipes @ 0.00 hr
Label ControOischargeVelocit\l)pstream Struc()cevnstream StructiJ?elculatecCalculatecPressunHeadloss
Status (gpm) (fUs) Hydraulic Grade Hydraulic Grade Friction Minor Pipe Gradient
P-6
P-7
P-8
P-9
P-10
P-11
P-12
P-13
P-14
P-15
P-16
P-17
P-18
P-19
P-20
P-21
P-22
P-23
P-24
P-25
P-26
P-27
P-28
P-29
P-30
P-31
P-32
P-33
P-34
P-35
P-36
P-37
P-38
P-39
P-40
P-41
P-42
Open 1, 168.00
Open 1,168 .00
Open 1,144 .00
Open 1, 144 .00
Open 1,144 .00
Open 1,144 .00
Open 1,144.00
Open 1,120.00
Open 1,120.00
Open 1,120.00
Open 1,120.00
Open 1,120.00
Open 1,120.00
Open 1,096 .00
Open 1,072 .00
Open 1,072 .00
Open 1,072 .00
Open 1,072 .00
Open 42 .00
Open 42 .00
Open 42 .00
3 .31
3 .31
3.25
3.25
3 .25
3.25
3 .25
3.18
3 .18
3 .18
3.18
3 .18
3 .18
3 .11
3.04
3 .04
3 .04
3 .04
0.17
0 .17
0 .17
Open
Open
Open
Open
Open
42.00 0.17
21 .00 0 .09
21 .00 0 .09
21.00 0 .09
21 .00 0 .09
Open 21 .00
Open 21.00
Open 21 .00
Open 21 .00
Open 1,009.00
Open 1,009.00
Open 1,009 .00
Open 1,009.00
Open 1,009 .00
Open 9 .00
Open 9 .00
0 .09
0.09
0 .09
0 .09
11.45
11.45
11.45
11.45
11.45
0 .41
0.41
Ti tl e : E 14 2 Will i<llTIS C r eek Ph 4
(ft) (fl) Head loss HeadlossHeadlos~fU1 OOOft)
379 .31
379 .22
378 .82
378.27
378 .17
377 .97
377 .80
377 .75
377.42
377 .16
377 .08
376 .88
376 .80
376.68
376 .11
375 .94
375 .79
375 .66
375 .04
375 .04
375 .04
375 .04
375 .04
375.04
375 .04
375 .04
375.04
375 .04
375.04
375.04
375 .04
362 .26
360 .81
357.40
354 .80
352 .83
352 .72
379 .22
378 .82
378.27
378.17
377.97
377 .80
377 .75
377.42
377 .16
377.08
376 .88
376 .80
376 .68
376 .11
375.94
375 .79
375.66
375.04
375.04
375 .04
375.04
375.04
375 .04
375.04
375.04
375 .04
375.04
375.04
375 .04
375 .04
362.26
360.81
357.40
354 .80
352 .83
352 .72
352 .71
(ft) (ft) (ft)
0 .08
0 .40
0 .55
0 .09
0 .20
0 .17
0 .05
0 .32
0 .27
0 .07
0 .20
0 .08
0 .12
0 .57
0.16
0 .15
0.13
0 .62
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
12.79
1.45
3.41
2 .60
1.97
0 .11
0 .01
0 .00
0 .00
0.00
0 .00
0.00
0.00
0 .00
0.00
0 .00
0.00
0 .00
0.00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .08
0.40
0 .55
0 .09
0 .20
0 .17
0 .05
0 .32
0 .27
0 .07
0 .20
0 .08
0 .12
0 .57
0 .16
0 .15
0 .13
0 .62
0 .00
0 .00
0 .00
2 .59
2 .59
2.49
2 .50
2.49
2.49
2.49
2.40
2.40
2.40
2.40
2.40
2.40
2.30
2 .21
2 .21
2.21
2 .21
0 .01
0.01
0 .01
0.00 0.00 0 .01
0 .00 0 .00 0 .00
0 .00 0 .00 0 .00
0 .00 0.00 0.00
0 .00 0 .00 0 .00
0 .00
0 .00
0 .00
0.00
0 .00
0 .00
0.00
0 .00
0 .00
0 .00
0.00
0 .00 0 .00
0 .00 0.00
0 .00 0 .00
0 .00 0 .00
12.79 57 .85
1.45 57 .85
3.41 57 .85
2 .60 57 .85
1.97 57 .85
0 .11 0 .27
0 .01 0 .27
~r\. \e 1.:i::·ff 0:lnalys is .. J ''''1 ~r~~t'<1rl .'.vc<I T cxcon Ge n er~I Con 1r c1c l ors
06/~'.·'.l /('I~~ f~.J 3·'.l .'~6 F11\•1 · -, ~i~1 l::-:;t ;1cl l '.1l c ll1<><I ~. Inc . 37 H11 ·1(.i k s 111l? F~o;=11I W<1 l erlu1 1y . C 'l CHiTO~; u~;,1\
Projec l Enq ineer : Joe S c huliz
W:1 1"' CAD ,-r; '.; I G.'."i 120 jl
•
Label Elevation Zone Type Base Flow
(ft) (gpm)
J-1 235 .00 Zone Demand 0 .00
J-2 238.00 Zone Demand 0 .00
J-3 240 .00 Zone Demand 0 .00
J-4 242 .00 Zone Demand 0 .00
J-5 244 .00 Zone Demand 0 .00
J-6 246.00 Zone Demand 0 .00
J-7 251 .00 Zone Demand 24 .00
J-8 260.00 Zone Demand 0.00
J-9 262 .00 Zone Demand 0 .00
J-10 266.00 Zone Demand 0 .00
J-11 272.00 Zone Demand 0.00
J-12 272.00 Zone Demand 24.00
J-13 274 .00 Zone Demand 0 .00
J-14 275.00 Zone Demand 0 .00
J -15 275.00 Zone Demand 0 .00
J-16 275.00 Zone Demand 0 .00
J-17 274 .00 Zone Demand 0 .00
J-18 274.00 Zone Demand 24.00
J-19 270.00 Zone Demand 24.00
J-20 268.00 Zone Demand 0 .00
J-21 269.00 Zone Demand 0 .00
J-22 269.00 Zone Demand 0 .00
J-23 273.00 Zone Demand 21.00
J-24 270.00 Zone Demand o.ao
J-25 269.00 Zone Demand 0 .00
J-26 268.00 Zone Demand 0 .00
J-27 267 .00 Zone Demand 21 .00
J-28 265 .00 Zone Demand 0 .00
J-29 263.00 Zone Demand 0 .00
J-30 261 .00 Zone Demand 0 .00
J-31 259.00 Zone Demand 0 .00
J-32 257.00 Zone Demand 0 .00
J-33 254 .00 Zone Demand 0 .00
J-34 248.00 Zone Demand 0 .00
J-35 224 .00 Zone Demand 21 .00
J-36 269.00 Zone Demand 0 00
J-37 269.00 Zone Demand 0 .00
J -38 268.00 Zone Demand 0 .00
J-39 268.00 Zone Demand 0 .00
J-40 268 .00 Zone Demand 0 .00
J-41 252.00 Zone Demand 0 .00
J-42 251 .00 Zone Demand 9 .00
T i ll e : E ·14 2 Wi llia m s Creek P l1 4
~/.\ \e 1·1 ?fL :1n;-1l ysi~; 1 1 l1 :l -H'~11.,•(f w1:,I
()l)<:'•l l OS 1).1 ~'.t-L()l , .. 1 (1,.I I l ;u •:.l.td (1.,1•·11H1d~: 1111
Fixed
Fi xed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fi xed
Fixed
Fixed
Fixed
Fixed
Fixed
Fi xe d
Fi xe d
Fixed
Fixed
Fi xed
Fixed
Fixed
Fixed
Fi xed
Fi xe d
Fixed
Fi xe d
Fi xe d
Fi xe d
Fi xe d
Fi xe d
Fi xed
Fi xe d
Fi xe d
Fixed
Fixed
Fixed
Scenario: Base
Steady State Analysis
Junction Report
Pattern Demand Calculated
Calculated rlydraulic Grad
(gpm) (ft)
0 .00 380 .00
0 .00 379.99
0.00 379.99
0 .00 379.98
0 .00 379.98
0 .00 379.98
24 .00 379.97
0 .00 379.96
0 .00 379.95
0 .00 379.95
0 .00 379 .95
24 .00 379.94
0 .00 379.94
0 .00 379.93
0 .00 379.93
0 .00 379.93
0 .00 379.93
24.00 379.93
24 .00 379.92
0 .00 379.92
0 .00 379.92
0 .00 379.92
21 .00 379.91
0 .00 379.91
0.00 379.91
0 .00 379.91
21 .00 379.91
0 .00 379.91
0 .00 379.91
0.00 379.91
0 .00 379.91
0 .00 379.91
0.00 379.91
0 .00 379.91
21 .00 379.91
0 .00 379 .91
0.00 379 .91
0 .00 379 .91
0 .00 379.91
0 .00 379.91
0 .00 379.80
9 .00 379.79
Pressure
l (psi)
62 .73
61.43
60.57
59.70
58.83
57 .97
55.80
51 .90
51 .03
49.30
46.70
46.70
45.83 -45.40
45.40
45.40 ,.__
45.83
45.83
47.56
48.42
47.99
47 .99
46 .26
47.55
47.98
48.42
48.85
49.72
50 .58
51.45
52.31
53 .18
54.47
57 .07
67.45
47 .99
47 .99
48.42
48.42
48.42
55.29
55.72
Prc111 ·c l E r 1q111('P1 ./ne Schull z
T cxco n Gencr~11 Cont1 c1c t o r s '/J;ll1 •1C 1\f) vi; r; JI ' :,1~:<'11
:.· 1 -~·· ( ~~;1 rk 1 1~~1;11! IN~tl(•1I J1 1ry . c ·1 ,,,;7f1h tJ~~f. . I .'t.J:i-1''.:r,_11.1,1·. 1';1·1~· I {d I
Design Report
Waterline Fire Flow Analysis
for
Williams Creek Subdivision -Phase 4
College Station, Texas
June 2005
Prepared By:
TEXCON General Contractors
1707 Graham Road
College Station, Texas 77845
(979) 764-7743
1.0 INTRODUCTION & DESCRIPTION
The purpose o f thi s re po rt is to pro vid e a d esc ripti o n of th e proposed wa ter lin e s to be
co nstructed with th e Williams Creek Subdivision , Phase 4, and to pro vid e th e results of th e
analysis of th e waterlines under fir e fl ow conditions. An ex istin g We llborn Special Utility
Distri c t (SU D) 16 " waterline is locate d along th e no rth ri g ht-of-way of Greens Prairie Road
adjacent to the proje c t site . Wellborn SU D is th e wa te r s uppli e r for thi s subdivision. The
waterline to supply th e s ite connects to this 16 " water! in e and was co nstr uc te d w ith Ph ases I
and 2 of the Subdivi s ion . The waterlines for Pha se 4 will connect to th e 12" lin e along
Williams Creek Drive . The water main for the fire hydrant flow will b e constructed us in g
12 ", 10 " and 6" diameter pipe. The waterlines fo r thi s proj ect w ill be co nstru c ted of DR-14"
PVC pipe meeting the requirements of A WW A C-909 with mechanical joint fittings.
2.0 FIRE FLOW REQUIREMENTS
The flow required for fire hydrant flow for the subdivision is 1,000 gallons per minute
(gpm), for the fire hydrant proposed for this subdivision.
3.0 WATERLINE SYSTEM ANALYSIS
The waterline system was analyzed u si ng th e WaterCAD co mputer prog ram deve lop e d by
Haestad Methods, Inc . Two computer models were nm for thi s project. One mode l
analyzes the flow in the 12" waterline along Williams Creek Drive from the connection
with 16 " waterline to the street intersection of Williams Creek Dri ve and Moses C reek
Court and Joseph Creek Court in Phase 1 of th e Subdivision . Exhibit " l" is a schematic of
thi s proposed waterline . The second model anal yzes th e flo w in the water mains within
Phase 4 of the Subdivision . Exhibit "5" is a schematic of the proposed waterlines w hich
shows the locations of the fire hydrants. A normal domestic use flow of 1.5 gpm was
included in the analysis for each of the proposed 112 residential lots . This results in a
normal demand of 168 gpm, which was included in the anal ys is .
The residual pressure in the existing 16" waterline was dete rmined by calculating the
headloss at a flow of 1,667 gpm for the existing 16" line based on a fire hydrant flow test.
Appendix A has data on the fire hydrant flow te s t on the existing 16 " waterline. The test
was performed by Wellborn SUD and City of College Station p e rsonne l. The static
pres s ure in the line was 100 psi and the re was a press ure drop of 13 p s i at a flo w of 1,350
gpm .
The residual pressure at a flow of 1,667 gpm was ca lculated us ing th e following e quation :
Where: QR = Q available @ des ir ed residual press ure
QF = Q durin g fir e fl ow test
H R= pressure drop to des ir ed residual pressure
H r= pressure drop durin g fire flow test
Thi s res ults in a res idual pressure of 80 .8 ps i where th e propo se d waterli ne w ill co nn ec t lo
th e 16 " wate rlin e. A co n se rva ti ve va lu e of 65 ps i was used in thi s a na lys is. T he hydra uli c
g rade was se t at thi s pressure a t th e s tart of th e proposed wate rlin e, Jun ct io n R-1 , Ex hibit
"I ". T he m ode l was run w ith a tota l fl ow of 1,667 g prn . Ex hibit "2 " is a s umm ary of the
pip e sys te m junction nodes fo r thi s mod e l. Th e res idu a l pre ss ur e a l .I un c tion .J -10 is 63.3
ps i. Thi s p res s ur e wa s use d a s th e s ta rt o f th e sec o nd mod e l . .I un c ti o n R-1 o n Ex hi b it "5 "".
Exhibits "3" and "4" are summaries of the pipe sec tions for the system und e r thi s demand
scenario . The maximum velocity for the 12" water main is 4 .7 fps.
The computer model was run with a fir e flow of 1,000 gpm at the fire hydrant proposed for
this project. Exhibit "6" is a summary of the pipe system junction nodes with a fire flow of
1,000 gpm from Fire Hydrant No . 3 . The lowe st residual pressure occurred in the system at
Junction J-40, which is at the end of the proposed 3" line . The pressure at this point is
estimated by the model to be 36 .7 psi, which exceeds the minimum of 20 psi require d by th e
TCEQ regulations .
Exhibits "7" & "8" are summaries of the pipe sec tions for the system under this d e mand
scenario . The maximum velocity for the 10", 6" and 3" water mains is 0 .2, 11.5 , and 0.4
feet per second, respectively , occurring in Pipes P-24 thru P-27 , P-35 thru P-40 , and P-41
thru P-42, respectively.
A separate analysis was run for the domestic use of 1.5 gpm per unit for the entire
subdivision, and the minimum residual pressure was 45.4 psi, which exceeds the minimum
pressure of 35 psi required by TCEQ . Minor los ses in this system were not calculated , as
they were assumed to be insignificant.
4.0 CONCLUSIONS
The waterlines proposed for this development should adequately provide the fire flow
required with acceptable values for headloss and velocity. This analysis was done assuming
adequate residual pressure in the existing 16" water main, as determined by the fire hydrant
flow test.
Appendix A
Fire Hydrant Flow Test Data
Date:
Location:
Williams Creek Subdivision
Flow Test Report
Fire Hydrant on 16" Wellborn SUD Waterline
August 6 , 2004
Approximately l,750' east of Rock Prairie Road on the north side of
Greens Prairie Road
Static Pressure* - l 00 psi
*Air gauge on l" water service approximately 300' east of the Fire Hydrant
Pitot Reading -65 psi
l,350 gpm
Residual Pressure -87 psi
Fire Hydrant opened by Wellborn SUD personnel. Flow Test and pressure readings
performed by City of College Station personnel.
Exhibits
.. 1
I '
/
\ b''
R-1 W r.~r \....: "''
P-1
J-1
P-2
Till e : Willi<1111 s Coeek Sulxfivi s oon
c :\h aes t .:•c1\wtfc\(:0~~G · 12 i11 .wcct
J-2
Scenario: Base
We.\\\,,,"' ~\).\)
~\'"') G,cce .. 5 Pro~r:~ <L~ .. J
P -3
P-i
J-4
P-5
J -5
p~
J-7
P-8
J -8
.. ,,
fk:~;lo;+ I
TEXCON GENERAL CONTR A CTORS
()7/()111).1 11) :H ~'/ /\M ·:'.) H ;lf,,;l ;·l(f M o:llo<t<I S . Inc :i 7 U11 •f•k ·~11l1~ nr1;111 W;·11r'.dH1fy . c 1 (!(~/(I :~ l I!?:/\
P-9
J -9
P-10
J -10
Pr<tff'<:I E n911lC )Cr .IOE SC I l lll. f l
W ;1l1 :1C /\IJ v :I I I"' Ir:)
l'.1Clf' I 11 1 I
Node Elevation Demand
Label (ft) Type
J -1 242 .00 demand
J -2 236.00 demand
J -3 233 .50 demand
J-4 231.00 demand
J -5 229.00 demand
J -6 226.00 demand
J -7 235.00 demand
J-8 230.00 demand
J-9 220 .00 demand
J -10 234 .00 demand
T ill e : Willic:i1 n s C ree k Sutxli vis io1 1
1 •.1i ;:1i:?~::t c:1 d \w ti c\e 0 2f'i -1 :?.in w e d
Demand
(gpm)
0 .00
0 .00
0.00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
1,667.00
Scenario: Base
Steady State Analysis
Junction Report
Demand Calculatec Hydraulic Pressure
Pattern Demand Grade (ps i )
(gpm) (ft)
Fixed 0 .00 390.40 64 .17
Fixed 0.00 389.48 66.37
Fixed 0 .00 388.55 67 .05
Fixed 0 .00 387 .81 67.81
Fixed 0 .00 387 .00 68.32
Fixed 0.00 385.95 69.17
Fixed 0 .00 384 .37 64 .59
Fixed 0 .00 383.51 66.38
Fixed 0 .00 382.59 70.31
Fixed 1 ,667.00 380.46 63.34
T EXCON GE N EJV\l. CON TR A C T ORS
l "''l"i:I F<1q u 1ee r .JOI:' SC l!UI I L
\j\/;ij('(C /\fl ·::\I 111; 1<.I
I ', H ;•. I , .1 ,
Link Length D iamete1 Material Roughnes~ f\i1inor Los~
Label (ft) (in)
P-1 318 .00 12 PVC 150.0 0 .00
P-2 183 .00 12 PVC 150.0 0 .00
P-3 183 .00 12 PVC 150.0 0 .00
P-4 147 .00 12 PVC 150 .0 0 .00
P-5 162 .00 12 PVC 150.0 0 .00
P-6 208 .00 12 PVC 150 .0 0 .00
P-7 3 13 .00 12 PVC 150.0 0 .00
P-8 171 .00 12 PVC 150.0 0 .00
P-9 182.00 12 PVC 150.0 0 .00
P-10 422 .00 12 PVC 150.0 0 .00
f ::. 1 1; t ! :~··'· 11 11 .. ::H 1 :'.( :o ::"~-1 ; '11 1 •::r 1 l
Scenario: Base
Steady State Analysis
Pipe Report
Initial Current Discharge Start
Status Status (gpm) Hydraulic
Grade
(ft)
Open Open 1,667 .00 392.00
Open Open 1,667 .00 390.40
Open Open 1,667 .00 389.48
Open Open 1,667 .00 388 .55
Open Open 1,667 .00 387 .81
Open Open 1,667 .00 387 .00
Open Open 1,667 .00 385 .95
Open Open 1,667.00 384 .37
Open Open 1,667 .00 383 .51
Open Open 1,667 .00 382 .59
TF:><C C'N G E Nl:RA L. CO N T R AC T ORS
End Head loss Friction
Hydraulic (ft) Slope
Grade (ft/1 OOOft)
(ft)
390.40 1 .60 5 .04
389.48 0 .92 5 .04
388 .55 0 .92 5.04
387 .81 0 .74 5 .04
387 .00 0 .82 5.04
385 .95 1.05 5 .04
384 .37 1.58 5.04
383 .51 0 .86 5 .04
382 .59 0 .92 5 .04
380.46 2 .13 5 .04
(1~>./11 ··,,.(1..1 ,·,:··. /~'~~I f,H '1 H ;1,·"-;!;11! l1.'1 1 ~ll 11 H I ·-~. 11 11 ./ I S1•" .V ·.11 11 • l~1 );:1r! VV;ll1 •1l 1111 y l , I :i;,/.H : 1 1~-;.\ 1:•P :S1 /~·.1 •• I •,•···
''.'. 11• r' · .'\[ I ~ I ;r t/" I 1 I
l '.11 1i · I t •I I
Label Status Constituent
(mgll)
P-1 Open N/A
P-2 Open N/A
P-3 Open N/A
P-4 Open N/A
P-5 Open N/A
P-6 Open N/A
P-7 Open N/A
P-8 Open NIA
P-9 Open N/A
P-10 Open N/A
Till e : W i lli <~n 1 ~ C reek S ul:>cl iv is 1n n
c: '.t )a e~;l i 1 ~h w li•:·!:n:/(i .1 2 1n w c r l
Flow
{gpm}
1,667.00
1,667.00
1,667 .00
1,667.00
1,667.00
1,667.00
1,667 .00
1,667.00
1,667.00
1,667 .00
Analysis Resu l ts
Scenario: Base
Steady State Analysis
Pipes @ 0.00 hr
Velocity From To Friction Mi nor Total Head loss
(fVs) Grade Grade Loss Loss Headloss Grad ient
(ft) (ft) (ft) (ft) (ft) (fV1000ft)
4 .73 392 .00 390.40 1.60 0 .00 1.60 5.04
4 .73 390.40 389.48 0 .92 0 .00 0 .92 5 .04
4 .73 389 .48 388.55 0 .92 0 .00 0 .92 5.04
4 .73 388 .55 387 .81 0 .74 0 .00 0 .74 5.04
4 .73 387 .81 387 .00 0 .82 0 .00 0 .82 5 .04
4 .73 387 .00 385 .95 1.05 0 .00 1.05 5 .04
4 .73 385.95 384 .37 1.58 0 .00 1.58 5.04
4 .73 384 .37 383 .5 1 0.86 0 .00 0 .86 5 .04
4 .73 383.51 382 .59 0.92 0 .00 0 .92 5 .04
4 .73 382.59 380.46 2 .13 0 .00 2 .13 5.04
. , ,,
G~h :L :-1-4
T EXCON GE N E RA L CONTR A C T ORS
~'f()il°,.:I E 11 o i11 P.e r · .IOE SC HUL TZ
W ;11 ,,rC/\D v :I I 1117 l e i
Label Elevation Zone Type Base Flow
(ft) (gpm)
J-1 235.00 Zone Demand 0 .00
J-2 238.00 Zone Demand 0 .00
J-3 240.00 Zone Demand 0 .00
J -4 242 .00 Zone Demand 0 .00
J-5 244 .00 Zone Demand 0 .00
J-6 246.00 Zone Demand 0 .00
J-7 251 .00 Zone Demand 24 .00
J-8 260.00 Zone Demand 0 .00
J-9 262.00 Zone Demand 0.00
J-10 266.00 Zone Demand 0 .00
J-11 272.00 Zone Demand 0 .00
J-12 272.00 Zone Demand 24.00
J-13 274 .00 Zone Demand 0 .00
J-14 275 .00 Zone Demand 0 .00
J-15 275.00 Zone Demand 0 .00
J-16 275.00 Zone Demand 0 .00
J-17 274 .00 Zone Demand 0 .00
J-18 274 .00 Zone Demand 24.00
J-19 270.00 Zone Demand 24.00
J-20 268.00 Zone Demand 0 .00
J-21 269.00 Zone Demand 0 .00
J-22 269.00 Zone Demand 0 .00
J-23 273.00 Zone Demand 21 .00
J-24 270 .00 Zone Demand 0 .00
J-25 269.00 Zone Demand 0 .00
J-26 268.00 Zone Demand 0 .00
J-27 267.00 Zone Demand 21 .00
J-28 265.00 Zone Demand 0 .00
J-29 263.00 Zone Demand 0 .00
J-30 261 .00 Zone Demand 0 .00
J-31 259.00 Zone Demand 0 .00
J-32 257 .00 Zone Demand 0 .00
J-33 254.00 Zone Demand 0 .00
J -34 248 .00 Zone Demand 0.00
J-35 224 .00 Zone Demand 21 .00
J-36 269.00 Zone Demand 0 .00
J-37 269.00 Zone Demand 0 .00
J-38 268.00 Zone Demand 0 .00
J-39 268.00 Zone Demand 0 .00
J-40 268.00 Zone Demand 1 ,000 .00
J-41 252 .00 Zone Demand 0 .00
J-42 251 .00 Zone Demand 9.00
T itl e : E ·111 2 Wi lli ;11 n s C rne k P l1 4
ff\. \e 1 t i 2 f f c::t 1 1Cl l y ~,i ~• ... pl i "l -rc !pc1r l .we< I
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Scenario: Base
Steady State Analysis
Junction Report
Pattern Demand Calculated
Calculated ~ydraulic Grad
(gpm) (ft)
0.00 379.95
0.00 379.66
0 .00 379.53
0 .00 379.42
0 .00 379.31
0.00 379.22
24.00 378.82
0.00 378.27
0 .00 378.17
0 .00 377.97
0 .00 377 .80
24 .00 377.75
0 .00 377.42
0 .00 377 .16
0 .00 377 .08
0 .00 376.88
0 .00 376.80
24.00 376 .68
24 .00 376.11
0 .00 375 .94
0 .00 375.79
0 .00 375 .66
21 .00 375.04
0 .00 375.04
0 .00 375.04
0 .00 375.04
21 .00 375.04
0 .00 375.04
0 .00 375.04
0.00 375.04
0 .00 375.04
0 .00 375.04
0 .00 375.04
0 .00 375.04
21.00 375.04
0 .00 362.26
0 .00 360.81
0 .00 357.40
0 .00 354.80
1 ,000.00 352.83
0 .00 352 .72
9 .00 352 .71
Tcxcon Gc n e r ~I Co 11tr •1c t o r s
Pressure
i (psi)
62 .71
61 .29
60.37
59.45
58.54
57.64
55.30
51 .17
50.26
48.45
45 .77
45.75
44 .75
44 .20
44.17
44 .08
44 .48
44 .42
45.91
46.70
46.20
46.15
44 .15
45.45
45.88
46.31
46.74
47 .61
48.47
49 .34
50 .20
51 .07
52 .37
54 .96
65 .35
40 .35
39.72
38.68
37 .55
L3 6.1ol
43 .58
44 .01
()()/211/0'.' p.1 2G '.:.1 Plvl .,-·, H ;H,s l ;i cl M e 11·1ocl s. Inc . ·37 C!1 oo ~;s 1rl e R o nrl \fJ;i lf ~1l.1 1 •1 ·/.Cl U 'i7 0t ~ u~;/\
Project En9ineer : Joe S c hullz
W;iler C/\D vG ''I f~ :,1;:011
r 1 ; , ~ 1 , ! 1 o 1 1
Label Length Dia mete Material Hazen-Check
(ft) (in) Williams Valve?
c
P-1 20 .00 12 .0 PVC 150.0 false
P-2 112.00 12 .0 PVC 150.0 false
P-3 49.00 12 .0 PVC 150.0 false
P-4 44 .00 12 .0 PVC 150.0 false
P-5 42.00 12 .0 PVC 150 .0 false
P-6 32.00 12 .0 PVC 150.0 false
P-7 156 .00 12 .0 PVC 150 .0 false
P-8 222 .00 12.0 PVC 150.0 false
P-9 37 .00 12 .0 PVC 150.0 false
P-10 80 .00 12 .0 PVC 150.0 false
P-11 70 .00 12 .0 PVC 150 .0 false
P-12 22 .00 12 .0 PVC 150.0 false
P-13 134 .00 12 .0 PVC 150 .0 false
P-14 112 .00 12 .0 PVC 150 .0 false
P-15 31 .00 12 .0 PVC 150 .0 false
P-16 85 .00 12.0 PVC 150 .0 false
P-17 33 .00 12 .0 PVC 150.0 false
P-18 51 .00 12 .0 PVC 150 .0 false
P-19 247 .00 12 .0 PVC 150.0 false
P-20 73 .00 12 .0 PVC 150 .0 false
P-21 69 .00 12 .0 PVC 150.0 false
P-22 58 .00 12 .0 PVC 150.0 false
P-23 280 .00 12 .0 PVC 150 .0 false
P-24 325.00 10.0 PVC 150.0 false
P-25 51.00 10.0 PVC 150 .0 false
P-26 33 .00 10.0 PVC 150.0 false
P-27 47 .00 10 .0 PVC 150.0 false
P-28 37 .00 10.0 PVC 150 .0 false
P-29 30.00 10 .0 PVC 150.0 false
P-30 41 .00 10 .0 PVC 150 .0 false
P-31 34.00 10 .0 PVC 150.0 false
P-32 40 .00 10 .0 PVC 150 .0 false
P-33 31 .00 10 .0 PVC 150 .0 false
P-34 117 .00 10.0 PVC 150.0 false
P-35 413 .00 10 .0 PVC 150 .0 false
P-36 221 .00 6 .0 PVC 150 .0 false
P-37 25.00 6 .0 PVC 150 .0 false
P-38 59 .00 6 .0 PVC 150.0 false
P-39 45 .00 6 .0 PVC 150 .0 false
P-40 34.00 6 .0 PVC 150 .0 false
P-41 408 .00 3 .0 PVC 150 .0 false
P-42 21 .00 3 .0 PVC 150 .0 false
T 1 tl1 ~ E 1.:1 ~~ W 1U1 ;:11ns Cn•ck Pl1 d
(I ~ ! 1 ·1; 'I I; 111-t lV!·.t'.:. 111 1-I 11 I)( 'I •.... , I I
: 1 • ; · ; .... 1 ·q 1·• / 1 •. 1 ; · 1 r 1. 1 r , r, i 1 1. I' t • 11 1 r ,,1 1 11 11 1 ·: ~ . I 11 1
Scenario: Base
Steady State Analysis
Pipe Report
Minor Control Dischargtl pstream Structi.li
Loss Status (gpm) Hydraulic Grade
Coefficien (ft)
0.00 Open 1,168.00 380 .00
0 .00 Open 1,168.00 379 .95
0 .00 Open 1,168.00 379 .66
0 .00 Open 1,168.00 379 .53
0 .00 Open 1,168.00 379.42
0 .00 Open 1, 168.00 379 .31
0 .00 Open 1, 168.00 379.22
0 .00 Open 1,144.00 378 .82
0 .00 Open 1,144 .00 378 .27
0 .00 Open 1,144 .00 378 .17
0 .00 Open 1,144 .00 377 .97
0 .00 Open 1,144 .00 377 .80
0 .00 Open 1,120.00 377 .75
0 .00 Open 1 ,120 .00 377.42
0 .00 Open 1,120 .00 377 .16
0 .00 Open 1,120 .00 377 .08
0 .00 Open 1, 120 .00 376 .88
0 .00 Open 1, 120.00 376 .80
0 .00 Open 1,096.00 376 .68
0 .00 Open 1,072 .00 376 .11
0 .00 Open 1,072.00 375 .94
0 .00 Open 1,072 .00 375 .79
0 .00 Open 1,072 .00 375 .66
0 .00 Open 42 .00 375.04
0 .00 Open 42.00 375 .04
0 .00 Open 42 .00 375 .04
0 .00 Open 42 .00 375.04
0.00 Open 21.00 375 .04
0 .00 Open 21 .00 375 .04
0 .00 Open 21 .00 375 .04
0 .00 Open 21 .00 375 .04
0 .00 Open 21 .00 375.04
0 .00 Open 21 .00 375.04
0.00 Open 21 .00 375.04
0 .00 Open 21 .00 375 .04
0 .00 Open 1,009.00 375 .04
0 .00 Open 1,009.00 362 .26
0.00 Open 1,009.00 360 .81
0 .00 Open 1,009.00 357.40
0 .00 Open 1,009 .00 354 .80
0 .00 Open 9 .00 352 .83
0 .00 Open 9 .00 352 .72
iflwnstream Structu E're ssure Headloss
Hydraulic Grade Pipe Gradient
(ft) Headloss (fU1000ft)
(ft)
379 .95 0 .05 2 .59
379 .66 0 .29 2 .59
379 .53 0 .13 2 .59
379 .42 0 .11 2 .59
379.3 1 0 .11 2 .59
379 .22 0 .08 2 .59
378 .82 0.40 2 .59
378.27 0.55 2.49
378 .17 0 .09 2 .50
377 .97 0 .20 2.49
377 .80 0 .17 2.49
377.75 0 .05 2.49
377.42 0 .32 2.40
377.16 0 .27 2 .40
377 .08 0 .07 2.40
376 .88 0 .20 2.40
376.80 0 .08 2.40
376 .68 0 .12 2.40
376 .11 0 .57 2 .30
375 .94 0 .16 2 .21
375 .79 0 .15 2 .21
375 .66 0 .13 2 .21
375.04 0 .62 2 .21
375 .04 0 .00 0 .01
375 .04 0.00 0 .01
375.04 0 .00 0 .01
375 .04 0 .00 0 .01
375.04 0 .00 0 .00
375 .04 0.00 0 .00
375 .04 0.00 0 .00
375 .04 0 .00 0 .00
375 .04 0.00 0 .00
375.04 0 .00 0 .00
375 .04 0 .00 0 .00
375 .04 0 .00 0 .00
362 .26 12.79 57 .85
360 .81 1.45 57 .85
357.40 3.41 57 .85
354 .80 2.60 57 .85
352 .83 1.97 57 .85
352.72 0 .11 0.27
352 . 71 0 .01 0 .27
P1c >1 €~f:I E1t1111H~1·1 .!(le Sc.111111 /
Texcnn Ge 11 e 1;:ll C c·11t1 ;-u:t o 1 ~ 1/1.'.1t1•1f'f,I 1._.:i 1
1 !~; '.·, 1:•<111
;,· 11.1 .-1,1k:.idt i ~'t •,1t~ \/v,ilt !11111•, (.I Pl ,·r H lJ~-,,, • 1 ,-11·~ /'.1 1 1-JI ,.,;, r·,1 ~11 · I 1•1 I
Analysis Results
Scenario: Base
Steady State Analysis
Title : E142 Williams Creek Ph 4
Project Engineer: Joe Schultz
Project Date : 05/24/05 03 :36:18 PM
Comments:
Scenario Summary
Scenario Base
Active Topology Alternative Base-Active Topology
Physical Alternative
Demand Alternative
Initial Settings Alternative
Operational Alternative
Age Alternative
Constituent Alternative
Trace Alternative
Fire Flow Alternative
Capital Cost Alternative
Energy Cost Alternative
User Data Alternative
Liquid Characteristics
Base-Physical
Base-Demand
Base-Initial Settings
Base-Operational
Base-Age Alternative
Base-Constituent
Base-Trace Alternative
Base-Fire Flow
Base-Capital Cost
Base-Energy Cost
Base-User Data
Liquid
Kinematic V iscosity
Water at 20C(68F)
1.0804e-5 ft 2 /s
Specific Gravity
Network Inventory
Pressure Pipes 42 Number of Tanks
Number of Reservoirs -Constant Area :
Number of Pressure Junctic 42 -Variable Area :
Number of Pumps
-Constant Power:
-One Point (Design Point):
-Standard (3 Point):
-Standard Extended:
-Custom Extended:
-Multiple Point:
Number of Spot Elevations
Pressure Pipes Inventory
3.0 in
6 .0 in
Total Length
0
0
0
0
0
0
0
0
429 .00 ft
384 .00 ft
4,071 .00 ft
Number of Valves
-FCV's :
-PBV's :
-PRV's :
-PSV's :
-TCV's :
-GPV's :
10 .0 in
12 .0 in
Pressure Pipes @ 0 .00 hr
0
0
0
0
0
0
0
0
0
0
1.00
1,199.00 ft
2,059 .00 ft
Label ControDischargeVelocit\t)pstream Strucfilmvnstream Structi.J!elculatecCa lculatecPressurEHeadloss
Status (gpm) (ft/s) Hydraulic Grade Hydraulic Grade Friction Minor Pipe Gradient
(ft) (ft) Head loss HeadlossHeadlos~ft/1 OOOft)
(ft) (ft) (ft)
P-1 Open 1,168 .00 3 .31 380 .00 379 .95 0 .05 0 .00 0 .05 2 .59
P-2 Open 1,168 .00 3.31 379 .95 379 .66 0 .29 0 .00 0 .29 2 .59
P-3 Open 1,168.00 3.31 379 .66 379 .53 0 .13 0 .00 0 .13 2 .59
P-4 Ope n 1,168 .00 3.31 379.53 379 .4 2 0 .11 0 .00 0 .11 2 .59
P-5 O pe n 1,168.00 3 .3 1 379 .4 2 379.3 1 0 .11 0 .00 0 .11 2 .59
T ille: E 14 2 Wi ll ia m s C reek P h 4 P ro 1e c t E n 9 i11 ee r : Joe Schult z
q .1 ... 1.-, 1°12 11 ;111 ;·11ys1s __ pt·1<1 -report .wccJ Tex con Ge ll e r ~1I Contr acto r s 1 /\.'~1tcrC/\D vG :-; I G :, 1 ~OJI
OG.1:~~~1 ,1 0 ~-i (1'1 :J'1·~1 G PM c9 H ;:1 e ~~t ad M e t l 1t )d ~;. l11c 37 U1oo~s 1d e f ~n;.1 d 'v'\/;11r ·1litH '/. C T OG -/Ofl US/\ ·• l -L'O :)-·i':1'.-1-1l l ~'1 P.1~1 1 · I 1 11 /'
Analysis Results
Scenario: Base
Steady State Analysis
Pressure Pipes @ 0.00 hr
Label Con troDi schargeVelocit\£)pstream StruclJCDVnstream StructlfilalculatecCalculatecf>ressurEHeadloss
Status (gpm) (ft/s) Hydraulic Grade Hydraulic Grade Friction Minor Pipe Gradient
P-6
P-7
P-8
P-9
P-10
P-11
P-12
P-13
P-14
P-15
P-16
P-17
P-18
P-19
P-20
P-21
P-22
P-23
P-24
P-25
P-26
P-27
P-28
P-29
P-30
P-31
P-32
P-33
P-34
P-35
P-36
P-37
P-38
P-39
P-40
P-41
P-42
Open 1,168 .00
Open 1,168 .00
Open 1,144 .00
Open 1,144 .00
Open 1,144 .00
Open 1,144.00
Open 1,144.00
Open 1, 120 .00
Open 1, 120.00
Open 1,120.00
Open 1, 120 .00
Open 1, 120 .00
Open 1, 120 .00
Open 1,096 .00
Open 1,072 .00
Open 1,072 .00
Open 1,072.00
Open 1,072 .00
Open 42 .00
Open 42.00
3 .31
3.31
3 .25
3 .25
3.25
3 .25
3 .25
3 .18
3 .18
3 .18
3 .18
3 .18
3 .18
3.11
3 .04
3.04
3.04
3.04
0 .17
0 .17
Open
Open
Open
Open
Open
Open
Open
Open
42 .00 0.17
42.00 0.17
21 .00 0.09
21 .00 0 .09
21 .00 0 .09
21 .00 0 .09
21 .00 0 .09
21 .00 0 .09
Open 21 .00
Open 21 .00
Open 1,009.00
Open 1,009.00
Open 1,009.00
Open 1,009.00
Open 1,009 .00
Open 9 .00
Open 9 .00
0 .09
0 .09
11.45
11.45
11.45
11.45
11.45
0 .41
0.41
Ti tl e : E ·14 2 W il l ia n is C ree k P h 4
~r\. '.e 1 .-1 ::·ff ;:ln ;1ty ~;i s _p l 1·'.1-n !,1orl .1.Ncd
(ft) (ft) Head loss Headloss Headlos~ft/1 OOOft)
379.31
379 .22
378 .82
378 .27
378 .17
377 .97
377.80
377 .75
377 .42
377 .16
377 .08
376 .88
376 .80
376 .68
376 .11
375.94
375.79
375 .66
375 .04
375.04
375 .04
375 .04
375.04
375.04
375 .04
375 .04
375 .04
375 .04
375 .04
375 .04
375 .04
362 .26
360 .81
357.40
354 .80
352 .83
352 .72
(ft) (ft) (ft)
379 .22
378 .82
378 .27
378 .17
377 .97
377 .80
377.75
377.42
377 .16
377 .08
376 .88
376.80
376 .68
376 .11
375.94
375 .79
375 .66
375 .04
375 .04
375.04
375 .04
375 .04
375.04
375 .04
375 .04
375 .04
375.04
375.04
375.04
375 .04
362.26
360 .81
357.40
354 .80
352 .83
352 .72
352 .71
0 .08
0.40
0 .55
0 .09
0 .20
0.17
0 .05
0 .32
0.27
0 .07
0.20
0 .08
0 .12
0 .57
0 .16
0 .15
0 .13
0 .62
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
12.79
1.45
3.41
2 .60
1.97
0 .11
0.01
T excon Gc ne r ;:i l Co n t rac to r s
0 .00
0.00
0.00
0 .00
0 .00
0 .00
0 .00
0 .00
0.00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0.00
0.00
0 .00
0 .00
0 .08
0.40
0 .55
0 .09
0 .20
0 .17
0 .05
0 .32
0 .27
0 .07
0.20
0 .08
0 .12
0 .57
0 .16
0 .15
0 .13
0 .62
0 .00
0.00
2 .59
2 .59
2.49
2 .50
2.49
2.49
2.49
2.40
2.40
2.40
2.40
2.40
2.40
2 .30
2 .21
2 .21
2 .21
2 .21
0 .01
0 .01
0 .00 0 .00 0 .01
0 .00 0 .00 0 .01
0 .00 0 .00 0 .00
0 .00 0.00 0 .00
0.00 0 .00 0 .00
0 .00 0 .00 0 .00
0.00 0 .00 0 .00
0 .00 0 .00 0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0.00
0 .00
0 .00
0 .00 0 .00
0 .00 0 .00
12 .79 57 .85
1.45 57 .85
3.41 57 .85
2 .60 57 .85
1.97 57 .85
0.11 0.27
0 .01 0.27
OG //.:l /IY '.-t '·I 3:1 11G P~.'i · .1 I l;u ·:·i l ;u l f\'l c l h o <I ~. Inc =~7 Br C·O ~~ll lt.! Rt l;.t d VVtll t!il )l ll 'y, c:-1 (Jii Tf1~; u~~I\
Proj ecl En9incer : Joe Sch u ltz
W;11c•rCAD vii '.i I G '.i12Clil
Label Elevation Zone Type Base Flow
(ft) (gpm)
J-1 235 .00 Zone Demand 0 .00
J-2 238 .00 Zone Demand 0 .00
J -3 240 .00 Zone Demand 0 .00
J-4 242.00 Zone Demand 0.00
J-5 244 .00 Zone Demand 0 .00
J-6 246.00 Zone Demand 0.00
J-7 251.00 Zone Demand 24.00
J-8 260 .00 Zone Demand 0 .00
J-9 262.00 Zone Demand 0 .00
J-10 266.00 Zone Demand 0.00
J-11 272.00 Zone Demand 0.00
J -12 272.00 Zone Demand 24 .00
J-13 274 .00 Zone Demand 0.00
J -14 275.00 Zone Demand 0.00
J-15 275 .00 Zone Demand 0 .00
J -16 275.00 Zone Demand 0.00
J-17 274.00 Zone Demand 0 .00
J-18 274.00 Zone Demand 24 .00
J-19 270.00 Zone Demand 24 .00
J -20 268.00 Zone Demand 0 .00
J-21 269.00 Zone Demand 0 .00
J-22 269.00 Zone Demand 0 .00
J-23 273 .00 Zone Demand 21 .00
J-24 270.00 Zone Demand 0 .00
J-25 269.00 Zone Demand 0.00
J-26 268.00 Zone Demand 0 .00
J-27 267 .00 Zone Demand 21 .00
J-28 265.00 Zone Demand 0 .00
J-29 263 .00 Zone Demand 0 .00
J-30 261 .00 Zone Demand 0 .00
J-31 259.00 Zone Demand 0 .00
J-32 257 .00 Zone Demand 0 .00
J-33 254 .00 Zone Demand 0 .00
J-34 248.00 Zone Demand 0 .00
J-35 224 .00 Zone Demand 21.00
J -36 269.00 Zone Demand 0 .00
J-37 269.00 Zone Demand 0.00
J-38 268.00 Zone Demand 0 .00
J-39 268.00 Zone Demand 0.00
J-40 268.00 Zone Demand 0 .00
J -41 252 .00 Zone Demand 0 .00
J-42 251 .00 Zone Demand 9.00
Til le : E14 2 W illia m s C ree k P l1 4
•.I \ ... '.e 142ffanalysis __ pll 4 -re por l.wcd
Fixed
Fixed
Fi xed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fi xed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fi xed
Fixed
Fixed
Fi xed
Fi xed
Fixed
Fi xed
Fi xed
Scenario: Base
Steady State Analysis
Junction Report
Pattern Demand Calculated
Calculated ~ydraulic Grad
(gpm) (ft)
0 .00 380.00
0 .00 379.99
0 .00 379.99
0 .00 379.98
0 .00 379.98
0 .00 379.98
24 .00 379 .97
0 .00 379.96
0 .00 379.95
0 .00 379.95
0 .00 379.95
24 .00 379.94
0 .00 379.94
0 .00 379.93
0 .00 379.93
0 .00 379.93
0 .00 379.93
24.00 379.93
24 .00 379.92
0 .00 379.92
0 .00 379.92
0 .00 379.92
21.00 379.91
0 .00 379.91
0.00 379.91
0 .00 379.91
21 .00 379.91
0 .00 379.91
0 .00 379.91
0.00 379.91
0.00 379 .91
0.00 379.91
0.00 379.91
0.00 379.91
21 .00 379.91
0 .00 379.91
0.00 379.91
0 .00 379.91
0 .00 379.91
0 .00 379.91
0 .0 0 379.80
9 .00 379.79
Te x con G e n e r ~•I C onti a ct o rs
Pressure
~ (psi)
62 .73
61.43
60.57
59.70
58.83
57 .97
55.80
51 .90
51 .03
49.30
46.70
46.70
45.83 -45.40
45.40
45.40 ,....___
45.83
45.83
47.56
48.42
47.99
47.99
46.26
47 .55
47.98
48.42
48.85
49.72
50.58
51.45
52 .31
53 .18
54.47
57 .07
67.45
47.99
47 .99
48.42
48.42
48.42
55.29
55.72
Pro1ec 1 E n qineer : .Joe Scllu ll z
W~1l 1JfC/\D vri .~> iG '.i 120i l
l)f;1 ;'4/IYi O·l:;!B:O I F>M @ H ;:ie:>l <H I M e ll1 od~. l 11c :1/ [':<tHJ f .~:1 cle RC1 ;1d W <1l<:rlJt1 ry. C T OG70 C USA • l ·~U 3·7SC~-\G1 \1 \ p ~.1 ~1 ~:· I <11 1
HECl S/N : 1343001909 HMVersion: 6 .33 Data File: C :\TEMP \-vbh3 435 .TMP PRE-DEVELOPMENT
~ .... *~************************************* ***************************************
*
FLOO D HYDROGRAPH PACKAGE (HEC-1) *
MAY 1991
VERSION 4 .0.lE
*
*
*
RU DAT E 05 /13 /2005 TIME 16:43:42 *
*
*
*
*
*
*
*
*
*
U .S. ARMY CORPS OF ENGINEERS *
HYDROLOGIC ENGINEERING CENTER *
609 SECOND STREET *
DAVIS, CALIFORNIA 956 1 6 *
(916 ) 756-1104 *
*
I -I;'~"'"'"************************************ ***************************************
x x xxxxxxx xxxxx x
x x x x x xx
x x x x x
xxxxxxx xx xx x xxxxx x
x x x x x
x x x x x x
x x xxxxxxx xxxxx xxx
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Full Microcomputer Implementation
by
Haestad Metho ds, I nc .
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
37 Brookside Road * Waterbury , Connect i cut 06708 * (203) 755-1666
THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73 ), HEClGS, HEClDB, AND HEClKW .
THE DEFINITIONS OF VARIAB LES -RTIMP-AND -RTIOR -HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.
THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 8 1. THIS IS THE FORTRAN77 VERSION
NEW OPTI ONS : DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION , DSS :WRITE STAGE FREQUENCY ,
DSS :READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE :GREEN AND AMPT INFILTRAT ION
KINEMATIC WAVE : NEW FINITE DIFFERENCE ALGORITHM
' ,··
' ' ..
HEC-1 INPUT PAGE 1
LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10
1 ID Williams Creek Phase 2 Pre-Development
2 IT 1 300
3 IO 5 0
4 KK 102100
5 KM Drainge Area 1 0
6 KO 22
7 BA 0 .0277
8 PH 100 0 0 .88 1.95 4.30 5 .7 0 6 .30 7.90
9 LS 73.0
10 UD 0.447
11 KK 102-50
12 KM Drainage Area 102
13 KO 22
14 BA 0.0277
15 PH 1 00 0 0.8 1 l. 80 3.91 5.1 0 5.70 7.00
16 LS 73.0
17 UD 0.447
18 KK 102-10
19 KM Drai n age Area 102
20 KO 22
21 BA 0.0277
22 PH 1 0 0 0.66 l. 45 3 .02 3 .90 4 .30 5.20
23 LS 73 .0
24 UD 0.447
25 KK 102 -25
26 KM Drainage Area 102
27 KO 22
28 BA 0.0277
29 PH 25 0 0 .74 l. 64 3 .52 4.60 5.10 6 .20
30 LS 73 .0
31 UD 0 .447
32 KK 102-5
33 KM Drainage Area 102
34 KO 22
35 BA 0 .0277
36 PH 5 0 0.60 1 .32 2 .68 3.30 3.70 4 .40
37 LS 73 .0
38 UD 0 .447
39 KK DP-2
40 KM Discharge Point No . 21
41 KO 22
42 HC 5
43 zz
HECl S/N : 1343001909 HMVersion: 6.33 Data File : C :\TEMP \-vbh3435 .TMP
*****************************************
* *
FLOO D HYDROGRAPH PACKAGE (HEC -1 ) *
MAY 1991 *
VERSION 4 .0 .lE *
*
RUN DAT E 05 /13/2005 TIME 16:43:42 *
*
••***************************************
Williams Creek Phase 2 Pre-Development
3 IO
I T
OUTPUT CONTRO L VARIAB LES
I PRNT 5 PRINT CONTROL
I PLO T 0 PLOT CONTROL
QSCAL 0. HYDR OG RAPH PLOT SCALE
HYDR OGRAPH TIME DATA
NMIN 1 MINUTES IN COMPUTATION INTERVAL
IDATE 1 0 STARTING DATE
ITIME 0000 STARTING TIME
NQ 300 NUMBER OF HYDROGRAPH
NDDATE 1 0 ENDING DATE
NDTIME 0459 ENDING TIME
I CENT 19 CENTURY MARK
COMPUTATION INTERVAL
TOTAL TIME BASE
0 .02 HOURS
4.98 HOURS
ENGLISH UNITS
DRAINAGE AREA
PRECIPITATION DEPTH
LENGTH, ELEVATION
FL OW
STORAGE VOLUME
SURFACE AREA
TEMPERATURE
SQUARE MILES
INCHES
FEET
CU BIC FEET PER SECOND
ACRE-FEET
ACRES
DEGREES FAHRENHEIT
ORDINATES
***************************************
* *
* U .S . ARMY CORPS OF ENGINEERS *
* HYDROLOGIC ENGINEERING CENTER *
* 609 SECOND STREET *
* DAVIS , CALIFORNIA 956 1 6 *
* (916) 756-1104 *
* *
***************************************
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
4 KK * 102100 *
* *
**************
6 KO OUTPUT CONTR OL VARIABLES
IPRNT 5 PRINT CONTROL
I PLOT 0 PLOT CONTROL
QS CAL 0. HYDROGRAPH PLOT SCALE
IPNCH 0 PUNCH COMPUTED HYDROGRAPH
I OUT 22 SAVE HYDROGRAPH ON THIS UNIT
ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED
I SAV2 3 00 LAST ORDINATE PUNCHED OR SAVED
T I MINT 0.0 17 TIME INTERVAL IN HOURS
VALUE EXC EEDS TABL E IN LOGLOG 0 .01667 0.01667 6 .00000
~~k *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
11 KK * 102-50 *
* *
**************
13 KO OUTPUT CO NT ROL VARIABLES
IPRNT
I PLOT
QSCAL
IPNCH
I OUT
ISAVl
I SAV2
T I MI NT
l'i\LUE EXC EEDS TABLE IN LOG LOG
5 PRINT CONTROL
0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
3 00 LAST ORDINATE PUNCHED OR SAVED
0 .0 17 TIME INTERVAL IN HOURS
0 .0 16 6 7 0 .01667 6.00000
T*T *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
18 KK * 102-10 *
* *
**************
20 KO OUTPU T CO NTROL VARIABLES
I PRNT 5 PRINT CONTROL
I PLOT 0 PLOT CONTROL
QSC AL 0. HYDROGRAPH PLOT SCALE
I PN CH 0 PUNCH COMPUTED HYDROGRAPH
IOUT 22 SAVE HYDROGRAPH ON THIS UNIT
ISAVl
ISAV2
T IMINT
v.r,.LlJE EXC EEDS TABLE IN LOGLOG
1 FIRST ORD INATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0 .017 TIME INTERVAL IN HOURS
0 .0 1 667 0.01667 6 .00000
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
25 KK
27 KO
**************
* *
* 102-25 *
* *
**************
OU TPUT CONTROL VARIABLES
IPRNT
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
5 PRINT CONTROL
0 PLOT CONTROL
0 . HYDR OG RAPH PLOT SCALE
0 PUNCH COMPUT ED HYDR OGRAP H
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORD INATE PUNCHED OR SAVED
300 LAST ORD INATE PUNCHED OR SAVED
0 .017 TIME INTERVAL IN HOU RS
VALUE EXC EEDS TABLE IN LOGLOG 0 .01667 0 .01 667 6 .0000 0
~I~ *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
32 KK
34 KO
**************
* *
* 102-5 *
* *
**************
OUTPUT CONTROL VAR IABLES
IPRNT 5 PRINT CON TROL
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0.017 TIME INTERVAL IN HOURS
VALU E EXC EEDS TABLE IN LOG LOG 0.01667 0 .01 667 6 .00000
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
39 KK
11 KO
**************
*
*
*
DP-2
*
*
*
**************
OUTPUT CONTROL
IPRNT
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
VARIABLES
5
0
0 .
0
22
1
300
0 .017
PRINT CONTROL
PLOT CO NT RO L
HY DROGRA PH PL OT SC ALE
PUN CH CO MPUTED HYDR OG RAPH
SAVE HYD ROG RAPH ON THIS UN I T
FIRS T ORDINATE PUNCH ED OR SAV ED
LAS T OR DINATE PUN CHED OR SAVED
TIME INTERVA L IN HOUR S
RUNOFF SUMMARY
FLOW IN CUBIC FEE T PER SECOND
TIME IN HOURS, AR EA IN SQUARE MILES
PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN MAXIMUM TIME OF
OPERA T ION STATION FL OW PEAK AREA STAGE MAX STAGE
6-HOUR 24-HOUR 72 -HOUR
HYDROGRA PH AT 102100 61 . 3.02 14. 14. 14 . 0 .03
HYDROGRAPH AT 102-50 52 . 3.02 12 . 12. 12 . 0 .03
HYDROGRAPH AT 102-10 33. 3.03 7. 7. 7. 0.03
HYDROGRAPH AT 102-25 44. 3 .02 10. 10. 10 . 0.0 3
HYDROGRAPH AT 102-5 26. 3 .05 6. 6. 6. 0.03
5 COMBINED AT DP-2 214. 3 .02 50 . 50 . 50. 0.14
•••NORMA L END OF HEC-1 ***
HECl S/N : 1 343001909 HMVer sio n: 6.33 Data File: C:\TEMP \-vbhl459.TMP POST-DEVELOPMENT
*****************************************
*
***************************************
* *
FLOOD HYDROGRAPH PACKAG E (HE C-1 ) * * U.S. ARMY CORPS OF ENGINEERS *
MAY 1991 * * HYDROLOGIC ENGINEERING CENTER *
VERSION 4 .0 .l E * * 609 SECOND STREET *
* * * DAVIS, CALIFORNIA 95616 *
RUN DAT E 05/13/2005 TIM E 1 6:31 :06 * * (916) 756-1104 *
* * *
***************************************** ***************************************
x x xxxxxxx xxxxx x
x x x x x xx
x x x x x
xxxxxxx xxxx x xxxxx x
x x x x x
x x x x x x
x x xxxxxxx xxxxx xxx
........................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Full Microcomputer Implementation
by
Haestad Methods , Inc .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 7 Brookside Road * Waterbury, Connecticut 06708 * (203 ) 755-1666
THIS PROGRAM REPLA CES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73 ), HEClGS, HEClDB , AND HEClKW.
THE DEFINITIONS OF VAR IABLES -RTIMP -AND -RTIOR-HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.
THE DEFINITION OF -AM SKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81 . THIS I S THE FORTRAN 77 VERS I ON
NEW OPTIONS : DAM BREA K OUTFL OW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATI ON , DSS:WRITE STAGE FREQUEN CY,
DSS :READ TIM E S ERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION
KINEMATIC WAVE : NEW FINITE DIFFERENCE ALGORITHM
..J .,
\~ ;J ,.
• l I
( ' ·.: 1· .,
" / '-'
-· ,;
,.
•"
HEC-1 I NPUT PAGE 1
LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10
1 ID Williams Creek Phase 4 Post-Deve l opment w/o Pond 3
2 IT 1 300
3 IO 5 0
4 KK 50 1100
5 KM Drainge Area 501
6 KO 22
7 BA 0 .002 1
8 PH 100 0 0 .88 1 .95 4 .30 5 .70 6 .30 7.90
9 LS 78.5
10 UD 0 .1
11 KK 500 110
12 KM Drainge Area 500
13 KO 22
14 BA 0 .0230
15 PH 100 0 0.88 1 .95 4 .30 5 .70 6 .30 7 .90
16 LS 79 .0
17 UD 0 .361
18 KK DP2-l
19 KM DP-2 100 year
20 KO 22
21 HC 2
22 KK 500-50
23 KM Drainage Area 500
24 KO 22
25 BA 0.0230
26 PH 100 0 0.8 1 1 .80 3. 91 5 .1 0 5.70 7 .00
27 LS 79 .0
28 UD 0 .36 1
29 KK 50 1 -50
30 KM Drainage Area 501
31 KO 22
32 BA 0 .002 1
33 PH 100 0 0.8 1 1 .80 3 .91 5 .1 0 5 .70 7 .00
34 LS 78 .5
35 UD 0.10
36 KK DP2-50
37 KM DP-2 50 year
38 KO 22
39 HC 2
40 KK 500-10
41 KM Drainage Area 500
42 KO 22
43 BA 0.0230
44 PH 10 0 0 .66 1.45 3 .02 3 .90 4.30 5 .20
45 LS 79.0
46 UD 0.361
HEC-1 INPUT PAGE 2
LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10
47 KK 501-10
48 KM Drainage Area 501
49 KO 22
50 BA 0 .0021
51 PH 10 0 0.66 1. 45 3 .02 3.90 4 .30 5 .20
52 LS 78.5
53 UD 0 .10
54 KK DP2-10
55 KM DP-2 10 year
56 KO 22
57 HC 2
58 KK 500-25
59 KM Drainage Area 500
60 KO 22
61 BA 0.0230
62 PH 25 0 0.74 1. 64 3 .5 2 4.60 5 .10 6 .20
63 LS 79.0
64 UD 0 .361
65 KK 501-25
66 KM Drainage Area 501
67 KO 22
68 BA 0 .0021
69 PH 25 0 0 .74 1.64 3 .52 4.60 5 .10 6.20
70 LS 78 .5
71 UD 0.10
72 KK DP2-25
73 KM DP-2 25 year
74 KO 22
75 HC 2
76 KK 500-5
77 KM Drainage Area 500
78 KO 22
79 BA 0.0230
80 PH 5 0 0 .60 1 .32 2 .68 3.30 3 .70 4 .40
81 LS 79 .0
82 UD 0.361
83 KK 501-5
84 KM Drainage Area 501
85 KO 22
86 BA 0 .0021
87 PH 5 0 0.60 1. 32 2.68 3 .30 3 .70 4.40
88 LS 78 .5
89 UD 0 .1 0
LINE
90
91
92
93
94
95
96
97
98
HEC-1 INPUT PAGE 3
ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10
KK DP2-5
KM DP-2 5 year
KO 22
HC 2
KK DP-2
KM Discharge Point No .2
KO 22
HC 5
zz
HECl S/N : 1343001909 HMVersion : 6 .33 Data File: C :\TEMP \-vbhl459.TMP
·~~~~************************************
*
FLOO D HYDROGRAPH PACKAGE (HEC-1) *
MAY 1991 *
VERSI ON 4.0.lE *
*
RUN DATE 05/13/2005 TIME 1 6 :31 :06 *
*
'r*~*************************************
Williams Creek Phase 4 Post-Development w/o Pond 3
3 IO
IT
OUTPUT CO NTROL VARIABLES
IPRNT 5 PRINT CONTROL
I PLOT 0 PLOT CONTROL
QSCA L 0. HYDROGRAPH PLOT SCALE
HYDROGRAPH TIME DATA
NMIN 1 MINUTES IN COMPUTATION INTERVAL
I DATE 1 0 STARTING DATE
I TIME 0000 STARTING TIME
NQ 300 NUMBER OF HYDROGRAPH
NDDATE 1 0 ENDING DATE
NDTIME 0459 ENDING TIME
I CE NT 19 CENTURY MARK
COMPUTATION INTERVAL
TOTAL TIME BASE
0.02 HOURS
4.98 HOURS
ENGLISH UNITS
DRAINAGE AREA
PRECIPITATION DEPTH
LENGTH, ELEVATION
FLOW
STORAGE VO LUME
SURFACE AREA
TEMPERATURE
SQUARE MILES
INCHES
FEET
CUBIC FEET PER SECOND
ACRE-FEET
ACRES
DEGREES FAHRENHEIT
ORDINATES
***************************************
* *
* U .S. ARMY CORPS OF ENGINEERS *
* HYDROLOGIC ENGINEERING CENTER *
* 609 SECOND STREET *
* DAVIS, CALIFORNIA 95616 *
* (916) 756-1104 *
* *
***************************************
Ak k *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
4 KK * 501100 *
* *
**************
r 0 KO OUTPUT CONTROL VARIABLES
IPRNT 5 PRINT CONTROL
I PLOT 0 PLOT CONTROL
QSCAL 0 . HYDROGRAPH PLOT SCALE
IPNCH 0 PUNCH COMPUTED HYDROGRAPH
IOUT 22 SAVE HYDROGRAPH ON THIS UNIT
ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED
ISAV2 300 LAST ORDINATE PUNCHED OR SAVED
TIMINT 0 .0 17 TIME INTERVAL IN HOURS
VALUE EXC EEDS TABLE IN LOGLOG 0 .01 667 0.01667 6.00000
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
11 KK
l 3 KO
**************
* *
* 500110 *
* *
**************
OUTPUT CON TR OL VARIABLES
IPRNT 5 PRINT CON TR OL
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0.017 TIME INTERVAL IN HOURS
VALUE EXC EEDS TABLE IN LOGLOG 0 .01667 0.0 1 667 6 .00000
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
18 KK
20 KO
**************
* *
* DP2-1 *
* *
**************
OUTPUT CONTROL VARIABLES
IPRNT 5 PRINT CONTROL
I PLOT
QSCAL
IPNCH
IOUT
0 PLOT CONTROL
0 . HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
ISAVl
ISAV2
TIMINT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0.017 TIME INTERVAL IN HOURS
*~* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
22 KK * 500-50 *
* *
**************
24 KO OUTPUT CONTROL VARIABLES
IPRNT
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
VALUE EXC EEDS TABLE IN LOGLOG
5 PRINT CON TROL
0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORD INATE PUNCHED OR SAVED
300 LAST ORDI NATE PUNCHED OR SAVED
0.017 TIME INTERVAL IN HOURS
0 .01667 0.01667 6 .00000
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
29 KK * 501-50 *
* *
**************
31 KO OUTPUT CO NTR OL
IPRNT
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
VALUE EXC EEDS TABLE IN LOGLOG
VARIABLES
5
0
0.
0
22
1
300
0 .017
PRINT CONTROL
PLOT CONTROL
HYDROGRAPH PLOT SCALE
PUNCH COMPUTED HYDROGRAPH
SAVE HYDROGRAPH ON THIS UNIT
FIRST ORDINATE PUNCHED OR SAVED
LAST ORDINATE PUNCHED OR SAVED
TIME INTERVAL IN HOURS
0.01667 0.01667 6.00000
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
\('; KK
38 KO
**************
* *
* DP 2 -50 *
* *
**************
OUTPUT CONT RO L VARIABLES
IPRNT 5 PR I NT CON TROL
I PL OT
QS CAL
IPNCH
IOUT
ISAV l
ISAV 2
TIM I NT
0 PLOT CO NTR OL
0 . HYDROG RAPH PLO T SCA LE
0 PUN CH CO MPU TE D HYDR OGRAPH
22 SAVE HYDR OGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUN CHED OR SAVED
0.0 1 7 TIME INTERVA L IN HOURS
~~* ~** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
40 KK * 500-10 *
* *
**************
42 KO OUTPUT CO NTR OL
I PRNT
I PLOT
QSCAL
IPNCH
IOUT
I SAVl
ISAV2
T I MINT
VALUE EXC EEDS TABLE IN LOGL OG
VARIABLES
5
0
0 .
0
22
1
300
0 .0 1 7
PRINT CO NTR OL
PLOT CO NTR OL
HYDROG RAPH PL OT SCALE
PUN CH CO MPUTED HY DROGRAPH
SAV E HYDRO GRA PH ON THI S UNIT
FIRS T ORDINATE PUN CHED OR SAVED
LAST ORDINATE PUNCHED OR SAVED
TIME INTERVAL IN HOURS
0 .01667 0 .01667 6 .00000
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
47 KK * 501-10 *
* *
**************
4 9 KO OUTPUT CONTROL VARIABLES
IPRNT 5 PRINT CONTROL
I PLOT 0 PLOT CONTROL
QSCAL 0 . HYDROGRAPH PLOT SCALE
IPNCH 0 PUNCH COMPUTED HYDROGRAPH
IOUT 22 SAVE HYDROGRAPH ON THIS UNIT
ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED
ISAV2 300 LAST ORDINATE PUNCHED OR SAVED
TIMINT 0 .017 TIME INTERVAL IN HOURS
VALUE EXC EEDS TABLE IN LOGLOG 0.01667 0.01667 6 .00000
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
54 KK
56 KO
**************
* *
* DP2-10 *
* *
**************
OUTPUT CONTROL VARIABLES
IPRNT 5 PRINT CONTROL
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0.017 TIME INTERVAL IN HOURS
• ~~ ~~* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
58 KK
60 KO
**************
* *
* 500-25 *
* *
**************
OUTPUT CONTROL VARIABLES
IPRNT
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
5 PRINT CONTROL
0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORD INATE PUNCHED OR SAVED
0 .017 TIME INTERVAL IN HOURS
Vl'.LUE EXC EEDS TABLE IN LOGLOG 0 .01667 0.01667 6.00000
~~* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
65 KK * 501-2 5 *
* *
**************
67 KO OUTPUT CON TR OL VARIABLES
IPRNT 5 PRINT CONTROL
I PLOT 0 PLOT CONTROL
QSCAL 0 . HYDR OGRAP H PLOT SCALE
IPNCH 0 PUNCH CO MPUTED HYDROGRAPH
IOUT 22 SAVE HYDROGRAPH ON THIS UN I T
ISAVl 1 FIRST ORDINATE PUNCH ED OR SAVED
ISAV2 300 LAST ORDINATE PUNCHED OR SAVED
TIMINT 0.017 TIME INTERVAL IN HOURS
VALUE EXC EEDS TABLE IN LOGLOG 0.01667 0.01667 6.00000
*~* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
72 KK
74 KO
**************
* *
* DP2-25 *
* *
**************
OU TPUT CONTROL VARIAB LES
IPRNT 5 PRINT CO NTR OL
I PL OT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TI MINT
0 PLOT CO NTROL
0 . HYDR OG RAPH PL OT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDI NATE PUNCHED OR SAVED
0 .017 TIME INTERVAL IN HOURS
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
76 KK
78 KO
**************
* *
* 500-5 *
* *
**************
OUTPU T CONTROL VARIABLES
IPRNT 5 PRINT CONTROL
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THI S UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINAT E PUNCHED OR SAVED
0 .017 TIME INTERVAL IN HOURS
VALUE EXCE EDS TABLE IN LOGLOG 0 .01667 0.01667 6.00000
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
83 KK
85 KO
**************
* *
* 501-5 *
* *
**************
OUTPUT CONTROL VARIABLES
IPRNT 5 PRINT CONTRO L
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
0 PLOT CON TR OL
0. HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINAT E PUNCHED OR SAVED
0 .017 TIME INTERVAL IN HOURS
VALIJE EXCE EDS TABLE IN LOG LOG 0.01667 0 .01667 6 .00000
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
90 KK * DP2-5 *
* *
**************
92 KO OUTPU T CONTROL VARIABLES
IPRNT
I PLOT
QSCA L
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
5 PRINT CONTROL
0 PLOT CONTROL
0. HYDROGRAPH PLOT SCAL E
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0.017 TIME INTERVAL IN HOURS
·~* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
94 KK * DP-2 *
* *
**************
96 KO OUTPUT CONTROL
IPRNT
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
VARIABLES
5
0
0 .
0
22
1
300
0.017
PRINT CONTROL
PLOT CONTROL
HYDROGRAPH PLOT SCALE
PUNCH COMPUTED HYDROGRAPH
SAV E HYDROGRAPH ON THI S UN I T
FIRST ORDINATE PUNCHED OR SAVED
LAST ORDINATE PUNCHED OR SAVED
TIME INTERVAL IN HOURS
RUNOFF SUMMARY
FL OW IN CUBIC FEET PER SECOND
TIME IN HOURS, AREA IN SQUARE MILES
PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN MAXIMUM TIME OF
OPERATION STATION FLOW PEAK AREA STAGE MAX STAGE
6-HOUR 24 -HOUR 72-HOUR
HYDROGRAPH AT
501100 9. 2.60 l. l . 1 . 0.00
HYDROGRAPH AT
500110 64. 2.90 14. 14. 14. 0 .02
2 COMBINED AT
DP2-l 68. 2 .88 15 . 15. 15 . 0.03
HYDROGRAPH AT
500-50 56 . 2 .90 1 2 . 12. 12 . 0.02
HYDROGRA PH AT
501-50 8. 2.60 l. l. 1. 0 .00
2 COMBINED AT
DP2-50 59. 2.88 1 3 . 13 . 13. 0 .03
HYDROGRAPH AT
500-10 38 . 2.92 8 . 8 . 8 . 0.02
HYDROGRAPH AT
501-10 6. 2 .62 1. 1. 1. 0 .00
2 COMBINED AT
DP2-10 40 . 2 .90 8 . 8 . 8 . 0.03
HYDROGRAPH AT
500-25 48. 2 .92 10. 10 . 10. 0.02
HYDROGRAPH AT
501-25 7. 2 .62 1 . 1. l . 0 .00
2 COMBINED AT
DP2-25 51 . 2.90 11 . 11 . 11 . 0 .03
HYDROGRAPH AT
500-5 31 . 2 .92 6. 6 . 6. 0.02
HYDROGRAPH AT
501-5 5 . 2.62 1 . l. l . 0 .00
2 COMBINED AT
DP2-5 33. 2 .92 7. 7. 7 . 0.03
S CO MBI NED AT
DP-2 2 Sl. 2.90 SS. SS. SS. 0 .13
TTT NORMA L END OF HEC-1 ***
HECl S/N : 1343001909 HMVers i o n: 6 .3 3 Data Fi l e: C :\TEMP \-vbh3Al4.TMP DETENTION POND #3
***************************************** ***************************************
*
* FLOOD HYDROGRAPH PACKAGE (HE C-1 )
MAY 1991
VERSION 4 .0 .l E
*
*
*
*
*
RUN DATE 05/13/2005 TIME 17 :03 :52 *
*
*
*
*
*
*
*
*
*
u.s. ARMY CORPS OF ENGINEERS *
HYDRO LOGIC ENGIN EERING CENTER *
609 S ECOND STREET *
DAV I S , CAL IFORNIA 9 561 6 *
(916 ) 756 -11 0 4 *
*
***************************************** ***************************************
x x xxxxxxx xxxxx x
x x x x x xx
x x x x x
xxxxxxx xx xx x xxxxx x
x x x x x
x x x x x x
x x xxxxxxx xxxxx xxx
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Fu l l Microcomp u t er Implemen tation
by
Haestad Methods , I nc.
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
37 Br o okside Road * Waterbury , Co n ne c ticut 06708 * (203 ) 755 -166 6
THIS PROGRAM REPLAC ES ALL PR EVI OUS VERSIONS OF HEC-1 KNOW N AS HECl (JAN 73 ), HEClGS , HEClDB , AND HEClKW.
THE DEFINITIONS OF VAR IABLES -RTIMP -AND -RTI OR-HAVE CHANGED FR OM THOSE USED WITH THE 1 9 73-STYLE INPUT STRUCTURE .
THE DEFINITION OF -AMSKK-ON RM -CARD WAS CHANGED WITH RE VISI ONS DATED 28 SEP 81 . THIS IS THE FORTRAN7 7 VER S I ON
NEW OPTIONS: DAMBR EAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATI ON , DSS:WRITE STAGE FREQ UEN CY,
DSS :READ TIME S ERI ES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION
KINEMATIC WAV E: NEW FINITE DIFFERENC E ALGORITHM
HEC-1 INPUT PAGE 1
LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10
1 ID Williams Creek Pha s e 4 Po s t -Dev e lopmen t w/o P o nd 3
2 IT 1 300
3 IO 5 0
4 KK 500-50
5 KM Drainage Area 500
6 KO 22
7 BA 0.0230
8 PH 100 0 0.81 l. 80 3 .91 5 .10 5 .70 7.00
9 LS 79 .0
10 UD 0.361
11 KK Pd3-50
12 KM Pond 3 -50 year
13 KO 22
14 RS 1 ELEV 261 .5
15 sv 0 0 .04 0.48 1.1 9 l. 99
16 SE 261 .5 262 .0 263 .0 264.0 26 5 .0
17 SQ 0 2 .0 1 5 .2 33 .2 46 .2
18 SE 261.5 262 .0 263 .0 264.0 26 5 .0
19 KK 501 -50
20 KM Drainage Area 501
21 KO 22
22 BA 0.0021
23 PH 100 0 0 .81 l. 80 3.91 5 .1 0 5 .70 7.00
24 LS 78 .5
25 UD 0 .10
26 KK DP2 -50
27 KM DP-2 50 year
28 KO 22
29 HC 2
30 KK 500-10
31 KM Drainage Area 500
32 KO 2 2
33 BA 0 .0230
3 4 PH 1 0 0 0.66 l. 45 3 .02 3 .90 4.30 5.20
35 LS 79 .0
36 UD 0 .361
37 KK Pd3-10
38 KM Pond 3 -10 year
39 KO 22
40 RS 1 EL EV 261 .5
41 sv 0 0 .04 0.48 1.19 l. 99
42 SE 2 6 1.5 262 .0 263 .0 26 4.0 265.0
43 SQ 0 2.0 15.2 33 .2 4 6 .2
44 S E 261.5 262.0 263.0 264 .0 265 .0
HEC -1 INPUT PAGE 2
LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10
45 KK 501-10
46 KM Drainage Area 501
47 KO 22
48 BA 0 .0021
49 PH 10 0 0 .66 1 .45 3 .02 3.90 4 .30 5 .20
50 LS 78 .5
51 UD 0 .10
52 KK DP2-10
53 KM DP-2 10 year
54 KO 22
55 HC 2
56 KK 500-25
57 KM Drai n age Area 500
58 KO 22
59 BA 0.0230
60 PH 25 0 0 .74 1. 64 3.52 4.60 5.10 6.20
61 LS 79 .0
62 UD 0.361
63 KK Pd3-25
64 KM Pond 3 -25 year
65 KO 22
66 RS 1 ELEV 261 .5
67 sv 0 0 .04 0.48 1.19 1.99
68 SE 261.5 262 .0 263 .0 264 .0 265 .0
69 SQ 0 2 .0 15.2 33 .2 46.2
70 SE 261 .5 262 .0 263.0 264 .0 265.0
71 KK 501-25
72 KM Dra inag e Area 501
73 KO 22
74 BA 0 .0021
75 PH 25 0 0 .74 1.64 3 .52 4.60 5 .10 6.20
76 LS 78 .5
77 UD 0 .10
78 KK DP2-25
79 KM DP-2 25 year
80 KO 22
81 HC 2
82 KK 500-5
83 KM Drainage Area 500
84 KO 22
85 BA 0 .0230
86 PH 5 0 0 .60 1 .3 2 2.68 3 .30 3 .70 4.40
87 LS 79.0
88 UD 0 .361
HEC-1 INPUT PAG E 3
LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10
89 KK Pnd3-5
90 KM Pond 3 -5 year
91 KO 22
92 RS 1 ELEV 261 .5
93 SV 0 0.04 0 .48 1 .1 9 l. 99
94 SE 261 .5 262 .0 263.0 264.0 265 .0
95 SQ 0 2.0 15.2 33 .2 46.2
96 SE 261 .5 262.0 263.0 264.0 265.0
97 KK 501-5
98 KM Drainage Area 501
99 KO 22
100 BA 0 .0021
101 PH 5 0 0 .60 1 .32 2.68 3.30 3.70 4.40
102 LS 78 .5
103 UD 0 .1 0
104 KK DP2-5
105 KM DP-2 5 year
106 KO 22
107 HC 2
108 KK 500100
109 KM Drainge Area 500
llO KO 22
lll BA 0.0230
ll2 PH 100 0 0 .88 1 .95 4.30 5.70 6 .30 7.90
ll3 LS 79.0
ll4 UD 0 .361
ll5 KK Pd3-l
ll6 KM Pond 3 -100 year
ll 7 KO 22
ll8 RS 1 ELEV 261 .5
ll9 SV 0 0 .04 0.48 1.19 1.99
120 SE 261 .5 262.0 263.0 264.0 26 5.0
121 SQ 0 2 .0 15.2 33 .2 46.2
122 SE 261 .5 262 .0 263.0 264 .0 265 .0
123 KK 50ll00
124 KM Drainge Area 501
125 KO 22
126 BA 0 .0021
127 PH 100 0 0 .88 l. 95 4.30 5.70 6 .30 7.90
128 LS 78 .5
129 UD 0.1
130 KK DP2-l
131 KM DP-2 100 year
132 KO 22
133 HC 2
LINE
134
135
136
137
138
HEC-1 INPUT PAGE 4
ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10
KK DP-2
KM Discharge Point No .2
KO 22
HC 5
zz
f!EC'l S/N: 1343001909 HMVersion : 6 .3 3 Data File : C :\TEMP \-vbh3Al 4.TMP
'*~*.************************************
* *
FLOO D HYDROGRAPH PACKAG E (HEC-1) *
MAY 1991 *
VERSION 4. 0 . lE *
*
RUN DATE 05/13/2005 TIME 17:03:52 *
*
i I I ~•t***********************************
Williams Creek Phase 4 Post-Development w/o Pond 3
3 IO
IT
OUTPUT CO NTROL VAR IABLES
IPRNT 5 PRINT CO NTROL
I PLOT 0 PLOT CONTROL
QSCAL 0 . HYDROGRAPH PLOT SCALE
HYDROGRAPH TIME DATA
NMIN 1 MINUTES IN COMPUTATION INTERVAL
IDA TE
ITIME
NQ
NDDATE
NDTIME
I CENT
1
1
0 STARTING DATE
0000 STARTING TIME
300 NUMBER OF HYDR OG RAPH
0 ENDING DATE
0459 ENDING TIME
19 CENTURY MARK
COMP UTATION INTERVAL
TOTAL TIME BASE
0 .02 HOURS
4.98 HOURS
ENGLIS H UNI TS
DRAINAGE AREA
PRECIPI TATION DEPTH
LENGTH, ELEVATION
FLOW
STORAGE VO LUME
SURFACE AREA
TEMPERATURE
SQUARE MILES
INCHES
FEET
CUBIC FEET P ER SECOND
ACRE-FEE T
ACRES
DEGREES FAHRENHEIT
ORDINATES
***************************************
* *
* U .S. ARMY CORPS OF ENGINEERS *
* HYDROLOGIC ENGINEERING CENTER *
* 609 SECOND STREET *
* DAVIS, CALIFORNIA 95616 *
* (916) 756-1104 *
* *
***************************************
~-I ~ ~** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
4 KK * 500-50 *
* *
6 KO
**************
OUTPUT CONTROL VARIABL ES
IPRNT 5 PRINT CONTROL
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMI NT
0 PLOT CO NTR OL
0 . HYDROGRAPH PLOT SCALE
0 PUNCH CO MPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORD INATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0 .017 TIME INTERVAL IN HOURS
VALUE EXC EEDS TABLE IN LOGLOG 0 .01667 0.01667 6 .00000
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
11 KK
13 KO
**************
* *
* Pd3 -50 *
* *
**************
OUTPUT CON TROL VARIAB LES
IPRNT 5 PRINT CONTROL
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
I SAV2
TIMINT
0 PLOT CO NTR OL
0. HYDR OG RAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDR OG RAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0.017 TIME INTERVAL IN HOURS
~·~~ *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
19 KK * 501-50 *
* *
**************
21 KO OUTPUT CONTROL VAR IABLES
IPRNT 5 PRINT CONTROL
I PLOT 0 PLOT CONTROL
QSCA L 0 . HYDROGRAPH PLOT SCALE
IPNCH 0 PUNCH COM PUTED HYDR OGRAP H
IOUT 22 SAVE HYDROGRAPH ON THIS UNIT
ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED
ISAV2
TIMINT
300 LAS T ORDINATE PUNCHE D OR SAVED
0 .017 T I ME INTERVAL IN HOUR S
V.11.LUE EXC EEDS TABLE IN LOGLOG 0 .0 1 667 0 .0 1 667 6.00000
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
26 KK
28 KO
**************
* *
* DP2-50 *
* *
**************
OUTPUT CONTROL VARIABLE S
IPRNT
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
5 PRI NT CO NTR OL
0 PL OT CONTROL
0 . HYDR OGRAPH PL OT SCALE
0 PUN CH COMPUTED HYDR OGRAPH
22 SAV E HYDR OGRAPH ON THIS UNIT
1 FIRS T ORDINATE PUN CHED OR SAVED
300 LA S T ORDINATE PUNCHED OR SAVED
0 .017 TI ME INTERVAL IN HOURS
**~ *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
30 K K
32 KO
**************
* *
* 50 0 -10 *
* *
**************
OUTPUT CONTROL VARIAB LE S
IPRNT 5 PRINT CO NTR OL
I PLOT 0 PLO T CO NTR OL
HYDROGRAPH PL OT SCALE QSCAL
IPNCH
IOU T
ISAVl
ISAV2
TIMINT
0 .
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 F IRST ORD I NATE PUN CHED OR SAVED
300 LAS T ORDINATE PUNCHED OR SAVED
0 .0 1 7 TI ME INTERVAL IN HOUR S
A' TJE EXC EEDS TABLE IN LOGLOG 0 .0 1 667 0 .0 1 667 6 .0 00 00
*~* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
17 KK * Pd3-10 *
* *
**************
39 KO OUTPUT CONTROL VARIABLES
IPRNT
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
5 PRINT CONTROL
0 PLOT CONTROL
0 . HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0 .017 TIME INTERVAL IN HOURS
. ·~ ~t* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
45 KK * 501-10 *
* *
**************
4 7 KO OUTPUT CONTROL
IPRNT
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
VALUE EXC EEDS TABLE IN LOG LOG
VARIABLES
5
0
0.
0
22
1
300
0.017
PRINT CONTROL
PLOT CONTROL
HYDROGRAPH PLOT SCALE
PUNCH COMPUTED HYDROGRAPH
SAVE HYDROGRAPH ON THI S UNIT
FIRST ORDINATE PUNCHED OR SAVED
LAST ORDINATE PUNCHED OR SAVED
TIME INTERVAL IN HOURS
0.01667 0.01667 6.00000
~** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
52 KK * DP2-10 *
* *
**************
54 KO OUTPUT CONTROL VARIABL ES
IPRNT 5 PRINT CONTROL
I PLO T 0 PLOT CONTROL
QSC AL 0. HYDROGRAPH PLOT SCALE
IPNCH 0 PUNCH COMPUTED HYDROGRAPH
IOUT 22 SAVE HYDROGRAPH ON THIS UNIT
ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED
ISAV2 300 LAST ORDINATE PUNCHED OR SAVED
TIMINT 0.017 TIME INTERVAL IN HOURS
'~* k** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
56 KK
SR KO
**************
* *
* 500-25 *
* *
**************
OUTPUT CONTROL VARIAB LES
IPRNT 5 PRINT CONTROL
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
0 PLOT CONTROL
0 . HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0 .017 TIME INTERVAL IN HOURS
VALUE EXC EEDS TABLE IN LOGLOG 0.01667 0 .01667 6.00000
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
63 KK
65 KO
**************
* *
* Pd3-25 *
* *
**************
OUTPUT CONTROL VARIAB LES
IPRNT 5 PRINT CONTROL
I PLOT
QSCAL
IPNC H
IOUT
ISAVl
ISAV2
TIMINT
0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0 .017 TIME INTERVAL IN HOURS
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
71 KK
73 KO
**************
* *
* 501 -25 *
* *
**************
OU TPUT CO NTROL VARIABLES
IPRNT 5 PRINT CONTROL
!PLOT 0 PLOT CON TR OL
QSCAL
IPNCH
!OUT
ISAVl
ISAV2
TIMINT
0 . HYDROGRAP H PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDR OGRAP H ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORD INATE PUNCHED OR SAV ED
0 .017 TIME INTERVAL IN HOURS
V.l\.LUE EXCEEDS TAB LE IN LOGLOG 0 .01667 0 .01667 6 .00000
I~~ A~* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
78 KK
80 KO
**************
* *
* DP2-25 *
* *
**************
OU TPU T CONTR OL VARIABL ES
IPRNT 5 PRINT CON TR OL
I PL OT
QSCAL
IPNCH
!OUT
ISAVl
ISAV2
TIMINT
0 PLOT CON TR OL
0 . HYDROGRAPH PLOT SCALE
0 PUNCH COMPU TED HYDR OG RAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUN CHED OR SAVED
0 .017 TIME INTERVAL IN HOURS
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
82 KK
84 KO
* 500-5 *
* *
**************
OUTPUT CONTROL VARIABLES
IPRNT 5 PRINT CONTROL
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0.017 TIME INTERVAL IN HOURS
V.11.LUE EXCEEDS TABLE IN LOGLOG 0.01667 0.01667 6.00000
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
91 KO
**************
* *
* Pnd3-5 *
* *
**************
OU TP UT CONTROL VARIABLES
IPRNT
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
5 PRINT CONTROL
0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0.017 TIME INTERVAL IN HOURS
~~~ *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
97 KK
99 KO
**************
* *
* 501-5 *
* *
**************
OUTPUT CONTRO L VARIABLES
IPRNT 5 PRINT CONTROL
I PLOT
QSCAL
IPNCH
0 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
IOUT
ISAVl
ISAV2
TIMINT
22 SAVE HYDR OGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0.017 TIME INTERVAL IN HOU RS
VALUE EXC EEDS TABLE IN LOGLOG 0.01667 0.01667 6 .00000
~** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
104 KK
106 KO
**************
* *
* DP2-5 *
* *
**************
OUTPUT CONTROL VARIABLES
IPRNT 5 PRINT CONTRO L
IPLOT 0 PLOT CONTROL
QSCAL 0. HYDROG RAPH PLOT SCALE
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
0 PUNCH COMPU TED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORD INATE PUNCHED OR SAVED
0 .017 TIME INTERVAL IN HOURS
~ ~,. *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
108 KK * 500100 *
* *
**************
110 KO OUTPUT CONTROL
IPRNT
I PLOT
QSCA L
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
VALUE EXC EEDS TABLE IN LOGLOG
VARIABL ES
5
0
0 .
0
22
1
300
0 .017
PRINT CONTROL
PLOT CONTROL
HYDROG RAPH PLOT SCALE
PUNCH COMPUTED HYDROGRAPH
SAVE HYDROGRAPH ON THIS UNIT
FIRST ORDINATE PUNCHED OR SAVED
LAST ORDINATE PUNCHED OR SAVED
TIME INTERVAL IN HOURS
0 .01667 0 .01667 6 .00090
~~~ ~** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
115 KK
l 1 7 KO
**************
* *
* Pd3-l *
* *
**************
OUTPUT CONTROL VARIABLES
IPRNT 5 PRINT CONTROL
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
0 PLOT CO NTR OL
0 . HYDROGRAPH PLOT SCALE
0 PUNCH COMPUTED HYDROG RAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDI NATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0.017 TIME INTERVAL IN HOURS
~*~ *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
123 KK * 501100 *
* *
**************
125 KO OUTPUT CONTROL VARIABLES
IPRNT
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
VALU E EXC EEDS TABLE IN LOGLOG
5 PRINT CONTROL
0 PLOT CONTROL
0 . HYDR OGRA PH PLOT SCALE
0 PUNCH COMPUTED HYDROGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORD INATE PUNCHED OR SAVED
300 LAST ORD INATE PUNCHED OR SAVED
0 .017 TIME INTERVAL IN HOURS
0.01667 0.01667 6.00000
••A ~K* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
**************
* *
130 KK * DP2-1 *
* *
132 KO
**************
OUTPUT CO NTRO L VARIAB LES
I PRNT
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
5 PRINT CONTROL
0 PL OT CONTR OL
0 . HYDR OGRAPH PL OT S CALE
0 PUN CH COMPUTED HYDR OGRAPH
22 SAVE HYDR OGRAPH ON THIS UNIT
1 FIRST ORDINATE PUN CHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0 .017 TI ME INTERVAL IN HOU RS
~r~ ~** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
134 K K
136 KO
**************
* *
* DP -2 *
* *
**************
OU TPUT CONTROL VARIAB LES
IPRNT 5 PR I NT CO NTR OL
I PLOT
QSCAL
IPNCH
IOUT
ISAVl
ISAV2
TIMINT
0 PL OT CONTROL
0 . HYDR OGRAPH PL OT SCALE
0 PUN CH COMPUTED HYDR OGRAPH
22 SAVE HYDROGRAPH ON THIS UNIT
1 FIRST ORDINATE PUNCHED OR SAVED
300 LAST ORDINATE PUNCHED OR SAVED
0 .017 TIME INTERVAL IN HOURS
RUNOFF SUMMARY
FLOW IN CUBIC FEET PER SECOND
TIME IN HOURS , AR EA IN SQUARE MILES
PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN MAXIMUM TIME OF
OPERATION STAT ION FLOW PEAK AREA STAGE MAX STAGE
6-HOUR 24-HOUR 72-HOUR
HYDROGRAPH AT
500 -5 0 56 . 2.90 12. 12. 12. 0.02
ROUT ED TO
Pd3-50 3 6. 3.25 11. 11. 11. 0.02
264.23 3.25
HYDROGRAPH AT
50 1 -50 8. 2.60 1. 1 . 1 . 0 .00
2 COMBINED AT
DP 2 -5 0 38. 3.22 13 . 13 . 13 . 0.03
HYDROGRAPH AT
500-10 3 8 . 2. 92 8 . 8 . 8 . 0 .02
ROUTED TO
Pd3 -1 0 25 . 3 .23 7. 7 . 7 . 0.02
263 .54 3.23
HYDROGRAPH AT
501 -1 0 6 . 2 .62 l . l . 1 . 0.00
2 COMBIN ED AT
DP2-10 26. 3 .22 8 . 8. 8. 0.03
HYDROGRAPH AT
500 -2 5 48. 2.92 10. 10 . 10 . 0.02
ROU TE D TO
Pd3-25 3 2 . 3 .23 10 . 10. 10 . 0 .02
263.94 3.2 3
HYDROGRAPH AT
50 1 -25 7 . 2.62 l . 1. l . 0 .00
2 COMBINED AT
DP2-25 3 4. 3.22 11. 11. 11. 0 .03
HYDROGRAPH AT
50 0 -5 31. 2 .92 6. 6 . 6. 0.02
ROUT ED TO
Pnd3 -5 20. 3.23 6 . 6 . 6. 0.02
263.29 3.23
HYDROGRAPH AT
501-5 5 . 2 .62 1. 1. 1. 0 .00
2 CO MBINED AT
DP2 -5 2 1. 3 .22 6 . 6 . 6 . 0 .03
HYDROGRAP H AT
500100 6 4. 2.9 0 14. 14 . 14. 0 .02
ROUTED TO
Pd3-l 4 1. 3 .25 13. 13 . 13 . 0.02
2 6 4.5 6 3 .25
HYDROGRAPH AT
501100 9 . 2 .60 1. 1. 1. 0.00
2 CO MBINED AT
DP2-l 42. 3 .23 15 . 1 5 . 1 5. 0 .03
5 COMBI NED AT
DP-2 1 6 1. 3.2 2 52. 52. 52 . 0 .13
''' NOR MAL END OF HE C-1 ***
Drainage Report
for
05-J.-Lf
lo-& -05
q:30
Williams Creek Subdivision -Phase 4
College Station , Tex as
June 2005
Developer:
Joe and Janet Johnson Land and Investments , LP
1400 South Commercial Street
Coleman, Texas 76834
(325) 625 -2124
Prepared B1 ·:
TEXCON General Contractors
1707 Graham Road
College Station, Texas 77845
(979) 764 -7743
CERTIFICATION
I certify that this report for the drainage design for the Williams Creek Subdivision -Phase 4 ,
was prepared by me in accordance with the provisions of the City of College Station Drainage
Policy and Design Standards for the owners hereof, with the exception that stom1 water runoff
detention is not being proposed for a portion of this project since the runoff will discharge
directly into existing drainages which flow into the l 00-year floodplain limits .
TABLE OF CONTENTS
DRAINAGE REPORT
WILLIAMS CREEK SUBDIVISION -PHASE 4
CERTIFICATION .................................................................................................................................................................. 1
TABLE OF CONTENTS ........................................................................................................................................................ 2
LlST OFT ABLES .................................................................................................................................................................. 3
INTRODUCTION ................................................................................................................................................................... 4
GENERAL LOCATION AND DESCRIPTION ................................................................................................................. .4
FLOOD HAZARD INFORMATION .................................................................................................................................... 4
DEVELOPMENT DRAINAGE PATTERNS ...................................................................................................................... .4
DRAINAGE DESIGN CRITERIA ....................................................................................................................................... .4
STORM WATER RUNOFF DETERMINATION ............................................................................................................... 5
DETENTION FACILITY DESIGN ...................................................................................................................................... 7
STORM CULVERT & DRAINAGE CHANNEL DESIGN ................................................................................................ 8
CONCLUSIONS ..................................................................................................................................................................... 9
APPENDIX A ........................................................................................................................................................................ 10
Time of Concentration Data & Calculations
APPENDIX B ........................................................................................................................................................................ 17
Storm Sewer Culvert Data & Design Calculatio11s
APPENDIX C ........................................................................................................................................................................ 21
Drainage Channel Design Data & Calculations
APPENDIX D ........................................................................................................................................................................ 26
Drainage Ditch Data & Lining Material
APPENDIX E ........................................................................................................................................................................ 30
D etention Pond #3 D esign Information
EXHIBIT A ............................................................................................................................................................................ 35
Pre-Development Drainage Area Map -Dete11tio11 Po11d
EXHIBIT B ............................................................................................................................................................................ 37
Post-D evelopment Drainage Area Map -Dete11tio11 Pond
EXHIBIT C ............................................................................................................................................................................ 39
Post-Development Drai11age Area Map -Culverts & Cha1111els
EXHIBIT D ............................................................................................................................................................................ 41
Post-D evelopm ent Drainage Area Map -Ditch Velocities
LIST OF TABLES
TABLE 1 -Rainfall Intensity Calculations .............................................................................................. 5
TABLE 2 -Time of Concentration (tc) Equations .................................................................................. 5
TABLE 3A -Post-Development Runoff Infomiation (Exhibit C) .......................................................... 6
TABLE 3B -Drainage Structure Flow Summary .................................................................................... 6
TABLE 4 -Pre-& Post-Development Runoff Infonnation -Detention Evaluation .............................. 7
TABLE 5 -Pre-& Post-Development Peak Discharge Comparison -Discharge Point No. 2
with Detention Pond .......................................................................................................................... 8
TABLE 6 -Summary of Maximum Pond Water Levels ......................................................................... 8
DRAINAGE REPORT
WILLIAMS CREEK SUBDIVISION -PHASE 4
INTRODUCTION
The purpose of this report is to provide the hydrological effects of the construction of the
Williams Creek Subdivision -Phase 4 , and to verify that the proposed storm drainage system
meets the requirements set forth by the City of College Station Drainage Policy and Design
Standards.
GENERAL LOCATION AND DESCRIPTION
The project is located on a portion of a 213.91 acre tract located east of Rock Prairie Road and
south of Greens Prairie Road in College Station, Texas . This report addresses Phase 4 of this
subdivision, which is made up of 35.96 acres . The site is predominantly wooded . The existing
ground elevations range from Elevation 218 to Elevation 276. The general location of the
project site is shown on the vicinity map in Exhibit A.
FLOOD HAZARD INFORMATION
The project site is located in the Carters Creek Drainage Basin. Most of the proposed developed
area of the site is loc ated in a Zone X Area according to the Flood Insurance Rate Map
prepared by the Federal Emergency Management Agency (FEMA) for Brazos County, Texas
and incorporated areas, Community No. 481195 and 480083 , Panel No. 2050, Map No .
48041C0205D, effective dated February 9, 2000. Zone X areas are d e termined to be outside of
the 500-year floodplain .
DEVELOPMENT DRAINAGE PATTERNS
Prior to development, the storm water runoff for Phase 4 flows in two directions. The western
portion of the development flows south to Rock Prairie Road to an existing culvert and then to
Lick Creek . This is noted on Exhibit A as Discharge Point No. 2. The remainder of Phase 4
flows into existing drainages, which flow to the east or northeast, then discharge into a tributary
flowing north into Carters Creek. The pre-development drainage area for the detention pond
design is shown on Exhibit A.
DRAINAGE DESIGN CRITERIA
The design parameters for the storm drainage analysis are as follows :
• The Rational Method is utilized to determine p eak st01m water runoff rates for th e storm
drainage design for culverts, ditches and channe ls .
• HEC-l Program -Uti li zed to detem1ine peak storm water runoff rates for th e detention
facility design .
• Desi gn Storm Frequency
Storm culverts
De tention facility analysis
• Ru no ff Coeffici e nts
I 0 a nd I 00 -year sto nn event s
5 , I 0, 25, 50 a nd I 00-year storm event s
Post-d eve lopm e nt (I ac re minimum lot s ize ) c = 0.50
• Runorr C urve Number (CN) --Det e ntion Po nd
The Brazos Co unt y Soi l S urvey shows th e soi ls in the area to be c lass ifi ed as h ydro lo g ic
g roup D soils. The pre-development CN is based on no developm e n t on th e site . The
post-developm e nt CN is based on d eve lopment of Phase 4 of the s ubdi v is ion . The C N
calc ul at ion s are found in A pp endix E .
• Rainfall Intensity e quations a nd va lu es for Brazos County can b e fou nd in Tab le I .
• Time of Co nc e nt ratio n , tc -Ca lcu latio ns are based on th e method fo un d in th e TR-55
publicatio n. Refer to Table 2 for the eq u at ion s and Appendix A for calculations. The
runo ff flow path us ed for calculating the pre-and po st-deve lopme nt tim es of co nc e ntration
for th e larger drainage areas are shown on the exhibit s. Small er drainage a reas use a
minimum tc of 10 minutes to d etermine the rainfall int ensity valu es. Ex hibit B h as th e
runo ff flow paths used for the drainage areas for the detention pond desi g n . Exhibit C has
the runoff flow paths us ed for the drainage areas for the cu lvert and channel desi gns .
Exhibit D has th e runoff flow paths used for the drainage areas for the roadside ditch
evalu at ion and design.
STORM WATER RUNOFF DETERMINATION
The peak runoff values were dete1mined in accordance with the criteria presented in the
previous section for the 10 , 25, 50 , and 100-year storm events. The drainage a reas for th e pre-
development condition are shown on Exhibit A. Post-development runoff conditions for the
storm culvert d esign drainage areas are summarized in Tables 3A & 38 . The pre-a nd post-
develop ment runoff information for the detention pond evaluation is shown in Table 4.
TABLE 1 -Rainfall Intensity Calculations
Rainfall Intensity Va l ues (in/hr)
Storm tc =
Event 10 min
110 8 .635
hs 9 .861
lso 11.148
1100 11.639
Brazos County:
10 't_ea r storm 25 'i_ear storm
b= 80 b= 89
d= 8.5 d = 8.5
e= 0 .763 e= 0 .754
I = b I (tc+d)"
I = Rainfall Intensity (in/hr)
t c = U(V*60)
le= Time of concentration (min)
L = Le ngth (ft)
V = Velocity (ft/s ec)
50 't_ear storm 100 'i_ear storm
b= 98 b= 96
d= 8 .5 d = 8.0
e= 0 .745 e= 0.730
(D ata taken fr om State D epartment of Highwa't_s and Public Transp o rtation H 'i_dra ulic Manual, page 2-16)
TABLE 2 -Time of Concentration (tc) Equations
The ti111 e o(co11 ce 11/ratio11 '''as de te r111ined usin g 111 e i/1 odsfo1111d in TR-55 . ··urhu11
Hy dro logy/or 5 111 0 1/ Watersh eds . ·· Th e equati ons a re asfollmrs :
Ti m e o r C on c entration : Tc = ~f ,(~hn·r tlu HJ + Tr(ro 11 n ·1111·;111·tl ~hnr ll u")
w herL·: T , =Trave l Time. 1111nut cs
For S hee t Flow: 0.007 (n L)0·8
(P 2)0 .s so .4 w here : T 1 =trave l time , hours
n =Manning 's rou g hne ss coeffi c ient
L = fl ow length , fee t
For S ha ll ow C o ncen trated F low :
P 2 = 2-ye ar, 24-hour ra in fa ll = 4 .5"
s = land slope , ft /ft
T 1 =LI (60 *V)
w he re: T 1 =trave l time , minu te s
V =Velocity, fp s (See F ig 3-1, A p p . A)
L = flo w len g th , fee t
Refer to App e nd ix A fo r ca lcul at ion s .
TABLE 3A -Post-Development Runoff Information (Exhibit C)
Area 5 year storm 10 year storm 25 year storm 50 year storm c t c Area# (acres) Is O s 110
A (min) (in/hr) (cfs) (in/hr)
302 9 .01 0 .50 31 .5 4.199 18 .92 4.794
302+304A 10.12 0 .50 32 .6 4.111 20 .80 4 .696
30 2+304 A +3 04 14 .75 0 .50 36 .1 3 .856 28 .43 4 .41 2
30 4 A 1.11 0 .50 10 7 .693 4 .27 8.63 5
304 4 .63 0 .50 21 .2 5 .305 12 .28 6.017
305 1.37 0 .50 10 7 .693 5.27 8.63 5
401 4 .39 0 .50 27 .4 4 .57 2 10 .03 5.207
402 1.61 0 .50 23 .8 4 .96 7 4 .00 5.64 4
403 1.23 0 .50 10 7 .69 3 4 .73 8.635
The Rational Method :
Q=CIA I = b I (tc+d)e
le = Ti me of concentration (min )
010 l2s
(cfs) (in/hr)
21 .60 5.514
23 .76 5.402
32 .54 5.079
4 .79 9 .861
13 .93 6 .901
5.91 9 .861
11.43 5.98 2
4 .54 6.47 8
5.31 9 .861
tc = L/(V*60)
L = Length (ft
0 2s
(cfs)
24.84
27 .33
37 .46
5.4 7
15 .98
6.76
13.13
5 .2 1
6.06
lso Oso
(in/hr) (cfs)
6 .276 28.2 7
6.151 31.12
5.787 42 .68
11 .148 6.19
7 .835 18 .14
11 .148 7.64
6 .80 3 14.93
7.36 0 5.92
11 .148 6.86
Q = Fl ow (cfs )
A = Area (acres )
C = Runo ff Co eff .
V =Velocity (ft/sec)
I = Ra in fall Inte ns ity (in/hr)
Brazos County:
5 vear storm
b = 76
d = 8 .5
e = 0 .79
10 yea r storm
b = 80
d = 8 .5
e = 0 .76 3
25 year s torm
b = 89
d = 8 .5
e = 0.75
50 year storm
b = 98
d = 8 .5
e = 0.745
TABLE 3B -Drainage Structure Flow Summary
Culvert # #of Pipe size Contributing Contrib uting Area 010
Barrels (in) Area No . Acreage (A.,) (cfs)
1 1 27 30 2 9 .0 1 2 1.60
2 1 18 401 4 .39 11 .4 3
Channel # I
7 402 , 403 2.84 9.8 5 ------------·----------------------
8 302.304A 10 .12 23.76
(,
I
10 0 year storm
b = 96
d = 8 .0
e = 0 .73 0
0 2s Oso
(cfs) (cfs )
24 .84 28 .27
13.13 14 .93
I
11.28 12.7 8
27.33 31.12
100 year storm
11 00 010 0
(in/hr) (cfs)
6.5 58 29 .54
6.428 32.52
6 .051 44 .63
11.639 6 .4 6
8 .17 6 18 .93
11 .639 7.97
7 .104 15.59
7 .682 6 .1 8
11.639 7 .16
0 100
(cfs )
29 .54
15 .59
I
13 .34
32.52
TABLE 4 -Pre-& Post-Deve lopment Runoff Informatio n -Detentio n Eval u ation
Area# Area CN le Lag
(acres) (min) (hrs)
Pre 102 17 .74 73.2 44 .7 0.447
Post 500 14 .75 79 .0 36.1 0.361
Post 501 1 .37 78.5 10.0 0.100
DETENTION FACILITY DESIGN
The runoff from Phase 2 that drains to Rock Prairi e Road and ultimately to Lick Creek must be
detained to pre-development flow levels at the Discharge Point No . 2 location shown on
Exhibits A & B.
Discharge Point No. 2 is where the runoff from the western portion of the Phase 4 development
discharges into a culvert on Rock Prairie Road . Detention Pond No . 3 will be constructed
adjacent to Rock Prairie Road. The post-development runoff at Discharge Point No . 2 is
determined by combining the discharge hydrographs from Detention Pond No . 3 and Drainage
Area 501, which does not drain into the detention pond.
The pond outlet structure is the discharge pipes. The discharge pipes are 2-24" HDPE pipes , 35
feet in length, with a concrete S .E.T. 'sat the both ends of each pipe. The upstream invert
e levation of the concrete S.E.T. is 261.5. Concrete riprap will be placed at the discharge end to
control erosion. The pipe has a design slope of 1.0 %. The top of the pond berm is at Elevation
266.0 .
The peak flow out of the detention facility was determined by the HEC-1 program using the
depth discharge data for the pond outlet structure and the pond volume data as provided in
Appendix E . As shown in Table 5 , the post-development peak outflow at Discharge Point No .
2 is less than the allowable peak outflow for the d esign storm event. Additionally, Table 6
presents the maximum water surface in the pond for each storm event, as well as the amount of
freeboard provided .
The data shown in Tables 5 & 6 are from the HEC-1 computer model. The summary printout
of the model is not included in this report . This data can be provided if necessary.
A comparison of the pre-& post-development peak discharge values for Discharge Point No. 2
shows an increase of 7 cfs in the runoff for the 100-year stonn event, from 68 cfs to 61 cfs.
T a ble 5 also shows the increases in runoff for the other storm events if there was not a
detention pond to control the runoff. Because of this increased runoff, a detention pond is
proposed , which will reduce the peak runoff to less than or equal to the pre-dev e lopm ent
runoff, as the "Post-Development with Pond " data in Table 5 shows .
TABLE 5 -Pre-& Post-Deve lopment Peak Disc h arge Co mp arison -
Discharge Point No. 2 w ith Detention Pond
location Os 010 025
(cfs) (cfs) (cfs)
Pre-Deve lopment
Total@ Discharge Pt. No . 2 26 33 44
Post-Development without Pond
Total@ Discharge Pt. No . 2 33 40 51
Post-Development with Pond
Into Pond 31 38 48
Out of Pond 20 25 32
Total@ Discharge Pt. No . 2
21 26 34 (Pond Discharge & Area 501)
Oso 0100
(cfs) (cfs)
52 61
59 68
56 64
36 41
38 42
The area-capacity data and the depth-discharge data for the Detention Pond No. 3 are provided
in Appendix E . The detention pond grading plan is shown in the construction drawings
TABLE 6 -Summary of Maximum Pond Water Levels
Storm Event W ate r Surface Free board,
Elevation, ft . ft .
5-year 263 .3 2 .7
10-year 263 .5 2.5
25-year 263 .9 2 .1
50-year 264 .2 1.8
100-year 264 .6 1.4
Note : Detention Pond Top of Berm Elevation= 266.0
STORM CULVERT & DRAINAGE CHANNEL DESIGN
The storm culverts for this project have been selected to be Reinforced Concrete Pipe (RCP)
meeting the requirements of ASTM C-76, Class III pipe mee ting the requirements of ASTM C-
789 . There w ill be sloped safety e nd tr eat ment at the end o f each culvert.
Runoff from the proposed streets will be collected by the roadside ditches and conveyed to the
culvert structures . Due to the open-ditch design, no inlets will be used for this development.
The drainage areas for the culvert design are shown on Exhibit C.
Appendix B presents a summary of th e s torm culvert design parameters and calculations . A ll
pipes are 18 " in diameter or larger. The culverts were designe d based on th e 25-year stonn
event, and data is also given for th e 100-year storm event. As shown in the s umm ary, a ll of the
cu lverts have a head water elevation that is at least o ne foot below the roadway e levatio n for th e
25-year storm event. Also, all of th e culverts pass the 100-year stom1 event without
overtopping th e road way. As required by College Station , the ve locity of flow in the pip es is
not lower th a n 2.5 feet per seco nd , a nd it do es no t exceed 15 fee t per second . As the data
shows , even during low flow conditions , the ve locity in th e pipes will exceed 2 .5 fee t pe r
seco nd and prevent sed im e nt build-up in the c ul verts . The maximum flow in th e s torm culve rt s
w ill occur in C u lvert No. I . T he m ax imum ve locity for th e c ul verts in this de ve lopme nt wi ll b e
8.8 feet per seco nd and w ill occ ur in C ulv e rt No . 2. A pp e ndi x B co nt ains a su mm a ry of th e
c ulv e rt calcu lato r d a ta for th e 25 a nd I 00 -ye a r storm event s. Co nc rete ripr ap will be pla ced a l
the e nd Cu lvert No . 2, si nce the ve lo city exceeds 4 .5 fps for the 25 -year storm eve nt. (Culvert
No. I has concrete riprap placed at the o utl et where it discharges into C hannel No. 8).
The stom1 water runo ff for a portion of the roadside ditches of Williams Creek Drive will
discharge into a n improved drainage channel to convey the water from the street right-of-way
to Detention Pond No 3. This channel, Channel No . 8, will have a concrete flume in the bottom
to control eros ion. Appendix C contains a summary of the channe l design parameters and
calc ulations . The velocity for the design storm event (25-year storm) for Channel No. 8 is 4.1
fps. Although it is not required, a concrete flum e is proposed for the bottom of the channel to
contro l erosion. Channel No. 7 is a grass seeded channe l with a 2' wide bottom and 4H: IV
side slopes. It starts at 3.6% slope and then breaks to 2.2% slope, before discharging into a
natural drainage. The 25-year storm veloc ity for this channel ranges from 3.5 fps to 4.2 fps.
Since the velocity of flow in this channel is less than 4.5 feet per second, this wi ll be a grass-
seeded channel. Appendix C contains the channel calculator data for the 25-and l 00-year
stonn events for both channels.
The velocity of the flow in the roadside ditches was evalu ated for the IO-year and 100-year
stonn events. The drainages are shown on Exhibit D, and the data is summarized in Appendix
D.
The city requirements for ditch lining material are as follows :
Maximum Design Velocities of Various
Surface Treatments 1
Surface Treatment
Exposed Earth*
Grass -Seeded
Grass -Sodded
Impermeable
(Concrete, Gunite, Etc.)
*Temporary Cham1els Only
Maximum Design Ve locity, (ft/sec)
3 .0
4 .5
6 .0
10.0
1From "Erosion and Sediment Control Gu idelines for Deve loping
Areas in Texas" by the Soil Conservation Service
In Appendix D the ditch velociti es are summarized including comments stating the ditch lining
material used. The ditch velocities for the proposed ditches do not exceed 4 .5 fps , therefore no
lining material other than grass is proposed .
CONCLUSIONS
The co nstru ctio n of this project wi ll in crease the stonn water runoff from this s it e. However,
some of the runoff will be carried throu gh a drainage system to existi ng drainage channels and
th e n directly to Carters Creek and into the 100 -year floodplain . Due to the location of this
proj ect a nd its proximity to Carters Creek's co nflu e nce w ith th e Navasota River, the peak
runoff from this development w ill occur much sooner than the peak runoff in Carters Creek ,
th e refo re , th e increase in runoff has no affect on th e water s ur face e levation in Cart e rs C reek.
Th e increased flow directly into Carte rs C ree k wi ll not have a significant impact o n the
s urroundin g property. The portion of th e site which flows to Lick C reek will h ave a detention
fa c i I ity to reduce the po s t-developm e nt flo w to th e pre -developm e nt va lu e. No flood dallla gc
to d ow ns tr ca lll or adjace nt la nd o wne rs is ex pect ed a s a res ult o f thi s d eve lo pm e nt.
<J
APPENDIX A
Time of Concentration Data & Calculations
I ()
3 -2
. 50 -
.20 -
.10
QJ
a. . 06
0 .-.,,
QJ
~ .04 -::s
0 u s....
QJ .... ..,
::x
.02 -
.01 -
.005
I
1
'
j
I
' 7
11
j
J
0
:..<l.JL.__~,
'tr :.. 9 ~ ~ Q.
J
' I
j
I
I
2
'
'
I
4
J
j
'
I
IJ
7
T
I
6
'
j
I ~
j
" I
Average velocity, ft/sec
~
j
. : r•
' I
I
I
'
I I
10
• • .
Fiicutt l ·L-,\v~rall'~ v~lociti~s for C<l imalinic lrJvd tim~ for <hallow conc~nlrat~d now .
(210-Vl-TR -55. Second Ed .. June \98Gl
I
20
Drainage Area #102
Sheet Flow:
L= 240
n=
P=
0.007(L*nt0 =
(P)os*(S)o4
Concentrated Flow1 : V=
L=
U(60*V)
Concentrated Flow2 : V=
L= 242
U(60*V) =
Concentrated Flow3 : V=
Pre-Development Tc Calculations
Elev,=
0.4 (wooded)
4.5
0 .593 hours=
2 fps (unpaved)
Elev 1=
1.9 min
2.5 fps (unpaved)
Elev 1=
1.6 min
1.8 fps (unpav ed )
279.4 Slope=
35 .6 min
276 Slope=
270 Slope=
~---
L= 606 Elev,= 270 Elev2 =
T1= U(60*V) = 5 .6 min
44.7 min
0 .021
0.015
Post-Development Tc Calculations
Drainage Area #302
Sheet Flow: n= o .. 24 (den se grass )
P= 4.5
L= 250 Elev 1= Elev2 = Slope= 0.0150
T,= 0 .007(L *nf0 0.468 hours = 28 .1 min
(P)os*(S)°4
Concentrated Flow 1 : V= 2.1 fps (unpaved)
L= 100 Elev 1= Elev 2= Slope= 0.0170
T,= U(60*V) 0.8 min
Concentrated Flow 2 : V= 2.65 fps (unpaved)
L= 211 Elev 1= Elev2 = Slope= 0.0270
T,= U(60*V) = 1.3 min
Concentrated Flow 3 : V=
L= 165 Ele v1= Elev2 = Slope=
T,= U(60*V) 1.3 min
ITc= 31.5 min
Drainage Area #304
Sheet Flow: n= 0.24 (dense grass)
P= 4 .5
L= 190 Elev 1 = Elev2= Slope= 0 .0290
T,= 0.007(L *nt° = 0 .28 9 hours = 17 .3 min
(P)os*(S)04
Concentrated Flow 1: V= 2 .05 fps (unpaved)
L= 476 Elev 1= Elev 2 = Slope= 0 .0150
T,= U(60*V) 3 .9 min
I Tc= 21 .2 min
Drainage Area #302 & 304A
Sheet Flow : n= 0 .24 (d ense grass )
P= 4 .5
L= 250 Elev,= Elev 2 = S lo pe = 0 .0150
Ti= 0 .007(L *n(0 0.468 hours= 28 .1 min
(P)o s.(S)oA
Concentrated Flow 1: V= 2 .1 fps (unpaved)
L= 100 Elev 1= Elev 2 = Slope= 0.0170
Ti= L/(60*V) = 0 .8 min
Concentrated Flow 2 : V= 2.65 fps (unpaved)
L= 211 Elev ,= Elev 2 = Slope= 0.0270
Ti= U(60*V) 1.3 min
Concentrated Flow 3 : V= 2.1 fps
L= 165 Elev 1= Elev2 = Slope= 0.0 170
Ti= U(60*V) = 1.3 min
Concentrated Flow 4 : V= 1.45 fps
L= Elev 1= Elev2 = Slope= 0.0080
Ti= U(60*V) = 1.0 min
Flow through c ul vert : V= 8.25 fps (Manning's)
L= Elev 1= Elev2 = Slope= 0.0100
Ti= U(60*V) = 0.1 min
ITc= 32 .6 min
Drainage Area #302 , 3 04A & 30 4 (A r ea 500 )
Sheet Flow : n= 0.24 (dense grass)
P= 4.5
L= 250 Elev 1= Elev2 = Slope= 0 .0150
Ti= 0 .007(L*nt0 = 0.468 hours= 28 .1 min
(P)o s*(S)oA
Concentrated Flow 1: V= 2.1 fps (unpaved)
L= 100 Elev,= Elev 2= Slope= 0.0170
Ti= L/(60*V) = 0 .8 mi n
Con ce ntrated Flow 2 : V= 2 .65 fps (unpaved)
L= 211 Elev i= El ev2 = Slope= 0 .0270
T -,-L/(60'V) 1.3 min
~Q.l_l_<;~g r~lf a l e d _E.I ow 3 : V= 2.1 fp s (un p ;:ive d)
L= 165
Ti~ L/(60*V)
Concentrated Flow 4: V=
L= 85
Ti= L/(60*V)
Flow through culvert : V=
L= 68
Ti= L/(60*V) =
Concentrated Flow 5 : V=
L= 435
Ti= L/(60 *V) =
Drainage Area #305 (Area 501)
Sheet Flow : n=
P=
L= 52
Ti= 0 .007(L *nt"0 =
(P)o .s*(S)04
Concentrated Flow 1 :
L= 501
Ti= L/(60*V)
Drainage Area #401
Sheet Flow:
L= 200
V=
=
n=
P=
0 .007 (L *nt"0 =
(P)o s.(S 104
Concentrated Flow 1: V=
L= 525
T,= L/(60*V )
Elev,= Elev2 =
1 .3 min
1.45 fps (unp aved )
Elev,= Elev2 =
1.0 min
8 .25 fps (M a nning's)
Elev 1= Ele v2 =
0 .1 min
2.1 fps (unpaved)
Elev,= Elev2 =
3.5 min
ITc= 36 .1 min
Elev 1= 271 Elev2 =
0 .078 hours=
2 fps (unpaved)
Elev1= 268 Elev2 =
4 .2 min
8 .9 min
0.24 (dense grass )
4.5
Elev,=
Slope=
Slope=
Slope=
Slope=
268 Slope=
4.7 min
260.5 Slope=
Use 10 minutes
Slope=
0 .376 hours= 22 .6 min
2 .2 fps (unpaved)
Sl o pe=
4 .0 min
0.01 70
0 .0080
0.0100
0 .0090
0 .0577
0 .0150
0 .0166
0 .0190
Conc entra ted Flow 2 : V= 1.25 fps (unpaved)
L=· 60 Elev 1= Elev2 = Slope= 0 .00 60
T1= L/(60 *V) 0.8 min
I Tc= 27 .4 m i n
Drain age Area #402
Sheet Flow : n= 0.24 (dense grass)
P= 4.5
L= 170 Elev 1= Elev2 = Slope= 0.0166
T1= 0 .007(L*n(0 = 0 .330 ho urs= 19 .8 mi n
(P )os*(S)o.4
Co ncentrated Flow 1 : V= 1.7 fps (u npaved )
L= 150 Elev 1= Elev2 = Slope= 0.0109
T,= L/(60.V) 1.5 min
Concentrated Flow 2 : V= 3.4 fps (unpaved)
L= 150 Elev 1= Elev2 = Slope= 0.0438
T,= U(60*V) = 0.7 min
Concentrated Flow 3 : V= 3.0 fps (unpaved )
L= Elev 1= Elev2= Slope= 0 .0353
T,= U(60*V) 0 .8 min
Concentrated Flow 4 : V= 3.8 fps (unpaved)
L= 225 Elev 1= Elev2 = Slope= 0 .0 552
T,= U(60*V) 1.0 min
I Tc= 23 .8 m i n
APPENDIXB
Storm Sewer Culvert Data & Design Calculations
17
Williams Creek Subdivision -Phase 4
Culvert Summary
Size L en g th Slope Inlet Invert
Culvert # Elev
(in) (ft) (%) (ft)
1 27 48.0 1.00 265.42 ------------------·----
2 18 40 .0 1.00 266.60
Outlet Top of Road Invert Elev
(ft) (ft)
264 .94 270 .00 ---
266 .20 270.60
25 year s torm 100 ye ar storm
Desig n Flow V2s HW Des ign-Flow v, •• HW
(cfs) (fps) (ft) (cfs) (fps) (f t)
24 .84 8 .1 268 .2 29 .54 7.4 268 .7 -----------
13.10 7.4 269.4 15 .56 8 .8 270 .1
Culvert 1 -25 Ye ar Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Cha rt Number ................... .
Scale Number ................... .
Cha rt Description .............. .
Scale Description .............. .
Ov ertopping .................... .
Flowrate ....................... .
Manning' s n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circula r
1
Headwater
1
3
CONCRETE PIPE CULV ER T ; NO BEVELED RI NG ENTRANCE
GROOVE END ENTRANCE , P I PE PROJECTING FROM FILL
Off
24.8400 cfs
0. 0140
270.0000 ft
265.4200 ft
26 4.9400 ft
27.0000 in
48.0000 ft
0.0000
2.2 500 ft
268.1985 ft Inlet Cont ro l
0 .0100 ft/ft
8 .1436 fps
Culvert 1 -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning' s n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ..... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Co mput ed Results :
Headwater .......... .
Slope .......... .
Veloci t y ........... .
Wi l l iams Cr ee k S ubdi v i s i o n -Ph ase 4
Co l l ege S tatio n , Texas
Circular
1
Headwater
1
3
CONCRE TE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
Off
29.5400 cfs
0 .0140
27 0.000 0 ft
265.420 0 ft
264.9400 ft
27 .0000 in
48.0000 ft
0.0000
2.2500 ft
268.7110 ft Inlet Control
0.0100 ft/ft
7.4294 fps
Culvert 2 -25 Year Sto rm
Culvert Calculator
Entered Data:
Shape ..... .
Numb er of Barrels
Solving for .................... .
Cha rt Number ................... .
Scale Number ................... .
Cha rt Description .............. .
Scale Description .............. .
Overtoppi n g .................... .
Flowrate ....................... .
Mann ing' s n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Ent rance Lo ss .................. .
Ta ilwater ............... .
Computed Results:
Headwate r ...................... .
Slope .......................... .
Veloc ity ....................... .
Circula r
1
Headwater
1
3
CONCRE TE PI PE CU LVERT ; NO BEVELED RING ENTRANCE
GROOV E END ENTRANC E , P IPE PROJECTING FROM FILL
Off
13. 1000 cfs
0 . 0140
27 0 .6000 ft
266.6000 ft
2 66 .2000 ft
18.0000 in
40.0000 ft
0.0000
1.5 000 ft
269.3695 ft Inlet Control
0.0100 ft/ft
7 .4131 fps
Culvert 2 -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Numbe r of Barrels .............. .
Solving for .................... .
Cha rt Number ................... .
Sca le Number ................... .
Cha rt Descripti on .............. .
Scale Descr ip ti o n .............. .
Overtoppi ng .................... .
Flowrate ....................... .
Manning' s n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Out let Elevation ........... .
Diameter .................. .
Length ....... .
Ent rance Loss .
Ta ilwater .....
Co mputed Results:
Headwater .......... .
Slope . . . , ...... .
Ve l ocity ........... .
William s Creek S ubdivis i o n
Co lleg e Sli:it i 0 11 . 'l'r:·:-:21 ~0
P h ase <I
Circular
1
Headwater
1
3
CO NCRETE PIPE CULVE RT; NO BEVELED RI NG ENTRANCE
GROOVE END ENTRAN CE, P IPE PROJECTING FROM FILL
Of f
15.5600 cfs
0 . 0140
270.6 000 ft
266.6000 ft
266.2 000 ft
18.0000 in
40.0000 ft
0.0000
1.5000 ft
270.0852 ft Inlet Co ntro l
0 .0100 ft /ft
8 .8052 fp s
APPENDIX C
Drainage Channel Design Data & Calculations
~I
Williams Creek Subdivision -Phase 4
Channel Summary
Bottom Width Side Slopes
Channe l#
(i n) (H :V)
7 -Segment 1 24 4:1
7 -S egment 2 24 4 :1 -------
8 0 4 :1
Slope
(%)
3.60
2.20
0 .90
-
A
25 year storm
Design Flow Depth
(cfs) (in)
11 .27 7.2 ----
11 .27 8.1 -----·-· -
27 .33 15.5
-
100 year storm
V2s Des ign Flow Depth V100
(fps) (cfs) (in) (fps)
4 .2 13 .34 7 .8 4.4 -
3 .5 13.34 8 .8 3 .7 -----
4 .1 32 .52 16 .5 4 .3
Channel 7 -25 Year Storm (Segment 1, 3.6% Slope)
Channel Calculator
Given Input Data :
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
11.2700 cfs
0.0360 ft/ft
0.0350
18 .0000 in
24.0000 in
0.2500 ft/ft (V/H)
0.2500 ft/ft (V/H)
7.2346 in
4.2374 fps
85 .7262 cfs
2.6 596 ft2
83 .6581 in
4.5 780 in
81.8769 in
12.0000 ft2
172.4318 in
40.1923 %
Channel 7 -100 Year Storm (Segment 1, 3.6% Slope)
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydrau lic radius ............... .
Top width ...................... .
Area ........................... .
Perime ter ...................... .
Percent full ................... .
i'lj lliam s Cc ee \.: S ubcli·J i s i o 11
Co I Lege Sta Li o n , Tc ·:ii~:
Ph as~ 4
Trapezoidal
Depth of Flow
13. 3400 cfs
0.0360 ft/ft
0.0350
18 .0000 in
24 .0000 in
0 .2500 ft/ft (V/H)
0.2500 ft/ft (V/H)
7.8355 in
4 .4299 fps
85.7262 cfs
3 . 0 113 ft2
88. 6132 in
4.8935 in
86.6840 in
12.0000 ft2
172 .4318 in
43.53 0 6 %
Channel 7 -25 Year Storm (Segment 2, 2.2% Slope)
Channel Calcula tor
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Fl ow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
11.2700 cfs
0 .0220 ft/ft
0.0350
18.0000 in
24 .0000 in
0.2500 ft/ft (V/H)
0.2500 ft/ft (V/H)
8.1264 in
3.5343 fps
67 .01 52 cfs
3.1888 ft 2
91.0116 in
5.0453 in
89.0108 in
12.0000 ft2
172.4318 in
45.1464 %
Channel 7 -100 Year Storm (Segment 2, 2.2% Slope)
Channel Calculator
Given Input Data :
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top wi dth ...................... .
Area ........................... .
Perimeter ...................... .
Percent f ul l ................... .
V>l:il l i ams C re e k S ubd.i v .i s i o n
Coll eg e S t at io n, T e ~a s
Ph ase 4
Trapezoidal
Depth of Flow
13.3400 cfs
0.0220 ft/ft
0.0350
18.0000 in
24.0000 in
0.2500 ft/ft (V/H)
0.2500 ft/ft (V/H)
8.79 08 in
3.6935 fps
67.0 152 cfs
3. 6118 ft2
96.4909 in
5.3901 in
94.3265 in
12.0000 ft2
1 72.4318 in
48.8378 %
Channe l 8 -25 Year Storm
Channel Calculator
Give n Input Dat a:
Shape .......................... .
Solvi ng for .................... .
F lowra te ....................... .
Slope .......................... .
Manning' s n .................... .
He ight ......................... .
Bot tom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results :
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydrau lic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Dept h of Flow
27.3 300 cfs
0.0090 ft /f t
0.02 50
18.0 000 in
0.0 000 in
0.2500 ft/ft (V /H )
0.2500 ft/ft (V/H)
1 5.4524 in
4.12 05 fps
41.0557 cfs
6.6327 ft2
127.4241 in
7.49 55 in
123.6196 in
9.00 00 ft2
148.4318 in
85.8469 %
Channel 8 -100 Year Storm
Channel Calculator
Given Input Data :
Shape .......................... .
Solvi ng for .................... .
Fl owrate ....................... .
Slope .......................... .
Mann i ng's n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Fl ow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top wid th ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Willia ms Cree k Subd i v isio n -Ph ase 4
College Statio n, Texas
Trapezoidal
Depth of Flow
32.52 00 cfs
0.0090 ft/ft
0.0250
18.00 00 in
0.0000 in
0. 2500 ft/ft (V/H)
0. 2500 ft/ft (V /H)
16.4935 in
4.3 035 fps
41.055 7 cfs
7.5566 ft2
136.0092 in
8 .0005 in
131.948 3 in
9.0000 ft2
148.4318 in
91.6308 %
APPENDIX D
Drainage Ditch Data & Lining Material
Williams Creek Drive
Left Ditch
From To
Station Station
34+65 .61 35+25.00
35+25 .00 37+00 .00
37+00 .00 37+68.87
37+68 .87 39+72 .87
39+72 .87 41 +68.87
41 +68.87 42+42.26
42+42.26 43+66 .00
43+66 .00 45+70 .00 ------
45+70 .00 46 +35 .00 --
46+35 .00 48+50 .00 ---
48+50 .00 50+50.00 -
50 +50 .00 53+00 .00
--~-
53+00 .00 54+13 .34
Lanham Drive
Left Ditch
From To
Station Station
0+00 .00 1+50.00 --
1 +50 .00 2+75.00 ---
2+75 .00 4+50.00 -
4+50 .00 5+26.35
Wayne Court
Left Ditch
From To
Station Station
0+35.43 2+75.00 --
2+75.00 4+00 .00 ----
4+00 .00 5+49.1 4 -
5+49 .14 6+67.26
(n = 0 .035)
Slope Drainage Area #
-0 .60% 1358,C ,D , 1
-1.87% 1358,C ,D , 1,2
-0 .78 % 1358-D, 1,2 ,2 A
-1.02% 1358-D, 1,2 ,2A ,3
1.97 % 3A,4
0 .93% 4
-0 .60% 135A,29 -
-1.45% 135A,29,30 ----
1.86% 31
--
-4 .70 % 35 -------
-6 .00% 35,36 ------·
-4.83% 35 ,36 ,37 ---------
-1.59% 35,36 ,37 ,38
(n = 0 .035)
Slope Drainage Area #
1.30% 10,11,12,13 -------
2 .35 % 10 ,11 ,12 ---·--
1.18% 10 , 11 ----
2 .86 % 10
(n = 0 .035)
Slope Drainage Area #
-1.09% 22,23,24 -
-4 .38% 22,23,24 ,2 5 --·---------
-3 .53 % 22,23 ,24,25 ,26 ------
-5 .52% 22,23,24,25,26,27
0 10 V10 d 10 0100 V 100 d 100 Ditch Lining Materi al
(c fs) (fp s ) (in) (cfs) (fp s) (in)
4 04 1.7 9 .2 5.47 1.8 10 .3 Grass seeded
6.49 2 .9 8 .9 8 .78 3.2 10.0 Grass see ded
11 .36 2.4 13.0 15 .38 2.6 14 .5 Grass seeded
21 .82 3 .2 15 .7 29 .6 1 3.4 17 .6 Grass seeded
7.53 3.1 9 .3 10 .22 3.4 10 .5 Grass seeded
3.25 1.9 7.8 4.41 2 .1 8.8 Gras s seeded
4 .09 1.7 9 .3 5.54 1.8 10.4 Gras s seeded
11 .36 3.1 11 .5 15.43 3 .3 12 .9 Grass seeded --
2.00 2 .2 5.7 2 .70 2.4 6.4 Grass seeded -
1.99 3 .1 4.8 2 .68 3 .3 5.4 Grass seeded -
2.50 3 .6 5.0 3 .37 3 .9 5.6 Grass seeded
3.34 3 .6 5 .8 4 .51 3.8 6.5 Grass seeded -----
3 .74 2.4 7.5 5 .06 2 .6 8.4 Grass seeded
0 10 V10 d 10 0100 V 100 d100 D itch Lin i ng Material
(c fs) (fps ) (in) (cfs) (fps) (in)
1.90 1.9 6.0 2.56 2 .0 6.7 Gras s seeded ---
1.42 2 .2 4 .8 1.92 2.4 5.4 Grass seeded -
0 .95 1.5 4 .7 1.2 8 1.6 5 .3 Gras s seeded
0.3 5 1.7 2 .8 0.47 1.8 3.1 Grass seeded
0 10 V 10 d 10 0100 V 100 d 100 Ditch Lin ing Materia l
(cfs) (fps ) (in) (cfs) (fps) (in)
3.20 2.0 7 .6 4 .33 2 .2 8.5 Gra ss seeded
3 .94 3.6 6 .3 5.33 3.9 7.1 Gras s seeded
4 .6 0 3.4 7.0 6 .23 3.7 7.8 Grass seeded
5.05 4 .1 6 .6 6 .85 4.5 7.4 Grass seeded
W illiams Creek Drive
Right Ditch (n = 0.0 35)
From To Slope Drainage Area # 0 10 V10 d 10 0100 V 100 d 100 Ditc h Lining Mate ri a l
Station Station (cfs) (fps) (in) (els ) (fps) (in)
34+65 .61 35+25 .00 -0 .60 % 136,5 0.43 1.0 4 .0 0 .58 1.0 4 .5 Grass se eded -
35+25 .00 37+00 .00 -1 .87 % 136,5,6 1.04 1.9 4 .5 1.40 2 .0 5 .0 Grass seed ed -. -·· -
37+00 .00 37+68 .87 -0 .78 % 136,5,6 ,7 1.30 1.4 5 .7 1.75 1.5 6.4 Gra ss seed ed
37+6 8 .87 39+72 .87 -1 .26 % 136,5,6,7 ,8 1.99 1.9 6 .2 2 .68 2 .0 6 .9 Grass seeded -
39+72 .87 41+68 .87 2.21 % 9 0 .91 1.9 4.1 1.22 2 .1 4 .6 Grass seeded --
-----------
42+42 .26 43+66.00 -0 .60 % 32 0.43 1.0 4 .0 0 .58 1.0 4 .5 Gras s seeded ------·---------
43+66.00 45+70.00 -1.55 % 32,33 1.12 1.8 4 .8 1.5 1 1.9 5 .3 Grass seeded ·---------------------------------
45+70 .00 46+35.00 2.14 % 34 0 .26 1.4 2.6 0 .3 5 1.5 2 .9 Grass seed ed --· ------· --------------------
46+35 .00 48+50 .0 0 -4.70% 40 0 .73 2.4 3 .2 0.99 2 .6 3 .7 Grass seeded -----· ---------------------·-----
48+50.00 50+50 .0 0 -6 .00% 40,41 1.51 3.2 4 .1 2 .04 3.4 4 .6 Grass seeded -.. -------------· -·----------· ----
50+50.00 53+00 .00 -4 .83% 40,4 1,42 2.76 3 .4 5.4 3 .72 3 .7 6 .1 Grass seeded --------·-· ----------------------
53+00 .00 54+13 .34 -1 .59% 40,41,42,43 5 .31 2.6 8 .5 7 .16 2 .8 9 .5 Grass s eeded
Lanham D r ive
R ight Ditch (n = 0 .035)
F rom To Slope Drainage Area # 010 V10 d 10 0100 V 100 d100 Ditch Lining Material Station Stati on (els) (fps) (in) (els) (fp s ) (in)
0+00 .00 1+50.00 1.30% 14 , 15 0 .9 1 1.6 4.6 1.22 1.7 5 .1 Grass seeded --·------· ------------
1+50 .00 2+75 .00 2.35% 14 0.47 1.7 3 .2 0.64 1.9 3.6 Grass seeded ----·------
3+50 .00 4+50.00 1.18% 22 ,23 0 .78 1.5 4.4 1.05 1.6 4 .9 Grass seeded -----·------
4+50.00 5+26.35 2.86% 22 0.35 1.7 2.8 0 .47 1.8 3 .1 Grass seeded
Wayne Court
Right Ditch (n = 0 .035)
F ro m To Sl ope Drainage Area # 010 V 10 d 10 0100 V 100 d100 Ditch Lining Material Station Station (els) (fp s ) (in) (els) (fp s) (in)
0+35.43 2+75.00 -1 .09% 16, 17 1.8 1 1.7 6 .1 2.44 1.9 6 .8 Grass seeded ---------------
2+75 .00 4+00 .00 -4 .38 % 16, 17, 18 3 .07 3.4 5 .7 4 .13 3 .6 6 .4 Grass seeded ---------------------------
4+00 .00 5+49 .14 -3 .53 % 16,17 ,18 ,19 4 .36 3.4 6 .8 5 .88 3 .6 7 .6 Gra ss s eed ed ------------------
5+49 .14 6+67 .26 -5 .52% 16,17,18,19 ,20 5 .22 4 .2 6 .7 7 .04 4 .5 7 .5 Grass seeded
W ill iams Creek Subdivisio n -P hase 4
Dit c h Ev aluati o n Data
Area, c l e Area# A
(acres) (min )
1358 0 .54 0 .50 10.0
1358,C 0 .69 0 .50 11 .3
1358,C,D 0 .82 0 .50 130
1358.C ,D . 1 1.08 0 .50 138
13 58,C .D , 1.2 1.81 0 .50 15 .1
1358-D , 1,2 ,2A 3 .25 0 .50 15 .9
1358-D, 1.2.2A ,3 6 .84 0 .50 19 .0
136 0 .05 0 .50 10 .0
136,5 0 .10 0 .50 10 .0
136 ,5,6 0 .24 0 .50 10.0 -136,5 ,6 ,7 0 .30 0 .50 10 .0 -----136,5 ,6 , 7 ,8 0.46 0 .50 10.0 --
9 0 .21 0 .50 10 .0
4 0.98 0 .50 17 .6 -
4,3A 2.36 0 .50 19.0 ----
135A.29 1.21 0 .50 17 .0
135A,29 ,30 3 .65 0 .50 19 .9 -31 0 .50 0 .50 11 .9
32 0 .10 0 .50 10 .0 ---
32 .33 0.26 0 .50 10.0 -------
34 0 .06 0.50 10.0 -·---· ----------
35 0.46 0 .50 10 .0 ------------
35 ,36 0 .63 0 .50 12 .2 ----
35,36 .37 0 .88 0 .50 13.4 ---------
35 ,36 ,37 .38 1.02 0 .50 14.4 ----
35 .36,37 ,38 ,39 1.15 0 .50 15.4 -
40 0 .17 0 .50 10.0 ----· --
40,41 0 .35 0 .50 10 .0 ----------
40,41,42 0 .64 0 .50 10 .0 ---------·-
40,41 ,42,43 1.23 0 .50 10 .0 -------------
40,41 ,42,43,44 1.40 0 .50 10 .0
5 year storm
Is O s
(in/hr) (cfs)
7 .693 2 .08
7.293 2 .52
6 .837 2 .80
6 .643 3 .59
6 .354 5 .75
6 .190 1006
5 .636 19 .27
7 .693 0 .19
7 .693 0 .38
7 .693 0 .92 -
7 .693 1.15
7 .693 1.77
7 .693 0 .81
5 .872 2 .88
5 .636 6 .65 --
5 .980 3 .62
5.495 10.03
7 .124 1.78
7 .693 0 .38
7 .693 1.00
7 .693 0 .23 --
7 .693 1.77 ---
7 .043 2.22 -
6 .739 2 .96
6 .506 3.32
6 .292 3.62
7 .693 0 .65
7 .693 1.35
7 .693 2.46
7 .693 4.73
7 .693 5 .38 --------
10 -
10 ,11
·-
10 ,11 ,12
10 ,11 ,12 .13
22
22 ,23
22 ,23 ,24
22 ,23 ,24 ,25
22 .23.24 ,25 ,26
22 .23 .24 .25 ,2 6,27
22.23.24 ,25 ,26,27 ,28
16
16 ,17
16.17.18
16.17 .18.19
16 .17 .18 .19 .20
16 .17 .18 .19.20.2 1
14
14 .15
The Rational M ethod :
Q = CIA
0 =Flow (cfs )
A = Area (acres )
C = Run o ff C o eff .
I = Ra infa ll Int e n sit y (in/h r)
Brazos Coun ty .
~ear s torm
ll = 76
0 .08 0 .50 10 .0 7.693 0 .31 -----0.22 0.50 10.0 7 .693 0 .85 ------------
0.33 0 .50 10.0 7 .693 1.27
-·-------0.44 0.50 10 .0 7.693 1.69 -------0 .08 0 .50 10.0 7 .693 0 .3 1 -----0 .18 0.50 10 .0 7.693 0 .69
0 .89 0 .50 15 .0 6 .376 2 .84
1.12 0 .50 15 .7 6 .230 3.49 -1.34 0 .50 16 .5 6 .073 4 .07
1.50 0 .50 17 .1 5 .961 4.47
1.57 0 .50 17 .5 5 .889 4 .62
0 .05 0 .50 10.0 7 .693 0 .19 -0.42 0 .50 10.0 7 .693 1.62
0 .71 0 .50 10.0 7 .693 2 .73
1.01 0 .50 10.0 7 .693 3 .88
1.21 0 .50 10.0 7 .693 4 .65
1.26 0 .50 100 7 .693 4 .85
0 .11 0 .50 10 .0 7 .693 0.42
0 .21 0 .50 10 .0 7 .693 0 .8 1
I = b I (lc+d)0
le = Time of con ce ntra ti o n (min)
10 ear storm
h = 80
£.li.~~11 storm
h = ,<>,(1
l! = (I 7~) I ; = (I 7G,,
10 year storm 25 year storm 50 year storm
1,.
(in /hr)
8 .635
8 .199
7.699
7.487
7.171
6 .991
6 .381
8 .635
8 .635
8 .635
8 .635
8 .635 . -
8 .635
6 .640
6 .381
6.759
6 .226
8 .014
8 .635
8 .635
8 .635 ·-
8 .635 -
7 .925
7 .592
7.337
7 .102
8 .635
8 .635
8 .635
8 .635
8 .635 --
8 .635 --
8 .635
8 .635
8 .635
8 .635
8 .635
7 .194
7 035
6 .862
6 .739
6 .660
8 .635
8 .635
8 .635
8 .635
8 .6 35
8 .6 35
8 .6 35
8 .635
o,. 1,,
(cfs) (in /hr)
2 .33 9 .861
2 .83 9 .369
3 .16 8 .805
4 .04 8 .566
6.49 8 .208
11 .36 8 .004
21 .82 7.314
0.22 9 .86 1
0.43 9 .861
1.04 9 .861
1.30 9 .861
1.99 9 .861
0 .91 9 .861
3.2 5 7.608
7 .53 7.314
4 .09 7.742
11 .36 7 .138
2 .00 9 .161
0.43 9 .861
1.12 9 .861
0 .26 9 .861
1.99 9 .861
2 .50 9 .060
3 .34 8 .684
3.74 8 .396
4 .08 8 .130
0 .73 9 .861
1.51 9 .861
2.76 9 .861
5 .31 9 .861
6 .04 9 .861
0 .35 9 .861 -
0 .95 9 .861 -
1.42 9 .861
1.90 9 .861
0 .35 9 .861
0 .78 9 .86 1
3 .20 8 .234
3 .94 8 .054
4 .60 7.859
5 05 7.719
5 .23 7.6 30
0 .22 9 .861
1.8 1 9 .861
3 .07 9 .861
4 .36 9 .861
5 .22 9 .861
5.44 9 .86 1
0.47 9 .86 1
0 .9 1 9 .86 1
tc = L/(V *60)
L = Le ngth (ft
O zs lso Oso
(cfs) (in/hr) (cfs)
2 .66 11 .148 3 .01
3 .23 10 .598 3 .66
3 .61 9 .967 4 .09
4.63 9 .699 5 .24
7.43 9 .298 8.42
13 .01 9 .070 14 .74
25 .01 8 .297 28 .38
0 .25 11 .148 0 .28
0 .49 11 .148 0 .56
1.18 11 .148 1.34 -
1.48 11 .148 1.67 -
2 .27 11 .148 2 .56 ---
1.04 11 .148 1.17
3 .73 8 .626 4 .23
8 .63 8 .297 9 .79 ----
4 .68 8 .777 5 .3 1 --
13 .03 8 .100 14 .78 ----
2 .29 10 .365 2 .59
0.49 11 .148 0 .56 -
1.28 11 .148 1.45 ---
0 .30 11.148 0 .33 ·--
2 .27 11.148 2 .56 -
2.85 10 .252 3 .23 ----
3 .82 9 .831 4 .33 ·--·-
4 .28 9 .509 4 .85 ----
4 .67 9 .211 5 .30 --
0 .84 11.148 0 .95 ----
1.73 11 .148 1.95 --
3.16 11 .148 3 .57 ----
6 .06 11 .148 6 .86 ------
.!':~ 11 .148 7 .80
0 .39 11 .148 0.45 -----------
1.08 11 .148 1.23 ------
1.6 3 11.148 1.84 ---
2.17 11 .148 2.45 ---
0 .39 11 .148 0.45
0 .89 11 .148 1.00
3.66 9 .328 4 .15
4 .51 9 .126 5 .11
5 .27 8 .908 5 .97
5 .79 8 .752 6 .56
5 .99 8 .651 6 .79
0 .25 11 .148 0 .28
2.0 7 11 .148 2 .34
3 .50 11 .148 3 .96
4 .98 11 .148 5 .63
5 .97 11 .148 6.74
6 .21 11 .148 7 .02
0 .54 11 .148 0 .61
1.04 11 .148 1.17
V = Ve locity (ft /sec )
50 ea r storm I 00 vear s to rm
h = 96
<I= B ()
I ! = (I J:\(1
100 year storm
1, •• o, ••
(in /hr) (cfs)
11 .639 3.14
11 .062 3.82
10.400 4 .26
10 .120 5.47
9 .701 8 .78
9.463 15 .38
8 .657 29 .61
11 .639 0 .29
11 .639 0 .58
11 .639 1.40
-
11 .639 1.75
11 .639 2.68
11 .639 1.22
9 .000 4.41
8 .657 10 .22
9 .157 5 .54
8.452 15.43
10 .817 2 .70
11 .639 0 .58
11 .639 1.51
11 .639 0 .35
11 .639 2.68
10.700 3.37
10 .258 4 .51
9 .922 5 .06
9 .610 5.53
11 .639 0 .99
11 .639 2 .04
11 .639 3 .72
11 .639 7.16
11 .639 8 .15 -
11.639 0.47
11 .639 1.28
-
11 .639 1.92
11 .639 2 .56
11.639 0.47
11 .639 1.05
9 .732 4 .33
9 .521 5 .33
9 .294 6 .23
9 .131 6.85
9 .026 7.09
11 .639 0 .29
11 .639 2.44
11 .639 4 .13
11 .6 39 5 .88
11 .639 7 04
11 .6 39 7 .33
11 .6 39 0 .64
11 .6 39 1.2 2
APPENDIX E
Detention Pond #3 Design Information
SCS Curve N umber C alculati ons
Pond -Pre-Develop ment
Drainage Area -102
Area -A c . 17 .74
sq . m i . 0 .0277
T c = 44 .7
Lag = L = 0.6Tc = 26 .8 min = 0.447 hrs
Land Use
Gravel Road
Woods -Good
Pasture-Fair
Total -CN II
Average Runoff condition CN =
CN I = 61
Area -Ac.
0 .12
14 .10
3 .52
17 .74
ARC CN = CN I + 0 .70(CN II -CN I)
Weighted
CN II CN
89 0 .6
77 61 .2
84 16.7
78 .5
73 .2
SCS Curve Number Calculations
Pond -Post Development
Drainage Area -500
Area -Ac .
sq . mi.
14.75
0 .0230
Tc= 36 .1
Lag = L = 0 .6Tc =
Land Use
1 Acre Lots
1 Acre Lots
Total -CN II
21 .7 min=
Soil Type Area -Ac.
c
D
0.47
14.28
14.75
Average Runoff condition CN =
CN I= 67 .8
ARC CN = CN I+ 0.70(CN II -CN I)
Drainage Area -501
Area -Ac.
sq. m i.
1.37
0 .0021
Tc= 10 .0
Lag= L = 0 .6Tc = 6 .0 min=
Land Use Soil Type Area -Ac.
Gravel Road
1 Acre Lots
1 Acre Lots
Pasture-fair
Total -CN II
D
c
D
D
Average Runoff condition CN =
CN I= 67 .3
ARC CN = CN I + 0 .70(CN II -CN I)
0 .12
0 .32
0 .53
0.40
1.37
0 .361 hrs
Weighted
CN II CN
79 2 .5
84 81 .3
83 .8
79.0
0.1 hrs
Weighted
CN II CN
89 7 .8
79 18 .5
84 32 .5
84 24 .5
83 .3
78.5
Williams Creek Subdivision Phase 4 Detention Pond
Pond Area-Capacity Data with Proposed Contours
V = H * {[A1+A2 + (A1*A2)112] / 3}
V = volume , ft 2
A = area , ft2
H = difference in elevation , ft
Detention Pond 3
Area -Capacity Data
Elevation Depth Area Area Volume Cumulative 90% Cumulative
Volume Volume
(ft) (ft) (ft2) (acres) (ac-ft) (ac-ft) (ac-ft)
261 .50 0 .00 0 .00 0 0 0 0 .00 -----·----·--------·-------·----· -----
262 .00 0 .50 _!_S_0_15 .00 0 .2758 0 .046 0 .05 0.04 ------------------
263 .00 1.50 32,162 .00 0 .7383 0.488 0.53 0.48 --~-------·
264 .00 2.50 ~§22.?§_.00 0 .8277 0 .783 1.32 1.19 -------------------· ---
265.00 3 .50 41,972 .00 0 .9635 0 .895 2 .21 1.99
Williams Creek Subdivision -Phase 4
Detention Pond No. 3 Outlet Pipe
2-24" HOPE Pipes @ 1.0% with concrete S .E.T .'s
Elevation -Discharge Data
Inlet Control
Elevation Culvert
Depth Q
(ft) (ft) (cfs)
261 .5 0 0 -----·--·-
262 0 .5 2 .0
·---~-----1----
263 1.5 15.2
264 2.5 33 .2 ----1-----------
265 3 .5 46.2
EXHIBIT A
Pre-Development Drainage Area Map -Detention Pond
C ITY 01' C OLLEGE STt \TION
!'/111mi11g & /),·url11p 111n// Srn•ias
(Check one) D Minor
($300.00)
~~
FOR OFFICE USE _ON}-)"1
P&Z CASE NO .: (!}S 'Vf
DATE SUBMITTED : 0J.-~ -0.:5
FINAL PLAT APPLICATION
D Amending
($300.00)
(fr"" Final D Vacating D Replat
{$400 .00) t ($400 .00) ($60 0 .00 )*
l 1.-\.<,, I l.-X-tfet o:;\t\ee; ·inc ludes pub lic hearing fee
"'-~~~~~~~~~~~~~~~~~..._. ...............
The following items must be submitted by an established filing deadline date for P&Z Commission consideration.
MINIMUM SUBMITTAL REQUIREMENTS: .
L Filing Fee (see above) NOTE : Multiple Sheets -$55.00 per additional sheet -W--~pcJrc:'.J\ ~\
N {ti... Variance Request to Subdivision Regulations -$100 (if applicable) :=:. $5<; £!.'
v ~ Development Permit Applicat ion Fee of $2 00 .00 (if applicable) .
./ ~ Infrastructure Inspection Fee of $600 .00 (applicable if any public infrastructure is being constructed)
V Application completed in full.
~Copy of original deed restrictions /covenants for replats (if applicab le).
v / Thirteen (13) folded copies of plat. (A signed mylar orig inal must be submitted after staff review.) -=--One (1) copy of the approved Preliminary Plat and/or one (1) Master Plan (if applicable). V ~ Paid tax certificates from City of College Station , Brazos County and College Station l.S .D .
V' ~ A copy of the attached checklist with all items checked off or a brief explanation as to why they are not.
ti ~ Two (2) copies of public infrastructure plans associated with this plat (if applicable). ,
~ Parkland Dedication requirement approved by the Parks & Recreation Board, please provide proof of ~\\'
approval (if applicable). ~f.JI
Date of Preapplication Con!erence: f ..e1:>Y-\.AD..,lf'j Cf 1 Za::fr D-SY'
NAME oF suBD1v1s10N W ,\ \\CLW\S Cv-.e.o k SA k}d Iv\ si~ J?rn>e..,lt=: Q.StP 1t
I •
SPECIFIED LO<;ATION OF PROPOSED SUBDIVISION (Lot & Block) Sru{h of ~oJv-\e RJ fu<:.t ~tuJe,.a.Yl ·1LD~· rv-~v-le.,, ~ \ CaA.-.-1-RA.'~ Ur~.
APPLICANT/PROJECT MAN AGER 'S INFORMATION (Primary Contact for the Project):
Name .Joe.. S, h.V\e;\-Joh.vi~ ~d { ::kvl~v~e s'"""· kl'-'--'-~e.,'-V"-_o_h,_,_,· ,,.__,/.,""-'-'.p-'.-------
Street Address 14 0D So,)-th Co INlwrKcA aJ <Jh-.e.e ± Cit~ Co k-wi~ .. y-1
State =t"'K Zip Code '14;0 ~4: E-Mail Address -------------
Phone Number (3z,.s') (o '"2..-'$-2\ L-4 Fax Number (~-z..s) /aZS -5<o ]L
PROPERTY OWNER 'S INFO RMATION :
Name ),'lf S Jo._V'\f:X ~o~ L0-.-Vld !! Tu~'l'::tc.i=_s.2..1±m~-e.""'/:.:_v-X"-'--"'s:....-:L----'.?_. _______ _
Street Address I ltOQ $od..\'b ( OMV'V\£. yc.,le; <Q 4-ll± Cit~ (0 la W) t;.>.I)
State :r'X Zip Code ·-z (o</) 3 4--E-Mail Address --~----------
Phon e Number (?l...-S) (o--Z..,S -2.\ LA-Fa x Number ("""32-S) l.;L.S-~b (2-
ARCHITECT OR ENGINEER 'S INFORMATION :
Nam e "i~Y\ -~,,_H!: ]'.£-
Street Address01 G TuJ
State :tY-ZiR Co de
Ph o ne Number (j1Ct) l(c,J}....-/(4"~
E-Mail Address
6/13/03
1 .-
Ma~ 27 05 09:33a Texcon En~ineerin~ Div. 979-764-7759 p.3
' I j" j ,39 4-~(..... 0
\ {'Jo( 'iV'-~ w4'"_,J.ic:A..+ ;r-r->
/ o.oe5 o ·f p .... hltc.. jW
Is there a t e m porary b lanket easemen t 'lf th is property? If so , p lease provi de th e V o lume (0 (\ an d P age#--==-
Acre~ge --To tal Property 3 5'. 9 lo D ~ Tota l #Of .Lots Z 3 R -0 -W Acreage 5. 2 1 c:tC. .
Existing Use :. \Ii \.( a.. V\4-Proposed Use : V-1.A. .,-• .,_\. ~~ ,.,.-Jli:_ f..,t..VVV.:L 1 .re .:,,~ .,-l e v-t ~< ,j
Number Of L ots By Zonin g District 2-3 I A o~~ 1 __ _
Ave rage Acreage Of Each Residefltjal Lot By Zoning D i strict :
/,. Z.0at,.1 f>.-o ~ g_
Floodplain Acreage ___ O ____ _
A statement addressing any differences between the F inal Plat and approved'Master?lan .and/or P reliminary-Prat tif
applicable}:
12.oa.M ~-: =X:B}: ~J./["V\ c nc ~.'°S~ cJ c;L.·'04S . L -r .ic c -b "-""::Y'? -f -fi-ie_ vi'"'-na~
cf loh_ ~dl-u <. p::bh~-
Total Linear· Footage of.
Proposed Public:
3?>fu ' Streets
Sidewalks
Sani~ry Sewer Lines
Water Lines
Channels
Storm Sewers ({:y..\lf<<Ts
Bike Lanes I Paths
Parkland.Dedication due prior to filing th_e Final Plat:
ACREAGE
___ #of acres to be dedicated + $ ____ development fee
___ # of acres in floodplain
___ -#of acr-es in detention
___ # of ac res in greenw.ays
OR
FEE IN UEU OF LAND :
2.3 #of Single-Fami ly Dwelling Units X $556 = $ IZ1 100~
+p /200+ (date ) Approve d by Parks & Recreation Board
NOTE : DIGITAL COPY OF PLAT MUST BE SUBMITTED PRIOR TO FILING.
The applicant has prepared this application and certifies that the facts st al ed here in and exbi.b.i1.s .attached hereto are true .
correct. and complete . The undersigned hereby reque sts -approval by th e City of College Station of th e ab ove -identified
final plat and attests that this request does not amend any c ovenants or res trictiom; associated with this plat.
slz~/os
Da1e 1 1
;;.'\J iO J
Ma~ 27 05 09:46a Texcon Engineering Div. 979-764-7759 p. 1
SUPPLEMENTAL DEVELOPMENT PERMIT INFORMATIQN
Applicatton is hereby made for the following development specific sitefwaterway aJterations :
,,'V \~\l l'-N"CS Crt2<k S i.-'-\?,j."1\i.i"itc-Y> (he~><-~ -du:A-;oJ v-oc,_J._·..,_,,t:"J d ·rMcic~j:e l ) ,
t:t--'-"d W(.j:t~_.LL,.l\..L (.£YJ"·Lfy-..A{, ... h ~
ACKNOWLEDGMENTS:
I, __ J=.;o..."""'"'>A'-""'t'.........,J._"""J~-::-'-~-""---'-:-X=:;_,V"\_,_ _____ . design engineerf~wner, hereby acknowledge or affirm that:
The information and conclusions contained in the above p lans and supporting doc uments comply wi th the current
requirements of the City of College Station, Texas City Code, Chapter 13 and its associated Drainage Policy -aoo Desigr.i
Standards. As a conditi on of approval of this permit ·application ; I agi:ee to construct the impro-vements proposed in this
plic ion according to these and the requirements of Ch ter 13 of· C I St ion City Code.
~'Vy</ie.e:...<
TIFICATIONS: (for proposed alterations within designated flood hazard areas.)
A.I, certify that any nonresidential structure on or p.roposed to be on this site
as part of this application is designated to prevent damage to the structure or its contents as a result of flooding from the
W.0 year .storm .
Engineer Date
8. I. certify that the fin ished floor elevation of the-lowest floor . incl ud ing any
basement, of · any residentia l structure.. proposed as part of this application is at or above the base flood elevation
established in the latest Federal Insurance Administration Flood Hazard Study and maps, as amended".
Engineer Date
Conditions or comments as part of approval :-----------------------------
In accordance with Chapter 13 of the Code of Ordinances of the-City of C ollege Station. measures shall be taken to
insure that debris from construction . erosion, and sedimentation shall not be deposited in city streets . or existing drai~
facilities . All development shall be in accordance with the plans and speci fications submitted to and approved by the City
Engineer for the above named project. All of the applicable codes and ordinances of the Cili( o f College Sta!ion shall
~pp ly . ..
6/13/0J
--------· ---·
SUBMI T APPLICATION AND THIS
LIST CHECKED OFF WITH 13
FOLDED COPIES OF PLAT FOR REVIEW
CrrY oi: Cou.L:c 1: STATION
P/J111uin.e, d-Or1:,,,/1~pmf'11 t .\·,.rllir1·J
FINAL PLAT MINIMUM REQUIREMENTS
{ALL CITY ORDINANCES MUST BE MET}
INCLUDING BUT NOT LIMITED TO THE FOLLOWING:
(Requirements based on field survey and marked by monuments and markers.)
G( 1. Drawn on 24 " x 36" sheet to scale of 100 ' per inch or larger.
Q · · 2. Vicinity map which includes enough of surrounding area to show general location of subject
property in relationship to College Station and its City Limits . No scale required but include north
arrow .
~1 3 . Title Block with the following information:
[2]
Gd""
[CJ/'
Gl
6i 13 /03
4 .
5.
6.
7 .
Gr Name and address of subdivider, recorded owner, planner, engineer and surveyor.
G2l Proposed name of subdivision . (Subdivision name & street names will be approved
through Brazos County 911 .) (Replats need to retain original subdivision name .)
Date of preparation .
Engineer's scale in feet.
Total area intended to be developed .
North Arrow .
Subdivision boundary indicated by heavy lines .
If more than 1 sheet, an index sheet showing entire subdivision at a scale of 500 feet per inch or
larger.
All applicable certifications based on the type of final plat. B'/
G
0 ·
8'
Er
Ownership and Dedication
Surveyor and/or Engineer
City Engineer (and City Planner, if a minor plat)
Planning and Zoning Commission (delete if minor plat)
Brazos County Clerk
-ff Brazos County Commissioners Court Approval (ET J Plats only)
8 . Paid tax certificates.
9 . If submitting a replat where there are exis ting improvements , submit a survey of the subject
property showing the improvements to ensure that no encroachments will be created .
10 . If using private septic systems , add a general note on the plat that no private sewage facility may
be installed on any lot in this subdivision without the issuance of a license by the Brazos County
Health Unit under the provisions of the private facility regulations adopted by the Commissioner's
Court of Brazos County , pursuant to the provisions of Section 21.004 of the Texas Water Code .
11 . Location of the 100 Year Floodplain and floodway , if applicable , according to the most recent
avai lable data.
12 . Lot corner marke rs and survey monuments (by symbol) and clearly tied to basic survey data .
13 . Matches the approved preliminary plat and /or maste r development plan .
14 . The location and description with accurate dimens ions . bearings or deflection angles and radii ,
area, center angle, degree of curvature , tangent distance and length of all curves for all of ~he
following : (Show existing items that are intersecting or contiguous with the boundary of o r forming
a boundary with the subdivision , as well as , those w ithin the subdivision).
Existi ng Proposed
Q/-[j Streets . Continuous or end in a cul-de-sac , stubbed out streets must end into a temp
turn around unless they are shorter than 100 feet.
d Ef Public and private R.O.W. locations and widths . (All existing and proposed R.O .W.'s
sufficient to meet Thoroughfare Plan .)
Street offsets and/or intersection angles meet ordinance.
Alleys .
Easements .
A number or letter to identify each lot or site and each block .
Greenbelt area/park linkages/parkland dedication ( All proposed dedications must be
reviewed by the Parks and Recreation Board prior to P & Z Commission consideraticm .)
d 15. Construction documents for all public infrastructure drawn on 24 " x 36 " sheets and properly sealed
by a Licensed Texas Professional Engineer that include the following:
-8-
Street, alley and sidewalk plans, profiles and sections. One sheet must show the overall
street. alley and/or sidewalk layout of the subdivision. (may be combined with other
utilities).
Sanitary sewer plan and profi le showing depth and grades. One sheet must show the
overall sewer layout of the subdivision . (Utilities of sufficient size/depth to meet the utility
master plan and any future growth areas .)
Water line plan showing fire hydrants. valves, etc . with plan and profile lines showing
depth and grades. One sheet must show the overall water layout of the subdivision .
(Utilities of sufficient size/depth to meet the utility master plan and any future growth
areas.)
£1 Storm drainage system plan with contours, street profile, inlets, storm sewer and
drainage channels, with profiles and sections. Drainage and runoff areas , and runoff
based on 5, 10, 25, 50 and 100 year rain intensity. Detailed drainage structure design ,
channel lining design & detention if used . One sheet must show the overall drainage
-Iv b(... si.Ji~~ layout of the subdivision .
,J-.f~~ Detailed cost estim7tes for all ~blic infrastructure listed above sealed by Te xas P.E .
. .t:::r
NOTE:
6/13 /03
B' Drainage Report. l Zu.pi e,,>
~ Erosion Control Plan (must be · eluded in construction plans).
16 . All off-site easements necessary for infrastructure construction must be shown on the final plat with
a volume and page listed to indicate where the separate instrument easements were filed .
Separate instrument easements must be filed prior or concurrently with Final Plat.
17 . Are there impact fees associated with this development? D Yes ~ No
Impact fees for R-1. R-2. & R-3 zoned final plats, must be paid prior to filing .
18 . Will any construction occur in TexDOT rights-of-way? D Yes ,0 No
If yes, TexDOT permit must be submitted along with the construction documents .
1 . We will be requesting the corrected Final Plat to be submitted in digital form if available prior to
filing the plat at the Courthouse .
2 . If the construction area is greater than 5 acres , EPA Notice of Intent (NOi) must be submitted
prior to issuance of a development permit.