Loading...
HomeMy WebLinkAbout5 Williams Creek Ph4 DP 05-24 9500 Rock Prairie Rd.Date: To: From : Subject: Remarks: TEX CON TRANSMITTAL October 21 , 2005 Carol Cotter Development Services City of Coll ege Station Joe Schultz, P .E.\\~ Texcon General 2~ractors 1707 Graham Road College Station , Texas 77845 Phone : (979) 764-7743 Driveway Culvert Design Summary Wi ll iams Creek Subdiv ision -Phase 4 College Station, Texas Attached is a summary of the driveway cu lvert design for Williams Creek Phase 4 . The culverts were designed to pass the 10-year storm event runoff with headwater equal to or less than the diameter of the pipe. Please contact me if you hav e any qu es tions . Williams Creek Subdivision -Phase 4 Driveway Culvert Summary Blo c k# Lot# Street #of Pipe size Bar rels (in) 1 38 Williams Crk Dr 1 24 - - 39 Williams Crk Dr 1 18 - 40 Williams Crk Dr 1 15 -- 41 Williams Crk Dr 1 24 - 42 Williams Crk Dr 1 12 - 43 Williams Crk Dr 1 12 44 Williams Crk Dr 1 12 45 W illiams Crk Dr 1 12 46 Williams Crk Dr 1 15 47 Williams Crk Dr 1 15 4 10 W illiams Crk Dr 1 12 11 W illiams Crk Dr 1 12 -- 12 Williams Crk Dr 1 12 ------- 13 Lanham Dr 1 12 5 1 Wayne Court 1 12 2 Wayne Court 1 12 - 3 Wayne Court 1 15 4 Wayne Court 1 18 5 Wayne Court 1 18 6 Wayne Court 1 18 7 Williams Crk Dr 1 15 ------- 8 Wayne Court 1 18 9 Wayne Court 1 18 10 Wa yne Court 1 15 - 11 Wayne Court 1 15 Notes : 1. All driveway pipes shall be RC P, T&G , Class 3 . Slope Tc Contribu ti ng (%) (m in) Are a No . 1.02 15 .9 1358-D, 1,2 ,2A ------- 1.97 19 .0 4,3A --- 0 .60 17 .0 29 -- 1.44 19 .9 29 ,30 - 1.85 11.9 31 4 .70 10 .0 35 6 .00 12 .2 35 ,36 4.83 12 .2 35 ,36 4.83 13.4 35 ,36 ,37 1.59 14.4 35 ,36 ,37 ,38 0 .60 10.0 136 ,5 0 .78 10 .0 136 ,5,6 ,7 1.26 10.0 136 ,5,6 ,7 ,8 1.18 10 .0 10 ,11 1.09 10 .0 16,17 1.09 10 .0 16,17 3 .53 10.0 16,17 ,18 5 .52 10.0 16 ,17 ,18 ,19 4 .00 10 .0 16 ,17 ,18,19 ,20 2 .00 17.1 22 ,23 ,24 ,25 ,26 ,27 1.59 10 .0 40,41,42 5 .52 16 .5 22 ,23 ,24,25,26 3.53 16 .5 22 ,23 ,24 ,2 5 ,26 4.3 8 15 .7 22 ,23 ,24 ,25 1.09 15 .0 22 ,23 ,24 2. All S.E.T.s sh all be pre-cas t and in accordance w ith Tx DO T Sta ndard Sheet PS ET -RC , PR ECAST SAF ETY END T R EATM ENT , TY II -C RO SS DRAI NA G E. Cont ributing Are a (ac) 3 .25 - 2 .36 1.13 3.57 0 .50 0.46 0 .63 0 .63 - 0 .88 1.02 0 .10 0 .30 0.46 0 .22 0.42 0.42 0.71 1.01 1.21 1.50 0.64 1.34 1.34 1.12 - 0 .89 3 . Refer to Exhi bit D from t he Drainage Report for W illiam s C reek S ubd iv ision , Ph ase 4 , dated June , 2005 . 0 10 (cfs) 11 .36 7 .~ 4.00 11.00 2 .00 1.99 2 .50 2 .50 3 .34 3 .74 0.43 1.30 1.99 -- 0 .95 1.81 1.81 3 .07 4.36 5 .22 5 .05 2 .76 4 .60 4.60 3.94 -- 3 .2 0 Draina ge R e port for Williams Creek Subdivision -Phase 4 College Station, Texas June 2005 D evelop e r : Joe and Janet Johnson Land and Investments , LP 1400 South Commercial Street Coleman, Tex a s 7 6834 (325) 625-2124 Prep a red B y: T EX C ON G eneral Contractors 1 70 7 Graham Ro ad C oll ege St a ti on , T exas 77 845 (979) 764-7 74 3 CERTIFICATION I certify that this report for the drainage design for the Williams Creek Subdivisiou -Phase 4, was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners hereof, with the exception that stom1 water runoff detention is not being proposed for a portion of this project since the runoff will discharge directly into existing drainages which flow into the 100-year floodplain limits. ·------- TABLE OF CONTENTS DRAINAGE REPORT WILLIAMS CREEK SUBDIVISION -PHASE 4 CERTCFICA Tl ON .................................................................................................................................................................. 1 TABLE OF CONTENTS ........................................................................................................................................................ 2 LIST OF TABLES .................................................................................................................................................................. 3 INTRODUCTION ................................................................................................................................................................... 4 GENERAL LOCATION AND DESCRIPTCON ................................................................................................................. .4 FLOOD HAZARD lNFORMATION ................................................................................................................................... .4 DEVELOPMENT DRAINAGE PATTERNS ...................................................................................................................... .4 DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 4 STORM "VATER RUNOFF DETERMINATION ............................................................................................................... S DETENTION FACILITY DESlGN ...................................................................................................................................... 7 STORM CULVERT & DRAINAGE CHANNEL DESIGN ................................................................................................ 8 CONCLUSIONS ..................................................................................................................................................................... 9 APPENDIX A ........................................................................................................................................................................ 10 Time of Co11centration Data & Calculations APPENDIX B ........................................................................................................................................................................ 17 Storm Sewer Culvert Data & Design Calculations APPENDIX C ........................................................................................................................................................................ 21 Drainage Channel Design Data & Calculations APPENDIX D ........................................................................................................................................................................ 26 Drainage Ditch Data & Lining Material APPENDIX E ........................................................................................................................................................................ 30 Detention Pond #3 Design Information EXHIBIT A ............................................................................................................................................................................ 35 Pre-Development Drai11age Area Map -Dete11tio11 Pond EXHIBIT B ............................................................................................................................................................................ 37 Post-Developme11t Drai11age Area Map -Dete11tio11 Pond EXHIBIT C ............................................................................................................................................................................ 39 Po st-Develop111 e 11t Drainage Area Map -Culverts & Cha1111els EXHIBIT D ........................................................................................................................................................................... .41 Po st-Develop111 e 11t Drainage Area Map -Ditc/1 Velocities LIST OF TABLES TABLE l -Rainfall Intensity Calculations .............................................................................................. 5 TABLE 2 -Time of Concentration (tc ) Equations .................................................................................. 5 TABLE 3A -Post-Development Runoff Information (Exhibit C) .......................................................... 6 TABLE 3B -Drainage Structure Flow Summary .................................................................................... 6 TABLE 4 -Pre-& Post-Development Runoff Information -Detention Evaluation .............................. 7 TABLE 5 -Pre-& Post-Development Peak Discharge Comparison -Discharge Point No . 2 with Detention Pond .......................................................................................................................... 8 TABLE 6 -Summary of Maximum Pond Water Levels ......................................................................... 8 DRAINAGE REPORT WILLIAMS CREEK SUBDIVISION -PHASE 4 INTRODUCTION The purpose of thi s report is to provide the hydrol ogica l effects of the construction of the Williams Creek Subdivision -Phase 4, and to verify that the proposed storm drainage system meets th e requirements set forth by the City of College Station Drainage Policy and Design Standards. GENERAL LOCATION AND DESCRIPTION The proj ect is located on a portion of a 213.91 acre tract located east of Rock Prairie Road an d sou th of Greens Prairie Road in College Station, Texas. This report addresses Phase 4 of this subdivision, which is made up of 35 .96 acres. The site is predominantly wooded. The existing gro und elevations range from Elevation 218 to Elevation 276. The general lo cation of the project site is shown on the vicinity map in Exhibit A. FLOOD HAZARD INFORMATION The proj ect site is located in the Carters Creek Drainage Basin. Most of the propos ed dev eloped area of the site is located in a Zone X Area according to the Flood Insurance Rate Map prepared by the Federal Emergency Management Agency (FEMA) for Brazos Co unty, Texas and incorporated areas, Community No . 481195 and 480083 , Panel No . 205D , Map No. 48041 C0205D, effective dated February 9, 2000 . Zone X areas are determined to be outside of the 500-year floodplain. DEVELOPMENT DRAINAGE PATTERNS Prior to development, the storm water runoff for Phase 4 flows in two directions. The western portion of the development flows south to Rock Prairie Road to an existing culvert and then to Lick Creek. This is noted on Exhibit A as Discharge Point No . 2. The remainder of Phase 4 flows into existing drainages , which flow to the east or northeast, then discharge into a tributary flowing north into Carters Creek. The pre-development drainage area for the detention pond design is shown on Exhibit A. DRAINAGE DESIGN CRITERIA The design parameters for the stmm drainage analysis are as fo llows : • The Rational Method is utili zed to determine peak storm water runoff rates for the storm drainage design for cul verts, ditches and channels . • HEC-1 Program -Utilized to determine peak storm water runoff rates for the d ete ntion facility design. • Desi g n Storm Frequency Storm culverts Detention facil it y a na lys is • Ru no ff Coefficients 10 and I 00-yea r storm even ts 5, I 0 , 25, 50 and I 00-year s tom1 eve nt s Post-developm e nt (I acre minimum lo t s iz e) c = 0.50 • Run off C ur ve Number (CN) -Detentio n Pond -1 The Brazos Co unt y Soil Survey s how s th e so i Is in the area to be classifi e d as h ydro logic gro up D so ils . Th e pre-d eve lopmen t CN is b ase d on no developm e nt on th e s it e. The post-development C N is b ased on deve lopme nt of Phas e 4 of th e s ubdi v is ion . The CN calculations are found in Appendix E. • Rainfall Intensity eq u at ions a nd va lu es for Brazos Co unt y can be found in Tabl e I . • T im e of Concentration, tc -Calculations are based o n th e m e thod found in the TR-55 publi cation. Refer to Table 2 for the equations and Appendix A for ca lcu lat ion s . The run off flow path used for calc ul atin g the pre-a nd post-development times of concentratio n for th e larger drainage a reas are shown on th e ex hibits . Small er drainage areas use a minimum tc of 10 minutes to determine th e rainfa ll intensity va lu es . Exhibit B h as the runo ff flow paths used for the drainage areas for the d etention pond desi g n . Exhibit C has the runoff flow paths used for th e drainage areas for th e cu lv ert and chann e l designs . Exhibit D has the runoff flow paths used for the drainage areas for the roadside ditch evaluation an d design . STORM WATER RUNOFF DETERMINATION The peak runoff values were determined in accordance with the criteria presented in th e previou s section for the 10 , 25, 50, and 100 -year storm events. The drainage areas for th e pre- deve lopment condition are shown on Exhibit A . Post-development runoff conditions for the storm culvert design drainage areas are s ummari zed in Tables 3A & 3B. The pre-a nd post- develop ment runoff information for th e detention pond evaluation is shown in Table 4. TABLE 1 -Rainfall Intensity Calculations Rainfall Intensity Values (in/hr) Storm t c = Event 10 min 110 8 .635 '2s 9 .861 lso 11 .148 1100 11 .639 Brazos County: 10 year storm 25 year storm b= 80 b = 89 d= 8 .5 d= 8.5 e= 0 .763 e= 0.754 I = b I (tc+d)e I = Rainfall Intensity (in/hr) tc = U(V*60) tc = Time of concentra tion (min) L = Le ngth (ft) V =Velo c ity (ft/s ec ) 50 year storm 100 year storm b= 98 b = 96 d = 8.5 d= 8 .0 e= 0 .74 5 e= 0 .7 30 (Da ta taken from State Departm en t of Hiqhwavs and Public Transportation Hydraulic Manual , page 2-16) TABLE 2 -Time of Concentration (tc) E quations Tli e ti 111 e of con cent ra ti o n 11:as d e te r111i n e d using 111 e 1h odsfound in TR -55. "'U rhun Hy drol ogr for S 111 all Wat e rsh e d s. ·· Th e equa tions a re a sfol/0 1vs: Time of C oncen t ration : ... re = T ,(,hl·l·1 ll o"1 + T1 (1.:om·l·111 r :11tt1 shl'l'I no"' w here: T , =T ra ve l Time. minut es For Sheet Flow : 0.007 (n L)0·8 (Pz)o .s S0.4 where : T 1 =travel time , hours n = Manning 's roughness coefficient L = flow length, feet For Shallow Concentrated Flow: P2 = 2-year, 24-hour rainfall = 4 .5" s = land s lope , ft /ft T 1 = LI (60*V) where: T 1 =travel time , minutes V =Velocity, fps (See Fig 3-1 , App . A) L = flow length, feet Refer to Appendix A for calculations . TABLE 3A-Post-Deve lopment Runoff Information (Exhibit C) Area 5 year storm 1 O year storm 25 year sto rm 50 year storm c le Area# (acres) Is Os A (min) (in/hr) (cfs) 302 9 .01 0.50 31.5 4 .199 18.92 302+304A 10.12 0.50 32.6 4 .111 20 .80 302+304A+304 14 .75 0.50 36 .1 3.856 28.43 304A 1.11 0.50 10 7.693 4 .27 304 4 .63 0.50 21.2 5.305 12 .28 305 1.37 0 .50 10 7 .693 5.27 401 4 .39 0 .50 27.4 4 .572 10 .03 402 1.61 0 .50 23 .8 4 .967 4 .00 403 1.23 0 .50 10 7 .693 4 .73 The Rationa l Method: Q=CIA I = b I (tc+d)e tc = Time of concentration (min) 110 (in/hr) 4 .794 4 .696 4.412 8 .635 6 .017 8 .635 5.207 5.644 8.635 010 l2s (cfs) (in/hr) 21 .60 5.514 23 .76 5.402 32 .54 5.079 4 .79 9 .861 13 .93 6 .901 5.91 9 .861 11.43 5.982 4 .54 6.478 5 .31 9 .861 tc = L/(V*60) L = Length (ft 02s lso Oso (cfs) (in/hr) (cfs) 24 .84 6.276 28 .27 27 .33 6.151 31 .12 37.46 5.787 42 .68 5.47 11 .148 6 .19 15 .98 7 .835 18 .14 6.76 11 .148 7 .64 13 .13 6 .803 14 .93 5.21 7.360 5.92 6 .06 11 .148 6 .86 Q = Flow (cfs) A= Area (acres) C = Runoff Coeff. V =Velocity (ft/sec) I = Rainfall Inte n sity (in/hr) Brazos County: 5 year storm 1 O year storm b = 76 b = 80 d = 8 .5 d = 8 .5 e = 0.79 e = 0.763 25 year storm b = 89 d = 8 .5 e = 0 .75 50 year storm b = 98 d = 8 .5 e = 0 .745 TABLE 3B -Drainage Structure Flow Summary Culvert# #of Pipe size Co ntr ibuting Contributing Area 010 Barrels (in) Area No. Acreage (A.,) (cfs) 27 302 9 .01 21.60 2 18 401 4 .39 11.4 3 Channel# 7 402 ,403 2.84 9 .85 -----·------- 8 302, 304A 10 .12 23 .76 100 year storm b = 96 d = 8 .0 e = 0.730 02s Oso (cfs) (cfs) 24.84 28 .27 13 .13 14 .93 11 .2 8 12 .78 27 .33 31 .12 100 year storm 1100 0100 (in/hr) (cfs) 6 .558 29 .54 6.428 32 .52 6 .051 44 .63 11 .639 6.46 8 .176 18 .93 11 .639 7.97 7.104 15 .59 7 .682 6 .18 11 .639 7.16 0100 (cfs) 29.54 15 .59 13 .34 32 .52 TABLE 4 -Pre-& Post-Deve lopment R un off Informatio n -Detent ion Evaluation A rea# Area C N tc Lag (acres) (min) (hrs) Pre 102 17 .74 73 .2 44 .7 0.447 Post 500 14 .75 79 .0 36 .1 0 .361 Post 501 1 .37 78 .5 10.0 0 .100 DETENTION FACILITY DESIGN The runoff from Phase 2 that drains to Rock Prairie Road and ultimately to Lick Cree k must be detained to pre-development flow levels at the Discharge Point No . 2 location s hown on Exhibits A & B . Discharge Point No. 2 is where the runoff from the western portion of the Phase 4 development discharges into a culvert on Rock Prairie Road . Detention Pond No. 3 will be constructed adjacent to Rock Prairie Road. The post-development runoff at Discharge Point No . 2 is determined by combining the discharge hydrographs from Detention Pond No . 3 and Drainage Area 50 l , which does not drain into the detention pond. The pond outlet structure is the discharge pipes . The discharge pipes are 2-24" HOPE pipes, 35 feet in length, with a concrete S.E.T. 'sat the both ends of each pipe. The upstream invert elevation of the concrete S .E.T. is 261.5 . Concrete riprap will be placed at the discharge end to control erosion. The pipe has a design slope of 1.0 %. The top of the pond berm is at Elevation 266 .0 . The peak flow out of the detention facility was determined by the HEC-1 program using the depth discharge data for the pond outlet structure and the pond volume data as provided in Appendix E . As shown in Table 5, the post-development peak outflow at Discharge Point No. 2 is less than the allowable peak outflow for the design storm event. Additionally, Table 6 presents the maximum water surface in the pond for each storm event, as well as the amount of freeboard provided . The data shown in Tables 5 & 6 are from the HEC-1 computer model. The summary printout of the model is not included in this report . This data can be provided if necessary. A comparison of the pre-& post-development peak discharge values for Disch a rge Point No. 2 shows an increase of 7 cfs in the runoff for the 100-year storm event, from 68 cfs to 61 cfs . Table 5 a lso shows the increases in runoff for the other storm ev ents if there w as not a detention pond to control the runoff. Because of this increased runoff, a detention pond is proposed , w hich will reduce the peak runoff to less than or equal to th e pre-d eve lopment runoff, as the "Post-Development with Pond " data in Table 5 shows. 7 TABLE 5 -Pre-& Post-Development Peak Disc h arge Comparison - · Discharge Point No. 2 with Detention Pond Location Os 010 02s Oso 0100 (cfs) (cfs) (cfs) (cfs) (cfs) Pre -Development Total@ Discharge Pt. No . 2 26 33 44 52 61 Post-Development without Pond Total@ Discharge Pt. No . 2 33 40 51 59 68 Post-Development with Pond Into Pond 31 38 48 56 64 Out of Pond 20 25 32 36 41 Total@ Discharge Pt. No . 2 21 26 34 38 42 (Pond Discharge & Area 501) The area-capacity data and the depth-discharge data for the Detention Pond No. 3 are provided in Appendix E. The detention pond grading plan is shown in the construction drawings TABLE 6 -Summary of Maximum Pond Water Levels Storm Event W ater Surface Freeboard, Elevation, ft. ft. 5-year 263 .3 2 .7 10-year 263 .5 2 .5 25-year 263 .9 2 .1 50-year 264 .2 1.8 100-year 264.6 1.4 Note : Detention Pond Top of Berm Elevation= 266 .0 STORM CULVERT & DRAINAGE CHANNEL DESIGN The storm culverts for this project have been selected to be Reinforced Concrete Pipe (RCP) meeting the requirements of ASTM C-76, Class III pipe meeting the requirements of ASTM C- 789. There will be sloped safety end treatment at the end of each culvert. Runoff from the proposed streets will be collected by the roadside ditches and conveyed to the culvert structures. Due to the open-ditch design, no inlets will be used for this development. The drainage areas for the culvert design are shown on Exhibit C. Appendix B presents a summary of the storm culvert design parameters and calculations . All pipes are 18" in diameter or larger. The culverts were designed based on the 25-year stonn event, and data is also given for the 100-year storm event. As shown in the summary, all of the culverts have a headwater elevation that is at least one foot below the roadway e levation for the 25-year storm event. Also, all of the culverts pass the l 00-year storm event without ove1iopping the roadway. As required by College Station, the velocity of flow in th e pip e s is not lower than 2.5 feet per second , and it does not exceed 15 feet per second . As the data shows , ev e n during low flow conditions, the velocity in the pip e s will e xc ee d 2 .5 fee t p e r second and pre vent sedim e nt build -up in the culverts. The ma x imum flow in th e storm cul ve rts will occur in Culvert No . I . Th e maximum velocit y for the cul ve rts in this d e ve lo pm e nt w ill be 8.8 fe et pe r second and will occ ur in C ul ve rt No . 2 . Appendi x 8 conta in s a s ummary o f th e c ul vert c al c ul a tor dat a for th e 2 5 a nd 100-year storm e vents . Co ncr e te riprap w ill be pl aced a t the end C ulv e rt No. 2, since the velocity exceeds 4 .5 fps for th e 25-year sto 1m event. (Culve rt No. I h as concrete riprap placed at the outlet where it discharges into C h a nn e l No. 8 ). The storm water runoff for a portion of the road s ide ditches of Williams Creek Drive will discharge into an improved drainage channel to convey the water from the street right-of-way to Detention Pond No 3 . This channel , Channel No . 8, will have a concrete flum e in the bottom to control eros ion . Appendix C contains a summary of the channel desi g n param e ters a nd calculations. The velocity for the design storm event (25-year storm) for Channel No. 8 is 4.1 fps . Althou g h it is not required , a concrete flum e is proposed for the bottom of the channel to control erosion. Channel No . 7 is a grass seeded channel with a 2 ' wide bottom and 4H: IV side slop e s . [t starts at 3.6% slope and then brea ks to 2.2% slope, before dischargin g into a natural drainage . The 25-year storm velocity for this channel ranges from 3 .5 fps to 4.2 fps. Since the velocity of flow in this channel is less than 4 .5 feet p e r second, this will be a grass- seeded channel. Appendix C contains the channel calculator data for the 25-and 100-year stom1 events for both channels. The velocity of the flow in the roadside ditches was evaluated for the 10 -year a nd 100-year stom1 events. The drainages are shown on Exhibit D , and the data is summari zed in Appendix D . The city requirements for ditch lining material are as follows : Maximum Design Velocities of Variou s Surface Treatments 1 Surface Treatment Exposed Earth* Grass -Seeded Gra ss -Sodded Impe rmeable (C oncrete, Gunite, Etc.) *Temporary Channels Only Ma x imum Design Velocity, (ft/sec ) 3.0 4 .5 6 .0 10.0 'From "Eros ion and Sediment Control G uidelin es for Deve loping Areas in Texas" b y the Soil Conserva ti on Service In Appendix D the ditch velocities are summarized including comments stating the ditch lining m a terial used . The ditch velocities for the propose d ditches do not exceed 4 .5 fps, th erefo re no lining m ate ri a l other than grass is propose d . CONCLUSIONS The construction of this project will increase the stom1 water runoff from thi s s ite . However, so m e of th e runoff will be carried throu g h a drainage system to ex istin g drainage channels and then direct ly to Carters Creek and into the 100-year floodpl a in . Du e to th e lo cation of this project a nd its proximity to Carters Creek's conflu e nce with the Navasota Ri ver, the p eak runoff fr om thi s d eve lo pm e nt will occur much sooner than th e pea k run off in Ca rt e rs Creek , the refo re, th e increase in runoff ha s no affec t on th e wa te r s ur face e leva tion in Ca rt e rs C reek. The increased flow dire ctl y into Ca rt e rs C reek will not hav e a s ig nific ant imp ac t o n th e s u1Toundin g prope rt y . Th e portion o f th e s it e w hi ch flows to Lick C reek w ill ha ve a dete ntion fac ility to redu ce th e post -d eve lopm e nt fl ow to th e pre-d eve lo pm e nt va lu e. No flood dam age to d ow ns tr ea m o r adj ace nt la nd ow ne rs is ex p ec ted as a res ult of thi s d eve lo pm e nt. APPENDIX A Time of Concentration Data & Calculations I 0 +-' ..... -+-' ..... CLI a. 0 ..- VI CV VI I- ::::I 0 0 I- GJ ..... ., :JC 3-2 .so .20 - .10 .06 .04 . 02 - .01 - .005 I 1 ) • I I I I ' , ' ' ~ ' ' b ~q, Lo-:: I '?1 ~) !!-; ~ ~ q_ I I I ' I 2 • I 4 I ) IJ .I J I lj . I 6 I I ' j J • ' Average velocity, ft/sec j .· . . j I I I ' I I 10 . . F i icu~ :J -1.-Av~raic~ vdociti~s for C•l i mali nic lrJvd lim~ for ~hallow conc~nlral~d now . (210-Vl -TR -55 . Seco nd Ed .. Ju ne 198Gl I 20 1 } Drainage Area #102 Sheet Flow : L= 240 n= P= T1= 0 .007(L *n (0 = (P)o s*{S)04 Concentrated Flow1 : V= L= . 232 U(60*V) = Concentrated Flow2 : V= L= 242 U(60*V) = Concentrated Flow3 : V = L= U(60*V) = Pre-Development Tc Calculations Elev 1= 0.4 (wood ed) 4 .5 0 .593 hours = 2 fps (unpaved) Elev 1= 1.9 min 2.5 fps (unpaved) Elev 1= 1.6 min 1.8 fps (unpaved) Elev 1= 5 .6 min 44.7 min 279.4 Slope= 0.021 35 .6 min 276 Slope= 0.015 270 Slope= ----0.025 0 .012 Post-Development Tc Calculations Drai n age Area #3 02 Sheet Flow : n= 0.24 (dense grass) P= 4.5 L= 250 Elev 1= Elev2 = Slope= 0 .0150 T1 = 0 .007(l*n (0 = 0.468 hours= 28 .1 min (P)os*(S )°4 Concentrated Flow 1 : V= 2 .1. fps (unpaved) L= 100 Elev 1 = Elev2= Slope= 0.0170 T1= U(60*V ) = 0.8 min Concentrated Flow 2 : V= 2.65 fps (unpaved) L= 211 Elev 1= Elev2 = Slope= 0 .0270 T1= U(60*V ) = 1.3 min Concentrated Flow 3 : V= 2 .1 fps (unpaved ) L= 165 Elev 1= Elev2 = Slope= 0 .0170 T1= U(60*V) 1.3 min j Tc= 31.5 m i n Dra in age A rea #30 4 Sheet Flow : n= 0.24 (dense grass) P= 4 .5 L= 190 Elev 1= Ele v2 = Slope= 0.0290 T1= 0 .007(l *n(0 = 0 .289 hours= 17 .3 min (P)o s*(S )°4 Concentrated Flow 1: V= 2 .05 fps (unpav ed) L= 476 Elev 1= Elev2 = Slope= 0.0150 T1= U(60*V) 3.9 min I Tc= 21 .2 min Drainage Area #3 02 & 304 A Sheet Flow: n= 0 .24 (d e nse grass) P= 4 .5 L= 250 Elev 1= Elev2 = S lope= 0 .0 150 T,= 0 .00 7(L *n(0 = 0.468 ho urs= 28 .1 min (P)o s*(S)o.4 Con ce ntrate d Flow 1: V = 2 .1 fps (un pa ved) L= 100 Elev 1= Elev2 = Slope= 0.0170 T,= U(60*V) = 0 .8 min Concentrated Flow 2: V= 2 .65 fps (unpav ed) L= 211 Elev 1= Elev2 = Slope= 0 .0270 T,= U(60*V) 1.3 min Concentrated Flow 3 : V= 2.1 fps L= 165 Elev ,= Elev2 = Slope = 0 .0 170 T,= U(60*V ) 1.3 min Concentrated Flo w 4 : V = 1.45 fps L= 85 Elev ,= Elev2 = Slope = 0.0080 T,= U(60*V) = 1.0 min Flow through c ulvert : V = 8 .25 fps (Mann ing's) L= 68 Etev 1= Elev2 = Slo pe= 0.0 100 T,= U(60*V) = 0 .1 min jTc= 32 .6 min D rain age Area #302 , 304A & 30 4 (Are a 500 ) Sheet Fl ow : n= 0 .24 (dens e grass) P= 4 .5 L= 250 Elev 1= Elev2 = Slope = 0.0150 T,= 0 .00 7(L *n(0 = 0.468 hours = 28 .1 mi n (P)os*(S)o.4 Con centrated Flow 1: V = 2 .1 fp s (unp ave d) L= 100 Elev 1= Elev2 = Slope= 0.0170 T,= U(60*V ) = 0.8 min Con ce ntrated Flow 2: V= 2.6 5 fp s (u npave d) L= 211 Elev 1= Elev2 = Slope = 0 .02 70 T,= L/(60'V) 1.3 min i:::o n c~r_lj_[a t ed i:::_1ow ;t V= 2.1 f ps (u1111 <1ve d) L= 165 T,~ L/(60*V) Concentrated Flow 4: V= L= 85 T,= L/(60*V) Flow through cu lvert : V= L= 68 Ti= L/(60*V) Concentrated Flow 5 : V= L= 435 Ti= L/(60*V) Drai n age Area #305 (Area 501) Sheet Flow: n= P= L= 52 0.007(L*n (0 = (P)o .s *(S)oA Concentrated Flow 1: V= L= 501 L/(60*V) Drainage Area #401 Sh eet Flow : n= P= L= 200 0 .007(L *n (0 = (P)os *(S)oA Concentrated Flow 1: V= L= 525 L/(60'V) Elev,= Elev 2= 1.3 min 1.45 fps (unpaved) Elev ,= Elev2 = 1.0 min 8.25 fps (M anning's) Elev,= Elev2 = 0.1 min 2.1 fps (unpaved) Elev,= Elev2 = 3 .5 min 36.1 min 0.24 (dense grass) 4.5 Elev ,= 0.078 hours= 2 fps (unpaved) Elev,= 4 .2 min 8.9 min 0 .24 (dense grass) 4 .5 Elev ,= Slop e= Slope= Slope= Slope = 268 Slope= 4.7 min 260.5 Slop e= Use 10 minutes Slope= 0 .376 hours= 22 .6 min 2 .2 fps (unpaved) Slope= 4 .0 min 0 .0170 0.0080 0 .0100 0.0090 0 .0577 0.0150 0 .0166 0.0190 Concentrated Flow 2: V= 1.25 fps (unpaved) L=· 60 Elev 1= Elev2 = Slope= 0.0060 T,= U(60*V) 0 .8 min ITc= 27 .4 m in D ra i nage Area #402 Sheet Flow: n= 0 .24 (dense grass) P= 4 .5 L= 170 Elev 1= Elev2 = Slope= 0 .0166 T,= 0 .007(L*n(0 = 0 .330 hours= 19 .8 min (P )os*(S)o4 Concentrated Flow 1 : V= 1.7 fps (unpaved) L= 150 Elev 1= Elev2 = Slope = 0 .0109 T,= U(60*V) 1.5 min Concentrated Flow 2: V= 3.4 fps (unpaved) L= 150 Elev 1= Elev 2 = Slope= 0 .0438 T,= U(60*V) = I 0 .7 min Concentrated Flow 3 : V= 3.0 fps (unpaved) L= 150 Elev 1= Elev2= Slope= 0 .0353 T1 = U(60*V) 0 .8 min Concentrated Flow 4: V= 3 .8 fps (unpaved) L= 225 Elev 1= Elev2 = Slope= 0 .0552 T,= U(60*V) 1.0 min I Tc= 23 .8 m i n ------------------------"' APPENDIXB Storm Sewer Culvert Data & Design Calculations 17 Williams Creek Subdivision -Phase 4 Culvert Summary Length Slope Inlet Invert Outl et Size Elev Invert Elev Culvert# (i n) (ft) (%) (ft) (ft) 27 48.0 1.00 265.42 264 .94 ----------- 2 18 40 .0 1.00 266 .60 266 .20 Top of Road (ft) 270.00 270.60 25 Design Flow (cfs) 24 .84 13 .10 year storm v,. HW (fps) (ft) 8 .1 268 .2 -----·--· 7.4 269.4 - 100 y ear storm Desig n . .Flow V 100 HW (cf s) (fps) (ft) 29 .54 7.4 268 .7 - 15.56 8 .8 270 .1 Culvert 1 -25 Year Storm Culvert Calculator Entered Data: Shape ....... . Numbe r of Barrels .............. . Solving for .................... . Chart Number ................... . S cale Number ................... . Chart Description .............. . Scal e Description .............. . Overtopping .................... . Flowrat e ....................... . Manning's n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevat ion ............... . Diameter ....................... . Length ......................... . Entrance Loss ......... . Tailwater ............. . Computed Results: Headwater ...................... . Slope .......................... . Veloci ty ....................... . Circular 1 Headwater 1 3 CONC RETE PIPE CULVER T; NO BEVELED RING ENTRAN CE GROOV E END ENTRANCE, PIPE PROJECTING FROM FILL Off 24.8400 cfs 0. 0140 270.000 0 ft 265.4200 ft 264.9400 ft 2 7.0000 in 48.0000 ft 0.0000 2.2 500 ft 268.1985 ft Inlet Control 0 .0100 ft/ft 8 .1436 fps Culvert 1 -100 Year Storm Culvert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowra te ....................... . Manning's n .................... . Roadway Eleva tion .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ....................... . Lengt h ......................... . Entrance Loss .................. . T ailwater ...................... . Co mpu ted Resu lt s: Headwater Slope ... Velocity . Willi am s Cr e k S ubdi v ision -Phase 4 Co l.l eg e S lc-1ti o 11 , Te ;-:as Circular 1 Headwater 1 3 CONCRE TE PIPE CULVERT; NO BEVELED RING ENTRANCE GROOV E END ENTRANCE, PIPE PROJECTING FROM FILL Off 29.5400 cfs 0.0140 270.0000 ft 265 .4 200 ft 26 4 .9400 ft 27 .0000 in 48 .0000 ft 0 .0000 2.2 500 ft 268 .711 0 ft Inlet Co nt rol 0.0 100 ft/ft 7.4294 fps Culv ert 2 -25 Year Storm Cul v ert Calculator Entered Data : Shape .......................... . Number of Barrels .............. . Solv ing for ................ . Chart Nu mb e r ......... . Scale Numbe r .... . Chart Descripti o n .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Ma nning's n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Co mputed Res ults : Headwater ...................... . Slope .......................... . Velocity ....................... . Ci rcular 1 Headwater 1 3 CO NCRETE PIPE CULVERT ; NO BEVELED RING ENTRAN CE GROOV E END ENTRAN CE, PI PE PROJECTI NG r RO M r!LL Off 13.1000 cfs 0 .0140 270 .6000 ft 266 .6000 ft 266.2 000 ft 18.0 000 in 40 .0000 ft 0.0 000 1 .50 00 ft 269 .3695 ft I nl et Cont r ol 0 .0100 ft/ft 7 .4131 fps Culvert 2 -100 Year Storm Culvert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . Scale Descript i on .............. . Overtopping .................... . Flowrate ....................... . Manning 's n .................... . Roadway Elev ation .............. . Inlet Elevation ................ . Outlet Elev ation ............... . Diameter ....................... . Length ......................... . Entra nce Loss . Tail water ..... Computed Re sult s: He adwat e r Slope ... . Veloc i t y .......... . \·Ji 11 iams C r ee k .S ubd i v i si o n Col l e ~J e Stn ·i.c m , '1'<~>:<1~0 Phase 4 Circular 1 Headwat er 1 3 CO NCRETE PIPE CULVERT ; NO BEVELED RI NG EN TRANCE GROO VE END ENTRAN CE , PI PE PROJ ECT ING r RO M rI LL Off 15 . 5600 . cfs 0 .0140 2 70 .600 0 ft 266 .6000 ft 266.2000 ft 18.0000 in 40 .0000 ft 0 .0000 1.5000 ft 27 0.085 2 ft Inl et Contro l 0 .0 100 ft/ft 8 .8 05 2 fps APPENDIXC Drainage Channel Design Data & Calculations 2 1 Williams Creek Subdivision -Phase 4 Channel Summary Bottom Width Side Slopes Channel# (i n) (H :V) 7 -Segment 1 24 4 :1 7 -Segment 2 24 4 :1 --··--·--- 8 0 4:1 Slope (%) 3.60 2.20 0.9 0 25 Design Flow (cfs) 11.27 11 .2 7 27 .33 - year storm 100 year storm Depth V 25 Design Flow Depth V100 (in) (fps) (cfs) (in) (fps) 7 .2 4.2 13 .34 7 .8 4.4 8.1 3.5 13 .3 4 8.8 3.7 -- 15 .5 4.1 32 .52 16 .5 4 .3 Channel 7 -25 Year Storm (Segment 1, 3.6% Slope) Chann el Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trapezoidal Depth of Flow 11.2700 cfs 0.0360 ft/ft 0.0350 18.0000 in 24.0000 in 0.2500 ft/ft (V/H) 0 .2500 ft/ft (V/H) 7.2346 in 4.2374 fps 85.7262 cfs 2.6596 ft2 83.6581 in 4.5780 in 81.8769 in 12.0000 ft2 172 .4318 in 40.1923 % Channel 7 -100 Year Storm (Segment 1, 3.6% Slope) Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent f u ll ................... . l>i_i ll.i.a ms Creek Subcli.visio11 Co.llege Statio11 , Te:·:aE Trapezoidal Depth of Flow 13.3400 cfs 0.0360 ft/ft 0 .0350 18.0000 in 24.00 00 in 0 .2500 ft/ft (V/H) 0.2500 ft/ft (V/H) 7.8355 in 4.4299 fps 85.7262 cfs 3.0113 ft2 88.6132 in 4.8935 in 86.6840 in 12.0000 ft 2 172.4318 in 43.5 30 6 % Channel 7 -25 Year Storm (Segment 2, 2.2% Slope) Channel Calculator Giv en Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trapezoidal Depth of Flow 11. 2700 cfs 0.0220 ft/ft 0 .0350 18.0000 in 24.0000 in 0.2500 ft/ft (V/H) 0.2500 ft/ft (V/H) 8.1264 in 3.5343 fps 67.0152 cfs 3.1888 ft2 91.0116 in 5.0453 in 89 .0108 in 12 .0000 ft2 172.4318 in 45.1464 % Channel 7 -100 Year Storm (Segme nt 2, 2.2% Slope) Channel Calculator Given Input Data : Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Fl ow area ...................... . Flow perimeter ................. . Hy draulic radius ............... . Top width ...................... . Ar ea ........................... . Peri meter ...................... . Percent full ................... . Ii-I :i l l i. a 111 s Cree k S u b d j v i s :i o n Cc•l lege .Statio n, Te:-:cis P h i1Se 4 Trapezoidal Depth of Flow 13. 3400 cfs 0.0220 ft/ft 0.0350 18.0000 in 24.00 00 in 0 .2 500 ft/ft (V/H) 0.250 0 ft/ft (V/H) 8 .7908 in 3.6935 fps 67.0 152 cfs 3.61 18 ft 2 96 .4909 in 5.3901 in 94.3265 in 12 .0000 ft2 172.4318 i n 48.8378 % Channel 8 -25 Year Storm Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Height ......................... . Bottom width ................... . Lef t slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trapezoidal Dept h of Flow 27.33 00 cfs 0.0090 ft/ft 0 .0250 18.0 000 in 0 .0000 in 0 .250 0 ft/ft (V/H) 0.250 0 ft/ft (V/H) 15 .4524 in 4.12 05 fps 41.0 557 cfs 6.6327 ft2 127.4241 in 7.4955 in 123.6196 in 9.0000 ft2 148.4318 in 85.8469 % Channel 8 -100 Year Storm Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Height ......................... . Bo ttom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Per imeter ...................... . Pe rce nt ful l ................... . W.i lJ .i ams e r-ee k Subd i" is io n College Stat .i on, Te~a~ Phase ,1 Trapezoidal Depth of Flow 32.5200 cfs 0 .0090 ft/ft 0 .0 25 0 18.0000 in 0.0 000 in 0 .2500 ft/ft (V/H) 0 .25 00 ft/ft (V/H) 16.4935 in 4.3035 fps 41.0557 cfs 7 .5566 ft2 136. 0092 in 8 .0005 in 131.9483 in 9.0000 ft2 148.4318 i n 9 1 .6308 % APPENDIXD Drainage Ditch Data & Lining Material Williams Creek Drive Le ft Ditch (n = 0 .035) From To Slope Drainag e Area # Station Statio n 34+65 .61 35+25.00 -0.60% 1358 ,C,D , 1 r-·-· ---------·----- 35+25 .00 37+00 .00 -1.87 % 1358,C,D ,1,2 ------------- - 37+00 .00 37+68 .87 -0.78% 1358-D , 1,2 ,2A ------·---- 37+68 .87 39+72 .87 -1.02% 1358-D, 1,2,2A,3 ---------------------- 39+72 .87 41+68 .87 1.97 % 3A,4 -------------- 41+68 .87 42+42 .26 0 .93 % 4 --·--·----------- 42+42 .26 43+66.00 -0 .60% 135A,29 ----------------------·- 43+66 .00 45+70 .00 -1.45% 135A,29,30 ------ 45+70 .00 46+35 .00 1.86 % 31 ------------------ 46+35 .00 48+50 .00 -----· 48+50 .00 50+50 .00 50+50 .00 53+00 .00 ----- 53+0 0 .00 54+13 .34 Lanham Drive Left Ditch Fro m To Station Station 0 +00 .00 1+50.00 -4 .70 % 35 --- -6 .00% 35 ,36 -------- -4 .83 % 35,36,37 -1 .59 % 35 ,36 ,37,38 (n = 0 .035) Sl ope Drainage Area # 1.30 % 10,11 ,12 ,13 - ------------ 1+50.00 2+75 .00 2+75 .00 4+50 .00 4+50 .00 5+26 .35 Wayne Court Left Ditch From To Stati on Station 0 +35.43 2+75.00 ------ 2+75 .00 4+00 .00 ------------ 4+00 .00 5+49 .14 ------------- 5+49 .14 6+67 .26 2 .35 % 10 ,11,12 ----- 1.18% 10 , 11 - - ---- 2 .86 % 10 (n = 0.035) Slo pe Drainage Area # -1.09 % 22 ,23,24 -4 .38 % 22 ,23,24 ,25 ----------- -3.53 % 22 ,23 ,24 ,25 ,26 ---- -5 .52 % 22 ,23 ,24,25,26 ,27 0 10 (els ) 4 .04 6 .4 9 -- 11 .36 2 1.82 - 7 .53 - 3 .25 --- 4 .09 - 11 .36 -- 2 .00 -- 1.99 2 .50 --- 3 .34 --- 3.74 0 10 (els) 1.90 --- 1.42 - 0 .95 ---- 0 .35 0 10 (els) 3.20 3 .94 - 4 .60 - 505 V 10 d 10 0100 V 100 d 100 Ditch Lin i ng Materia l (fp s ) (i n ) (els ) (fps) (in ) 1.7 9 .2 5 .47 1.8 10 .3 Grass seeded ----- 2.9 8 .9 8 .78 3 .2 10 .0 Gra ss seeded --- 2.4 13 .0 15 .38 2 .6 14 .5 G ra ss seeded -. 3 .2 15.7 29 .61 3.4 17 .6 Gra ss seeded ------ 3.1 9 .3 10 .22 3 .4 10.5 Gra ss seeded -------- 1.9 7 .8 4.41 2 .1 8 .8 Grass seeded --- 1.7 9 .3 5.54 1.8 10.4 Gra ss seeded J ----- 3 .1 11 .5 15.43 3.3 12 .9 Grass seeded ----------- 2 .2 5 .7 2 .70 2 .4 6 .4 Grass seed ed ----------------- 3 .1 4 .8 2 .68 3 .3 5.4 Gra ss seeded --------------·- 3 .6 5.0 3.37 3 .9 5.6 Grass seeded -------------· ------- 3 .6 5 .8 4 .5 1 3 .8 6 .5 Grass seed ed ·-------------------- 2.4 7 .5 5 .06 2 .6 8 .4 Grass seeded V 10 d lo 0 100 V 100 d 100 Ditch Lin ing Materi al (fp s) (in) (els ) (fp s) (in) 1.9 6 .0 2.56 2.0 6 .7 Grass seed ed ------- 2 .2 4 .8 1.92 2.4 5.4 Grass seeded -------------- 1.5 4.7 1.28 1.6 5.3 Grass seed ed ------------- 1.7 2.8 0 .47 1.8 3 .1 Gra ss seed ed V 10 d 10 01 00 V 100 dl oo Ditc h Lini ng Material (fp s) (in) (els ) (fps) (in) 2 .0 7 .6 4 .33 2.2 8.5 Grass seeded ------------ 3 .6 6 .3 5.33 3 .9 7.1 Gra ss seeded -------------------- 3.4 7.0 6 .23 3.7 7.8 Grass seeded ------------ 4 .1 6 .6 6 .85 4 .5 7.4 Grass seeded Williams Creek Drive Right Ditch (n = 0 .035) From To Slope Drainage Area # 0 10 V 10 d 10 0 100 V 100 d 100 Ditch Lining Material Station Station (cfs) (fps) (in) (e ls) (fps) (in) 34 +65 .6 1 35+25.00 -0.60% 136,5 0.43 1.0 4.0 0.58 1.0 4 .5 Grass seeded 35 +25 .00 37+00.00 -1 .87% 13 6,5,6 1.04 1.9 4 .5 1.40 2.0 5 .0 Grass seeded 37+00 .00 37+68.87 -0 .78 % 136 ,5,6,7 1.30 1.4 5.7 1.75 1.5 6.4 Grass seeded 37+68 .87 39+72.87 -1 .26 % 136,5,6.7 ,8 1.99 1.9 6.2 2.68 2 .0 6.9 Grass seeded - 39+72.87 41+68.87 2 .2 1% 9 0 .91 1.9 4 .1 1.22 2 .1 4 .6 Grass seeded .. - ------- - - --- 42+42 .26 43+66.00 -0.60% 32 0.43 1.0 4 .0 0.58 1.0 4 .5 Grass seeded --·-. - 43+66 .00 45+70.00 -1 .55% 32,33 1.12 1.8 4 .8 1.51 1.9 5 .3 Grass seeded --·-·-·----· --· -----~-------·-- 45+70 .00 46+35 .00 2 .14 % 34 0 .26 1.4 2 .6 0 .35 1.5 2 .9 Grass seed ed --. ---·------ 46+35 .00 48+50 .00 -4 .70% 40 0 .73 2.4 3 .2 0.99 2 .6 3 .7 Grass seeded ~---·------------------·- 48+50 .00 50+50.00 -6 .00% 40,41 1.51 3 .2 4 .1 2.04 3.4 4 .6 Grass seeded ·-----· -· --- 50+50 .0 0 53+00.00 -4 .83% 40 ,41,42 2.76 3.4 5.4 3.72 3 .7 6 .1 Gra ss seeded ---------------------- 53+00.00 54+13 .34 -1 .59% 40,41,42,43 5 .31 2 .6 8 .5 7 .16 2 .8 9 .5 Grass seeded Lanham Drive Right Ditch (n = 0 .035) From To Slope Drainage Area # 0 10 V 10 d 10 0100 V100 d100 Ditch Lining Material Station Station (cfs) (fps) (in) (els) (fps) (in ) 0+00.00 1+50.00 1.30% 14, 15 0.91 1.6 4 .6 1.22 1.7 5 .1 Grass seeded ---------- 1 +50 .00 2+75.00 2 .35% 14 0.47 1.7 3 .2 0.64 1.9 3 .6 Grass seeded ----- 3+50 .00 4+50.00 1.18% 22,23 0 .78 1.5 4.4 1.05 1.6 4 .9 Grass seeded - 4+50 .00 5+26.35 2 .86 % 22 0.35 1.7 2.8 0.47 1.8 3 .1 Grass seeded Wayne Court Right Ditch (n = 0 .035 ) From To Slope Drainage Area # 0 10 V 10 d 10 0100 V 100 d100 Ditc h Lining Material Station Station (els) (fp s ) (in) (cfs) (fp s) (in) 0+35.43 2+75.00 -1 .09% 16, 17 1.81 1.7 6 .1 2.44 1.9 6 .8 Grass seeded - 2+75.00 4+00 .00 -4 .38% 16 , 17 , 18 3.07 3.4 5 .7 4 .13 3 .6 6.4 Grass seeded -----------· - 4+00 .00 5+49 .1 4 -3 .53% 16,17,18,19 4 .36 3.4 6.8 5.88 3 .6 7 .6 Grass seeded ·-- 5+49 .14 6+67.26 -5.52% 16,17,18,19,20 5 .22 4 .2 6.7 7 04 4 .5 7 .5 Grass seeded Williams Cre ek Subdivision -Phase 4 Ditch Evaluati on Data Area, Area# A c le (acres) (min) 1358 0 .54 0 .50 10 .0 1358,C 0 .69 0 .50 11 .3 1358,C .D 0 .82 0 .50 130 1358,C ,D . 1 1.08 0 .50 13 .8 1358,C .D, 1.2 1.81 0 .50 15 .1 1358-D, 1.2 .2A 3.25 0.50 15 .9 --1358-D.1.2 .2A.3 6 .84 0 .50 19 .0 136 0 .05 0 .50 10 .0 ------ - 136.5 0 .10 0 .50 10 .0 ----- 136 .5,6 0 .24 0 .50 10 .0 -----. 136 ,5.6 .7 0 .30 0 .50 10 .0 --------------- 136,5 .6,7,8 0.46 0.50 10 .0 -· --------------- 9 0 .2 1 0.50 10 .0 -....._ __ . -· --- 4 0 .98 0.50 17.6 ---------4 ,3A 2.36 0 .50 19 .0 ----------- 135A.29 1.21 0 .50 17 .0 - - 135A.29 ,30 3.65 0 .50 19 .9 - 31 0 .50 0 .50 11 .9 -- 32 0.10 0 .50 10.0 -·------ 32 .33 0 .26 0 .50 10.0 - 34 0 .06 0 .50 10 .0 -- --------·- 35 0 .46 0 .50 10.0 - 35.36 0 .63 0 .50 12 .2 ---------- 35,36.37 0 .88 0 .50 13.4 -------- 35 ,36 ,37 ,38 1.02 0 .50 14.4 ---------- 35.36 .37 .38.39 1.1 5 0 .50 15.4 ---------- 40 0 .17 0.50 10.0 40 ,41 0.35 0 .50 10 .0 ------------ 40 ,41.42 0 .64 0 .50 10 .0 5 y ear sto r m 10 y ea r storm 25 yea r s torm 50 ye ar sto r m Is O s 1,. o ,. l2s o,, lso O so (in /hr) (cfs) (in /hr) (cfs) (in/hr) (cfs) (in /hr) (cfs ) 7.693 2.08 8 .635 2.33 9.86 1 2.66 11 .148 3.01 7.293 2.52 8 .199 2.83 9.369 3.23 10 .598 3.66 6 .837 2.80 7.69 9 3.16 8.805 3.61 9.967 4 .09 6.643 3 .59 7.487 4.04 8.566 4 .63 9.699 5 .24 6 .354 5 .75 7.171 6.49 8.208 7.43 9 .298 8.42 - 6 .190 10 .06 6 .99 1 11 .36 8 .004 1301 9 .070 14 .74 5 .636 19 .27 6 .381 21 .82 7.314 25 .0 1 8 .297 28 .38 7 .693 0 .19 8.635 0.22 9 .86 1 0.25 11 .148 0 .28 --- 7.693 0 .38 8.635 0.43 9 .86 1 0.49 11 .148 0 .56 -- 7.693 0 .92 8.635 1.04 9.861 1.18 11 .148 1.34 ----. -- 7 .693 1.15 8.635 1.30 9 .86 1 1.48 11 .148 1.67 -------·- 7.693 1.77 8 .635 1.99 9 .861 2.27 11 .148 2 .56 ----- 7.69 3 0 .8 1 8.635 0.9 1 9 .861 1.04 11.148 1.17 ----- 5.872 2.88 6 .640 3.25 7.608 3 .73 8 .626 4 .23 ----------- 5.636 6 .65 6 .381 7.53 7.314 8.63 8 .297 9 .79 --------------- 5.980 3.62 6 .759 4 .09 7.742 4 .68 8.777 5.31 -- 5.495 10.03 6 .226 11 .36 7.138 13 .03 8 .100 14 .78 ------ 7.124 1.78 8.014 2.00 9.16 1 2.29 10.365 2.59 7.693 0 .38 8.635 0.43 9.86 1 0.49 11 .148 0 .56 ---------- 7.693 1.00 8.635 1.12 9.861 1.28 11 .148 1.45 -----------· 7.693 0.23 8.635 0.26 9.861 0 .30 11.148 0 .33 -------- 7.693 1.77 8.635 1.99 9.861 2.27 11 .148 2 .56 ------- 7.043 2.22 7.925 2.50 9.060 2.85 10.252 3.23 -· --- - 6 .739 2 .96 7.592 3.34 8.684 3.82 9 .831 4.33 ------- 6.506 3 .32 7.337 3.74 8.396 4.28 9 .509 4 .85 -· -------- 6.292 3.62 7.102 4 08 8.130 4 .67 9.211 5.30 -. -- --- 7.693 0 .65 8.635 073 9.86 1 0 .84 11 .148 0 .95 ----------------- - 7.693 1.35 8.635 1.51 9 .861 1.73 11 .148 1.95 -------- 7.693 2.46 8.635 2.76 9.861 3.16 11 .148 3.57 -·---· ---- 40 ,41.42.43 1.23 0 .50 10 .0 7.693 4 .73 -·---- 40.41.42.43.4 4 1.40 0 .50 10 .0 7 .693 5.38 ------ 10 0.08 0 .5 0 10 .0 7.693 0.3 1 -- 10,11 0.22 0 .50 10.0 7.693 0.85 - -10 ,11 ,12 0 .33 0.50 10 .0 7 .693 1.27 --- 10,1 1.12 ,13 0.44 0 .50 10 .0 7.693 1.69 ------- 22 0.08 0 .50 10 .0 7.693 0.3 1 ------· ----- 22 ,23 0.18 0 .50 10 .0 7.693 0 .69 -- --·-----· 22 ,2 3.24 0.89 0 .50 15 .0 6 .376 2.84 --- -------- 22.23.24.25 1.12 0 .50 15 .7 6.230 3.49 ------- --- 22 .23 .24 .25 .26 1.34 0 .50 16 .5 6 .073 4 .07 - -- --- 22.23 .24 .25 .26.27 1.50 0 .50 17 .1 5.961 4.47 ----- 22.23.2 4 .25.26.27,28 1.57 0 .50 17 .5 5.889 4 .62 --·---- 16 0.05 0 .50 10 .0 7.693 0 .19 -----. ·-·---- 16 .17 0.42 0 .50 10.0 7.693 1.62 --·-· - 16,17 ,18 0 .71 0 .50 10 .0 7.693 2 .73 16,17 .18 ,19 1.01 0 .50 10 .0 7.693 3 .88 16,17 .18.19 .20 1.21 0 .50 10 .0 7.693 4 .65 - 16 .17.18.19 .20 .21 1.26 0 .50 10 .0 7.693 4 .85 14 0 .11 0 .50 10 .0 7.693 0.42 14 .15 0 .2 1 0 .50 10.0 7 .693 0 .8 1 The Ratio na l Method : Q =C I A I = b I (lc +d)" Q = Fl ow (cfs ) le = T ime of conce nt ra tio n (min) A = Area (ac res ) C = Runoff Coe ff . I = Ra infall Inte n s it y (in /h r ) Brazos Coun ty: 2._yea r sto rm 10 ear sto rm b = 7fi b = 80 <l =SS cl =8 .'.» !! = O 79 e = 0 7 f.i 3 25 year s to r111 I) = ('.~1 8.635 -· 8.635 --- 8.635 -- 8.635 8.635 8.635 8.635 8.635 7.194 7.035 6 .86 2 6 .739 6 .660 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 5 .3 1 9.861 6 .04 9.861 - 0 .35 9.861 - 0.95 9.86 1 - 1.42 9.86 1 1.90 9.86 1 0 .35 9 .861 0 .78 9.861 3.20 8.234 3.94 8.054 4 .60 7 .859 5 .05 7 .71 9 5.23 7.630 0 .22 9.861 1.8 1 9.86 1 3 07 9 .861 4 .36 9 .86 1 5.22 9 .861 5.44 9.861 0.47 9 .86 1 0 .9 1 9.86 1 tc = L/(V *60 ) L = Le ngth (ft 6.06 11 .148 6.86 --------· - 6.90 11.148 7.80 ----- 0.39 11.148 0.45 --------- 1.08 11.148 1.23 --------- 1.63 11 .148 1.84 ---- 2.17 11 .148 2.45 --- 0 .39 11 .148 0.45 -- 0 .89 11.148 1.00 3.66 9.328 4 .15 4 .5 1 9.126 5.1 1 5 .27 8.908 5.97 --5 .79 8 .752 6.56 5 .99 8.651 6 .79 0 .25 11.148 0 .28 2.07 11.148 2.34 3.50 11 .148 3.96 4 .98 11 .148 5.63 5.97 11 .148 6 .74 6 .21 11 .148 7.02 0.54 11 .148 0 .6 1 1.04 11 .148 1.17 V =Velocity (ft /sec ) 50 yea r storm [1 = 91\ 100 yea r sto r111 b = 96 I ! = (.I 7](• 100 y ea r storm 1, •• a , •• (in /hr) (cfs ) 11 .639 3.14 11.062 3 .82 10.400 4 .26 10 .120 5.47 9.701 8 .78 9.463 15 .38 8 .657 29.6 1 11.639 0 .2 9 11 .639 0 .58 11 .639 1.40 -- 11.639 1.75 11 .639 2 .68 11 .639 1 22 9.000 4.41 8.657 10.22 9.157 5.54 0 8.452 15.43 10 .817 2 .70 11 .639 0 .58 D 11 .639 1.51 .. - 11 .639 0 .35 · 11 .639 2 .68 10 .700 3.37 10 .258 4 .51 9.922 5 .06 - 9.610 5.53 11 .639 0 .99 11.639 2 .04 11 .639 3.72 11 .6 39 7.16 11 .639 8 .15 11 .639 0.47 ---- 11.639 1.28 11 .639 1.92 11 .639 2.56 11.639 0.47 11.639 1.05 9.732 4 .33 9.521 5 .33 9.294 6 .23 9.131 6 .85 9.026 7.09 11 .639 0 .29 11 .639 2 .44 11 .639 4 .13 11 .639 5.88 11 .639 7.04 11 .6 39 7.33 11.639 0.64 11 .639 1.22 APPENDIXE Detention Pond #3 Design Information .~n SCS Curve Number C alculations Pond -Pre-Development Drainage A rea -102 Area -Ac . 17 .74 sq . mi . 0 .0277 T c = 44.7 Lag = L = 0 .6Tc = 26 .8 min= 0.447 hrs Land Use Gravel Road Woods-Good Pasture-Fair Total -CN II Average Runoff condition CN = CN I= 61 Area -Ac. 0 .12 14 .10 3 .52 17 .74 ARC CN = CN I+ 0 .70(CN II -CN I) Weighted CN II CN 89 0 .6 77 61 .2 84 16 .7 78 .5 73.2 SCS Curve Numbe r Calculations Pond -Post Developm en t Drainage Area -500 Area -Ac . sq . m i. 14 .75 0 .0230 Tc= 36 .1 Lag = L = 0 .6Tc = Land Use 1 Acre Lots 1 Acre Lots Total -CN II 21 .7 min= Soil Type Area -Ac . c 0 0.47 14 .28 14 .75 Average Runoff condition CN = CN I= 67 .8 ARC CN = CN I+ 0 .70(CN II -CN I) Drainage Area -501 Area -Ac. sq . m i. 1.37 0 .0021 T c = 10.0 Lag = L = 0 .6Tc = 6 .0 min= Land Use Soil Type Area -Ac . Gravel Road 1 Acre Lots 1 Acre Lots Pasture-fair Total -CN II 0 c 0 0 Average Runoff condition CN = CN I= 67 .3 ARC CN = CN I+ 0 .70(CN II -CN I) 0 .12 0 .32 0 .53 0.40 1.37 0 .361 hrs Weighted CN II CN 79 2.5 84 81 .3 83 .8 79 .0 0 .1 hrs Weighted CN II CN 89 7 .8 79 18 .5 84 32 .5 84 24 .5 83 .3 78.5 Williams Creek Subdivision Phase 4 Detention Pond Pond Area-Capacity Data with Proposed Contours V = H * {[A1+A2 + (A1*A2)112] / 3} V = volume , ft 2 A= area , ft 2 H = difference in elevation, ft Detention Pond 3 Area -Capacity Data Elevation Depth Area Area Volume Cumulative 90% Cumulative Volume Volume (ft) (ft) (ft2) (acres) (ac-ft) (ac-ft) (ac-ft) 261 .50 0 .00 0 .00 0 0 0 0 .00 262 .00 0 .50 12 ,015 .00 0 .2758 0 .046 0 .05 0 .04 263 .00 1.50 32,162.00 0 .7383 0.488 0 .53 0 .48 ---- 264 .00 2.50 36,056.00 0 .8277 0 .783 1.32 1.19 265.00 3 .50 41,972 .00 0 .9635 0 .895 2 .21 1.99 Williams Creek Subdivision -Phase 4 Detention Pond No. 3 Outlet Pipe 2-24" HOPE Pipes @ 1.0% with concrete S .E .T.'s Elevation -Discharge Data Inlet Control Elevation Culvert Depth Q (ft) (ft) (cfs) 261 .5 0 0 -- 262 0 .5 2.0 ·----- 263 1.5 15 .2 ---------- 264 2 .5 33 .2 265 3 .5 46 .2 EXHIBIT A Pre-Development Drainage Area Map -Detention Pond , -' ~ Donnie Willis From: Carol Cotter Sent: To: Wednesday, November 05 , 2014 4:28 PM Donnie Willis Cc: Alan Gibbs Subject: Filling of Pond -Williams Creek Ph4, Lot 10 , Blk 5 Donnie, In talking with the Design Engineer on the project, this is what I found out; The flow through the culvert under Williams Creek was allowed to continue into the pond to provide enough runoff to keep the pond full. The Developers kept the pond because they considered it an amenity for the lot. There were 2 drainage swales across Lots 8 and 9 that join together on Lot 7 after one of them crosses Lot 6. Drainage easements were not defined since the outfall from the pond could go through either of these swales and since Lots 8 and 9 have frontage on 2 streets, it was not known where those houses would go. It was assumed that the house construction would require one of the swales to be filled in and re-routed around the house . We were concerned that if drainage easements had been defined , it would make the lots unbuildable without abandoning one of the easements . There is concern with the pond being filled. An evaluation should be done to determine how the fill affects the flow on the downstream properties. Simply diverting the flow from the culvert under Williams Creek Drive so that it stays in the roadside ditch and diverting the flow from Lot 10 into the Williams Creek Drive roadside ditch might not be an option because the increased flow could cause erosion in the ditch since it is very steep . Also, the culvert for the Lot 7 driveway was not sized for the additional area and flow . This scenario should be evaluated also if it is considered as an option to reduce the flow onto the downstream properties. Respectfully, Carol L. Cotter, P.E. Sr . Assistant City Engineer Planning & Development Services PO Box 9960 1101 Texas Avenue S College Stati on , Texas 77842 Office: (979) 764-3570 Fax : (979) 764-3496 Ema i l: ccotter@cstx.gov City of College Station Home of Te xas A&M University ® 1 DEVELOPMENT PERMIT PERMIT NO . 05-24 ~-~ Project: WILLIAMS CREEK SUBDIVISION COLllGl STATION FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE SITE LEGAL DESCRIPTION: WILLIAMS CREEK PHASE 4 DATE OF ISSUE: 07/08/05 OWNER: JOHNSON LAND 1400 SOUTH COMMERCIAL ST COLEMAN , TX 76834 TYPE OF DEVELOPMENT: SPECIAL CONDITIONS: SITE ADDRESS: ROCK PRAIRIE AT GREENS PRAIRIE DRAINAGE BASIN: Carter's Creek VALID FOR 9 MONTHS CONTRACTOR: Full Development Permit All construction must be in compliance with the approved construction plans All trees required to be protected as part of the landscape plan must be completely barricaded in accordance with Section 7.5 .E., Landscape/Streetscape Plan Requirements of the City's Unified Development Ordinance, prior to any operations of this permit. The cleaning of equipment or materials within the drip line of any tree or group of trees that are protected and required to remain is strictly prohibited . The disposal of any waste material such as, but not limited to, paint, oil, solvents, asphalt, concrete , mortar, or other harmful liquids or materials within the drip line of any tree required to remain is also prohibited . TCEQ PHASE II RULES IN EFFECT . SEE PLAN . NO EXCAVATION IN SPECIFIED AREAS W/O COE PERMIT . The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design Criteria . If it is determined the prescribed erosion control measures are ineffective to retain all sediment onsite , it is the contractors responsibility to implement measures that will meet City, State and Federal requirements . The Owner and/or Contractor shall assure that all disturbed areas are sodden and establishment of vegetation occurs prior to removal of any silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor shall also insure that any disturbed vegetation be returned to its original condition , placement and state. The Owner and/or Contractor shall be responsible for any damage to adjacent properties, city streets or infrastructure due to heavy machinery and/or equipment as well as erosion, siltation or sedimentation resulting from the permitted work . In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to insure that debris from construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage facilities. 01-os -ois- Date 7 -/'Zr-OS 0 Date t • CONSTRUCTION COST ESTIMATE 27 -Jun-05 WILLIAMS CREEK SUBDIVISION COLLEGE STATION , TEXAS PHASE 4 -25 Lots Item Estimated Unit Estimated No . Description Quantity Price Cost Sitework 1 Mobilization/Layout LS $7,500 .00 $7 ,500 2 Site Preparation 7 .1 AC $2,000 .00 $14 ,200 3 Si lt Fence 1,400 LF $2 .00 $2 ,800 4 Construction Exit-Rock 20 TONS $55 .00 $1 , 100 5 Erosion Control/Seeding/Hydromulch 1 LS $10,000.00 $10 ,000 6 Topsoil Stripping & Replacement 1,590 CY $6 .00 $9,540 7 Excavation/Grading 5 , 100 CY $3.50 $17,850 8 Lime Stabilized Subgrade 11,226 SY $3.00 $33,678 9 Asphalt Paving -1 1/2" depth 9 ,075 SY $5.50 $49 ,913 10 Base Material -6" depth 10 ,865 SY $6.90 $74,969 11 Ribbon Curb 595 LF $7 .25 $4,314 12 End of Roadway sign -red/black 3 EA $200 .00 $600 Subtotal $226,463 Storm Drainage 13 18" RCP -T & G -structural 40 LF $38.00 $1 ,520 14 27" RCP -T & G -structural 32 LF $60 .00 $1 ,920 15 27" RCP -T & G -structural -Remove & Relocate 16 LF $24 .00 $384 16 18" Concrete S .E .T. (4:1) 2 EA $1,250 .00 $2,500 17 27" Concrete S.E.T. (4:1)-Remove & Relocate 2 EA $600 .00 $1,200 18 Remove Existing Rock Riprap 96 SF $2 .00 $192 19 Concrete riprap 200 SF $4.50 $900 20 Concrete Flume (4:1 sides, V-bottom) 790 SF $5 .00 $3,950 21 C hannel # 7 -Excavatio n & Grading 165 LF $5 .00 $825 22 Sod Channel Lining (4:1 sides 2' bottom) 260 SY $3 .00 $780 Subtotal $14,171 Detention Pond s 23 Excavation/Grading 2,250 CY $3 .50 $7,875 24 Topsoil Stripping & Replacement 675 CY $6 .00 $4,050 25 Concrete riprap 55 SF $4 .50 $248 26 24" HOPE -T & G -non-structural 70 LF $40 .00 $2,800 27 24" Concrete S.E.T. (4:1) 4 EA $1,400 .00 ~5,600 Subtotal $20,573 Wa ter Lines 28 3" Water PVC SOR 21 0-2241 non-structural 375 LF $12 .00 $4 ,500 29 6" Water PVC CL200 (C909) structural 60 LF $24 .00 $1,440 30 6" Water PVC CL200 (C909) non-structural 383 LF $20 .00 $7,660 31 10" Water PVC CL200 (C909) non-structura l 1,200 LF $28 .00 $33 ,600 32 12" Water PVC CL200 (C909) non-structura l 510 LF $32 .00 $16 ,320 33 3" Gate Valves EA $400 .00 $400 34 6" Gate Valves 1 EA $700 .00 $700 35 1 O" Gate Valves 3 EA $1,000 .00 $3 ,000 36 3" 45 deg. M .J . Bend EA $200 .00 $200 37 6" 11 .25 deg . M .J . Bend EA $250 .00 $250 38 6" 2 2 .5 deg . M .J. Bend EA $250 .00 $250 39 6" 45 deg . M .J . Bend 1 EA $2 50.00 $2 50 40 12 " 11 .25 de g . M .J. Be nd 2 EA $5 00 .0 0 $1,00 0 41 12"x6 " M .J . Tee 2 EA $550 .00 $1, 100 4~~ 1 O"xG " M .J . Tee J •c:i~=ie I r I : EA 5500 .00 5500 l -• 43 6"x6" M.J. Tee 1 EA $350 .00 $350 44 6"x3" M.J . Reducer 1 EA $200 .00 $200 45 12"x10" M.J . Reducer 1 EA $450 .00 $4 50 46 2" Blowoff Assembly 2 EA $600 .00 $1 ,200 47 Fire Hydrant Assembly 3 EA $2,250 .00 $6 ,750 48 Fire Hydrant Vertical Extension 3 EA $250 .00 $750 49 Remove Blowoff -Tie-in to existing 12" line 1 EA $200 .00 $200 50 1.5" Short Service 7 EA $600 .00 $4,200 51 1" Long Service 5 EA $600 .00 $3 ,000 52 1.5" Long Service 2 EA $600 .00 $1 ,200 53 Meter Boxes 25 EA $140.00 ~3,500 Subtotal $92 ,970 Rock Excavation -Waterline 54 Rock Excavation 2 ,000 LF/FT $5 .00 ~10,000 Subtotal $10 ,000 Items Not Included: Total Sitework $226,463 1. Phone and cable conduit Total Storm Drainage $14,171 2. Electrical distribution Total Detention Pond $20,573 3. Street lights Total Water $92,970 Total Rock Excavation $10,000 TOTAL CONSTRUCTIONj $364,1761 Cost/Lot $14,567 Page 2 o f 2 / D ·. 4-b • 1' (o -d-1 ... o-s- 0547 CONSTRUCTION COST ESTIMATE ~27-Jun-05 WILLIAMS CREEK SUBDIVISION COLLEGE STATION, TEXAS PHASE 4 -25 Lots Item Estimated Unit Estimated No . Description Quantity Price Cost Sitework 1 Mobilization/Layout 1 LS $7,500.00 $7,500 2 Site Preparation 7 .1 AC $2,000 .00 $14,200 3 Silt Fence 1,400 LF $2 .00 $2,800 4 Construction Exit-Rock 20 TONS $55 .00 $1, 100 5 Erosion Control/Seeding/Hydromulch 1 LS $10,000.00 $10,000 6 Topsoil Stripping & Replacement 1,590 CY $6 .00 $9,540 7 Excavation/Grading 5, 100 CY $3 .50 $17,850 8 Lime Stabilized Subgrade 11 ,226 SY $3 .00 $33 ,678 9 Asphalt Paving - 1 1/2" depth 9,075 SY $5 .50 $49 ,913 10 Base Material -6" depth 10,865 SY $6 .90 $74,969 11 Ribbon Curb 595 LF $7.25 $4 ,314 12 End of Roadway sign -red/black 3 EA $200 .00 $600 Subtotal $226,463 Storm Drainage 13 18 " RCP -T & G -structural 40 LF $38 .00 $1,520 14 27" RCP - T & G -structural 32 LF $60 .00 $1,920 15 27" RCP -T & G -structural -Remove & Relocate 16 LF $24 .00 $384 16 18" Concrete S.E.T . (4 :1) 2 EA $1 ,250 .00 $2 ,500 17 27'' Concrete S.E.T. (4 :1) -Remove & Relocate 2 EA $600 .00 $1 ,200 18 Remove Existing Rock Riprap 96 SF $2 .00 $192 19 Concrete riprap 200 SF $4 .50 $900 20 Concrete Flume (4:1 sides, V-bottom) 790 SF $5 .00 $3 ,950 21 Channel # 7 -Excavation & Grading 165 LF $5 .00 $825 22 Sod Channel Lining (4 :1 sides 2' bottom) 260 SY $3 .00 $780 Subtotal $14,171 Detention Ponds 23 Excavation/Grading 2,250 CY $3 .50 $7 ,875 24 Topsoil Stripping & Replacement 675 CY $6 .00 $4 ,050 25 Concrete riprap 55 SF $4 .50 $248 26 24 " HOPE -T & G -non-structural 70 LF $40.00 $2 ,800 27 24" Concrete S.E.T . (4 :1) 4 EA $1,400.00 ~5,600 Subtotal $20,573 Water Lines 28 3" Water PVC SOR 21 D-2241 non-structural 375 LF $12.00 $4 ,500 29 6" Water PVC CL200 (C909) structural 60 LF $24.00 $1,440 30 6" Water PVC CL200 (C909) non-structural 383 LF $20 .00 $7 ,660 31 1 O" Water PVC CL200 (C909) non-structural 1,200 LF $28 .00 $33 ,6 00 32 12" Water PVC CL200 (C909) non-structural 510 LF $32 .00 $16,320 33 3" Gate Valves EA $400.00 $400 34 6" Gate Valves 1 EA $700 .00 $700 35 10" Gate Valves 3 EA $1,000 .00 $3,000 36 3" 45 deg. M .J . Bend EA $2 00 .00 $20 0 37 6" 11 .25 deg . M .J . Bend EA $250 .00 $25 0 38 6" 22.5 deg. M .J. Bend EA $250 .00 $250 39 6" 45 deg . M .J . Bend 1 EA $250 .00 $250 40 12" 11 .25deg . M .J . Bend 2 EA $500 .00 $1 ,000 41 12"x6" M .J . T ee 2 EA $550 .00 $1.100 42 1 O"x6 " M ,J. T ee P ;·1 ~c I u l ::· EA $500 00 $500 " . 43 6"x6" M.J. Tee EA $350 .00 $350 44 6"x3" M .J . Reducer EA $200 .00 $200 45 12"x10" M.J. Reducer 1 EA $450 .00 $450 46 2" Blowoff Assembly 2 EA $600 .00 $1 ,200 47 Fire Hydrant Assembly 3 EA $2 ,250 .00 $6,750 48 Fire Hydrant Vertical Extension 3 EA $250 .00 $750 49 Remove Blowoff -Tie-in to existing 12" line 1 EA $200 .00 $200 50 1.5" Short Se rv ice 7 EA $6 00.00 $4 ,200 51 1" Long Service 5 EA $600.00 $3,000 52 1.5" Long Service 2 EA $600.00 $1 ,200 53 Meter Boxes 25 EA $140 .00 ~3,500 Su btotal $92,970 Rock Excavati o n -Water line 54 Rock Excavation 2 ,000 LF /FT $5 .00 ~10,000 Subtotal $10,000 Items Not Included: Total Sitework $226,463 1. Phone and cable conduit Total Sto rm Drainage $14,171 2. Electrical distribution Total Detention Pond $20,573 3. Street lights Total Water $92,970 Total Rock Excavation $10 ,000 TOTAL CONSTRUCTION! $364,1761 Cost/Lot $14,567 Date: To: From: Subject: Remarks: TEX CON TRANSMITTAL June 27, 2005 Caro l Cotter Development Services City of College Station Joe Schultz, P .E. Texcon General Contractors 1707 Graham Road College Station, Texas 77845 Phone : (979) 764 -7743 R evised Construction Drawings Wi lli ams Creek Subdivision -Phase 4 College Station, Texas Attach ed are 4 sets of the rev ised Construction Drawings for the above- mentioned project, 2 copies of th e Engineer's Cost Estimate, and the information requested in the fo llo wing responses to yo ur comments dated June 17 , 2005. Please return the extra copies of approved constru ction drawings to us. Our responses to your comments are as follows: 1. What is the size/condition of the cul vert at Rock Prairie? It appears to b e a 24 " CMP plugged with silt. Can it handle flow from the 2-24" RCP out let? No, not in its current condition. 2. Provide HEC-1 runs. Th ey are attach ed to this resubmitted. 3. Re-title Sheet 1. Don e. 4 . Vertical curve in fom1a tion is miss ing from Sta 37+00: Th e missing information has bee n added to Sh ee t 2. Provide water d es ign report: 2 copies are attached to this resubmitta l. 5. Surface tr eatm ent for th e de tention pond b erm ? Grass. 6. Sewer minimum finished floor elevations ? Previous ly resub mi tt ed on the Final Plat. Let m e knovv if yo u nee d anything e lse o r hav e any qu es ti ons. Design Report Waterline Fire Flow Analysis for Williams Creek Subdivision -Phase 4 College Station, Texas June 2005 Prepared By: TEXCON General Contractors 1707 Graham Road College Station, Texas 77845 (979) 764-7743 \ " ) \ { '· .. 1.0 INTRODUCT l ON & DESCRIPTION The purpose of thi s repo rt is to pro v id e a descripti o n of th e proposed wate rlin es to be constructed with th e Williams Creek Subdivisio11, Phase 4, and to pro v id e th e res ult s of the analysis of the wate rlines under fire flow conditions. An existing Wellborn Special Utility District (SUD) 16" waterline is located along the north right-of-way of Greens Prairie Road adjacent to the project site. Wellborn SUD is th e water supplier for this subdivision. The waterline to supply the site connects to this 16 " waterline and was constructed with Pha ses 1 and 2 of the Subdivision . The waterlines for Pha se 4 will connect to th e 12 " lin e along Wi ll iams Creek Drive. The water main for the fire hydrant flow will be constructed using 12", 1 O" and 6" diameter pipe . The waterlines for this project will be constructed of DR-14, PVC pipe meeting the requirements of A WW A C-9 09 with m ec hanical joint fittings. 2.0 FIRE FLOW REQUIREMENTS The flow required for fire hydrant flow for the subdivision is 1,000 gallons per minute (gpm), for the fire hydrant proposed for this subdivision . 3.0 WATERLINE SYSTEM ANALYSIS The waterline system was analyzed using the WaterCAD computer program developed by Haestad Methods, Inc. Two computer models were run for this project. One model analyzes the flow in the 12" waterline along Williams Creek Drive from the connection with 16" waterline to the street intersection of Williams Creek Drive and Moses Creek Court and Joseph Creek Court in Phase 1 of the Subdivision . Ex hibit" l" is a sc hematic of this proposed waterline . The second mode l analyzes the flow in the water mains within Phase 4 of the Subdivision. Exhibit "5" is a schematic of th e proposed waterlines which shows the locations of the fire hydrants . A normal domestic use flow of 1.5 gpm was included in the analysis for each of the proposed 112 residential lots . This results in a normal demand of 168 gpm, which was included in the analysis . The residual pressure in the existing 16" waterline was determined by calculating the headloss at a flow of 1,667 gpm for the existing 16" line based on a fire hydrant flow te s t. Appendix A has data on the fire hydrant flow test on the ex is ting 16" water! ine . The test was perfom1ed by Wellborn SUD and City of College Station personnel. The static pressure in the l ine was 100 psi and there was a pressure drop of 13 psi at a flow of 1,3 50 gpm . The re s idual pressure at a flow of 1,6 67 gpm was c alcu lated us in g the following equation: Where : QR = Q available @ desired residual pressure QF = Q during fire flow test HR = pressure drop to desired residual press ure H F= pressure drop during fir e flow tes t This res ult s in a res idu a l press ure of 80.8 p s i wh e re the prop ose d wa te rlin e w ill co nn ec t to th e 16 " wa te rlin e . A co nse rva ti ve value of 65 ps i wa s used in thi s anal ys is. T he hydrauli c grade was se t at thi s press ure at the s tart of th e propo se d water lin e , .I un c ti o n R-1 , Ex hibit "l ". Th e mode l was run with a to ta l fl ow of 1,66 7 g prn . Ex hibit ''2" is a s umm ary of th e pip e sys te m junc ti o n nodes for thi s mod e l. Th e res idual press ur e a t .Jun c ti o n .1 -10 is 63 .3 ps i. Th is pr ess ur e was used a s the start o f the seco nd mod e l. .Jun c ti o n R-1 o n Exh ibit ")". Exhibits "3" and "4" are summaries of the pipe sectio ns for the system under thi s demand scenario. The maximum velocity for the 12" water main is 4 . 7 fps. The computer model was run with a fire flow of 1,000 gpm at the fire hydrant proposed for this project. Exhibit "6" is a s ummary of the pipe system junction nodes with a fire flow of 1,000 gpm from Fire Hydrant No. 3 . The low est resid ual pressure occurred in the system at Junction J-40, which is at the end of the proposed 3" lin e . The pressure at this point is estimated by the model to be 36.7 psi , which exceeds the minimum of 20 psi required by th e TCEQ regulations. Ex hibi ts "7" & "8" are summaries of the pipe sections for the system under thi s demand scenario. The maximum velocity for the l O", 6" and 3" water mains is 0 .2, 11.5, and 0.4 feet per second, respectively, occurring in Pipes P-24 thru P-27, P-35 thru P-40 , and P-41 thru P-42, respectively. A separate analysis was run for the domestic use of 1.5 gpm per unit for the entire s ubdi vision, and the minimum residual pressure was 45.4 psi , which exceeds the minimum pressure of 35 psi required by TCEQ . Minor losses in this system were not calculated, as they were assumed to be insignificant. 4.0 CONCLUSIONS The waterlines proposed for this development should adequately provide the fire flow required with acceptable values for headloss and velocity. This ana lysis was done assuming adequate residual pressure in the existing 16" water main, as determined by the fire hydrant flow test. Appendix A Fire Hydrant Flow Test Data .' --· Date : Location : Williams Creek Subdivision Flow Test Report Fire Hydrant on 16 " Wellborn SUD Waterline August 6, 2004 Approximately 1,750 ' east of Rock Prairie Road on the north s id e o f Greens Prairie Road Static Pressure* - l 00 psi *Air gauge on l" water service approximately 300' east of the Fire Hydrant Pitot Reading -65 psi 1,350 gpm Residual Pressure -87 psi Fire Hydrant opened by Wellborn SUD personnel. Flow Test and pressure readin gs performed by City of College Station personnel. Exhibits .I l ' / £-1:, ~\~.,.~ lb'' R -1 \J\h \1.. r \....: "" < P -1 J-1 P-2 Till e : Willi;;1111 s Cre<!k S ul><Jiv1 s 1on c :\1'1a es l <ld \w ll'C\t'.:O~~G · 12 111 w e <! J -2 Scenario: Base \Ne..\\"''" ~u-0 c. \ ...... ) C.:,cce.,. 5 (J ' . ro ~r'~ (l() .. J P -3 P -4 J -4 P-5 J-5 P -6 P -7 J-7 J-8 f I I "1'' ~ V\; I() i -\- TEXCON GENERAL CONTRACTORS ()710 l ill·1 II) :1-1 ;•:!. /\11.1 .:.-)I l;o (,,;1;·111 M c lil(l<I S . Inc 37 IJ1 0<1k ~~1 rfr~ Rr1 :-ul W ;tl<:fl1t1fy . C 1 Clf~/(l:! l t:?.I\ P-9 J-9 P-10 J -10 P ~el r>r o tpcl E n\Jll1CC< .IOE SC HUL r z W ;o l •:rC/\lJ v :\ I !'1 7 1<:1 I ',1qf : I 111 1 Node Elevation Demand Label (ft) Type J-1 242.00 demand J -2 236.00 de mand J -3 233.50 demand J-4 2 31 .00 demand J -5 229.00 demand J-6 226.00 demand J-7 235.00 demand J-8 230.00 demand J -9 220.00 demand J -10 234.00 demand T i lle : Willia1ns C reek Suhclivis ion ' '.l 1;:11·!s l <1d\wl,.c\e02fi· 12in wr:d Demand (gpm) 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 1,667.00 (I .~{/ l(~/().:I ng :~~1 ·;;~1 Atv1 (•) H ;11 ~~1 ::1fl l'vl1 ~l l1qd~. !tic Scenario: Base Steady State Analysis Junction Report Demand Calculated Hydraulic Pressure Pattern Demand Grade (psi) (gpm) (ft) Fixed 0 .00 390.4 0 64 .17 Fixed 0 .00 389.48 66.37 Fixed 0 .00 388.55 67 .05 Fixed 0 .00 387.81 67 .81 Fixed 0 .00 387 .00 68.32 Fixed 0 .00 385 .95 69.17 Fixed 0 .00 384 .37 64.59 Fixed 0 .00 383.51 66.38 Fixed 0 .00 382.59 70.31 Fixed 1,667.00 380.46 63 .34 ,, • f TEXCO NGENERALC ON TRACTOR S :~7 Hf t 1 ~1 k~;1d (: r ~(1 ;1 rl W ;11ed11 1rv . C I IH)/!ltl USA l -'<1>1,.•.I F llq 11 -.eer .JOE SC H UL r z W;111 o(C/\f"l ... :1 I 111 7 l(:j ,,,11 ;1 · 1 i·I I Link Length Diameter Material Label (ft) (in) P-1 318 .00 12 PVC P-2 183 .00 12 PVC P-3 183.00 12 PVC P-4 147 .00 12 PVC P-5 162 .00 12 PVC P-6 208.00 12 PVC P-7 313 .00 12 PVC P-8 171 .00 12 PVC P-9 182.00 12 PVC P-10 422 .00 12 PVC Titl e W1ll 1;.111 1s C ree k s ,1t 1rl1v 1s io 11 (~ •l1 ;1 !·~ . .1 ;1 1 fl.•::l ft :\(:ei :~(',. 1:·.,1 '.'.'(f l Roughnes~ Minor Los! 150 .0 0 .00 150.0 0 .00 150.0 0 .00 150.0 0 .00 150.0 0 .00 150.0 0 .00 150.0 0.00 150.0 0 .00 150.0 0 .00 150.0 0.00 n :->./ 1 r-·.,.().:1 1 ··:-1. ;~!., J 1 r. ~ .. 1 · .1 H :11. ·s t;.,, 1 11.'l f !1111 H !·: 11 •1 Scenario: Base Steady State Analysis Pipe Report Initial Current Discharge Start Status Status (gpm) Hydraulic Grade (ft) Open Open 1,667.00 392 .00 Open Open 1,667 .00 390.40 Open Open 1,667.00 389.48 Open Open 1,667.00 388 .55 Open Open 1,667 .00 387 .81 Open Open 1,667.00 387 .00 Open Open 1,667 .00 385 .95 Open Open 1,667 .00 384.37 Open Open 1,667.00 383 .51 Open Open 1,667.00 382 .59 cl '' F--r-h.:b:f-3 f FXC ('N G f N ER /\l. CONTRAC TO RS End Headless Friction Hydraulic (ft) Slope Grade (IV1000ft) (ft) 390.40 1.60 5 .04 389.48 0.92 5.04 388 .55 0 .92 5 .04 387 .81 0 .74 5 .04 387 .00 0 .82 5.04 385.95 1.05 5 .04 384 .37 1.58 5.04 383 .51 0 .86 5 .04 382 .59 0 .92 5 .04 380.46 2 .13 5 .04 l '•111t·~ 11 ~1 1 1 1 11 1 1 :,·r .IC)I SC I tl ll. I Z '" 11• .t /\{ I '. 1 '1II I 1 I I ' 111 4 I 1•1 I Analysis Results Scenario: Base Steady State Analysis Pipes @ 0.00 hr Label Status Constituent Flow Velocity From To Friction Minor Total Head loss (mg/I) (gpm) (fUs) Grade Grade Loss Loss Headloss Grad ient (ft) (ft) (ft) (ft) (ft) (fU1000ft) P-1 Open NIA 1,667 .00 4 .73 392 .00 390.40 1.60 0 .00 1.60 5.04 P-2 Open NIA 1,667.00 4 .73 390.40 389.48 0 .92 0 .00 0.92 5.04 P-3 Open NIA 1,667 .00 4.73 389.48 388 .55 0 .92 0.00 0 .92 5.04 P-4 Open NIA 1,667 .00 4 .73 388 .55 387 .81 0 .74 0 .00 0 .74 5 .04 P-5 Open NIA 1,667 .00 4 .73 387 .81 387 .00 0 .82 0.00 0.82 5 .04 P-6 Open NIA 1,667 .00 4 .73 387 .00 385 .95 1.05 0 .00 1.05 5 .04 P-7 Open NIA 1,667 .00 4 .73 385 .95 384 .37 1.58 0 .00 1.58 5.04 P-8 Open NIA 1,667.00 4 .73 384 .37 383.51 0 .86 0 .00 0.86 5 .04 P -9 Open NIA 1,667.00 4 .73 383 .51 382 .59 0 .92 0 .00 0 .92 5.04 P-10 Open NIA 1,667.00 4.73 382 .59 380.46 2 .13 0 .00 2 .13 5.04 • I 11 G~h :L :+ 4- I FXCO N GE N E R A L C:O NTR A C T C>H S 1·.,,,, .... Label Elevation Zone Type Base Flow (ft) (gpm) J-1 235.00 Zone Demand 0 .00 J-2 238.00 Zone Demand 0 .00 J-3 240.00 Zone Demand 0 .00 J-4 242 .00 Zone Demand 0 .00 J-5 244.00 Zone Demand 0 .00 J-6 246.00 Zone Demand 0 .00 J-7 251 .00 Zone Demand 24.00 J-8 260 .00 Zone Demand 0 .00 J-9 262.00 Zone Demand 0.00 J-10 266.00 Zone Demand 0 .00 J-11 272.00 Zone Demand 0 .00 J-12 272.00 Zone Demand 24 .00 J-13 274.00 Zone Demand 0.00 J-14 275.00 Zone Demand 0 .00 J-15 275.00 Zone Demand 0 .00 J-16 275.00 Zone Demand 0.00 J-17 274.00 Zone Demand 0 .00 J-18 274 .00 Zone Demand 24 .00 J-19 270 .00 Zone Demand 24.00 J-20 268.00 Zone Demand 0 .00 J-21 269.00 Zone Demand 0.00 J-22 269.00 Zone Demand 0 .00 J-23 273 .00 Zone Demand 21 .00 J-24 270 .00 Zone Demand 0.00 J-25 269.00 Zone Demand 0 .00 J-26 268.00 Zone Demand 0 .00 J-27 267 .00 Zone Demand 21 .00 J-28 265.00 Zone Demand 0 .00 J-29 263.00 Zone Demand 0 .00 J-30 261.00 Zone Demand 0 .00 J-31 259.00 Zone Demand 0 .00 J-32 257 .00 Zone Demand 0 .00 J-33 254 .00 Zone Demand 0 .00 J-34 248.00 Zone Demand 0 .00 J-35 224 .00 Zone Demand 21 .00 J-36 269.00 Zone Demand 0 .00 J-37 269.00 Zone Demand 0 .00 J-38 268.00 Zone Demand 0 .00 J-39 268.00 Zone Demand 0 .00 J-40 268.00 Zone Demand 1 ,000 .00 J -41 252 .00 Zone Demand 0 .00 J-42 251 .00 Zone Demand 9 .00 Title : E '14 2 Williarn s Cree k Ph 4 Fixed Fixed Fixed Fixed Fixed Fixed Fi xed Fixed Fixed Fi xed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fi xed Fixed Fixed Fixed Fixed Fixed Fi xed Fixed Scenario: Base Steady State Analysis Junction Report Pattern Demand Calculated Calculated Hydraulic Grad (gpm) (ft) 0 .00 379.95 0 .00 379 .66 0 .00 379 .53 0 .00 379.42 0 .00 379.31 0 .00 379 .22 24.00 378.82 0 .00 378.27 0 .00 378.17 0 .00 377 .97 0.00 377 .80 24.00 377 .75 0 .00 377.42 0.00 377 .16 0 .00 377.08 0.00 376.88 0 .00 376.80 24 .00 376.68 24 .00 376.11 0 .00 375.94 0.00 375.79 0 .00 375.66 21 .00 375.04 0 .00 375.04 0 .00 375.04 0 .00 375.04 21.00 375.04 0 .00 375.04 0.00 375.04 0 .00 375.04 0 .00 375.04 0 .00 375.04 0 .00 375.04 0 .00 375.04 21 .00 375.04 0 .00 362.26 0.00 360.81 0 .00 357 .40 0 .00 354 .80 1,000 .00 352 .83 0 .00 352.72 9 .00 352.71 Pressure e (psi) 62.71 61 .29 60.37 59.45 58 .54 57.64 55.30 51 .17 50 .26 48.45 45.77 45.75 44 .75 44 .20 44 .17 44 .08 44.48 44.42 45.91 46.70 46.20 46.15 44 .15 45.45 45.88 46.31 46.74 47 .61 48.47 49.34 50 .20 51 .07 52 .37 54 .96 65.35 40.35 39.72 38.68 37 .55 ~ 43.58 44 .01 P roJCC I E n 9 111 e~" Joe Scl11ilt 2 ~1 \ '.e 1 .:1 2 ff ;~na l y s i~; ... P11 4-re po rl.wccl Tex con Gcne r ;i l Co11lr;tc:l ors W;1t1•r(:t\D v" :, I'~!) J:~(l 1J OC/2.'.I /()~; 0 ·~·2G 5 1 PM '1~>H aes l a cl M E~lll oc l s.111 c :~? D ro<)k ~i cle R o;HI \fJ;ll t ~rl )1wy . Cl (Hi70H U SA .. 1 ·~'((~-7 !°">:,-l'i'~'i P r 1 ~ic I o l I Label Length Diameter Material Hazen-Check (ft) (in) Williams Valve? c P-1 20 .00 12 .0 PVC 150.0 false P-2 112 .00 12 .0 PVC 150.0 false P-3 49 .00 12 .0 PVC 150.0 false P-4 44 .00 12 .0 PVC 150 .0 false P-5 42.00 12.0 PVC 150.0 false P-6 32 .00 12.0 PVC 150 .0 false P-7 156.00 12.0 PVC 150.0 false P-8 222 .00 12.0 PVC 150.0 false P-9 37 .00 12.0 PVC 150 .0 false P-10 80.00 12.0 PVC 150.0 false P-11 70 .00 12.0 PVC 150.0 false P-12 22 .00 12.0 PVC 150.0 false P-13 134.00 12 .0 PVC 150 .0 false P-14 112.00 12 .0 PVC 150.0 false P-15 31 .00 12 .0 PVC 150 .0 false P-16 85 .00 12 .0 PVC 150.0 false P-17 33.00 12.0 PVC 150.0 false P-18 51 .00 12 .0 PVC 150.0 false P-19 247 .00 12.0 PVC 150.0 false P-20 73 .00 12 .0 PVC 150.0 false P-21 69 .00 12.0 PVC 150.0 false P-22 58 .00 12 .0 PVC 150.0 false P-23 280.00 12 .0 PVC 150.0 false P-24 325 .00 10 .0 PVC 150.0 false P-25 51 .00 10 .0 PVC 150.0 false P-26 33 .00 10 .0 PVC 150.0 false P-27 47 .00 10 .0 PVC 150.0 false P-28 37.00 10 .0 PVC 150.0 false P-29 30 .00 10 .0 PVC 150.0 false P-30 41 .00 10 .0 PVC 150.0 false P-31 34 .00 10.0 PVC 150.0 false P-32 40.00 10 .0 PVC 150.0 false P-33 3 1.00 10.0 PVC 150.0 false P-34 117 .00 10.0 PVC 150.0 false P-35 413 .00 10.0 PVC 150.0 fal se P-36 221 .00 6.0 PVC 150.0 false P-37 25 .00 6 .0 PVC 150.0 false P-38 59 .00 6.0 PVC 150.0 false P-39 45 .00 6 .0 PVC 150.0 false P-40 34 .00 6 .0 PVC 150.0 fal se P-41 408 .00 3 .0 PVC 150.0 fal se P-42 21 .00 3.0 PVC 150.0 false Ti l le : E 14 2 W 1lli ;11 n s C ree k P ll d q \ . I {! 1,1 ;'.'.11 ~111 ~ tl y~·.1 ~:;_ I i1 1 .. 1 -fl 'Pl 11 I '."!( d Scenario: Base Steady State Analysis Pipe Report Minor Control Pischarg( pstream Struch..li Loss Status (gpm) Hydraulic Grade :Coefficien (ft) 0 .00 Open 1,168.00 380 .00 0 .00 Open 1 ,168.00 379 .95 0 .00 Open 1 ,168.00 379 .66 0.00 Open 1 ,168.00 379.53 0 .00 Open 1 ,168.00 379.42 0.00 Open 1, 168.00 379 .31 0.00 Open 1 ,168.00 379 .22 0 .00 Open 1,144.00 378 .82 0.00 Open 1,144.00 378 .27 0 .00 Open 1,144 .00 378 .17 0.00 Open 1,144.00 377 .97 0 .00 Open 1,144 .00 377 .80 0 .00 Open 1,120.00 377 .75 0 .00 Open 1 ,120.00 377.42 0 .00 Open 1 ,120 .00 377 .16 0 .00 Open 1,120.00 377 .08 0 .00 Open 1 ,120 .00 376.88 0 .00 Open 1 ,120.00 376 .80 0 .00 Open 1 ,096 .00 376 .68 0 .00 Open 1 ,072.00 376 .11 0 .00 Open 1 ,072 .00 375 .94 0 .00 Open 1 ,072.00 375 .79 0 .00 Open 1 ,072.00 375.66 0 .00 Open 42.00 375 .04 0 .00 Open 42.00 375 .04 0 .00 Open 42.00 375 .04 0 .00 Open 42.00 375 .04 0 .00 Open 21 .00 375 .04 0 .00 Open 21.00 375.04 0 .00 Open 21 .00 375.04 0 .00 Open 21 .00 375 .04 0 .00 Open 21.00 375 .04 0 .00 Open 21 .00 375 .04 0 .00 Open 21 .00 375 .04 0 .00 Open 2 1 .00 375 .04 0 .00 Open 1,009.00 375 .04 0 00 Open 1 ,009.00 362 .26 0 .00 Open 1 ,009.00 36 0 .81 0 .00 Open 1 ,009.00 357.40 0 .00 Open 1 ,009 .00 354 .80 0 00 Open 9 .00 352 .83 0 .00 Open 9 .00 352 .72 lflwn s tream Structu E'ress ure Headloss Hydraulic Gra de Pipe Gradient (ft) Headlos ~ (fU1000ft) (ft) 379 .95 0 .05 2 .59 379.66 0 .29 2 .59 379.53 0 .13 2 .59 379.42 0 .11 2 .59 379 .31 0 .11 2 .59 379 .22 0 .08 2 .59 378 .82 0.40 2.59 378 .2 7 0 .55 2.49 378 .17 0 .09 2 .50 377.97 0.20 2.49 377 .80 0 .17 2.49 377 .75 0 .05 2.49 377.42 0 .32 2.40 377.16 0 .27 2.40 377 .08 0 .07 2 .40 376 .88 0 .20 2.40 376.80 0 .08 2.40 376.68 0 .12 2.40 376 .11 0 .57 2 .30 375.94 0.16 2 .21 375 .79 0 .15 2 .21 375 .66 0 .13 2 .21 375 .04 0 .62 2 .21 375 .04 0 .00 0 .01 375 .04 0 .00 0.01 375 .04 0 .00 0 .01 375.04 0.00 0.01 375.04 0 .00 0 .00 375.04 0.00 0 .00 375 .04 0 .00 0.00 375.04 0 .00 0 .00 375.04 0.00 0 .00 375.04 0.00 0 .00 375.04 0 .00 0 .00 375 .04 0 .00 0.00 362.26 12 .79 57.85 360.81 1.45 57 .85 357 .40 3.41 57 .85 354 .80 2 .60 57 .85 352 .83 1 .97 57 .85 352 .72 0 .11 0.27 352.7 1 0 .01 0.27 Pr•1 1 1~<:1 E 111 11 tH !'!' .IC lf~ Scl 1111 17 l e x c nn G ene 1 ;:ii C o 1tt r ;H :t oi s. '.11.'. 11 1 "1 : r.r 1 '."; '.·, l (i :i I :-'OJI ... !l 1 •l'1~·.11J 1 :f ~(1 ;)1 ! VV;1 l t ·1l11 1f';' <~11 11 1 /!JH LJ~;,'\ t J-~·11.·~ /'.',.J .,.,;; r·,i~n · 1 1 11 1 Analysis Results Scenario: Base Steady State Analysis Title : E142 Williams Creek Ph 4 Project Engineer: Joe Schultz Project Date : 05/24/05 03 :36 : 18 PM Comments : Scenario Summary Scenario Base Active Topology Alternative Base-Active Topology Physical Alternative Demand Alternative Initial Settings Alternative Operational Alternative Age Alternative Constituent Alternative Trace Alternative Fire Flow Alternative Capital Cost Alternative Energy Cost Alternative User Data Alternative Liquid Characteristics Base-Physical Base-Demand Base-Initial Settings Base-Operational Base-Age Alternative Base-Constituent Base-Trace Alternative Base-Fire Flow Base-Capital Cost Base-Energy Cost Base-User Data Liquid Kinematic Viscosity Water at 20C(68F) 1.0804e-5 ft2/s Specific Gravity Network Inventory Pressure Pipes 42 Number of Reservoirs Number of Pressure Junctic 42 Number of Pumps -Constant Power: -One Point (Design Point): -Standard (3 Point): -Standard Extended : -Custom Extended: -Multiple Point: Number of Spot Elevations Pressure Pipes Inventory 3.0 in 6 .0 in Total Length 0 0 0 0 0 0 0 0 429.00 ft 384 .00 ft 4 ,071 .00 ft Number of Tanks -Constant Area : -Variable Area : Number of Valves -FCV's : -PBV's : -PRV's : -PSV's: -TCV's : -GPV's : 10.0 in 12 .0 in Pressure Pipes @ 0 .00 hr 0 0 0 0 0 0 0 0 0 0 1.00 1 , 199.00 ft 2,059 .00 ft Label ControOischargeVelocit\l)pstream StrucfDrnvnstream StructtJDalculatec:CalculatecPressun:Headloss Sta tu s (gpm) (fUs) Hydraulic Grade H ydraulic Grade Friction Minor Pipe Grad ie nt (ft) (ft) He ad loss HeadlossH e adlos~fU1 OOOfl) (fl) (fl) (fl) P-1 Open 1,168.00 3 .31 380 .00 379 .9 5 0 .05 0 .00 0 .05 2 .59 P-2 Open 1,168 .00 3 .3 1 379 .95 379 .66 0 .29 0 .00 0 .29 2 .59 P-3 Open 1,168 .00 3 .3 1 379 .66 379 .53 0 .13 0 .00 0 .13 2 .59 P-4 O pe n 1,168.00 3 .31 379 .53 379 .4 2 0 .11 0 .00 0 .11 2 .59 P-5 Ope n 1,168 .00 3 .3 1 379 .4 2 379 .3 1 0 .11 0 00 0 .11 2.59 T ille : E 14 2 W illi am s C re e k Ph 4 P 1o ier:1 En ~J11 •ec r J oe S c l 1u l l z q:\ ... \e 1 ·l2 t f;-1n ;11 ysis __ ph4 -re 1>o rt .w 1'.t.1 Tex con Ge n e ral Con tr ac to 1 s l.'Vc l!<•1 C/\D v(i :, 11 :; '.i 1 l-CIJI (l(i/~'.'1 /0~·, (Jd .:~tt ~i (i Pf\.1 1 ~;· H ;:1 e~:.t.l d flv 1<:11 1t.11ls hu : :·:/ H1P'l~~;11lc f ~n;.1d W;1l(:rl 1ur y. C T ()G/ng US/\ • 1-;,.(l:~-,·:,~,.11 ! 1 ) ~1.111 1 · I n f / Analysis Results Scenario: Base Steady State Analysis Pressure Pipes @ 0.00 hr Label ControOischargeVelocit\l)pstream Struc()cevnstream StructiJ?elculatecCalculatecPressunHeadloss Status (gpm) (fUs) Hydraulic Grade Hydraulic Grade Friction Minor Pipe Gradient P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 P-14 P-15 P-16 P-17 P-18 P-19 P-20 P-21 P-22 P-23 P-24 P-25 P-26 P-27 P-28 P-29 P-30 P-31 P-32 P-33 P-34 P-35 P-36 P-37 P-38 P-39 P-40 P-41 P-42 Open 1, 168.00 Open 1,168 .00 Open 1,144 .00 Open 1, 144 .00 Open 1,144 .00 Open 1,144 .00 Open 1,144.00 Open 1,120.00 Open 1,120.00 Open 1,120.00 Open 1,120.00 Open 1,120.00 Open 1,120.00 Open 1,096 .00 Open 1,072 .00 Open 1,072 .00 Open 1,072 .00 Open 1,072 .00 Open 42 .00 Open 42 .00 Open 42 .00 3 .31 3 .31 3.25 3.25 3 .25 3.25 3 .25 3.18 3 .18 3 .18 3.18 3 .18 3 .18 3 .11 3.04 3 .04 3 .04 3 .04 0.17 0 .17 0 .17 Open Open Open Open Open 42.00 0.17 21 .00 0 .09 21 .00 0 .09 21.00 0 .09 21 .00 0 .09 Open 21 .00 Open 21.00 Open 21 .00 Open 21 .00 Open 1,009.00 Open 1,009.00 Open 1,009 .00 Open 1,009.00 Open 1,009 .00 Open 9 .00 Open 9 .00 0 .09 0.09 0 .09 0 .09 11.45 11.45 11.45 11.45 11.45 0 .41 0.41 Ti tl e : E 14 2 Will i<llTIS C r eek Ph 4 (ft) (fl) Head loss HeadlossHeadlos~fU1 OOOft) 379 .31 379 .22 378 .82 378.27 378 .17 377 .97 377 .80 377 .75 377.42 377 .16 377 .08 376 .88 376 .80 376.68 376 .11 375 .94 375 .79 375 .66 375 .04 375 .04 375 .04 375 .04 375 .04 375.04 375 .04 375 .04 375.04 375 .04 375.04 375.04 375 .04 362 .26 360 .81 357.40 354 .80 352 .83 352 .72 379 .22 378 .82 378.27 378.17 377.97 377 .80 377 .75 377.42 377 .16 377.08 376 .88 376 .80 376 .68 376 .11 375.94 375 .79 375.66 375.04 375.04 375 .04 375.04 375.04 375 .04 375.04 375.04 375 .04 375.04 375.04 375 .04 375 .04 362.26 360.81 357.40 354 .80 352 .83 352 .72 352 .71 (ft) (ft) (ft) 0 .08 0 .40 0 .55 0 .09 0 .20 0 .17 0 .05 0 .32 0 .27 0 .07 0 .20 0 .08 0 .12 0 .57 0.16 0 .15 0.13 0 .62 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 12.79 1.45 3.41 2 .60 1.97 0 .11 0 .01 0 .00 0 .00 0.00 0 .00 0.00 0.00 0 .00 0.00 0 .00 0.00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .08 0.40 0 .55 0 .09 0 .20 0 .17 0 .05 0 .32 0 .27 0 .07 0 .20 0 .08 0 .12 0 .57 0 .16 0 .15 0 .13 0 .62 0 .00 0 .00 0 .00 2 .59 2 .59 2.49 2 .50 2.49 2.49 2.49 2.40 2.40 2.40 2.40 2.40 2.40 2.30 2 .21 2 .21 2.21 2 .21 0 .01 0.01 0 .01 0.00 0.00 0 .01 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 0.00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 12.79 57 .85 1.45 57 .85 3.41 57 .85 2 .60 57 .85 1.97 57 .85 0 .11 0 .27 0 .01 0 .27 ~r\. \e 1.:i::·ff 0:lnalys is .. J ''''1 ~r~~t'<1rl .'.vc<I T cxcon Ge n er~I Con 1r c1c l ors 06/~'.·'.l /('I~~ f~.J 3·'.l .'~6 F11\•1 · -, ~i~1 l::-:;t ;1cl l '.1l c ll1<><I ~. Inc . 37 H11 ·1(.i k s 111l? F~o;=11I W<1 l erlu1 1y . C 'l CHiTO~; u~;,1\ Projec l Enq ineer : Joe S c huliz W:1 1"' CAD ,-r; '.; I G.'."i 120 jl • Label Elevation Zone Type Base Flow (ft) (gpm) J-1 235 .00 Zone Demand 0 .00 J-2 238.00 Zone Demand 0 .00 J-3 240 .00 Zone Demand 0 .00 J-4 242 .00 Zone Demand 0 .00 J-5 244 .00 Zone Demand 0 .00 J-6 246.00 Zone Demand 0 .00 J-7 251 .00 Zone Demand 24 .00 J-8 260.00 Zone Demand 0.00 J-9 262 .00 Zone Demand 0 .00 J-10 266.00 Zone Demand 0 .00 J-11 272.00 Zone Demand 0.00 J-12 272.00 Zone Demand 24.00 J-13 274 .00 Zone Demand 0 .00 J-14 275.00 Zone Demand 0 .00 J -15 275.00 Zone Demand 0 .00 J-16 275.00 Zone Demand 0 .00 J-17 274 .00 Zone Demand 0 .00 J-18 274.00 Zone Demand 24.00 J-19 270.00 Zone Demand 24.00 J-20 268.00 Zone Demand 0 .00 J-21 269.00 Zone Demand 0 .00 J-22 269.00 Zone Demand 0 .00 J-23 273.00 Zone Demand 21.00 J-24 270.00 Zone Demand o.ao J-25 269.00 Zone Demand 0 .00 J-26 268.00 Zone Demand 0 .00 J-27 267 .00 Zone Demand 21 .00 J-28 265 .00 Zone Demand 0 .00 J-29 263.00 Zone Demand 0 .00 J-30 261 .00 Zone Demand 0 .00 J-31 259.00 Zone Demand 0 .00 J-32 257.00 Zone Demand 0 .00 J-33 254 .00 Zone Demand 0 .00 J-34 248.00 Zone Demand 0 .00 J-35 224 .00 Zone Demand 21 .00 J-36 269.00 Zone Demand 0 00 J-37 269.00 Zone Demand 0 .00 J -38 268.00 Zone Demand 0 .00 J-39 268.00 Zone Demand 0 .00 J-40 268 .00 Zone Demand 0 .00 J-41 252.00 Zone Demand 0 .00 J-42 251 .00 Zone Demand 9 .00 T i ll e : E ·14 2 Wi llia m s Creek P l1 4 ~/.\ \e 1·1 ?fL :1n;-1l ysi~; 1 1 l1 :l -H'~11.,•(f w1:,I ()l)<:'•l l OS 1).1 ~'.t-L()l , .. 1 (1,.I I l ;u •:.l.td (1.,1•·11H1d~: 1111 Fixed Fi xed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fi xed Fixed Fixed Fixed Fixed Fixed Fi xe d Fi xe d Fixed Fixed Fi xed Fixed Fixed Fixed Fi xed Fi xe d Fixed Fi xe d Fi xe d Fi xe d Fi xe d Fi xe d Fi xed Fi xe d Fi xe d Fixed Fixed Fixed Scenario: Base Steady State Analysis Junction Report Pattern Demand Calculated Calculated rlydraulic Grad (gpm) (ft) 0 .00 380 .00 0 .00 379.99 0.00 379.99 0 .00 379.98 0 .00 379.98 0 .00 379.98 24 .00 379.97 0 .00 379.96 0 .00 379.95 0 .00 379.95 0 .00 379 .95 24 .00 379.94 0 .00 379.94 0 .00 379.93 0 .00 379.93 0 .00 379.93 0 .00 379.93 24.00 379.93 24 .00 379.92 0 .00 379.92 0 .00 379.92 0 .00 379.92 21 .00 379.91 0 .00 379.91 0.00 379.91 0 .00 379.91 21 .00 379.91 0 .00 379.91 0 .00 379.91 0.00 379.91 0 .00 379.91 0 .00 379.91 0.00 379.91 0 .00 379.91 21 .00 379.91 0 .00 379 .91 0.00 379 .91 0 .00 379 .91 0 .00 379.91 0 .00 379.91 0 .00 379.80 9 .00 379.79 Pressure l (psi) 62 .73 61.43 60.57 59.70 58.83 57 .97 55.80 51 .90 51 .03 49.30 46.70 46.70 45.83 -45.40 45.40 45.40 ,.__ 45.83 45.83 47.56 48.42 47.99 47 .99 46 .26 47.55 47.98 48.42 48.85 49.72 50 .58 51.45 52.31 53 .18 54.47 57 .07 67.45 47 .99 47 .99 48.42 48.42 48.42 55.29 55.72 Prc111 ·c l E r 1q111('P1 ./ne Schull z T cxco n Gencr~11 Cont1 c1c t o r s '/J;ll1 •1C 1\f) vi; r; JI ' :,1~:<'11 :.· 1 -~·· ( ~~;1 rk 1 1~~1;11! IN~tl(•1I J1 1ry . c ·1 ,,,;7f1h tJ~~f. . I .'t.J:i-1''.:r,_11.1,1·. 1';1·1~· I {d I Design Report Waterline Fire Flow Analysis for Williams Creek Subdivision -Phase 4 College Station, Texas June 2005 Prepared By: TEXCON General Contractors 1707 Graham Road College Station, Texas 77845 (979) 764-7743 1.0 INTRODUCTION & DESCRIPTION The purpose o f thi s re po rt is to pro vid e a d esc ripti o n of th e proposed wa ter lin e s to be co nstructed with th e Williams Creek Subdivision , Phase 4, and to pro vid e th e results of th e analysis of th e waterlines under fir e fl ow conditions. An ex istin g We llborn Special Utility Distri c t (SU D) 16 " waterline is locate d along th e no rth ri g ht-of-way of Greens Prairie Road adjacent to the proje c t site . Wellborn SU D is th e wa te r s uppli e r for thi s subdivision. The waterline to supply th e s ite connects to this 16 " water! in e and was co nstr uc te d w ith Ph ases I and 2 of the Subdivi s ion . The waterlines for Pha se 4 will connect to th e 12" lin e along Williams Creek Drive . The water main for the fire hydrant flow will b e constructed us in g 12 ", 10 " and 6" diameter pipe. The waterlines fo r thi s proj ect w ill be co nstru c ted of DR-14" PVC pipe meeting the requirements of A WW A C-909 with mechanical joint fittings. 2.0 FIRE FLOW REQUIREMENTS The flow required for fire hydrant flow for the subdivision is 1,000 gallons per minute (gpm), for the fire hydrant proposed for this subdivision. 3.0 WATERLINE SYSTEM ANALYSIS The waterline system was analyzed u si ng th e WaterCAD co mputer prog ram deve lop e d by Haestad Methods, Inc . Two computer models were nm for thi s project. One mode l analyzes the flow in the 12" waterline along Williams Creek Drive from the connection with 16 " waterline to the street intersection of Williams Creek Dri ve and Moses C reek Court and Joseph Creek Court in Phase 1 of th e Subdivision . Exhibit " l" is a schematic of thi s proposed waterline . The second model anal yzes th e flo w in the water mains within Phase 4 of the Subdivision . Exhibit "5" is a schematic of the proposed waterlines w hich shows the locations of the fire hydrants. A normal domestic use flow of 1.5 gpm was included in the analysis for each of the proposed 112 residential lots . This results in a normal demand of 168 gpm, which was included in the anal ys is . The residual pressure in the existing 16" waterline was dete rmined by calculating the headloss at a flow of 1,667 gpm for the existing 16" line based on a fire hydrant flow test. Appendix A has data on the fire hydrant flow te s t on the existing 16 " waterline. The test was performed by Wellborn SUD and City of College Station p e rsonne l. The static pres s ure in the line was 100 psi and the re was a press ure drop of 13 p s i at a flo w of 1,350 gpm . The residual pressure at a flow of 1,667 gpm was ca lculated us ing th e following e quation : Where: QR = Q available @ des ir ed residual press ure QF = Q durin g fir e fl ow test H R= pressure drop to des ir ed residual pressure H r= pressure drop durin g fire flow test Thi s res ults in a res idual pressure of 80 .8 ps i where th e propo se d waterli ne w ill co nn ec t lo th e 16 " wate rlin e. A co n se rva ti ve va lu e of 65 ps i was used in thi s a na lys is. T he hydra uli c g rade was se t at thi s pressure a t th e s tart of th e proposed wate rlin e, Jun ct io n R-1 , Ex hibit "I ". T he m ode l was run w ith a tota l fl ow of 1,667 g prn . Ex hibit "2 " is a s umm ary of the pip e sys te m junction nodes fo r thi s mod e l. Th e res idu a l pre ss ur e a l .I un c tion .J -10 is 63.3 ps i. Thi s p res s ur e wa s use d a s th e s ta rt o f th e sec o nd mod e l . .I un c ti o n R-1 o n Ex hi b it "5 "". Exhibits "3" and "4" are summaries of the pipe sec tions for the system und e r thi s demand scenario . The maximum velocity for the 12" water main is 4 .7 fps. The computer model was run with a fir e flow of 1,000 gpm at the fire hydrant proposed for this project. Exhibit "6" is a summary of the pipe system junction nodes with a fire flow of 1,000 gpm from Fire Hydrant No . 3 . The lowe st residual pressure occurred in the system at Junction J-40, which is at the end of the proposed 3" line . The pressure at this point is estimated by the model to be 36 .7 psi, which exceeds the minimum of 20 psi require d by th e TCEQ regulations . Exhibits "7" & "8" are summaries of the pipe sec tions for the system under this d e mand scenario . The maximum velocity for the 10", 6" and 3" water mains is 0 .2, 11.5 , and 0.4 feet per second, respectively , occurring in Pipes P-24 thru P-27 , P-35 thru P-40 , and P-41 thru P-42, respectively. A separate analysis was run for the domestic use of 1.5 gpm per unit for the entire subdivision, and the minimum residual pressure was 45.4 psi, which exceeds the minimum pressure of 35 psi required by TCEQ . Minor los ses in this system were not calculated , as they were assumed to be insignificant. 4.0 CONCLUSIONS The waterlines proposed for this development should adequately provide the fire flow required with acceptable values for headloss and velocity. This analysis was done assuming adequate residual pressure in the existing 16" water main, as determined by the fire hydrant flow test. Appendix A Fire Hydrant Flow Test Data Date: Location: Williams Creek Subdivision Flow Test Report Fire Hydrant on 16" Wellborn SUD Waterline August 6 , 2004 Approximately l,750' east of Rock Prairie Road on the north side of Greens Prairie Road Static Pressure* - l 00 psi *Air gauge on l" water service approximately 300' east of the Fire Hydrant Pitot Reading -65 psi l,350 gpm Residual Pressure -87 psi Fire Hydrant opened by Wellborn SUD personnel. Flow Test and pressure readings performed by City of College Station personnel. Exhibits .. 1 I ' / \ b'' R-1 W r.~r \....: "'' P-1 J-1 P-2 Till e : Willi<1111 s Coeek Sulxfivi s oon c :\h aes t .:•c1\wtfc\(:0~~G · 12 i11 .wcct J-2 Scenario: Base We.\\\,,,"' ~\).\) ~\'"') G,cce .. 5 Pro~r:~ <L~ .. J P -3 P-i J-4 P-5 J -5 p~ J-7 P-8 J -8 .. ,, fk:~;lo;+ I TEXCON GENERAL CONTR A CTORS ()7/()111).1 11) :H ~'/ /\M ·:'.) H ;lf,,;l ;·l(f M o:llo<t<I S . Inc :i 7 U11 •f•k ·~11l1~ nr1;111 W;·11r'.dH1fy . c 1 (!(~/(I :~ l I!?:/\ P-9 J -9 P-10 J -10 Pr<tff'<:I E n911lC )Cr .IOE SC I l lll. f l W ;1l1 :1C /\IJ v :I I I"' Ir:) l'.1Clf' I 11 1 I Node Elevation Demand Label (ft) Type J -1 242 .00 demand J -2 236.00 demand J -3 233 .50 demand J-4 231.00 demand J -5 229.00 demand J -6 226.00 demand J -7 235.00 demand J-8 230.00 demand J-9 220 .00 demand J -10 234 .00 demand T ill e : Willic:i1 n s C ree k Sutxli vis io1 1 1 •.1i ;:1i:?~::t c:1 d \w ti c\e 0 2f'i -1 :?.in w e d Demand (gpm) 0 .00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 1,667.00 Scenario: Base Steady State Analysis Junction Report Demand Calculatec Hydraulic Pressure Pattern Demand Grade (ps i ) (gpm) (ft) Fixed 0 .00 390.40 64 .17 Fixed 0.00 389.48 66.37 Fixed 0 .00 388.55 67 .05 Fixed 0 .00 387 .81 67.81 Fixed 0 .00 387 .00 68.32 Fixed 0.00 385.95 69.17 Fixed 0 .00 384 .37 64 .59 Fixed 0 .00 383.51 66.38 Fixed 0 .00 382.59 70.31 Fixed 1 ,667.00 380.46 63.34 T EXCON GE N EJV\l. CON TR A C T ORS l "''l"i:I F<1q u 1ee r .JOI:' SC l!UI I L \j\/;ij('(C /\fl ·::\I 111; 1<.I I ', H ;•. I , .1 , Link Length D iamete1 Material Roughnes~ f\i1inor Los~ Label (ft) (in) P-1 318 .00 12 PVC 150.0 0 .00 P-2 183 .00 12 PVC 150.0 0 .00 P-3 183 .00 12 PVC 150.0 0 .00 P-4 147 .00 12 PVC 150 .0 0 .00 P-5 162 .00 12 PVC 150.0 0 .00 P-6 208 .00 12 PVC 150 .0 0 .00 P-7 3 13 .00 12 PVC 150.0 0 .00 P-8 171 .00 12 PVC 150.0 0 .00 P-9 182.00 12 PVC 150.0 0 .00 P-10 422 .00 12 PVC 150.0 0 .00 f ::. 1 1; t ! :~··'· 11 11 .. ::H 1 :'.( :o ::"~-1 ; '11 1 •::r 1 l Scenario: Base Steady State Analysis Pipe Report Initial Current Discharge Start Status Status (gpm) Hydraulic Grade (ft) Open Open 1,667 .00 392.00 Open Open 1,667 .00 390.40 Open Open 1,667 .00 389.48 Open Open 1,667 .00 388 .55 Open Open 1,667 .00 387 .81 Open Open 1,667 .00 387 .00 Open Open 1,667 .00 385 .95 Open Open 1,667.00 384 .37 Open Open 1,667 .00 383 .51 Open Open 1,667 .00 382 .59 TF:><C C'N G E Nl:RA L. CO N T R AC T ORS End Head loss Friction Hydraulic (ft) Slope Grade (ft/1 OOOft) (ft) 390.40 1 .60 5 .04 389.48 0 .92 5 .04 388 .55 0 .92 5.04 387 .81 0 .74 5 .04 387 .00 0 .82 5.04 385 .95 1.05 5 .04 384 .37 1.58 5.04 383 .51 0 .86 5 .04 382 .59 0 .92 5 .04 380.46 2 .13 5 .04 (1~>./11 ··,,.(1..1 ,·,:··. /~'~~I f,H '1 H ;1,·"-;!;11! l1.'1 1 ~ll 11 H I ·-~. 11 11 ./ I S1•" .V ·.11 11 • l~1 );:1r! VV;ll1 •1l 1111 y l , I :i;,/.H : 1 1~-;.\ 1:•P :S1 /~·.1 •• I •,•··· ''.'. 11• r' · .'\[ I ~ I ;r t/" I 1 I l '.11 1i · I t •I I Label Status Constituent (mgll) P-1 Open N/A P-2 Open N/A P-3 Open N/A P-4 Open N/A P-5 Open N/A P-6 Open N/A P-7 Open N/A P-8 Open NIA P-9 Open N/A P-10 Open N/A Till e : W i lli <~n 1 ~ C reek S ul:>cl iv is 1n n c: '.t )a e~;l i 1 ~h w li•:·!:n:/(i .1 2 1n w c r l Flow {gpm} 1,667.00 1,667.00 1,667 .00 1,667.00 1,667.00 1,667.00 1,667 .00 1,667.00 1,667.00 1,667 .00 Analysis Resu l ts Scenario: Base Steady State Analysis Pipes @ 0.00 hr Velocity From To Friction Mi nor Total Head loss (fVs) Grade Grade Loss Loss Headloss Grad ient (ft) (ft) (ft) (ft) (ft) (fV1000ft) 4 .73 392 .00 390.40 1.60 0 .00 1.60 5.04 4 .73 390.40 389.48 0 .92 0 .00 0 .92 5 .04 4 .73 389 .48 388.55 0 .92 0 .00 0 .92 5.04 4 .73 388 .55 387 .81 0 .74 0 .00 0 .74 5.04 4 .73 387 .81 387 .00 0 .82 0 .00 0 .82 5 .04 4 .73 387 .00 385 .95 1.05 0 .00 1.05 5 .04 4 .73 385.95 384 .37 1.58 0 .00 1.58 5.04 4 .73 384 .37 383 .5 1 0.86 0 .00 0 .86 5 .04 4 .73 383.51 382 .59 0.92 0 .00 0 .92 5 .04 4 .73 382.59 380.46 2 .13 0 .00 2 .13 5.04 . , ,, G~h :L :-1-4 T EXCON GE N E RA L CONTR A C T ORS ~'f()il°,.:I E 11 o i11 P.e r · .IOE SC HUL TZ W ;11 ,,rC/\D v :I I 1117 l e i Label Elevation Zone Type Base Flow (ft) (gpm) J-1 235.00 Zone Demand 0 .00 J-2 238.00 Zone Demand 0 .00 J-3 240.00 Zone Demand 0 .00 J -4 242 .00 Zone Demand 0 .00 J-5 244 .00 Zone Demand 0 .00 J-6 246.00 Zone Demand 0 .00 J-7 251 .00 Zone Demand 24 .00 J-8 260.00 Zone Demand 0 .00 J-9 262.00 Zone Demand 0.00 J-10 266.00 Zone Demand 0 .00 J-11 272.00 Zone Demand 0 .00 J-12 272.00 Zone Demand 24.00 J-13 274 .00 Zone Demand 0 .00 J-14 275 .00 Zone Demand 0 .00 J-15 275.00 Zone Demand 0 .00 J-16 275.00 Zone Demand 0 .00 J-17 274 .00 Zone Demand 0 .00 J-18 274 .00 Zone Demand 24.00 J-19 270.00 Zone Demand 24.00 J-20 268.00 Zone Demand 0 .00 J-21 269.00 Zone Demand 0 .00 J-22 269.00 Zone Demand 0 .00 J-23 273.00 Zone Demand 21 .00 J-24 270 .00 Zone Demand 0 .00 J-25 269.00 Zone Demand 0 .00 J-26 268.00 Zone Demand 0 .00 J-27 267.00 Zone Demand 21 .00 J-28 265.00 Zone Demand 0 .00 J-29 263.00 Zone Demand 0 .00 J-30 261 .00 Zone Demand 0 .00 J-31 259.00 Zone Demand 0 .00 J-32 257 .00 Zone Demand 0 .00 J-33 254.00 Zone Demand 0 .00 J -34 248 .00 Zone Demand 0.00 J-35 224 .00 Zone Demand 21 .00 J-36 269.00 Zone Demand 0 .00 J-37 269.00 Zone Demand 0 .00 J-38 268.00 Zone Demand 0 .00 J-39 268.00 Zone Demand 0 .00 J-40 268.00 Zone Demand 1 ,000 .00 J-41 252 .00 Zone Demand 0 .00 J-42 251 .00 Zone Demand 9.00 T itl e : E ·111 2 Wi lli ;11 n s C rne k P l1 4 ff\. \e 1 t i 2 f f c::t 1 1Cl l y ~,i ~• ... pl i "l -rc !pc1r l .we< I Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Scenario: Base Steady State Analysis Junction Report Pattern Demand Calculated Calculated ~ydraulic Grad (gpm) (ft) 0.00 379.95 0.00 379.66 0 .00 379.53 0 .00 379.42 0 .00 379.31 0.00 379.22 24.00 378.82 0.00 378.27 0 .00 378.17 0 .00 377.97 0 .00 377 .80 24 .00 377.75 0 .00 377.42 0 .00 377 .16 0 .00 377 .08 0 .00 376.88 0 .00 376.80 24.00 376 .68 24 .00 376.11 0 .00 375 .94 0 .00 375.79 0 .00 375 .66 21 .00 375.04 0 .00 375.04 0 .00 375.04 0 .00 375.04 21 .00 375.04 0 .00 375.04 0 .00 375.04 0.00 375.04 0 .00 375.04 0 .00 375.04 0 .00 375.04 0 .00 375.04 21.00 375.04 0 .00 362.26 0 .00 360.81 0 .00 357.40 0 .00 354.80 1 ,000.00 352.83 0 .00 352 .72 9 .00 352 .71 Tcxcon Gc n e r ~I Co 11tr •1c t o r s Pressure i (psi) 62 .71 61 .29 60.37 59.45 58.54 57.64 55.30 51 .17 50.26 48.45 45 .77 45.75 44 .75 44 .20 44.17 44 .08 44 .48 44 .42 45.91 46.70 46.20 46.15 44 .15 45.45 45.88 46.31 46.74 47 .61 48.47 49 .34 50 .20 51 .07 52 .37 54 .96 65 .35 40 .35 39.72 38.68 37 .55 L3 6.1ol 43 .58 44 .01 ()()/211/0'.' p.1 2G '.:.1 Plvl .,-·, H ;H,s l ;i cl M e 11·1ocl s. Inc . ·37 C!1 oo ~;s 1rl e R o nrl \fJ;i lf ~1l.1 1 •1 ·/.Cl U 'i7 0t ~ u~;/\ Project En9ineer : Joe S c hullz W;iler C/\D vG ''I f~ :,1;:011 r 1 ; , ~ 1 , ! 1 o 1 1 Label Length Dia mete Material Hazen-Check (ft) (in) Williams Valve? c P-1 20 .00 12 .0 PVC 150.0 false P-2 112.00 12 .0 PVC 150.0 false P-3 49.00 12 .0 PVC 150.0 false P-4 44 .00 12 .0 PVC 150.0 false P-5 42.00 12 .0 PVC 150 .0 false P-6 32.00 12 .0 PVC 150.0 false P-7 156 .00 12 .0 PVC 150 .0 false P-8 222 .00 12.0 PVC 150.0 false P-9 37 .00 12 .0 PVC 150.0 false P-10 80 .00 12 .0 PVC 150.0 false P-11 70 .00 12 .0 PVC 150 .0 false P-12 22 .00 12 .0 PVC 150.0 false P-13 134 .00 12 .0 PVC 150 .0 false P-14 112 .00 12 .0 PVC 150 .0 false P-15 31 .00 12 .0 PVC 150 .0 false P-16 85 .00 12.0 PVC 150 .0 false P-17 33 .00 12 .0 PVC 150.0 false P-18 51 .00 12 .0 PVC 150 .0 false P-19 247 .00 12 .0 PVC 150.0 false P-20 73 .00 12 .0 PVC 150 .0 false P-21 69 .00 12 .0 PVC 150.0 false P-22 58 .00 12 .0 PVC 150.0 false P-23 280 .00 12 .0 PVC 150 .0 false P-24 325.00 10.0 PVC 150.0 false P-25 51.00 10.0 PVC 150 .0 false P-26 33 .00 10.0 PVC 150.0 false P-27 47 .00 10 .0 PVC 150.0 false P-28 37 .00 10.0 PVC 150 .0 false P-29 30.00 10 .0 PVC 150.0 false P-30 41 .00 10 .0 PVC 150 .0 false P-31 34.00 10 .0 PVC 150.0 false P-32 40 .00 10 .0 PVC 150 .0 false P-33 31 .00 10 .0 PVC 150 .0 false P-34 117 .00 10.0 PVC 150.0 false P-35 413 .00 10 .0 PVC 150 .0 false P-36 221 .00 6 .0 PVC 150 .0 false P-37 25.00 6 .0 PVC 150 .0 false P-38 59 .00 6 .0 PVC 150.0 false P-39 45 .00 6 .0 PVC 150 .0 false P-40 34.00 6 .0 PVC 150 .0 false P-41 408 .00 3 .0 PVC 150 .0 false P-42 21 .00 3 .0 PVC 150 .0 false T 1 tl1 ~ E 1.:1 ~~ W 1U1 ;:11ns Cn•ck Pl1 d (I ~ ! 1 ·1; 'I I; 111-t lV!·.t'.:. 111 1-I 11 I)( 'I •.... , I I : 1 • ; · ; .... 1 ·q 1·• / 1 •. 1 ; · 1 r 1. 1 r , r, i 1 1. I' t • 11 1 r ,,1 1 11 11 1 ·: ~ . I 11 1 Scenario: Base Steady State Analysis Pipe Report Minor Control Dischargtl pstream Structi.li Loss Status (gpm) Hydraulic Grade Coefficien (ft) 0.00 Open 1,168.00 380 .00 0 .00 Open 1,168.00 379 .95 0 .00 Open 1,168.00 379 .66 0 .00 Open 1,168.00 379 .53 0 .00 Open 1,168.00 379.42 0 .00 Open 1, 168.00 379 .31 0 .00 Open 1, 168.00 379.22 0 .00 Open 1,144.00 378 .82 0 .00 Open 1,144 .00 378 .27 0 .00 Open 1,144 .00 378 .17 0 .00 Open 1,144 .00 377 .97 0 .00 Open 1,144 .00 377 .80 0 .00 Open 1,120.00 377 .75 0 .00 Open 1 ,120 .00 377.42 0 .00 Open 1,120 .00 377 .16 0 .00 Open 1,120 .00 377 .08 0 .00 Open 1, 120 .00 376 .88 0 .00 Open 1, 120.00 376 .80 0 .00 Open 1,096.00 376 .68 0 .00 Open 1,072 .00 376 .11 0 .00 Open 1,072.00 375 .94 0 .00 Open 1,072 .00 375 .79 0 .00 Open 1,072 .00 375 .66 0 .00 Open 42 .00 375.04 0 .00 Open 42.00 375 .04 0 .00 Open 42 .00 375 .04 0 .00 Open 42 .00 375.04 0.00 Open 21.00 375 .04 0 .00 Open 21 .00 375 .04 0 .00 Open 21 .00 375 .04 0 .00 Open 21 .00 375 .04 0 .00 Open 21 .00 375.04 0 .00 Open 21 .00 375.04 0.00 Open 21 .00 375.04 0 .00 Open 21 .00 375 .04 0 .00 Open 1,009.00 375 .04 0 .00 Open 1,009.00 362 .26 0.00 Open 1,009.00 360 .81 0 .00 Open 1,009.00 357.40 0 .00 Open 1,009 .00 354 .80 0 .00 Open 9 .00 352 .83 0 .00 Open 9 .00 352 .72 iflwnstream Structu E're ssure Headloss Hydraulic Grade Pipe Gradient (ft) Headloss (fU1000ft) (ft) 379 .95 0 .05 2 .59 379 .66 0 .29 2 .59 379 .53 0 .13 2 .59 379 .42 0 .11 2 .59 379.3 1 0 .11 2 .59 379 .22 0 .08 2 .59 378 .82 0.40 2 .59 378.27 0.55 2.49 378 .17 0 .09 2 .50 377 .97 0 .20 2.49 377 .80 0 .17 2.49 377.75 0 .05 2.49 377.42 0 .32 2.40 377.16 0 .27 2 .40 377 .08 0 .07 2.40 376 .88 0 .20 2.40 376.80 0 .08 2.40 376 .68 0 .12 2.40 376 .11 0 .57 2 .30 375 .94 0 .16 2 .21 375 .79 0 .15 2 .21 375 .66 0 .13 2 .21 375.04 0 .62 2 .21 375 .04 0 .00 0 .01 375 .04 0.00 0 .01 375.04 0 .00 0 .01 375 .04 0 .00 0 .01 375.04 0 .00 0 .00 375 .04 0.00 0 .00 375 .04 0.00 0 .00 375 .04 0 .00 0 .00 375 .04 0.00 0 .00 375.04 0 .00 0 .00 375 .04 0 .00 0 .00 375 .04 0 .00 0 .00 362 .26 12.79 57 .85 360 .81 1.45 57 .85 357.40 3.41 57 .85 354 .80 2.60 57 .85 352 .83 1.97 57 .85 352.72 0 .11 0.27 352 . 71 0 .01 0 .27 P1c >1 €~f:I E1t1111H~1·1 .!(le Sc.111111 / Texcnn Ge 11 e 1;:ll C c·11t1 ;-u:t o 1 ~ 1/1.'.1t1•1f'f,I 1._.:i 1 1 !~; '.·, 1:•<111 ;,· 11.1 .-1,1k:.idt i ~'t •,1t~ \/v,ilt !11111•, (.I Pl ,·r H lJ~-,,, • 1 ,-11·~ /'.1 1 1-JI ,.,;, r·,1 ~11 · I 1•1 I Analysis Results Scenario: Base Steady State Analysis Title : E142 Williams Creek Ph 4 Project Engineer: Joe Schultz Project Date : 05/24/05 03 :36:18 PM Comments: Scenario Summary Scenario Base Active Topology Alternative Base-Active Topology Physical Alternative Demand Alternative Initial Settings Alternative Operational Alternative Age Alternative Constituent Alternative Trace Alternative Fire Flow Alternative Capital Cost Alternative Energy Cost Alternative User Data Alternative Liquid Characteristics Base-Physical Base-Demand Base-Initial Settings Base-Operational Base-Age Alternative Base-Constituent Base-Trace Alternative Base-Fire Flow Base-Capital Cost Base-Energy Cost Base-User Data Liquid Kinematic V iscosity Water at 20C(68F) 1.0804e-5 ft 2 /s Specific Gravity Network Inventory Pressure Pipes 42 Number of Tanks Number of Reservoirs -Constant Area : Number of Pressure Junctic 42 -Variable Area : Number of Pumps -Constant Power: -One Point (Design Point): -Standard (3 Point): -Standard Extended: -Custom Extended: -Multiple Point: Number of Spot Elevations Pressure Pipes Inventory 3.0 in 6 .0 in Total Length 0 0 0 0 0 0 0 0 429 .00 ft 384 .00 ft 4,071 .00 ft Number of Valves -FCV's : -PBV's : -PRV's : -PSV's : -TCV's : -GPV's : 10 .0 in 12 .0 in Pressure Pipes @ 0 .00 hr 0 0 0 0 0 0 0 0 0 0 1.00 1,199.00 ft 2,059 .00 ft Label ControDischargeVelocit\t)pstream Strucfilmvnstream Structi.J!elculatecCa lculatecPressurEHeadloss Status (gpm) (ft/s) Hydraulic Grade Hydraulic Grade Friction Minor Pipe Gradient (ft) (ft) Head loss HeadlossHeadlos~ft/1 OOOft) (ft) (ft) (ft) P-1 Open 1,168 .00 3 .31 380 .00 379 .95 0 .05 0 .00 0 .05 2 .59 P-2 Open 1,168 .00 3.31 379 .95 379 .66 0 .29 0 .00 0 .29 2 .59 P-3 Open 1,168.00 3.31 379 .66 379 .53 0 .13 0 .00 0 .13 2 .59 P-4 Ope n 1,168 .00 3.31 379.53 379 .4 2 0 .11 0 .00 0 .11 2 .59 P-5 O pe n 1,168.00 3 .3 1 379 .4 2 379.3 1 0 .11 0 .00 0 .11 2 .59 T ille: E 14 2 Wi ll ia m s C reek P h 4 P ro 1e c t E n 9 i11 ee r : Joe Schult z q .1 ... 1.-, 1°12 11 ;111 ;·11ys1s __ pt·1<1 -report .wccJ Tex con Ge ll e r ~1I Contr acto r s 1 /\.'~1tcrC/\D vG :-; I G :, 1 ~OJI OG.1:~~~1 ,1 0 ~-i (1'1 :J'1·~1 G PM c9 H ;:1 e ~~t ad M e t l 1t )d ~;. l11c 37 U1oo~s 1d e f ~n;.1 d 'v'\/;11r ·1litH '/. C T OG -/Ofl US/\ ·• l -L'O :)-·i':1'.-1-1l l ~'1 P.1~1 1 · I 1 11 /' Analysis Results Scenario: Base Steady State Analysis Pressure Pipes @ 0.00 hr Label Con troDi schargeVelocit\£)pstream StruclJCDVnstream StructlfilalculatecCalculatecf>ressurEHeadloss Status (gpm) (ft/s) Hydraulic Grade Hydraulic Grade Friction Minor Pipe Gradient P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 P-14 P-15 P-16 P-17 P-18 P-19 P-20 P-21 P-22 P-23 P-24 P-25 P-26 P-27 P-28 P-29 P-30 P-31 P-32 P-33 P-34 P-35 P-36 P-37 P-38 P-39 P-40 P-41 P-42 Open 1,168 .00 Open 1,168 .00 Open 1,144 .00 Open 1,144 .00 Open 1,144 .00 Open 1,144.00 Open 1,144.00 Open 1, 120 .00 Open 1, 120.00 Open 1,120.00 Open 1, 120 .00 Open 1, 120 .00 Open 1, 120 .00 Open 1,096 .00 Open 1,072 .00 Open 1,072 .00 Open 1,072.00 Open 1,072 .00 Open 42 .00 Open 42.00 3 .31 3.31 3 .25 3 .25 3.25 3 .25 3 .25 3 .18 3 .18 3 .18 3 .18 3 .18 3 .18 3.11 3 .04 3.04 3.04 3.04 0 .17 0 .17 Open Open Open Open Open Open Open Open 42 .00 0.17 42.00 0.17 21 .00 0.09 21 .00 0 .09 21 .00 0 .09 21 .00 0 .09 21 .00 0 .09 21 .00 0 .09 Open 21 .00 Open 21 .00 Open 1,009.00 Open 1,009.00 Open 1,009.00 Open 1,009.00 Open 1,009 .00 Open 9 .00 Open 9 .00 0 .09 0 .09 11.45 11.45 11.45 11.45 11.45 0 .41 0.41 Ti tl e : E ·14 2 W il l ia n is C ree k P h 4 ~r\. '.e 1 .-1 ::·ff ;:ln ;1ty ~;i s _p l 1·'.1-n !,1orl .1.Ncd (ft) (ft) Head loss Headloss Headlos~ft/1 OOOft) 379.31 379 .22 378 .82 378 .27 378 .17 377 .97 377.80 377 .75 377 .42 377 .16 377 .08 376 .88 376 .80 376 .68 376 .11 375.94 375.79 375 .66 375 .04 375.04 375 .04 375 .04 375.04 375.04 375 .04 375 .04 375 .04 375 .04 375 .04 375 .04 375 .04 362 .26 360 .81 357.40 354 .80 352 .83 352 .72 (ft) (ft) (ft) 379 .22 378 .82 378 .27 378 .17 377 .97 377 .80 377.75 377.42 377 .16 377 .08 376 .88 376.80 376 .68 376 .11 375.94 375 .79 375 .66 375 .04 375 .04 375.04 375 .04 375 .04 375.04 375 .04 375 .04 375 .04 375.04 375.04 375.04 375 .04 362.26 360 .81 357.40 354 .80 352 .83 352 .72 352 .71 0 .08 0.40 0 .55 0 .09 0 .20 0.17 0 .05 0 .32 0.27 0 .07 0.20 0 .08 0 .12 0 .57 0 .16 0 .15 0 .13 0 .62 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 12.79 1.45 3.41 2 .60 1.97 0 .11 0.01 T excon Gc ne r ;:i l Co n t rac to r s 0 .00 0.00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0.00 0 .00 0 .00 0 .08 0.40 0 .55 0 .09 0 .20 0 .17 0 .05 0 .32 0 .27 0 .07 0.20 0 .08 0 .12 0 .57 0 .16 0 .15 0 .13 0 .62 0 .00 0.00 2 .59 2 .59 2.49 2 .50 2.49 2.49 2.49 2.40 2.40 2.40 2.40 2.40 2.40 2 .30 2 .21 2 .21 2 .21 2 .21 0 .01 0 .01 0 .00 0 .00 0 .01 0 .00 0 .00 0 .01 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 12 .79 57 .85 1.45 57 .85 3.41 57 .85 2 .60 57 .85 1.97 57 .85 0.11 0.27 0 .01 0.27 OG //.:l /IY '.-t '·I 3:1 11G P~.'i · .1 I l;u ·:·i l ;u l f\'l c l h o <I ~. Inc =~7 Br C·O ~~ll lt.! Rt l;.t d VVtll t!il )l ll 'y, c:-1 (Jii Tf1~; u~~I\ Proj ecl En9incer : Joe Sch u ltz W;11c•rCAD vii '.i I G '.i12Clil Label Elevation Zone Type Base Flow (ft) (gpm) J-1 235 .00 Zone Demand 0 .00 J-2 238 .00 Zone Demand 0 .00 J -3 240 .00 Zone Demand 0 .00 J-4 242.00 Zone Demand 0.00 J-5 244 .00 Zone Demand 0 .00 J-6 246.00 Zone Demand 0.00 J-7 251.00 Zone Demand 24.00 J-8 260 .00 Zone Demand 0 .00 J-9 262.00 Zone Demand 0 .00 J-10 266.00 Zone Demand 0.00 J-11 272.00 Zone Demand 0.00 J -12 272.00 Zone Demand 24 .00 J-13 274 .00 Zone Demand 0.00 J -14 275.00 Zone Demand 0.00 J-15 275 .00 Zone Demand 0 .00 J -16 275.00 Zone Demand 0.00 J-17 274.00 Zone Demand 0 .00 J-18 274.00 Zone Demand 24 .00 J-19 270.00 Zone Demand 24 .00 J -20 268.00 Zone Demand 0 .00 J-21 269.00 Zone Demand 0 .00 J-22 269.00 Zone Demand 0 .00 J-23 273 .00 Zone Demand 21 .00 J-24 270.00 Zone Demand 0 .00 J-25 269.00 Zone Demand 0.00 J-26 268.00 Zone Demand 0 .00 J-27 267 .00 Zone Demand 21 .00 J-28 265.00 Zone Demand 0 .00 J-29 263 .00 Zone Demand 0 .00 J-30 261 .00 Zone Demand 0 .00 J-31 259.00 Zone Demand 0 .00 J-32 257 .00 Zone Demand 0 .00 J-33 254 .00 Zone Demand 0 .00 J-34 248.00 Zone Demand 0 .00 J-35 224 .00 Zone Demand 21.00 J -36 269.00 Zone Demand 0 .00 J-37 269.00 Zone Demand 0.00 J-38 268.00 Zone Demand 0 .00 J-39 268.00 Zone Demand 0.00 J-40 268.00 Zone Demand 0 .00 J -41 252 .00 Zone Demand 0 .00 J-42 251 .00 Zone Demand 9.00 Til le : E14 2 W illia m s C ree k P l1 4 •.I \ ... '.e 142ffanalysis __ pll 4 -re por l.wcd Fixed Fixed Fi xed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fi xed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fi xed Fixed Fixed Fi xed Fi xed Fixed Fi xed Fi xed Scenario: Base Steady State Analysis Junction Report Pattern Demand Calculated Calculated ~ydraulic Grad (gpm) (ft) 0 .00 380.00 0 .00 379.99 0 .00 379.99 0 .00 379.98 0 .00 379.98 0 .00 379.98 24 .00 379 .97 0 .00 379.96 0 .00 379.95 0 .00 379.95 0 .00 379.95 24 .00 379.94 0 .00 379.94 0 .00 379.93 0 .00 379.93 0 .00 379.93 0 .00 379.93 24.00 379.93 24 .00 379.92 0 .00 379.92 0 .00 379.92 0 .00 379.92 21.00 379.91 0 .00 379.91 0.00 379.91 0 .00 379.91 21 .00 379.91 0 .00 379.91 0 .00 379.91 0.00 379.91 0.00 379 .91 0.00 379.91 0.00 379.91 0.00 379.91 21 .00 379.91 0 .00 379.91 0.00 379.91 0 .00 379.91 0 .00 379.91 0 .00 379.91 0 .0 0 379.80 9 .00 379.79 Te x con G e n e r ~•I C onti a ct o rs Pressure ~ (psi) 62 .73 61.43 60.57 59.70 58.83 57 .97 55.80 51 .90 51 .03 49.30 46.70 46.70 45.83 -45.40 45.40 45.40 ,....___ 45.83 45.83 47.56 48.42 47.99 47.99 46.26 47 .55 47.98 48.42 48.85 49.72 50.58 51.45 52 .31 53 .18 54.47 57 .07 67.45 47.99 47 .99 48.42 48.42 48.42 55.29 55.72 Pro1ec 1 E n qineer : .Joe Scllu ll z W~1l 1JfC/\D vri .~> iG '.i 120i l l)f;1 ;'4/IYi O·l:;!B:O I F>M @ H ;:ie:>l <H I M e ll1 od~. l 11c :1/ [':<tHJ f .~:1 cle RC1 ;1d W <1l<:rlJt1 ry. C T OG70 C USA • l ·~U 3·7SC~-\G1 \1 \ p ~.1 ~1 ~:· I <11 1 HECl S/N : 1343001909 HMVersion: 6 .33 Data File: C :\TEMP \-vbh3 435 .TMP PRE-DEVELOPMENT ~ .... *~************************************* *************************************** * FLOO D HYDROGRAPH PACKAGE (HEC-1) * MAY 1991 VERSION 4 .0.lE * * * RU DAT E 05 /13 /2005 TIME 16:43:42 * * * * * * * * * * U .S. ARMY CORPS OF ENGINEERS * HYDROLOGIC ENGINEERING CENTER * 609 SECOND STREET * DAVIS, CALIFORNIA 956 1 6 * (916 ) 756-1104 * * I -I;'~"'"'"************************************ *************************************** x x xxxxxxx xxxxx x x x x x x xx x x x x x xxxxxxx xx xx x xxxxx x x x x x x x x x x x x x x xxxxxxx xxxxx xxx : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Full Microcomputer Implementation by Haestad Metho ds, I nc . : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37 Brookside Road * Waterbury , Connect i cut 06708 * (203) 755-1666 THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73 ), HEClGS, HEClDB, AND HEClKW . THE DEFINITIONS OF VARIAB LES -RTIMP-AND -RTIOR -HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 8 1. THIS IS THE FORTRAN77 VERSION NEW OPTI ONS : DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION , DSS :WRITE STAGE FREQUENCY , DSS :READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE :GREEN AND AMPT INFILTRAT ION KINEMATIC WAVE : NEW FINITE DIFFERENCE ALGORITHM ' ,·· ' ' .. HEC-1 INPUT PAGE 1 LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 1 ID Williams Creek Phase 2 Pre-Development 2 IT 1 300 3 IO 5 0 4 KK 102100 5 KM Drainge Area 1 0 6 KO 22 7 BA 0 .0277 8 PH 100 0 0 .88 1.95 4.30 5 .7 0 6 .30 7.90 9 LS 73.0 10 UD 0.447 11 KK 102-50 12 KM Drainage Area 102 13 KO 22 14 BA 0.0277 15 PH 1 00 0 0.8 1 l. 80 3.91 5.1 0 5.70 7.00 16 LS 73.0 17 UD 0.447 18 KK 102-10 19 KM Drai n age Area 102 20 KO 22 21 BA 0.0277 22 PH 1 0 0 0.66 l. 45 3 .02 3 .90 4 .30 5.20 23 LS 73 .0 24 UD 0.447 25 KK 102 -25 26 KM Drainage Area 102 27 KO 22 28 BA 0.0277 29 PH 25 0 0 .74 l. 64 3 .52 4.60 5.10 6 .20 30 LS 73 .0 31 UD 0 .447 32 KK 102-5 33 KM Drainage Area 102 34 KO 22 35 BA 0 .0277 36 PH 5 0 0.60 1 .32 2 .68 3.30 3.70 4 .40 37 LS 73 .0 38 UD 0 .447 39 KK DP-2 40 KM Discharge Point No . 21 41 KO 22 42 HC 5 43 zz HECl S/N : 1343001909 HMVersion: 6.33 Data File : C :\TEMP \-vbh3435 .TMP ***************************************** * * FLOO D HYDROGRAPH PACKAGE (HEC -1 ) * MAY 1991 * VERSION 4 .0 .lE * * RUN DAT E 05 /13/2005 TIME 16:43:42 * * ••*************************************** Williams Creek Phase 2 Pre-Development 3 IO I T OUTPUT CONTRO L VARIAB LES I PRNT 5 PRINT CONTROL I PLO T 0 PLOT CONTROL QSCAL 0. HYDR OG RAPH PLOT SCALE HYDR OGRAPH TIME DATA NMIN 1 MINUTES IN COMPUTATION INTERVAL IDATE 1 0 STARTING DATE ITIME 0000 STARTING TIME NQ 300 NUMBER OF HYDROGRAPH NDDATE 1 0 ENDING DATE NDTIME 0459 ENDING TIME I CENT 19 CENTURY MARK COMPUTATION INTERVAL TOTAL TIME BASE 0 .02 HOURS 4.98 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FL OW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CU BIC FEET PER SECOND ACRE-FEET ACRES DEGREES FAHRENHEIT ORDINATES *************************************** * * * U .S . ARMY CORPS OF ENGINEERS * * HYDROLOGIC ENGINEERING CENTER * * 609 SECOND STREET * * DAVIS , CALIFORNIA 956 1 6 * * (916) 756-1104 * * * *************************************** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 4 KK * 102100 * * * ************** 6 KO OUTPUT CONTR OL VARIABLES IPRNT 5 PRINT CONTROL I PLOT 0 PLOT CONTROL QS CAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH I OUT 22 SAVE HYDROGRAPH ON THIS UNIT ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED I SAV2 3 00 LAST ORDINATE PUNCHED OR SAVED T I MINT 0.0 17 TIME INTERVAL IN HOURS VALUE EXC EEDS TABL E IN LOGLOG 0 .01667 0.01667 6 .00000 ~~k *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 11 KK * 102-50 * * * ************** 13 KO OUTPUT CO NT ROL VARIABLES IPRNT I PLOT QSCAL IPNCH I OUT ISAVl I SAV2 T I MI NT l'i\LUE EXC EEDS TABLE IN LOG LOG 5 PRINT CONTROL 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 3 00 LAST ORDINATE PUNCHED OR SAVED 0 .0 17 TIME INTERVAL IN HOURS 0 .0 16 6 7 0 .01667 6.00000 T*T *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 18 KK * 102-10 * * * ************** 20 KO OUTPU T CO NTROL VARIABLES I PRNT 5 PRINT CONTROL I PLOT 0 PLOT CONTROL QSC AL 0. HYDROGRAPH PLOT SCALE I PN CH 0 PUNCH COMPUTED HYDROGRAPH IOUT 22 SAVE HYDROGRAPH ON THIS UNIT ISAVl ISAV2 T IMINT v.r,.LlJE EXC EEDS TABLE IN LOGLOG 1 FIRST ORD INATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0 .017 TIME INTERVAL IN HOURS 0 .0 1 667 0.01667 6 .00000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 25 KK 27 KO ************** * * * 102-25 * * * ************** OU TPUT CONTROL VARIABLES IPRNT I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 5 PRINT CONTROL 0 PLOT CONTROL 0 . HYDR OG RAPH PLOT SCALE 0 PUNCH COMPUT ED HYDR OGRAP H 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORD INATE PUNCHED OR SAVED 300 LAST ORD INATE PUNCHED OR SAVED 0 .017 TIME INTERVAL IN HOU RS VALUE EXC EEDS TABLE IN LOGLOG 0 .01667 0 .01 667 6 .0000 0 ~I~ *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 32 KK 34 KO ************** * * * 102-5 * * * ************** OUTPUT CONTROL VAR IABLES IPRNT 5 PRINT CON TROL I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0.017 TIME INTERVAL IN HOURS VALU E EXC EEDS TABLE IN LOG LOG 0.01667 0 .01 667 6 .00000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 39 KK 11 KO ************** * * * DP-2 * * * ************** OUTPUT CONTROL IPRNT I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT VARIABLES 5 0 0 . 0 22 1 300 0 .017 PRINT CONTROL PLOT CO NT RO L HY DROGRA PH PL OT SC ALE PUN CH CO MPUTED HYDR OG RAPH SAVE HYD ROG RAPH ON THIS UN I T FIRS T ORDINATE PUNCH ED OR SAV ED LAS T OR DINATE PUN CHED OR SAVED TIME INTERVA L IN HOUR S RUNOFF SUMMARY FLOW IN CUBIC FEE T PER SECOND TIME IN HOURS, AR EA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN MAXIMUM TIME OF OPERA T ION STATION FL OW PEAK AREA STAGE MAX STAGE 6-HOUR 24-HOUR 72 -HOUR HYDROGRA PH AT 102100 61 . 3.02 14. 14. 14 . 0 .03 HYDROGRAPH AT 102-50 52 . 3.02 12 . 12. 12 . 0 .03 HYDROGRAPH AT 102-10 33. 3.03 7. 7. 7. 0.03 HYDROGRAPH AT 102-25 44. 3 .02 10. 10. 10 . 0.0 3 HYDROGRAPH AT 102-5 26. 3 .05 6. 6. 6. 0.03 5 COMBINED AT DP-2 214. 3 .02 50 . 50 . 50. 0.14 •••NORMA L END OF HEC-1 *** HECl S/N : 1 343001909 HMVer sio n: 6.33 Data File: C:\TEMP \-vbhl459.TMP POST-DEVELOPMENT ***************************************** * *************************************** * * FLOOD HYDROGRAPH PACKAG E (HE C-1 ) * * U.S. ARMY CORPS OF ENGINEERS * MAY 1991 * * HYDROLOGIC ENGINEERING CENTER * VERSION 4 .0 .l E * * 609 SECOND STREET * * * * DAVIS, CALIFORNIA 95616 * RUN DAT E 05/13/2005 TIM E 1 6:31 :06 * * (916) 756-1104 * * * * ***************************************** *************************************** x x xxxxxxx xxxxx x x x x x x xx x x x x x xxxxxxx xxxx x xxxxx x x x x x x x x x x x x x x xxxxxxx xxxxx xxx ........................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full Microcomputer Implementation by Haestad Methods , Inc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 Brookside Road * Waterbury, Connecticut 06708 * (203 ) 755-1666 THIS PROGRAM REPLA CES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73 ), HEClGS, HEClDB , AND HEClKW. THE DEFINITIONS OF VAR IABLES -RTIMP -AND -RTIOR-HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AM SKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81 . THIS I S THE FORTRAN 77 VERS I ON NEW OPTIONS : DAM BREA K OUTFL OW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATI ON , DSS:WRITE STAGE FREQUEN CY, DSS :READ TIM E S ERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE : NEW FINITE DIFFERENCE ALGORITHM ..J ., \~ ;J ,. • l I ( ' ·.: 1· ., " / '-' -· ,; ,. •" HEC-1 I NPUT PAGE 1 LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 1 ID Williams Creek Phase 4 Post-Deve l opment w/o Pond 3 2 IT 1 300 3 IO 5 0 4 KK 50 1100 5 KM Drainge Area 501 6 KO 22 7 BA 0 .002 1 8 PH 100 0 0 .88 1 .95 4 .30 5 .70 6 .30 7.90 9 LS 78.5 10 UD 0 .1 11 KK 500 110 12 KM Drainge Area 500 13 KO 22 14 BA 0 .0230 15 PH 100 0 0.88 1 .95 4 .30 5 .70 6 .30 7 .90 16 LS 79 .0 17 UD 0 .361 18 KK DP2-l 19 KM DP-2 100 year 20 KO 22 21 HC 2 22 KK 500-50 23 KM Drainage Area 500 24 KO 22 25 BA 0.0230 26 PH 100 0 0.8 1 1 .80 3. 91 5 .1 0 5.70 7 .00 27 LS 79 .0 28 UD 0 .36 1 29 KK 50 1 -50 30 KM Drainage Area 501 31 KO 22 32 BA 0 .002 1 33 PH 100 0 0.8 1 1 .80 3 .91 5 .1 0 5 .70 7 .00 34 LS 78 .5 35 UD 0.10 36 KK DP2-50 37 KM DP-2 50 year 38 KO 22 39 HC 2 40 KK 500-10 41 KM Drainage Area 500 42 KO 22 43 BA 0.0230 44 PH 10 0 0 .66 1.45 3 .02 3 .90 4.30 5 .20 45 LS 79.0 46 UD 0.361 HEC-1 INPUT PAGE 2 LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 47 KK 501-10 48 KM Drainage Area 501 49 KO 22 50 BA 0 .0021 51 PH 10 0 0.66 1. 45 3 .02 3.90 4 .30 5 .20 52 LS 78.5 53 UD 0 .10 54 KK DP2-10 55 KM DP-2 10 year 56 KO 22 57 HC 2 58 KK 500-25 59 KM Drainage Area 500 60 KO 22 61 BA 0.0230 62 PH 25 0 0.74 1. 64 3 .5 2 4.60 5 .10 6 .20 63 LS 79.0 64 UD 0 .361 65 KK 501-25 66 KM Drainage Area 501 67 KO 22 68 BA 0 .0021 69 PH 25 0 0 .74 1.64 3 .52 4.60 5 .10 6.20 70 LS 78 .5 71 UD 0.10 72 KK DP2-25 73 KM DP-2 25 year 74 KO 22 75 HC 2 76 KK 500-5 77 KM Drainage Area 500 78 KO 22 79 BA 0.0230 80 PH 5 0 0 .60 1 .32 2 .68 3.30 3 .70 4 .40 81 LS 79 .0 82 UD 0.361 83 KK 501-5 84 KM Drainage Area 501 85 KO 22 86 BA 0 .0021 87 PH 5 0 0.60 1. 32 2.68 3 .30 3 .70 4.40 88 LS 78 .5 89 UD 0 .1 0 LINE 90 91 92 93 94 95 96 97 98 HEC-1 INPUT PAGE 3 ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK DP2-5 KM DP-2 5 year KO 22 HC 2 KK DP-2 KM Discharge Point No .2 KO 22 HC 5 zz HECl S/N : 1343001909 HMVersion : 6 .33 Data File: C :\TEMP \-vbhl459.TMP ·~~~~************************************ * FLOO D HYDROGRAPH PACKAGE (HEC-1) * MAY 1991 * VERSI ON 4.0.lE * * RUN DATE 05/13/2005 TIME 1 6 :31 :06 * * 'r*~************************************* Williams Creek Phase 4 Post-Development w/o Pond 3 3 IO IT OUTPUT CO NTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT 0 PLOT CONTROL QSCA L 0. HYDROGRAPH PLOT SCALE HYDROGRAPH TIME DATA NMIN 1 MINUTES IN COMPUTATION INTERVAL I DATE 1 0 STARTING DATE I TIME 0000 STARTING TIME NQ 300 NUMBER OF HYDROGRAPH NDDATE 1 0 ENDING DATE NDTIME 0459 ENDING TIME I CE NT 19 CENTURY MARK COMPUTATION INTERVAL TOTAL TIME BASE 0.02 HOURS 4.98 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VO LUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE-FEET ACRES DEGREES FAHRENHEIT ORDINATES *************************************** * * * U .S. ARMY CORPS OF ENGINEERS * * HYDROLOGIC ENGINEERING CENTER * * 609 SECOND STREET * * DAVIS, CALIFORNIA 95616 * * (916) 756-1104 * * * *************************************** Ak k *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 4 KK * 501100 * * * ************** r 0 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT 0 PLOT CONTROL QSCAL 0 . HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 22 SAVE HYDROGRAPH ON THIS UNIT ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 300 LAST ORDINATE PUNCHED OR SAVED TIMINT 0 .0 17 TIME INTERVAL IN HOURS VALUE EXC EEDS TABLE IN LOGLOG 0 .01 667 0.01667 6.00000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 11 KK l 3 KO ************** * * * 500110 * * * ************** OUTPUT CON TR OL VARIABLES IPRNT 5 PRINT CON TR OL I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0.017 TIME INTERVAL IN HOURS VALUE EXC EEDS TABLE IN LOGLOG 0 .01667 0.0 1 667 6 .00000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 18 KK 20 KO ************** * * * DP2-1 * * * ************** OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT QSCAL IPNCH IOUT 0 PLOT CONTROL 0 . HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT ISAVl ISAV2 TIMINT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0.017 TIME INTERVAL IN HOURS *~* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 22 KK * 500-50 * * * ************** 24 KO OUTPUT CONTROL VARIABLES IPRNT I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT VALUE EXC EEDS TABLE IN LOGLOG 5 PRINT CON TROL 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORD INATE PUNCHED OR SAVED 300 LAST ORDI NATE PUNCHED OR SAVED 0.017 TIME INTERVAL IN HOURS 0 .01667 0.01667 6 .00000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 29 KK * 501-50 * * * ************** 31 KO OUTPUT CO NTR OL IPRNT I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT VALUE EXC EEDS TABLE IN LOGLOG VARIABLES 5 0 0. 0 22 1 300 0 .017 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS 0.01667 0.01667 6.00000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** \('; KK 38 KO ************** * * * DP 2 -50 * * * ************** OUTPUT CONT RO L VARIABLES IPRNT 5 PR I NT CON TROL I PL OT QS CAL IPNCH IOUT ISAV l ISAV 2 TIM I NT 0 PLOT CO NTR OL 0 . HYDROG RAPH PLO T SCA LE 0 PUN CH CO MPU TE D HYDR OGRAPH 22 SAVE HYDR OGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUN CHED OR SAVED 0.0 1 7 TIME INTERVA L IN HOURS ~~* ~** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 40 KK * 500-10 * * * ************** 42 KO OUTPUT CO NTR OL I PRNT I PLOT QSCAL IPNCH IOUT I SAVl ISAV2 T I MINT VALUE EXC EEDS TABLE IN LOGL OG VARIABLES 5 0 0 . 0 22 1 300 0 .0 1 7 PRINT CO NTR OL PLOT CO NTR OL HYDROG RAPH PL OT SCALE PUN CH CO MPUTED HY DROGRAPH SAV E HYDRO GRA PH ON THI S UNIT FIRS T ORDINATE PUN CHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS 0 .01667 0 .01667 6 .00000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 47 KK * 501-10 * * * ************** 4 9 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT 0 PLOT CONTROL QSCAL 0 . HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 22 SAVE HYDROGRAPH ON THIS UNIT ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 300 LAST ORDINATE PUNCHED OR SAVED TIMINT 0 .017 TIME INTERVAL IN HOURS VALUE EXC EEDS TABLE IN LOGLOG 0.01667 0.01667 6 .00000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 54 KK 56 KO ************** * * * DP2-10 * * * ************** OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0.017 TIME INTERVAL IN HOURS • ~~ ~~* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 58 KK 60 KO ************** * * * 500-25 * * * ************** OUTPUT CONTROL VARIABLES IPRNT I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 5 PRINT CONTROL 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORD INATE PUNCHED OR SAVED 0 .017 TIME INTERVAL IN HOURS Vl'.LUE EXC EEDS TABLE IN LOGLOG 0 .01667 0.01667 6.00000 ~~* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 65 KK * 501-2 5 * * * ************** 67 KO OUTPUT CON TR OL VARIABLES IPRNT 5 PRINT CONTROL I PLOT 0 PLOT CONTROL QSCAL 0 . HYDR OGRAP H PLOT SCALE IPNCH 0 PUNCH CO MPUTED HYDROGRAPH IOUT 22 SAVE HYDROGRAPH ON THIS UN I T ISAVl 1 FIRST ORDINATE PUNCH ED OR SAVED ISAV2 300 LAST ORDINATE PUNCHED OR SAVED TIMINT 0.017 TIME INTERVAL IN HOURS VALUE EXC EEDS TABLE IN LOGLOG 0.01667 0.01667 6.00000 *~* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 72 KK 74 KO ************** * * * DP2-25 * * * ************** OU TPUT CONTROL VARIAB LES IPRNT 5 PRINT CO NTR OL I PL OT QSCAL IPNCH IOUT ISAVl ISAV2 TI MINT 0 PLOT CO NTROL 0 . HYDR OG RAPH PL OT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDI NATE PUNCHED OR SAVED 0 .017 TIME INTERVAL IN HOURS *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 76 KK 78 KO ************** * * * 500-5 * * * ************** OUTPU T CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THI S UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINAT E PUNCHED OR SAVED 0 .017 TIME INTERVAL IN HOURS VALUE EXCE EDS TABLE IN LOGLOG 0 .01667 0.01667 6.00000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 83 KK 85 KO ************** * * * 501-5 * * * ************** OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTRO L I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 0 PLOT CON TR OL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINAT E PUNCHED OR SAVED 0 .017 TIME INTERVAL IN HOURS VALIJE EXCE EDS TABLE IN LOG LOG 0.01667 0 .01667 6 .00000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 90 KK * DP2-5 * * * ************** 92 KO OUTPU T CONTROL VARIABLES IPRNT I PLOT QSCA L IPNCH IOUT ISAVl ISAV2 TIMINT 5 PRINT CONTROL 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCAL E 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0.017 TIME INTERVAL IN HOURS ·~* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 94 KK * DP-2 * * * ************** 96 KO OUTPUT CONTROL IPRNT I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT VARIABLES 5 0 0 . 0 22 1 300 0.017 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAV E HYDROGRAPH ON THI S UN I T FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS RUNOFF SUMMARY FL OW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN MAXIMUM TIME OF OPERATION STATION FLOW PEAK AREA STAGE MAX STAGE 6-HOUR 24 -HOUR 72-HOUR HYDROGRAPH AT 501100 9. 2.60 l. l . 1 . 0.00 HYDROGRAPH AT 500110 64. 2.90 14. 14. 14. 0 .02 2 COMBINED AT DP2-l 68. 2 .88 15 . 15. 15 . 0.03 HYDROGRAPH AT 500-50 56 . 2 .90 1 2 . 12. 12 . 0.02 HYDROGRA PH AT 501-50 8. 2.60 l. l. 1. 0 .00 2 COMBINED AT DP2-50 59. 2.88 1 3 . 13 . 13. 0 .03 HYDROGRAPH AT 500-10 38 . 2.92 8 . 8 . 8 . 0.02 HYDROGRAPH AT 501-10 6. 2 .62 1. 1. 1. 0 .00 2 COMBINED AT DP2-10 40 . 2 .90 8 . 8 . 8 . 0.03 HYDROGRAPH AT 500-25 48. 2 .92 10. 10 . 10. 0.02 HYDROGRAPH AT 501-25 7. 2 .62 1 . 1. l . 0 .00 2 COMBINED AT DP2-25 51 . 2.90 11 . 11 . 11 . 0 .03 HYDROGRAPH AT 500-5 31 . 2 .92 6. 6 . 6. 0.02 HYDROGRAPH AT 501-5 5 . 2.62 1 . l. l . 0 .00 2 COMBINED AT DP2-5 33. 2 .92 7. 7. 7 . 0.03 S CO MBI NED AT DP-2 2 Sl. 2.90 SS. SS. SS. 0 .13 TTT NORMA L END OF HEC-1 *** HECl S/N : 1343001909 HMVers i o n: 6 .3 3 Data Fi l e: C :\TEMP \-vbh3Al4.TMP DETENTION POND #3 ***************************************** *************************************** * * FLOOD HYDROGRAPH PACKAGE (HE C-1 ) MAY 1991 VERSION 4 .0 .l E * * * * * RUN DATE 05/13/2005 TIME 17 :03 :52 * * * * * * * * * * u.s. ARMY CORPS OF ENGINEERS * HYDRO LOGIC ENGIN EERING CENTER * 609 S ECOND STREET * DAV I S , CAL IFORNIA 9 561 6 * (916 ) 756 -11 0 4 * * ***************************************** *************************************** x x xxxxxxx xxxxx x x x x x x xx x x x x x xxxxxxx xx xx x xxxxx x x x x x x x x x x x x x x xxxxxxx xxxxx xxx : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Fu l l Microcomp u t er Implemen tation by Haestad Methods , I nc. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37 Br o okside Road * Waterbury , Co n ne c ticut 06708 * (203 ) 755 -166 6 THIS PROGRAM REPLAC ES ALL PR EVI OUS VERSIONS OF HEC-1 KNOW N AS HECl (JAN 73 ), HEClGS , HEClDB , AND HEClKW. THE DEFINITIONS OF VAR IABLES -RTIMP -AND -RTI OR-HAVE CHANGED FR OM THOSE USED WITH THE 1 9 73-STYLE INPUT STRUCTURE . THE DEFINITION OF -AMSKK-ON RM -CARD WAS CHANGED WITH RE VISI ONS DATED 28 SEP 81 . THIS IS THE FORTRAN7 7 VER S I ON NEW OPTIONS: DAMBR EAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATI ON , DSS:WRITE STAGE FREQ UEN CY, DSS :READ TIME S ERI ES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAV E: NEW FINITE DIFFERENC E ALGORITHM HEC-1 INPUT PAGE 1 LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 1 ID Williams Creek Pha s e 4 Po s t -Dev e lopmen t w/o P o nd 3 2 IT 1 300 3 IO 5 0 4 KK 500-50 5 KM Drainage Area 500 6 KO 22 7 BA 0.0230 8 PH 100 0 0.81 l. 80 3 .91 5 .10 5 .70 7.00 9 LS 79 .0 10 UD 0.361 11 KK Pd3-50 12 KM Pond 3 -50 year 13 KO 22 14 RS 1 ELEV 261 .5 15 sv 0 0 .04 0.48 1.1 9 l. 99 16 SE 261 .5 262 .0 263 .0 264.0 26 5 .0 17 SQ 0 2 .0 1 5 .2 33 .2 46 .2 18 SE 261.5 262 .0 263 .0 264.0 26 5 .0 19 KK 501 -50 20 KM Drainage Area 501 21 KO 22 22 BA 0.0021 23 PH 100 0 0 .81 l. 80 3.91 5 .1 0 5 .70 7.00 24 LS 78 .5 25 UD 0 .10 26 KK DP2 -50 27 KM DP-2 50 year 28 KO 22 29 HC 2 30 KK 500-10 31 KM Drainage Area 500 32 KO 2 2 33 BA 0 .0230 3 4 PH 1 0 0 0.66 l. 45 3 .02 3 .90 4.30 5.20 35 LS 79 .0 36 UD 0 .361 37 KK Pd3-10 38 KM Pond 3 -10 year 39 KO 22 40 RS 1 EL EV 261 .5 41 sv 0 0 .04 0.48 1.19 l. 99 42 SE 2 6 1.5 262 .0 263 .0 26 4.0 265.0 43 SQ 0 2.0 15.2 33 .2 4 6 .2 44 S E 261.5 262.0 263.0 264 .0 265 .0 HEC -1 INPUT PAGE 2 LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 45 KK 501-10 46 KM Drainage Area 501 47 KO 22 48 BA 0 .0021 49 PH 10 0 0 .66 1 .45 3 .02 3.90 4 .30 5 .20 50 LS 78 .5 51 UD 0 .10 52 KK DP2-10 53 KM DP-2 10 year 54 KO 22 55 HC 2 56 KK 500-25 57 KM Drai n age Area 500 58 KO 22 59 BA 0.0230 60 PH 25 0 0 .74 1. 64 3.52 4.60 5.10 6.20 61 LS 79 .0 62 UD 0.361 63 KK Pd3-25 64 KM Pond 3 -25 year 65 KO 22 66 RS 1 ELEV 261 .5 67 sv 0 0 .04 0.48 1.19 1.99 68 SE 261.5 262 .0 263 .0 264 .0 265 .0 69 SQ 0 2 .0 15.2 33 .2 46.2 70 SE 261 .5 262 .0 263.0 264 .0 265.0 71 KK 501-25 72 KM Dra inag e Area 501 73 KO 22 74 BA 0 .0021 75 PH 25 0 0 .74 1.64 3 .52 4.60 5 .10 6.20 76 LS 78 .5 77 UD 0 .10 78 KK DP2-25 79 KM DP-2 25 year 80 KO 22 81 HC 2 82 KK 500-5 83 KM Drainage Area 500 84 KO 22 85 BA 0 .0230 86 PH 5 0 0 .60 1 .3 2 2.68 3 .30 3 .70 4.40 87 LS 79.0 88 UD 0 .361 HEC-1 INPUT PAG E 3 LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 89 KK Pnd3-5 90 KM Pond 3 -5 year 91 KO 22 92 RS 1 ELEV 261 .5 93 SV 0 0.04 0 .48 1 .1 9 l. 99 94 SE 261 .5 262 .0 263.0 264.0 265 .0 95 SQ 0 2.0 15.2 33 .2 46.2 96 SE 261 .5 262.0 263.0 264.0 265.0 97 KK 501-5 98 KM Drainage Area 501 99 KO 22 100 BA 0 .0021 101 PH 5 0 0 .60 1 .32 2.68 3.30 3.70 4.40 102 LS 78 .5 103 UD 0 .1 0 104 KK DP2-5 105 KM DP-2 5 year 106 KO 22 107 HC 2 108 KK 500100 109 KM Drainge Area 500 llO KO 22 lll BA 0.0230 ll2 PH 100 0 0 .88 1 .95 4.30 5.70 6 .30 7.90 ll3 LS 79.0 ll4 UD 0 .361 ll5 KK Pd3-l ll6 KM Pond 3 -100 year ll 7 KO 22 ll8 RS 1 ELEV 261 .5 ll9 SV 0 0 .04 0.48 1.19 1.99 120 SE 261 .5 262.0 263.0 264.0 26 5.0 121 SQ 0 2 .0 15.2 33 .2 46.2 122 SE 261 .5 262 .0 263.0 264 .0 265 .0 123 KK 50ll00 124 KM Drainge Area 501 125 KO 22 126 BA 0 .0021 127 PH 100 0 0 .88 l. 95 4.30 5.70 6 .30 7.90 128 LS 78 .5 129 UD 0.1 130 KK DP2-l 131 KM DP-2 100 year 132 KO 22 133 HC 2 LINE 134 135 136 137 138 HEC-1 INPUT PAGE 4 ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK DP-2 KM Discharge Point No .2 KO 22 HC 5 zz f!EC'l S/N: 1343001909 HMVersion : 6 .3 3 Data File : C :\TEMP \-vbh3Al 4.TMP '*~*.************************************ * * FLOO D HYDROGRAPH PACKAG E (HEC-1) * MAY 1991 * VERSION 4. 0 . lE * * RUN DATE 05/13/2005 TIME 17:03:52 * * i I I ~•t*********************************** Williams Creek Phase 4 Post-Development w/o Pond 3 3 IO IT OUTPUT CO NTROL VAR IABLES IPRNT 5 PRINT CO NTROL I PLOT 0 PLOT CONTROL QSCAL 0 . HYDROGRAPH PLOT SCALE HYDROGRAPH TIME DATA NMIN 1 MINUTES IN COMPUTATION INTERVAL IDA TE ITIME NQ NDDATE NDTIME I CENT 1 1 0 STARTING DATE 0000 STARTING TIME 300 NUMBER OF HYDR OG RAPH 0 ENDING DATE 0459 ENDING TIME 19 CENTURY MARK COMP UTATION INTERVAL TOTAL TIME BASE 0 .02 HOURS 4.98 HOURS ENGLIS H UNI TS DRAINAGE AREA PRECIPI TATION DEPTH LENGTH, ELEVATION FLOW STORAGE VO LUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET P ER SECOND ACRE-FEE T ACRES DEGREES FAHRENHEIT ORDINATES *************************************** * * * U .S. ARMY CORPS OF ENGINEERS * * HYDROLOGIC ENGINEERING CENTER * * 609 SECOND STREET * * DAVIS, CALIFORNIA 95616 * * (916) 756-1104 * * * *************************************** ~-I ~ ~** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 4 KK * 500-50 * * * 6 KO ************** OUTPUT CONTROL VARIABL ES IPRNT 5 PRINT CONTROL I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMI NT 0 PLOT CO NTR OL 0 . HYDROGRAPH PLOT SCALE 0 PUNCH CO MPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORD INATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0 .017 TIME INTERVAL IN HOURS VALUE EXC EEDS TABLE IN LOGLOG 0 .01667 0.01667 6 .00000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 11 KK 13 KO ************** * * * Pd3 -50 * * * ************** OUTPUT CON TROL VARIAB LES IPRNT 5 PRINT CONTROL I PLOT QSCAL IPNCH IOUT ISAVl I SAV2 TIMINT 0 PLOT CO NTR OL 0. HYDR OG RAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDR OG RAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0.017 TIME INTERVAL IN HOURS ~·~~ *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 19 KK * 501-50 * * * ************** 21 KO OUTPUT CONTROL VAR IABLES IPRNT 5 PRINT CONTROL I PLOT 0 PLOT CONTROL QSCA L 0 . HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COM PUTED HYDR OGRAP H IOUT 22 SAVE HYDROGRAPH ON THIS UNIT ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 TIMINT 300 LAS T ORDINATE PUNCHE D OR SAVED 0 .017 T I ME INTERVAL IN HOUR S V.11.LUE EXC EEDS TABLE IN LOGLOG 0 .0 1 667 0 .0 1 667 6.00000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 26 KK 28 KO ************** * * * DP2-50 * * * ************** OUTPUT CONTROL VARIABLE S IPRNT I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 5 PRI NT CO NTR OL 0 PL OT CONTROL 0 . HYDR OGRAPH PL OT SCALE 0 PUN CH COMPUTED HYDR OGRAPH 22 SAV E HYDR OGRAPH ON THIS UNIT 1 FIRS T ORDINATE PUN CHED OR SAVED 300 LA S T ORDINATE PUNCHED OR SAVED 0 .017 TI ME INTERVAL IN HOURS **~ *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 30 K K 32 KO ************** * * * 50 0 -10 * * * ************** OUTPUT CONTROL VARIAB LE S IPRNT 5 PRINT CO NTR OL I PLOT 0 PLO T CO NTR OL HYDROGRAPH PL OT SCALE QSCAL IPNCH IOU T ISAVl ISAV2 TIMINT 0 . 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 F IRST ORD I NATE PUN CHED OR SAVED 300 LAS T ORDINATE PUNCHED OR SAVED 0 .0 1 7 TI ME INTERVAL IN HOUR S A' TJE EXC EEDS TABLE IN LOGLOG 0 .0 1 667 0 .0 1 667 6 .0 00 00 *~* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 17 KK * Pd3-10 * * * ************** 39 KO OUTPUT CONTROL VARIABLES IPRNT I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 5 PRINT CONTROL 0 PLOT CONTROL 0 . HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0 .017 TIME INTERVAL IN HOURS . ·~ ~t* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 45 KK * 501-10 * * * ************** 4 7 KO OUTPUT CONTROL IPRNT I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT VALUE EXC EEDS TABLE IN LOG LOG VARIABLES 5 0 0. 0 22 1 300 0.017 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THI S UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS 0.01667 0.01667 6.00000 ~** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 52 KK * DP2-10 * * * ************** 54 KO OUTPUT CONTROL VARIABL ES IPRNT 5 PRINT CONTROL I PLO T 0 PLOT CONTROL QSC AL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 22 SAVE HYDROGRAPH ON THIS UNIT ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 300 LAST ORDINATE PUNCHED OR SAVED TIMINT 0.017 TIME INTERVAL IN HOURS '~* k** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 56 KK SR KO ************** * * * 500-25 * * * ************** OUTPUT CONTROL VARIAB LES IPRNT 5 PRINT CONTROL I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 0 PLOT CONTROL 0 . HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0 .017 TIME INTERVAL IN HOURS VALUE EXC EEDS TABLE IN LOGLOG 0.01667 0 .01667 6.00000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 63 KK 65 KO ************** * * * Pd3-25 * * * ************** OUTPUT CONTROL VARIAB LES IPRNT 5 PRINT CONTROL I PLOT QSCAL IPNC H IOUT ISAVl ISAV2 TIMINT 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0 .017 TIME INTERVAL IN HOURS *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 71 KK 73 KO ************** * * * 501 -25 * * * ************** OU TPUT CO NTROL VARIABLES IPRNT 5 PRINT CONTROL !PLOT 0 PLOT CON TR OL QSCAL IPNCH !OUT ISAVl ISAV2 TIMINT 0 . HYDROGRAP H PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDR OGRAP H ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORD INATE PUNCHED OR SAV ED 0 .017 TIME INTERVAL IN HOURS V.l\.LUE EXCEEDS TAB LE IN LOGLOG 0 .01667 0 .01667 6 .00000 I~~ A~* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 78 KK 80 KO ************** * * * DP2-25 * * * ************** OU TPU T CONTR OL VARIABL ES IPRNT 5 PRINT CON TR OL I PL OT QSCAL IPNCH !OUT ISAVl ISAV2 TIMINT 0 PLOT CON TR OL 0 . HYDROGRAPH PLOT SCALE 0 PUNCH COMPU TED HYDR OG RAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUN CHED OR SAVED 0 .017 TIME INTERVAL IN HOURS *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 82 KK 84 KO * 500-5 * * * ************** OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0.017 TIME INTERVAL IN HOURS V.11.LUE EXCEEDS TABLE IN LOGLOG 0.01667 0.01667 6.00000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 91 KO ************** * * * Pnd3-5 * * * ************** OU TP UT CONTROL VARIABLES IPRNT I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 5 PRINT CONTROL 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0.017 TIME INTERVAL IN HOURS ~~~ *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 97 KK 99 KO ************** * * * 501-5 * * * ************** OUTPUT CONTRO L VARIABLES IPRNT 5 PRINT CONTROL I PLOT QSCAL IPNCH 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH IOUT ISAVl ISAV2 TIMINT 22 SAVE HYDR OGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0.017 TIME INTERVAL IN HOU RS VALUE EXC EEDS TABLE IN LOGLOG 0.01667 0.01667 6 .00000 ~** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 104 KK 106 KO ************** * * * DP2-5 * * * ************** OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTRO L IPLOT 0 PLOT CONTROL QSCAL 0. HYDROG RAPH PLOT SCALE IPNCH IOUT ISAVl ISAV2 TIMINT 0 PUNCH COMPU TED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORD INATE PUNCHED OR SAVED 0 .017 TIME INTERVAL IN HOURS ~ ~,. *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 108 KK * 500100 * * * ************** 110 KO OUTPUT CONTROL IPRNT I PLOT QSCA L IPNCH IOUT ISAVl ISAV2 TIMINT VALUE EXC EEDS TABLE IN LOGLOG VARIABL ES 5 0 0 . 0 22 1 300 0 .017 PRINT CONTROL PLOT CONTROL HYDROG RAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS 0 .01667 0 .01667 6 .00090 ~~~ ~** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 115 KK l 1 7 KO ************** * * * Pd3-l * * * ************** OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 0 PLOT CO NTR OL 0 . HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROG RAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDI NATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0.017 TIME INTERVAL IN HOURS ~*~ *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 123 KK * 501100 * * * ************** 125 KO OUTPUT CONTROL VARIABLES IPRNT I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT VALU E EXC EEDS TABLE IN LOGLOG 5 PRINT CONTROL 0 PLOT CONTROL 0 . HYDR OGRA PH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORD INATE PUNCHED OR SAVED 300 LAST ORD INATE PUNCHED OR SAVED 0 .017 TIME INTERVAL IN HOURS 0.01667 0.01667 6.00000 ••A ~K* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ************** * * 130 KK * DP2-1 * * * 132 KO ************** OUTPUT CO NTRO L VARIAB LES I PRNT I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 5 PRINT CONTROL 0 PL OT CONTR OL 0 . HYDR OGRAPH PL OT S CALE 0 PUN CH COMPUTED HYDR OGRAPH 22 SAVE HYDR OGRAPH ON THIS UNIT 1 FIRST ORDINATE PUN CHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0 .017 TI ME INTERVAL IN HOU RS ~r~ ~** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 134 K K 136 KO ************** * * * DP -2 * * * ************** OU TPUT CONTROL VARIAB LES IPRNT 5 PR I NT CO NTR OL I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 0 PL OT CONTROL 0 . HYDR OGRAPH PL OT SCALE 0 PUN CH COMPUTED HYDR OGRAPH 22 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 300 LAST ORDINATE PUNCHED OR SAVED 0 .017 TIME INTERVAL IN HOURS RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS , AR EA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN MAXIMUM TIME OF OPERATION STAT ION FLOW PEAK AREA STAGE MAX STAGE 6-HOUR 24-HOUR 72-HOUR HYDROGRAPH AT 500 -5 0 56 . 2.90 12. 12. 12. 0.02 ROUT ED TO Pd3-50 3 6. 3.25 11. 11. 11. 0.02 264.23 3.25 HYDROGRAPH AT 50 1 -50 8. 2.60 1. 1 . 1 . 0 .00 2 COMBINED AT DP 2 -5 0 38. 3.22 13 . 13 . 13 . 0.03 HYDROGRAPH AT 500-10 3 8 . 2. 92 8 . 8 . 8 . 0 .02 ROUTED TO Pd3 -1 0 25 . 3 .23 7. 7 . 7 . 0.02 263 .54 3.23 HYDROGRAPH AT 501 -1 0 6 . 2 .62 l . l . 1 . 0.00 2 COMBIN ED AT DP2-10 26. 3 .22 8 . 8. 8. 0.03 HYDROGRAPH AT 500 -2 5 48. 2.92 10. 10 . 10 . 0.02 ROU TE D TO Pd3-25 3 2 . 3 .23 10 . 10. 10 . 0 .02 263.94 3.2 3 HYDROGRAPH AT 50 1 -25 7 . 2.62 l . 1. l . 0 .00 2 COMBINED AT DP2-25 3 4. 3.22 11. 11. 11. 0 .03 HYDROGRAPH AT 50 0 -5 31. 2 .92 6. 6 . 6. 0.02 ROUT ED TO Pnd3 -5 20. 3.23 6 . 6 . 6. 0.02 263.29 3.23 HYDROGRAPH AT 501-5 5 . 2 .62 1. 1. 1. 0 .00 2 CO MBINED AT DP2 -5 2 1. 3 .22 6 . 6 . 6 . 0 .03 HYDROGRAP H AT 500100 6 4. 2.9 0 14. 14 . 14. 0 .02 ROUTED TO Pd3-l 4 1. 3 .25 13. 13 . 13 . 0.02 2 6 4.5 6 3 .25 HYDROGRAPH AT 501100 9 . 2 .60 1. 1. 1. 0.00 2 CO MBINED AT DP2-l 42. 3 .23 15 . 1 5 . 1 5. 0 .03 5 COMBI NED AT DP-2 1 6 1. 3.2 2 52. 52. 52 . 0 .13 ''' NOR MAL END OF HE C-1 *** Drainage Report for 05-J.-Lf lo-& -05 q:30 Williams Creek Subdivision -Phase 4 College Station , Tex as June 2005 Developer: Joe and Janet Johnson Land and Investments , LP 1400 South Commercial Street Coleman, Texas 76834 (325) 625 -2124 Prepared B1 ·: TEXCON General Contractors 1707 Graham Road College Station, Texas 77845 (979) 764 -7743 CERTIFICATION I certify that this report for the drainage design for the Williams Creek Subdivision -Phase 4 , was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners hereof, with the exception that stom1 water runoff detention is not being proposed for a portion of this project since the runoff will discharge directly into existing drainages which flow into the l 00-year floodplain limits . TABLE OF CONTENTS DRAINAGE REPORT WILLIAMS CREEK SUBDIVISION -PHASE 4 CERTIFICATION .................................................................................................................................................................. 1 TABLE OF CONTENTS ........................................................................................................................................................ 2 LlST OFT ABLES .................................................................................................................................................................. 3 INTRODUCTION ................................................................................................................................................................... 4 GENERAL LOCATION AND DESCRIPTION ................................................................................................................. .4 FLOOD HAZARD INFORMATION .................................................................................................................................... 4 DEVELOPMENT DRAINAGE PATTERNS ...................................................................................................................... .4 DRAINAGE DESIGN CRITERIA ....................................................................................................................................... .4 STORM WATER RUNOFF DETERMINATION ............................................................................................................... 5 DETENTION FACILITY DESIGN ...................................................................................................................................... 7 STORM CULVERT & DRAINAGE CHANNEL DESIGN ................................................................................................ 8 CONCLUSIONS ..................................................................................................................................................................... 9 APPENDIX A ........................................................................................................................................................................ 10 Time of Concentration Data & Calculations APPENDIX B ........................................................................................................................................................................ 17 Storm Sewer Culvert Data & Design Calculatio11s APPENDIX C ........................................................................................................................................................................ 21 Drainage Channel Design Data & Calculations APPENDIX D ........................................................................................................................................................................ 26 Drainage Ditch Data & Lining Material APPENDIX E ........................................................................................................................................................................ 30 D etention Pond #3 D esign Information EXHIBIT A ............................................................................................................................................................................ 35 Pre-Development Drainage Area Map -Dete11tio11 Po11d EXHIBIT B ............................................................................................................................................................................ 37 Post-D evelopment Drainage Area Map -Dete11tio11 Pond EXHIBIT C ............................................................................................................................................................................ 39 Post-Development Drai11age Area Map -Culverts & Cha1111els EXHIBIT D ............................................................................................................................................................................ 41 Post-D evelopm ent Drainage Area Map -Ditch Velocities LIST OF TABLES TABLE 1 -Rainfall Intensity Calculations .............................................................................................. 5 TABLE 2 -Time of Concentration (tc) Equations .................................................................................. 5 TABLE 3A -Post-Development Runoff Infomiation (Exhibit C) .......................................................... 6 TABLE 3B -Drainage Structure Flow Summary .................................................................................... 6 TABLE 4 -Pre-& Post-Development Runoff Infonnation -Detention Evaluation .............................. 7 TABLE 5 -Pre-& Post-Development Peak Discharge Comparison -Discharge Point No. 2 with Detention Pond .......................................................................................................................... 8 TABLE 6 -Summary of Maximum Pond Water Levels ......................................................................... 8 DRAINAGE REPORT WILLIAMS CREEK SUBDIVISION -PHASE 4 INTRODUCTION The purpose of this report is to provide the hydrological effects of the construction of the Williams Creek Subdivision -Phase 4 , and to verify that the proposed storm drainage system meets the requirements set forth by the City of College Station Drainage Policy and Design Standards. GENERAL LOCATION AND DESCRIPTION The project is located on a portion of a 213.91 acre tract located east of Rock Prairie Road and south of Greens Prairie Road in College Station, Texas . This report addresses Phase 4 of this subdivision, which is made up of 35.96 acres . The site is predominantly wooded . The existing ground elevations range from Elevation 218 to Elevation 276. The general location of the project site is shown on the vicinity map in Exhibit A. FLOOD HAZARD INFORMATION The project site is located in the Carters Creek Drainage Basin. Most of the proposed developed area of the site is loc ated in a Zone X Area according to the Flood Insurance Rate Map prepared by the Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated areas, Community No. 481195 and 480083 , Panel No. 2050, Map No . 48041C0205D, effective dated February 9, 2000. Zone X areas are d e termined to be outside of the 500-year floodplain . DEVELOPMENT DRAINAGE PATTERNS Prior to development, the storm water runoff for Phase 4 flows in two directions. The western portion of the development flows south to Rock Prairie Road to an existing culvert and then to Lick Creek . This is noted on Exhibit A as Discharge Point No. 2. The remainder of Phase 4 flows into existing drainages, which flow to the east or northeast, then discharge into a tributary flowing north into Carters Creek. The pre-development drainage area for the detention pond design is shown on Exhibit A. DRAINAGE DESIGN CRITERIA The design parameters for the storm drainage analysis are as follows : • The Rational Method is utilized to determine p eak st01m water runoff rates for th e storm drainage design for culverts, ditches and channe ls . • HEC-l Program -Uti li zed to detem1ine peak storm water runoff rates for th e detention facility design . • Desi gn Storm Frequency Storm culverts De tention facility analysis • Ru no ff Coeffici e nts I 0 a nd I 00 -year sto nn event s 5 , I 0, 25, 50 a nd I 00-year storm event s Post-d eve lopm e nt (I ac re minimum lot s ize ) c = 0.50 • Runorr C urve Number (CN) --Det e ntion Po nd The Brazos Co unt y Soi l S urvey shows th e soi ls in the area to be c lass ifi ed as h ydro lo g ic g roup D soils. The pre-development CN is based on no developm e n t on th e site . The post-developm e nt CN is based on d eve lopment of Phase 4 of the s ubdi v is ion . The C N calc ul at ion s are found in A pp endix E . • Rainfall Intensity e quations a nd va lu es for Brazos County can b e fou nd in Tab le I . • Time of Co nc e nt ratio n , tc -Ca lcu latio ns are based on th e method fo un d in th e TR-55 publicatio n. Refer to Table 2 for the eq u at ion s and Appendix A for calculations. The runo ff flow path us ed for calculating the pre-and po st-deve lopme nt tim es of co nc e ntration for th e larger drainage areas are shown on the exhibit s. Small er drainage a reas use a minimum tc of 10 minutes to d etermine the rainfall int ensity valu es. Ex hibit B h as th e runo ff flow paths used for the drainage areas for the detention pond desi g n . Exhibit C has the runoff flow paths us ed for the drainage areas for the cu lvert and channel desi gns . Exhibit D has th e runoff flow paths used for the drainage areas for the roadside ditch evalu at ion and design. STORM WATER RUNOFF DETERMINATION The peak runoff values were dete1mined in accordance with the criteria presented in the previous section for the 10 , 25, 50 , and 100-year storm events. The drainage a reas for th e pre- development condition are shown on Exhibit A. Post-development runoff conditions for the storm culvert d esign drainage areas are summarized in Tables 3A & 38 . The pre-a nd post- develop ment runoff information for the detention pond evaluation is shown in Table 4. TABLE 1 -Rainfall Intensity Calculations Rainfall Intensity Va l ues (in/hr) Storm tc = Event 10 min 110 8 .635 hs 9 .861 lso 11.148 1100 11.639 Brazos County: 10 't_ea r storm 25 'i_ear storm b= 80 b= 89 d= 8.5 d = 8.5 e= 0 .763 e= 0 .754 I = b I (tc+d)" I = Rainfall Intensity (in/hr) t c = U(V*60) le= Time of concentration (min) L = Le ngth (ft) V = Velocity (ft/s ec) 50 't_ear storm 100 'i_ear storm b= 98 b= 96 d= 8 .5 d = 8.0 e= 0 .745 e= 0.730 (D ata taken fr om State D epartment of Highwa't_s and Public Transp o rtation H 'i_dra ulic Manual, page 2-16) TABLE 2 -Time of Concentration (tc) Equations The ti111 e o(co11 ce 11/ratio11 '''as de te r111ined usin g 111 e i/1 odsfo1111d in TR-55 . ··urhu11 Hy dro logy/or 5 111 0 1/ Watersh eds . ·· Th e equati ons a re asfollmrs : Ti m e o r C on c entration : Tc = ~f ,(~hn·r tlu HJ + Tr(ro 11 n ·1111·;111·tl ~hnr ll u") w herL·: T , =Trave l Time. 1111nut cs For S hee t Flow: 0.007 (n L)0·8 (P 2)0 .s so .4 w here : T 1 =trave l time , hours n =Manning 's rou g hne ss coeffi c ient L = fl ow length , fee t For S ha ll ow C o ncen trated F low : P 2 = 2-ye ar, 24-hour ra in fa ll = 4 .5" s = land slope , ft /ft T 1 =LI (60 *V) w he re: T 1 =trave l time , minu te s V =Velocity, fp s (See F ig 3-1, A p p . A) L = flo w len g th , fee t Refer to App e nd ix A fo r ca lcul at ion s . TABLE 3A -Post-Development Runoff Information (Exhibit C) Area 5 year storm 10 year storm 25 year storm 50 year storm c t c Area# (acres) Is O s 110 A (min) (in/hr) (cfs) (in/hr) 302 9 .01 0 .50 31 .5 4.199 18 .92 4.794 302+304A 10.12 0 .50 32 .6 4.111 20 .80 4 .696 30 2+304 A +3 04 14 .75 0 .50 36 .1 3 .856 28 .43 4 .41 2 30 4 A 1.11 0 .50 10 7 .693 4 .27 8.63 5 304 4 .63 0 .50 21 .2 5 .305 12 .28 6.017 305 1.37 0 .50 10 7 .693 5.27 8.63 5 401 4 .39 0 .50 27 .4 4 .57 2 10 .03 5.207 402 1.61 0 .50 23 .8 4 .96 7 4 .00 5.64 4 403 1.23 0 .50 10 7 .69 3 4 .73 8.635 The Rational Method : Q=CIA I = b I (tc+d)e le = Ti me of concentration (min ) 010 l2s (cfs) (in/hr) 21 .60 5.514 23 .76 5.402 32 .54 5.079 4 .79 9 .861 13 .93 6 .901 5.91 9 .861 11.43 5.98 2 4 .54 6.47 8 5.31 9 .861 tc = L/(V*60) L = Length (ft 0 2s (cfs) 24.84 27 .33 37 .46 5.4 7 15 .98 6.76 13.13 5 .2 1 6.06 lso Oso (in/hr) (cfs) 6 .276 28.2 7 6.151 31.12 5.787 42 .68 11 .148 6.19 7 .835 18 .14 11 .148 7.64 6 .80 3 14.93 7.36 0 5.92 11 .148 6.86 Q = Fl ow (cfs ) A = Area (acres ) C = Runo ff Co eff . V =Velocity (ft/sec) I = Ra in fall Inte ns ity (in/hr) Brazos County: 5 vear storm b = 76 d = 8 .5 e = 0 .79 10 yea r storm b = 80 d = 8 .5 e = 0 .76 3 25 year s torm b = 89 d = 8 .5 e = 0.75 50 year storm b = 98 d = 8 .5 e = 0.745 TABLE 3B -Drainage Structure Flow Summary Culvert # #of Pipe size Contributing Contrib uting Area 010 Barrels (in) Area No . Acreage (A.,) (cfs) 1 1 27 30 2 9 .0 1 2 1.60 2 1 18 401 4 .39 11 .4 3 Channel # I 7 402 , 403 2.84 9.8 5 ------------·---------------------- 8 302.304A 10 .12 23.76 (, I 10 0 year storm b = 96 d = 8 .0 e = 0 .73 0 0 2s Oso (cfs) (cfs ) 24 .84 28 .27 13.13 14 .93 I 11.28 12.7 8 27.33 31.12 100 year storm 11 00 010 0 (in/hr) (cfs) 6.5 58 29 .54 6.428 32.52 6 .051 44 .63 11.639 6 .4 6 8 .17 6 18 .93 11 .639 7.97 7 .104 15.59 7 .682 6 .1 8 11.639 7 .16 0 100 (cfs ) 29 .54 15 .59 I 13 .34 32.52 TABLE 4 -Pre-& Post-Deve lopment Runoff Informatio n -Detentio n Eval u ation Area# Area CN le Lag (acres) (min) (hrs) Pre 102 17 .74 73.2 44 .7 0.447 Post 500 14 .75 79 .0 36.1 0.361 Post 501 1 .37 78.5 10.0 0.100 DETENTION FACILITY DESIGN The runoff from Phase 2 that drains to Rock Prairi e Road and ultimately to Lick Creek must be detained to pre-development flow levels at the Discharge Point No . 2 location shown on Exhibits A & B. Discharge Point No. 2 is where the runoff from the western portion of the Phase 4 development discharges into a culvert on Rock Prairie Road . Detention Pond No . 3 will be constructed adjacent to Rock Prairie Road. The post-development runoff at Discharge Point No . 2 is determined by combining the discharge hydrographs from Detention Pond No . 3 and Drainage Area 501, which does not drain into the detention pond. The pond outlet structure is the discharge pipes. The discharge pipes are 2-24" HDPE pipes , 35 feet in length, with a concrete S .E.T. 'sat the both ends of each pipe. The upstream invert e levation of the concrete S.E.T. is 261.5. Concrete riprap will be placed at the discharge end to control erosion. The pipe has a design slope of 1.0 %. The top of the pond berm is at Elevation 266.0 . The peak flow out of the detention facility was determined by the HEC-1 program using the depth discharge data for the pond outlet structure and the pond volume data as provided in Appendix E . As shown in Table 5 , the post-development peak outflow at Discharge Point No . 2 is less than the allowable peak outflow for the d esign storm event. Additionally, Table 6 presents the maximum water surface in the pond for each storm event, as well as the amount of freeboard provided . The data shown in Tables 5 & 6 are from the HEC-1 computer model. The summary printout of the model is not included in this report . This data can be provided if necessary. A comparison of the pre-& post-development peak discharge values for Discharge Point No. 2 shows an increase of 7 cfs in the runoff for the 100-year stonn event, from 68 cfs to 61 cfs. T a ble 5 also shows the increases in runoff for the other storm events if there was not a detention pond to control the runoff. Because of this increased runoff, a detention pond is proposed , which will reduce the peak runoff to less than or equal to the pre-dev e lopm ent runoff, as the "Post-Development with Pond " data in Table 5 shows . TABLE 5 -Pre-& Post-Deve lopment Peak Disc h arge Co mp arison - Discharge Point No. 2 w ith Detention Pond location Os 010 025 (cfs) (cfs) (cfs) Pre-Deve lopment Total@ Discharge Pt. No . 2 26 33 44 Post-Development without Pond Total@ Discharge Pt. No . 2 33 40 51 Post-Development with Pond Into Pond 31 38 48 Out of Pond 20 25 32 Total@ Discharge Pt. No . 2 21 26 34 (Pond Discharge & Area 501) Oso 0100 (cfs) (cfs) 52 61 59 68 56 64 36 41 38 42 The area-capacity data and the depth-discharge data for the Detention Pond No. 3 are provided in Appendix E . The detention pond grading plan is shown in the construction drawings TABLE 6 -Summary of Maximum Pond Water Levels Storm Event W ate r Surface Free board, Elevation, ft . ft . 5-year 263 .3 2 .7 10-year 263 .5 2.5 25-year 263 .9 2 .1 50-year 264 .2 1.8 100-year 264 .6 1.4 Note : Detention Pond Top of Berm Elevation= 266.0 STORM CULVERT & DRAINAGE CHANNEL DESIGN The storm culverts for this project have been selected to be Reinforced Concrete Pipe (RCP) meeting the requirements of ASTM C-76, Class III pipe mee ting the requirements of ASTM C- 789 . There w ill be sloped safety e nd tr eat ment at the end o f each culvert. Runoff from the proposed streets will be collected by the roadside ditches and conveyed to the culvert structures . Due to the open-ditch design, no inlets will be used for this development. The drainage areas for the culvert design are shown on Exhibit C. Appendix B presents a summary of th e s torm culvert design parameters and calculations . A ll pipes are 18 " in diameter or larger. The culverts were designe d based on th e 25-year stonn event, and data is also given for th e 100-year storm event. As shown in the s umm ary, a ll of the cu lverts have a head water elevation that is at least o ne foot below the roadway e levatio n for th e 25-year storm event. Also, all of th e culverts pass the 100-year stom1 event without overtopping th e road way. As required by College Station , the ve locity of flow in the pip es is not lower th a n 2.5 feet per seco nd , a nd it do es no t exceed 15 fee t per second . As the data shows , even during low flow conditions , the ve locity in th e pipes will exceed 2 .5 fee t pe r seco nd and prevent sed im e nt build-up in the c ul verts . The maximum flow in th e s torm culve rt s w ill occur in C u lvert No. I . T he m ax imum ve locity for th e c ul verts in this de ve lopme nt wi ll b e 8.8 feet per seco nd and w ill occ ur in C ulv e rt No . 2. A pp e ndi x B co nt ains a su mm a ry of th e c ulv e rt calcu lato r d a ta for th e 25 a nd I 00 -ye a r storm event s. Co nc rete ripr ap will be pla ced a l the e nd Cu lvert No . 2, si nce the ve lo city exceeds 4 .5 fps for the 25 -year storm eve nt. (Culvert No. I has concrete riprap placed at the o utl et where it discharges into C hannel No. 8). The stom1 water runo ff for a portion of the roadside ditches of Williams Creek Drive will discharge into a n improved drainage channel to convey the water from the street right-of-way to Detention Pond No 3. This channel, Channel No . 8, will have a concrete flume in the bottom to control eros ion. Appendix C contains a summary of the channe l design parameters and calc ulations . The velocity for the design storm event (25-year storm) for Channel No. 8 is 4.1 fps. Although it is not required, a concrete flum e is proposed for the bottom of the channel to contro l erosion. Channel No. 7 is a grass seeded channe l with a 2' wide bottom and 4H: IV side slopes. It starts at 3.6% slope and then breaks to 2.2% slope, before discharging into a natural drainage. The 25-year storm veloc ity for this channel ranges from 3.5 fps to 4.2 fps. Since the velocity of flow in this channel is less than 4.5 feet per second, this wi ll be a grass- seeded channel. Appendix C contains the channel calculator data for the 25-and l 00-year stonn events for both channels. The velocity of the flow in the roadside ditches was evalu ated for the IO-year and 100-year stonn events. The drainages are shown on Exhibit D, and the data is summarized in Appendix D. The city requirements for ditch lining material are as follows : Maximum Design Velocities of Various Surface Treatments 1 Surface Treatment Exposed Earth* Grass -Seeded Grass -Sodded Impermeable (Concrete, Gunite, Etc.) *Temporary Cham1els Only Maximum Design Ve locity, (ft/sec) 3 .0 4 .5 6 .0 10.0 1From "Erosion and Sediment Control Gu idelines for Deve loping Areas in Texas" by the Soil Conservation Service In Appendix D the ditch velociti es are summarized including comments stating the ditch lining material used. The ditch velocities for the proposed ditches do not exceed 4 .5 fps , therefore no lining material other than grass is proposed . CONCLUSIONS The co nstru ctio n of this project wi ll in crease the stonn water runoff from this s it e. However, some of the runoff will be carried throu gh a drainage system to existi ng drainage channels and th e n directly to Carters Creek and into the 100 -year floodplain . Due to the location of this proj ect a nd its proximity to Carters Creek's co nflu e nce w ith th e Navasota River, the peak runoff from this development w ill occur much sooner than the peak runoff in Carters Creek , th e refo re , th e increase in runoff has no affect on th e water s ur face e levation in Cart e rs C reek. Th e increased flow directly into Carte rs C ree k wi ll not have a significant impact o n the s urroundin g property. The portion of th e site which flows to Lick C reek will h ave a detention fa c i I ity to reduce the po s t-developm e nt flo w to th e pre -developm e nt va lu e. No flood dallla gc to d ow ns tr ca lll or adjace nt la nd o wne rs is ex pect ed a s a res ult o f thi s d eve lo pm e nt. <J APPENDIX A Time of Concentration Data & Calculations I () 3 -2 . 50 - .20 - .10 QJ a. . 06 0 .-.,, QJ ~ .04 -::s 0 u s.... QJ .... .., ::x .02 - .01 - .005 I 1 ' j I ' 7 11 j J 0 :..<l.JL.__~, 'tr :.. 9 ~ ~ Q. J ' I j I I 2 ' ' I 4 J j ' I IJ 7 T I 6 ' j I ~ j " I Average velocity, ft/sec ~ j . : r• ' I I I ' I I 10 • • . Fiicutt l ·L-,\v~rall'~ v~lociti~s for C<l imalinic lrJvd tim~ for <hallow conc~nlrat~d now . (210-Vl-TR -55. Second Ed .. June \98Gl I 20 Drainage Area #102 Sheet Flow: L= 240 n= P= 0.007(L*nt0 = (P)os*(S)o4 Concentrated Flow1 : V= L= U(60*V) Concentrated Flow2 : V= L= 242 U(60*V) = Concentrated Flow3 : V= Pre-Development Tc Calculations Elev,= 0.4 (wooded) 4.5 0 .593 hours= 2 fps (unpaved) Elev 1= 1.9 min 2.5 fps (unpaved) Elev 1= 1.6 min 1.8 fps (unpav ed ) 279.4 Slope= 35 .6 min 276 Slope= 270 Slope= ~--- L= 606 Elev,= 270 Elev2 = T1= U(60*V) = 5 .6 min 44.7 min 0 .021 0.015 Post-Development Tc Calculations Drainage Area #302 Sheet Flow: n= o .. 24 (den se grass ) P= 4.5 L= 250 Elev 1= Elev2 = Slope= 0.0150 T,= 0 .007(L *nf0 0.468 hours = 28 .1 min (P)os*(S)°4 Concentrated Flow 1 : V= 2.1 fps (unpaved) L= 100 Elev 1= Elev 2= Slope= 0.0170 T,= U(60*V) 0.8 min Concentrated Flow 2 : V= 2.65 fps (unpaved) L= 211 Elev 1= Elev2 = Slope= 0.0270 T,= U(60*V) = 1.3 min Concentrated Flow 3 : V= L= 165 Ele v1= Elev2 = Slope= T,= U(60*V) 1.3 min ITc= 31.5 min Drainage Area #304 Sheet Flow: n= 0.24 (dense grass) P= 4 .5 L= 190 Elev 1 = Elev2= Slope= 0 .0290 T,= 0.007(L *nt° = 0 .28 9 hours = 17 .3 min (P)os*(S)04 Concentrated Flow 1: V= 2 .05 fps (unpaved) L= 476 Elev 1= Elev 2 = Slope= 0 .0150 T,= U(60*V) 3 .9 min I Tc= 21 .2 min Drainage Area #302 & 304A Sheet Flow : n= 0 .24 (d ense grass ) P= 4 .5 L= 250 Elev,= Elev 2 = S lo pe = 0 .0150 Ti= 0 .007(L *n(0 0.468 hours= 28 .1 min (P)o s.(S)oA Concentrated Flow 1: V= 2 .1 fps (unpaved) L= 100 Elev 1= Elev 2 = Slope= 0.0170 Ti= L/(60*V) = 0 .8 min Concentrated Flow 2 : V= 2.65 fps (unpaved) L= 211 Elev ,= Elev 2 = Slope= 0.0270 Ti= U(60*V) 1.3 min Concentrated Flow 3 : V= 2.1 fps L= 165 Elev 1= Elev2 = Slope= 0.0 170 Ti= U(60*V) = 1.3 min Concentrated Flow 4 : V= 1.45 fps L= Elev 1= Elev2 = Slope= 0.0080 Ti= U(60*V) = 1.0 min Flow through c ul vert : V= 8.25 fps (Manning's) L= Elev 1= Elev2 = Slope= 0.0100 Ti= U(60*V) = 0.1 min ITc= 32 .6 min Drainage Area #302 , 3 04A & 30 4 (A r ea 500 ) Sheet Flow : n= 0.24 (dense grass) P= 4.5 L= 250 Elev 1= Elev2 = Slope= 0 .0150 Ti= 0 .007(L*nt0 = 0.468 hours= 28 .1 min (P)o s*(S)oA Concentrated Flow 1: V= 2.1 fps (unpaved) L= 100 Elev,= Elev 2= Slope= 0.0170 Ti= L/(60*V) = 0 .8 mi n Con ce ntrated Flow 2 : V= 2 .65 fps (unpaved) L= 211 Elev i= El ev2 = Slope= 0 .0270 T -,-L/(60'V) 1.3 min ~Q.l_l_<;~g r~lf a l e d _E.I ow 3 : V= 2.1 fp s (un p ;:ive d) L= 165 Ti~ L/(60*V) Concentrated Flow 4: V= L= 85 Ti= L/(60*V) Flow through culvert : V= L= 68 Ti= L/(60*V) = Concentrated Flow 5 : V= L= 435 Ti= L/(60 *V) = Drainage Area #305 (Area 501) Sheet Flow : n= P= L= 52 Ti= 0 .007(L *nt"0 = (P)o .s*(S)04 Concentrated Flow 1 : L= 501 Ti= L/(60*V) Drainage Area #401 Sheet Flow: L= 200 V= = n= P= 0 .007 (L *nt"0 = (P)o s.(S 104 Concentrated Flow 1: V= L= 525 T,= L/(60*V ) Elev,= Elev2 = 1 .3 min 1.45 fps (unp aved ) Elev,= Elev2 = 1.0 min 8 .25 fps (M a nning's) Elev 1= Ele v2 = 0 .1 min 2.1 fps (unpaved) Elev,= Elev2 = 3.5 min ITc= 36 .1 min Elev 1= 271 Elev2 = 0 .078 hours= 2 fps (unpaved) Elev1= 268 Elev2 = 4 .2 min 8 .9 min 0.24 (dense grass ) 4.5 Elev,= Slope= Slope= Slope= Slope= 268 Slope= 4.7 min 260.5 Slope= Use 10 minutes Slope= 0 .376 hours= 22 .6 min 2 .2 fps (unpaved) Sl o pe= 4 .0 min 0.01 70 0 .0080 0.0100 0 .0090 0 .0577 0 .0150 0 .0166 0 .0190 Conc entra ted Flow 2 : V= 1.25 fps (unpaved) L=· 60 Elev 1= Elev2 = Slope= 0 .00 60 T1= L/(60 *V) 0.8 min I Tc= 27 .4 m i n Drain age Area #402 Sheet Flow : n= 0.24 (dense grass) P= 4.5 L= 170 Elev 1= Elev2 = Slope= 0.0166 T1= 0 .007(L*n(0 = 0 .330 ho urs= 19 .8 mi n (P )os*(S)o.4 Co ncentrated Flow 1 : V= 1.7 fps (u npaved ) L= 150 Elev 1= Elev2 = Slope= 0.0109 T,= L/(60.V) 1.5 min Concentrated Flow 2 : V= 3.4 fps (unpaved) L= 150 Elev 1= Elev2 = Slope= 0.0438 T,= U(60*V) = 0.7 min Concentrated Flow 3 : V= 3.0 fps (unpaved ) L= Elev 1= Elev2= Slope= 0 .0353 T,= U(60*V) 0 .8 min Concentrated Flow 4 : V= 3.8 fps (unpaved) L= 225 Elev 1= Elev2 = Slope= 0 .0 552 T,= U(60*V) 1.0 min I Tc= 23 .8 m i n APPENDIXB Storm Sewer Culvert Data & Design Calculations 17 Williams Creek Subdivision -Phase 4 Culvert Summary Size L en g th Slope Inlet Invert Culvert # Elev (in) (ft) (%) (ft) 1 27 48.0 1.00 265.42 ------------------·---- 2 18 40 .0 1.00 266.60 Outlet Top of Road Invert Elev (ft) (ft) 264 .94 270 .00 --- 266 .20 270.60 25 year s torm 100 ye ar storm Desig n Flow V2s HW Des ign-Flow v, •• HW (cfs) (fps) (ft) (cfs) (fps) (f t) 24 .84 8 .1 268 .2 29 .54 7.4 268 .7 ----------- 13.10 7.4 269.4 15 .56 8 .8 270 .1 Culvert 1 -25 Ye ar Storm Culvert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Cha rt Number ................... . Scale Number ................... . Cha rt Description .............. . Scale Description .............. . Ov ertopping .................... . Flowrate ....................... . Manning' s n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results: Headwater ...................... . Slope .......................... . Velocity ....................... . Circula r 1 Headwater 1 3 CONCRETE PIPE CULV ER T ; NO BEVELED RI NG ENTRANCE GROOVE END ENTRANCE , P I PE PROJECTING FROM FILL Off 24.8400 cfs 0. 0140 270.0000 ft 265.4200 ft 26 4.9400 ft 27.0000 in 48.0000 ft 0.0000 2.2 500 ft 268.1985 ft Inlet Cont ro l 0 .0100 ft/ft 8 .1436 fps Culvert 1 -100 Year Storm Culvert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning' s n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ..... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Co mput ed Results : Headwater .......... . Slope .......... . Veloci t y ........... . Wi l l iams Cr ee k S ubdi v i s i o n -Ph ase 4 Co l l ege S tatio n , Texas Circular 1 Headwater 1 3 CONCRE TE PIPE CULVERT; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL Off 29.5400 cfs 0 .0140 27 0.000 0 ft 265.420 0 ft 264.9400 ft 27 .0000 in 48.0000 ft 0.0000 2.2500 ft 268.7110 ft Inlet Control 0.0100 ft/ft 7.4294 fps Culvert 2 -25 Year Sto rm Culvert Calculator Entered Data: Shape ..... . Numb er of Barrels Solving for .................... . Cha rt Number ................... . Scale Number ................... . Cha rt Description .............. . Scale Description .............. . Overtoppi n g .................... . Flowrate ....................... . Mann ing' s n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Ent rance Lo ss .................. . Ta ilwater ............... . Computed Results: Headwate r ...................... . Slope .......................... . Veloc ity ....................... . Circula r 1 Headwater 1 3 CONCRE TE PI PE CU LVERT ; NO BEVELED RING ENTRANCE GROOV E END ENTRANC E , P IPE PROJECTING FROM FILL Off 13. 1000 cfs 0 . 0140 27 0 .6000 ft 266.6000 ft 2 66 .2000 ft 18.0000 in 40.0000 ft 0.0000 1.5 000 ft 269.3695 ft Inlet Control 0.0100 ft/ft 7 .4131 fps Culvert 2 -100 Year Storm Culvert Calculator Entered Data: Shape .......................... . Numbe r of Barrels .............. . Solving for .................... . Cha rt Number ................... . Sca le Number ................... . Cha rt Descripti on .............. . Scale Descr ip ti o n .............. . Overtoppi ng .................... . Flowrate ....................... . Manning' s n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Out let Elevation ........... . Diameter .................. . Length ....... . Ent rance Loss . Ta ilwater ..... Co mputed Results: Headwater .......... . Slope . . . , ...... . Ve l ocity ........... . William s Creek S ubdivis i o n Co lleg e Sli:it i 0 11 . 'l'r:·:-:21 ~0 P h ase <I Circular 1 Headwater 1 3 CO NCRETE PIPE CULVE RT; NO BEVELED RI NG ENTRANCE GROOVE END ENTRAN CE, P IPE PROJECTING FROM FILL Of f 15.5600 cfs 0 . 0140 270.6 000 ft 266.6000 ft 266.2 000 ft 18.0000 in 40.0000 ft 0.0000 1.5000 ft 270.0852 ft Inlet Co ntro l 0 .0100 ft /ft 8 .8052 fp s APPENDIX C Drainage Channel Design Data & Calculations ~I Williams Creek Subdivision -Phase 4 Channel Summary Bottom Width Side Slopes Channe l# (i n) (H :V) 7 -Segment 1 24 4:1 7 -S egment 2 24 4 :1 ------- 8 0 4 :1 Slope (%) 3.60 2.20 0 .90 - A 25 year storm Design Flow Depth (cfs) (in) 11 .27 7.2 ---- 11 .27 8.1 -----·-· - 27 .33 15.5 - 100 year storm V2s Des ign Flow Depth V100 (fps) (cfs) (in) (fps) 4 .2 13 .34 7 .8 4.4 - 3 .5 13.34 8 .8 3 .7 ----- 4 .1 32 .52 16 .5 4 .3 Channel 7 -25 Year Storm (Segment 1, 3.6% Slope) Channel Calculator Given Input Data : Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trapezoidal Depth of Flow 11.2700 cfs 0.0360 ft/ft 0.0350 18 .0000 in 24.0000 in 0.2500 ft/ft (V/H) 0.2500 ft/ft (V/H) 7.2346 in 4.2374 fps 85 .7262 cfs 2.6 596 ft2 83 .6581 in 4.5 780 in 81.8769 in 12.0000 ft2 172.4318 in 40.1923 % Channel 7 -100 Year Storm (Segment 1, 3.6% Slope) Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydrau lic radius ............... . Top width ...................... . Area ........................... . Perime ter ...................... . Percent full ................... . i'lj lliam s Cc ee \.: S ubcli·J i s i o 11 Co I Lege Sta Li o n , Tc ·:ii~: Ph as~ 4 Trapezoidal Depth of Flow 13. 3400 cfs 0.0360 ft/ft 0.0350 18 .0000 in 24 .0000 in 0 .2500 ft/ft (V/H) 0.2500 ft/ft (V/H) 7.8355 in 4 .4299 fps 85.7262 cfs 3 . 0 113 ft2 88. 6132 in 4.8935 in 86.6840 in 12.0000 ft2 172 .4318 in 43.53 0 6 % Channel 7 -25 Year Storm (Segment 2, 2.2% Slope) Channel Calcula tor Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Fl ow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trapezoidal Depth of Flow 11.2700 cfs 0 .0220 ft/ft 0.0350 18.0000 in 24 .0000 in 0.2500 ft/ft (V/H) 0.2500 ft/ft (V/H) 8.1264 in 3.5343 fps 67 .01 52 cfs 3.1888 ft 2 91.0116 in 5.0453 in 89.0108 in 12.0000 ft2 172.4318 in 45.1464 % Channel 7 -100 Year Storm (Segment 2, 2.2% Slope) Channel Calculator Given Input Data : Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top wi dth ...................... . Area ........................... . Perimeter ...................... . Percent f ul l ................... . V>l:il l i ams C re e k S ubd.i v .i s i o n Coll eg e S t at io n, T e ~a s Ph ase 4 Trapezoidal Depth of Flow 13.3400 cfs 0.0220 ft/ft 0.0350 18.0000 in 24.0000 in 0.2500 ft/ft (V/H) 0.2500 ft/ft (V/H) 8.79 08 in 3.6935 fps 67.0 152 cfs 3. 6118 ft2 96.4909 in 5.3901 in 94.3265 in 12.0000 ft2 1 72.4318 in 48.8378 % Channe l 8 -25 Year Storm Channel Calculator Give n Input Dat a: Shape .......................... . Solvi ng for .................... . F lowra te ....................... . Slope .......................... . Manning' s n .................... . He ight ......................... . Bot tom width ................... . Left slope ..................... . Right slope .................... . Computed Results : Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydrau lic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trapezoidal Dept h of Flow 27.3 300 cfs 0.0090 ft /f t 0.02 50 18.0 000 in 0.0 000 in 0.2500 ft/ft (V /H ) 0.2500 ft/ft (V/H) 1 5.4524 in 4.12 05 fps 41.0557 cfs 6.6327 ft2 127.4241 in 7.49 55 in 123.6196 in 9.00 00 ft2 148.4318 in 85.8469 % Channel 8 -100 Year Storm Channel Calculator Given Input Data : Shape .......................... . Solvi ng for .................... . Fl owrate ....................... . Slope .......................... . Mann i ng's n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Fl ow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top wid th ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Willia ms Cree k Subd i v isio n -Ph ase 4 College Statio n, Texas Trapezoidal Depth of Flow 32.52 00 cfs 0.0090 ft/ft 0.0250 18.00 00 in 0.0000 in 0. 2500 ft/ft (V/H) 0. 2500 ft/ft (V /H) 16.4935 in 4.3 035 fps 41.055 7 cfs 7.5566 ft2 136.0092 in 8 .0005 in 131.948 3 in 9.0000 ft2 148.4318 in 91.6308 % APPENDIX D Drainage Ditch Data & Lining Material Williams Creek Drive Left Ditch From To Station Station 34+65 .61 35+25.00 35+25 .00 37+00 .00 37+00 .00 37+68.87 37+68 .87 39+72 .87 39+72 .87 41 +68.87 41 +68.87 42+42.26 42+42.26 43+66 .00 43+66 .00 45+70 .00 ------ 45+70 .00 46 +35 .00 -- 46+35 .00 48+50 .00 --- 48+50 .00 50+50.00 - 50 +50 .00 53+00 .00 --~- 53+00 .00 54+13 .34 Lanham Drive Left Ditch From To Station Station 0+00 .00 1+50.00 -- 1 +50 .00 2+75.00 --- 2+75 .00 4+50.00 - 4+50 .00 5+26.35 Wayne Court Left Ditch From To Station Station 0+35.43 2+75.00 -- 2+75.00 4+00 .00 ---- 4+00 .00 5+49.1 4 - 5+49 .14 6+67.26 (n = 0 .035) Slope Drainage Area # -0 .60% 1358,C ,D , 1 -1.87% 1358,C ,D , 1,2 -0 .78 % 1358-D, 1,2 ,2 A -1.02% 1358-D, 1,2 ,2A ,3 1.97 % 3A,4 0 .93% 4 -0 .60% 135A,29 - -1.45% 135A,29,30 ---- 1.86% 31 -- -4 .70 % 35 ------- -6 .00% 35,36 ------· -4.83% 35 ,36 ,37 --------- -1.59% 35,36 ,37 ,38 (n = 0 .035) Slope Drainage Area # 1.30% 10,11,12,13 ------- 2 .35 % 10 ,11 ,12 ---·-- 1.18% 10 , 11 ---- 2 .86 % 10 (n = 0 .035) Slope Drainage Area # -1.09% 22,23,24 - -4 .38% 22,23,24 ,2 5 --·--------- -3 .53 % 22,23 ,24,25 ,26 ------ -5 .52% 22,23,24,25,26,27 0 10 V10 d 10 0100 V 100 d 100 Ditch Lining Materi al (c fs) (fp s ) (in) (cfs) (fp s) (in) 4 04 1.7 9 .2 5.47 1.8 10 .3 Grass seeded 6.49 2 .9 8 .9 8 .78 3.2 10.0 Grass see ded 11 .36 2.4 13.0 15 .38 2.6 14 .5 Grass seeded 21 .82 3 .2 15 .7 29 .6 1 3.4 17 .6 Grass seeded 7.53 3.1 9 .3 10 .22 3.4 10 .5 Grass seeded 3.25 1.9 7.8 4.41 2 .1 8.8 Gras s seeded 4 .09 1.7 9 .3 5.54 1.8 10.4 Gras s seeded 11 .36 3.1 11 .5 15.43 3 .3 12 .9 Grass seeded -- 2.00 2 .2 5.7 2 .70 2.4 6.4 Grass seeded - 1.99 3 .1 4.8 2 .68 3 .3 5.4 Grass seeded - 2.50 3 .6 5.0 3 .37 3 .9 5.6 Grass seeded 3.34 3 .6 5 .8 4 .51 3.8 6.5 Grass seeded ----- 3 .74 2.4 7.5 5 .06 2 .6 8.4 Grass seeded 0 10 V10 d 10 0100 V 100 d100 D itch Lin i ng Material (c fs) (fps ) (in) (cfs) (fps) (in) 1.90 1.9 6.0 2.56 2 .0 6.7 Gras s seeded --- 1.42 2 .2 4 .8 1.92 2.4 5.4 Grass seeded - 0 .95 1.5 4 .7 1.2 8 1.6 5 .3 Gras s seeded 0.3 5 1.7 2 .8 0.47 1.8 3.1 Grass seeded 0 10 V 10 d 10 0100 V 100 d 100 Ditch Lin ing Materia l (cfs) (fps ) (in) (cfs) (fps) (in) 3.20 2.0 7 .6 4 .33 2 .2 8.5 Gra ss seeded 3 .94 3.6 6 .3 5.33 3.9 7.1 Gras s seeded 4 .6 0 3.4 7.0 6 .23 3.7 7.8 Grass seeded 5.05 4 .1 6 .6 6 .85 4.5 7.4 Grass seeded W illiams Creek Drive Right Ditch (n = 0.0 35) From To Slope Drainage Area # 0 10 V10 d 10 0100 V 100 d 100 Ditc h Lining Mate ri a l Station Station (cfs) (fps) (in) (els ) (fps) (in) 34+65 .61 35+25 .00 -0 .60 % 136,5 0.43 1.0 4 .0 0 .58 1.0 4 .5 Grass se eded - 35+25 .00 37+00 .00 -1 .87 % 136,5,6 1.04 1.9 4 .5 1.40 2 .0 5 .0 Grass seed ed -. -·· - 37+00 .00 37+68 .87 -0 .78 % 136,5,6 ,7 1.30 1.4 5 .7 1.75 1.5 6.4 Gra ss seed ed 37+6 8 .87 39+72 .87 -1 .26 % 136,5,6,7 ,8 1.99 1.9 6 .2 2 .68 2 .0 6 .9 Grass seeded - 39+72 .87 41+68 .87 2.21 % 9 0 .91 1.9 4.1 1.22 2 .1 4 .6 Grass seeded -- ----------- 42+42 .26 43+66.00 -0 .60 % 32 0.43 1.0 4 .0 0 .58 1.0 4 .5 Gras s seeded ------·--------- 43+66.00 45+70.00 -1.55 % 32,33 1.12 1.8 4 .8 1.5 1 1.9 5 .3 Grass seeded ·--------------------------------- 45+70 .00 46+35.00 2.14 % 34 0 .26 1.4 2.6 0 .3 5 1.5 2 .9 Grass seed ed --· ------· -------------------- 46+35 .00 48+50 .0 0 -4.70% 40 0 .73 2.4 3 .2 0.99 2 .6 3 .7 Grass seeded -----· ---------------------·----- 48+50.00 50+50 .0 0 -6 .00% 40,41 1.51 3.2 4 .1 2 .04 3.4 4 .6 Grass seeded -.. -------------· -·----------· ---- 50+50.00 53+00 .00 -4 .83% 40,4 1,42 2.76 3 .4 5.4 3 .72 3 .7 6 .1 Grass seeded --------·-· ---------------------- 53+00 .00 54+13 .34 -1 .59% 40,41,42,43 5 .31 2.6 8 .5 7 .16 2 .8 9 .5 Grass s eeded Lanham D r ive R ight Ditch (n = 0 .035) F rom To Slope Drainage Area # 010 V10 d 10 0100 V 100 d100 Ditch Lining Material Station Stati on (els) (fps) (in) (els) (fp s ) (in) 0+00 .00 1+50.00 1.30% 14 , 15 0 .9 1 1.6 4.6 1.22 1.7 5 .1 Grass seeded --·------· ------------ 1+50 .00 2+75 .00 2.35% 14 0.47 1.7 3 .2 0.64 1.9 3.6 Grass seeded ----·------ 3+50 .00 4+50.00 1.18% 22 ,23 0 .78 1.5 4.4 1.05 1.6 4 .9 Grass seeded -----·------ 4+50.00 5+26.35 2.86% 22 0.35 1.7 2.8 0 .47 1.8 3 .1 Grass seeded Wayne Court Right Ditch (n = 0 .035) F ro m To Sl ope Drainage Area # 010 V 10 d 10 0100 V 100 d100 Ditch Lining Material Station Station (els) (fp s ) (in) (els) (fp s) (in) 0+35.43 2+75.00 -1 .09% 16, 17 1.8 1 1.7 6 .1 2.44 1.9 6 .8 Grass seeded --------------- 2+75 .00 4+00 .00 -4 .38 % 16, 17, 18 3 .07 3.4 5 .7 4 .13 3 .6 6 .4 Grass seeded --------------------------- 4+00 .00 5+49 .14 -3 .53 % 16,17 ,18 ,19 4 .36 3.4 6 .8 5 .88 3 .6 7 .6 Gra ss s eed ed ------------------ 5+49 .14 6+67 .26 -5 .52% 16,17,18,19 ,20 5 .22 4 .2 6 .7 7 .04 4 .5 7 .5 Grass seeded W ill iams Creek Subdivisio n -P hase 4 Dit c h Ev aluati o n Data Area, c l e Area# A (acres) (min ) 1358 0 .54 0 .50 10.0 1358,C 0 .69 0 .50 11 .3 1358,C,D 0 .82 0 .50 130 1358.C ,D . 1 1.08 0 .50 138 13 58,C .D , 1.2 1.81 0 .50 15 .1 1358-D , 1,2 ,2A 3 .25 0 .50 15 .9 1358-D, 1.2.2A ,3 6 .84 0 .50 19 .0 136 0 .05 0 .50 10 .0 136,5 0 .10 0 .50 10 .0 136 ,5,6 0 .24 0 .50 10.0 -136,5 ,6 ,7 0 .30 0 .50 10 .0 -----136,5 ,6 , 7 ,8 0.46 0 .50 10.0 -- 9 0 .21 0 .50 10 .0 4 0.98 0 .50 17 .6 - 4,3A 2.36 0 .50 19.0 ---- 135A.29 1.21 0 .50 17 .0 135A,29 ,30 3 .65 0 .50 19 .9 -31 0 .50 0 .50 11 .9 32 0 .10 0 .50 10 .0 --- 32 .33 0.26 0 .50 10.0 ------- 34 0 .06 0.50 10.0 -·---· ---------- 35 0.46 0 .50 10 .0 ------------ 35 ,36 0 .63 0 .50 12 .2 ---- 35,36 .37 0 .88 0 .50 13.4 --------- 35 ,36 ,37 .38 1.02 0 .50 14.4 ---- 35 .36,37 ,38 ,39 1.15 0 .50 15.4 - 40 0 .17 0 .50 10.0 ----· -- 40,41 0 .35 0 .50 10 .0 ---------- 40,41,42 0 .64 0 .50 10 .0 ---------·- 40,41 ,42,43 1.23 0 .50 10 .0 ------------- 40,41 ,42,43,44 1.40 0 .50 10 .0 5 year storm Is O s (in/hr) (cfs) 7 .693 2 .08 7.293 2 .52 6 .837 2 .80 6 .643 3 .59 6 .354 5 .75 6 .190 1006 5 .636 19 .27 7 .693 0 .19 7 .693 0 .38 7 .693 0 .92 - 7 .693 1.15 7 .693 1.77 7 .693 0 .81 5 .872 2 .88 5 .636 6 .65 -- 5 .980 3 .62 5.495 10.03 7 .124 1.78 7 .693 0 .38 7 .693 1.00 7 .693 0 .23 -- 7 .693 1.77 --- 7 .043 2.22 - 6 .739 2 .96 6 .506 3.32 6 .292 3.62 7 .693 0 .65 7 .693 1.35 7 .693 2.46 7 .693 4.73 7 .693 5 .38 -------- 10 - 10 ,11 ·- 10 ,11 ,12 10 ,11 ,12 .13 22 22 ,23 22 ,23 ,24 22 ,23 ,24 ,25 22 .23.24 ,25 ,26 22 .23 .24 .25 ,2 6,27 22.23.24 ,25 ,26,27 ,28 16 16 ,17 16.17.18 16.17 .18.19 16 .17 .18 .19 .20 16 .17 .18 .19.20.2 1 14 14 .15 The Rational M ethod : Q = CIA 0 =Flow (cfs ) A = Area (acres ) C = Run o ff C o eff . I = Ra infa ll Int e n sit y (in/h r) Brazos Coun ty . ~ear s torm ll = 76 0 .08 0 .50 10 .0 7.693 0 .31 -----0.22 0.50 10.0 7 .693 0 .85 ------------ 0.33 0 .50 10.0 7 .693 1.27 -·-------0.44 0.50 10 .0 7.693 1.69 -------0 .08 0 .50 10.0 7 .693 0 .3 1 -----0 .18 0.50 10 .0 7.693 0 .69 0 .89 0 .50 15 .0 6 .376 2 .84 1.12 0 .50 15 .7 6 .230 3.49 -1.34 0 .50 16 .5 6 .073 4 .07 1.50 0 .50 17 .1 5 .961 4.47 1.57 0 .50 17 .5 5 .889 4 .62 0 .05 0 .50 10.0 7 .693 0 .19 -0.42 0 .50 10.0 7 .693 1.62 0 .71 0 .50 10.0 7 .693 2 .73 1.01 0 .50 10.0 7 .693 3 .88 1.21 0 .50 10.0 7 .693 4 .65 1.26 0 .50 100 7 .693 4 .85 0 .11 0 .50 10 .0 7 .693 0.42 0 .21 0 .50 10 .0 7 .693 0 .8 1 I = b I (lc+d)0 le = Time of con ce ntra ti o n (min) 10 ear storm h = 80 £.li.~~11 storm h = ,<>,(1 l! = (I 7~) I ; = (I 7G,, 10 year storm 25 year storm 50 year storm 1,. (in /hr) 8 .635 8 .199 7.699 7.487 7.171 6 .991 6 .381 8 .635 8 .635 8 .635 8 .635 8 .635 . - 8 .635 6 .640 6 .381 6.759 6 .226 8 .014 8 .635 8 .635 8 .635 ·- 8 .635 - 7 .925 7 .592 7.337 7 .102 8 .635 8 .635 8 .635 8 .635 8 .635 -- 8 .635 -- 8 .635 8 .635 8 .635 8 .635 8 .635 7 .194 7 035 6 .862 6 .739 6 .660 8 .635 8 .635 8 .635 8 .635 8 .6 35 8 .6 35 8 .6 35 8 .635 o,. 1,, (cfs) (in /hr) 2 .33 9 .861 2 .83 9 .369 3 .16 8 .805 4 .04 8 .566 6.49 8 .208 11 .36 8 .004 21 .82 7.314 0.22 9 .86 1 0.43 9 .861 1.04 9 .861 1.30 9 .861 1.99 9 .861 0 .91 9 .861 3.2 5 7.608 7 .53 7.314 4 .09 7.742 11 .36 7 .138 2 .00 9 .161 0.43 9 .861 1.12 9 .861 0 .26 9 .861 1.99 9 .861 2 .50 9 .060 3 .34 8 .684 3.74 8 .396 4 .08 8 .130 0 .73 9 .861 1.51 9 .861 2.76 9 .861 5 .31 9 .861 6 .04 9 .861 0 .35 9 .861 - 0 .95 9 .861 - 1.42 9 .861 1.90 9 .861 0 .35 9 .861 0 .78 9 .86 1 3 .20 8 .234 3 .94 8 .054 4 .60 7.859 5 05 7.719 5 .23 7.6 30 0 .22 9 .861 1.8 1 9 .861 3 .07 9 .861 4 .36 9 .861 5 .22 9 .861 5.44 9 .86 1 0.47 9 .86 1 0 .9 1 9 .86 1 tc = L/(V *60) L = Le ngth (ft O zs lso Oso (cfs) (in/hr) (cfs) 2 .66 11 .148 3 .01 3 .23 10 .598 3 .66 3 .61 9 .967 4 .09 4.63 9 .699 5 .24 7.43 9 .298 8.42 13 .01 9 .070 14 .74 25 .01 8 .297 28 .38 0 .25 11 .148 0 .28 0 .49 11 .148 0 .56 1.18 11 .148 1.34 - 1.48 11 .148 1.67 - 2 .27 11 .148 2 .56 --- 1.04 11 .148 1.17 3 .73 8 .626 4 .23 8 .63 8 .297 9 .79 ---- 4 .68 8 .777 5 .3 1 -- 13 .03 8 .100 14 .78 ---- 2 .29 10 .365 2 .59 0.49 11 .148 0 .56 - 1.28 11 .148 1.45 --- 0 .30 11.148 0 .33 ·-- 2 .27 11.148 2 .56 - 2.85 10 .252 3 .23 ---- 3 .82 9 .831 4 .33 ·--·- 4 .28 9 .509 4 .85 ---- 4 .67 9 .211 5 .30 -- 0 .84 11.148 0 .95 ---- 1.73 11 .148 1.95 -- 3.16 11 .148 3 .57 ---- 6 .06 11 .148 6 .86 ------ .!':~ 11 .148 7 .80 0 .39 11 .148 0.45 ----------- 1.08 11 .148 1.23 ------ 1.6 3 11.148 1.84 --- 2.17 11 .148 2.45 --- 0 .39 11 .148 0.45 0 .89 11 .148 1.00 3.66 9 .328 4 .15 4 .51 9 .126 5 .11 5 .27 8 .908 5 .97 5 .79 8 .752 6 .56 5 .99 8 .651 6 .79 0 .25 11 .148 0 .28 2.0 7 11 .148 2 .34 3 .50 11 .148 3 .96 4 .98 11 .148 5 .63 5 .97 11 .148 6.74 6 .21 11 .148 7 .02 0 .54 11 .148 0 .61 1.04 11 .148 1.17 V = Ve locity (ft /sec ) 50 ea r storm I 00 vear s to rm h = 96 <I= B () I ! = (I J:\(1 100 year storm 1, •• o, •• (in /hr) (cfs) 11 .639 3.14 11 .062 3.82 10.400 4 .26 10 .120 5.47 9 .701 8 .78 9.463 15 .38 8 .657 29 .61 11 .639 0 .29 11 .639 0 .58 11 .639 1.40 - 11 .639 1.75 11 .639 2.68 11 .639 1.22 9 .000 4.41 8 .657 10 .22 9 .157 5 .54 8.452 15.43 10 .817 2 .70 11 .639 0 .58 11 .639 1.51 11 .639 0 .35 11 .639 2.68 10.700 3.37 10 .258 4 .51 9 .922 5 .06 9 .610 5.53 11 .639 0 .99 11 .639 2 .04 11 .639 3 .72 11 .639 7.16 11 .639 8 .15 - 11.639 0.47 11 .639 1.28 - 11 .639 1.92 11 .639 2 .56 11.639 0.47 11 .639 1.05 9 .732 4 .33 9 .521 5 .33 9 .294 6 .23 9 .131 6.85 9 .026 7.09 11 .639 0 .29 11 .639 2.44 11 .639 4 .13 11 .6 39 5 .88 11 .639 7 04 11 .6 39 7 .33 11 .6 39 0 .64 11 .6 39 1.2 2 APPENDIX E Detention Pond #3 Design Information SCS Curve N umber C alculati ons Pond -Pre-Develop ment Drainage Area -102 Area -A c . 17 .74 sq . m i . 0 .0277 T c = 44 .7 Lag = L = 0.6Tc = 26 .8 min = 0.447 hrs Land Use Gravel Road Woods -Good Pasture-Fair Total -CN II Average Runoff condition CN = CN I = 61 Area -Ac. 0 .12 14 .10 3 .52 17 .74 ARC CN = CN I + 0 .70(CN II -CN I) Weighted CN II CN 89 0 .6 77 61 .2 84 16.7 78 .5 73 .2 SCS Curve Number Calculations Pond -Post Development Drainage Area -500 Area -Ac . sq . mi. 14.75 0 .0230 Tc= 36 .1 Lag = L = 0 .6Tc = Land Use 1 Acre Lots 1 Acre Lots Total -CN II 21 .7 min= Soil Type Area -Ac. c D 0.47 14.28 14.75 Average Runoff condition CN = CN I= 67 .8 ARC CN = CN I+ 0.70(CN II -CN I) Drainage Area -501 Area -Ac. sq. m i. 1.37 0 .0021 Tc= 10 .0 Lag= L = 0 .6Tc = 6 .0 min= Land Use Soil Type Area -Ac. Gravel Road 1 Acre Lots 1 Acre Lots Pasture-fair Total -CN II D c D D Average Runoff condition CN = CN I= 67 .3 ARC CN = CN I + 0 .70(CN II -CN I) 0 .12 0 .32 0 .53 0.40 1.37 0 .361 hrs Weighted CN II CN 79 2 .5 84 81 .3 83 .8 79.0 0.1 hrs Weighted CN II CN 89 7 .8 79 18 .5 84 32 .5 84 24 .5 83 .3 78.5 Williams Creek Subdivision Phase 4 Detention Pond Pond Area-Capacity Data with Proposed Contours V = H * {[A1+A2 + (A1*A2)112] / 3} V = volume , ft 2 A = area , ft2 H = difference in elevation , ft Detention Pond 3 Area -Capacity Data Elevation Depth Area Area Volume Cumulative 90% Cumulative Volume Volume (ft) (ft) (ft2) (acres) (ac-ft) (ac-ft) (ac-ft) 261 .50 0 .00 0 .00 0 0 0 0 .00 -----·----·--------·-------·----· ----- 262 .00 0 .50 _!_S_0_15 .00 0 .2758 0 .046 0 .05 0.04 ------------------ 263 .00 1.50 32,162 .00 0 .7383 0.488 0.53 0.48 --~-------· 264 .00 2.50 ~§22.?§_.00 0 .8277 0 .783 1.32 1.19 -------------------· --- 265.00 3 .50 41,972 .00 0 .9635 0 .895 2 .21 1.99 Williams Creek Subdivision -Phase 4 Detention Pond No. 3 Outlet Pipe 2-24" HOPE Pipes @ 1.0% with concrete S .E.T .'s Elevation -Discharge Data Inlet Control Elevation Culvert Depth Q (ft) (ft) (cfs) 261 .5 0 0 -----·--·- 262 0 .5 2 .0 ·---~-----1---- 263 1.5 15.2 264 2.5 33 .2 ----1----------- 265 3 .5 46.2 EXHIBIT A Pre-Development Drainage Area Map -Detention Pond C ITY 01' C OLLEGE STt \TION !'/111mi11g & /),·url11p 111n// Srn•ias (Check one) D Minor ($300.00) ~~ FOR OFFICE USE _ON}-)"1 P&Z CASE NO .: (!}S 'Vf DATE SUBMITTED : 0J.-~ -0.:5 FINAL PLAT APPLICATION D Amending ($300.00) (fr"" Final D Vacating D Replat {$400 .00) t ($400 .00) ($60 0 .00 )* l 1.-\.<,, I l.-X-tfet o:;\t\ee; ·inc ludes pub lic hearing fee "'-~~~~~~~~~~~~~~~~~..._. ............... The following items must be submitted by an established filing deadline date for P&Z Commission consideration. MINIMUM SUBMITTAL REQUIREMENTS: . L Filing Fee (see above) NOTE : Multiple Sheets -$55.00 per additional sheet -W--~pcJrc:'.J\ ~\ N {ti... Variance Request to Subdivision Regulations -$100 (if applicable) :=:. $5<; £!.' v ~ Development Permit Applicat ion Fee of $2 00 .00 (if applicable) . ./ ~ Infrastructure Inspection Fee of $600 .00 (applicable if any public infrastructure is being constructed) V Application completed in full. ~Copy of original deed restrictions /covenants for replats (if applicab le). v / Thirteen (13) folded copies of plat. (A signed mylar orig inal must be submitted after staff review.) -=--One (1) copy of the approved Preliminary Plat and/or one (1) Master Plan (if applicable). V ~ Paid tax certificates from City of College Station , Brazos County and College Station l.S .D . V' ~ A copy of the attached checklist with all items checked off or a brief explanation as to why they are not. ti ~ Two (2) copies of public infrastructure plans associated with this plat (if applicable). , ~ Parkland Dedication requirement approved by the Parks & Recreation Board, please provide proof of ~\\' approval (if applicable). ~f.JI Date of Preapplication Con!erence: f ..e1:>Y-\.AD..,lf'j Cf 1 Za::fr D-SY' NAME oF suBD1v1s10N W ,\ \\CLW\S Cv-.e.o k SA k}d Iv\ si~ J?rn>e..,lt=: Q.StP 1t I • SPECIFIED LO<;ATION OF PROPOSED SUBDIVISION (Lot & Block) Sru{h of ~oJv-\e RJ fu<:.t ~tuJe,.a.Yl ·1LD~· rv-~v-le.,, ~ \ CaA.-.-1-RA.'~ Ur~. APPLICANT/PROJECT MAN AGER 'S INFORMATION (Primary Contact for the Project): Name .Joe.. S, h.V\e;\-Joh.vi~ ~d { ::kvl~v~e s'"""· kl'-'--'-~e.,'-V"-_o_h,_,_,· ,,.__,/.,""-'-'.p-'.------- Street Address 14 0D So,)-th Co INlwrKcA aJ <Jh-.e.e ± Cit~ Co k-wi~ .. y-1 State =t"'K Zip Code '14;0 ~4: E-Mail Address ------------- Phone Number (3z,.s') (o '"2..-'$-2\ L-4 Fax Number (~-z..s) /aZS -5<o ]L PROPERTY OWNER 'S INFO RMATION : Name ),'lf S Jo._V'\f:X ~o~ L0-.-Vld !! Tu~'l'::tc.i=_s.2..1±m~-e.""'/:.:_v-X"-'--"'s:....-:L----'.?_. _______ _ Street Address I ltOQ $od..\'b ( OMV'V\£. yc.,le; <Q 4-ll± Cit~ (0 la W) t;.>.I) State :r'X Zip Code ·-z (o</) 3 4--E-Mail Address --~---------- Phon e Number (?l...-S) (o--Z..,S -2.\ LA-Fa x Number ("""32-S) l.;L.S-~b (2- ARCHITECT OR ENGINEER 'S INFORMATION : Nam e "i~Y\ -~,,_H!: ]'.£- Street Address01 G TuJ State :tY-ZiR Co de Ph o ne Number (j1Ct) l(c,J}....-/(4"~ E-Mail Address 6/13/03 1 .- Ma~ 27 05 09:33a Texcon En~ineerin~ Div. 979-764-7759 p.3 ' I j" j ,39 4-~(..... 0 \ {'Jo( 'iV'-~ w4'"_,J.ic:A..+ ;r-r-> / o.oe5 o ·f p .... hltc.. jW Is there a t e m porary b lanket easemen t 'lf th is property? If so , p lease provi de th e V o lume (0 (\ an d P age#--==- Acre~ge --To tal Property 3 5'. 9 lo D ~ Tota l #Of .Lots Z 3 R -0 -W Acreage 5. 2 1 c:tC. . Existing Use :. \Ii \.( a.. V\4-Proposed Use : V-1.A. .,-• .,_\. ~~ ,.,.-Jli:_ f..,t..VVV.:L 1 .re .:,,~ .,-l e v-t ~< ,j Number Of L ots By Zonin g District 2-3 I A o~~ 1 __ _ Ave rage Acreage Of Each Residefltjal Lot By Zoning D i strict : /,. Z.0at,.1 f>.-o ~ g_ Floodplain Acreage ___ O ____ _ A statement addressing any differences between the F inal Plat and approved'Master?lan .and/or P reliminary-Prat tif applicable}: 12.oa.M ~-: =X:B}: ~J./["V\ c nc ~.'°S~ cJ c;L.·'04S . L -r .ic c -b "-""::Y'? -f -fi-ie_ vi'"'-na~ cf loh_ ~dl-u <. p::bh~- Total Linear· Footage of. Proposed Public: 3?>fu ' Streets Sidewalks Sani~ry Sewer Lines Water Lines Channels Storm Sewers ({:y..\lf<<Ts Bike Lanes I Paths Parkland.Dedication due prior to filing th_e Final Plat: ACREAGE ___ #of acres to be dedicated + $ ____ development fee ___ # of acres in floodplain ___ -#of acr-es in detention ___ # of ac res in greenw.ays OR FEE IN UEU OF LAND : 2.3 #of Single-Fami ly Dwelling Units X $556 = $ IZ1 100~ +p /200+ (date ) Approve d by Parks & Recreation Board NOTE : DIGITAL COPY OF PLAT MUST BE SUBMITTED PRIOR TO FILING. The applicant has prepared this application and certifies that the facts st al ed here in and exbi.b.i1.s .attached hereto are true . correct. and complete . The undersigned hereby reque sts -approval by th e City of College Station of th e ab ove -identified final plat and attests that this request does not amend any c ovenants or res trictiom; associated with this plat. slz~/os Da1e 1 1 ;;.'\J iO J Ma~ 27 05 09:46a Texcon Engineering Div. 979-764-7759 p. 1 SUPPLEMENTAL DEVELOPMENT PERMIT INFORMATIQN Applicatton is hereby made for the following development specific sitefwaterway aJterations : ,,'V \~\l l'-N"CS Crt2<k S i.-'-\?,j."1\i.i"itc-Y> (he~><-~ -du:A-;oJ v-oc,_J._·..,_,,t:"J d ·rMcic~j:e l ) , t:t--'-"d W(.j:t~_.LL,.l\..L (.£YJ"·Lfy-..A{, ... h ~ ACKNOWLEDGMENTS: I, __ J=.;o..."""'"'>A'-""'t'.........,J._"""J~-::-'-~-""---'-:-X=:;_,V"\_,_ _____ . design engineerf~wner, hereby acknowledge or affirm that: The information and conclusions contained in the above p lans and supporting doc uments comply wi th the current requirements of the City of College Station, Texas City Code, Chapter 13 and its associated Drainage Policy -aoo Desigr.i Standards. As a conditi on of approval of this permit ·application ; I agi:ee to construct the impro-vements proposed in this plic ion according to these and the requirements of Ch ter 13 of· C I St ion City Code. ~'Vy</ie.e:...< TIFICATIONS: (for proposed alterations within designated flood hazard areas.) A.I, certify that any nonresidential structure on or p.roposed to be on this site as part of this application is designated to prevent damage to the structure or its contents as a result of flooding from the W.0 year .storm . Engineer Date 8. I. certify that the fin ished floor elevation of the-lowest floor . incl ud ing any basement, of · any residentia l structure.. proposed as part of this application is at or above the base flood elevation established in the latest Federal Insurance Administration Flood Hazard Study and maps, as amended". Engineer Date Conditions or comments as part of approval :----------------------------- In accordance with Chapter 13 of the Code of Ordinances of the-City of C ollege Station. measures shall be taken to insure that debris from construction . erosion, and sedimentation shall not be deposited in city streets . or existing drai~ facilities . All development shall be in accordance with the plans and speci fications submitted to and approved by the City Engineer for the above named project. All of the applicable codes and ordinances of the Cili( o f College Sta!ion shall ~pp ly . .. 6/13/0J --------· ---· SUBMI T APPLICATION AND THIS LIST CHECKED OFF WITH 13 FOLDED COPIES OF PLAT FOR REVIEW CrrY oi: Cou.L:c 1: STATION P/J111uin.e, d-Or1:,,,/1~pmf'11 t .\·,.rllir1·J FINAL PLAT MINIMUM REQUIREMENTS {ALL CITY ORDINANCES MUST BE MET} INCLUDING BUT NOT LIMITED TO THE FOLLOWING: (Requirements based on field survey and marked by monuments and markers.) G( 1. Drawn on 24 " x 36" sheet to scale of 100 ' per inch or larger. Q · · 2. Vicinity map which includes enough of surrounding area to show general location of subject property in relationship to College Station and its City Limits . No scale required but include north arrow . ~1 3 . Title Block with the following information: [2] Gd"" [CJ/' Gl 6i 13 /03 4 . 5. 6. 7 . Gr Name and address of subdivider, recorded owner, planner, engineer and surveyor. G2l Proposed name of subdivision . (Subdivision name & street names will be approved through Brazos County 911 .) (Replats need to retain original subdivision name .) Date of preparation . Engineer's scale in feet. Total area intended to be developed . North Arrow . Subdivision boundary indicated by heavy lines . If more than 1 sheet, an index sheet showing entire subdivision at a scale of 500 feet per inch or larger. All applicable certifications based on the type of final plat. B'/ G 0 · 8' Er Ownership and Dedication Surveyor and/or Engineer City Engineer (and City Planner, if a minor plat) Planning and Zoning Commission (delete if minor plat) Brazos County Clerk -ff Brazos County Commissioners Court Approval (ET J Plats only) 8 . Paid tax certificates. 9 . If submitting a replat where there are exis ting improvements , submit a survey of the subject property showing the improvements to ensure that no encroachments will be created . 10 . If using private septic systems , add a general note on the plat that no private sewage facility may be installed on any lot in this subdivision without the issuance of a license by the Brazos County Health Unit under the provisions of the private facility regulations adopted by the Commissioner's Court of Brazos County , pursuant to the provisions of Section 21.004 of the Texas Water Code . 11 . Location of the 100 Year Floodplain and floodway , if applicable , according to the most recent avai lable data. 12 . Lot corner marke rs and survey monuments (by symbol) and clearly tied to basic survey data . 13 . Matches the approved preliminary plat and /or maste r development plan . 14 . The location and description with accurate dimens ions . bearings or deflection angles and radii , area, center angle, degree of curvature , tangent distance and length of all curves for all of ~he following : (Show existing items that are intersecting or contiguous with the boundary of o r forming a boundary with the subdivision , as well as , those w ithin the subdivision). Existi ng Proposed Q/-[j Streets . Continuous or end in a cul-de-sac , stubbed out streets must end into a temp turn around unless they are shorter than 100 feet. d Ef Public and private R.O.W. locations and widths . (All existing and proposed R.O .W.'s sufficient to meet Thoroughfare Plan .) Street offsets and/or intersection angles meet ordinance. Alleys . Easements . A number or letter to identify each lot or site and each block . Greenbelt area/park linkages/parkland dedication ( All proposed dedications must be reviewed by the Parks and Recreation Board prior to P & Z Commission consideraticm .) d 15. Construction documents for all public infrastructure drawn on 24 " x 36 " sheets and properly sealed by a Licensed Texas Professional Engineer that include the following: -8- Street, alley and sidewalk plans, profiles and sections. One sheet must show the overall street. alley and/or sidewalk layout of the subdivision. (may be combined with other utilities). Sanitary sewer plan and profi le showing depth and grades. One sheet must show the overall sewer layout of the subdivision . (Utilities of sufficient size/depth to meet the utility master plan and any future growth areas .) Water line plan showing fire hydrants. valves, etc . with plan and profile lines showing depth and grades. One sheet must show the overall water layout of the subdivision . (Utilities of sufficient size/depth to meet the utility master plan and any future growth areas.) £1 Storm drainage system plan with contours, street profile, inlets, storm sewer and drainage channels, with profiles and sections. Drainage and runoff areas , and runoff based on 5, 10, 25, 50 and 100 year rain intensity. Detailed drainage structure design , channel lining design & detention if used . One sheet must show the overall drainage -Iv b(... si.Ji~~ layout of the subdivision . ,J-.f~~ Detailed cost estim7tes for all ~blic infrastructure listed above sealed by Te xas P.E . . .t:::r NOTE: 6/13 /03 B' Drainage Report. l Zu.pi e,,> ~ Erosion Control Plan (must be · eluded in construction plans). 16 . All off-site easements necessary for infrastructure construction must be shown on the final plat with a volume and page listed to indicate where the separate instrument easements were filed . Separate instrument easements must be filed prior or concurrently with Final Plat. 17 . Are there impact fees associated with this development? D Yes ~ No Impact fees for R-1. R-2. & R-3 zoned final plats, must be paid prior to filing . 18 . Will any construction occur in TexDOT rights-of-way? D Yes ,0 No If yes, TexDOT permit must be submitted along with the construction documents . 1 . We will be requesting the corrected Final Plat to be submitted in digital form if available prior to filing the plat at the Courthouse . 2 . If the construction area is greater than 5 acres , EPA Notice of Intent (NOi) must be submitted prior to issuance of a development permit.