Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
28 DP Dove Crossing 05 - 59 Graham Rd.
./- Design Report Waterline Fire Flow Analysis for Dove Crossing Subdivision Phase 2 College Station, Texas November 2005 Prepared By: TEXCON General Contractors 1 707 Graham Road College Station, Texas 77845 (979) 764-7743 1.0 INTRODUCTION & DESCRIPTION The purpose of this report is to provide a description of the proposed waterlines to be constructed with the Dove Crossing Subdivision -Phase 2, and to provide the results of the analysis of the waterlines und e r fire flow conditions. The proposed waterline to s upply th e site will connect to the existing 8" lines constructed with Phases 1 A, 1 B & 1 C of the subdivision. The water main will be constructed using 6" and 8" diameter pipe . The waterline for this project will be constructed ofDR-14, PVC pipe meeting the requirements of A WW A C -90 9 with mechanical joint fittings . 2.0 FIRE FLOW REQUIREMENTS The flow required for fire hydrant flow for the subdivision is 1,0 00 gallons per minute (gpm). 3.0 WATERLINE SYSTEM ANALYSIS The waterline system was analyzed using the WaterCAD computer program developed by Haestad Methods, Inc . A normal domestic use flow of 1.5 gpm was included in the analysis for each of the 172 residential lots for Phases 1 and 2. This results in a normal demand of 259 gpm, which was included in the analysis . The residual pressure in the existing 12 " waterline was determined by calculating the headloss at a flow of 2 ,190 gpm for the existing line . Exhibit "A-1 ",in Appendix A, presents the results of a pressure/flow test from fire hydrants connected to the ex isting 12 " waterline along Graham Road . A static pressure of 9 1 psi and a residual pressure of 89 psi with the hydrant flow at 1,500 gpm were determined by College Station Public Utility personnel. The residual pressure of 87 psi at a flow of 2, 190 gpm was calculated using the following equation: Where : QR = Q available @ desired residual pressure QF = Q during fire flow test HR =pressure drop to desired residual pressure HF = pressure drop during fire flow test This results in a residual pressure of 87 psi where the proposed waterline will connect to the 12" waterline. The hydraulic grade was set at this pressure at the start of the proposed waterline, Junction R-1. Although 2, 190 gpm is not needed for the subdivision., the residual pressure for this flow was used because it results in a conservative value for th e residual pressure . The computer model was run with a fire flow of 1,000 gpm at the proposed hydra nt location. Ex hib it 1 is a schematic of the propo sed waterlines for Phas es I and 2, and it also shows the location of the fire hydrant proposed for Phase 2. Ex hibit 2 is a summary of the pipe syste m junc tion nod es with th e fire flo w at Fir e Hyd ra nt No.6. The low est residual pressure occurred in the sys te m at Jun ct ion J-25. The pressure at this point is es timated by th e model to be 87.7 psi, which exceeds th e minimum of 20 p s i required by th e TCEQ regul atio ns. Ex hibit 3 is a s umm a ry of th e pip e sec tion s for the system und e r thi s de mand scenario. Exhibit 4 is a summary of the pipe system with the fir e fl ow a t F ire Hydrant No.6, showing the m aximum waterline velocities. The maximum ve locity for th e 6" wa te rlin e is 7 .2 feet pe r second , and occurs in Pip e P-13 , and the maxi mum velocity for the 8" wa terline is 5 .1 fps and occurs in Pipe P-34 . A separate analysis was not run for th e domesti c use of 1.5 g pm p er unit for the s ubdi vis ion , since the minimum residual pressure was 87.7 psi for th e fire flow , which exceed s the minimum press ure of 35 psi re quired by TCEQ . Minor losses in this syste m were not calculated, as th ey were assumed to be insignificant. 4.0 CONCLUSIONS The waterlines proposed for this d eve lo pment sh o uld adequately provi de th e fire flow re quire d w ith acceptable va lu es for headlo ss and ve locity . This analysis was done ass uming adequate residual pressure in the existing 12 " water main , as de te rmine d by the flow test. 2 Appendix "A" Fire Hydrant Flow Test Data COLLEGE STAT £0N PUB .l!fL . 1601 GRAHAM ROAD COLLEGE STATION TEXAS 77845 Date: 6 AUGUST 2004 Number pages including cover sheet-I Fax to: 764-7759 Attention: JOE SCHULTZ Company: TEXCON From: Butch Willis Water Wastewater Division Phone: 979-764-3435 Fax: 979-764-3452 FLOW TEST REPORT Nozzle size: 2.5 inch Location: GRAHAM RD Flow hydrant number: Q-036 Pitot reading: 80 (GPM): 1500 Static hydrant number: S-023 Static PSI: 91 Residual PSI: 89 NOTE: This is the one you handed us this morning @ OOl /OO L Scenario: Base J-28 J-2 1 (H~ q,, ... "'"' <r J-29 R-1 ... . , J-1 "' J-2 "'J fl\\ ,., <r ,., 15 ~ ~ J-16 FH 3'1 "'• ::: J-17 J-9 ... . ,0 .., 13 ·' J-10 -<!:,,, J.11 ,() .,., J-12 ,<> 3 14 '\>o J-19 (( " I Tit le: Dove Crossing Plla se 1 0:1 . \pro j\c t 70 clove cros s in y p t 1 :~1 p 11;i se2 .w cc t Texco n Gc n e r ~1I Contracto r s ·t 11 1 !l/OS I I . 16 : '.i3 AM ID H <1 e~;i;i , I Metho d s. In c :1 -; Br""ksi d e Ro;ic.t vV:ll•:iln ir y . CT OG7011 USA J-22 J-23 J-25 J-24 J-31 J-30 J-32 r>ro ject E nginee r . Joe Sclluttz Wale r CAD v !l S l 1.i .'.i120j! Label Elevation Zone Type Base Flow (ft) (gpm) J-1 301 .36 Zone Demand 0 .00 J-2 301.40 Zone Demand 0 .00 J-3 302 .39 Zone Demand 21 .00 J-4 301 .95 Zone Demand 0 .00 J-5 301 .25 Zone Demand 0 .00 J-6 301 .18 Zone Demand 0 .00 J-7 300 .84 Zone Demand 0 .00 J-8 300 .31 Zone Demand 0 .00 J-9 299.66 Zone Demand 0 .00 J-10 299.39 Zone Demand 0 .00 J-11 299.13 Zone Demand 0 .00 J-12 297.55 Zone Demand 0 .00 J-13 299.67 Zone Demand 35 .00 J-14 298 .06 Zone Demand 0 .00 J-15 301 .56 Zone Demand 0 .00 J-16 301 .56 Zone Demand 0 .00 J-17 301 .54 Zone Demand 31 .50 J-19 296.19 Zone Demand 0 .00 J-20 301 .15 Zone Demand 0 .00 J-21 294 .74 Zone Demand 64 .50 J-22 296.00 Zone Demand 0 .00 J-23 293.4 0 Zone Demand 61 .50 J-24 295 .34 Zone Demand 0 .00 J-25 295 .64 Zone Demand 0 .00 J-26 302 .29 Zone Demand 0 .00 J-27 301 .13 Zone Demand 0.00 J-28 292 .67 Zone Demand 0 .00 J-29 297 .67 Zone Demand 1,000.00 J-30 293.66 Zone Demand 35 .00 J-31 293.63 Zone Demand 0 .00 J-32 291 .44 Zone Demand 10 .50 J-33 298.16 Zone Demand 0 .00 Ti l le · D ove Cross ing P l l ilSP. I q:I . l p ro jlP.170 cl ove Cf0$''" 111 pl 1 2 1 p l1 ;01se2 w cc l I I• I Hl()S I I : 17 ·26 AM. ·I 1;11•!'\ii<I Mr•tl1(J(IS. l11r : Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fi xed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Scenario: Base Steady State Analysis Junction Report Pattern Demand Calculated Calculated rlydraulic Grad (gpm) (ft) 0 .00 505.47 0 .00 505.44 21.00 505 .36 0 00 505 .28 0 .00 505 .15 0 .00 505 .14 0 .00 505 .10 0.00 505 .05 0 .00 504 .99 0 .00 504 .95 0 .00 504 .95 0.00 504 .95 35 .00 504 .27 0 .00 505.10 0 .00 505 .34 0 .00 505 .33 31 .50 505 .32 0 .00 505.10 0 .00 504.06 64 .50 50 2.48 0 .00 502 .11 61 .50 502 .07 0 .00 501 .55 0 .00 502 .07 0.00 504 .89 0 .00 503.79 0 .00 502.48 1,000.00 494.07 35 .00 499 .99 0 .00 500 .28 10.50 500 .28 0 .00 505 .09 (( " 2- TcK c o11 G c n c r<J I C o nt r ac to r s Pressure l (psi) 88 .31 88 .28 87 .81 87 .97 88 .22 88 .24 88 .38 88.58 88.84 88.94 89.05 89 .73 88 .52 89 .58 88 .16 88 .16 88 .16 90 .39 87 .79 89 .88 89 .17 90 .28 89 .22 89 .31 87 .66 87 .68 90.78 84 .97 89 .27 89.41 90 .35 89.53 :r1 n11H>k~:1rl·· ;.: 1.1d 1.".'<tlr·d1111y. er o•.?nn usr, l'ro,ecl E n g ineer .!De Scllllll .' W ;1l e 1C/\f) ·,{; r, 11 ; :,1 /!111 I' 1q11 I <1f I Label Length ~ia mete1 Material Hazen-Check (ft) (in) William~ Valve? c P-1 177 .00 12 .0 PVC 150.0 false P-2 23 .00 12 .0 PVC 150.0 false P-3 74 .00 12 .0 PVC 150.0 false P-4 67 .00 12 .0 PVC 150.0 false P-5 109 .00 12 .0 PVC 150 .0 false P-6 11 .00 12 .0 PVC 150.0 false P-7 54 .00 12 .0 PVC 150.0 false P-8 78 .00 12 .0 PVC 150.0 false P-9 87 .00 12 .0 PVC 150.0 false P-10 59 .00 12 .0 PVC 150.0 false P-11 41 .00 12 .0 PVC 150.0 false P-12 120 .00 12 .0 PVC 150.0 false P-13 28 .00 6 .0 PVC 150.0 false P-14 357 .00 6 .0 PVC 150.0 false P-15 173 .00 6.0 PVC 150 .0 false P-16 4 .00 6 .0 PVC 150.0 false P-17 20.00 6 .0 PVC 150.0 false P-18 545 .00 6 .0 PVC 150.0 false P-19 19 .00 6.0 PVC 150 .0 false P-20 125 .00 6.0 PVC 150.0 false P-21 592 .00 8 .0 PVC 150.0 false P-22 663 .00 8.0 PVC 150 .0 false P-23 221 .00 8 .0 PVC 150.0 false P-24 19 .00 8.0 PVC 150.0 false P-25 165.00 8 .0 PVC 150.0 false P-26 160 .00 8 .0 PVC 150.0 false P-27 93 .00 6 .0 PVC 150.0 false P-28 412 .00 6 .0 PVC 150.0 false P-29 646.00 6 .0 PVC 150.0 false P-30 169.00 6 .0 PVC 150.0 false P-31 468 .00 6 .0 PVC 150.0 false P-32 558.00 6.0 PVC 150.0 fal se P-33 23 .00 6.0 PVC 150.0 false P-34 98 .00 6.0 PVC 150.0 false P-35 179.00 6 .0 PVC 150.0 false Scenario: Base Steady State Analysis Pipe Report Minor Control bischarg4 pstream Stru ctil Loss Status (gpm ) Hydraulic Grade ~oeffi cien (ft) 0 .00 Open 1,259.00 506 .00 0 .00 Open 775 .12 505.4 7 0 .00 Open 775 .12 505.44 0 .00 Open 754 .12 505 .36 0 .00 Open 754 .12 505 .28 0 .00 Open 754 .12 505 .15 0 .00 Open 562.71 505.14 0.00 Open 562 .71 505 .10 0 .00 Open 562 .71 505 .05 0.00 Open 562.7 1 504 .99 0 .00 Open -68 .17 504 .95 0 .00 Open 000 504 .95 0 .00 Open 6 30 .89 504 .95 0 .00 Open 68 .17 505 .09 0 .00 Open 99 .68 505 .47 0 .00 Open 99 .68 505 .34 0 .00 Open 99 .68 505.33 0 .00 Open -68 .18 505 .10 0 .00 Open 68 .17 505 .10 0 00 Open 0 .00 505 .10 0 .00 Open 384 .2 1 505.47 0 .00 Open 384 .2 1 504 .06 0.00 Open 319 .71 502.48 0 .00 Open 319 .71 502 .11 0.00 Open 449 .61 502 .07 0 .00 Open 0 .00 502 .07 0 .0 0 Open 191.41 505 .14 0 .00 Open 191.41 504 .89 0 .00 Open 191.41 503 .79 0 .00 Open 0 .00 502.48 0 .00 Open 595 .89 504 .27 0 .00 Open -404 .11 494 .07 0.00 Open -439 .11 499 .99 0.00 Open -449 .6 1 500 .28 0 .00 Open 10 .50 500 .28 wwnstream Structu e>ressure Headloss Hydraulic Grade Pipe Gradient (ft) Headlos~ (ft/1 OOOft) (ft) 505.47 0 .53 2 .98 505.44 0 .03 1.21 505 .36 0 .09 1.2 1 505 .28 0 .08 1.15 505 .15 0 .13 1.15 505 .14 0 .01 1.15 505 .10 0 .04 0 .67 505 .05 0 .05 0 .67 504 .99 0 .06 0 .67 504 .95 0 .04 0 .67 504 .95 0.00 0 .01 504 .95 0 .00 0 .00 504 .27 0 .68 24 .2 5 504 .95 0 .14 0 .39 505 .34 0 .14 0.80 505 .33 0 .00 0 .7 9 505 .32 0 .02 0 .79 505 .32 0 .21 0 .39 505 .09 0 .01 0 .39 505 .10 0 00 0 00 504 .06 1.41 2 .38 502.48 1.58 2 .38 502 .11 0 .37 1 .70 502 .07 0 .03 1.70 501 .55 0 .53 3 .19 502 .07 0 .00 0 .00 504 .89 0 .25 2 .66 503 .79 1.10 2 .66 502 .07 1.72 2 .66 502.48 0 .00 000 494 .07 10 .2 1 21 .81 499 .99 5 .93 10 .63 500 .28 0 .29 12 .39 501 .55 1.27 12 .95 500 .28 0 .00 0 .01 Titlr' ()r ive Cros si n fj Pl1 ase ·1 P ro1 r~c:t r114 PI H!(!I .Jn (~ Scl\ull / er \ ·;~11·1 1f!l ?O clo v e <:n >ss 111g ph )1 p l1 ;1 ~r~2 v:1 ·d Texcon Gc 11 e r ;1I C<)ntr;1c:t<1 1 ~ 1.'V.it·•t1 :Al> v•i r, !f1 ~1l:!OJI 11 ·11:1 :1 1, 1 1 17 l !:iAM <:-·"H ;t <!~:.l ,l t lf\.l r 'l /11·11:-; lru: ·i7['.1(irik:-;11 l n f ~c 1.1 ,I \.'V.•1•·1~11 11 .. I i·t~70HUSA •1 /11; /1,11-ll;;;i f>,1t11 · l•'l l Analysis Results Scenario: Base Steady State Analysis Title : Dove Crossing Phase 1 Project Engineer: Joe Schultz Project Date : 09/24/04 09:58 :06 AM Comments: Scenario Summary Scenario Base Active Topology Alternative Base-Active Topology Physical Alternative Base-Physical Demand Alternative Base-Demand Initial Settings Alternative Base-Initial Settings Operational Alternative Base-Operational Age Alternative Base-Age Alternative Constituent Alternative Base-Constituent Trace Alternative Base-Trace Alternative Fire Flow Alternative Base-Fire Flow Capital Cost Alternative Base-Capital Cost Energy Cost Alternative Base-Energy Cost User Data Alternative Base-User Data Liquid Characteristics Liquid Water at 20C(68F) Kinematic Viscosity 1 . 0804e-5 ft•/s Network Inventory Pressure Pipes 35 Number of Reservoirs Number of Pressure Junctic 32 Number of Pumps -Constant Power: -One Point (Design Point): -Standard (3 Point): -Standard Extended : -Custom Extended : -Multiple Point: Number of Spot Elevations Pressure Pipes Inventory 6.0 in 8 .0 in Total Length 0 0 0 0 0 0 0 0 3,917 .00 ft 1,820 .00 ft 6,637 .00 ft Specific Gravity Number of Tanks -Constant Area : -Variable Area : Number of Valves -FCV's : -PBV's : -PRV's : -PSV's : -TCV's : -GPV's : 12 .0 in Pressure Pipes @ 0.00 hr 1.00 0 0 0 0 0 0 0 0 0 0 900 .00 ft Lab el ControDischarge Velocit\£)pstream StrucilCDVn strea m Stru c tuaal culatecCal cula tecPre ssunHeadloss Status (gpm) (fVs) Hydraulic Grade H ydraul ic Grade Friction Mi nor Pip e Grad ie nt (ft) (ft) Hea d lo ss H e adl oss H ea dlos~fV1 OOOft) (ft) (ft ) (ft) P-1 Ope n 1,259.00 3 .57 506 .00 50 5.4 7 0 .53 0 .00 0 .53 2 .98 P-2 Ope n 775 .12 2 .2 0 505.4 7 50 5 .44 0 .03 0 .00 0 .03 1 .2 1 P-3 Ope n 775 .12 2 .20 505.4 4 505 .36 0 .09 0 .00 0 .09 1.2 1 P-4 Ope n 754 .12 2.14 505 .36 505 .28 0 .08 0 .00 0 .08 1.15 P-5 Ope n 754 .12 2 .14 505.28 505 .15 0 .13 0 .00 0 .13 1.15 Ti tle: D ove Crossi ng Pha se 1 Proj ecl Engineer: Joe Sct1ull z g:l ... 1proj1e170 dove c ross ing pt1 :~l pl1 ase2 .wccl Tex co n Ge n e ral Contrac t o r s Wa terCAD v6 .5 16 :, 120j) 1 t /113/05 11 18:00 AM © Haust:irl Methoc l s. l11 r. 37 B1(lnks1de Road W'1 l r:rl1ury. CT 06708 USA • 1-203-i'C.'.-1· t !j (i!) P;iqe 1 o f 2 (/'v\; b:+ ''4 le Analysis Results Scenario: Base Steady State Analysis Pressure Pipes @ 0.00 hr Label ControDischargeVelocit\,dpstream StrucflCBVnstream StructW'.elculatecCalculatecPressurEHeadloss Status (gpm) (ft/s) Hydraulic Grade Hydraul ic Grade Friction Minor Pipe Gradient P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 P-14 P-15 P-16 P-17 P-18 P-19 P-20 P-21 P-22 P-23 P-24 P-25 P-26 P-27 P-28 P-29 P-30 P-31 P-32 P-33 P-34 P-35 Open 754 .12 Open 562 .71 Open 562 .71 Open 562.71 Open 562 .71 Open -68 .17 Open 0 .00 Open 630 .89 Open 68 .17 Open 99.68 Open 99.68 Open 99.68 Open -68 .18 Open 68.17 Open 0 .00 Open 384 .21 Open 384 .21 Open 319 .71 Open 319 .71 Open 449 .61 Open 0 .00 Open 191.41 Open 191.41 Open 191.41 Open 0 .00 Open 595.89 Open -404.11 Open -439 .11 Open -449 .61 Open 10 .50 T itle: Dove C ross in9 Phase 1 2 .14 1.60 1.60 1.60 1.60 0.19 0 .00 CD] 0 .77 1.13 1.13 1.13 0 .77 0 .77 0 .00 2.45 2.45 2.04 2.04 2 .87 0 .00 2.17 2.17 2 .17 0.00 6.76 4 .59 4 .98 [j]1 0 .12 9 :1 ... l proj 'e 170 clove c rossinr; ph 21ph <ise2 w c rl (ft) (ft) Head loss HeadlossHeadlos~ft/1 OOOft) 505 .15 505 .14 505 .10 505 .05 504 .99 504 .95 504 .95 504 .95 505 .09 505.47 505 .34 505 .33 505 .10 505 .10 505 .10 505.47 504 .06 502.48 502 .11 502 .07 502 .07 505 .14 504 .89 503 .79 502.48 504 .27 494 .07 499 .99 500 .28 500 .28 (ft) (ft) (ft) 505 .14 505 .10 505 .05 504 .99 504 .95 504 .95 504 .95 504 .27 504 .95 505 .34 505 .33 505 .32 505 .32 505.09 505 .10 504 .06 502.48 502 .11 502 .07 501 .55 502.07 504 .89 503 .79 502 .07 502.48 494 .07 499 .99 500 .28 501 .55 500 .28 0 .01 0 .04 0 .05 0 .06 0 .04 0 .00 0.00 0 .68 0 .14 0.14 0 .00 0.02 0 .21 0.01 0.00 1.41 1.58 0 .37 0 .03 0 .53 0 .00 0 .25 1.10 1.72 0.00 10 .21 5 .93 0 .29 1.27 0 .00 Texcon Ge n era l Con tract o r s 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0.00 0 .00 0 .01 1.15 0.04 0.67 0 .05 0 .67 0.06 0.67 0 .04 0 .67 0.00 0.01 0.00 0.00 0 .68 24 .25 0 .14 0.39 0 .14 0.80 0 .00 0 .79 0.02 0.79 0.21 0.39 0 .01 0 .39 0 .00 0 .00 1.41 2 .38 1.58 2 .38 0 .37 1.70 0.03 1.70 0 .53 3 .19 0 .00 0 .00 0 .25 2 .66 1 .10 2 .66 1 .72 2.66 0 .00 0 .00 10 .21 21 .81 5 .93 10.63 0 .29 12.39 1.27 12.95 0 .00 0.01 1 11 113 /05 11 .18 :00 AM © Haes tad Melhocls . l11c . :r r 13rooks ide Ro<c1rl Wa1 c rl)11ry. CT 06/fll', USA Projecl En9ineer J"e Schullz Wa l1~rCAD v i i '1 16 .S 1 20JJ CITY OF COLLEGE STAT I ON Planning & Lkvelopmen t Strviu1 SITE LEGAL DESCRIPTION: Dove Crossing Phase 2 All Lots DATE OF ISSUE: 12/01/05 OWNER: DEVELOPMENT PERMIT PERMIT NO. 05-59 FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE SITE ADDRESS: Graham Road DRAINAGE BASIN: Lick Creek VALID FOR 9 MONTHS CONTRACTOR: Phi-Ton Investments , LLP c/o Tony Jones 3205 Earl Rudder Freeway College Station, Texas 77845 TYPE OF DEVELOPMENT: Full Development Permit SPECIAL CONDITIONS: All construction must be in compliance with the approved construction plans All trees required to be protected as part of the landscape plan must be completely barricaded in accordance with Section 7.5.E., Landscape/Streetscape Plan Requirements of the C ity's Unified Development Ordinance, prior to any operations of this permit. The cleaning of equipment or materials within the drip line of any tree or group of trees that are protected and required to remain is strictly prohibited . The disposal of any waste material such as , but not limited to , paint , oil , solvents , asphalt, concrete , mortar, or other harmful liquids or materials within the drip line of any tree required to remain is also prohibited . TCEQ PHASE II RULES IN EFFECT . The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design Criteria. If it is determined the prescribed erosion control measures are ineffective to retain all sediment onsite , it is the contractors responsibility to implement measures that will meet City , State and Federal requirements . The Owner and/or Contractor shall assure that all disturbed areas are sodden and establishment of vegetation occurs prior to removal of any silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor shall also insure that any disturbed vegetation be returned to its original condition, placement and state . The Owner and/or Contractor shall be responsible for any damage to adjacent properties, city streets or infrastructure due to heavy machinery and/or equipment as well as erosion, siltation or sedimentation resulting from the permitted work. In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to insure that debris from construction, erosion, and sedimentation shall not be deposited in city streets , or existing drainage facilities . I hereby grant this permit for development of an area outside the special flood hazard area . All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer in the development permit application for the above named project and all of the codes and ordinances of the City of College Station that apply. Date Date D ate: To : F rom: S ubj ect: R e m arks: oi:s-tcn \ l' ;Jr/"00 ll: D4 TEX CON TRANSMITTAL November 28, 2005 Carol Cotter Development Services City of College Station Joe Schultz, P.E. Texcon General Contractors 1707 Graham Road College Station, Texas 77845 Phone: (979) 764-7743 Dove Crossing Subdivision, Phase 2 College Station, Texas l)?00 -!i71 Attached are 4 sets ofrevised construction plans for the above-mentioned project. Also attached are 2 copies of the Engineer's Cost Estimate, 2 copies of Water Report and our Response to Comments. Revisions have been made to address Staff Review Comments. Let me know if you have any question s. cgs . " . I ! . , ,., . ... En Respon se to Staff Review Comments No . 1 Dove Crossing Subdivision, Phase 2 The runoff will leave the gutter onto the rock riprap, and the area at the end of the street will be graded so the runoff flows onto the proposed rock riprap shown on Sheets 3 , 4 & 5 until it reaches the flow line of Channel 3. Fire Hydrant No. 4 at the intersection of Dove Crossing Lane and Crystal Dove A venue is now shown on Sheet 6 and wi ll provide fire coverage . The existing ground profile has been revised on Sh eet 6 to show the channel. The easement has been submitted . Its status is unknown. The existing ground for Channel 3 i s shown on Sheet 9 . There is no design grade there at this time. Th e sewer line has adequate coverage . 2 copies of the Fire F low Analysis/Water Report and 2 copies of the Engineer 's Cost Estimate are included with this resubmission. < > TEXCON GENERAL CONTRACTORS 28-Nov -05 CONSTRUCTION COST ESTIMATE DOVE CROSSING -PHASE 2 COLLEGE STATION , TEXAS Item Est imated Un it Estimated No . Description Quantity Price Cost Sitework 1 Mobilization/Layout 1 LS $5 ,000 .00 $5,000 2 Site Preparation 2 .3 AC $1,500 .00 $3 ,450 3 Silt Fence 0 LF $2 .75 $0 4 Construction Exit -Rock 25 TONS $58 .00 $1,450 5 Erosion & Sediment Control 1 LS $2,500 .00 $2 ,500 6 Hydromulch/Hydroseeding 6,000 SY $0 .50 $3 ,000 7 Se eding 30,00 0 SY $0 .20 $6 ,00 0 8 Topsoil Stripping & Replacement 500 CY $4 .50 $2,250 9 Excavation/Grading 5 ,2 00 CY $4 .00 $20 ,800 10 6" Concrete Aprons 592 SF $5 .00 $2 ,960 11 ADA Ramp -regular EA $400 .00 $400 12 ADA Ramp -corner EA $600 .00 $600 13 Sidewalk -4' wide 5,372 SF $3 .10 $16,654 14 Lime Stabilized Subgrade 4,610 SY $3.20 $14 ,752 15 Base Material -6" depth 3,630 SY $7 .50 $27,225 16 Asphalt Paving -2" depth 3,630 SY $6.00 $21,780 17 Concrete Curb and Gutter 2,797 LF $8.50 $23,775 18 End of Roadway sign -red/black 3 EA $200 .00 $600 Subtotal $153,195 Storm Drainage 19 18" RCP -T&G -structural 30 LF $44 .00 $1 ,333 20 24" RCP -T&G -structural 36 1 LF $58 .00 $20,909 21 27" RCP -T&G -structural 72 LF $61 .00 $4 ,3 92 22 30" RCP -T&G -structural 478 LF $67 .00 $32 ,053 23 Rock Riprap -Remove and Replace 50 TONS $35 .00 $1,750 24 10' Inlet 3 EA $3,200 .00 $9 ,600 25 Junction Box EA $2,600 .00 $2 .600 Subtotal $72,637 Water 26 8" Water PVC CL200 (C909) -Structural 280 LF $28 .00 $7 ,840 27 6" Water PVC CL200 (C909) -Structural 1,044 LF $25 .00 $26,093 28 Gate Valves -8" 2 EA $700 .00 $1,400 29 Gate Valves -6" 2 EA $600 .00 $1,200 30 M.J . Bends -8" -22.5° 2 EA $300 .00 $600 31 M.J . Bends -6" -45° 2 EA $250 .00 $500 32 8"x6" M.J . Tees EA $350 .00 $350 33 6" M .J . Tees EA $300 .00 $300 34 Fire Hydrant Assembly w/ Extension EA $2 ,600 .00 $2 ,600 35 2" Blow off Assembly 1 EA $500 .00 $500 36 Water Services -1.5" Short 9 EA $650 .00 $5 ,8 50 37 Water Services -1.5" Long 12 EA $1,000 .00 $12,000 38 Remove blowoff and connect to line 2 EA $500 .00 $1,000 Subtota l $60,233 Sewer -w ithin Phase 2 39 8" SDR 26 C-3 034 Pipe Non-stru ctural 117 LF $24 .00 $2,810 40 6" SDR 26 C-30 34 Pipe Non-structural 1, 164 LF $22 .00 $25,6 12 41 6" SDR 26 C-3034 Pipe Stru ctural 32 LF $30 .00 $960 42 6" SDR D-22 41 Press ure Pip e Non-structura l 8 LF $24 .00 $180 43 6" SOR 0 -22 41 Press ure Pipe Stru ctural 13 LF $32 .00 $400 44 Manholes -< 8' Depth 1 EA $2,400 .00 $2,400 4 5 Manholes -8' -10 Depth 3 EA $2,600 .00 $7,800 46 Manholes -10 ' -12' Depth EA $2 ,800 .00 $2 ,800 47 4" Sewer Service Single SS 1 EA $450 .00 $45 0 48 4" Sewer Service Doub le SS 13 EA $600 .00 $7.800 49 4" Sewer Serv ice Sin gle LS 1 EA $7 50.00 $75 0 50 4" Sewe r Se rvice Doubl e LS 9 LF $850 .00 $7.650 51 Ceme nt Sa nd Bedding 22 L F $5 00 $110 PilQC 1 tif ..' 52 TV Inspection 1,3 78 LF $3 .50 $4 .824 Subtotal $64,547 Sewer -thru future Phases 53 10" SOR 26 C-3034 Pipe Non-structural 167 LF $30 .00 $5 ,016 54 8" SOR 26 C-3 034 Pipe Non-structural 1,427 LF $24 .00 $34 ,258 55 8" SOR 26 C-3034 Pipe Structural 52 LF $32 .00 $1,664 56 Connect to Existing Manhole 1 EA $1,500 .00 $1 ,500 57 Manholes -1 O' -12' Depth 3 EA $2,800 .00 $8,400 58 Manholes -12' -14' Depth EA $3,000 .00 $3 ,000 59 Manholes -14' -16' Depth EA $3 ,200 .00 $3 ,2 00 60 4" Stack for Future Services 7 EA $450.00 $3 ,150 61 TV Inspection 1,531 LF $3 .50 $5,358 Subtotal $65,546 Total Sitework $153,195 Total Storm Drainage $72,637 Total Water $60,233 Total Sewer -Phase 2 $64,547 Total Sewer -thru other Phases $65,546 TOTAL CONSTRUCTION! $416,1581 Page 2 o r 2 TEXCON GENERAL CON TRACTORS 28-Nov -0 5 CONSTRUCTION COST ESTIMATE DOVE CROSSING -PHASE 2 COLLEGE STATION , TEXAS Item Estimated Unit Estimated No . Description Qu a ntity Price Cost Sitework 1 Mob ilizatio n/Layo ut 1 LS $5 ,000.00 $5 ,000 2 Site Preparation 2.3 AC $1 ,500.00 $3,450 3 Silt Fence 0 LF $2 .75 $0 4 Construction Exit -Rock 2 5 TONS $58 .00 $1,450 5 Ero s ion & Sediment Control 1 LS $2 ,500 .00 $2 ,500 6 Hydromulch/Hydroseeding 6 ,0 00 SY $0.50 $3 ,000 7 Seeding 30 ,000 SY $0 .20 $6 ,000 8 To psoil Stripping & Replacement 500 CY $4.50 $2 ,250 9 Excavation/Grading 5 ,200 CY $4 .00 $20,800 10 6" Concrete Apron s 592 SF $5 .00 $2 ,960 11 ADA Ramp -reg ular EA $400.00 $400 12 ADA Ra mp -corner EA $600 .00 $600 13 Si dewalk -4' wid e 5 ,372 SF $3.10 $16,654 14 Li me Stabilized Subgrade 4 ,610 S Y $3 .2 0 $14,752 15 Base Material -6" depth 3,630 S Y $7 .50 $27 ,225 16 A sphalt Paving -2" depth 3 ,6 30 SY $6 .00 $21,780 17 Concrete Curb and Gutter 2 ,797 LF $8 .50 $23,775 18 End of Roadway sign -red /black 3 EA $200 .00 $600 Subtotal $153,195 Storm Drainage 19 18" RCP -T&G -stru c tural 30 LF $44 .00 $1,333 20 24" RCP -T&G -structural 361 LF $58 .00 $20,909 2 1 27" RCP -T&G -structu ral 72 LF $61 .00 $4 ,392 22 30" RCP -T&G -structura l 478 LF $67.00 $32 ,053 23 Rock Riprap -Remove and Replace 50 TONS $35 .00 $1,750 24 10' Inlet 3 EA $3 ,200.00 $9,600 25 Junction Box EA $2,600 .00 $2,600 Subtotal $72,637 Water 26 8" Water PVC CL200 (C909) -Structural 280 LF $28 .00 $7 ,840 27 6" W a ter PVC CL200 (C909) -Structural 1,044 LF $25 .00 $26,093 28 Gate Valves -8" 2 EA $700 .00 $1,400 29 Gate Valves -6" 2 EA $600.00 $1 ,200 30 M.J. B e nd s -8" -22.5° 2 EA $300 .00 $600 31 M.J . Bends -6" -45° 2 EA $250 .00 $500 32 8"x6" M .J . Tees EA $350 .00 $350 33 6" M.J. Tees EA $300 .00 $300 34 Fire Hydrant Assembly w/ Extension EA $2 ,600.00 $2 ,600 35 2" Blow off A ssembly 1 EA $500 .00 $500 36 W ater Services -1.5" Short 9 EA $650 .00 $5 ,850 37 W ater Services -1.5" Long 12 EA $1 ,000.00 $12 ,000 38 Remove blowoff and connect to line 2 EA $500 .00 $1 .000 Subtotal $60 ,233 Sewer -within Phase 2 39 8" SDR 26 C -3034 Pipe N o n-st ru ct ura l 117 LF $24 .00 $2 ,810 40 6" SDR 2 6 C -3 0 34 Pipe No n-stru ctura l 1,164 LF $2 2 .00 $2 5,6 12 41 6" SDR 26 C-30 34 Pipe Stru ctural 32 LF $30 .00 $960 4 2 6" SDR 0 -224 1 Pressure Pi pe Non-s tru ctural 8 LF $24 .00 $1 80 4 3 6" SOR 0 -22 41 Pressure Pi pe Stru c tu ra l 13 LF $32.00 $4 00 44 Ma nholes -< 8' D epth 1 EA $2 ,4 00 .00 $2,400 4 5 Ma nholes - 8 ' -10 De pth 3 EA $2 .600 .00 $7 ,800 4 6 Ma nholes -1 O' -12' D epth EA $2,800 .00 $2 ,800 47 4 " Sewer Service S ing le S S EA $450 .00 $4 50 4 8 4" Sewer S ervice Do u ble SS 13 EA $600 .00 $7 ,800 4 9 4" Sewer Service Sing le LS 1 E A $7 50 .00 $750 50 4" Sewer S erv ice Doubl e L S g LF $850 00 $7 .650 5 1 C ement Sand Bedding 22 LF $5 00 $110 P<1Cj(' I 1if •1 52 TV Inspection 1,378 LF $3.50 $4 ,824 Subtotal $64,547 Sewer -thru future Phases 53 10" SOR 26 C-3034 Pipe Non-structural 167 LF $30.00 $5,016 54 8" SOR 26 C-3034 Pipe Non-structural 1,427 LF $24 .00 $34,258 55 8" SOR 26 C-3034 Pipe Structural 52 LF $32 .00 $1 ,664 56 Connect to Existing Manhole EA $1,500.00 $1 ,500 57 Manholes -10' -12' Depth 3 EA $2,800 .00 $8,400 58 Manholes -12' -14 ' Depth EA $3,000.00 $3 ,000 59 Manholes -14' -16' Depth 1 EA $3,200.00 $3,200 60 4" Stack for Future Services 7 EA $450 .00 $3 , 150 61 TV Inspection 1,531 LF $3 .50 $5 ,358 Subtotal $65,546 Total Sitework $153,195 Total Storm Drainage $72,637 Total Water $60,233 Total Sewer -Phase 2 $64,547 Total Sewer -thru other Phases $65,546 TOT AL CONSTRUCTION I $416,1581 Page 2 of 2 /. Design Report Waterline Fire Flow Analysis for Dove Crossing Subdivision Phase 2 College Station, Texas November 2005 Prepared By: TEXCON General Contractors 1 707 Graham Road College Station, Texas 77845 (979) 764-7743 1.0 INTRODUCTION & DESCRIPTION The purpose of this report is to provide a description of the proposed waterline s to be constructed with the Dove Crossing Subdivision -Phase 2, and to pro v ide the re sults of th e analysis of the waterlines under fire flow conditions . The proposed waterline to supply the site will connect to the existing 8" lines constructed with Phases 1 A , 1 B & 1 C of the subdivision. The water main will be constructed using 6" and 8" diameter pipe. The waterline for this project will be constructed of DR-14, PVC pipe meeting the requirements of A WW A C-909 with mechanical joint fittings . 2.0 FIRE FLOW REQUIREMENTS The flow required for fire hydrant flow for the subdivision is 1,000 gallons per minute (gpm). 3.0 WATERLINE SYSTEM ANALYSIS The waterline system was analyzed using the WaterCAD computer program developed by Haestad Methods, Inc . A normal domestic use flow of 1.5 gpm was included in the analysis for each of the 1 72 residential lots for Phases 1 and 2. This results in a normal de mand of 259 gpm , which was included in the analysis . The residual pressure in the existing 12" waterline was determined by calculating the headloss at a flow of 2,190 gpm for the existing line. Exhibit "A-1 ",in Appendix A, presents the results of a pressure/flow test from fire hydrants connected to the e x isting 12" waterline along Graham Road . A static pressure of 91 psi and a residual pressure of 89 psi with the hydrant flow at 1,500 gpm were determined by College Station Public Utility personnel. The residual pressure of 87 psi at a flow of 2, 190 gpm was calculated using the following equation: Where: QR = Q available @ desired residual pressure QF = Q during fire flow test HR = pressure drop to desired residual pressure HF = pressure drop during fire flow test This results in a residual pressure of 87 psi where the proposed waterline will connect to the 12" waterline. The hydraulic grade was set at this pressure at the start of the proposed waterline, Junction R-1. Although 2 , 190 gpm is not needed for the subdivision, the residual pressure for this flow was used because it results in a conservative value for the residual pressure . The computer model was nm with a fir e flow of 1,000 gpm at the propose d hydrant location . Exhibit 1 is a schematic of th e propo se d waterlin es for Phases 1 and 2 , and it al so shows the location of the fir e hydrant propo sed for Phase 2 . Exhibit 2 is a summary of th e pipe sys te m junction nodes with th e fir e flow at Fire Hydrant N o .6 . The low est res idual pres sur e oc curre d in the sy ste m at Jun c tion J-25 . The press ure at this po int is e s timate d by the mod e l to be 87 .7 psi , whi c h exceed s th e minimum of 20 ps i re quire d by th e TCEQ re gulati o n s. Ex hibit 3 is a s ummary of th e pip e sec tions for th e sys te m und e r thi s de m a nd sce nan o . Exhibit 4 is a summary of the pipe system with the fire flow at Fire Hydrant No .6, s howin g the maximum waterline velocities. The maximum ve locity for the 6" waterline is 7.2 feet per second, and occurs in Pipe P-13, and the maximum velocity for the 8" waterline is 5 .1 fps and occurs in Pipe P-34 . A separate analysis was not run for the domestic use of 1.5 gpm per unit for the subdiv is ion , since the minimum residual pressure was 87.7 p si for the fire flow, which exceeds the minimum pressure of 35 psi required by TCEQ. Minor losses in this system were not ca lculated, as they were assumed to be insignifi cant. 4.0 CONCLUSIONS T h e waterlines proposed for this development should adequately provide the fire flow required with acceptable values for headloss and velocity. This analysis was done assuming adequate residual pressure in the existing 12" water main, as determined by th e flow test. Appendix "A" Fire Hydrant Flow Test Data ••-0~0,4~,r.-.. 15;.=·;1 FA.X 979 1s.c 34s2 .;: .. :..'·•r-• -. ' . "./.,. COLLEGE STATCON PUB .lJfL . 1601 GRAHAM ROAD COLLEGE STATION TEXAS 77845 Date: 6 AUGUST 2004 Number pages including cover sheet - I Fax to: 764-7759 Attention: .JOE SCHULTZ Company: TEXCON From: Butch Willis Water Wastewater Division Phone: 979-764-3435 Fax: 979-764-3452 FLOW TEST REPORT Nozzle size: 2.5 inch Location: GRAHAM RD Flow hydrant number: Q-036 Pitot reading: 80 (GPM): 1500 Static hydrant number: S-023 Static PSI: 91 Residual PSI: 89 NOTE: This Is the one you handed us this morning 1lloo11001 qr;.,' '" .() ., J.1 .. J.2 "J ftt\ ,., q· ,., 15 ~ ~;~7 FH 3'1 '\>o Tit le: D ove C ross in g Ph a s e 1 g :1 ... l p ro jl e 1 70 cl ove c r o ss 1n ~J p l! ;~1 11 11 ;·1 !'e 2 w c cl ·11 1·t 13!()5 I t ·IG :53 A M <'°': H ;'c ~;t.l •I rolC tl l O<JS. l11 c """ "' ,_. '>9 J.19 J.9 Scenario: Base .() .,.;o J.12 J.2 8 (( ii l Te x c o n Ge n e rc:1I C o ntrac to r s J.21 J.2 9 :j? t3r ""ks irJe R o ;i<J \\':ilf:rl1u ry . C T ()(i 70B lJSI\ J.22 J.23 J.25 J.2 • J.31 J.30 J.32 Proj ec t Eng ine e r : J oe Sch ul tz Wa l e r CAO v G.5 i G.5 12 0jl Labe l Elevation Zone Type Base Flow (ft) (gpm) J-1 301 .36 Zo ne Demand 0 .00 J-2 301.40 Zone Demand 0 .00 J-3 302 .39 Zone Demand 21 .00 J-4 301 .95 Zone Demand 0 .00 J-5 301.25 Zone Demand 0.00 J-6 301.18 Zone Demand 0.00 J -7 300 .84 Zo ne Demand 0 .00 J-8 300 .31 Zone Demand 0.00 J -9 299 .66 Zone Demand 0 .00 J-10 299 .39 Zone Demand 0.00 J -11 299.13 Zone Demand 0 .00 J-12 297 .55 Zone Demand 0 .00 J-13 299.67 Zone Demand 35.00 J-14 298 .06 Zone Demand 0 .00 J-15 301 .56 Zone Demand 0 .00 J-16 301 .56 Zone Demand 0 .00 J -17 301 .54 Zone Demand 31 .50 J-19 296.19 Zo ne Demand 0 .00 J-20 301 .15 Zone Demand 0 .00 J-2 1 294 .74 Zone Demand 64.50 J-22 296.00 Zone Demand 0 .00 J-23 293.40 Zone Demand 61 .50 J-24 295.34 Zon e Demand 0 .00 J-25 295 .64 Zone Demand 0 .00 J-26 302 .29 Z on e Demand 0 .00 J -2 7 301 .13 Zone Demand 0 .00 J-28 292.67 Z on e Deman d 0 .0 0 J-29 297.67 Zone Demand 1 ,000 .0 0 J-30 293.66 Zon e Demand 35.00 J-31 293.63 Zone Demand 0 .00 J-32 291.44 Zone Demand 10 .50 J -3 3 298.16 Zone Dema nd 0.00 Tit le : D ove Crossi n g Pllasn t g:l ... lpro1 \c 170 cl ove cros'""'I p li ;"p h ~1se2 .wccl 1 11·1 Biil'.> I 1. 1 ?·211 AM_ . I l;WS l<lc.I Mct1 10<1 s . l11r : Fixed Fi xed Fi xed Fi xed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fi xed Fixed Fixed Fixed Fixed Fixed Fi xed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Scenario : Ba s e Steady State Analysis Junction Report Pattern Demand Calculated Ca lculated rlydrau lic Grad (gpm) (ft ) 0.00 505.47 0 .00 505.44 21.00 505.36 0 .00 505.28 0 .00 505.15 0 .00 505 .14 0 .00 505 .10 0 .00 505 .05 0 .00 504 .99 0 .00 504 .95 0 .00 504 .95 0 .00 504 .95 35.00 504 .27 0 .00 505 .10 0 .00 505.34 0 .00 50 5 .33 31.50 505 .32 0 .00 505 .10 0 .00 504 .06 64 .50 502.48 0 .00 502 .11 6 1 .50 502 .07 0 .00 501 .55 0 .00 502 .07 0 .00 504 .89 0 .00 50 3 .79 0 .00 5 0 2.48 1,00 0 .00 494.07 35 .00 499.99 0 .00 500.28 10 .50 500 .28 0 .00 505.09 (f If 2- T c KC(>11 Gene ril l Cont r ac t ors Pressure i (psi) 88 .31 88 .28 87.81 87 .97 88 .22 88.24 88.38 88 .58 88 .84 88 .94 89 .05 89 .73 88 .52 89 .58 88.16 88.16 88.16 90.39 87 .79 89.88 89.17 90 .28 89.22 89.31 JlL§.2._ 8 7 .68 9 0.78 84 .97 89 .27 89.41 90.35 89.53 :~7 Br 11o l·~:1rl•• l\~1-td \/\l("i lc;rh111·y . Cl ()()7QP. lJS/, Pro1cc 1 Eno111 cc r · .toe Scl1 u ll 1 W;1l1!1 CNJ v(i r , Iii :, 12 n11 I' 11 1•· I c1f I Label Length P ia mete 1 Material Hazen-Check (ft) (in) W illiam! Valve? c P-1 177 .00 12.0 PVC 150 .0 false P-2 23 .00 12.0 PVC 150.0 false P-3 74 .00 12 .0 PVC 150 .0 false P-4 67 .00 12 .0 PVC 150 .0 fa lse P-5 109 .00 12 .0 PVC 150.0 false P-6 11 .00 12.0 PVC 150.0 false P-7 54 .00 12 .0 PVC 150.0 false P-8 78 .00 12 .0 PVC 150 .0 false P-9 87.00 12 .0 PVC 150.0 false P-10 59 .00 12.0 PVC 150 .0 false P-11 41 .00 12 .0 PVC 150 .0 false P-12 120 .00 12.0 PVC 150 .0 false P-13 28 .00 6 .0 PVC 150.0 fa lse P-14 357 .00 6 .0 PVC 150 .0 fa lse P-15 173 .00 6 .0 PVC 150 .0 false P-16 4 .00 6 .0 PVC 150 .0 false P-17 20 .00 6 .0 PVC 150 .0 false P-18 545 .00 6.0 PVC 150.0 false P-19 19.00 6 .0 PVC 150.0 false P-20 125.00 6 .0 PVC 150 .0 false P-21 592 .00 8 .0 PVC 150.0 false P-22 663 .00 8 .0 PVC 150.0 false P-23 221 .00 8 .0 PVC 150.0 false P-24 19.00 8.0 PVC 150 .0 false P-25 165.00 8 .0 PVC 150.0 false P-26 160.00 8.0 PVC 150.0 false P-27 93 .00 6.0 PVC 150.0 false P-28 412.00 6 .0 PVC 150.0 false P-29 646 .00 6.0 PVC 150.0 false P-30 169.00 6 .0 PVC 150.0 false P-31 468 .00 6 .0 PVC 150.0 false P-32 558 .00 6 .0 PVC 150 .0 false P-33 23 .00 6 .0 PVC 150.0 false P-34 98 .00 6 .0 PVC 150.0 false P-35 179 .00 6 .0 PVC 150 .0 false Scenario: Ba s e Steady State Analysis Pipe Repo rt Minor Control bischarg4 bpstream StructUi Loss Status (gpm) Hydraulic Grade Coefficien (ft) 0 .00 Open 1 .259 .00 506 .00 0.00 Open 775 .12 505.4 7 0 .00 Open 775 .12 505.44 0 .00 Open 754 .12 505 .36 0 .00 Open 754 .12 505 .28 0 .00 Open 754 .12 505.15 0 .00 Open 562 .71 505 .14 0 .00 Open 562 .71 505 .10 0 .00 Open 562.71 505 .05 0 .00 Open 562 .71 504 .99 0 .00 Open -68 .17 504 .95 0.00 Open 0.00 504 .95 000 Open 630 .89 504 .95 0 .00 Open 68 .17 505 .09 0 .00 Open 99 .68 505.47 0 .00 Open 99 .68 505 .34 0 .00 Open 99 .68 505 .33 0 .00 Open -68 .18 505 .10 0 .00 Open 68 .17 505 .10 0 .00 Open 0 .00 505 .10 0 .00 Open 384 .21 505.4 7 0 .00 Open 384 .21 504 .06 0 .00 Open 319 .71 502.48 0 .00 Open 319 .71 502.11 0.00 Open 449 .61 502 .07 0 .00 Open 0 .00 502 .07 0 .00 Open 191.41 505.14 0 .00 Open 191.41 504 .89 0 .00 Open 191.41 503 .79 0 .00 Open 0 .00 502.48 0 .0 0 Open 595 .89 504 .27 0.00 Open -404 .11 494 .07 0 .00 Open -439 .11 499.99 0 .00 Open -449 .61 500 .28 0 .00 Open 10 .50 500 .28 1' ff (-1~;~«+ 3 ~wnstream Structu e>ressure Head loss Hydraulic Grade Pipe Gradient (ft) Headlosi (ft/1 OOOft) (ft) 505.47 0 .53 2 .98 505.44 0 .03 1 .21 505 .36 0 .09 1.21 505 .28 0 .08 1 .15 505 .15 0 .13 1.15 505 .14 0 .01 1 .15 505 .10 0 .04 0 .67 505.05 0 .05 0 .67 504 .99 0 .06 0 .67 504 .95 0 .04 0 .67 504 .95 0 .00 0 .01 504 .95 0 .00 0 .00 504 .27 0 .68 24 .25 504 .95 0 .14 0 .39 505 .34 0 .14 0 .80 505 .33 0 .00 0 .79 505 .32 0 .02 0 .79 505 .32 0 .21 0 .39 505 .09 0 .01 0 .39 505 .10 0 .00 0 .00 504 .06 1.41 2 .38 502.48 1.58 2 .38 502 .11 0 .37 1 .70 502.07 0 .03 1.70 501.55 0 .53 3 .19 502 .07 0.00 0 .00 504.89 0.25 2 .66 503 .79 1.10 2 .66 502 .07 1.72 2 .66 502.48 0 .00 0 .00 494 .07 10 .21 2 1.81 499.99 5 .93 10 .63 500 .28 0 .29 12.39 501 .55 1 .27 12 .95 500 .28 0 .00 0 .01 Till •) [)(Ive C ross in 9 Ph ase 1 P 10 1"c 1 l ~''(J •n ee r : J o e S c hultz ti'' ; 111 •pe 1 7 0 do ve c rossin g 111 ·1 ~\pt 1 c-1 s r~2 "'-'• ! Tex con Ge n e r al C ontr~c t n r·:. l.'\/.ol · ·d :AO vG 5 l fi .5 I 20jJ 11 ·11 ;•;1') 11 17 l ~IAM f''l-l ~11 .:s 1 ;1(1 1'\1 1 e ll ,P•l:-. 111 1 Analysis Results Scenario: Base Steady State Analysis Title : Dove Crossing Phase 1 Project Engineer: Joe Schultz Project Date : 09/24/04 09:58 :06 AM Comments: Scenario Summary Scenario Base Active Topology Alternative Base-Active Topology Physical A lternative Demand Alternative Initial Settings Alternative Operational Alternative Age Alternative Constituent Alternative Trace Alternative Fire Flow Alternative Capital Cost Alternative Energy Cost Alternative User Data Alternative Liquid Characteristics Base-Physical Base-Demand Base-Initial Settings Base-Operational Base-Age Alternative Base-Constituent Base-Trace Alternative Base-Fire Flow Base-Capital Cost Base-Energy Cost Base-User Data Liquid Kinematic Viscosity Water at 20C(68F) 1.0804e-5 ft2 /s Specific Gravity Network Inventory Pressure Pipes 35 Number of Reservoirs Number of Pressure Junctic 32 Number of Pumps -Constant Power: -One Point (Design Point): -Standard (3 Point): -Standard Extended : -Custom Extended : -Multiple Point: Number of Spot Elevations Pressure Pipes Inventory 6 .0 in 8 .0 in Tota l Length 0 0 0 0 0 0 0 0 3,917 .00 ft 1,820 .00 ft 6,637 .00 ft Number of Tanks -Constant Area: -Variable Area : Number of Valves -FCV's : -PBV's: -PRV's : -PSV's : -TCV's : -GPV's : 12.0 in Pressure Pipes @ 0.00 hr 1.00 0 0 0 0 0 0 0 0 0 0 900 .00 ft Label ControOischargeVelocitltJpstream Structuownstrea m Structl.©i!ll culate cCal culate cPressura-ieadloss Sta tu s (gpm) (fl/s ) Hydraulic Grade Hydraul ic Grad e Friction Min o r Pipe Grad ie nt P-1 Open 1,259.00 3 .57 P-2 Open 775.12 2.20 P -3 Open 775 .12 2 .20 P-4 Ope n 754 .12 2 .14 P -5 Ope n 754 .12 2.14 Till e : Dove Cross ing Ph ase 1 q:l ... 'projl e 170 clove crossing pl1 :!l phase2 .wc(J (ft) (ft) Head lo ss H eadlossHeadl o s ~fl/1 OOOft) 506.00 505.47 505.44 505 .36 505 .28 (ft) (ft) (fl) 505.47 0 .53 0 .00 0 .53 505.44 0 .03 0 .00 0 .03 505.36 0 .09 0 .00 0.09 505.28 0 .08 0 .00 0 .08 505 .15 0 .13 0 00 0 .13 Tex con Ge neral Con tra ctors 2 .98 1.2 1 1.2 1 .15 1.15 P rojecl Enginee r : Joe Schullz Wa le rCAD v6 .5 !6.5 120j ] 1 I / 1 ll/05 ·1 1 1 fl .00 A M © Haust:i(! M eth ocl s. Inc 37 13 1onksicJe Roac J W;iteriJury . C T 06708 USA + I -20 3-7'.i'.-1· I GG6 Page 1 o f 2 (/'A_; b:+ ''4" • Analysis Results Scenario: Base Steady State Analysis Pressure Pipes @ 0.00 hr Label ControDischargeVeloci1¥Jpstream StrucilCDVnstream Structlfilalculatec:CalculatecPressurEHeadloss Status (gpm) (ft/s) Hydraulic Grade Hydraulic Grade Friction Minor Pipe Gradient (ft) (ft) Head loss HeadlossHeadlos~ft/1 OOOft) (ft) (ft) (ft) P-6 Open 754 .12 2 .14 505 .15 505.14 0 .01 0 .00 0 .01 1.15 P-7 Open 562 .71 1.60 505 .14 505.10 0.04 0 .00 0 .04 0 .67 P-8 Open 562 .71 1.60 505 .10 505 .05 0 .05 0 .00 0 .05 0 .67 P-9 Open 562 .71 1 .60 505 .05 504 .99 0 .06 0 .00 0 .06 0 .67 P-10 Open 562.71 1.60 504 .99 504 .95 0.04 0 .00 0 .04 0 .67 P-11 Open -68 .17 0 .19 504 .95 504 .95 0 .00 0 .00 0 .00 0.01 P-12 Open 0 .00 0 .00 504 .95 504 .95 0 .00 0 .00 0 .00 0 .00 P-13 Open 630 .89 cm 504 .95 504 .27 0 .68 0 .00 0 .68 24 .25 P-14 Open 68 .17 0.77 505 .09 504 .95 0 .14 0 .00 0 .14 0.39 P-15 Open 99.68 1.13 505.47 505 .34 0 .14 0 .00 0 .14 0.80 P-16 Open 99 .68 1.13 505 .34 505 .33 0.00 0 .00 0 .00 0 .79 P-17 Open 99 .68 1 .13 505 .33 505 .32 0 .02 0 .00 0 .02 0 .79 P-18 Open -68 .18 0.77 505.10 505 .32 0.21 0 .00 0.21 0 .39 P-19 Open 68 .17 0 .77 505 .10 505 .09 0 .01 0 .00 0.01 0 .39 P-20 Open 0 .00 0 .00 505 .10 505 .10 0 .00 0.00 0 .00 0 .00 P-21 Open 384 .21 2.45 505.47 504 .06 1.41 0.00 1.41 2 .38 P-22 Open 384 .21 2.45 504.06 502.48 1.58 0 .00 1.58 2 .38 P-23 Open 319 .71 2 .04 502.48 502 .11 0 .37 0 .00 0 .37 1.70 P-24 Open 319 .71 2 .04 502 .11 502 .07 0 .03 0 .00 0 .03 1.70 P-25 Open 449.61 2 .87 502 .07 501 .55 0 .53 0 .00 0 .53 3 .19 P-26 Open 0 .00 0 .00 502 .07 502 .07 0 .00 0 .00 0.00 0 .00 P-27 Open 191.41 2 .17 505.14 504.89 0.25 0 .00 0 .25 2 .66 P-28 Open 191.41 2.17 504 .89 503 .79 1 .10 0.00 1.10 2 .66 P-29 Open 191.41 2 .17 503.79 502 .07 1.72 0 .00 1.72 Z.66 P-30 Open 0.00 0 .00 502.48 502.48 0 .00 0 .00 0 .00 0 .00 P-31 Open 595 .89 6 .76 504 .27 494 .07 10.21 0 .00 10 .21 21.81 P-32 Open -404 .11 4 .59 494 .07 499.99 5.93 0 .00 5.93 10.63 P-33 Open -439 .11 4 .98 499 .99 500 .28 0 .29 0 .00 0.29 12 .39 P-34 Open -449 .61 [!ill 500 .28 501 .55 1.27 0.00 1.27 12 .95 P-35 Open 10 .50 0 .12 500 .28 500 .28 0 .00 0 .00 0 .00 0 .01 Tille: D ove C ross ing Pl1 cis e 1 Pro ject Eng ine0.r .toe Schultz q :\ ... \pro j •.e 1 70 tlu ve c ro s si no ph 2 1p l1<1se 2 .w c r l Tex con Ge n e ra l Contract o r s W ;~l1 >r CA f J v i i :, !6.5 120 j} 11 1 181(.l'.i 1 1 18 :0 0AM ©H <ies tadMe tho cl s.t11 c :11 13 rook s icle R o ad Wa 1ert:u u y.CT or;11 »>.lJSA •1·203-75S-11 ;1>1j l'.1q e2of 2 Drainage Report for Dove Crossing Subdivision Phase 2 College Station, Texas November 2005 Developer: Dove Crossing Development, LLC 3205 Earl Rudder Freeway South College Station, TX 77845 (979) 693-6699 Prepared By: TEXCON General Contractors 1707 Graham Road College Station, Texas 77845 (979) 764-7743 CERTIFICATION I, Joseph P . Schultz, Licensed Professional Engineer No. 65889 , State of Texas , certify that this report for the drainage design for the Dove Crossing Subdivision -Phase 2 , was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners hereof. TABLE OF CONTENTS DRAINAGE REPORT DOVE CROSSING ~UBDIVISION -PHASE 2 CERTIFICATION .................................................................................................................................................................. 1 TABLE OF CONTENTS ........................................................................................................................................................ 2 LIST OF TABLES .................................................................................................................................................................. 2 fNTRODUCTION ................................................................................................................................................................... 3 GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 3 FLOOD HAZARD INFORMATION .................................................................................................................................... 3 DEVELOPMENT DRAINAGE PATTERNS ....................................................................................................................... 3 DRAINAGE DESIGN CRJTERJA ........................................................................................................................................ 3 STORM WATER RUNOFF DETERMINATION .............................................................................................................. .4 STORM SEWER DESIGN .................................................................................................................................................... 5 CHANNEL DESIGN .............................................................................................................................................................. 6 DETENTION FACILITY ANALYSIS ................................................................................................................................. 6 CONCLUSIONS ..................................................................................................................................................................... 6 APPENDIX A .......................................................................................................................................................................... 7 Time of Concentration Equations & Calculation s APPENDIX B ........................................................................................................................................................................ 12 Storm Sewer Inlet Design Calculations APPENDIX C ........................................................................................................................................................................ 15 Storm Sewer Pipe Design Calculations EXHIBIT A ............................................................................................................................................................................ 22 Post-Development Drainage Area Map -Storm Sewer LIST OF TABLES TABLE 1 -Rainfall Intensity Calculations .............................................................................................. 4 TABLE 2 -Time of Concentration (tc ) Equations .................................................................................. 4 TABL E 3 -Post-Deve lopm ent Runoff information -Storm Sewer Design ........................................... 5 DRAINAGE REPORT DOVE CROSSING SUBDIVISION -PHASE 2 INTRODUCTION The purpose of this report is to provide the hydrological effects of the construction of the Dove Crossing Subdivision -Phase 2, and to verify that the proposed storm drainage system meets the requirements set forth by the City of College Station Drainage Policy and Design Standards . GENERAL LOCATION AND DESCRIPTION The project is located on a portion of a 97 .94 acre tract located south of Graham Road west of State Highway 6 in College Station, Texas. This report addresses Phase 2 of this subdivision, which is made up of 8 .3 acres. The site is predominantly open space with a few scattered oak and mesquite trees. The existing ground elevations range from Elevation 298 to Elevation 307 for Phase 2 . The general location of the project site is shown on the vicinity map in Exhibit A . FLOOD HAZARD INFORMATION The project site is located in the Lick Creek Drainage Basin. No portion of this property is within a flood hazard area according to the Flood Insurance Rate Map prepared by the Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated areas dated February 9, 2000, panel number 48041C0201-D. DEVELOPMENT DRAINAGE PATTERNS Prior to development, the storm water runoff for Phase 2 flows in an easterly direction unti 1 it leaves the property and enters the South Fork of Lick Creek on the adjacent tract, which ultimately flows into Lick Creek. With the construction of Phases lA, lB & lC of the development, the storm water runoff is captured by the detention ponds which have been constructed. DRAINAGE DESIGN CRITERIA The design parameters for the storm sewer analysis are as follows : • The Rational Method is utilized to determine peak storm water runoff rates for the stom1 sewer design and for the pre-development and post-development peak runoff values for areas that do not drain to the detention ponds. • Design Storm Frequency Storm sewer system • Runoff Coefficients Pre-development 10 and 100-year storm events Post-development (single family residential) c = 0 .30 c = 0 .55 • Rainfall Intensity equations and values for Brazos Count y can be found in T abl e I . • Time of Concentration, tc -Calculations are based on th e m e thod found in the TR-5 5 publi ca ti o n . Refe r to Table 2 for th e equations and App e ndix A for calculation s . Th e runoff flow p aths used for th e post-development times of concentrati o n for the s torm s e we r design are found on Exhibit A. For smaller drainage areas, a minimum tc of 10 minutes is used to determine the rainfall intensity va lues . TABLE 1 -Rainfall Intensity Calculations Rainfall Intensity Values (in/hr) Storm Event Is 110 bs lso 1100 t c = 10 min 7 .693 8 .635 9.861 11.148 11 .639 I = b I (tc+d)e I = Rainfall Intensity (in/hr) tc = U(V*60) tc = Time of concentration (min) L = Length (ft) V = Velocity (ft/sec) Brazos County: 5 'f.ear storm 10 'f.ear storm 25 'f.ear storm 50 't.ear storm 100 Y.ear storm b= 76 b= 80 b= 89 b= 98 b= 96 d= 8.5 d= 8.5 d= 8.5 d= 8.5 d= 8 .0 e= 0.785 e= 0 .763 e= 0.754 e= 0.745 e= 0.730 TABLE 2 -Time of Concentration (tc) Equations The time of concentration was determined using m ethods found in TR-55, "Urban Hydrology for Small Wat ersheds . " The equations are as follows: Time of Concentration : Tc= T1(sheet flow)+ T1(concentrated sheet flow) where : T 1 =Travel Time, minutes For Sheet Flow: 0.007 (n L)0·8 (P z)°"s s o.4 where: T 1 = travel time, hours n =Manning's roughness coefficient L = flow length, feet P2 = 2-year, 24-hour rainfall = 4.5 " s = land slope, ft/ft For Shallow Concentrated Flow: T, =LI (60*V) Refer to Appendix A for calculations. STORM WATER RUNOFF DETERMINATION where: T 1 =travel time, minutes V = Velocity , fps (See Fig 3-1 , App. A) L = flow length, feet The peak runoff values were determined in accordance with the criteria presented in the previous section for the 5 , 10 , 25, 50 , and l 00-year sto1111 events. The drainage areas for the post-development conditions for the storm sewer design are shown on Exhibit A . Post- development runoff conditions for the storm sewer design are summarized in Table 3. -l TABLE 3 -Post-Development Runoff Information -Storm Sewer Design c tc 5 year storm 10 ye ar storm 25 year storm 50 year storm 100 ye ar storm Area , A Area# Is O s 110 010 l2s 0 2s lso O so 1100 0 100 (acres) (mi n) (in/hr) (cfs) (i n/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) (in/h r) (cfs) Ph1 :212 1.43 0.55 16 .6 6.054 4.76 6.841 5.38 78349 6.16 8.881 6.99 9.266 729 -v ----- Ph 1. 214 2.58 0.55 22 5.263 7.47 5.971 8.47 6.8492 9.72 7.776 11 .03 8 .115 11 .52 i--------- Ph 1.· 219 1.72 0.55 21 . 1 5.319 5.03 6.032 5.71 6.9189 6.55 7.854 7.43 8 .197 7.75 L I-' ------ Ph 1. 220 0. 17 0 .55 10 7 693 0 .72 8.635 0.81 9.8615 --o.§2 11 . 148 1.04 11 .639 1.Q9i i--- ---- Ph 1: 220A 0 .08 0.55 10 7.693 0.34 8.635 0.38 9.8615 0.43 11 .148 0.4 9 11 . 639 0.51 -i- ------v Ph 1.· 221 1.96 0 .55 18 .9 5.652 609 6.399 6.90 73337 7.91 8.320 8.9 7 8 .681 9.36 -------- Ph 1.· 222 1.39 0.55 16 .0 6.170 4.72 6.969 5.33 79792 6. 10 9.04 3 6.9 1 9.434 7.2 1 -i- Ph 1.· 223 0.53 0.55 10 7.693 2.24 8.635 2.52 9.8615 2.87 11 . 148 3.25 11 .639 3.39 ~ ..- ----------- Ph 1. 224 0 .19 0.55 10 7.693 0.80 8 .635 0739 9.8615 1.02 11 . 148 1.1 6 11 .639 ~ v 234 1.87 0 .55 24 .7 4 .861 5.00 5 .527 5.68 6 .345 6 .53 7 .211 7.4 2 7 .528 7 .74 --- 235 2.50 0 .55 22 .7 5.104 7.02 5.795 7 .97 6.650 9 .14 7.552 10 .38 7 .882 10 .84 236 1.17 0.55 10 .7 7.472 4 .81 8.393 5.40 9.589 6 .17 10 .843 6.98 11 .319 7.28 --- 237 0 .23 0.55 10 7.693 0 .97 8.635 1.09 9.861 1.25 11 .148 1.41 11 .639 1.47 237A 0 .54 0 .55 10 7.693 2 .28 8 .635 2 .56 9.861 2.93 11 .148 3 .3 1 11 .639 3.46 --- 238 0 .55 0 .55 10 7.693 2.33 8 .635 2 .6 1 9.861 2 .98 11 .148 3 .37 11 .639 3.52 -- 239 0.46 0 .55 10 7 .693 1.95 8 .635 2.18 9.861 2.49 11 .14 8 2.82 11 .639 2 .94 STORM SEWER DESIGN The storm sewer pipin g for this project has b een selected to be Reinforced Concrete Pipe (RCP) meeting the requirements of ASTM C-76 , C lass III. The curb inl ets and junction boxes will be cast-in-place co ncrete . Appendix B presents a summary of the storm sewer inlet design p arameters and calc ul ations. The in lets were designed based on a 10-year design sto m1 . Inlets for the r es id enti a l s tre ets were loc ated to maintain a g utter flow depth of 5 " or less. This design d epth wi ll prevent the spread of water from reaching the crown of the road for the 10- year storm event. Refer to Appendix B for a s umm ary of the gutter flow depths . The runoff intercepted by the proposed storm sewer inlets was ca lculated using the fo ll owing equations. The d e pth of flow in the g utt er was determ in ed by using the Straight Crown Flow equation . A ll of the inlets for this phase of constru ction are on-grade. The flow intercep ted by the inl ets was calcul ated by using the Capacity of Inlets On Grade eq uation. These eq uat ions and resulting data are summarized in Appendix B. There are no [n]ets in Sump for this phase of construction. The area between the right-of-way and the curb line of the streets wi ll be graded as necessary to provide a minimum of 6 " of freeboard a bove the curb line. T hi s wil l ensure that th e runoff from the 100 -year storm event wi ll remain within the street right-of-way . Appendi x C presents a s umm ary of the stonn sewe r pipe design parameters and c a lcu lation s. All pipes are 18" in diameter or larger. Fo r pipes with 18" and 24" diam e te rs, th e cross- sectio n al area is reduced by 25 %, as per C o ll ege Statio n requirements . A summ a ry of how thi s was ac hi e v e d is s hown in Append ix C a s we ] I. Th e pipes for the s to1111 se w e r s y s t e m were d e signed base d on th e I 0-ye ar storm e v e nt , a nd th e y w ill a lso pass th e I 00-ye ar s to rm e v e nt. Ba sed on th e dept h of flow in th e s treet d e te rmin e d for th e I 00-yea r storm eve nt , thi s runoff w il l b e c o nt a in ed with in th e s tr e et right-o f-wa y until it e nt e rs th e s to rm se w e r s ys te m . A s req uire d b y C o ll ege Sta tion , th e ve lo c it y o f n o w in th e s torm s ewe r pip e sys te m is not low e r than 2 .5 fee t per s ec ond , a nd it do es no t exceed 15 fee t pe r sec o nd. A s th e d a ta s ho ' s , e v e n duri n g low fl ow co nditi o 11 s, th e ve loc it y in th e pip es wi ll exc eed 2 .5 fee t pe r seco nd a nd prevent sediment build-up in the pipes. The maximum flow in the stom1 sewer pipe system will occur in Pipe No . 13. The maximum ve locity for the pipe system in this development will be 7.4 feet per second and will occur in Pipe No. 16. Appendix C contains a summary of the pipe calculations . CHANNEL DESIGN The storm runoff from the streets and storm sewer is conveyed to the detention pond by an exist in g "v" bottom earthen drainage channel with 4H : IV side slopes . The velocities out of the storm sewer pipes will be dissipated by the placement of rock riprap at the end of the pipe which discharges into the channel. DETENTION FACILITY ANALYSIS The existing detention ponds were designed to control the developed condition peak runoff for Phase 1 and Phase 2 of this development. The proposed Phase 2 is only a portion of the original Phase 2 area . The original Phase 2 area was revised and is now Phases 2 through 4. Refer to the Dove Crossing Subdivision Phase I Drainage Report (dated December 2004 , and revised January 2005) for the design infom1ation for the detention ponds . CONCLUSIONS The construction of this project wi ll increase the stom1 water runoff from this site. The proposed storm sewer system should adequately contro l the runoff, and the existing detention ponds will adequately control the peak runoff so that it will not have any impact on the properties downstream of this development. There sho uld be no flood damage to downstream or adjacent landowners resulting from this development. APPENDIX A Time of Concentration Equations & Calculations 7 Post-Development Time of Concentration Calculations Refer to Exhibit A for flow path locations . From Phase 1: Drainage Area # 221 Sheet Flow: n= P= L= 100 Tr= 0.007(L *nl u.ll = (P) o.5 *(S) o.4 Gutter Flow 1: V= L= 652 T ,= U(60 *V) = Gutter Flow 2: V= L= 165 T ,= U(60*V) = 0.15 (short grass prairie) 4 .5 Elev 1 = Elev 2 = 0. 182 hours= .... I __ 1_0_. 9_m_1_·n __ __. , 1. 7 fps (paved) Elev 1 = Elev 2 = 6.4 min 1. 7 fps (paved) Elev 1 = Elev 2 = 1.6 min jre= 18.9 min From Phase 1: Drainage Area # 222 Sheet Flow: n= 1 · 0. 15 (short grass prairie) P= 4.5 L= Elev 1 = Elev 2 = T,= 0.007(L *nl u.ll = 0. 133 hours= I 8 min (P) o.5 *(S) o.4 Gutter Flow 1: V= 1. 7 fps (paved) L= 652 Elev 1 = Elev 2 = T,= U(60*V) = 6.4 min Gutter Flow 2: V= 1. 7 fps (paved) L= 165 Elev i = Elev 2 = T ,= U(60*V) = 1.6 min Ir e= 16.0 min Slope= 0.010 Slope= 0.007 Slope= 0.007 Slope= 0.010 Slope= 0.007 Slope= 0.007 Drainage Area # 234 Sheet Flow : n= 0 .15 (short grass pra irie) P= 4.5 L= 195 Elev 1= Elev2= Slope= 0.007 T,= 0 .007(L*nt11 = 0.358 hours= I 21 .5 min (P)o .s*(S )°4 Gutter Flow 1: V= 1.85 fps (paved) L= 350 Elev 1= Elev 2= Slope= 0 .0080 T,= L/(60*V) = 3.2 min ITc= 24.7 min Drainage Area # 235 Sheet Flow : n= 0.15 (short grass prairie) P= 4.5 L= 200 Elev 1= Elev2= Slope= 0 .011 T,= 0.007(l*n)u11 = 0.305 hours= I 18 .3 min (P)o s*(S)0.4 Gutter Flow 1: V= 1.8 fps (paved) L= 480 Elev 1= Elev2= Slope= 0 .0077 T,= L/(60*V) = 4.4 min ITc= 22 .7 min Drainage Area # 236 Sheet Flow : n= '0 .1p (short grass prairie) P= '4 .5 L= 15 Elev 1= Elev2 = Slope= 0 .008 T1= 0 .007(l*n)u11 = 0 .044 hours= I 2.6 min (P)os*(S )o4 Gutter Flow 1 : V= 1.8 fps (paved) L= 530 El ev1= El ev2 = Slope= 0 .0077 T ,= L/(60*V) = 4.9 min Gutter Flow 2 : V= . '1 :85 fps (paved) L= 355 Elev1 = Slope= 0.800 L/(60*V) = 3 .2 min ...... ..... -...... ..... CJ a. 0 "' CJ "' ~ :::s 0 u ~ QJ ..... "" :x 3 -2 .so .20 - .10 .06 .04 . 02 - .01 - .005 I 1 J ' I ' I I IJ i ' i ' j ' J i J I J " ' ' ' II ~ ' . 'b ~'bJ"-01 'tr ,_ q, :::,~ ,/i J I j I J l I I I 2 4 6 Average velocity, ft/sec . . . . I I ~ I I 10 J I . . . I Fiicun: :l -1.-Avtraict vdocities for ~•limalinJC lr.1vd timt for •hallow conctnlrakd Oow . (2 10 -Vl-TR -55. Sec ond E d .. J un e L98Gl I 20 i l .. l ; , .J i l APPENDIX B Storm Sewer Inlet Design Calculations 12 Dove Crossing Subdivision Phase 2 Depth of Flow in Gutter (R efer to Exhibit A for Gutter Lo c ation s ) Gutter A Location Area# (acres) Ph 1: AS 22J, byp CJ,byp C< 0.53 A7 239. Info f0< A5 check 0.46 A8 237 .2 39, byp F2-F3 .A5 Info 0 .69 --· A9 238 0 .55 A10 237 A .237,239 , byp F2-F3,A5 Info 1.23 - -- -- F1 235 2.50 ----·- F2 234 , byp ass F 1 1.87 - - ------- F3 236 1.17 T rans ve rse (C row n ) slope (fV ftl 27' stree t = 0 .0330 c Slope le (ft/ft) (min) 0 .55 0.0070 10 .0 0 .55 0.0070 10 .0 0.55 0.00 70 10 .0 0 .55 0.0070 10 .0 0 .55 0.0070 22 .7 ---- 0 .55 0.0077 22 .7 --- 0 .55 0.0080 24 .7 --·--- 0 .55 0.0080 10 .7 Straight Crown Flow (Solved to find actual depth of flow in gutter, y): 1,. (in/h r ) 8.635 8 .635 8 .635 8.635 - 5 .795 5 .795 - 5.527 -- 8 .393 Q = 0 .56 • (z/n) • S 112 • y813 ¢ y ={QI (0 .56 • (z/n) • S 112 ]}318 n =Rou g hn ess Coeffi cient = 0 .018 S = Str ee VGutter Slope (tvft) y = De pth of fl ow at inl et (ft) z = Rec ipro ca l of crown slope : 27' street = 30 10 -year storm 100-year storm a,. Y 1 0 ~.a ctual 1, •• a , •• Y 100 (cfs) (ft) (in) (in/hr) (cfs) (ft) (in) 2.52 0 .275 3.30 11.639 5 .51 0.3 69 4 .42 --- 4 .70 0 .347 4.17 11 .639 8.46 0.433 5 .19 ------------ 5 .79 0 .376 4 .5 1 11.639 14 .24 0.526 6.32 - --- 2 .61 0 .279 3.34 11 .639 3.52 0 .312 3.74 -------------- 7.31 0.410 4 .92 7.882 14 .07 0 .524 6 .29 --- -------- - -- 7.97 0 .416 4 .99 7.882 10.84 0.467 5.60 --·-----·------- 6 .56 0.384 4.6 1 7.528 10 .96 0.465 5.58 ----·------- 5 .40 0.35 7 4 .2 8 11.3 19 7.28 0 .399 4 .79 Dove C ross i ng Subd ivision Phase 2 In let Length Calculations lnlel # Phas e f 103 102 101 105 10 .: 108 ;09 107 106 Phase 2 111 112 1 I J Inlets On Grade Length 15' 10' 15' 10' 1ii Flowtrom Y11 J 0,-toot Area# I (ftl I !in) I (ft) Clc.(MClty (els) a., .... (efs) 10 y.ar storm a.."""" (els) Ou,.y ...... I a..,.,." • ., (e ls) I from Inlet# (e ls) Q 11 ·Tot•I Y,,o (els) lt--(ft-)-~-(ln-)----<I a,..,_ (ft) <lca(MCky (els) 100 year storm a..,.,.. .. (els) Ccapt Vt.0 Oc.tf'JO.,.f (els) I (efs) I from Inlet# a..pt -4otl (els) 0 100.totel (els) s (ft/ft) L.ct ... 1 (ft) 2_12_ -o-.3-2-1 --3.85 -0'"".8""1-l--,8-. 1""5-t--,-0".1"'1,--t--,5-.3-8 -l---+----i-~o~.o~o -t-5~.3~8-5.38 o.359 <.31 o.65 6.52 o. 76 6.52 o. 78 6.52 7.29 0.0 14 0 10 214 0.380 4.56 0.67 10.10 -1 .63 8.47 0.00 8.4 7 ~ 0.427 5.12 0.72 10.80 0.7 1 10.80 I 0.71 10.80 11 .52 _o_.0_1_40_ -~- -----o-.3-28---3-.93--0-.6-2-9.32 -3.04 8.28 o.oo 102.103 o.oo 8.28 6.28 o.371 4.45 o.68 9.91 ~ -8-.5-4-•--1.-4-7-1-1-02-.-10_3_,_-o-.-10_,__8_.64 __ ,_~~-8_.-7~5_-_1 _-=_o-=_.0:::1:::10:::: .. -_-_15_-_ _2_21_ -0-.4-0 -1 ---4-.8-1--o-.6-9-6.94 -0.04 8.90 o.oo 6.90 6.90 ~~ o. 74 7.44 1.92 7.44 1.92 7.44 9.36 0.0010 ro -22_2 ___ 0-.3-64--4-.3-7 ___ 0_.8_6_ 8.57 -1.24 5.33 0.00 5.33~-o.4o8~-o:ro-~~~---i 0.20 7.01 7.21 o.0-070 -,0 208 0.371 _4_.4_5_,__o_.6_6 _,_6-.B<--1--.-1.-03--1--5-.6-1-<----+----1-o-.oo--+-5-.6-1-1 5.81 0.4 16 <.99 0.11 1.09 o.5o 7.09 1----1,----•-o-.so--1--1-.0-9--7-.5-9--0-.00-10---;o -10' 10' 10 ' 5' = -_:::20:::9::::::: ::::::o:::.3:::95:::::: ::::::4:::.:::14::::::;_-_,o-=_.6-=_9-_-::1_6.,..8.,.8,--.1 __ -0.,.._26~+-6"-.6"'2'-t----+----t-'o"'.oo"""'"-l--~6"'.6=-2 _1 6.62 D.'4'4"2~ ~7:36 ---;:59 _1_.3_6_,_ __ -11 ____ 1_1_.5_9_1 __ 7_.3_6_1 __ 8._9_5_ -_0:::.00::::::10::::-_-_-1_0 ___ _ _!1 8_,2_2_1 _o_.3_69 __ 4_.4_3_ o.66 6.62 -0.83 5.79 o.oo 5.79 5.79 0.41 3 <.96 0.11 7.07 o.n 1.01 I o.77 7.07 7.84 0.0010 10 10' 10' JO' 21 1 o.305 3.66 o.60 3.oo 0.4 9 3.oo o.49 3.oo 3.49 o.341 4.10 o.63 3.11 1.53 3.11 I t.53 3.11 4.11 0.0010 5 234 236 235 _a ~ ~:H*=.66 1 6.57 -0.88 5.68 o.88 113 o.oo 5.68 5.68 0.465 5.58 I 0 .10 I 1.02 I 0.73 I 1.02 I 3.22 I 113 I 3.95 I 1.02 10.96 I 0.0080 I 10 ~.35 ~_4_.2_8_ o .65 _6_._50_.1 __ -_1._1_0 --1_5_._40_.,_ __ -+-----1-o_._oo_.,__5_.4_o_,_5_._4_o_ ~~~-6_.9_2_,_1 _0_.3_6-11_6_.9_2_,1 ___ -11 ____ 1_0_._36_,__6_.9_2_, __ 1_.2_8 _ _l_Q~~o_J 10 o.416 4.99 0.11 1.09 o.88 7.09 o .88 7.09 7.97 o.467 5.6o 0 .16 1.62 3.22 1.62 I 3.22 1.62 10.84 ·ro:oonr--10 -· Future Ph as e 3 110 I 15 ' I m.t..m.m I 0.377 4.52 Tra nsv erse rC rownl slope (fVftl for 27' streets = 0 .033 for 38' streets = 0.0315 0.67 10.04 Strai ght Crown Flow !Solved to find actua l depth of fl ow y ): 0 = 0 .56' (zln )' s •n ' y"'"' y z {0 I [0 .56 • (zln) • S 1n])"' n = Roughness Coefficient = S = Stree VGutter Slope (fVft) y = Depth of now at inlel (ft ) Capaci ty of Inl ets on gr ade : 0 .018 Oe = 0 .7 '(1/(H1 • H,))' [H 1"'-H2 "'J Oc = Fl ow capacity of inlet (cfs) H 1 =a + y Hi =a =gutter depress ion (2" Standard ; 4" Recessed) y = Depth of now 1n approach gutter (ft) -4.20 5.84 0.00 l fff,112,104,105 0.00 z = Re cio roca l of crown slo pe fo r 27' streets = 30 for 38' streets = 32 5.84 5.84 0.527 6.33 Inlets In sump s Weir Flow ; L • Q I (3 • y312 ) "' y • (Q I 3L)"' L •Length of inlet opening (ft) Q =Flow at inle t (els) y = total depth of now on inlet (ft ) max y for inlet in sump = 7' = 0.583' 0.71 10.72 -2.85 7.87 6.43 1111,112,ro.f,105 3.S8 10.72 14.31 0.0070 15 APPENDIXC Storm Sewer Pipe Design Calculations Dove Crossing Subdivision • Phase 2 Pipe Summary 10-year Storm Pipe Pipe length Slope Contributing Area Contributing Tc 110 010 Mannings 1100 Size Area •Actual Design V10 Travel Time, tT1o No . Numbers 91. Full (i n) (ft) {%) (acres) (min) (In/hr) (cfs) (cfs) (fps) (sec) (min) (In/hr) 13 2-30" 238 .2 0.60 212 .214.219.220,220A,221, 14 .87 25.1 5.48 44.79 6 .6 65.2 36 0 .60 7.46 222,234,235,236 14 27 72 .0 0 .80 234,235 ,236 5 .54 23.7 5 .66 17 .2 4 6 .9 59.9 10 0 .17 7 .70 -· -------15 24 360 .5 0.80 235 2 .50 22.7 5 .79 7 .97 12.87 6.4 60.8 56 0 .94 7 .88 -----· 16 18 30.3 1.40 236 1.17 10 .7 8 .39 5.40 8 .72 7 .2 64 .9 4 0 .07 11.32 'These va lues reflect the actual flow for the 18" & 24 " pipes . The design flow for these pipe sizes reflects a 25 % reduction in pipe area . (Refe r to attached calculation for specific information .) 100-year Storm 0100 Mannings •Actual Design V100 Travel Time , 1r 1te 91. Full (cfs) (cfs) (fps) (sec) (min) 61 .02 6 .8 85.4 35 0 .58 ------- 23.46 7 .3 75 .0 10 0 .16 ---- 10 .84 17 .51 6 .8 76 .4 53 0 .88 7 .28 11 .76 7 .4 83 .8 4 0 .07 City o f College Station requirement to Reduce Cross-Sectional Area of 18" & 24" Pipes by 25% Using Mannings Equation from page 48 of the College Station Drain age Policy & Des ig n Standards Manu al : Q = 1 .49/n *A* R213 * S 112 Q = Flow Capacity (cfs) 18" Pipe: Pipe size (inches)= Wetted Perimeter W P, (ft)= Cross-Sectional Area A , (ft2) = Reduced Area AR, (ft2 ) = Hydraulic Radius R = NW P· (ft) = Reduced Hydr Radius RR = A R/W P· (ft) = Roughness Coefficient n = Friction Slope of Conduit Sr. (ft/ft) = Example Calcu l ~tion : Slope Flow Capaci ty Reduced Flow Capa ci ty s Q Oreduced 0 .005 6 .91 4 .28 - 0 .006 7 .57 4 .69 ------ 0 .007 8 .18 24" Pipe: Pipe size (inches)= Wetted Perimeter W P, (ft)= Cross-Sectional Area A , (ft2 ) = Reduced Area AR, (ft2 ) = 5 .06 Hydraulic Radius R = NW P· (ft) = Reduced Hydr Radius RR = AR/WP • (ft) = Roughness Coefficient n = Friction Slope of Conduit Sr. (ft/ft) = Example Calculation: Slope Flow Capacity Reduced Fl ow Capacity s Q Oreduced 0 .005 14 .89 9.22 --·-··-- 0 .006 16 .31 10 .1 ---------- 0 .007 17 .61 10 .9 C o nclusion: 18 4 .71 1.766 1.325 0 .375 0 .281 0 .014 0 .01 % Difference - O reduced /Q 0.61 9 0.619 0.619 24 6.28 3 .14 2 .355 0.5 0 .375 0 .014 0 .01 % Difference O re duced/Q 0.61 9 ---- 0.6 19 ------- 0.619 Multi p ly actual Q in 18" & 24 " pipes by 1.615 to refle ct a 25% re du c tion in the c ross-sectional a rea ca ll ed for on page 4 7 , parag rap h 5 of th e Co ll ege Station Drain age Poli cy & Design Standards manual. Pipe 13 -10 Year Storm Manning Pipe Calculator Given Input Data : Shape .......................... . So lving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Mann ing ' s n .................... . Computed Re sults : Dep th .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Ve locity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow F lowrate ............. . Full flow velocity ............. . Circular Dept h of Flow 30.0000 in 22.4 000 cfs 0.0060 ft/ft 0 .0140 19. 5516 in 4.9087 ft2 3.38 79 ft2 56.3728 in 94.2478 in 6.6119 fps 8.6540 in 65.1719 % 29.5 0 23 cfs 6.01 02 fps Pipe 13 -100 Year Storm Manning Pipe Calculator Give n Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow veloc ity ............. . Dove Cross i ng Subdi v isi o n -Phase 2 Co ll ege Station, Texa s Circular Dep th of Flow 30.0 000 in 30.5100 cfs 0.0 060 ft/ft 0 .0140 2 5 .6254 in 4 .9087 ft2 4 .4656 ft2 70.7389 in 94.24 78 in 6 .8323 fps 9.09 03 in 85 .417 9 % 29 .5023 cf s 6 .0102 fps Pip~ 14 -10 Ye ar Storm Manning Pipe Ca l c ulat o r Given Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Rad i us ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 27 .0000 in 17 .2400 cfs 0.0080 ft/ft 0 . 0140 16 .1748 in 3 .9761 ft2 2 .4863 ft2 47.7968 in 84.8230 in 6.9341 fps 7.4905 in 59 .9068 % 25 .7221 cfs 6.4692 fps Pipe 14 -100 Year Sto rm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow v elocity ............. . Dove Crossing Subd iv i sjo n -Pha se :1 Co] l ege St :it ion, Te;.:as Circular Depth of Flow 27.0000 in 23.4600 cfs 0.0080 ft/ft 0.0140 20.2534 in 3.9761 ft2 3.1993 ft2 56.5566 in 84 .8230 in 7.3328 fps 8.1458 in 75 .0127 % 2 5.7221 cfs 6 .4692 fps Pipe 15 -10 Year Storm Manning Pipe Calculator Giv en Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24 .0000 in 12 .8700 cfs 0.0080 ft /ft 0. 0140 14 .5843 in 3 .1416 ft2 1.9982 ft2 42.9085 in 75.3982 i n 6.4409 fps 6.7058 in 60 .7680 % 18.7888 cfs 5.9807 fps Pipe 15 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius . : ............. . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Dove Crossi ng Su bdi v i sio n -Phase 2 Col l ege Stat i on. Texas Circular Depth of Flow 24.0000 in 17.5100 cfs 0.0080 ft/ft 0. 0140 18.3474 in 3.1416 ft2 2 .5771 ft2 51.0759 in 75.3982 in 6 .7946 fps 7 .2656 in 76.4476 % 18 .7888 cfs 5.9807 fps Pipe 16 -10 Ye ar Storm Manning Pipe Calculator Giv en Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . S l ope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Ar ea ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hy draulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow veloc i ty ............. . Circula r Depth of Flow 18 .0000 i n 8 .7200 cfs 0 . 0140 ft/ft 0 .0140 11 .6908 in 1. 7671 ft2 1 .2148 ft2 33.7395 in 56 .5487 in 7.1779 fps 5.1849 in 64 .9489 % 11.5411 cfs 6 .5309 fps Pipe 16 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hy draulic Radius ............... . P ercent Full ................... . Full flow Flowrate ............. . Fu ll flow velocity ............. . Do ve Crossing S ubd ivisio n Co] lege s ·atio n , Texa s Pha s<~ 2 Circular Depth of Flow 18.0000 in 11.7600 cfs 0 . 0140 ft/ft 0. 0140 15.0814 in 1.7671 ft2 1.5811 ft2 4 1.6290 in 56 .5487 in 7 .4379 fps 5.4692 in 83.785 3 % 11 .5411 cfs 6 .5309 fps EXHIBIT A Post-Development Drainage Area Map -Storm Sewer 22 Drainage Report for Dove Crossing Subdivision Phase 2 College Station, Texas November 2005 Developer: Dove Crossing Development, LLC 3205 Earl Rudder Freeway South College Station, TX 77845 (979) 693-6699 Prepa red By: TEXCON General Contractors 1707 Graham Road Co llege Station, Texas 77845 (979) 764-7743 CERTIFICATION I, Joseph P . Schultz, Licensed Professional Engineer No. 65889 , State of Texas , certify that this report for the drainage design for the Dove Crossing Subdivision -Phase 2, was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners hereof. TABLE OF CONTENTS DRAINAGE REPORT DOVE CROSSING &UBDIVISION -PHASE 2 CERTIFICATION .................................................................................................................................................................. 1 TABLE OF CONTENTS ........................................................................................................................................................ 2 LIST OFT ABLES .................................................................................................................................................................. 2 INTRODUCTION ................................................................................................................................................................... 3 GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 3 FLOOD HAZARD INFORMATION .................................................................................................................................... 3 DEVELOPMENT DRAINAGE PATTERNS ....................................................................................................................... 3 DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 3 STORM WATER RUNOFF DETERMINATION .............................................................................................................. .4 STORM SEWER DESIGN .................................................................................................................................................... 5 CHANNEL DESIGN .............................................................................................................................................................. 6 DETENTION FACILITY ANALYSIS ................................................................................................................................. 6 CONCLUSIONS ..................................................................................................................................................................... 6 APPENDIX A ......................................................................................................................................... : ................................ 7 Time of Concentration Equations & Calculatio11s APPENDIX B ........................................................................................................................................................................ 12 Storm Sewer Inlet Design Calculations APPENDIX C ........................................................................................................................................................................ 15 Storm Sewer Pipe Design Calculations EXHIBIT A ............................................................................................................................................................................ 22 Post-Development Drainage Area Map -Storm Sewer LIST OF TABLES TABLE l -Rainfall Intensity Calculations .............................................................................................. 4 TABLE 2 -Time of Concentration (tc ) Equations .................................................................................. 4 TAB L E 3 -Post-Developm ent Runoff Infom1 atio n -Storm Sewer Design ........................................... 5 DRAINAGE REPORT DOVE CROSSING SUBDIVISION -PHASE 2 INTRODUCTION The purpose of this report is to provide the hydrological effects of the construction of the Dove Crossing Subdivision -Phase 2, and to verify that the proposed storm drainage system meets the requirements set forth by the C ity of Co lle ge Station Drainage Policy and Des ign Standards. GENERAL LOCATION AND DESCRIPTION The project is located on a portion of a 97.94 acre tract located south of Graham Road west of State Highway 6 in College Station, Texas . This report addresses Phase 2 of this subdivision, which is made up of 8.3 acres. The site is predominantly open space with a few scattered oak and mesquite trees. The existing ground elevations range from E levation 298 to Elevation 307 for Phase 2. The genera l loc ation of the project site is shown on the vicinity map in Exhibit A. FLOOD HAZARD INFORMATION The project site is located in the Lick Creek Drainage Basin. No portion of this property is within a flood hazard area according to the Flood Insurance Rate Map prepared by the Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated areas dated February 9, 2000, panel number 48041C0201-D. DEVELOPMENT DRAINAGE PATTERNS Prior to development, the stom1 water runoff for Phase 2 flows in an easterly direction until it leaves the property and enters the South Fork of Lick Creek on the adjacent tract, which ultimately flows into Lick Creek. With the construction of Phases lA, lB & lC of the development, the storm water runoff is captured by the detention ponds which have been constructed. DRAINAGE DESIGN CRITERIA The desi gn parameters for the storm sewer analysis are as follows : • The Rational Method is utili zed to determine peak storm water runoff rates for the stom1 sewer design and for the pre-development and post-development peak runo ff valu es for areas that do not drain to the detention ponds . • Design Storm Frequency Storm sewer system • Runoff Coefficients Pre-development 10 and 100 -year storm events Post-developm ent (single family resid enti al) c = 0.30 c = 0 .55 • Rainfall Int e nsity eq uati ons and values for Brazos County can be found in Ta bl e I . • Tim e o f Co nc e ntration , tc -Ca lc ul ation s are based on th e m ethod fo und in the TR-55 publi cat io n. Re fe r to Table 2 for th e equ ati o ns and App e ndi x A for calc ul a ti o ns . The runo ff fl ow path s used fo r th e pos t-deve lopm e nt tim es of co nc e ntr a ti o n fo r th e sto rm se we r design are found on Exhibit A. For smaller drainage ar eas, a minimum tc of 10 minutes is used to determine the rainfall intensity values . TABLE 1 -Rainfall Intensity Calculations Rainfall Intensity Values (in/hr) Storm Event Is 110 bs lso 1100 tc = 10 min 7.693 8 .635 9.861 11 .148 11 .639 I = b I (tc+d)e I = Rainfa ll Intensity (in/hr) le= U(V*60) tc = Time of concentration (min ) L = Length (ft) V =Velocity (ft/se c) Brazos County: 5 'f.ear storm 10 'f_ear storm 25 'f_ear storm 50 'f_ear storm 100 'f_ear storm b= 76 b= 80 b= 89 b = 98 b= 96 d= 8 .5 d= 8.5 d= 8.5 d= 8 .5 d= 8.0 e= 0.785 e= 0 .763 e= 0 .754 e= 0.745 e= 0.730 TABLE 2 -Time of Concentration (tc) Equations The time of concentration was determined using methods found in TR-55 , "Urba n Hydrology for Small Watersheds . " The equations are as follows : Time of Concentration: For Sheet Flow: Tc = Tt(sheet fl ow)+ Tt(concentraled sheet fl ow) where : T 1 =Travel Time, minutes where : T 1 = travel time , hours n =Mann ing's roughness coefficient L = flo w length, feet P 2 = 2-year, 24-hour rainfall = 4 .5" s = land slope, ft/ft For Sha llow Concentrated Flow : T, = LI (60*V) R efer to Appendi x A for calculations. STORM WATER RUNOFF DETERMINATION where: T 1 =travel time, minutes V =Velocity, fps (See Fig 3-1 , App. A) L = flo w length , feet The p eak runoff values were determined in accordance with the c riteri a presented in the previo us section for the 5, 10, 25, 50, and 100-year storm even ts . The drainage areas for the post-d evelopment conditions for th e storm sewer design a re shown on Ex hibit A. Post- developm ent runo ff cond iti ons fo r the storm sewer design are su mm arized in Tab le 3 . ..j TABLE 3 -Post-Deve lo pm e nt R un off Infor m ation -S t orm Sewe r Des ig n c 5 year storm 10 yea r storm 25 year stor m 50 year storm 100 year s to r m Area# A rea, A t c Is Os 110 0 10 l2s 0 2s lso O so 1100 0 100 (ac r es) (min) (in/hr) (cfs) (in/h r) (cfs) (i n/h r) (cfs ) (in/hr) (cfs) (in/hr) (c fs) Ph1 :212 1.4 3 0 .55 16 .6 6.054 4.76 6.84 1 5.38 7.8349 6.16 8.881 6.99 9.26 6 7.29 --- Ph 1.· 214 2.58 0.55 22 5.263 7.47 5.971 8.47 6.8492 9.72 7.776 11 .03 8.11 5 11.5 2 -- Ph 1: 219 1.72 0 .55 21.1 5.3 19 5.0 3 6.0 32 5.71 6.9 189 6.55 7.854 7.4 3 8.19 7 7.75 -------------- Ph 1: 220 0 .17 0.55 10 7.693 0.72 8 .635 0 .81 9.8615 0.92 11.148 1.04 11 .639 1.09 ----------- Ph 1: 220A 0 .08 0 .55 10 7.693 0 .34 8 .635 0.38 9.8615 0.43 11. 148 0.4 9 11 .639 -0.5 1 - --·- Ph 1: 221 1.96 0.55 18.9 5.65 2 6.09 6.399 6.90 7.3337 7.9 1 8.320 8 .97 8.68 1 -9.36 ------ Ph 1: 222 1.39 0.55 16 .0 6. 170 4.72 6.969 5.33 7.9792 6.10 9.04 3 6.9 1 9.4 34 7.2 1 Ph 1: 223 0.53 0.55 10 7.693 ~ 8.635 2.52 9.8615 2.87 0.148 ---:us 11.639 -3-:39 Ph1 :224 0.19 0.55 10 7.693 0.80 8.635 0.89 9.86 15 1.02 11. 148 -U6 -1 1639 -U1 234 1.87 0 .55 24 .7 4 .861 5 .00 5 .527 5.68 6 .345 6 .53 7 .211 7.4 2 7 .528 7 .74 235 2.50 0 .55 22 .7 5 .104 7 .02 5.795 7 .97 6 .650 9 .14 7 .552 10 .38 7 .88 2 10.84 236 1.17 0 .55 10.7 7.472 4 .8 1 8 .393 5.40 9 .589 6 .17 10 .843 6 .9 8 11 .31 9 7 .28 237 0 .23 0 .55 10 7.693 0 .97 8 .635 1.09 9 .861 1.25 1 1.14 8 1.4 1 11 .639 1.47 237 A 0 .54 0 .55 10 7.693 2 .28 8 .635 2 .56 9.861 2 .93 11.148 3.3 1 11.639 3.4 6 ---1--- 238 0.55 0 .55 10 7 .693 2 .33 8 .635 2.61 9 .861 2 .98 11.14 8 3 .37 11 .639 3 .52 23 9 0.4 6 0 .55 10 7 .693 1.95 8 .635 2 .18 9 .861 2.49 11 .148 2 .82 11.639 2 .94 STORM SEWER D ES IGN T h e s torm sewer piping for thi s proj e ct h as b een se lected to b e R e inforced Con crete Pip e (R C P) m eeting th e r equire m e nts of ASTM C-76 , C lass III . T h e c urb in lets a nd j un ct io n bo xes w ill b e c ast-in -pl ace co n c rete . A ppe ndi x B presents a s umm a ry o f th e sto rm sewer in le t d esign p a ram e te r s a n d calc ul a ti o n s . T h e in lets were d es igned b ased o n a 10 -year d es ig n s to m1 . Inlets for the r es id e n t ia l s treets we re locat ed to m a inta in a g utte r flo w d e pth of 5" or less . T hi s des ig n d e p th w ill prevent th e s pread o f wate r from reachin g t h e c rown of th e road fo r th e 10- year s torm event. R efer to Appe ndi x B fo r a s umm a r y of th e g utt e r fl ow d e pth s . T h e run off inte rc e pted b y th e propo sed s tom1 sewer inl e ts was calcu lated u s in g th e fo ll ow i ng e qu at ions. T he d e pth of flo w in th e g utt e r was d etermine d b y us in g th e Stra ig ht Crow n Fl ow e qu a ti o n . A ll of th e inl ets fo r thi s phase of co ns tru c ti o n a re o n-grad e. T h e flow inte rcepte d b y th e inl e ts was calcu lated b y us in g th e Cap ac it y of Inl e ts On G rad e eq u ation . The s e equa ti o n s a nd res ul ti ng data a re s umm a ri z ed in App e ndi x B . T h ere are n o Inl e ts in S ump fo r thi s ph as e of co n s truc ti o n . T he a rea b e tween th e r ig h t-of-way a nd th e c urb line o f th e s treets w ill b e grad ed as n ecessar y to pro vi d e a minimum of 6" of fr e eboard a bove th e c urb li n e. T h is wi ll e n s ure that th e ru noff fr o m th e 10 0-year s to rm e v e nt w ill re m a in w ithin th e s treet r ig h t-of-wa y . A pp e ndi x C present s a s umm a ry of th e sto nn s ewe r pip e d esi g n p a r a m e te rs a nd c a lc ul at io n s. A ll pipes a re 18" in di a m e te r o r la rge r. Fo r pi pe s w ith 18" and 24" di am e te rs , th e c ro ss- s e c ti o nal a re a is red uced b y 25 %, as pe r C o ll ege Statio n re quire m e nt s . A s u mm a ry of h ow thi s was ac h ieved is s how n in A pp e nd ix C as \Ne ll. Th e p ipes for th e s to rm se w e r sys te m w e re d es ig ned based o n th e I 0-ye a r s to rm e ve nt , a nd th ey w ill a lso pa s s th e I 00-ye ar s to rm event. Based o n th e d e pth o f fl ow in th e s tr eet d e te rmin e d fo r th e I 00 -ye a r s to rm ev e nt , thi s run o ff w i l l b e c o nta in ed w ithin th e s tree t r ig h t-o r-w a y until it e nt e rs th e s to rm s ewe r sys te m . A s req ui red b y Co ll ege S ta ti o n , th e ve loc it y o r fl o w in the s to rm s ewe r pip e sys te m is no t low e r th a n 2 .5 ree t pe r s eco nd , a nd it d ocs no t exceed 15 ree l pe r seco nd . A s th e d a ta s hows , eve n dur in g low !l o" c o nd iti o ns , th e ve lo c it y in the pip es w ill ex ceed 2.5 re e t p e r s ec o nd <1 11d prevent sediment build-up in the pipes . The maximum flow in the storm sewer pipe system will occur in Pipe No . 13 . The maximum ve locit y for the pipe system in this development will be 7.4 feet per second and will occur in Pipe No. 16 . Appendix C contains a summary of the pipe calculations. CHANNEL DESIGN The storm runoff from the streets and stonn sewer is conveyed to the detention pond by an existing "v" bottom earthen drainage channel with 4H: 1 V side slopes . The ve locities out of the storm sewer pipes will be dissipated by the placement of rock riprap at the end of the pipe which discharges into the channel. DETENTION FACILITY ANALYSIS The existing detention ponds were designed to control the developed condition peak runoff for Phase 1 and Phase 2 of this development. The proposed Phase 2 is only a portion of the original Phase 2 area. The original Phase 2 area was revised and is now Phases 2 through 4 . Refer to the Dove Crossing Subdivision Phase I Drainage Report (dated December 2004 , and revised January 2005) for the design information for the detention ponds . CONCLUSIONS The construction of this project will increase the storm water runoff from this site. The proposed storm sewer system should adequately control the runoff, and the existing detention ponds will adequatel y control the peak runoff so that it will not have any impact on the properties downstream of this development. There should be no flood damage to downstre am or adjacent landowners resulting from this development. APPENDIX A Time of Concentration Equations & Calculations 7 Post-Development Time of Concentration Calculations Refer to Exhibit A for flow path locations . From Phase 1: Drainage Area # 221 Sheet Flow: n= 0.15 (short grass prairie) P= 4.5 L= 100 Elev 1 = Elev 2 = Slope= 0.010 T1= 0.007(L *n) u.ll = 0. 182 hours= I 10 .9 min (P) o.5 *(S) oA Gutter Flow 1: V= . 1. 7 fps (paved) L= 652 Elev 1 = Elev 2 = Slope= 0.007 T1= U(60*V) = 6.4 min Gutter Flow 2: V= 1. 7 fps (paved) L= 165 Elev 1 = Elev 2 = Slope= 0.007 T1= U(60*V) = 1.6 min Ire= 18.9 min From Phase 1: Drainage Area # 222 Sheet Flow: n= P= L= Elev 1 = Elev 2 = Slope= 0.010 T1= 0.007(L *n) u.ll = 0. 133 hours= I 8 min (P) o.5 *(S) o.4 Gutter Flow 1: V= 1. 7 fps (paved) L= 652 Elev 1 = Elev 2 = Slope= 0.007 T1= U(60*V) = 6.4 min Gutter Flow 2: V= 1. 7 fps (paved) L= 165 Elev 1 = Elev 2 = Slope= 0.007 T,= U(60 *V) = 1.6 min Ir e= 16.0 min Drainage Area # 234 Sheet Flow: n= 0.15 (short grass prairie) P= 4.5 L= 195 Elev 1 = Elev 2= Slope = 0.007 T1= 0 .007(L *nfti = 0 .358 hours= I 21 .5 min (P)os *(S)o4 Gutter Flow 1: V= 1.85 fps (paved) L= 350 Elev 1 = Elev 2= Slope = 0.0080 Tt= L/(60 *V) = 3 .2 min IT c= 24 .7 min Drainage Area # 235 Sheet Flow: n= 0.15 (short grass prairie) P= 4.5 L= 200 Elev 1 = Elev2 = Slope = 0 .011 T1 = 0 .007(L *n fti = 0 .305 hours= I 18 .3 min (P)o s*(S)o 4 Gutter Flow 1 : V = 1.8 fps (pa ved) L= 480 Elev 1= Elev2 = Slope= 0 .0077 T1 = L/(60*V) = 4.4 min IT c= 22.7 min Drainage Area # 236 Sheet Flow: n= 0 .1? (short grass prairie) P= 4.5 L= 15 Elev 1= Elev 2= Slope = 0 .008 T1 = 0 .007(L *n f ti = 0 .044 hou rs= I 2.6 min (P)os*(S )o4 Gutter Flow 1: V= 1.8 f p s (p av ed) L= 530 El ev 1= Elev 2= Slop e= 0 .0 077 T,= L/(60 *V) = 4 .9 min Gutter Flow 2 : V= '1.85 fps (paved) L= 355 Elev 1= Slope= 0.800 L/(60*V) = 3 .2 min .... '4--.... '4- CV a. 0 .- V'I CV V'I ~ ::I 0 u ~ GJ ...... 1111 :x 3-2 .so .20 - .10 .06 .04 . 02 - .01 - .005 I 1 J j I ' I I J ' J 'b ~ r·'b, 'b ,.... <U ~ ~, ::::,<:::/ Q.'tr I I J I I I 2 I ~ ., . ,, I 4 J w ' ' I j IJ I 6 I J J ' .. J ' Average velocity, ft/sec ... . (210 -Vl-TR -55. ~cond Ed .. June L9 8Gl J .· . . I I I ' I I 10 . . . . - I 20 j l APPENDIXB Storm Sewer Inlet Design Calculations 12 I Dove Cross in g Subdiv isi on Phase 2 Depth of Flow in Gutte r (Refer to Exhib it A for Gutter Lo cat ions) Gutter A L o cati on Area# (acres) Ph 1: A 5 223, byp CJ ,byp C4 0.53 A7 239, Info for A5 check 0.46 A8 237,239, byp F2 -F3 ,A5 In fo 0 .69 - A9 238 0 .55 ·--- A10 237 A,237 ,2 39, byp F2-F3,A5 Info 1.23 ----- ----- F 1 235 2 .50 -----· F2 234 , bypa ss F 1 1.87 ·-· ------- F3 236 1. 17 T ra nsverse (Crow n) slope (fUft) 27' stree t = 0 .0330 c Slo pe le (ft/ft) (min) 0.55 0.0070 10.0 0 .55 0.0070 10 .0 0.55 0.007 0 10.0 0.55 0 .007 0 10 .0 0 .55 0 .007 0 22 .7 - --·--- 0.55 0 .0077 22.7 ----- 0.5 5 0 .008 0 24.7 -----· -- 0 .55 0 .0080 10.7 Strai ght Crown Fl ow (Solved to find a c tual depth of flow i n gutter, y): '·· (in/h r) 8.635 8 .635 8.635 8.635 5 .795 5 .795 - 5 .527 ---- 8 .393 Q = 0 .56 * (z/n) * S112 * y 813 Q y ={QI (0 .56 * (z/n ) * S112]}318 n = Rough nes s Coefficient = 0 .01 8 S = Str ee UG utter Slo pe (tuft) y = De pth of fl ow at inlet (ft) z = Recipro ca l of crow n slo pe : 27' street = 30 10 -y ear sto rm 100 -year storm o ,. Y 10·actual '··· o, •• Y100 (cfs) (ft) (i n) (i n /h r) (cfs ) (ft) (i n ) 2.52 0.275 3.30 11 .639 5.51 0 .369 4 .42 4 .70 0.347 4 .17 11 .639 8.46 0.433 5. 19 5 .79 0.376 4 .51 11 .639 14 .24 0 .526 6 .32 -- 2.6 1 0.279 3.34 11 .639 3.52 0 .312 3.74 - 7.3 1 0.410 4.92 7.882 14 .07 0 .524 6 .29 -· 7.97 0.416 4.99 7 .882 10 .84 0.467 5 .60 ----- 6 .56 0.384 4 .6 1 7.52 8 10 .96 0.465 5.58 -------.. -- 5 .40 0 .357 4.2 8 11.319 7.28 0 .399 4 .79 Dove Crossing Subdivision Phase 2 Inlet Length Calculations !n lel • Pt1 ase 1 103 102 101 105 10 .: 108 109 107 106 Phase 2 111 112 113 In le ts On Grade 10 year storm 100 year storm Lengtn 15 ' 10' 15' 10' iir 10' 10 ' 10' 5' 10' 10' 10' Flow from y,. Area# (tt) (in) 0,_1oo4 (tt) a.:.,_lty (cfs) a.. .... (cfs) 0c.'"w.c1 ,_ __ a._.., ........ ~-·---< o"",-4°' .. (cfs) (cfs) from Inlet# (cfs) <le.pt-tot! (cfs) QfM'fOOI (tt) a. .... ., (cfs) a.,.,... <le.'"""" ,_ __ a.~'~"'-~-•-• ---< Ob.,.p-4ota1 (cfs) (cfs) (cfs) I from Inlet # (cfs) Oc.pt-4otl (els) (cfs) s (ftltt) (tt) 2_1_• __ o._3_8o __ ~~ o.67 10.10 -t.63 8.47 o.oo 8.47 8.47 0.427 5.12 0.12 10.80 0.11 10.80 I 0.71 10.80 11 .52 _o_.0_1_40_ -~5_- 212 o.321 3.85 0.61 6.15 --0.77 5.38 o.oo 5.38 5.38 o.359 4.31 0.65 6.52 o.76 8.52 I o.78 6.52 7.29 0.0140 10 - --Q.3~2-,8 -1---,3..,_9-,3-1-o,..._"'"82.,--·1--,9""'_3.,.2-1--,_3-,_0'""4-~-"6~.2-=-8-1--o.-oo--+--,-o-2.-1 -03--l-"o~.oo~+-8"-.2-'-8~+-..,8""'.2_8_·-'D.371 '--,.4_-4""5-i1--o'"".6""6.,---1---,,.9_.,.9"'"1 -~--1,..._3°'70-'1-"'"8 .""S<--i--,-_4-=1-11--1-,0""2 .-1 "'"03,-1--,,o_-10-:---i--8=-.84:-:----8-. 7-5--0-.0-1-10--1 5 - 221 0.401 4.81 0.69 6.94 -0.04 6.90 0.00 6.90 6.90 0.4 50 S.40 0.74 7.44 7.92 7.44 I 7.92 7.44 9.36 0.0070 'Jo-· - --2-22--0-.3-84-4.37 o.68 8.57 -1 .24 5.33 o.oo 5.33 ~ ~ ~ ""070~ 0.20 1.01 I 0.20 1.01 7.21 0.0010 --,-o - 208 o.371 4.45 0.66 6.84 -1 .03 5.61 o.oo 5.81 5.81 0.416 4.99 0.11 7.09 o.50 7.09 I o.so 7.09 7.59 D.0070 -To-- -__ 20_9_ ==o=.3=9=5 =·~==4=. 7=•=~==o=·=69==:==6=.8=8=~===-0=.2=6==:=~6~.6=2=~======~========:==0~.00==~==6~.=62==:==6=.6=2:=_-1;'_-_;o=.4=•~2=~:-===5 ·~3=1 ==::===o=.7=4===~==7-~36==:==1=.5~9==~==7 -~36==:======1:=======~=='-~59=:::-+~-7~.3'"'6'--18:95 D.0070 ---,a· 218,227 0.369 4.43 0.66 8.62 --0.83 5.79 0.00 5.79 5.79 0.413 4.96 0.71 7.07 0.77 7.07 : 0.77 7.07 7.84 0.0070 10 217 0.305 3.66 0.60 3.00 0.49 3.00 0.49 3.00 3.49 0.34 1 4.10 0.63 3.17 1.53 3.17 1.53 3.17 4.71 0.0070 5 23 4 2J6 235 0.36 4 0.357 0.41 6 _ 4_.3_6 _~_.6_6 ___ 6c..s,,_1_1-_-0'-'.-'-88'--l--s'-'."-68'-·l--'o"-.8'-'8'-+--1'-'1-=-3--+--o'-'.-'-oo'-+--'5""_6"'8-l -5'-'_"68'-0.465 I 5.58 I 0 .70 1.02 on 1 .02 3.22 I 113 3.95 1.02 10.96 I 0.0080 10 4.28 0.65 6.50 -1.10 I 5.40 I o.oo 5.40 5.4 0 0.399 I 4.79 I 0.69 6.92 0.36 6.92 I 0.36 6.92 7.28 0.0080 lo --4-_9,...9-i--,.o -=.1-1 -+--,1'""_09~-1---o-.8-8-~J--1"-_09""""-t----1--1----1--o"".8~8-1-~1~.0~9 -+'-~7 _c9·1,--+1 --,.o-_..,.6 ~7 -+l --5,.-.6~o,---+-1 ---,o~.1~s --1-""'1'"".6~2-1-"'"3 _.,.2~2-t---,1~.6~2~·t---+1----i ·--,3~_2~2,---1-~1~.6~2 -1-1~0~.8~•-'·--o .-oo-1-1---1 0 Fu lur e Phase 3 110 15" I WA.1Jl.1'9 I 0.377 I 4.52 I 0.67 Transverse !Crown) slo pe (fVfl) for 27' stree 1s = 0 .033 tor 38' streets = 0.0315 10.04 Straight Crow n Fl ow (Solve d to find actual depth of flow. y): a= o .56 • (zln ) • s "' · y"'"' y • (Q 1 [0 .56' (zln) • s •nn"' n =Roughness Coefficient = 0.0 18 S = StreeVGu ner Slo pe (ttlft ) y = Deplh of now al inlet (ft ) Capacity of Inlets on grade : Oc = 0.7·11 t(H1 ·H2 ))·1H 1"'-H2"'1 Oc =Flow capacity of in let (cfs) H, =a.,. y H2 =a = gutt er dep ress io n (2ft Standard ; 4" Recessed) y = Depl h of now in approac h gulter (tt ) -4 .20 I 5.84 I o.oo l ru.112.10,,105 o.oo z = Reciorocal of crown slope for 27' streets = 30 for 38' streets = 32 5.84 I 5.64 I o.s21 I 6.33 I o. 71 Inlets In sumps. Weir Flow ; L •QI (3 'y312 ) '° y •(Q I 3L)213 L = Length of inlet opening (ft) Q =Flow at inlet (cfs ) y = total deplh of flow on inlel (ft) max y for inlet in sump = 7" = 0 .583' 10.72 -2.85 7.87 6.43 I ffl, 112, 104, 10 .5 3 .SB 10.72 14 .31 I 0.0010 15 APPENDIX C Storm Sewer Pipe Design Calculations ,~ Dove Cross i ng Subdivision -Phase 2 Pipe S u m mary 10-y ear Storm Pipe Pi pe Le n gt h Slope Contri b ut ing Area Contri buting Tc 110 0 10 Man nings 1100 Size Area •A c tual Design V 10 Travel Time, lt11 No . Numbers % Fu ll (in) (ft) (%) (acres) (m i n ) (In /hr) (cfs ) (cfs) (fps) (s ec ) (m in ) (In/h r ) 13 2-30" 238 .2 0 .60 2 12 .2 14.2 19.220,220A .22 1, 14 .87 25 .1 5.48 44 .79 6 .6 65 .2 36 0 .60 7.46 222 .234 ,235,236 ---f---- 14 27 72 .0 0 .80 234,235 ,236 5.54 23 .7 5 .66 17 .24 6 .9 59 .9 10 0 .17 7.70 15 24 360 .5 0 .80 235 2 .50 22 .7 5 .79 7 .97 12 .87 6.4 60 .8 56 0 .94 7 .88 ---- 16 18 30 .3 1.40 236 1. 17 10 .7 8 .39 5.40 8 .72 7 .2 64 .9 4 0 .07 11 .32 'These values refl ect the actua l flow for the 18" & 24" pipes . T he des ign flow for these pipe sizes reflects a 25% reduction in pi pe area . (Refer to attached calcul at ion for specific in fo rmation .) 100-yea r Storm 0 100 Ma nn ings *Actu al Design V 100 %Fu ll Travel Time, 1,1 .. (c fs) (c fs ) (fps ) (sec) (mi n) 61 .02 6 .8 85.4 35 0 .58 ·-23 .46 7 .3 75 .0 10 0 .16 10.84 17 .51 6 .8 76 .4 53 0.88 7 .28 11.76 7.4 83 .8 4 0 .07 City of College Station requirement to Reduce Cross-Sectional Area of 18" & 24" Pipes by 25% Using Mann ings Equation from page 48 of the College Station Drainage Policy & Design Standards Manual : Q = 1.49/n *A* R213 * S112 Q = Flow Capacity (cfs) 18" Pipe: Pipe size (inches)= 18 Wetted Perim eter WP , (ft)= 4 .71 Cross-Sectional Area A , (ft2 ) = 1 . 766 Reduced Area A R. (ft2 ) = 1.325 Hydraulic Radius R = NWP. (ft)= 0 .375 Reduced Hydr Radius RR= AR!Wp. (ft)= 0 .281 Roughness Coefficient n = 0 .014 Friction Slope of Conduit Sr. (ft/ft) = 0 .01 Example Calcul~tion: Slope Flow Capacity Reduced Flow Capacity % Difference s Q Oreduced O red uced /Q 0.005 6.91 4.28 0.6 19 0 .006 7 .57 4 .69 0.6 19 0 .007 8 .18 5 .06 0.6 19 24" Pipe: Pipe size (inches) = 24 Wetted Perimeter WP , (ft)= 6 .28 Cross-Sectional Area A . (ft2 ) = 3 .14 Reduced Area AR . (ft2) = 2.355 Hydraulic Radius R = NWP. (ft)= 0 .5 Reduced Hydr Radius RR = A R/W P• (ft) = 0 .375 Roughness Coefficient n = 0 .014 Friction Slope of Conduit Sr. (ft/ft) = 0 .01 Example Calculation : S lope Flow Capacity Reduced Flow Capacity % Difference s Q O reduced O reduced /Q 0 .005 14 .89 9 .22 0.6 19 --·---- 0.006 16 .31 10 .1 0.619 -·-·--------- 0 .007 17 .61 10 .9 0.619 Co nclusio n: Multipl y actual Q in 18" & 24" p ipes by 1.615 to refl ect a 25% redu ction in th e cross-secti ona l area ca lled for on page 47 , paragraph 5 of th e Colleg e Sta ti on D ra in age Polic y & Design Standards m anu al. Pipe 13 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 30 .0000 in 22.4000 cfs 0.0060 ft/ft 0 .0140 19 .5516 in 4.9087 ft2 3.3879 ft2 56.3728 in 94.2478 in 6 . 6119 fps 8.6540 in 65 .1719 % 29 .5023 cfs 6 .0102 fps Pipe 13 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Dove Crossing Subdi v jsi o11 -Phase 2 Co llege St atio n , Texas Circular Depth of Flow 30.0000 in 30.5100 cfs 0.0060 ft/ft 0. 0140 25 .6254 in 4.9087 ft2 4.4656 ft2 70.7389 in 94.2478 in 6.8323 fps 9.0903 in 85.4179 % 2 9.5023 cfs 6.0102 fps Pipe 14 -10 Year Storm Manning P ipe Calculator Given Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Veloc i ty ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 27 .0000 in 17.2400 cfs 0.0080 ft/ft 0.0140 16.1748 in 3.9761 ft 2 2.4863 ft2 47.7968 in 84.8230 in 6.9341 fps 7.4905 in 59 .9068 % 25.7221 cfs 6.4692 fps Pipe 14 -100 Yea r Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Ful l flow Flowrate ............. . Full flow v elocity ............. . Dov e Crossing S ubdi v isi o n -Ph a s e ., Col l e g e St ~ ion , Texa s Circular Depth of Flow 2 7.0000 in 23.46 00 cfs 0.0080 ft/ft 0. 0140 20.2534 in 3 .9761 ft2 3.1993 ft2 56.5566 in 84.8230 in 7.3328 fps 8.1458 in 75 .0127 % 25 .7221 cfs 6.4692 fps Pipe 15 -10 Year Storm Manning Pipe Calcu lator Giv en Input Data : Shape .......................... . Solv ing for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Result s : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Pe rimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Fu ll flow Flowrate ............. . Fu ll flow vel ocity ............. . Circular Depth of Flow 24.0 000 in 12 .8700 cfs 0.0080 ft/ft 0. 0140 14.5843 in 3.1416 ft2 1.9982 ft2 42.9085 in 75.3982 in 6 .440 9 fps 6.7058 in 60 .7680 % 18 .7888 cfs 5.9807 fps Pipe 15 -100 Year Storm Manning Pipe Calculator Given Input Data: · Shape .......................... . Solvi ng for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Mann ing' s n .................... . Computed Results: Dep th .......................... . Area ........................... . Wett ed Area .................... . Wetted Perimeter ............... . Pe rime ter ...................... . Velocity ....................... . Hydraulic Radius . : ............. . Pe rcen t Full ................... . Full flow Flowrate ............. . Full flow velocit y ............. . Dove C~ossi n g S ubdi visio n -Ph ase 2 Co ll ege S ation, Texas Circular Depth of Flow 24 .0000 in 17.5100 cfs 0.0080 ft/ft 0. 0140 18.3474 in 3.14 1 6 ft2 2 .5771 ft2 51.0 75 9 in 75.3982 in 6.7946 fps 7.2656 in 76.4476 % 18 .7888 cfs 5.9807 fps Pipe 16 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 18 .0000 in 8.7200 cfs 0.0140 ft/ft 0 . 0140 11 .6908 in 1.7671 ft2 1.2148 ft2 33.7395 in 56.5487 in 7 .1779 fps 5 .18 49 in 64.9489 % 11.5411 cfs 6.5309 fps Pipe 16 -100 Year Storm Manning Pipe Calculator Giv en Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimete r ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Dove Cross ing Subd ivis j o n Col l ege Stat i o n, Texas Pha se 2 Circular Depth of Flow 18 .0000 in 11 .7600 cfs 0. 0140 ft/ft 0. 0140 15.0814 in 1.7671 ft2 1.5811 ft2 41 .6290 in 56 .5487 in 7.4379 fps 5.4692 in 83.7853 % 11.5411 cfs 6.5309 fps EXHIBIT A Post-Development Drainage Area Map -Storm Sewer 22 -- FOR OFFIC E USE ONLY P&Z CASE NO .: 0 5-!Li 'I DATE SUBMITTED : o~ CITY oi: Cou .E CE STATION /,/111111iJ1._r:. r.:;'r lJn11·/op111 r111 Srn·,:cr•.1 FINAL PLAT APPLICATION (Check one) D Minor ($300 .00 ) D Amending ($300 .00 ) ~Final ($400 .00 ) D Vacating ($400 .00) D Replat ($600.00)* 'Includes public hearing fe e The following items must be submitted by an established filing deadline date for P&Z Commission consideration. MINIMUM SUBMITTAL REQUIREMENTS : 1 /Filin g Fe e (see a bove ) NOTE : Mul tip le S heets -$55 .00 per a dditi onal shee t [ ~ Me;...1, ____:::_V a ri ance Req uest to Su bdivis ion Reg ul ati ons -$10 0 (if app lica bl e) _L Developme nt Permit A pplication Fee of $200.00 (if app licable). __.1L'.. Infrastructure Inspecti o n Fee of $600 .00 (applicab le if any pub li c infrastructu re is being const ructed) ~ Ap plicatio n co mple ted in full . -=-Co py of ori g in al deed rest rictions/covenants for rep lats (if app li cable) . . v' Thirteen (13) folde d copi es of plat. (A s ig ned myla r orig inal m ust be subm itt ed afte r staff rev iew .) / On e (1) copy of t he approve d Pre liminary Plat and/or o ne (1) Mas ter Pla n (if appl ic able). /Pa id tax ce rtifi ca tes from City of College Station, Brazos Coun ty and Colle ge Stat io n l.S.D . _J_ A copy of th e attac hed c heck lis t with a ll ite ms checked off or a bri ef ex pl ana ti on a s to why they a re not. ~ Two (2) copi es of pu bli c infrastructure plans associa ted with thi s plat (if app li cab le). ___L Pa rklan d Dedication requiremerit approved by the Parks & Rec reation Boa rd , please provide proof of approval (if a pplica bl e). Date of Preappl ication Conference: ___ --'-'·J .... ~~'-'-+-_._l=J ....... +i _,,;z--wt-"'-~-""-"'"'-'-------------- NAM E OF suBD1 v1s 10N llirt: Cr o> ~Ho2+ Sl_W 111/ $<l DVl --Pbas.e )..- SPEC IF IED LOC ATI ON OF PROPOSED SUBDIV~N (Lo t & Block ) ~ruih [siL\e o f~. &4 1 Oa,<;J ~ ~.e,,~~ 0't"Ovf X:kJ-;;;?. APPLICANT/PROJECT MANAGER 'S INFORMATION (Pr imary Contact fo r th e Project): Name D ov{ Cro_s~V"Yj ))ev-t\?\"01£v'1-, LLC -Antbo ~~ ~aj ,~ St reet Address ~"'2-o) \;::-ax=\ K~ev u-~R wt'.W\ &>1>kk City GJiiti'SJ;;J; C"Yl State Jj( Zip Cod e 1-:J'bl\:~ E-~i l Address --~~---------- Phone Number {tj1'1J li"3 -(of;,44 Fa x Number ('174) /.A'S -1f}4 l PROPERTY OWNE R'S INFORMATION : Name T ~ --r~h Tuvfs1rne~ t-L-r Street Address 3 Z...Q'S" 'Qvr\ 'RwJJR i' Gr..e o.U~ ?;o~ City Cn l \ e.a Q Sfc; bo-c State \X. Zip Code -=J1.~L\=S: E-M ail Add ress _,........._-,--___ 6 _______ _ Phone Number (VJ1&1J (/\~ -(R{ptj'] Fa x Number (tJ7q) [;q 5" -2,14 ( ARCHITECT OR ENGINEER 'S INF ORM ATION : Name :UxchY"I...-)itl' ~\,\-~>f ,£: · . . Street Address ClcCl (x~ ~-C it y Co \.le,l(.q ~t~dioV1 State TX. Zip Code :ll'bY.:L E-M ail Add ,ess $~~~~:!'-"" -"e.f- Phone Number (g:ri) =1la4~1:1 A-~ Fax Number (~_'1___ __ -=----) __ 6 /13.'03