Loading...
HomeMy WebLinkAbout12 The Glade Sec 12 05-34 1311 Southwest PkwyApril 7, 2006 TO: FROM : CITY OF COLLEGE S TATION Planning & Development Services 1101 Texas Avenue, P.O . Box 9960 College Station, Texas 77842 Phone 979.764.3570 /Fax 979.764.3496 MEMORANDUM Kent Laza, P.E ., Texcon, via fax 690.9797 Bridgette George, Development Coordinator SUBJECT: Engineering Document Comments for The Glade Sect. 12 Staff reviewed the above-mentioned engineering documents as requested. The following page is a list of staff review comments detailing items that need to be addressed. Please address the comments and submit the following information for further staff review and approval of the plans: __ One ( 1) sets of revised construction documents. If you have any questions or need additional information, please call Josh Norton at 979 .764.3570 . Attachments : Staff review comments pc: Case File No . DP05-23 ENGINEERING 1. The request to remove the 2 curb inlets on North Bardell Ct, and replace them with grate inlets has been denied, due to the fact that grate inlets in streets are not desired and are normally used to serve as area inlets in such applications as parking lots. Reviewed by: Josh Norton Date: April 6, 2006 TEX CON Gen eral Co ntra ctors D iv. of CDS Ente rprises, Inc . 1707 Graham Rd . • College Station , TX 77845 • 97 9-690-7711 • Fax: 979-690-97 97 March 30, 2006 A lan Gibb s, P .E . D evelopm ent E ng in eer C ity of C oll ege Station P.O . Box 9960 Co ll ege Stati on , TX 778 4 2 RE : R ed es ign of inl et s on N orth B ard ell C ourt The Gl ad e Subd iv ision , S ection 12 , C o ll ege Station , T exas D ear A lan : The h om ebuild er in The G lad e Subdivision co nt act ed u s regarding th e p oss ibility o f r ed es igning th e curb inlets on N orth B ard e ll C ourt to make them into grate inl et s. T he reason for d oin g thi s is to ac commod ate dri ve ways into th e homes that mu st b e located wh ere these curb inl et s wer e ori gin a ll y install ed . The att ach ed plan sho ws our pro p osal for rebuilding th ese tw o inl et s. On th e attach ed p age I have pro v id ed a br ief d ra in age rep ort showing th e calculation s fo r th e inl ets we use d t o d es ign th em . We as k ed th at yo u r eview th e pl ans and th e calcul ati o n s, an d pro v id e an y input yo u h ave r egarding thi s red esign . Thank yo u . S in cere ly Y ours , /~L ~ Ke nt Laz a , P .E . P rojec t Manager attachm ent The Glade Subdivision, Section 12 Drainage Report Addendum #1 Q captu red (from original drainage report -Inlet Length Calc ul ations for 100-yr event) Inlet 1 -Q captured = 5.52 cfs Inl et 2 -Q captured = 6 .82 cfs Orifice E qu ation Q = 4.82 A grate (y)y, Where Q = flow into the grate ( cfs) A grate = open area of the grate (ft2 ) y =depth of water o ver the grate (ft) For Q = 6 .82 cfs --~'";"-C logging in (ft ) i (in ) Factor 3 2 .83 408 25 % 4 5 2.45 353 25 % --·•······································•···--·········-·················"'···················· 2.19 3 16 25 % Req. Area .... :z · (in) 509 From East Jordan Iron Works Catalog Selected Grate = V-4230 (Heavy Duty) Opening Area = 23 5 in2 2 Grates = 470 in 2 Funct io n a l Op en Area with 25% c lo gging A orate = 470 / 1.25 = 376 in 2 0 D epth over Grate 2 Y = (Q/(4.82 X A grate )) y = 0 .29 ft = 3 .5 in fo r Inl e t 2 y =0.19ft =2.3in fo rlnl e tl The Glade Subdivis i o n In let Length Calculations Revised 712005 Inlets On Grade 10 yea r storm Flow from Y10 Oper 1oo1 Oc...,1e1~ a byp•• <lc ~ured In let# Length 1 - 2 10' l O' Area# (ft) I (In) 202 0.303 + 3.64 ----201 0.348 4.17 Transve rse !Crown) slope (ft/ft) for 27' street = 0 .033 (ft) (els) (els) 0.60 5.97 -1 .66 0.64 6.4 1 -0 .50 Straight Crown Flow (Solved to fi n d actual depth of f low, yl: a= o.ss • (zin) • s 111 • y"' ¢ y = {0 / [0.56 • (zin) • s"1n"' n =Roughness Coefficient~ 0 .018 S = Street/Gutter Slope (ft/ft) y = Depth o! flow at inlet (ft) Capac ity of Inlets on grade: Oc = 0 .7' (1/(H, • H2)] • [H,511 -H2 512] Oc = Flow capacity of inl et (els) H, =a + y H2 = a = gutter depression (2" Standard; 4" Recessed) y = Depth of flow in approac h gutter (ft) (els) 4.09 5.9 1 O c:wryOYer 0 1ryp.tot• O cmpt.totl 0 10-Tot• Y1 00 (els) l from lnl•t # (els) (els) Ccls) (ft) I (In) I 0 .00 4 .09 4 .09 0 .339 I 4.07 I 0 .00 5 .9 1 5 .91 o .389 I 4.67 z = Reciprocal oC crown slope for 27' street = 30 In lets in s u m ps, Wei r Flow : L = QI (3 ' y"') ¢ y = (QI 3L )213 L = Length of inle t opening (ft) Q =Flow at inl et (els) y = total depth of flow on inlet (ft) ma x y for inlet in sump = 7" = 0 .583' 100 year storm O per1oot O cmpmclty a .,. •• flc~tured Oc..,ry 0¥., a byp-totll (ft) (els) (els) (els) (els) ! from Inle t# (els) 0 .63 6 .32 -0 .60 5.52 I 0 .00 ~- 0 .68 6 .82 1.14 6.82 l 1.14 - O upt-totl 0 100.rou11 (els) (els) 5.52 5.52 ----6.82 0 ...., m ::i m co CD ::0 CD -0 0 ;::i 7.96 m x () CD ...., -s. ~ 0 3 -i ::::r CD G) m o._ CD (f) c 0-o._ ~: Cf) 0 _::i (f) CD Q. 6' ::i f\.) m >< ~ -· C"' -)> s . L .:1u:t1 (ft/ft) (ft) 0 .0 1 10 10 -----0.0110 10 CITY OF COLLEGE STATION Pla nning & Dn>t!JJpment &rvius SITE LEGAL DESCRIPTION: The Glade, Section 12 , Lot Tract A , Acres 2.553 DEVELOPMENT PERMIT PERMIT NO . 05-34 FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA RE : CHAPTER 13 OF THE COLLEGE STATION CITY CODE SITE ADDRESS: Southwest Pkwy , College Station , Texas DRAINAGE BASIN: Main Bee Creek DATE OF ISSUE: August 11, 2005 VALID FOR 12 MONTHS OWNER: 7B Investments , Ltd . 1305 West Villa Maria Bryan, Texas 77802 TYPE OF DEVELOPMENT: SPECIAL CONDITIONS: CONTRACTOR: Full Development Permit All construction must be in compliance with the approved construction plans All trees required to be protected as part of the landscape plan must be completely barricaded in accordance with Section 7.5.E., Landscape/Streetscape Plan Requirements of the City's Unified Development Ordinance , prior to any operations of this permit. The cleaning of equipment or materials within the drip line of any tree or group of trees that are protected and required to remain is strictly prohibited . The disposal of any waste material such as , but not limited to , paint, oil , solvents, asphalt , concrete , mortar, or other harmful liquids or materials within the drip line of any tree required to remain is also prohibited . Full Development Permit The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design Cr iteria. If it is determined the prescribed erosion control measures are ineffective to retain all sediment onsite , it is the contractors responsibility to implement measures that will meet City , State and Federal requirements . The Owner and/or Contractor shall assure that all disturbed areas are sodden and establishment of vegetation occurs prior to removal of any silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor shall also insure that any disturbed vegetation be returned to its original condition , placement and state. The Owner and/or Contractor shall be responsible for any damage to adjacent properties , city streets or infrastructure due to heavy machinery and/or equipment as well as erosion , siltation or sedimentation resulting from the permitted work . In accordance with Chapter 13 of the Code of Ordinances of the City of College Station , measures shall be taken to insure that debris from construction , erosion , and sedimentation shall not be deposited in city streets , or existing drainage facil ities . I hereby grant this permit for development of an area outside the special flood hazard area . All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer in the development permit application for the above named project and all of the codes and ordinances of the City of College Station that apply. Date r& f <rz-(\) 5 Date SUPPLEMENTAL DEVELOPMENT PERMIT INFORMATION Application is hereby made for the following development specific waterway alterations: ~u. ~J ; J ~,r;_,,, ~--f<-•sS.~r"'.chtv l\re. GL..,QH ACKNOWLEOGMt=NTS : '\ 'c. ,/) \..-{J . s . \,._ \..._-n._ I, .j~J r design engineer/owner, hereby acknowledge or affirm that: The information and conclusions contained in the above plans and supporting documents comply with the current requirements of the City of College Station, Texas City Code, Chapter 13 and its associated Drainage Policy and Design Standards. Property Owner(s) As a condition of approval of this permit application , I agree to construct the improvements proposed in this appl ication according to these documents and the requirements of pter f the ol ege Station City Code . Contractor CERTIFICATIONS: A. I, __ , certify that any nonresidential structure on or proposed to be on this site as part of this application is designated to prevent damage to the structure or its contents as a result of flooding from the 100-year storm . Engineer Date B. I, __ , certify that the finished floor elevation of the lowest floor , including any basement , of any residential structure , proposed as part of this application is at or above the base flood elevation established in the latest Federal Insurance Administration Flood Hazard Study and maps, as amended. Engineer \_ ~ _) =~~ Date C. I, 0e.jf, certify that the alterations or development covered by this permit shall not diminish the flood- carrying capacity of the waterway adjoining or crossing this permitted site and that such alterations or development are consiste t with requirements of the City of College Station City Code, Chapter 13 of floodways and of floodways fringes. e; -( 2 ,-() 5 Date D. I, __ , do certify that the proposed alterations do not raise the level of the 100 year flood above elevation established in the latest Federal Insurance Administration Flood Hazard Study. Engineer Date Cond itions or comments as part of approval: ------------------------ In accordance with Chapter 13 of the Code of Ordinances of the City of College Station , measures shall be taken to insure that debris from construction , erosion, and sedimentation shall not be deposited in city streets, or existing drainage facilities. All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer for the above named project. All of the applicable codes and ordinances of the City of College Station shall apply. SITE PLAN APPLICATlON 3of6 Special District Site Plan.doc 12/31/02 ... Date: To: From: Subject: Remarks: TEX CON TRANSMITTAL August 16 , 2005 Caro l Cotter City of College Station Development Services Joe Schultz, P .E.~ Texcon General c'Fractors 2900-A Longmire Dri ve Co ll ege Station, Texas 77845 Phone: (979) 764-7743 Construction Site Notice Replat of Tract "A" The Glade Subdivision -Section 12 Co ll ege Station, Texas Attach ed is a copy of the Construction Site Notice in accordance with th e TPDES General P ennit TXR150000 . ;:;s prn ... ------------... "'Iii CONSTRUCTION SITE NOTICE FOR THE Texas Commission on Environmental Quality (TCEQ) Storm Water Program TPDES GENERAL PERMIT TXR150000 The following information is posted in compliance with Part II.D.2. of the TCEQ General Permit Number TXR 150000 for discharges of storm water runoff from construction sites. Additional information regarding the TCEQ storm water permit program may be found on the internet at: www.tnrcc.state.tx.us/permitting/waterperm/wwperrn/tpdestorm Contact Name and Phone Number: ~ o Sep"'-?. Sc...kL;...\+z.. 'PE . (;}79) 70'-l-7743 I Project Description : Re.p \,. . .+ c,~ !ro-,c..+ A ~1 lk G lt:i.<k--S1,t.J.,.d."u1'l10., xc, h o ""-I 2-. (Physical address or description of the site's 5 o u..-\-\..._ we..<::. f-c ~ ~ i •·\J-v---'Se..c. +»o "'-o ~ location , estimated start date and projected end S ol..\..+l._ Woo J. D...-.'vt...--CL."'<:\.. 5,"t>u... +~we.s:f-date, or date that disturbed soils will be stabilized) f ct_ v IL wo.../ . Location of Storm Water Pollution -reu..ol-\..-1 Z. '706A-Lc~ M._.i'...-(._ D v--,'ve_ Prevention Plan : C....t. l\t.-~ s -hi-+i . 0 ""'---TY-77 re, L( :;-- For Construction Sites Authorized Under Part 11.D.2. (Obtaining Authorization to Discharge) the following certification must be completed: I ~ <u$~""-p, i ~-( +-l (Typed or Printed Name Person Completing This Certification) certify under penalty of law that I hate read and understand the eligibility requirements for claiming an authorization under Part 11.D .2. of TPDES General Permit TXR150000 and agree to comply with the terms of this permit. A storm water pollution prevention plan has been developed and implemented according to permit requirements . A copy of this signed notice is supplied to the operator of the MS4 if discharges enter an MS4 system. I am aware there are significant penalties for providing false information or for conducting unauthorized discharges, including the possibility offine and i prisonment for nowing violations . Cr , f11\CV\ <./ S --/6 r 0 5 ~~~'---A-=-'--'--=-...,__-=---\-\~~~-£_~~--1-~~~~~ Date 28-Jul -05 C ON STRUCTION COST ESTIMATE THE GLADE -SECTION 12 COLLEGE STATION , TEXAS Item Estimated Unit Estimated No . Description Quantity Price Cost Sitework 1 Mobilization/Layout 1 LS $3,000.00 $3,000 1 Traffic Control 1.0 LS $2 ,000 .00 $2 ,000 2 Site Preparation -street and pond area 1.0 LS $2 ,500 .00 $2,500 3 Remove existing curb and gutter 83.0 LF $12.00 $996 4 Remove existing 4' sidewalk 72.0 LF $10.00 $720 5 Remove existing brick wall and concrete footing 192 .0 LF $25.00 $4 ,800 6 Silt Fence 660 LF $2.75 $1 ,815 7 Construction Exit -Rock 20 TONS $55 .00 $1, 100 8 Erosion & Sediment Control Maintenance LS $600.00 $600 9 Hydromulch/Hydroseeding 2 ,500 SY $0.50 $1,250 10 Topsoil Stripping & Replacement 350 CY $5 .00 $1,750 11 Excavation/Grading -Street and 1,400 CY $5 .00 $7 ,000 and Pond Construction 12 Concrete Apron -6" depth 585 SF $5.50 $3 ,218 13 Sidewalk 80 SF $3 .20 $256 14 ADA Ramps 2 EA $400 .00 $800 15 Lime Stabilized Subgrade 1,700 SY $3.25 $5,525 16 Base Material -6" depth 1,375 SY $7 .00 $9,625 17 Asphalt Paving -1 1 /2" depth 1,375 SY $6.00 $8,250 18 Concrete Curb and Gutter 925 LF $8.25 ~7,631 Subtotal $62,836 Storm Drainage & Detention Pond 19 Drainage Pipe -24" RCP -Non -Structural 103 LF $50 .00 $5, 150 20 Drainage Pipe -18" RCP -Structural 60 LF $40.00 $2,400 21 Junction Box over existing 30" pipe 1 EA $3 ,000 .00 $3,000 22 Inlets -1 O' wide 2 EA $3,000 .00 $6 ,000 23 Concrete S .E.T . -24" RCP 1 EA $1 ,800.00 $1 ,800 24 Remove existing concrete flume 655 LF $2.50 $1 ,638 25 Replace existing sidewalk for Junction Box 1 LS $400.00 $400 26 Concrete riprap 50 SF $5.00 $250 27 Grass Sod 1, 128 SY $5 .00 $5 ,640 28 Pond Outlet Structure 1 LS $2,250.00 $2 ,250 29 Concrete Flume -3' wide 650 SF $5.00 ~3,250 Subtotal $31 ,778 .-... Water 30 Remove Blow-off and Connect to Existing Line 3 1 6" Water PVC C909 -Non-Structura l 133 32 3" Water PVC CL200 (C909) -Non -Structur a l 317 33 3" 45 deg . M .J . Bends 2 34 3" Gate Valves 35 6"x3" M.J . Tee 1 36 Fire Hydrant Assembly 37 Vertica l Extens ion for fire hydrant 38 2" Blowoff Assembly 1 39 Water Services -1" Long 1 40 Water Services -1" Short 2 41 Water Services - 1 .5" Short 2 42 Water Services - 1.5" Long 4 Sewer 4 3 6" SDR26 D-3034 Pipe Non-Structural <6' deep 352 44 Manholes -<6' Depth 2 45 4" Sewer Service Single LS 1 46 4" Sewer Service Double SS 3 47 4" Sewer Service Double LS 4 48 TV inspection of sewer line 360 48 Connect to Existing Manhole 1 LS $25 0 .00 LF $22.00 LF $18 .00 EA $200 .00 EA $350 .00 EA $3 00 .00 EA $2,500 .00 EA $250 .00 EA $400 .00 EA $750 .00 EA $400 .00 EA $500 .00 EA $830 .00 Subtotal LF $20 .00 EA $2 ,000 .00 EA $350 .00 EA $500 .00 EA $800.00 EA $3 .50 EA $1 ,000 .00 Subtotal Total Sitework Total Storm Drainage Total Water Total Sewer TOTAL CONSTRUCTION I REVIEWED FO R COMPLIAN CE AUG I I 200 5 COLLEGE STATION ENGINEERINQ $250 $2 ,926 $5 ,706 $400 $350 $300 $2,500 $250 $400 $750 $800 $1 ,000 $3 ,320 $18,952 $7,040 $4,000 $350 $1 ,500 $3 ,200 $1,260 $1 ,000 $18,350 $62,836 $31,778 $18,952 $18,350 $131,9151 CI TY OF CO LL ,EGE STAT IO N /'/111111i11g & /)e11t·!op111r111 .\~;-rri(er FINAL PLAT APPLICATION (Check one) 0 Minor ($300 .00) 0 Amending ($300.00) 0 Final ($400 .00) 0 Vacating ($400.00) ~ Replat ($600.00)* *In cludes public hea ri ng fee The following items must be submitted by an established filing deadline date for P&Z Commission consideration . MINIMUM SUB MITT AL REQUIREMENTS: ~Filing Fee (see above) NOTE : Multiple Sheets -$55 .00 per additional sheet t.J /A Variance Request to Subdivision Regulations -$100 (if applicable) V Devel opment Permit Application Fee of $200.00 (if applicable). _.iL:: Infrastructure Inspection Fee of $600 .00 (appl icable if an y public infrastructure is being constru cted) V App li cation completed in full . ~Cop y of origina l deed restrictions /covenants for replats (if applicabl e). ~ Th irte e n (13) folded copies of plat. (A signed mylar original must be submitted after staff re vi ew .) ~ One (1) copy of the approved Preliminary Plat and/or one (1) Master Plan (if applicable). 7 Paid tax certificates from City of College Station , Brazos County and College Station l .S .D. V A copy of the attached checklist with all items checked off or a brief explanation as to why th ey a re not. V Two (2) copies of public infrastructure plans associated with this plat (if a pplica ble). V Pa rk land Ded ication requirement approved by the Parks & Recreation Board , pl e as e prov ide proof of approval (if applicable). ~r--1.A.t\..v-q ~. 1-lx.Y::; ._, Date of Preapplication Conference: ~ V\.°'-'~ 24 1..ooS:- -~-~--.--t-~~1 ~~~------------- NAME OF S U BDIVISION :1he bla,o\e, 1 Su_.Jj0,t) 12-Resptd of ff"-d--''A" SPECI FIE D LOCATION OF PRO POS ED S UBDIVISION (L ot & Bl oc~).-(?.Ac} "(Jc'' ---f£rt:. Glade.. ~Im /2... ) I APPLICAN T/PROJECT MANAGER 'S IN FORMATION (P ri mary Con tact for the Project): Name 0-~~ l;,0 street A ddm~~s-~le$± Vltla Wk.r\CL- sta te TX Z ip Code Jl'W I City "B9 ttYl E-M ai l Address ~------------ Ph one Numbe r q 11-1 7f -4 315 Fa x Nu mb er j J C[-77'1'-Q5fc,] PROPER TY OWNER 'S INFORMATI O N: Name 1 £:> . lx\Vesh--v-wn-k1 _L--h:£. streetAddress [?os-IA.Jest \/ill" Wltt-n "-C ity _:B.._..._·cv~"""'.n""-· .__ _____ _ St ate T )( Z ip Cod e :Z J £>o I E-Mai l A ddress ____________ _ Ph o ne Number '"1 1<i-]J 'J -13]') Fax Num ber '11 Cf-1 7/-o3o] ARC HI TECT OR EN GIN E ER 'S INF OR MAT IO N: Name J.f _..Uoo -, b'f 5vh 1."J f-i.. P. E . ~ I Street Add ress 11 Dl &a.h&Wl Rot:td City Ci?ll~e S"ta_--h'trvl . State rx__ Zip Code 11'04:) E-Mail Ad dress jX-sch.Jf:c:E'teklo(] .Viet-- Ph one Numbe r t j]q -J lA ~ Jr4-~ Fax Number _W,_,_._-__,7'"""'f'7'"-"/f-.____-7._7-'---=S"_._1 ____ _ 6 /13 103 I nl <\ Ii isr cF { ' I' •·· i•• II i' '· •·· Design Report Waterline Fire Flow Analysis for The Glade, Section 12 College Station, Texas July 2005 Prepared By: TEXCON General Contractors 1 707 Graham Road College Station, Texas 77845 (979) 764-7743 1.0 INTROD UC TION & DES C H.I PTIO N T he purpose of thi s re port is to p rovide a d esc rip tion o f th e propos ed wate rlin es to be co n stru c ted with t he The Glade, Section 12, Subdivision, a nd to pro v id e th e re s ult s o f th e anal ysis of th e wate rlin es und e r fir e fl ow co nditi o ns. A n ex is tin g 12 " waterlin e is loca ted acro ss So uthw est Parkway from th e proj ec t s it e. T he prop osed waterline to s uppl y th e s ite will conn ec t to th e ex istin g 6" waterline, which was s tubb ed o ut to serve this s tructure. T hi s 6" lin e conn ec ts to a 6" lin e o n G lade S treet , whi c h co nnects to the 12 " line alon g Southwest Parkway . The water main w ill be cons tru cted us in g 6", a nd 3" diame ter pipe. The 6" wate rlin e for thi s p roj ec t will be con stru cted of DR-14 , PVC pipe m eetin g th e re qui rement s of AWWA C -909 wit h m ec hani ca l joint fittin gs . The 3 " wate rlin e wi ll be SDR-21 , ASTM 2241 , and C lass 200. 2.0 FIRE FLOW REQUIREMENTS T he flow required for fire hydrant flo w for th e s ubdivi s ion is 1,000 ga llons p er minute (gpm), for th e propose d fire hydrant. 3.0 WATERLINE SYSTEM ANALYSIS The waterline system was analyzed usi n g th e WaterCAD computer program d eve lop ed b y Haestad Method s, In c. A normal domestic us e flow of 1.5 gpm was included in the a nal ys is for each of the 15 residential lots. This results in a normal d e mand of 22.5 gpm , which was included in the anal ys is. Exhibit "A-1 ",in A ppendix A, presents the results of a pressure/flow test from fire h ydrants connected an ex is tin g 8" waterline on La ura Lane, which connects to the ex isting 12 " line along Southwest Parkway . A static pressure of 106 psi and a res idual pressure of 102 p s i with the hy drant flow at 1,550 gpm were d e tem1in ed by Co ll ege Station Publi c Utility personnel. Since this flow was greater than the flo w required for thi s s ubdi v ision the residual pressure from the test could be used . However to e nsure a conservati ve approximation of the r es idual pressure for the fire flow analysis a residu a l pressure of 60 p si at the fire h ydra nt where the test was p e rfonned was assume d . The h ydrauli c grad e was set at thi s pre ss ure at the start of the waterline analysis , Junction R-1 . The compute r m ode l was run w ith a fire flo w of I 000 g pm fo r the propo sed fir e h ydra nt. Ex hibit A is a sc h e m at ic of th e p roposed waterline , w hi c h s hows th e loca tion s of th e fir e h ydrant. Ex hibit Bi s a s umm a ry of th e pip e system junc ti on nodes with th e fir e flo w at th e fir e h ydrant. The lowes t residual press ure occurre d in th e sys te m a t Junction J -9 . Th e pressure a t thi s point is es timated by th e mode l to be 4 7 .1 psi , w hich exceed s t he minimum of 20 p s i required b y the TCEQ regul atio ns. Ex hi bits C & Dare s umm aries of th e pipe sections for th e system und e r this d e m a nd scen ario. The max imum ve loc ity for th e 6", and 3" wa te rlin es is 11.6 fee t p e r seco nd , res pect ive ly, a nd occ ur s in Pipes P-5 , P-6 , a nd P-7. Thi s is less th a n th e 12.0 fps a ll owed b y th e Des ig n G uid e lin e s. A separate a na lys is wa s run for th e d o m es ti c us e o f 1.5 g pm pe r unit for th e e ntire s ub divi s io n , a nd th e minimum res idu al p ress ur e wa s 58.6 ps i, w hi c h exce ed s th e minimum pr e ss ur e o f 35 p s i requ ire d by TCEQ Re fe r to Ex hibit s "E", "F" a nd "G" fo r d a ta o n thi s s ce na ri o. M in o r lo sses in thi s sys te m we re no t c;i lc ulat ccl, a s th ey we re a ss um e d to be i n s i ~n i li c;1111 . 4.0 CONCLUSlONS The w a te rlin e s proposed fo r thi s d eve lo pm e nt s h o uld ad e qu a te ly prov id e th e fir e fl ow re quire d w ith a cc e pt a bl e va lu es fo r h eadl oss a n d ve locit y. T hi s a n a lys is was do n e ass umin g a dequ a te res idual pre ssure in th e ex istin g w a te r m a ins , as d etennine d b y the fl ow tes t. Appendix "A" Fire Hydrant Flow Test Data Appendix "A" Fire Hydrant Flow Test Data 071 0 7 1 2005 13:0 2 FAA 9 7 9 764 3 4 52 COLLEGE STATCON PUB.UTL. N ,I( College Station UtilHies ~ Reliable, AffordalJ/e, CC>mmunity Owned 1601 GRAHAM ROAD COLLEGE STATION TEXAS 77845 Date: 7 JULY 2005 Number pages including cover sheet - 1 Fax number: 764-7759 Attention: JOE SCHULTZ Company: TEXCON From: Butch Willis Water Wastewater Division Phone: 979-764-3435 Fax: 979 -764-3452 FLOW TEST REPORT Nozzle size: 2.S inch Location: 1800 LAURA LANE Flow hydrant number: L=083 Pitot reading: 85 (OPM): 1550 Static hydrant number: L-054 Static PSI: 106 Residual PSI: 102 ff ,, A -I 141001 J-9 P-9 R-1 P-1 j 1 Scenario: Base -7 J-8 R-8 -2 J-6 J-5 -6 G-1.. .· s J-«.,,.) {,"f_,· .. e. f<of t>l "J 6 " u"~ -3 P-5 J-4 -4 !'11 '1'·<1 C11 q ir1 ep r : .IC>E S C H U L T Z ,, i 11••·•·'.·111 J -:1 .;·r' \/J;i l t 11•1 11\' (.-1 (\! i'!ll' \)~·;,\ (~! t ·i,r, I·.,., I ';H ;1 ' 1 •I . Node Elevation Demand Labe l (ft) Type J-1 279.00 demand J-2 278 .50 demand J-3 278.00 demand J-4 276 .00 de mand J-5 2 77.00 demand J-6 278 .00 demand J-7 278.00 dema nd J -8 278.50 demand J-9 282 .00 demand Til le: Th e C lade Sr:~c t irn1 12 1:·'d 1 ~·1 f~s 1 ;:1c~1.v:trc \c-l~~7 •.-.·1 t ! Demand (gpm) 0.00 0 .00 0 .00 0 .00 0 .00 0 00 1 ,000 .00 0 .00 22 .50 071~'.7 /()!j 11 ::;'.!:·r;~~ :\1•.1 . •l ·;11~~;l ;H I f ·.1 1 ~:11H1'I':_ 111 1 Scen a rio: Ba se Ste a dy State Analysis Junction Report Demand ~alcul a ted Hydra uli c Pressure Pattern Demand Grade (p s i ) (gpm) (ft) Fixed 0 00 4 16 .78 59.58 Fixed 0 .00 41 6 .32 59 .60 Fixed 0 .00 41 5 .96 59 .66 Fixed 0 00 415.53 60 .34 Fixed 0 .00 410 .22 57 .61 Fixed 0 .00 399 .18 52.40 Fi xed 1,000 .00 39 1 .31 49 .00 Fi xed 0 .00 39 1 .29 48 .77 Fi xed 22 .50 390 .83 47 .06 lT:<CO N GUJ U V\l. CO NTRA C TO l'I S Prnjf·t:I r:-r 1 qi 1 1 (:1~r l()E SC H ULT Z '/.";11. d .•\P v:~. 1 lff/ 1 1 I l':1q1• 1 ri! 1 Link Length Dia m ete r Ma teria l Roughn ess M in o r Loss Labe l (ft) (in) P-1 83 .00 8 PV C 1 50 .0 0 00 P-2 227 .00 12 PV C 150 .0 0 .00 P-3 174.00 12 PV C 150 .0 0 .00 P-4 2 12 .00 12 PVC 1 50 .0 0 .00 P-5 89 .00 6 PVC 150 .0 0 .00 P-6 185 .00 6 PVC 150 .0 0 00 P-7 1 32 .00 6 PVC 150 .0 0 .00 P -8 1 1 .00 3 PVC 150 .0 0 .00 P -9 30 5 .00 3 PVC 150 .0 0 00 I·; ,' ,: 1 ··, I 1 ' I I , ,·, ~ . Scenario : Base Steady State An a lysis Pipe Report Init ia l C u rrent D is c h arge S ta rt S tatu s Sta tus (gpm) Hyd ra ulic G ra d e (ft) Ope n Open 1 ,022 .50 41 8 .0 0 Op e n Open 1 ,022 .50 416.78 Open Open 1 ,022 .50 4 16 .32 Ope n Open 1 ,022 .50 4 15 .96 Ope n Ope n 1 ,022 .50 4 15.53 Open Ope n 1 ,022 .50 4 10 .22 O pe n O pe n 1 ,0 22 .50 399.18 O pe n O pen 22 .50 39 1 .3 1 O pe n O pen 22 .50 39 1 .29 (' ( t ~.+h :~:+ c End Head loss F ri c ti o n H yd ra ulic (ft) S lope Grade (fl/100 0ft) (ft) 41 6.78 1 .22 14 .70 41 6.32 0 .46 2 04 415 .96 0 .36 2 .04 415 .53 0 .43 2 .04 410 .22 5 .3 1 59 .66 399 .18 1 1 .04 59 .6 6 391 .3 1 7 .88 59 .66 391 .29 0 .02 1.5 0 390 .83 0.46 1.50 1."'.' 1" ·ii·'',[-'·.<: 1 !Cit. I r 1 r '; q .• 1 1 .1 r Analysis Results Scenario: Base Steady State Analysis Tille : The Glade Section 12 Project Engineer: JOE SCHULTZ Project Date : 07/27 /05 Comments : Scenario Summary Labe l Base Demand Alternative Base-Average Daily Physical Alternative Base-Physical Initial Settings Alternative Base-Initial Settings Operational Alternative Base-Operational Age Alternative Base-Age Alternative Constituent Alternative Base-Constituent Trace Alternative Base-Trace Alternative Fire Flow Alternative Base-Fire Flow Liquid Characteristics Liquid Water at 20C(68F) Specific Gravity 1 .00 Kinematic Viscosity 0 .1 08e-4 ft2 /s Network Inventory Number of Pipes 9 Number of Tanks 0 Number of Reservoirs 1 -Constant Area : 0 Number of Junctions 9 -Variable Area : 0 Number of Pumps 0 Number of Valves 0 -Constant Power: 0 -FCV's: 0 -One Point (Design Point): 0 -PBV's: 0 -Standard (3 Point): 0 -PRV's: 0 -Standard Exte nded : 0 -PSV's: 0 -Custom Extended : 0 -TCV's: 0 -Multiple Point: 0 Number of Spot Elevations 0 Pipe Inventory Total Length 3 in 6 in 1,418.00 ft 316 .00 ft 40 6 .00 ft B in 12 in Pipes @ 0.00 hr Label StatusConstituent Flow Velocity From To (mg /I) (gpm) (fUs) Grade Grade (ft) (ft) P-1 Open N /A 1,022 .50 6.53 ·18.00 16 .78 P-2 Open N /A l .022 .50 2 .90 ·16 .78 16.32 P-3 Open N /Al,022 .50 2 .90 16 .32 15.96 P-4 Open N /A l,022 .50 2 .90 .15.96 15 .53 P -5 Open N /A (,022 .50 11 .60 ·15 .53 10 .22 P-6 Open N /A 1,022 50 11 .60 10 .22 ;9 9 .18 P-7 Ope n N /A l ,02 2 50 11 .60 ;99 .18 ;9 1 .3 1 P-8 Open N /A 22 .50 1 .02 ;9 1 .3 1 ;9 1 .29 P-9 Open N IA 22.50 1 .02 ;9 1 .29 ;90 .83 Tille: Ti u=! G l;:1rlt ! Secti rn 1 1 :1 Friction Loss (ft) 1 .22 0.46 0 .36 0.43 5 .31 11 .04 7 .88 0 .02 0.46 Minor 83 .00 ft 6 1 3 .00 ft Total Headless Loss HeadlosS3radient (ft) (ft) (fV1000ft) 0 .00 1 .22 14.70 0 .00 0 .46 2 .04 0 .00 0 .36 2 .04 0 .00 0.43 2 .04 0 .00 5 .31 59.66 0 .00 11 .04 59.66 0 .00 7 .88 59 .66 000 0 .02 1 .50 0 .00 0.46 1 .50 c \h a 1.~s l ;ic l 1·..rv trr ··1~1:,1 ~'.i.1! q/.';~'.i /(1 1 1 I I ;.'~I 1 ·-; •\rvl r E XCON GENEf~AL. CONTflAC'I Of<S ll;1r><:.l,•1 ! r,_.1 •. :/111tl:. lr l( Prnj"t:I [11o i11"'" .IOE SC HULT Z 1t1.';llr •I /.\' '.,·-; I IU7 l c! t -~ . i ~ : 1 • 1 t , I 1 Node Elevation Demand Demand Label (ft) Type (gpm) J-1 279 .00 d emand 0 .00 J-2 278 .50 demand 0 .00 J-3 278.00 demand 0 .00 J-4 276 .00 d emand 0 .00 J-5 277 .00 d e mand 0 .00 J-6 278.00 d ema nd 0 .00 J-7 278.00 d emand 0 .00 J-8 27 8 .50 d emand 0 .00 J-9 282.00 d ema nd 22 .50 T ill e · Tl1 e c;1;·1dn Sec li o r1 12 <.:'.I 1;•(:·:'.:l ;1d 1\/\J l1 r· 1_~ I~~-;-W I'.! I q·;·1 ;-'/'(l,-1 1 1 ·;:1 ;"o"I ,\:,,1 I I; H •-.1, 11 ! r •. ~ • .i I 11 " " I 111 Scenario: Base Steady State Analysis Junction Report Demand Calcula ted Hydraulic Pressure Pattern Demand Grade (psi) (gpm) (ft) Fixed 0 .00 418 .00 60.11 Fixed 0 00 418 .00 60 .32 Fixed 0 .00 418.00 60 .54 Fixed 0 .00 418.00 6 1.4 0 Fixed 0 .00 417 .99 60 .97 Fixed 0 .00 417.98 60.53 Fixed 0 .00 417 .98 60 .53 Fixed 0 .00 417.96 60.31 Fi xed 22 .50 417 .50 58 .60 ·r [ XC(IN c;r ME.l<A L CON I F<AC'I OF<S P H•l fll"I F11~111H:l !I ..l()E ~;C H ULTZ '.".',II! !I I. /.1 ' .. , . : 1 II ',· I I 1 :•.•111 · I 1•! I Link Length Diame ter M a te rial Labe l (ft) (in) P-1 83 .00 8 PVC P-2 227 .00 12 PVC P-3 174 .00 12 PVC P-4 212 .00 12 PVC P-5 89 .00 6 PVC P-6 185.00 6 PVC P-7 132 .00 6 PVC P-8 11 .00 3 PVC P-9 305.00 3 PV C T1fl1~: Tl1P C l<1<lf· ~::.,:·1 ·f io r 1 I :) (. \ I I ; I! ; ~·· : ' l • !' .. : J I I I • ' I I' . ' \'.I ( . ! l Roughn es~ Minor Los~ 150.0 0 .00 150.0 0 .00 150.0 0 .00 150.0 0 .00 150.0 0 .00 150.0 0 .00 150 .0 0 .00 150 .0 0 .00 150 .0 0 .00 • 17//t/111 • 1 1 .1. 1. i'.r.1 ·; f 1 ~,,·~;1 ;11~ r .. 11 11 c ·~··· 1.,. Scenario: Base Steady State Analysis Pipe Report Initial C urrent Di sch arge S tart Sta tu s S ta tu s (gpm) Hydrauli c G ra d e (ft) Open Open 22 .50 4 18 .00 Open Open 22 .50 418.00 Open Open 22 .50 418 .00 Open Open 22 .50 418 .00 Open Open 22 .50 418.00 Open Open 22 .50 417 .99 Open Open 22 .50 417 .98 Open Open 22 .50 417 .9 8 Ope n Open 22 .50 417 .96 cf I' f; -d~: 6: t F End Head loss Hydrau lic (ft) Gra de (ft) 418 .00 0 .1e-2 418 .00 0.4e-3 418 .00 0 .3 1e -3 418.00 0 .37e -3 417 .99 0.46e-2 417 .98 0 .01 417 .98 0 .01 417 .96 0.02 417 .50 0.46 Friction Slope (fl/1000 ft) 0 .0 1 0 .17e-2 0 .18e-2 0 .17e-2 0 .05 0 .05 0 .05 1.50 1.50 P r1 '1··r r l.1 1~1 i 1 1 1·f~r .I C>F SC H ULl ? \.','; "• ·1 ! .".!, -."·: I li"I ? I · I I ';u :1 I 1 I Label Status Constituent Flow (mg /I) (gpm) P-1 Open NIA 22 .50 P-2 Open NIA 22 .50 P-3 Open NIA 22.50 P-4 Open NIA 22 .50 P-5 Open NIA 22.50 P-6 Open NIA 22.50 P-7 Open NIA 22 .50 P-8 Open NIA 22 .50 P-9 Open NIA 22 .50 Titl e : Tho G la de Secti o n ·12 Analysis Results Scenario: Base Steady State Analysis Pipes@ 0.00 hr Velocity From To Friction Minor Total (ftls) Grade Grade Loss Loss Headloss (ft) (ft) (ft) (ft) (ft) 0.14 418 .00 418.00 0 .1e-2 0 .00 0 .1e-2 0 .06 418.00 418.00 0.4e-3 0 .00 0.4e-3 0 .06 418.00 418.00 0 .31 e-3 0 .00 0 .3 1e-3 0 .06 418.00 418.00 0 .37e-3 0 .00 0 .37e-3 0 .26 418.00 417.99 0.46e-2 0 .00 0.46e-2 0 .26 417.99 417 .98 0 .01 0 .00 0 .01 0 .26 417.98 417 .98 0 .01 0 .00 0 .01 1 .02 417.98 417.96 0 .02 0.00 0 .02 1 .02 417 .96 417.50 0.46 0 .00 0.46 " \I G TE XCON G ENEl'~AI CONl HAC TCW S Head loss Gradient (fV1000ft) 0 .01 0 .17e-2 0 .18e-2 0.17e-2 0 .05 0 .05 0 .05 1 .50 1.50 Proj(,C I F11q ir.,eer : .JOE SC H ULTZ \,V:11+·1C/\l_1 v :), I [r 17 Jf ·I Design Report Waterline Fire Flow Analysis for The Glade, Section 12 College Station, Texas July 2005 Prepared By: TEXCON General Contractors 1 707 Graham Road College Station, Texas 77845 (979) 764-7743 1.0 INTRODUCTION & DESCRIPTION The pu1vo se of thi s re port is to pro v id e a d esc ripti o n of th e proposed wate rlin es to be co ns tru c te d with th e Tile Glade, Se ction 12 , Subdivision, a nd to provi de th e re s ult s of th e anal ysis of the waterlines und e r fir e fl ow conditions. An ex is tin g 12 " wa te rlin e is lo cated across So uthw es t Parkway from the proj ec t s it e. The proposed waterline to s upply th e s it e will co nn ec t to th e ex istin g 6" waterline, which was stubbed out to serve this st mcture. T hi s 6 " lin e conn ec ts to a 6" lin e on G lad e St reet, w hi c h connects to th e 12 " line along Southwest Parkway . The water main w ill be co ns tructed usi ng 6'', and 3" diamete r pipe. The 6" wa te rlin e for thi s proj ec t will be constructed of DR-14 , PV C pipe meetin g the re quire m e nt s of A WW A C -909 with m ec hani ca l j o int fittin gs. The 3" wa te rlin e will be SDR-21 , ASTM 2241, and C la ss 200 . 2.0 FIRE FLOW REQUIREMENTS The flow required for fire hydrant flow for the s ubdivi s ion is 1,000 gallons per minute (gpm), for the propose d fire hydrant. 3.0 WATERLINE SYSTEM ANALYSIS The wate rline system was analyzed us ing the Wate rC AD computer program developed b y Haestad Methods, Inc. A normal domestic use flow of 1.5 gpm was included in the analysis for each of the 15 residential lots. This results in a normal d e mand of 22 .5 gpm , which was included in the analysis . Exhibit "A-1 ",in Appendix A, presents the results of a press ure/flow te s t from fire hydrants connected an existing 8" waterline on Laura Lan e, which connects to the existing 12 " lin e along Southwest Parkway. A static pressure of 106 psi and a residual pressure of 102 psi with the hydrant flow at 1,550 gpm were dete rmined by College Station Public Utility personne l . Since this flow was greater than the flow required for this subdivision the residual pressure from the test could be used . However to ensure a conservative approximation of the residual pressure for the fire flow analysis a residual pressure of 60 psi at the fire hydrant where the test wa s performed was as s umed . The hydraulic grade was set at this pressure at the start of the waterline analysis, Junction R -1. The co mpute r m o d e l was run w ith a fire flo w of I 00 0 g pm for the proposed fire h ydrant . Ex hibit A is a sc he m a ti c of th e proposed wa te r! ine , w hi c h s hows th e location s of the fir e hydrant. Ex hibit B is a summary of th e pipe system junction nod es with the fire flow at th e fire h ydrant. The lowest residual press ure occurre d in the system at Junction J-9 . The pressure at thi s point is estimated by th e mod e l to be 4 7 .1 psi , which exceeds the minimum of 20 p s i require d by the TCEQ re g ulation s. Exhibits C & D are summaries of th e pipe sec tion s for the system under this d e mand sce nario . The ma x imum velocity for the 6'', a nd 3" waterlines is 11 .6 feet p e r second , respectively , and occ urs in Pipes P-5, P-6 , a nd P-7 . This is less than th e 12.0 fps a ll owed by the Desi g n G uid e lin es. A separate anal ys is wa s run for th e dom es ti c us e of 1.5 gp m pe r unit for th e e ntire s ubdi v is io n, and th e minimum res idu al press ur e \Vas 58.G ps i, w hi c h exceeds th e minimum pre ss ure o r 35 ps i required by TCEQ . Refe r to Ex hibit s "E'', "F" and "G" for data o n thi s sce nario . M in o r lo sses in thi s sys te m we re not cal c ulat e d , a s th ey were a ss um e d to be i ns i!,!ni ll c;1111. 4.0 CONCLUSIONS The waterlines propose d for thi s d eve lopment should adequately provid e th e fir e n ow re quired w ith acceptable va lu es for h ead lo ss and ve locit y . T his analysis was do n e assuming adequate residual pressure in th e ex istin g water mains, as d e t e rmined by the now test. Appendix "A" Fire Hydrant Flow Test Data Appendix "A" Fire Hydrant Flow Test Data 071 0 7 1 2005 13:02 FAX 9 79 764 34 52 CO LLEGE STATION PUB.UTL . (Uf ~~:~:~!,i~!~!~~~~d 1601 GRAHAM ROAD COLLEGE STATION TEXAS 77845 Date: 7 JULY 2005 Number pages including cover sheet -1 Fax number: 764-7759 Attention: JOE SCHULTZ Company: TEXCON From: Butch Willis Water Wastewater Division Phone: 979-764-3435 Fax : 979 -764-3452 FLOW TEST REPORT Nozzle size: 2.5 inch Location: 1800 LAURA LANE Flow hydrant number: L=083 Pitot reading : 85 (OPM): 1550 Static hydrant number: L-054 Static P S I: 106 Residual PSI: 102 (f •• A -I ~0 0 1 J-9 R-1 Scenario: Base p(.,,~1~J /1 l-; ,-c. l-\ 7 6 r~ .... t -2 Tl" •U 'r·I r;i::r-I U ·~AL CON THAC TCm S -3 J-5 P-5 l J-4 G-1_."sh . .,,..) {, "f_,."e. -4 -3 r·1 ,p ii·<·I r11qir1eer : .IC>E:: ~;;c;1 tUL l Z \,\';11r •1 C: ,''.! l '."·: I 1 t }' I ( I ·-.: f'1······.·1 11 l -~11;·1' 'lv';1 !11!11111,· c -11 '1~,"jl}I ll~·;.\ i,•··1 r,·, , .... l';!e;t · 1 I ' Node Elevation Demand Label (ft) Type J-1 279 .00 demand J-2 278.50 demand J-3 278 .00 demand J-4 276.00 d ema nd J-5 277.00 demand J-6 278.00 demand J-7 278.00 demand J -8 278.50 demand J-9 282.00 demand Tit le : T l 1r~ Clack~ Sec l ion 12 1: \I 1 c·1 f~s 1 ;:1r!1 .v:1r c'.•·· 1 ~:.7 . i:.1u I Demand (gpm) 0.00 0.00 0 .00 0.00 0 .00 0 .00 1 ,000 .00 0 .00 22 .50 Scenario: Base Steady State Analysis Junction Report Demand Calculated Hydraulic Pressure Pattern Demand Grade (psi) (gpm) (ft) Fixed 0 .00 416 .78 59.58 Fixed 0 .00 416.32 59.60 Fixed 0 .00 415.96 59.66 Fixed 0 .00 415 .53 60.34 Fixed 0 .00 410 .22 57.61 Fixed 0 .00 399 .18 52.40 Fixed 1 ,000 .00 391 .31 49 .00 Fi xed 0 .00 391 .29 48 .7 7 Fixed 22 .50 390 .83 47 .0 6 lTX CO N GUJER/\l. CON l RACTO l~S Prni<·• IF""""~'" JOE SC H ULTZ ...... ,.,, 1C•1 D v'.\ I 1n;o 1, I Link Length Diameter Material Roughn es! Minor Los ~ L a bel (ft) (in) P-1 83 .00 8 PVC 150.0 0 .00 P-2 227 .00 12 PVC 150 .0 0.00 P-3 174.00 12 PVC 150 .0 0 .00 P-4 212 .00 12 PVC 150 .0 0 .00 P-5 89 .00 6 PVC 150.0 0 .00 P-6 185.00 6 PVC 150.0 0 .00 P-7 132.00 6 PVC 150.0 0 .00 P-8 11 .00 3 PVC 150.0 0 .00 P-9 305 .00 3 PVC 150.0 0 .00 ·1 !l it '• 'l l1 t~ (;l;i :J1• '.:~,~( l t<Ht 1:1 l ';'t ·.t to! ,'Viti 1 1 .: ,1 l/1;•./ •]'-, 11 I 1 ,· .... Scenario: Base Steady State Analysis P ipe Report Initial Current Di scha rg e Start Status Status (gpm) Hydra uli c G rade (ft) Open Open 1 ,022 .50 418 .00 Open Open 1 ,022.50 4 16.78 Open Open 1 ,022 .50 416.32 Open Open 1,022.50 415 .96 Open Open 1,022.50 415.53 Open Open 1 ,022 .50 410 .2 2 Open Open 1 ,022 .50 399 .18 Open Open 22 .50 391 .3 1 Open Open 22 .50 391 .2 9 (t t ( ~..;.h :lo :+ c End Head loss Hydraulic (ft) Grade (ft) 416 .78 1 .22 416 .32 0 .46 415 .96 0 .36 415.53 0.43 410.22 5 .3 1 399 .18 11 .04 39 1 .31 7 .88 391.29 0 .02 390.83 0.46 J,t• I Fri c tion S lope (ft/1 OOO ft) 14 .70 2 .04 2 .04 2 04 59 .66 59 .66 59 .66 1.50 1.50 r·1H •1··1 t f· !l<llll "~'I ,l()F SC I H JI l / ,·. ·l-·/.".f 1 . : I /'I. I ;',-t ;• ; I I Ti tle : The Glade Section 12 Project Engineer: JOE SCHULTZ Project Date : 07127 105 Comments: Scenario Summary Labe l Demand Alternative Physical Alternative Initial Settings Alternative Operational Alternative Age Alternative Constituent Alternative Trace Alternative Fire Flow Alternative Liquid Characteris tics Base B ase -Average Daily Base-Physical Base-Initial Settings Base-Operational Base-Age Alternative Base-Constituent Base-Trace Alternative Base-Fire Flow Analysis Results Scenario: Base Steady State Analysis Liquid Water at 20C(68F) 0 .108e-4 ft2 /s Specific Gravity 1.00 Kinematic Viscosity Network Inventory Number of Pipes 9 Number of Tanks 0 Number of Reservoirs 1 -Con stant Area : 0 Number of Junctions 9 -Variable Area : 0 Number of Pumps 0 Number of Valves 0 -Constant Power: 0 -FCV's: 0 -One Point (Design Point): 0 -PBV's: 0 -Standard (3 Point): 0 -PRV's: 0 -Standard Extended : 0 -PSV's : 0 -Custom Extended : 0 -TCV's : 0 -Multiple Point: 0 Number of Spot E levation s 0 Pipe Inventory Total Length 3 in 6 in 1,418.00 ft 316 .00 ft 406 .00 ft 8 in 12 in 83 .00 ft 6 13 .00 ft Pipes @ 0.00 hr Label StatusConstituent Flow Velocity From To Friction Minor Total Headloss (mg/I) (gp m) (fUs) Grade Grade Loss LossHeadlos~radie nt (ft) (ft) (ft) (ft) (ft) (fU 1 OOOft) P-1 Open N /A 1,022 .50 6 .53 -18.00 -16.78 1.22 0 .00 1 .22 14.70 P-2 Open N /A l ,022 .50 2 .90 -16.78 -16.32 0.46 0 .00 0.46 2.04 P-3 Open N/A l ,022 .50 2 .90 16 .32 -15.96 0.36 0 .00 0 .36 2.04 P-4 Open N/Al,02 2 .50 2 .90 -15 .96 -15.53 0.43 0 .00 0.43 2 .04 P-5 Open N/A l ,022 .50 11 .60 -15 .53 -10 .22 5 .31 0 .00 5 .31 59 .66 P-6 Open N/A 1,0 2 2 .50 11 .60 10.22 ;99 18 11.04 0 .00 11 .04 59.66 P-7 Open N/A l ,0 22 5 0 11 .6 0 ;99 .18 ;9 1.3 1 7.88 0 .00 7 .88 59 .66 P-8 O pe n N/A 22 .5 0 1.02 ;9 1.3 1 ;9 1.29 0 .02 0 .00 0 .02 1.50 P-9 Open N/A 22 .50 1.02 ;9 1.29 ;90 .83 0.46 0 .0 0 0 .46 1 .50 (I{) ,, f-1-h : ~ :+ Ti lle : T l·1n Gl <u:lr' S<!cti o 11 1:,i c \h acs l ci<l'1w l rr"!! 1 ~,·1 ·""1:1 ! T[ >:CO N GE NEf<AL. CO NTRA C T O r~s (I./.'~~ l /{ )~ 1 I I ;:·~I ~1 >: •\fv1 1 l i H ".: .. ,I rv1 1 ·ll1111b, 111 1 :: i 1.,. ,, \. su 11 • ~:.;:1 1::11·1 \,\',,l (•llnu•,·. c·1 I,,:, /I ;: l . ~:: ,''. ! '. l ~ JI : I I , , 1 Node Elevation Demand Labe l (ft) Type J-1 279 .0 0 demand J-2 278 .50 demand J-3 278 .00 demand J-4 276.00 demand J -5 277.00 demand J-6 278.00 demand J-7 278.00 demand J-8 278.50 dema nd J -9 282.00 demand Titl e : Tl1 e G lad i:! Sncti o 11 12 c.'./ 1;!(·:·:t :1(!1wl1 (·1 1 ~I !:i 7 w o I Demand (gpm) 0 .00 0 .00 0 00 0 .00 0 .00 0 .00 0 .00 0 .00 22 .50 Scenario : B a se Steady State Analysis Junction Report Demand Calculated Hydraulic Pressure Pattern Demand Grade (psi ) (gpm ) (ft) Fixed 0 .00 4 18 .00 60.11 Fixed 0 .00 418.00 60 .32 Fi xe d 0 .00 4 18 .00 60 .54 Fixed 0.00 418.00 61.40 Fi xe d 0 .00 417 .99 60.97 Fixed 0 .00 417 .98 60.53 Fixed 0 .00 417 .98 60 .53 Fixed 0 .0 0 417 .96 60.31 Fixed 22.50 417 .50 58 .60 .. ~ I( HX C (lt•J GENE H A L CONTFV\C'TO H S Pro1 1~1·t Ft l(llll (~e 1 .IOE ~:;c HULT ;~ 1 .".';111~1(:/.r\ .. : 1 [C!/ 11 :1 : '. q 11 . I I,, I Link Length Diameter Label (ft) (i n ) P-1 83 .00 8 P-2 227 .00 12 P-3 174 .00 12 P-4 212 .00 12 P-5 89 .00 6 P-6 185.00 6 P-7 132.00 6 P-8 11 .00 3 P-9 305 .00 3 t t7(~:· ;','1 ,r·, I I .1 • ! /.f'. l Materia l Roughn es~ Minor Los~ PVC 150 .0 0 00 PVC 150 .0 0 .00 PVC 150.0 0 .00 PVC 1 50 .0 0 00 PVC 150.0 0 .00 PVC 150.0 0 00 PVC 150.0 0 .00 PVC 150.0 0 .00 PVC 150.0 0 .00 Sc e n a rio : B a se Steady State An a lysis Pipe Report Initi al Current Di scharge S tart S ta tu s S ta tu s (gpm) H ydrauli c Grade (ft) Open Open 22 .50 418 .00 Open Open 22 .50 418 .00 Open Open 22 .50 418 .00 Open Open 22 .50 418 .00 Ope n Open 22 .50 418 .00 Open Open 22 .50 417 .99 Open Open 22 .50 417 .98 Open Open 22 .50 417.98 Open Open 22 .50 4 17 .96 If I' f1kb:+-F End H ead loss Friction Hydraulic (ft) S lope Grade (ft/1 OOOft) (ft) 418.00 0 .1e -2 0 .0 1 418.00 0.4e-3 0 .17e -2 418.00 0.31e-3 0 .18e-2 418.00 0 .37e -3 0 .17e -2 417 .99 0.46e-2 0 .05 417 .98 0 .01 0 .05 417 .98 0 .01 0 .05 417 .96 0 .02 1 .50 417 .50 0.46 1 .50 ' L t• '~.I; I! ~ I'-'' I II 'I I ~ •-. '11 , ......... , I :! .. l t' .• ,•It 1!1t1 r·. ( I (' ,· 1 : 11 :-:.-, t'. r I' r,r, I··· ·, ., (.•".I l ·:··: I 11 1/ 1, l';!t :t 1 ! I , . Label S tatus Con stituent Flow (mg/I) (g p m ) P-1 Open N/A 22 .50 P-2 Open N/A 22 .50 P-3 Open NIA 22 .50 P-4 Open N/A 22 .50 P-5 Open N/A 22.50 P-6 Open N/A 22 .5 0 P-7 Open N/A 22 .50 P-8 O pen N/A 22 .5 0 P-9 Open N/A 22.50 Titl e: The G lade Secl ion 12 Analysis Results Scenario: Base Steady State Analysis Pipes @ 0 .00 hr Velocity From To Friction Minor Total (fUs) Grade Grade Loss Loss Head loss (ft) (ft) (ft) (ft) (ft ) 0 .14 418.00 418 .00 0 .1e-2 0 .00 0 .1e-2 0 .06 418 .00 418 .00 0.4e-3 0 .00 0.4e-3 0 .06 418.00 418 .00 0 .3 1e -3 0 .00 0 .3 1e-3 0 .06 4 18.00 4 18 .00 0 .37e-3 0 .00 0 .37e-3 0 .26 4 18 .00 417 .99 0.46e-2 0 .00 0 .46e-2 0.26 4 17 .99 41 7 .98 0 .0 1 0 .00 0 .01 0 .26 417 .98 4 17 .98 0 .0 1 0 .00 0 .01 1 .02 4 17 .98 417 .96 0 .0 2 0 .0 0 0 .02 1 .02 417 .96 4 17 .50 0.46 0 .00 0.46 II G l Ti<CON GE ND ~AI. CO NTHA C T OF~S Headless Gradient (fU 1000ft) 0 .0 1 0.17e-2 0 .18e-2 0 .17e-2 0.05 0.0 5 0.05 1 .50 1 .50 \\':ti • ·1C/\l.I ·:··: I 111 7 1("1 r1;1!i1 : Design Report Proposed Sanitary Sewer Line Improvements for The Glade Subdivision Section 12 College Station, Texas July 2005 Prepared By: TEXCON General Contractors 1 707 Graham Road REVIEWED FOR COMPLIANCE AUG 1 1 2005 COLLEGE STATION ENGINEERING 1.0 INTRODUCTION & DESCRlPTlON Th e purpos e of this report is to provid e a d es cripti o n of the proposed sanitary sew e r to be constructed with The Glade Subdivision Section 12 , and to pro v ide the criteria used in th e design of this sanitary sewer system. The project will include the construction of approximately 360 feet of sanitary sewer line . Th e line will connect to an existin g manhole and will service the proposed de ve lopm e nt of The Glade Subdivision , S ection 12. 2.0 SANITARY SEWER -Design Flow and Pipe Size Calculations The proposed sewer line is to be constructed of 6 " diameter SDR-26 pipe which meets the requirements of ASTM-03034. The proposed manholes are 4 ' diameter manhol es , and vary from 3.5' to 5 ' in depth, with sewer line slop es of 0.8%. The maximum distance between manholes is less than 500 feet , as required by the Texas Commission on Environmental Quality (TCEQ). The minimum allowable slope 6" pipe per TCEQ requirements is 0.50%. All construction shall mee t the current City of College Station Standard Specifications for Sanitary Sewer Construction. The sewer lin e infomrntion is summarized in Table 1 below . 3.0 DETERMINATION OF PEAK FLOW VALUES The peak flows were based on using a daily use of 300 gallons per day for each dwelling unit. The design peak flow is determined by multiplying the average daily flow by 4 .0 , which results in the peak hourly flow. The velocities for the lines were calculated using Manning's Equation . According to the TCEQ , the minimum velocity for sewer systems flowing full is 2.0 feet per second. As shown in Table 1, the minimum anticipated flow velocities for the proposed sewer lines at 50% full meet this requirement. The flow for 100% full will not be less than the flow for 50% full; therefore, the TCEQ requirement is met. The TCEQ requires that the maximum velocity for sewer systems flow full not exceed 10 feet per second . The values in Table 1 are well below this maximum velocity . 4.0 CONCLUSIONS It is our det ermination based on the criteria and data deve lop ed that the propo se d sew e r line will provide sufficient capacity for th e anticip ated wastew ater flows ge ne rat ed b y thi s development. Table 1 -Sewer Line Flow Data ci Manhole No. of Units From Cumulative Average Percent 50% Full z Size Length Slope Peak Flow QI Number Dwelling Unit Merging Dwelling Daily Flow Full Flow Velocity c: :J From To (in) (ft) (%) Services Lines Units (gpm) (cfs) (cfs) (%) (cfs) (fps) .... 2 1 6 3 12 .1 0 .80 15 15 3 .12 0 .00 70 0 .0278 16 .0 0 .2509 2 .6 ch 1 Exis ting 6 4 7.8 0 .80 0 15 3 .12 0 .0070 0 .0278 16 .0 0 .2509 2 .6 n =0 .013 Re fe r to co n struc tion d rawin gs for ma nh ole loca tions . Design Report Proposed Sanitary Sewer Line Improvements for The Glade Subdivision Section 12 College Station, Texas July 2005 Prepared By: TEXCON General Contractors 1 707 Graham Road 1.0 INTRODUCTION & DESCRIPTION The purpose of this report is to provide a description of th e proposed sanitary s ew e r to be constructed wit h The Glade Subdivision Section 12 , and to provide the criteria used in th e design of this sanitary sewer syste m . The project will includ e the co nstruction of approx imate ly 360 feet of sanitary sewer line . The line will connect to an existing manhole and w ill service the proposed development of The Glade Subdivision, Section 12. 2.0 SANlTARY SEWER -Design Flow and Pipe Size Calculations The proposed sewer lin e is to be constructed of 6 " diameter SDR-26 pip e which meets the requirements of ASTM-D3034. The proposed manholes are 4' diameter manholes , and vary from 3 .5' to 5' in depth , with sewer line slopes of0.8%. The maximum distance between manholes is less than 500 fe et, as required by the Texas Commission on Environmental Quality (TCEQ). The minimum allowable slope 6" pipe per TCEQ req uirements is 0.50%. All construction shall m eet th e current City of Co ll ege Station Standard Specifications for Sanitary Sewer Construction . The sewer lin e inforn1ation is summarized in Table 1 b e low . 3.0 DETERMINATION OF PEAK FLOW VALUES The peak flows were based on using a daily use of 300 gallons per d ay for each dwelling unit. The design peak flow is determined by multiplying the average daily flow by 4 .0, which results in the peak hourly flow . The velocities for the lines were calculated using Manning's Equation. According to the TCEQ, the minimum ve locity for sewer systems flowing full is 2.0 feet per second. As shown in Table 1, the minimum anticipated flow veloc ities for the proposed sewer lines at 50% full meet this requirement. The flow for 100% full will not be less than the flow for 50% full; therefore, the TCEQ requirement is met. The TCEQ requires that th e maximum velocity for sewer systems flow full not exceed 10 feet per second. The values in Table 1 are well below this maximum vel ocit y. 4.0 CONCLUSIONS It is our detern1ination based on the criteria and data developed th a t the proposed sewer line will provide s uffici ent capacity for the ant icip ated wastewater flows generated by thi s development. Table 1 -Sewer Line Flow Data 0 Manhole No. of Unil s Fr om Cumulative Average Percent 50% Full z Size Length Slope Peak Flow Q) Number Dwelling Unit Mergln g Dwelling Daily Flow Full Flow Velo city c :J From To (in) (ft) (%) Services Lines Units (gpm) (els) (els) (%) (els) (fps) ...... 2 1 6 312.1 0 .8 0 15 15 3 .12 0 .0070 0 .0278 16 .0 0 .2509 2 .6 .;, Existing 6 47.8 0 .8 0 0 15 3 .12 0 .0070 0 .0278 16 .0 0 .2509 2 .6 n = 0.013 Refer to construction drawings for m a nhole loca lio n s . t' .. Drainage Report for The Glade Subdivision, Section 12 College Station, Texas July 2005 R evised July 2005 Developer: 7B Investi11er ts , Ltd. 1305 West Vi lla Maria Bryan, Texas 77801 (979) 779-93 75 Prepared Bv: T X ON GeneTa"I Contractors 1707 Graham Road ollege Station, Texas 778 45 (979) 76 -774 ' . , ' '» ,. I I I CERTIFICATION I, Joseph P. Schultz, Licensed Professional E ng in eer No. 65889 , State of Texas , cert ify th at this revised report for the drainage d es ig n for Tlt e Glade Subdivision, S ection 12 , was prep ared by m e in acco rdanc e with th e provisions of the City of Co ll ege Station Drainage Policy and Design Standards for th e owners h ereof. TABLE OF CONTENTS DRAINAGE REPORT -REVISED 712005 THE GLADE SUBDLVrSCON, SECTION 12 CERTIFICATION .................................................................................................................................................................. 1 TABLE OF CONTENTS ........................................................................................................................................................ 2 LIST OF TABLES .................................................................................................................................................................. 2 INTRODUCTION ................................................................................................................................................................... 3 GENERAL LOCATION ANO DESCRIPTION .................................................................................................................. 3 FLOOD HAZARD INFORMATION .................................................................................................................................... 3 DEVELOPMENT DRAINAGE PATTERNS ....................................................................................................................... 3 DRAINAGE DESIGN CRJTERJA ........................................................................................................................................ 3 STORM WATER RUNOFF OETERMINATION .............................................................................................................. .4 DETENTION FACILITY DESIGN ..................................................................................................................................... .4 STORM SEWER DESIGN .................................................................................................................................................... 6 CONCLUSIONS ..................................................................................................................................................................... 6 APPENDIX A .......................................................................................................................................................................... 7 Storm S e wer Inlet Design Calculations APPENDIX B ........................................................................................................................................................................ 10 Storm S e we1 ; Pipe Design Calculations APPENDIX C ........................................................................................................................................................................ 15 Figure 1 -Required Detention Storage, Pond Area-Capacity Data, Depth-Discharge Data & Storage Routing Analysis Parameters APPENDIX D ........................................................................................................................................................................ 19 Storage Routing Analysis -Detention Pond EXHIBIT A ............................................................................................................................................................................ 30 Pre-D e velopment Drain(Jge Are([ M(/p EXI-IIBIT B ............................................................................................................................................................................ 32 Post-D evelopment Drain(Jge Are(/ M(/p LIST OF TABLES TABLE l -Rain fa ll Intensit y C alculations ....................................................................................... 4 TABLE 2 -Pre -& Post-Dev e lopm e nt Runoff Information ............................................................. 4 TAB LE 3 -Pr e -& Po s t-D e ve lo pm ent Peak Di sc har ge Co mpari so n -De te nti o n Pond Des ign ...... 5 TABL E 4 -Summ ary o f Max imum Po nd Water Leve ls ............................................................... 5 I INTRODUCTION DRAINAGE REPORT -REVISED 712005 THE GLADE SUBDIVISION, SECTION 12 The purpose of this revised report is to provide the hydrological effects of the construction of The Glade Subdivision, Section 12 , and to verify that the proposed storm drainage system meets the requirements set forth by the City of College Station Dra inage Policy and Design Standards. GENERAL LOCATION AND DESCRIPTION The project is located on a 3 acre tract located on Southwest Parkway north of the Southwood Drive intersection in College Station, Texas. The site is predominantly open with a few trees. The existing ground elevations range from Elevation 278 to Elevation 286 . The general location of the project site is shown on the vicinity map in Exhibit A. FLOOD HAZARD INFORMATION The project site is located in the Bee Creek Drainage Basin. The site is located in a Zone X Area according to the Flood Insurance Rate Map prepared by the Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated areas dated July 2, 1992, panel number 48041CO144-C . Zone X Areas are determined to be outside the 500-year floodplain . DEVELOPMENT DRAINAGE PATTERNS Prior to development, the storm water runoff flows to the east into the Southwest Parkway right-of-way or into an existing concrete drainage flume, which discharges into the Southwest Parkway right-of-way. The runoff flowing into the street enters the existing inlets and storm sewer system. Ultimately, this runoff flows into Bee Creek . DRAINAGE DESIGN CRITERIA The desi g n p a ram e te rs for the sto1m s ew e r and d e te ntion facilit y a nal ys is a r e as follow s: • The Rational Method is utilized to detem1ine peak storm water runoff rate s for the storm sewer d e si g n and the detention facility design. • Design Stom1 Frequency Storm sewer system Detention facility analysis • Runoff Coefficients Pre -d e velopment 10 and 100-year stom1 events 5, 10, 25, 50 and 100-year stom1 e vents Post-d eve lopm e nt (sin g le family res id e ntial) c = 0.40 c = 0 .60 • Rainfall int e n s it y e quations and valu es for Br azo s County ca n b e found in T abl e I . • Tim e o f Co ncentra ti o n , l e -Du e to th e s mall dra ina g e areas , a minimum le o f 10 minut es is use d to d e te rmin e th e ra infa ll int e ns it y valu es. I STORM WAT E R RUNOFF DET E RMI NATION The pea k ru noff va lu es we re cl ete rrnin ecl in acco rdance w ith the c rit e ri a p rese nted in t he prev iou s sect io n for th e 5, 10 , 25, 50, and I 0 0 -year sto rm events. T he d ra in age areas fo r the pre-& pos t-deve lo pm e nt conditi o ns fo r th e d ete ntion pond a na lys is are s how n o n Ex hibits A & B, resp ec ti ve ly. Th e drain age ar eas for th e po st-d eve lopm ent co nditi o ns fo r the s to1111 sewer d es ign are show n o n Ex h ib it B. Pr e-and post -d eve lo pm ent run off co ndition s are s umm ari ze d in Ta bl e 2 . Du e to th e s m a ll si ze of th e d ra in age areas fo r thi s si te, a tim e of co nce nt ra ti o n of 10 minu tes has bee n use d fo r a ll of th e dra inage a reas . TABLE 1 -Rainfall Intensity Calculations Rainfall Intensity Values (in/hr) Storm t -c - Event 10 min Is 7 .693 110 8.635 l 2s 9.861 l so 11.148 1100 11 .6 3 9 Bra zos Co unty: 5 year storm 10 year storm b = 76 b= 80 d= 8 .5 d= 8 .5 e = 0 .785 e = 0 .763 I = b I (tc +d)0 I = Rainfall Intensity (i n/hr) tc = L/(V*60) tc = Tim e o f c once ntration (min) L = L e n g th (ft) V = V e locity (fUs e c) 25 year storm 5 0 year storm 100 year storm b= 8 9 b = 98 b= 9 6 d= 8 .5 d = 8 .5 d = 8.0 e= 0 .7 54 e = 0 .7 45 e = 0.730 (Data ta k en from Sta te Department o f Highways and Public Transp ortation Hydrau lic Manual , page 2-16 ) TABLE 2 -Pre-& Post-Development Runoff Information Area 5 year storm 10 year storm 25 year storm 50 year storm 100 year storm c le Area# (acres) Is Os 110 0 10 l2s 0 2s lso O so A (min) (in /hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) Pre-Development Drainage Area 101 3 .00 0.40 10 7 .693 9 .23 8 .635 10 .36 9 .861 11.83 11 .148 13.38 Pos t-Deve lopm ent Drainage Areas 20 1 1.14 0 .60 10 7 .693 5 .26 8 .635 5 .9 1 9 .86 1 6.75 11 .148 7 .62 -- 202 0 .79 0 .6 0 10 7 .693 3 .65 8 .635 4 .09 9 .86 1 4 .67 11.148 5 .28 ----------- 20 3 0 .50 0 .6 0 10 7 .693 2 .31 8 .635 2 .59 9 .86 1 2 .96 11 .148 3 .34 --------------- 204 0 .57 0 .60 10 7 .693 2 .63 8 .635 2 .95 9 .86 1 3 .37 11 .148 3 .8 1 ----- 201 & 20 2 1.93 0 .60 10 7 .693 8 .9 1 8 .635 10.00 9 .861 11 .42 11 .148 12 .91 -- 20 1,202 ,203 2.43 0 .60 10 7 .693 11 .22 8 .635 12 .59 9 .861 14 .38 11.148 16 .25 D ET EN TION F AC ILITY D E SIGN Due to th e inc re ase in th e peak ru noff clu e to thi s deve lo pm ent, a de te nt ion lac i li ly is nee ded !or the run off t hat flow s int o the So uth wes t Pa rk way ri gh t-o f-w ay. 1100 0 100 (in /hr) (cfs) 11 .639 13 .97 11 .639 7 .96 ----- 11 .639 5 .52 ---- 11 .639 3.49 -- 11.639 3 .98 ---- 11 .639 13.48 11 .639 16 .9 7 The desi gn storm for the detention facilit y is th e I 00-yea r s torm eve nt. The det e nti o n pond is lo cated in the no rth e ast corner of th e tract adjacent to Southwest Park wa y . T h e peak runoff values we re determined in accordance with the cr it e ri a presented in prev ious sect ions for the 5, I 0, 25 , 50 & I 00-year sto rm events for pre-deve lopm e nt cond it ion s. Tab le 2 shows a summary of these res ults . The post-deve lopment p eak runoff val ues a re also summarized in Table 2. Figure 1 in Appendix C shows the required detention storage vo lum e for the pond for the l 00-year stom1 event. TABLE 3 -Pre-& Post-Development Peak Discharge Comparison -Detention Pond Design Item Location O s 010 0 25 Oso (cfs) (cfs) (cfs) (cfs) Pre-Development A Total Discharge From Site (Area 101) 9 .23 10.36 11 .83 13 .38 Post-Development without a Detention Pond B Total Discharge From Site (Areas 20 1-2 04) 13 .85 15 .54 17 .75 20 .05 Post-Development with Pond C1 Into Pond (Areas 201-20 3) 11.22 12.59 14 .38 16.25 C2 Out of Pond (Appendi x D) 6.09 6.32 6 .64 6.98 CJ Discha rge Into Southwest Pkwy -Area 204 2.63 2.95 3 .37 3.81 C4 Discharge Into Southwest Pkwy -Inlet 2 Bypa ss 0.00 0.00 0.16 0 .87 c Total Post-Development Discharge From Site (C2+C3+C4) 8.72 9 .27 10 .17 11 .66 D Decrease in Runoff From Pre-Development (A-C) 0.51 1.09 1.66 1.72 The pond outlet structure is a concrete riser structure which is 3.5'x3.5' in size, 4.0' hi g h , and with a 2.5'x2.5' opening at its top . There is an 12" high by 8" wide opening in the front face of the structure with its invert at E levation 272.0 to control the flow. The discharge pipe is an 18 " reinforced concrete pipe, 28 feet in length, which discharges into a junction box to be constructed on an existing 30" stom1 sewer pipe. The pipe h as a design slope of 1.0%. The top of the pond berm is at Elevation 278.0. There is a 5' overflow spillway on the top of the berm with a flowline elevation of 277.5. As shown in Table 3, the peak outflows from the d etention facilities are less than the allowable peak outflow for the design stonn event. Additionally, Table 4 presents the maximum water surface in th e ponds for the 100-year storm event, as we ll as the a mount of free bo ard provided. TABLE 4 -Summary of Maximum Pond Water Levels Location 0100 Max. Water Surface Top of Berm Freeboard, ft. (cfs) Elevation, ft. Elevation , ft . Pond 8.54 277.2 278.0 0 .8 T h e area-capacity dat a, th e depth-discharge data a nd the Storage Routin g Analysis Parameters for th e propo sed detention pond is pro vided in Appe ndi x C. Only 90 % of the design volume was used for th e Storage Routing Ana lys is. The peak now out of the detention facilit y was d etermin ed b y a S tor age Routin g A na lysi s ba s ed on the Co ntinuit y Equ atio n as follO\vs : (11 +12 )+((2s 1/dt)-0 1 )=((2 s 2/dt)+02). The tim e int e rva l, cit , used wa s I minut e. Th e c a lc ul at ion s and re s u lt s of th e Sto r<1g c Ro utin g .i\1 1:1!\'s i s arc pro v id ed in App c ncl1 x D . 0100 (cfs) 13.97 20 .95 16.97 8.54 3.98 1.14 13.66 0.31 I I A 3' wide co ncre te lo w flow flum e is prop osed to carry the fl ow in th e d e te nti on pond to th e pond out le t s tructure. Bl ock sod g rass will b e pl ace d in th e d e te ntion pond to co ntrol eros ion. STORM SEWER DESIGN The storm sewer piping for this project has bee n se lected to be Reinforced Concrete Pip e (RCP) m eeti ng the requirem e nts of ASTM C-76 , C lass m pip e m eeting the re quire m e nt s of ASTM C -789 . The curb inlets will b e cas t-in-pl ace concrete . Appendix A presents a summary of the stom1 sewer in let desi gn parameters and calculations . The inlets were designed based on a 10 -year desi g n storm. Inlets for the residential streets were located to maintain a gutter flow depth of 5" or less . This design depth will prevent the spread of water from reaching the crown of the road for the 10-year storm event. Refer to Appendix A for a summary of the gutter flow depths . The runoff intercepted by the proposed storm sewer inlets was calculated using the following equations . The depth of flow in the g utt er was determined by using the Straight Crown Flow equation. The flow intercepted by Inlets 1 & 2 was calculated by using the Capacity of Inlets On Grade equation. These equations and resulting data are summarized in Appendix A. There are no Inlets In Sump for this project. The area between the right- of-way and the curb line of the streets will be graded as necessary to provide a minimum of 6" of freeboard above the curb line. This wi ll ensure that the runoff from the 100-year storm event wi ll remain within the street right-of-way . Appendix B presents a summary of the stonn sewer pipe design parameters and calculations. A ll pipes are 18 " in diameter or larger. For pipes with 18" and 24" diameters, the cross-sectional area is reduced by 25%, as per College Station requirements. A summary of how this was achieved is shown in Appendix B as well. The pipes for the storm sewer system were designed based on the 10 -year storm event, and they will also pass the 100-year storm event. Based on the depth of flow in the street determined for the 100-year storm event, this nmoffwill be contained wit hin the street right-of-way until it enters the stom1 sewer system . As require d by College Station , the velocity of flow in th e sto nn sewe r pipe system is not lower th an 2.5 feet per second , and it do es not exceed 15 fee t per second . As the d a ta s ho ws, even durin g low flow conditions , th e ve locity in th e pipes will exceed 2 .5 feet per second and prevent sed iment build-up in the pip es . The maximum flow in the storn1 sewer pipe system will occur in Pipe No . 2. The max imum ve locity for the pipe system in this development will be 6 .5 feet per second and w ill occur in Pipe No . 2. Appendix B contains a summary of the pipe calcu lations . CONCLUSIONS The construction of thi s proj ec t will increase th e storm water runoff from thi s s it e. The pro pos ed s to rm sewer syste m sho uld adeq uat e ! y co ll ec t a portion of th e runoff a nd re lease it into th e d e te nti o n p o nd . The increased runoff has bee n red uced b y th e prop osed deten tion fac ilit y, and th e re s hould be no flood d a m age to do wnst re am or adjac e nt landow ne rs res ultin g from thi s d eve lo pm e nt. I> I I APPENDIX A Storm Sewer Inlet Design Calculations The Glade Subdivision Depth of Flow in Street Gutter Revised 712005 Gutter A c Location (acres) A 1 1.14 0 .6 A2 0 .79 0 .6 Tra nsve rse (Crown) slope (fl/ft) fo r 27' stree t = 0 .0330 Slope (ft/ft) 0 .0 110 0 .0110 10 -year storm 0 10 Y 10-ac tual (cfs) (ft) (in) 5.91 0.348 4 .17 4 .09 0 .303 3.64 Straight Crown Flow (Solved to find actual depth o Q = 0 .56 * (z/n) * S112 * y8 '3 ¢ y ={QI [0 .56 * (z /n) f flow i n gutter, y:}: n =Roughn ess Coefficient = 0 .01 8 S = StreeUGutter Slope (fUft) y = Dep th of fl ow at inl et (ft ) z = Reci pro cal of crown slo pe: for 27' st ree t = 30 * s1/2 ]}3/8 - 100 -year storm 0 100 Y 100 (cfs) (ft) (in) 7 .96 0 .389 4 .67 5 .52 0 .339 4 .07 ! I I i The Glade Subdivis i on !nlet Le ngth Calculations Revised 712005 Inlets On Grade 10 year storm Fk>wfrom y ,. O per1oo1 O c.mp.:1" a.,,, •• O uptUl'"..t llllC I T: Lr:ngth 1 ·, 10' 10' Area# (ft) I (i n) 202 ~303 _1~ --201 0.348 4.17 Transve rse !Crown) slope (ft/ftl for 27' street = 0 .033 (ft) (cfs) (cfs ) 0.60 5.97 -1.88 0.64 6.41 -0 .50 Straight Crown Flow (Solved to find actua l depth of flow. yl : Q = 0 .56 • (z/n) • S 112 • y'" Q y ={Q I [0 .56' (z/n) • S 112])3" n =Roughness Coefficient= 0 .018 S = StreeVGutter Slope (tuft ) y = Depth of flow at inl et (ft ) Capaci ty of Inlets on grade: Oc = 0.7 • (1 /(H , • H2 )] • [H/12 • H2 512] Oc = Flow capacity of inlet (cfs) H1 =a+y H, =a =gutter depression (2" Standard ; 4" Recessed) y = Depth of flow in approach gutte r (ft ) (cfs ) 4.09 5.91 a.,.,,.,_ a.,,,.. ... O e11pt-1:ot1 0 10 -Tot• Y100 (cfs) I from Inlet t (cfs) (cfs) (cfs) (ft) I (I n) I 0.00 4.09 4.09 o.339 I 4.07 I 0.00 5.91 5.9 1 o.389 I 4.67 z = Re ci procal of crown slope for 27' street = 30 Inlets in sumps, Weir Flow : L = QI {3 ' y 312 ) Q y = (QI 3L)213 L = Length of inlet opening (ft) Q = Flow at inlet (e l s) y = total depth of flow on inlet (ft ) ma x y for in let in sump = 7" = 0 .583 ' O pw1oot O upmcuy (ft) (cfs ) 0.63 ~ 0.68 6.82 100 year storm a.,,, •• Oc1191ured Cc .,,.,_ 0 11yp.1ot• O c11pMoll 0 100.Tot.i s . L11C1u-"' (cfs) (cfs) (cfs) j fromlnlel# (cfs ) (cfs ) (e ls) (tuft) (ft) -0.80 5.52 0.00 5.52 5.52 0.0 11 0 10 -· -- 1.14 6.82 I 1.14 6.82 7.96 0.0110 10 APPENDIXB Storm Sewer Pipe Design Calculations I ·11 Th e Glade Subdivision Pi pe Calculations Revised 712005 Inlet Outlet 1 O year storm 100 year storm Pi pe# Size Length Slope Invert Elev Invert Elev *Actual Flow Design Flow V 10 Travel Time, t11o *Actual Flow Design Flow V 100 % Full (in) (ft) (%) (ft) (ft) (cfs) (cfs) (fps) (sec) (min) (cfs) (cfs) (fps) 2 24 102.9 0.80 274 .58 273 .76 10.00 16.15 6 .7 71.4 15 0.26 12.34 19 .93 6 .7 -- 3 18 31 .0 1 .20 275.39 275 .02 5.91 9 .54 6 .8 73.7 5 0 .08 6.82 11 .01 6 .9 ·The se values reflect the actual flow for the 18" & 24" pipes . The design flow for these pipe s iz es reflects a 25 % red uct ion in pipe area . (Re fe r to attached calculation for specific information .) % Full 89.0 ---- 85 .0 Travel T ime , t1100 (sec) (min) 15 0 .26 -- 4 0 .0 7 City of College Station requirement to Reduce Cross -Sectional Area of 18" & 24" Pipes by 25% Usin g Mannings Equation from page 48 of th e Co ll ege Stati on Drainag e Pol icy & Desig n Standards Manu a l : Q = 1.491n *A * R213 * S 112 Q =Flow Capacity (cfs) 18" Pipe: Pipe size (inches) = 18 Wetted Perimeter WP , (ft)= 4.71 Cross-Sectional Area A , (ft2 ) = 1.766 Reduced Area A R, (W) = 1 .3 25 Hydraulic Rad ius R = NWp. (ft)= 0 .3 75 Reduced Hydr Radius R R= A R/Wp. (ft)= 0.281 Roughness Coefficient n = 0.014 Friction Sl ope of Conduit Sr . (tuft) = 0 .01 Example Calculation : Slope Flow Capacity R educed Flow Capacity % Difference s Q O reduce d O reduced /Q 0 .005 6 .91 4.28 0.619 -0 .006 7 .57 4 .69 0.619 -0 .007 8 .18 5 .06 0.619 24" Pipe: Pipe size (inches) = 24 Wetted Perimeter WP , (ft)= 6 .28 Cross-Sectional Area A , (W) = 3.14 Reduced Area A R, (ft2 ) = 2 .355 Hydraulic Rad ius R =NW µ. (ft)= 0 .5 R e duce d Hydr Radius R R= A R/Wp. (ft)= 0.375 Roughness Coefficient n = 0.0 14 Friction Slope of Conduits,. (ft/ft)= 0.0 1 Example Calculation : Slope Flow Capacity R educed Flow Capacity % Difference s Q Oreduced O reduced /Q 0 .005 14 .89 9.22 0.619 -----0 .006 16 .31 10 .1 0.619 ------------------0 .007 17.61 10 .9 0.619 Conclusion : Multiply actua l Q in 18" & 24 " pipes by 1.615 to reflect a 25 % red u c ti on in the cross-sectio nal area called for on page 4 7 , paragraph 5 of the Col lege S ta tion Drai n age Policy & D esign S ta nd a rd s manual. Pipe 2 -10 Year Storm Mann ing Pipe Calculato r Gi v en Input Data: Shape .......................... . Solv ing for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24 .0000 in 16 .1500 cfs 0.0080 ft/ft 0 .0140 17 .1467 in 3.1416 ft2 2.4015 ft2 48 .337 5 in 75 .3982 in 6.7250 fps 7.154 2 in 71.4446 % 18.7888 cfs 5.9807 fps Pipe 2 -100 Year Storm Manning Pipe Calculator Give n Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wet ted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full fl ow ve locity ............. . Th e GJade Subdi v isi o n Col l eqe ~;1 2 it· i n,.1. T f<•:,-,,, H:..::'1·.i .;r l :·r 1_1 Circular Depth of Flow 24.0000 in 19.9300 cfs 0.0080 ft/ft 0.0140 21.3713 i n 3.1416 ft2 2.9547 ft2 59.207 2 in 75 .3982 in 6.7451 fps 7.1863 in 89.0 471 % 18.788 8 cfs 5 .9807 fps Pipe 3 -1 0 Year S t o rm Mann i ng Pipe Calculator Given Input Data: S h ape .......................... . Solvi ng for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Man ning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Ci rcular Depth of Flow 18 .0000 in 9.5400 c f s 0.0120 ft/ft 0. 0140 13 .2613 in 1 .7 671 ft2 1 .3956 ft2 37.1527 in 56 .5487 in 6.8357 fps 5.409 2 in 73.6741 % 10.6850 cfs 6.0465 fps Pipe 3 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solvi ng for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area .......................... · · Wetted Area .................... . Wetted Perimeter ............... . Perime te r ...................... . Ve locity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrat e ............. . Full flow velocity ............. . T h e Glade Su bdi v is i o n Co l l e c.:w ~;1.:1t i o n. 'T'e :·:c-,, kc:\· .i ,_; r_ l .. 1.1 11'. Circular Depth of Flow 18.0000 in 11.0100 cfs 0.0120 ft/ft 0. 0140 15.2995 in 1.7671 ft2 1.6009 ft2 42 .230 1 in 56.5487 in 6 .8 774 fps 5.4588 iri 84.9973 % 10.6850 cfs 6.0465 fps APPENDIX C Figure 1 -Required Detention Storage, Pond Area-Capacity Data, Depth-Discharge Data & Storage Routing Analysis Parameters I ·' The Glade Sub d ivision Figure 1 -Required Detention Storage 25 ~--------· ----- 0p05t = 20 .95 cfs 20 15 <n -..!:.. a i 0 u:: -" C1l C1I a. 10 5 0 .r------------,---------------.------------~ 0 10 20 30 Time of Con cen trati o n, t c (min) The Glade S ub division Detention P ond A rea-Capacity & Depth -D ischarge D ata Revised 712 005 V = H * {[A1+A2 + (A 1*A2)112 ] / 3} V = volum e, ft 2 A= area , ft 2 H = difference in elevation , ft D ETE NT ION POND Area -Capacit Data Elev ation Dept h Area V o l ume Cumu l ative 90 % Volu me Cum ul at ive (ft) (ft) (ft2) (ft3) (ft3) (ft3) 272 0 0 0 .00 0 .00 0 .00 ---273 .00 -----·-·----- 1.00 92 .0 6 30 .69 30 .69 27 .62 ------------- 274 .00 1.00 496 .52 267.46 298.15 268.33 ----·------------- 275.00 2 .00 1,290.41 862.46 1160 .60 1044 .54 ----------------------·-- 276 .00 3.00 _?_._~1_;85 __ 1813.03 2973 .64 2676.27 277.0 0 4 .00 3,755 .52 3048 .16 6021.79 5419 .62 ---278.00 5 .00 5, 195 .97 4456 .30 10478.10 9430.29 D ETEN TION PON D Depth -Discharge Data E lev ation 8" W eir 8 "x 12" Orifice Opening 18" RCP Max Flow from Outlet Depth Flow De pth Fl ow De pth (ft) (ft) (cfs) (ft) (cfs) (ft) 272.0 0 0 0 0 0 0 ---------------- 273 .00 1.0 2 0.5 2.28 -------------- 274 .00 --1.5 3.94 ------------>--------- 275 .00 --2 .5 -------------- 276 .00 --3.5 ------277.00 --- 278 .00 -- -. . _3(. Weir Flow Equation . Q -3.0 L y Orifice Flow Equation : Q = 4 .82 *A• y112 4 .5 - 5.08 ----------- - 6.01 ------ 6.82 ----- -6.0 Fl o w Structure (cf s) (cfs) 0 0 ----------2 .00 -------- -3.94 - -5.08 ---------6.01 -6.82 ---19 .80 19.80 Note: When the depth in the pond exceeds Elevation 277 .0, the 18" outlet pipe becomes the flow control structure for the pond . - -- t=60s The G lade Subdivision Storage R out ing Analysis Param Revised 712005 Detention Po nd No. 1 Elevation Depth Discharge Storage ft ft a. cfs s, cf 272.00 0 .00 0 .00 0 .00 273 .00 0.00 2 .00 27 .6 2 - 274.00 1.00 3.94 268 .33 --··--275.00 2.00 5.08 eters 2 sit 0 .00 - -0 .92 --8 .94 --·---34.82 ---· ·-------_ 1_.~i -53 ·-·-276.00 4 .00 6.01 ~~676 :_2 7 277 .00 5 .00 6.82 ~'!_!~62 ----------- 278 .00 6 .00 19.80 10,478.10 18" Outlet Pipe 3 .5'x3 .5' Concrete Riser w/ 12" high x 8" wide opening Opening flowline Elev . = 272.0 Top Elev.= 277 .0 89.21 ---180 .65 349.27 - 2 sit+ 0 0 .00 2.92 ---12 .88 39 .90 --· -95 .2 2 --187.47 ---369 .07 APPENDIXD Storage Routing Analysis -Detention Pond 1 1 1 Time (min.) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Inflow (cfs) 0.00 1.12 2.24 3.37 4.49 5.61 6.73 7.85 8.98 10.10 11.22 10.66 10.10 9.54 8.98 8.42 7.85 7.29 6.73 6.17 5.61 5.05 4.49 3.93 3.37 2.81 2.24 1.68 1.12 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Storage Routing Analysis Detention Pond 1 5-Year Storm Event 11+12 (cfs) 0.00 1.12 3.37 5.61 7.85 10.10 12.34 14.59 16.83 19.07 21.32 21.88 20.76 19.64 18.51 17.39 16.27 15.15 14.03 12.90 11. 78 10.66 9.54 8.42 7.29 6.17 5.05 3.93 2.81 1.68 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 00 0.00 0 00 0.00 2s/t-O 0.00 -0.41 -1.09 -0.10 1.87 4.44 8.57 14.41 21.81 30.69 41.45 52.38 61.86 69.93 76.65 82.06 86.26 89.28 91.14 91.87 91.48 90.00 87.44 83.82 79.23 73.72 67.30 60.01 51.89 42.95 33.23 23.63 14.84 6.80 1.29 -0.48 0.18 -0.07 0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 Outflow Storage Depth Elevation 2s/t+O (cfs) if.fl illl illl 0.00 0.00 0 0.0 272.0 1.12 0.77 11 0.1 272.1 2.95 2.02 28 0.6 272.6 4.52 2.31 66 0.7 272.7 7.75 2.94 144 1.0 273.0 11.97 3.76 246 1.9 273.9 16.78 4.10 380 2.1 274.1 23.16 4.37 564 2.4 274.4 31.24 4.71 796 2.7 274.7 40.89 5.10 1,07 4 3.0 275.0 52.01 5.28 1,560 3.2 275.2 63.32 5.47 1,736 3.4 275.4 73.13 5.64 2,025 3.6 275.6 81.49 5.78 2,271 3.7 275.7 88.45 5.90 2,476 3.9 275.9 94.04 5.99 2,642 4.0 276.0 98.33 6.04 2,769 4.0 276.0 101.41 6.06 2,860 4.1 276.1 103.30 6.08 2,917 4.1 276.1 104.04 6.09 2 939 4.1 276.1 103.65 6.08 2,927 4.1 276.1 102.14 6.07 2,882 4.1 276.1 99.54 6.05 2,805 4.0 276.0 95.85 6.02 2,695 4.0 276.0 91.12 5.94 2,555 3.9 275.9 85.41 5.85 2,387 3.8 275.8 78.76 5.73 2, 191 3.7 275.7 71.22 5.61 1,969 3.5 275.5 62.82 5.47 1,721 3.4 275.4 53.57 5.31 1,448 3.2 275.2 43.51 5.14 1,151 3.1 275.1 33.23 4.80 853 2.7 274.7 23.63 4.39 577 2.4 274.4 14.84 4.02 325 2.1 274.1 6.80 2.76 121 1.2 273.2 1.29 0.88 12 0.6 272.6 -0.48 -0.33 -5 0.5 272.5 0.18 0.12 2 0.5 272.5 -0.07 -0.04 -1 0.5 272.5 0.02 0.02 0 0.5 272.5 -0.01 -0.01 0 0.5 272.5 0.00 0.00 0 0.5 272.5 0.00 0.00 0 0.5 272.5 0.00 0.00 0 0.5 272.5 0.00 0.00 0 0.5 272.5 0 00 0 00 0 0.5 272.5 t 1 ~ 1 / ; •< I: • II I; ii 1 t . '. I:-~ -:I (' 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 1 32 33 34 35 36 37 38 39 40 4 1 42 43 44 45 Inflow (cfs) 0 .00 1.26 2.52 3 .78 5.04 6.30 7 .55 8.81 10.07 11.33 12 .59 11.96 11 .33 10.70 10 .07 9.44 8 .81 8 .18 7 .55 6 .92 6.30 5.67 5.04 4.41 3 .78 3.15 2 .52 1.89 1.26 0 .63 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 0.00 0 .00 0 .00 0.00 0 .00 0.00 0.00 Storage Routing Analysis Detention Pond 1 10-Year Storm Event 11+12 (cfs) 0 .00 1.26 3 .78 6.3 0 8 .81 11 .33 13 .85 16 .37 18 .89 2 1.40 23 .92 24 .55 23 .29 22 .03 20 .77 19 .51 18 .26 17 .00 15 .74 14.48 13 .22 11 .96 10.70 9.44 8 .18 6 .92 5.67 4.41 3 .15 1.89 0 .63 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 o .. od 0 .00 0 .00 0 .00 0 .00 0 00 2s/t-0 0 .00 -0.47 -0.84 0.47 2.80 6 .15 11 .52 18 .74 27.65 38 .59 51 .59 64 .76 76 .27 86 .23 94 .78 101 .94 107 .74 112 .19 115.34 117 .19 117 .77 117 .10 115.21 112 .12 107 .84 102.40 95 .82 88 .12 79 .38 69 .72 59 .17 4 8.36 37 .91 27 .92 18 .77 10 .39 3.48 -0.74 0.27 -0 .10 0.04 -0 .01 0 .01 0 .00 0 .00 0 .00 2s/t+O 0 .00 1.26 3.31 5.45 9 .28 14.13 20.00 27 .88 37 .62 49.06 62.51 76.14 88 .05 98 .31 107 .01 114 .29 120.19 124 .73 127 .93 129.82 130.41 129 .73 127 .81 124.66 120.30 114 .77 108 .07 100 .23 91.27 81 .27 70 .35 59.17 48 .36 37 .91 27 .92 18 .77 10 .39 3.48 -0 .74 0 .2 7 -0 .10 0.0 4 -0 .01 0 .01 0 .00 0 .00 Outflow {cfs) 0 .00 0 .86 2 .08 2.49 3 .24 3 .99 4 .24 4 .57 4 .98 5.23 5.46 5.69 5 .89 6 .04 6 .11 6 .18 6 .23 6.27 6 .30 6 .31 6 .32 6 .31 6 .30 6 .27 6.23 6 .18 6.12 6.05 5 .94 5.78 5.59 5.40 5 .2 2 5.00 4 .57 4 .19 3.46 2.11 -0 .50 0 .19 -0 .07 0 .03 -0 .01 0.00 0 00 0 00 Storage if.fl 0 12 37 89 181 304 473 699 979 1,315 1,875 2 , 114 2,465 2 ,768 3 ,027 3 ,243 3,419 3,554 3 ,649 3 ,705 3,723 3,703 3 ,645 3,552 3,422 3 ,258 3,058 2 ,825 2 ,560 2,265 1,943 1,6 13 1,294 988 700 437 208 41 -7 3 -1 0 0 0 0 0 Depth illl 0 .0 0 .2 0.6 0.8 1.5 2 .0 2.2 2.5 2 .9 3 .2 3.4 3 .6 3 .9 4.0 4.1 4.2 4 .3 4 .3 4 .3 4.4 4.4 4.4 4 .3 4 .3 4 .3 4 .2 4 .1 4 .0 3 .9 3 .7 3 .5 3 .3 3 .1 2 .9 2 .5 2 .2 1.7 0 .9 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 Elevation illl 272.0 272 .2 272 .6 272 .8 273 .5 274 .0 274 .2 274 .5 274 .9 275 .2 275.4 275 .6 275.9 276 .0 276 .1 276 .2 276.3 276 .3 276 .3 276.4 276.4 276.4 276 .3 276.3 276 .3 276 .2 276 .1 276 .0 275 .9 275 .7 275 .5 275.3 275.1 274 .9 274 .5 274 .2 2 73 .7 272 .9 272.5 272 .5 272 .5 272 .5 272 .5 272 .5 272.5 272 .5 Time (min .) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 1 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Inflow (cfs) 0 .00 1.44 2.88 4.31 5 .75 7 .19 8 .63 10 .07 11.50 12 .94 14 .38 13 .66 12 .94 12 .22 11 .50 10 .79 10 .07 9 .35 8 .63 7 .91 7.19 6.47 5 .75 5 .03 4.3 1 3.60 2 .88 2.16 1.44 0 .72 0.00 0.00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 00 Storage Routing Analysis Detention Pond 1 25-Year Storm Event 11+12 (cfs) 0 .00 1.44 4 .31 7 .19 10 .07 12 .94 15 .82 18.69 21 .57 24.45 27.32 28.04 26.60 25 .17 23.73 22 .29 20 .85 19.41 17 .98 16.54 15 .10 13 .66 12 .22 10 .79 9 .35 7.91 6.47 5 .03 3.60 2.16 0.72 0.00 0 .00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0.00 0 00 0 .00 0 .00 0 .00 2s/t-0 0 .00 -0.53 -0 .55 1.19 4.01 8.73 15 .68 24 .68 35 .88 49.48 65.40 81.48 95 .84 108 .53 119 .58 129 .03 136 .91 143 .23 148 .02 151 .32 153 .15 153.53 152.50 150 .07 146.27 141 .12 134.65 126 .88 117 .84 107.54 96.01 83 .98 72 .34 61 .09 50 .21 39 .71 29 .56 20 .28 11 .77 4 .3 2 -0.22 0 .08 -0 .03 0 .01 0 .00 0 .00 2s /t+O -- 0.00 1.44 3 .78 6 .64 11.25 16 .95 24.54 34 .37 46 .25 60.32 76.8 0 93.44 108.08 121.00 132.25 141 .87 149.89 156.32 161 .20 164.56 166.42 166.81 165.76 163.28 159.41 154 .18 147 .59 139.69 130.48 120.00 108.26 96.0 1 83.98 72.34 61 .09 50.21 39.71 29.56 20 .28 11.77 4.32 -0 .22 0 .08 -0 .03 0 .01 0 .00 Outflow (cfs) 0 .00 0 .98 2 .17 2.72 3 .62 4 .11 4.43 4 .85 5 .19 5.42 5 .70 5 .98 6 .12 6 .24 6 .34 6.42 6.49 6 .55 6.59 6.62 6.64 6.64 6.63 6 .61 6.57 6 .53 6.47 6.40 6 .32 6 .23 6.12 6 .0 2 5.82 5 .6 3 5.44 5 .2 5 5 .07 4.64 4.25 3 .72 2 .27 -0 .15 0 .06 -0 .0 2 0 .01 0 .00 Storage iffl 0 14 48 117 229 385 603 886 1,232 1,647 2,304 2,624 3,059 3,443 3,778 4 ,064 4,302 4,493 4,638 4,738 4,794 4,805 4,774 4,700 4,585 4,429 4,234 3,99 9 3 ,725 3,413 3,064 2 ,700 2,345 2,001 1,669 1,349 1,039 748 481 24 1 61 -2 1 0 0 0 Depth illl 0 .0 0 .2 0.6 0 .9 1.8 2 .1 2.4 2.8 3 .1 3 .3 3 .6 4 .0 4 .1 4 .3 4.4 4 .5 4 .6 4 .7 4 .7 4 .7 4.8 4 .8 4 .8 4 .7 4 .7 4 .6 4 .6 4 .5 4.4 4 .3 4 .1 4 .0 3 .8 3 .6 3.4 3 .2 3 .0 2 .6 2 .3 1.8 1.0 0 .5 0 .5 0.5 0 .5 0 .5 Elevation illl 272 .0 272 .2 272.6 272 .9 273 .8 274.1 274.4 274 .8 275 .1 275.3 275 .6 276 .0 276 .1 276 .3 276.4 276 .5 276 .6 276.7 276 .7 276 .7 276 8 276 .8 276 .8 2 76 .7 276 .7 276 .6 276.6 276 .5 276.4 276 .3 276.1 2 76.0 275.8 275 .6 275.4 275 .2 275 .0 274 .6 274 .3 273.8 273 .0 272.5 272.5 272.5 272.5 272 .5 ----____________ ____. I I Time (min.) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Inflow (cfs) 0.00 1.63 3 .25 4 .88 6 .50 8 .13 9 .75 11 .38 13 .00 14.63 16 .25 15.44 14 .63 13 .81 13 .00 12 .19 11.38 10 .56 9 .75 8 .94 8 .13 7 .31 6 .50 5.69 4 .88 4 .06 3 .25 2.44 1.63 0.81 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0.00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 Storage Routing Analysis Detention Pond 1 50-Year Storm Event 11+12 (cfs) 0.00 1.63 4 .88 8 .13 11 .38 14 .63 17 .88 21 .13 24.38 27.63 30 .88 31 .69 30 .06 28.44 26 .81 25.19 23 .56 21 .94 20 .31 18 .69 17 .06 15.44 13.81 12 .19 10.56 8 .94 7 .31 5 .69 4 .06 2.44 0 .81 0.00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0.00 0 .00 0 .00 0 .00 0 .00 2s/t-O 0.00 -0 .60 -0 .25 1.94 5.40 11 .54 20 .14 31 .06 44 .75 61 .13 80 .09 99.47 116 .91 132.44 146 .11 157 .94 167 .97 176 .23 182.74 187 .54 190 .66 192 .13 191 .98 190 .24 186 .92 182 .07 175.71 167 .87 158 .56 147 .82 135.68 122 .95 110.44 98 .15 86 .08 74 .37 63 .05 52 .11 41 .54 31 .33 21.89 13 .25 5.34 0.40 -0 .15 0 .05 2slt+O 0 .00 1.63 4.27 7.87 13 .32 20 .03 29.42 41 .27 55.44 72 .38 92 .00 111 . 78 129 .53 145.34 159.26 171 .30 181 .51 189 .91 196.54 201.43 204 .60 206 .10 205 .95 204 .17 200 .80 195 .86 189 .39 181.40 171.93 161.00 148 .64 13 5.68 12 2.9 5 110.44 98.15 86 .08 74 .37 63 .05 52.11 41 .54 3 1.33 21.89 13 .25 5.34 0.4 0 -0 .15 Outflow (cfs) 0 .00 1 .11 2 .26 2 .96 3 .96 4 .24 4 .64 5.10 5 .34 5 .63 5.96 6 .16 6 .31 6.45 6 .57 6 .68 6 .77 6 .84 6 .90 6 .94 6.97 6.98 6 .98 6 .97 6.94 6 .89 6 .84 6 .77 6 .68 6 .59 6.48 6 .37 6 .25 6 .14 6 .04 5 .86 5.66 5.47 5 .29 5.11 4 .72 4 .32 3.9 6 2 .47 0.2 7 -0.10 Storage .(£1 0 15 60 147 281 474 743 1,085 1,503 2,003 2,760 3 , 169 3,697 4 , 167 4,581 4,939 5,242 5,492 5,689 5,835 5 ,929 5 973 5 ,969 5 ,916 5 ,816 5,669 5,476 5,239 4,957 4 ,632 4 ,265 3,879 3,501 3 ,129 2 ,764 2,407 2 ,061 1,727 1,405 1,093 798 52 7 279 86 4 -1 Depth illl 0 .0 0.2 0 .7 1.0 2.0 2.2 2 .6 3.0 3 .3 3.6 3 .9 4 .2 4.4 4 .5 4 .7 4 .8 4 .9 5 .0 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.0 4 .9 4 .8 4 .7 4 .6 4.4 4 .3 4 .2 4 .0 3 .8 3 .6 3.4 3 .2 3 .0 2 .7 2 .3 2 .0 1 .1 0 .5 0 .5 Elevation illl 272 .0 272 .2 272 .7 273 .0 274 .0 274 .2 274 .6 275.0 275.3 275 .6 275.9 276 .2 276.4 276 .5 276 .7 276 .8 276 .9 277 .0 277 .1 277 .1 277 .1 277 .1 277 .1 277 .1 277 .1 277 .1 277 .0 276.9 276.8 276 .7 276 .6 276.4 276 .3 2 76 .2 276 .0 275 .8 275 .6 275.4 275 .2 275 .0 274 .7 2 74 .3 2 74 .0 2 73 .1 2 72 .5 272 .5 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 1 22 23 24 25 26 2 7 28 29 30 3 1 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Inflow (cfs) 0 .00 1.70 3 .39 5.09 6 .79 8.49 10 .18 11 .88 13 .58 15 .27 16 .97 16 .12 15 .27 14.42 13 .58 12 .73 11 .88 11 .03 10 .18 9 .33 8.49 7.64 6.79 5 .94 5 .09 4 .24 3 .39 2 .55 1.70 0.85 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 0.00 0 .00 0 .00 0 .00 Storage Routing Analysis Detention Pond 1 100-Year Storm Event 11+12 (cfs) 0 .00 1.70 5 .09 8.49 11 .88 15 .27 18 .67 22 .06 25.46 28 .85 32 .24 33 .09 31 .39 29 .70 28 .00 26 .30 24 .61 22.91 21.21 19 .52 17 .82 16 .12 14.42 12 .73 11 .03 9.33 7 .64 5 .94 4 .24 2 .55 0 .85 0 .00 0 .00 0.00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 2s/t-O 0 .00 -0 .63 -0 .14 2 .23 6 .13 12 .80 22 .02 33 .78 48.43 65 .86 86 .03 106.68 125.30 141 .93 156 .60 169 .34 179.38 186.53 191 .21 193 .76 194.49 193 .67 191 .50 188 .19 183 .90 178 .77 172 .79 165 .24 156 .16 145 .57 133 .50 120 .81 108 .34 96 .09 84 .05 72.41 61.15 50 .28 39.77 29 .62 20 .33 11 .8 2 4 .35 -0.2 1 0 .08 -0 03 2s/t+O 0.00 1.70 4.46 8 .35 14 .11 21.40 31.47 44.08 59 .24 77 .27 98 .10 119 .12 138 .08 155.00 169 .93 182 .90 193 .95 202.29 207.75 210 .72 211.58 210.61 208.09 204.23 199.22 193.24 186.41 178 .73 169.48 158 .70 146.42 133 .50 120 .81 108 .34 96 .09 84 .05 72.41 61 .15 50 .28 39 .77 29 .62 20 .33 11 82 4 .35 -0 .2 1 0 .08 Outflow (cfs) 0 .00 1.16 2 .30 3 .06 3 .99 4 .30 4 .72 5.15 5 .41 5.71 6 .04 6 .22 6 .39 6 .53 6 .67 6 .78 7 .28 7 .88 8 .27 8.48 8 .54 8.47 8 .29 8 .02 7 .66 7 .23 6 .81 6 .74 6 .66 6 .57 6 .46 6.35 6 .23 6.13 6.02 5.82 5 .63 5.44 5 .25 5.07 4.65 4 .25 3.73 2 .28 -0 .14 0 .05 Storage i£fl 0 16 65 159 304 513 802 1, 168 1,615 2, 147 2 ,943 3 ,387 3,951 4,454 4,898 5,284 5,600 5,832 5,984 6,067 6 091 6,064 5,994 5,886 5,747 5,580 5,388 5 , 160 4,885 4,564 4 ,199 3 ,815 3,437 3 ,066 2,702 2,347 2,003 1,672 1,351 1,041 749 482 243 62 -2 Depth illl 0 .0 0 .2 0.7 1.0 2 .0 2 .3 2 .7 3.1 3 .3 3.7 4 .0 4 .2 4.4 4 .6 4 .8 5 .0 5.1 5.1 5.1 5 .2 5 .2 5.2 5 .2 5.1 5.1 5.1 5.0 4.9 4 .8 4.7 4 .5 4 .4 4 .3 4.1 4.0 3.8 3 .6 3 .4 3 .2 3.0 2.6 2 .3 1.9 1.0 0 .5 0 .5 Elevation illl 272 .0 272 .2 272 .7 273 .0 274.0 274 .3 274 .7 275 .1 275.3 275 .7 276 .0 276.2 276.4 276 .6 276 .8 277 .0 277 .1 277 .1 277 .1 277 .2 277.2 277 .2 277 .2 277 .1 277 .1 277 .1 277 .0 276 .9 276 .8 276 .7 276.5 276.4 276 .3 276 .1 276.0 275 .8 275 .6 275.4 2 75 .2 2 75 .0 2 74 .6 27 4 .3 273.9 273 .0 272 .5 272 .5 I I I EXHIBIT A Pre-Development Drainage Area Map -~I l ·- " ' . , "' ' . '· J.f. , '( Draina ge Report for The Glade Subdi vision, Section 12 College Station, Tex as July 20 0 5 R ev i-sed July 2 005 Deve loper: 7 B Investments , Ltd. 1305 West Villa Maria Bryan , Texas 7780 l (979) 779-9375 Prepared B v : TEX ON General ontractors 1707 Graham Road oll ge tation Te as 778 45 (979) 764-7743 . ~ r CERTIFICATlON I, Joseph P. Schultz, Licensed Professional En g in eer No. 65889, State of Texas , ce rtify that this revis ed re port for the drainage d es ign for Th e Glade Subdivisio11 , Sectio11 12, was prepared by m e in acco rdanc e with th e provisions of the City of Co ll ege Station Drainage Policy and Design Standards for the owners h ereof. TABLE OF CONTENTS DRAINAGE REPORT -REVISED 712005 THE GLADE SUBDlVISlON, SECTION 12 CERTIFICATlON .................................................................................................................................................................. 1 TABLE OF CONTENTS ........................................................................................................................................................ 2 LIST OF TABLES .................................................................................................................................................................. 2 INTRODUCTION ................................................................................................................................................................... 3 GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 3 FLOOD HAZARD INFORMATION .................................................................................................................................... 3 DEVELOPMENT DRAINAGE PATTERNS ....................................................................................................................... 3 DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 3 STORM WATER RUNOFF DETERMINATION .............................................................................................................. .4 DETENTION FACILITY DESIGN ..................................................................................................................................... .4 STORM SE\VER DESIGN .................................................................................................................................................... 6 CONCLUSIONS ..................................................................................................................................................................... 6 APPENDIX A .......................................................................................................................................................................... 7 Storm Sewer [II/et Design Calculatio11s APPENDIX B ........................................................................................................................................................................ 10 Storm S e wer Pipe Design Calculations APPENDIX C ........................................................................................................................................................................ 15 Figure 1 -Required Detention Storage, Pond Area-Capacity Data, Depth-Discharge Data & Storage Routing Aualysis Parameters APPENDIX D ........................................................................................................................................................................ 19 Storage Routing Aualysis -Detention Pond EXHIBIT A ............................................................................................................................................................................ 30 Pre-D e velopment Drninage Area Map EXHIBIT B ............................................................................................................................................................................ 32 Po st-D evelop111e11t Drni11age Area Map LIST OF TABLES TABLE l -Rain fa ll Intensity Calculation s ....................................................................................... 4 TAB LE 2 -Pre-& Post-D eve lopm ent Runoff Infornrntion ............................................................ 4 TAB LE 3 -Pre-& Pos t-D eve lopm ent Pea k Di sc ha rge Co mparison -De te nti o n Po nd Desig n ...... 5 TAB LE 4 -Summ ary o f Max imum Po nd Water Le ve ls .................................................................. 5 INTRODUCTlON DRAlNAGE REPORT -RE VISED 712 005 THE GLADE SUBDIVlSION, SECTION 12 T h e purp ose of this revised re port is to provide th e hydrolo g ical effects of the construct ion of Tlte Glade Subdivision, Section 12 , and to verify that th e proposed s torm draina ge system m eets the requirements set forth by th e City of Co ll ege S tat ion Drainage Po lic y a nd Design Standards . GENERAL LOCATION AND DESCRIPTION The proj ec t is locat ed on a 3 acre tract locate d on Southwest Parkway notih of the Southwood Drive intersection in College Station, Texas. The site is predominantly open with a few trees . The existing gro und e levation s range from E levation 278 to Elevation 286 . The general location of the proj ect s it e is shown on th e vic init y map in Exhibit A . FLOOD HAZARD INFORMATION The proj ect si t e is located in the B ee Creek Drainage Basin. The site is located in a Zo n e X Area according to the Flood Insurance R ate Map prepared b y the Federal Emergency Management Agency (FEMA) for Brazos Co unty, Texas and incorporated areas dated July 2, 1992 , panel number 48041C0144-C. Zon e X Areas are detennined to be outsid e th e 500-year floodplain. DEVELOPMENT DRAINAGE PATTERNS Prior to development, the storm water runoff flo ws to the east into the Southwest Parkway right-of-way or into an existing concrete drainage flume, which discharges into the Southwest Parkway right-of-way. The runoff flo wing into the street enters the ex isting inlets and storm sewer system. Ultimately, this nmoff flows into Bee Creek. DRAINAGE DESIGN CRITERIA T he desi gn parameters for th e sto1111 sewer and detent io n facility a na lys is are as fo ll ows: • The R a tional Method is utili zed to d e te1111ine p eak stom1 water run off rat es fo r th e stonn sewer d esign a nd th e detention fac ilit y design. • D es ig n Storm Frequency Stonn sewer sys te m Detention facility a n a lysis • Runoff C oefficients Pre-developm e nt 10 and 100-year sto m1 events 5 , 10 , 25, 50 and 100-yea r stom1 event s Post-deve lopment (s in g le fa mil y res id e nti a l) c = 0.40 C = O.C>O • Ra in fa ll lnt e ns it y e quation s a nd va lu es for Br azos Co unt y ca n be fo und in Tab le I . • Tim e of Co ncentrat io n , le -Due to the s m a ll dra in age a reas, a minimum le o f' I 0 minut e s is use d to dete rm in e th e rain fa ll int e ns it y va lu es. STORM WATER RUNOFF DETERMIN AT ION The peak runoff va lu es were determin ed in accordance with th e criteria present e d in the previous section for th e 5, l 0, 25, 50, and I 00-year storm events . The drainage areas for the pre-& post-development conditions for the d e tention pond ana lysis are s h own on Exhi bits A & B , respective ly . The drainage areas for the post-deve lopment conditions for the stom1 sewer design are shown on Exhibit B . Pre-a nd post-development runoff condit ion s a re summarized in Tab le 2. Du e to th e sma ll si ze of the drainage areas for thi s site, a time of concentration of 10 minutes has been used for a ll of the drainage areas . TABLE 1 -Rainfall Intensity Calculations Rainfall Intensity Values {in/hr) Storm l e= Event 10 min Is 7 .693 110 8.635 '2s 9 .8 61 lso 11.148 1100 11.639 Brazos County: 5 '{ear storm 10 '{ear storm b= 76 b= 80 d= 8.5 d= 8 .5 e= 0 .785 e= 0 .763 I = b I {tc+d)e I = Rainfall Intensity {in/hr) tc = L/{V*60) le = Time of concentratio n {min) L = Length (ft) V = Velocity (ft/sec) 25 '{ear storm 50 '{ear storm 100 '{ear storm b= 89 b= 98 b= 96 d= 8 .5 d = 8 .5 d= 8 .0 e= 0.754 e= 0 .745 e= 0 .730 (Data taken from State Department of Hiqhwa'f.S and Public Transportation H'{drau/ic Manual, page 2-16) TABLE 2 -Pre-& Post-Development Runoff Information Area 5 year storm 10 year storm 25 year storm 50 year storm 100 year storm c le Area# (acres) Is Os 110 0 10 125 0 2s l so O so A (min) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) Pre-Development Drainage Area 101 3.00 0.40 10 7.693 923 8 .635 10 .36 9 .861 11 .83 11 .148 13 .38 Post-Development Drainage Areas 20 1 1.14 0 .60 10 7 .693 5.26 8 .635 5 .91 9.861 6 .75 11 .148 7 .62 202 0 .79 0 .60 10 7 .693 3 .65 8 .635 4.09 9 .861 4 .67 11 .148 5.28 ----- 203 0 .50 0.60 10 7 .693 2.31 8.635 2 .59 9 .861 2 .96 11 .148 3 .34 --------- 204 0 .57 0 .60 10 7 .693 2 .6 3 8 .635 2.95 9 .86 1 3 .37 11 .14 8 3 .81 201 & 202 1.93 0 .60 10 7 .693 8 .91 8 .635 10.00 9 .86 1 11.42 11 .14 8 12 .91 -- 20 1,2 02 ,203 2.43 0 .60 10 7 .693 11 .22 8 .635 12 .59 9 .861 14 .38 11 .148 16.25 DETENTION FACILITY DESIGN Due to the in c rease in th e peak run off du e lo this deve lopment , a detention facility is n eede d for the runoff th at no ws int o th e So uthw e s t Pa rkwa y right-of-way . 1100 0100 (in/hr) (cfs) 11 .639 13 .97 11 .639 7.96 11 .639 5.52 ----- 11 .639 3.49 ---- 11 .639 3.98 ---- 11 .639 13.48 ---- 11 .639 16 .97 T he d es ign s to rm fo r th e d e te nti o n fac ilit y is th e I 00-yea r s to rm eve nt. T h e d e ten ti o n pond is locat e d in th e no rth e a s t co m e r of th e tr ac t a dj ace nt to S o uth wes t Pa rkway . T h e p eak ru noff va lu es we re d e te rmin ed in acco rda nce w ith th e c rit e ri a p rese nt ed in previo us sect io ns fo r the 5, I 0, 25, 50 & I 00 -year s to rm even ts for p re-deve lo pm e nt condit io ns. Tabl e 2 s hows a s umm a ry of th ese res ult s . Th e p os t-d eve lopm e nt peak runo ff va lu es a re a ls o s umm a ri zed in T a bl e 2. Fi g ur e 1 in A pp e ndi x C s ho ws th e required d e te nti o n s to rage vo lum e for the p o nd fo r th e I 0 0 -yea r s to rn1 even t. TABLE 3 -Pre-& Post-Development Peak Discharge Comparison -Detention Pond Design Item Location O s 010 0 2s O so (cfs) (cfs) (cfs) (cfs) Pre -Development A To ta l Dis charge From Site (Area 101) 9 .23 10 .36 11 .83 13 .38 Post-Development without a Detention Pond B To tal Discharge From Site (Areas 201 -2 04) 13 .85 15 .54 17 .75 20 .05 Post-Development with Pond C1 Into Pond (Areas 201 -203 ) 11.22 12.59 14 .38 16.25 C2 Out of Pond (Appendi x D) 6 .09 6.32 6.64 6 .9 8 C3 Di s ch a rge Into Southwes t Pkwy · Area 204 2 .63 2.95 3 .37 3.8 1 C4 Di scharge Into Southwest Pkwy -Inl et 2 Bypa ss 0 .00 0 .00 0 .16 0 .8 7 c Total Po s t-Development Discharge From Site (C 2+C3+C4) 8.72 9.27 10.17 11 .66 D Decrease in Runoff From Pre-Development (A-C) 0 .51 1.09 1.66 1.72 T h e pond o utl e t s tructure is a concre te ri ser structure which is 3.5 'x3 .5' in s ize, 4 .0' hi g h , a nd with a 2.5 'x 2.5 ' ope ning a t its top. T h e re is an 12" hi g h b y 8" wid e op e ning in th e front fac e of the structure with its invert a t E lev ation 2 72 .0 to control th e flow . T h e di s charge pipe is an 18" reinforced concrete pipe, 28 fe et in le n g th , which di s char ges into a junction box to be constructed on an e xisting 30" s to rm sewer pipe. The pipe h as a d esi gn slope of 1.0%. The top of the pond berm is at Elevation 278 .0. There is a 5 ' o verflow spillway on the top of the berm with a flo w line elevation of 277.5 . A s shown in T a bl e 3 , the peak outflows from the d e te ntion fa ciliti e s ar e le s s th a n the a llow a bl e peak outflow for the d e si gn storm e vent. A dditiona ll y, T a bl e 4 presents th e max imum wate r s urface in th e pond s for th e 10 0 -year s torm event , as we ll as th e a m o un t of free board prov id ed. TABLE 4 -Summary of Maximum Pond Water Levels Location 0 100 Max . Water Surface Top of Berm Freeboard , ft. (cfs) Elevation, ft . Elevation, ft . Pond 8 .54 277.2 278 .0 0.8 T h e a rea-capac it y d a ta , the d e pth-di sc harge d at a a nd the Storage R o uti ng A na lys is Pa ram e ters fo r th e propo sed d e te nti o n p o nd is p rovided in Appendi x C. O nl y 90% o f th e des ig n vo lum e was used fo r th e S torage R o utin g Ana lys is. T h e peak now o ut of th e d e te nti o n fac ili ty was determin e d by a S to rage Ro utin g A n a lys is bas ed o n th e Co ntinui t y Equ a ti o n a s fo ll ows: (I I +12)+((2s I /d t )-0 I )=((2 s 2/d t)+02). T he time int erva l, ci t, used was I min ute. T he ca lc ul ation s a nd res ult s of the S to ra ge Ro utin g .'\nal ys is arc pro' id c d in /\p p c ndi \ fJ 0100 (cfs) 13.97 20.95 16.97 8 .54 3.98 1.14 13.66 0.31 A 3 ' vvid e co ncre te low flow flum e is prop osed to carr y the fl ow in th e detention pond to th e pond o utlet structure . Block so d grass wi ll b e plac e d in th e d e te ntion po nd to co ntrol eros ion . STORM SEWER DESIGN The storm sewer piping for this project has been se lecte d to b e Reinforced Concrete Pip e (RCP) meet ing the requirements of ASTM C-76 , C la ss [([ pipe meeting the requirem e nts of ASTM C -789 . The curb inlets wi ll be cast-in-place concrete. Append ix A presents a summary of the storm sewer inl et desi g n parameters and calculations. The inlets were designed based on a I 0-year desi g n storn1 . Inlets for the residential streets were locat ed to maintain a gutter flow depth of 5" or less . This design depth will prevent the spread of water from reaching the crown of the road for the l 0-year storm event. Refer to Appendix A for a summary of the gutter flo w depths . The runoff intercepted by the proposed storm sewer inlets was calcu lated using the following equations. The depth of flow in the gutter was detem1ined by using the Strai g ht Crown Flow equation. The flow intercepted by Inlets 1 & 2 was calculated by using the Capacity of Inlets On Grade equation. These equations and resulting data are summarized in Appendix A. There are no Inlets In Sump for this project. The area between the right- of-way and the curb line of the streets will be graded as necessary to provide a minimum of 6" of freeboard above the curb line. This w ill ensure that the runoff from the 100-year sto rm event will remain within the street right-of-way. Appendi x B presents a summary of the storm sewer pipe design parameters and calculations. All pipes are 18" in diameter or larger. For pipes with 18" and 24" diameters, the cross-sectional area is reduced by 25 %, as per Co llege Station requirements. A summary of how this was achieved is shown in Appendix B as well. The pipes for the storm sewer system were designed based on the 10-year storm event, and they will also pass the 100-year storm event. Based on the depth of flow in the street determined for the 100-year stom1 event, this runoff will be co ntain ed within the street right-of-way until it enters th e storm sewer system . As required by College Station, the velocit y of flow in th e s tom1 sewer pipe system is not low e r than 2.5 feet per second , and it do es not exceed 15 fee t p e r second. As the data shows , even during low flow conditions, th e velocity in th e pipes will exceed 2.5 feet per second and prevent sed iment build-up in the pip es. The maximum flow in the stom1 sewer pipe system will occ ur in Pipe No . 2. The m ax imum ve locity for the pipe system in this development will be 6 .5 feet per second and will occur in Pipe No . 2. Appendix B contains a summary of th e pip e calculations. CONCLUSIONS T he co ns truction of this proj ect will increase th e sto rm wat e r runoff from thi s s it e . The proposed sto rm sewer system s hould adequate I y co ll ec t a po rtion of th e runoff a nd re lease it into th e d e tention pond . T h e in c reased runoff h as bee n red uced b y th e prop osed de te ntion fac ilit y, and there s hould be no flood d a m age to downstream o r a dj acent landow ne rs res u I tin g from thi s cl eve lopme n t. I I APPENDIX A Storm Sewer Inlet Design Calculations I The Glade Subdivision Depth of Flow in Street Gutter Revised 712005 Gutter A c Location (ac res) A1 1.14 0 .6 - A2 0 .79 0 .6 Transve rs e (C rown) slope (fl/ft) for 27' str eet= 0 .03 30 Slope (ft/ft) 0 .0110 -- 0 .0 11 0 10-year storm 0 10 Y1 0-actual (cfs) (ft) (in) 5 .91 0 .34 8 4 .17 4 .09 0 .30 3 3 .64 Straight Crown Flow (Solved to find actual depth of flow in gutter, y): Q = 0 .56 * (z/n) * S112 * y813 ¢ y ={QI (0.56 * (z/n) * S112]}318 n = Roughness Coefficient = 0 .018 S = StreeUGutter Slope (fl/ft) y = Depth of flow at in let (ft) z = Re c iprocal of c rown slope : for 2 7' street = 30 100 -year storm 0 100 Y100 (cfs) (ft) (in) 7 .96 0 .389 4 .67 5 .52 0 .339 4 .07 Tl1e Glade S ubdiv isi o n !nl et Length Calculati o ns 1?ev ised 712 0 05 Inlets On Grade 10 yea r storm Flow from Y10 O pw 1001 Oc..,.c::11 Q bypus O u,ptvrec1 inle t rt Length 1 2 10' 10' Ar ea # (ft) I (in) 202 ___<'.:303 _~ ·• --201 0.348 4. 17 Transver se !Crown) slope !fVftl for 27' street = 0 .033 (ft) (els ) (els ) 0.60 5.97 -1 .88 0.64 6.41 -0.50 St rai ght Crown Flow !So lved to find ac tual depth of flow, yl: a = o.s6 • (z/n) • s112 • y'" ¢ y = {Q / [0 .56 • (z/n) • s112n'" n = Roughness Coefficient = 0 .018 S = St reeVGutter Slope (ft/ft) y = Depth of flow at inle t (ft) Capaci t y of Inlet s o n grad e: Oc = 0.7' [1/(H , -H2))' [H ,512 -H2 512 ] Oc = Fl ow capacity of inlet (c fs ) H 1 =a+ y H2 =a= gutter depression (2" Standa rd : 4" Recessed ) y = Depth of flow in approach gutter (ft) (els) 4.09 5.91 a,..,.,_ O byp-tot• O upt-totl 0 10-Tot .. Y100 (els) jfrom lnl•t # (els) (efs) (els) (ft) I (In) I 0.00 4.09 4.09 o.339 I 4.07 -I 0.00 5.91 5.91 o.3 89 I 4.67 z = Reciprocal of crown slope for 27' street = 30 Inlets In sumps, Weir Fl ow : L = QI (3 • y 312) ¢ y = (QI 3L)213 L = Lengt h of inlet openi ng (ft) a = Flow at inlet (e l s) y = total depth of flow on inlet (ft) max y fo r inlet in su m p = 7" = 0 .583' 100 year sto rm O per1oot O c..,.c11y a.,. •• O c..,1ur«1 O urry0¥ef a byp.tot• O upt.tolt 0 100.Tot• s L ..::1ua1 (ft) (els) (els) (els ) (els ) j from lnMtt (els) (els ) (els) (ft/ft) (ft ) 0.63 6.32 -0 .80 5.52 I 0.00 5.52 5.52 0.01 10 10 --------~ --- 0.68 6.82 1.14 6.82 1. 14 7.96 0.0110 10 I I I APPENDIX B Storm Sewer Pipe Design Calculations iii I I T he Glade Subdivision P i pe Calculations .R.evise d 712005 Inlet Outlet 10 y ear sto rm 100 year sto rm Pi pe# Size Length Slope Invert Elev Invert Elev *Actual Flow Design Flow V10 Travel Time , tno *Actual Flow Design Flow V100 % Full (in) (ft) (%) (ft) (ft) (cfs) (cfs) (fps) (sec) (min) (cfs) (cfs) (fps) 2 24 102 .9 0 .80 274.58 273 .76 10.00 16.15 6 .7 71.4 15 0.26 12.34 19.93 6 .7 ---------- 3 18 31 .0 1 .20 275 .39 275 .02 5 .91 9 .54 6 .8 73 .7 5 0.08 6 .82 11 .01 6 .9 ·The se values refl ect the actual flow for the 18" & 24" pipes . The design flow for these pipe sizes reflects a 25 % reduction in pipe area . t Re fe r to attached calculation for specific information .) % Full 89 .0 --- 85.0 Travel Ti me , tn 00 (sec) (min) 15 0 .26 - 4 0.07 I City of College Stati on requirement t o Reduce Cro ss-Secti on a l A rea of 18 " & 24" Pi p e s by 25% Using Mannings Equ atio n fr o m pag e 48 of th e College Station Drainag e Policy & Design Standards Manual : Q = 1.49 fn *A * R213 * S112 Q = Flow Capacity (cfs) 18" Pi p e: Pipe size (inches) = 18 Wetted Perimeter W P, (ft)= 4 .7 1 C ross -Se c tional Area A , (ft2 ) = 1 .766 Reduced Area A R, (ft2 ) = 1 .325 Hydraulic Radius R =A/WP, (ft)= 0 .375 Reduced Hydr Rad iu s RR = A R/Wp , (ft)= 0.28 1 Rough ness Coefficient n = 0 .014 Friction Slope of Conduit Sr . (fUft) = 0 .0 1 Example Calcu lation: S lope Flow Capacity Red uced Flow Capacity % Differe nce s Q Q reduced Ored uceiQ 0.005 6.91 4 .28 0.619 0.006 7.57 4 .69 0.619 0 .007 8.18 5.06 0.619 24" P i p e : Pipe size (inches) = 24 Wetted Perimeter WP, (ft)= 6 .28 Cross-S ectional Area A , (tt2) = 3 .14 Red u ced Area AR, (W) = 2 .355 Hyd ra u lic Ra diu s R =A/W P, (ft)= 0 .5 Reduced Hydr Radius RR= A R/Wp , (ft)= 0 .3 7 5 Roughness Coefficient n = 0 .014 Friction Slope of Conduit Sr. (fUft) = 0 .01 Exa mple Calcu lation: Slope Flow Capacity Reduced Fl ow Capac it y % Difference s Q Oreduced O reducei Q 0 .005 14 .8 9 9 .22 0.619 --------- 0 .006 16 .31 10 .1 0.619 -----·--- 0 .007 17 .61 10 .9 0.619 Con c l usion: Multiply actual Q in 18" & 24" pip es by 1.61 5 to reflect a 25% reduction in th e cross-sectio nal area called for on page 4 7 , paragraph 5 o f the College Sta ti o n Drai nage Policy & D esign Standards manual. I Pipe 2 -10 Year Storm Manning Pipe Calculator Give n Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hy draulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 2 4.0000 in 16.1500 cfs 0.0080 ft/ft 0.0140 17 .1467 in 3.1416 ft2 2.4015 ft2 48 .33 75 in 75.3982 in 6.7250 fps 7.1542 in 71 .4446 % 18.7888 cfs 5.9807 fps Pipe 2 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Dept h .......................... . Area ........................... . We tted Area .................... . Wette d Perimeter ............... . Perimeter ...................... . Veloci t y ....................... . Hy draulic Radius ............... . Pe rcent Full ................... . Full flow Flowrate ............. . Full flow ve locity ............. . Th e Glad e Subdi vi si o n C o llPq( c::L,<t.i ci•1. Tc-:-:1~·· !~'e \.. j. :r Circular Depth of Flow 24 .0000 in 19.9300 cfs 0.0080 ft/ft 0 .0140 21.3713 in 3 .1 416 ft2 2.9547 ft2 59.2072 in 75.398 2 in 6.7451 fps 7 .18 63 in 89 .0 471 % 18 .78 88 cfs 5.9807 fps I Pipe 3 -1 0 Year S t o rm Ma nn ing Pipe Calculato r Gi ven I nput Data: Shape ........................ . Solv ing f o r .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow ve locity ............. . Circular Depth of Flow 18 .0000 in 9.5400 cfs 0.0120 ft/ft 0 .0140 13. 2613 in 1.76 71 ft2 1.3956 ft2 37.1527 in 56.5487 in 6.8357 fps 5.4092 in 73 .6 741 % 10 .6 850 cfs 6.0465 fps Pipe 3 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area .......................... · · Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full fl ow veloci t y ............. . T h e Glade Subdi visio n Co1 lec:1e Sl.i:>t i ci •1, Tr·-:·:·1!: Circular Depth of Flow 18.0000 in 11.0100 cfs 0.0120 ft/ft 0 . 0140 15 .2995 in 1 .7671 ft2 1 .6009 ft2 42 .2301 in 56.5487 in 6.8774 fps 5 .4588 ill 84.9973 % 10.6850 cfs 6.0465 fps APPENDIX C Figure 1 -Required Detention Storage, Pond Area-Capacity Data, Depth-Discharge Data & Storage Routing Analysis Parameters I I ' The Glade Subdivision Figure 1 -Required Detention Storage 25 -----------~----------~ 20 15 Vi' -~ a ~- 0 u:: .>e. <a QI Q. 10 5 I 10 20 30 T ime of Concentration, l e (min) The Glade Subdivision Detention Pond Area-Capacity & Depth-Discharge Data Revised 712005 V = H * {[A1+A2 + (A1*A2)112] / 3} V = vo lum e, ft 2 A= area , ft 2 H = difference in elevation ft DETENTION POND Area • Capacity Data Elevation Depth Area Volume Cumulative 90 % Volume Cumulative (ft) (ft) (ft2) (ft3) (ft3) (ft3) 272 0 0 0 .00 0 .00 0 .00 ---------- 273 .00 1.00 92.06 30 .69 30 .69 27 .62 ---------------·------ 274 .00 1.00 496.52 267.46 298.15 268 .33 ----------·-· ----------· 275.00 2.00 -~?9Q .~1 862.46 11 60 .60 1044 .54 ---------------- 276.00 3.00 2,391 .85 1813 .03 2973 .64 2676 .27 ----··--------- 277.00 4.00 3,755 .52 3048 .16 6021.79 5419 .62 -------- 278 .00 5.00 5 ,195 .97 4456 .30 10478 .10 9430.29 DETENTION POND Depth -Discharge Data Elevation 8" Weir 8"x12" Orifice Opening 18" RCP Max Flow from Outlet Depth Flow Depth Flow (ft) (ft) (cfs) (ft) (cfs) 272 .00 0 0 0 0 -------·--- ------ 273 .00 1.0 2 0.5 2 .28 --------------------- 274.00 --1.5 3.9 4 ---- -- 275 .00 --2.5 5.08 ------------------- 276 .00 --3.5 --------------- 277.00 --- 278 .00 -- Weir Flow Equation : Q = 3.0 • L • y3'2 Orifice Flow Equation : Q = 4 .82 •A• y112 4.5 - 6 .01 ----- 6.82 - Depth Flow Structure (ft) (cfs) (cfsl 0 0 0 ------ --2 .00 -------3.94 ---------- --5 .08 ------------- --6.01 ----------- --6.82 ------ 6 .0 19 .80 19 .80 Note : When the depth in the pond exceeds Elevation 277 .0 , the 18" outlet pipe becomes the flow control structure for the pond. I The Glade Subdivision Storage Routing Analysis Parameters Revised 712005 t=60s Detention Pond No . 1 Elevation Depth Discharge Storage (ft) (ft) (Q , cfs) (s , cf) 272.00 0.00 0 .00 0 .00 --- 273 .00 0 .00 2.00 27 .62 - - --- 274 .0 0 1.00 3 .94 268.33 ----- 275 .00 2.00 5 .08 1,044.54 ----- 276 .0 0 4 .00 6 .01 ~,_6?~.27 ---- - 277 .00 5 .00 6 .82 _5,41~:62 --------------- 278.00 6 .00 19 .80 10,478 .10 18" Outl et Pipe 3 .5'x3 .5' Concrete Riser wi 12" high x 8" wide opening Opening flowline Elev . = 272.0 Top Elev . = 277 .0 2 sit 0 .00 0 .92 8 .94 34 .82 89 .21 180 .65 -----· 349 .27 2 sit+ 0 0 .00 2.92 --- 12 .88 ----·--39 .90 95.22 ----187.47 -·--369.07 I I APPENDIXD Storage Routing Analysis -Detention Pond Time (min.) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Inflow (cfs) 0.00 1.12 2.24 3.37 4.49 5.61 6.73 7.85 8.98 10.10 11.22 10.66 10.10 9.54 8.98 8.42 7.85 7.29 6.73 6.17 5.61 5.05 4.49 3.93 3.37 2.81 2.24 1.68 1.12 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 00 0 00 0 00 0.00 0 00 Storage Routing Analysis Detention Pond 1 5-Year Storm Event 11+12 (cfs) 0.00 1.12 3.37 5.61 7.85 10.10 12.34 14.59 16.83 19.07 21.32 21.88 20.76 19.64 18.51 17.39 16.27 15.15 14.03 12.90 11.78 10.66 9.54 8.42 7.29 6.17 5.05 3.93 2.81 1.68 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 00 0.00 0.00 0.00 2s/t-0 0.00 -0.41 -1.09 -0.10 1.87 4.44 8.57 14.41 21.81 30.69 41.45 52.38 61.86 69.93 76.65 82.06 86.26 89.28 91.14 91.87 91.48 90.00 87.44 83.82 79.23 73.72 67.30 60.01 51.89 42.95 33.23 23.63 14.84 6.80 1.29 -0.48 0.18 -0.07 0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 2s/t+O 0.00 1.12 2.95 4.52 7.75 11.97 16.78 23.16 31.24 40.89 52.01 63.32 73.13 81.49 88.45 94.04 98.33 101.41 103.30 104.04 103.65 102.14 99.54 95.85 91.12 85.41 78.76 71.22 62.82 53.57 43.51 33.23 23.63 14.84 6.80 1.29 -0.48 0.18 -0.07 0.02 -0 01 0.00 0.00 0.00 0.00 0.00 Outflow (cfs) 0.00 0.77 2.02 2.31 2.94 3.76 4.10 4.37 4.71 5.10 5.28 5.47 5.64 5.78 5.90 5.99 6.04 6.06 6.08 6.09 6.08 6.07 6.05 6.02 5.94 5.85 5.73 5.61 5.47 5.31 5.14 4.80 4.39 4.02 2.76 0.88 -0.33 0.12 -0.04 0.02 -0.01 0.00 0.00 0.00 0.00 0.00 ! ~ 1 ~-I ' ; ' { t: ; 1 I ! ; d t t ''. I'-' • I· ' Storage .lf.!l 0 11 28 66 144 246 380 564 796 1,074 1,560 1,736 2,025 2,271 2,476 2,642 2,769 2,860 2,917 2,939 2,927 2,882 2,805 2,695 2,555 2,387 2, 191 1,969 1,721 1,448 1, 151 853 577 325 121 12 -5 2 -1 0 0 0 0 0 0 0 Depth .illl 0.0 0.1 0.6 0.7 1.0 1.9 2.1 2.4 2.7 3.0 3.2 3.4 3.6 3.7 3.9 4.0 4.0 4.1 4.1 4.1 4.1 4.1 4.0 4.0 3.9 3.8 3.7 3.5 3.4 3.2 3.1 2.7 2.4 2.1 1.2 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Elevation .illl 272.0 272.1 272.6 272.7 273.0 273.9 274.1 274.4 274.7 275.0 275.2 275.4 275.6 275.7 275.9 276.0 276.0 276.1 276.1 276.1 276.1 276.1 276.0 276.0 275.9 275.8 275.7 275.5 275.4 275.2 275.1 274.7 274.4 274.1 273.2 272.6 272.5 272.5 272.5 272.5 272.5 272.5 272.5 272.5 272.5 272.5 I Time (min .) 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4 3 44 45 Inflow (cfs) 0 .00 1 .26 2.52 3 .78 5 .04 6 .30 7 .55 8 .81 10.07 11.33 12 .59 11 .96 11 .33 10 .70 10 .07 9.44 8 .81 8 .18 7 .55 6 .92 6.30 5 .67 5 .04 4.41 3.78 3 .15 2 .52 1.89 1 .26 0 .63 0.00 0.00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0.00 0 .00 0 .00 0 .00 Storage Routing Analysis Detention Pond 1 10-Year Storm Event 11+12 (cfs) 0 .00 1 .26 3 .78 6.30 8 .81 11 .33 13 .85 16 .37 18 .89 21.40 23.92 24 .55 23 .29 22 .03 20 .77 19 .51 18 .26 17.00 15 .74 14.48 13 .22 11 .96 10.70 9.44 8 .18 6 .92 5 .67 4.41 3 .15 1 .89 0 .63 0 .00 0 .00 0.00 0 .00 0 .00 0.00 0.00 0.00 0.00 o .. oo 0 .00 0 .00 0 .00 0 .0 0 0 .00 2s/t-0 0 .00 -0.47 -0 .84 0.47 2.80 6.15 11.52 18 .74 27 .65 38 .59 51 .59 64 .76 76.27 86.23 94.78 101 .94 107.74 112.19 115.34 117.19 117.77 117.10 115.21 112 .12 107 .84 102.40 95 .82 88 .12 79 .38 69 .72 59 .17 48 .36 37 .91 27 .92 18 .77 10.39 3.48 -0.74 0 .27 -0 .10 0 .04 -0 .01 0 .0 1 0 .00 0 00 0.00 2s/t+O 0 .00 1.26 3 .31 5.45 9 .28 14 .13 20 .00 2 7 .88 37.62 49 .06 62 .51 76 .14 88.05 98.31 107 .01 114.29 120 .19 124 .73 12 7 .93 129.82 130.41 129.73 127.81 124 .66 120.30 114.77 108 .07 100.23 91 .27 8 1.27 70 .35 59 .17 48.36 37 .91 27 .92 18 .77 10 .39 3.48 -0 .74 0 .27 -0 .10 0 .04 -0 01 0 .01 0 0 0 0 00 Outflow (cfs) 0.00 0 .86 2.08 2.49 3.24 3 .99 4.24 4 .57 4.98 5 .23 5.46 5 .69 5 .89 6 .04 6 .11 6 .18 6 .23 6 .27 6 .30 6 .31 6 .32 6 .31 6 .30 6 .27 6 .23 6 .18 6 .12 6 .05 5.94 5.78 5.59 5.40 5.22 5 .00 4 .57 4 .19 3.46 2 .11 -0 .50 0 .19 -0.07 0 .03 -0.0 1 0 .00 0 .00 0 .00 ; I··, ... '" 1111 I I ':.·I 11 ;·; :.1 :t I 'I:: Storage !f.!l 0 12 37 89 181 304 473 699 979 1 ,315 1 ,875 2 , 114 2,46 5 2 ,768 3 ,027 3 ,243 3,419 3 ,554 3 ,649 3 ,705 3 ,723 3 ,703 3,645 3,552 3,4 22 3 ,258 3,058 2,825 2,56 0 2,265 1 ,943 1 ,613 1 ,294 988 700 43 7 208 41 -7 3 -1 0 0 0 0 0 Depth illl 0.0 0 .2 0 .6 0 .8 1.5 2.0 2 .2 2 .5 2 .9 3 .2 3.4 3 .6 3 .9 4 .0 4 .1 4 .2 4 .3 4 .3 4 .3 4.4 4.4 4.4 4.3 4 .3 4 .3 4 .2 4 .1 4.0 3 .9 3 .7 3.5 3.3 3 .1 2 .9 2 .5 2 .2 1 . 7 0 .9 0 .5 0.5 0 .5 0 .5 0 .5 0.5 0 .5 0 .5 Elevation illl 2 72 .0 272 .2 272 .6 272 .8 273 .5 274 .0 274 .2 274 .5 2 74 .9 275 .2 275.4 275 .6 275 .9 276 .0 276 .1 276 .2 276 .3 276 .3 276 .3 276.4 276.4 276.4 276 .3 276.3 276 .3 276 .2 276 .1 2 76 .0 275 .9 275 .7 2 75.5 2 7 5 .3 275 .1 274 .9 274 .5 274 .2 273 .7 272 .9 272.5 272.5 2 72.5 2 7 2 .5 272.5 272 .5 272 .5 272 .5 Time {m i n .) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4 1 42 43 44 45 Inflow {cfs) 0 .00 1.44 2 .88 4 .31 5.75 7 .19 8 .63 10 .07 11 .50 12 .94 14 .38 13 .66 12 .94 12 .22 11 .50 10.79 10 .07 9.35 8 .63 7 .91 7 .19 6.47 5.75 5.03 4 .31 3 .60 2 .88 2 .16 1.44 0 .72 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0.0 0 0 00 0 .00 0 .00 Storage Routing Analysis Detention Pond 1 25-Year Storm Event 11+12 {cfs) 0 .00 1.44 4 .31 7.19 10 .07 12 .94 15 .82 18 .69 21 .57 24.45 27.32 28 .04 26 .60 25 .17 23 .73 22.29 20 .85 19.41 17 .98 16.54 15.10 13 .66 12 .22 10 .79 9 .35 7 .91 6.47 5 .03 3 .60 2 .16 0 .72 0 .00 0 .00 0.00 0.00 0.00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 00 2s/t-0 0 .00 -0 .53 -0 .55 1.19 4 .01 8 .73 15 .68 24 .68 35 .88 49.48 65.40 81.48 95 .84 108.53 119 .58 129.03 136.91 143 .23 148 .02 151 .32 153 .15 153.53 152 .50 150 .07 146.27 141 .12 134 .65 126 .88 117 .84 107 .54 96 .01 83 .98 72.34 61 .09 50 .2 1 39.71 29 .56 20 .28 11.77 4 .32 -0 .22 0.08 -0 .03 0 .0 1 0 .00 0.00 2s /t+O -- 0 .00 1.44 3 .7 8 6 .64 1 1.25 16 .95 24 .54 34 .37 46 .25 60 .32 76.80 93.44 108.08 121 .00 132 .25 14 1.87 149.89 156.32 16 1.2 0 164 .56 166.42 166 .81 165.76 163.28 159.41 154 .18 147 .59 139 .69 130.48 120 .00 108 .26 96 .01 83 .98 72 .34 61 .09 50 .21 39 .71 29 .56 20 .28 11 .77 4 .32 -0 22 0 .08 -0 03 0 .01 0 00 Outflow {cfs) 0 .00 0 .98 2 .17 2 .72 3.62 4 .11 4 .43 4 .85 5.19 5.42 5 .70 5.98 6 .12 6 .24 6 .34 6.42 6.49 6 .55 6 .59 6 .62 6 .64 6 .64 6 .63 6 .61 6.57 6 .53 6.47 6.40 6 .32 6 .23 6 .1 2 6.02 5.82 5.63 5.44 5 .25 5 .07 4 .64 4 .25 3 .72 2 .27 -0 .15 0 .06 -0 0 2 0 .01 0 .00 Storage {f.fl 0 14 48 117 229 385 603 886 1,232 1,647 2 ,304 2 ,624 3,059 3,443 3,778 4 ,064 4 ,302 4,493 4 ,638 4 ,738 4J94 4,805 4 ,774 4,700 4,585 4,429 4 ,234 3,999 3 ,725 3,413 3 ,064 2,700 2,345 2,001 1,669 1,349 1,039 748 481 241 61 -2 1 0 0 0 Depth illl 0 .0 0 .2 0 .6 0 .9 1.8 2 .1 2.4 2 .8 3.1 3 .3 3.6 4 .0 4 .1 4 .3 4.4 4 .5 4 .6 4.7 4 .7 4 .7 4 .8 4 .8 4 .8 4 .7 4 .7 4 .6 4 .6 4 .5 4.4 4 .3 4 .1 4 .0 3 .8 3.6 3.4 3 .2 3.0 2 .6 2 .3 1.8 1.0 0 .5 0 .5 0 .5 0 .5 0 .5 Elevation illl 272 .0 272 .2 272 .6 272 .9 273 .8 274.1 274.4 274 .8 275 .1 275 .3 275.6 276 .0 276 .1 276 .3 276.4 276.5 276 .6 276 .7 276 .7 276 .7 276 8 276 .8 276 .8 276 .7 276 .7 276 .6 276 .6 276 .5 276.4 276 .3 2 76 .1 276 .0 275 .8 275 .6 275.4 275 .2 275 .0 274 .6 274.3 273.8 273 .0 272 .5 272 .5 272 .5 272 .5 272 .5 I Time (min.) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Inflow (cfs) 0.00 1.63 3 .25 4.88 6.50 8.13 9.75 11 .38 13 .00 14 .63 16.25 15.44 14 .63 13 .81 13.00 12.19 11.38 10.56 9.75 8.94 8 .13 7 .3 1 6.50 5 .69 4 .88 4.06 3.25 2.44 1.63 0.81 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0.00 0.00 0 .00 0 .00 0 .00 0 .00 0 00 0 .00 Storage Routing Analysis Detention Pond 1 50-Year Storm Event 11+12 (cfs) 0.00 1.63 4.88 8 .13 11 .38 14 .63 17 .88 21 .13 24.38 27.63 30 .88 31.69 30 .06 28.44 26 .81 25 .19 23 .56 21 .94 20.31 18 .69 17.06 15.44 13.81 12.19 10.56 8.94 7.31 5 .69 4 .06 2.44 0.81 0.00 0.00 0.00 0 .00 0.00 0 .00 0 .00 0 .00 0.00 0.00 0.00 0.00 0 .00 0 .00 0.00 2s/t-O 0 .00 -0.60 -0 .25 1.94 5.40 11.54 2s/t+O 0 .00 1.63 4.27 7 .87 13.32 20.03 20.14 29.42 31.06 41.27 44.75 55.44 61.13 72 .38 80 .09 92.00 99.47 111 .78 116 .91 129 .53 132.44 145.34 146 .11 159.26 157.94 171.30 167.97 181 .51 176.23 189.91 182 .74 196.54 187 .54 201.43 190.66 204.60 192 .13 206.10 191.98 205.95 190.24 204.17 186 .92 200.80 182.07 195.86 175 .71 189 .39 167 .87 181.40 158 .56 171 .93 147.82 161 .00 135 .68 148.64 12 2.95 135 .68 110.44 122 .95 98 .15 110.44 86.08 98 .15 74.37 86.08 63 .05 74.37 52.11 63 .05 41.54 52 .11 31 .33 41 .54 21 .89 3 1.33 13.25 2 1.89 5 .34 13 .25 0.40 5 .34 -0 .15 0.40 0 .05 -0 .15 Outflow (cfs) 0 .00 1 .11 2 .26 2.96 3.96 4.24 4.64 5.10 5 .34 5.63 5 .96 6 .16 6.31 6.45 6 .57 6 .68 6 .77 6 .84 6 .90 6 .94 6 .97 6 .98 6.98 6 .97 6 .94 6 .89 6.84 6.77 6 .68 6 .59 6.48 6.37 6 .25 6.14 6.04 5 .86 5 .66 5.47 5.29 5.11 4.72 4 .32 3.96 2.47 0.27 -0.10 Storage .{f!l 0 15 60 147 281 474 743 1,085 1,503 2,003 2 ,760 3,169 3,697 4 , 167 4,581 4,939 5 ,242 5,492 5,689 5 ,835 5,929 5 973 5,969 5,916 5,816 5,669 5,476 5 ,23 9 4,957 4,632 4,265 3,879 3,501 3 , 129 2,764 2,407 2,061 1,727 1,405 1,093 798 527 279 86 4 -1 Depth illl 0 .0 0 .2 0 .7 1.0 2 .0 2 .2 2 .6 3 .0 3 .3 3 .6 3 .9 4.2 4.4 4 .5 4 .7 4 .8 4 .9 5.0 5.1 5.1 5.1 5.1 5.1 5.1 5 .1 5.1 5 .0 4 .9 4 .8 4 .7 4 .6 4.4 4 .3 4.2 4 .0 3 .8 3 .6 3.4 3 .2 3 .0 2 .7 2.3 2 .0 1 .1 0 .5 0 .5 Elevation illl 272.0 272 .2 272 .7 273 .0 274 .0 274 .2 274 .6 275 .0 275.3 275.6 275 .9 276.2 276.4 276.5 276.7 276.8 276 .9 277 .0 277 .1 277.1 277 .1 277 .1 277 .1 277 .1 277 .1 277 .1 277.0 276.9 276.8 276 .7 276 .6 276.4 276 .3 276.2 276.0 275.8 275.6 275.4 275.2 275 .0 274 .7 274.3 274 .0 273 .1 272 .5 272.5 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 4 2 4 3 44 45 Inflow (cfs) 0 .00 1.70 3 .39 5.09 6.79 8.49 10 .18 11 .88 13 .58 15 .27 16.97 16.12 15 .27 14.42 13 .58 12 .73 11 .88 11.03 10 .18 9 .33 8.49 7 .64 6.79 5.94 5.09 4 .24 3 .39 2 .55 1.70 0 .85 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0.00 0.00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 Storage Routing Analysis Detention Pond 1 100-Year Storm Event 11+12 (cfs) 0.00 1.70 5 .09 8.49 11 .88 15 .27 18 .67 22.06 25.46 28 .85 32 .24 33.09 31 .39 29 .70 28 .00 26.30 24 .61 22.91 21 .21 19 .52 17 .82 16 .12 14.42 12 .73 11.03 9 .33 7 .64 5 .94 4.24 2 .55 0.85 0 .00 0 .00 0 .00 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 2s/t-0 0 .00 -0 .63 -0 .14 2 .23 6 .13 12.80 22 .02 33 .78 48.43 65.86 86.03 106 .68 125 .30 141.93 156.60 169 .34 179 .38 186 .53 191 .21 193.76 194.49 193 .67 191 .50 188 .19 183 .90 178.77 172 .79 165.24 156.16 145 .57 133.50 120 .81 108.34 96.09 84.05 72.41 61 .15 50 .28 39 .77 29 .62 20 .33 11 .82 4 .3 5 -0 .2 1 0 .08 -0 .03 2s/t+O 0 .00 1.70 4.46 8 .35 14 .11 21.40 31.47 44 .08 59.24 77 .27 98 .10 119 .12 138 .08 155.00 169 .93 182.90 193.95 202 .29 207 .75 210.72 211.58 210.61 208.09 204.23 199 .22 193.24 186.41 178.73 169.48 158 .70 146.42 133 .50 120.81 108 .34 96 .09 84.05 72.41 61.15 50 .28 39 .77 29 .62 20.33 11.82 4 .35 -0 .2 1 0 .08 Outflow (cfs) 0 .00 1.16 2 .30 3.06 3 .99 4 .30 4.72 5.15 5.41 5.71 6 .04 6 .22 6.39 6.53 6.67 6 .78 7 .28 7 .88 8.27 8.48 8 .54 8.47 8 .29 8 .02 7.66 7.23 6 .81 6.74 6.66 6 .57 6.46 6 .35 6 .23 6.13 6.02 5.82 5.63 5.44 5.25 5.07 4 .65 4 .25 3 .73 2.28 -0 .14 0 .0 5 t I . ,-i 11 I i { I I 11 1; t 1 I I ' . ..~ ! ' \., Storage ~ 0 16 65 159 304 513 802 1, 168 1,615 2, 147 2,943 3 ,387 3,951 4,454 4,898 5,284 5,600 5,832 5,984 6,067 6 091 6,064 5,994 5,886 5,747 5,580 5,388 5, 160 4,885 4,564 4 ,199 3 ,815 3,437 3 ,066 2 ,702 2 ,347 2,003 1,672 1,351 1,041 749 482 243 62 -2 Depth ill.l 0 .0 0 .2 0.7 1.0 2 .0 2 .3 2 .7 3 .1 3 .3 3.7 4.0 4.2 4.4 4 .6 4 .8 5.0 5.1 5.1 5.1 5 .2 5 .2 5 .2 5 .2 5.1 5 .1 5 .1 5.0 4 .9 4 .8 4 .7 4 .5 4.4 4 .3 4 .1 4 .0 3 .8 3.6 3.4 3.2 3.0 2.6 2.3 1.9 1.0 0 .5 0 .5 Elevation ill.l 272 .0 2 72 .2 272 .7 273 .0 274 .0 274 .3 274 .7 275 .1 275 .3 275 .7 276 .0 276 .2 276.4 276.6 276 .8 277 .0 277 .1 277 .1 277.1 277.2 277.2 277 .2 277 .2 277 .1 277.1 277 .1 277.0 276.9 276 .8 276 .7 276.5 276.4 276 .3 276 .1 276 .0 275 .8 275 .6 275.4 275.2 275.0 274 .6 2 74 .3 2 73.9 273 .0 272 .5 272.5 I I I EXHIBIT A Pre-Development Drainage Area Map