HomeMy WebLinkAbout11 Castlegate SubSec Le 05-35 Greens Prairie Rd.~v DEVELOPMENT PERMIT
PERMIT NO. 05-35
Project: CASTLEGATE SECTION 6
COlllGl STATION FOR AREAS INSIDE THE SPECIAL FLOOD HAZARD AREA
RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE
SITE LEGAL DESCRIPTION:
Castlegate , Section 6
All Lots
DATE OF ISSUE: 09/01/05
OWNER:
Greens Prairie Investors , Ltd.
4490 Castlegate Drive
College Station, Texas 77845
TYPE OF DEVELOPMENT:
SPECIAL CONDITIONS:
SITE ADDRESS:
2270 Greens Prairie Road
DRAINAGE BASIN:
Spring Creek
VALID FOR 12 MONTHS
CONTRACTOR:
Full Development Permit
TEXCON General Contractors
1707 Graham Road
College Station, Texas 77845
All construction must be in compliance with the approved construction plans
All trees required to be protected as part of the landscape plan must be completely barricaded in accordance with Section
7.5 .E., Landscape/Streetscape Plan Requirements of the City's Unified Development Ordinance, prior to any operations of
this permit. The cleaning of equipment or materials within the drip line of any tree or group of trees that are protected and
required to remain is strictly prohibited . The disposal of any waste material such as , but not limited to , paint, oil, solvents ,
asphalt, concrete , mortar, or other harmful liquids or materials within the drip line of any tree required to remain is also
prohibited .
TCEQ PHASE II RULES IN EFFECT .
The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site
in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design
Criteria . If it is determined the prescribed erosion control measures are ineffective to retain all sediment onsite , it is the
contractors responsibility to implement measures that will meet City, State and Federal requirements . The Owner and/or
Contractor shall assure that all disturbed areas are sodden and establishment of vegetation occurs prior to removal of any
silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor shall also insure that any
disturbed vegetation be returned to its original condition, placement and state . The Owner and/or Contractor shall be
responsible for any damage to adjacent properties, city streets or infrastructure due to heavy machinery and/or equipment
as well as erosion, siltation or sedimentation resulting from the permitted work .
In accordance with Chapter 13 of the Code of Ordinances of the City of College Station , measures shall be taken to insure
that debris from construct ion, erosion , and sedimentation shall not be deposited in city streets , or existing drainage
facil ities .
I hereby grant this permit for development of an area inside the special flood hazard area . All development shall be in
accordance with the plans and specifications submitted to and approved by the City Engineer in the development permit
application for the above named project and all of the codes and ordinances of the City of College Station that apply.
()q-Dl -oS-
Date
~~
Owner/Agent/Contractor Date
I
01-A ug -05
CONSTRUCTION COST ESTIMATE
CASTLEGATE SUBDIVIS ION -SECTION 6
COLLEGE STATION , TEXAS
Item Estimated Unit Estim a ted
No . Description Qua ntity Pri ce Cost
Sitework
1 Mobili zation/Layout 1 LS $5 ,000 .00 $5,000
2 Site Preparation 2 .5 AC $3 ,500.00 $8,750
3 Silt Fence 790 LF $3.00 $2,370
4 Construction Exit -Rock 20 TONS $55.00 $1 , 100
5 Erosion & Sediment Control Maintenance 1 LS $2 ,000 .00 $2,000
6 Hydromul c h/Hydros eeding 7 ,000 SY $0.50 $3 ,500
7 Tops oil Stripping & Replacement 800 CY $5.00 $4,000
8 Excavation/Grading -Street Constr. -Export 2 ,320 CY $6.00 $13 ,920
9 Concrete Apron 1 ,480 SF $5 .50 $8 ,140
10 Lime Stabilized Subgrad e 5 ,795 SY $3.25 $18,834
11 Base Material -6" depth 4,660 SY $7.00 $32,620
12 Asphalt Paving -1 1/2" depth 4,660 SY $6.00 $27 ,960
13 Concrete Curb and Gutter 2 ,955 LF $8.25 $24 ,379
14 Concrete Ribbon Curb 85 LF $7.60 $646
15 Landscape Sleeves (2 -4" 25' PVC) 50 LF $12.00 $600
Subto ta l $153,819
Storm Drainage & Detention Pond
16 Drainage Pipe -24" RCP -Structural 192 LF $56.00 $10 ,752
17 Drainage Pipe -18" RCP -Non-Structural 90 LF $45 .00 $4 ,050
18 Drainage Pipe -15" HOPE Pipe -Non-Str . 90 LF $35 .00 $3 ,150
19 Concrete S.E.T. -24" RCP 4 EA $2,400.00 $9 ,6 00
20 Con crete S.E.T. -18" RCP 3 EA $2, 100.00 $6,300
21 Concrete S.E.T. -15" 3 EA $1,600.00 $4 ,800
22 Topsoil Stripping & Repla cement 300 CY $5.00 $1 ,500
23 Excavation -Export 600 CY $6 .00 $3,600
24 Excavation -Placed as Fill Material 300 CY $4.00 $1,200
25 Drainage Ditch Grading 245 LF $5.00 $1,225
26 Rock Riprap 20 TON $55.00 $1 , 100
27 Pond Outlet Structure 2 LS $2,500.00 $5,000
28 Concrete Channel -5' Wide 870 SF $6 .00 $5 ,220
29 Concrete Flume -2' Wide 240 SF $5.00 $1.200
Subto tal $58,697
W ater
30 8" Water PVC CL200 (C909) -Structural 131 LF $28.00 $3,668
3 1 8" Water PVC CL200 (C909) -Non-Structural 706 LF $22.00 $15,532
32 6" Water PVC CL200 (C909) -Structural 103 LF $26.00 $2,678
33 6" Water PVC CL 20 0 (C909) -Non-Structural 389 LF $20.00 $7,780
34 3" Water PVC CL200 (C909) -Non-Stru ctura l 145 LF $16 .00 $2 ,320
35 8" 11.25 deg. M.J . Bends 2 EA $300.00 $600
36 6" 11 .25 deg. M.J . Bends 5 EA $250.00 $1,25 0
37 3" 11.25 deg. M.J. Bends 3 EA $200 .00 $600
38 8" Gate Valves 4 EA $750.00 $3,000
39 6" Gate Valve s EA $550.00 $550
40 3" Gate Valves 2 EA $350 .0 0 $700
41 8" M.J . Tee 4 EA $350.00 $1,400
42 6" M.J . Tee 2 EA $300.00 $600
43 Fire Hydrant Assembl y 2 EA $2,400 .00 $4,800
44 Vertical Extension for Fire Hydrant 2 EA $250 .0 0 $500
45 Connect to Existing 8" Waterline 1 EA $500.00 $500
46 2" Bl owo ff A sse mb ly 5 EA $400.00 $2,000
47 Water Services -1" Long 3 EA $750 00 $2,250
48 Water Services -1" Sho rt 4 EA $400.00 s 1 ()()0
4 <') W ;·t1 er Sr~rv i cc:s · I r," ~:;1 ·11.,1 El\ $ :-.ori f1 ( i '.'.;r 1(,11
I' 1:1· 1 •I.
"
1 ·
50 W ater Services -1.5 " Lon g 7 EA $830.00 $5 ,8 10
Subtotal $58 ,638
Sewer
51 6" SOR 26 C-224 1 Pipe Non-Structur al 460 LF $22.00 $10,120
52 6 " SOR 26 C-22 41 Pipe Stru c tur al 256 LF $30.00 $7,680
53 8" SOR 26 C-3 034 Pipe Non-Stru ctur al 59 4 LF $26 .00 $15,444
54 8" Class 350 Ductile Iron Pipe Structura l 372 LF $34 .00 $12 ,648
55 Manholes -<8' Depth 5 EA $2 ,200 .00 $1 1 ,000
56 Manholes -8'-1 O' Depth 2 EA $2,400 .00 $4,80 0
57 4" Sewer Service Single SS 2 EA $350 .00 $700
58 4" Sewer Service Sing le LS 1 EA $600.00 $600
59 6" Sewer Service Double SS 7 EA $500 .00 $3,500
60 6" Sewer Service Double LS 3 EA $8 00 .00 $2 ,400
6 1 Conn ec t to Existing Manhol e EA $1 ,000 .00 $1,000
Subtotal $69,892
Total Sitework $153,819
Total Storm Drainage $58 ,697
Total Water $58,638
Total Sewer $69 892
TOTAL CONSTRUCTION! $341:0461
Date:
To:
From:
Subject:
Remarks:
TEX CON
TRANSMITTAL
August 2 , 2005
Bridgette George
Development Coordinator
Development Services
City of College Station
Joe Schultz~
Texcon GenJ;I Contractors
Phone: (979) 764-7743
Revised Construction Drawings
Castlegate, Section 6
Co ll ege Station, Texas
8'--4-tJG
l(Oq
~
GS-ld...J-
Attached is 1 copy of the revised conshT1ction drawings for the above-
referenced project. Additional sealed copies will be provided if you have no
additional comments.
A lso attached ar~ 2 copies eac h of the Sanitary Sewer Design Report, the
Waterline Fire flow analysis and the Engineer 's cost estimate.
Let me know if you need anyth in g else or h ave any questions.
' . '
Castlegate Subdivision, Section 6
Response to Engineering Review
Comments No. 1
1 . The detention pond grading on Sheet 4 has been re v ised so that the detention pond is not
in the Amberely Place R-0-W.
2. The detail on Sheet 4 has been revised.
3 . Citgo requires a minimum clearance of 24" between their pipeline and the waterline. The
profile of Waterline W-1 has been lowered to achieve this clearance. The depth of the
pipeline shown is based on Citgo personnel depth checks of the line . The profile of
Waterline W-7 for Castle gate Section 5 , Phase 2 , has also been revised to lower the
waterl ine.
Citgo prefers the waterline be constructed of PVC pipe because ductile iron pipe or steel
casing could interfere with their cathodic protection.
4. In accordance with TCEQ regulations 290.44, (e)(B)(V), the sewer line under the
waterline is pressure rated , a 20 ' joint is centered under the waterline and embedded in
cement stabilized sand. Also , a 20' segment of waterline is centered over the crossing. A
copy of the TCEQ requirements are attached.
5. The sewer will be backfilled with cement stabiliz ed sand where it is less than 3.5 ' deep.
6 . The title of Sheet 1 has been changed .
7 . Yes , the la yd own curb is continuous on the left side.
•
Texas Natural Resource Conservation Commission
Chapter 290 -Public Drinking Water
Page 48
centerline of the wastewater main or lateral. The potable waterline shall be at least two feet above the
wastewater main or lateral. Whenever possible, the crossing shall be centered between the joints of the
wastewater main or lateral. The wastewater pipe shall have a minimum pipe stiffness of 115 psi at 5 .0%
deflection. The wastewater main or lateral shall be embedded in cement stabilized sand (see
§290.44(e)(4)(B)(vi) of this title) for the total length of one pipe segment plus 12 inches beyond the joint
on each end.
(iv) Where a new potable waterline crosses a new, non-pressure rated
wastewater main or lateral and a standard length of the wastewater pipe is less than 18 feet in length, the
potable water pipe segment shall be centered over the wastewater line. The materials and method of
installation shall conform with one of the following options :
(I) Within nine feet horizontally of either side of the waterline ,
the wastewater pipe and joints shall be constructed with pipe material having a minimum pressure rating
of at least 150 psi. An absolute minimum vertical separation distance of two feet shall be provided. The
wastewater main or lateral shall be located below the waterline .
(II) All sections of wastewater main or lateral within nine feet
horizontally of the waterline shall be encased in an 18 foot (or longer) section of pipe . Flexible encasing
pipe shall have a minimum pipe stiffness of 115 psi at 5.0% deflection. The encasing pipe shall be
centered on the waterline and shall be at least two nominal pipe diameters larger than the wastewater
main or lateral. The space around the carrier pipe shall be supported at five-foot (or less) intervals with
spacers or be filled to the springline with washed sand. Each end of the casing shall be sealed with water
tight non-shrink cement grout or a manufactured water tight seal. An absolute minimum separation
distance of six inches between the encasement pipe and the waterline shall be provided. The wastewater
line shall be located below the waterline.
(III) When a new waterline crosses under a wastewater main
or lateral, the waterline shall be encased as described for wastewater mains or laterals in subclause (II)
of this clause or constructed of ductile iron or steel pipe with mechanical or welded joints as appropriate.
An absolute minimum separation distance of one foot between the water line and the wastewater main or
lateral shall be provided. Both the waterline and wastewater main or lateral must pass a pressure and
leakage test as specified in A WW A C600 standards . ------·
(v) Where a new potable waterline crosses a new, pressure rated
wastewater main or lateral, one segment of the waterline pipe shall be centered over the wastewater line
such that the joints of the waterline pipe are equidistant and at least nine feet horizontally from the
centerline of the wastewater main or lateral. The potable waterline shall be at least six inches above the
wastewater main or lateral. Whenever possible, the crossing shall be centered between the joints of the
wastewater main or lateral. The wastewater pipe shall have a minimum pressure rating of at least 150
psi. The wastewater main or lateral shall be embedded in cement stabilized sand (see clause (vi) of this
subparagraph) for the total length of one pipe segment plus 12 inches beyond the joint on each end.
-----------· ----
Design Report
Waterline Fire Flow Analysis
for
Castlegate Subdivision -Section 6
College Station, Texas
August 2005
Prepared By:
TEXCON General Contractors
1707 Graham Road
College Station, Texas 77845
(979) 764-7743
1.0 INTRODLl (TION & DES C RIPTIO N
The purpos e o r thi s re p o r t is to pro v id e a descripti o n o f th e prnposcd wat e rlin e s to be
co ns tru c te d w ith th e Castlegate Subdivision, Sec:tio11 6, and lo provide th e res ult s of th e
analys is of the waterlines und er fir e fl ow c o nditi o n s . A n e x is tin g 12" wa te rlin e is loca ted
along C a s tl e ga te Drive adjacent to Ca s tlegate Sectio n 5, Ph ase I. The proposed wa te rlin e to
s uppl y the s it e will co nn ect to an ex ist in g 8" waterline to be co n s tru c ted with th e Sec ti o n 5 ,
Phase 2 development. The water m a in s for thi s project will be co n s tru c te d u s in g 8 '', 6 " a nd
3" diam ete r pipe. The 8" and 6" wa te rlin e for thi s project wi ll be co nst ru cted of DR-14 ,
PVC pipe m ee tin g the req uire m e nt s of A WWA C -909 with m ec ha ni ca l joint fittin gs . T he
3" pipe w ill b e constructed of SD R-21 , PVC pipe m eet in g the requirements of ASTM-2241
w ith mechanical joint fittin gs.
2.0 FIRE FLOW REQUIREMENTS
The fl ow required for fire hydrant fl ow for th e s ubdi v is ion is 1,000 ga ll o n s p er minute
(gpm), fo r each fir e h y drant.
3.0 WATERLINE SYSTEM ANALYSIS
The wate rlin e system was analyzed u si n g the Wate rCA D computer program d eve lo ped by
Haestad Methods, Inc . Exhibit ''l'' is a schematic of the proposed wate rline for Sec tion 6
and the ex is ting Section 5 waterlines, which show th e locations of the fir e h ydrants
proposed for Section 6 . A normal domes tic use flow of 1.5 gpm was include d in th e
analysis for each of the 23 residential lo ts in Section 6. This results in a nom1 a l demand of
34.5 gp m , w hich was includ e d in th e ana lysi s.
The residual pressure in the exis tin g 12" waterline was d e te m1in e d by ca lculating th e
head lo ss at a flow of 1,6 88 g pm for th e existing lin e . Exhibit "6" presents the res ult s of a
press ure/flow te s t from fire hydrants connected to th e existing 12" waterline along
Castl egate Drive . A static pressure of 90 psi and a res idual pressure of 85 p s i with the
hydrant flow at 1,140 gpm were d e te m1in e d by Co ll ege Station Public Utility personnel.
The residual pressure of79.6 p s i at a fl ow of 1,688 gpm was calculated u s ing the following
equation:
Where : QR = Q ava ilabl e @ d es ire d residual press ure
QF = Q during fir e flow tes t
H R = press ure drop to des ired res idual press ure
H F = press ure drop durin g fir e fl ow test
Thi s re s ult s in a res idual press ure of 79.6 p s i w here th e ex isti ng 8" waterlin e in Section 5 ,
Pha se 1 co nn ec ts to the 8" stub on the 12" waterlin e. The h ydra uli c grade wa s se t at thi s
press ure a t the sta rt of th e proposed wate rlin e , Junc ti o n R-1.
The co mputer m ode l was run w ith a lire ll ow o r 1,000 g prn for eac h of th e 2 fir e hy drant s
pro posed fo r thi s project. Ex hibit "2" is a s umm a ry o r th e pipe sys te m j un c ti on nod es " ith
th e fir e hydrant fl ow a t Fire Hy drant 2 . The lowes t res idu al pre ss ure occ urr e d in the sys te m
at Jun c tion .1 -34 . T h e pre ssure a t th is po int is es tima ted b y th e m od e l to be 60 .6 p s i. w hi c h
c.'<cc cd s th e minimum or 20 p s i re quire d by th e TC EQ regul a ti o ns.
Ex hib its "4" & "5" are s umm aries or the p ip e sect io ns fo r th e sys te m un der thi s demand
sce na ri o. T he m axi mum ve loc it y fo r t he 8" wa te r m a in s is 6 .83 fee t pe r seco nd , and occ ur s
in Pip es P-3 1 a nd P-32. Th e m axi mu m ve loc ity fo r th e 6" water m a in s is 1 1.62 fe e t pe r
seco nd , a nd occ urs in P ipe P-37 .
A n 8" wate rlin e is be in g s tu b be d o ut fo r th e futur e d eve lopm e nt of th e adj ace n t trac t. An
a dditi o na l scen a ri o w ith 1,000 gp m fi re hydrant flow at Junctio n J-41 , w hi c h w ill se r ve thi s
a dj acen t trac t , wa s m o d e le d. Ex hi b it "5" is a s umm a ry of th e pip e syste m junc ti o n nodes
for thi s scenari o . T he lowes t res idu a l press ure occ urre d in th e syste m a t Junc ti o n J-4 1. T he
pressure a t thi s po int is es tima te d by the mode l to b e 61 .7 p s i, w hi c h exceed s th e minimum
o f 20 ps i re quire d by th e TCEQ regul a t io ns.
A s e p ara te an a lys is was run fo r th e d o m esti c use. T he minimum res idu a l press ure in the
sys te m w a s 70.7 p s i, w hi c h exceed s th e minimum pressure of 35 p s i re quire d by TCEQ.
Minor losses in thi s syste m were no t ca lc ulate d , as th ey were ass um e d to b e in s ig nifi ca n t.
4 .0 CONCLUSIONS
T he waterlines propose d fo r thi s d evelo pme nt s ho uld ad e qu a te ly pro v id e th e fir e fl ow
re quire d w ith ac ceptable va lu es fo r headlo s s and ve lo c ity . Thi s ana lys is was d o n e assuming
adequa te res idual pressure in the ex is ting 12 " w a te r main along C astl egate Dri ve, as
d e te rmine d by the flow test.
J.n
H O p.4 J
J-39
P-36 p.u
Title C ;1 :-;ll ;~<_.J;d(· · Sr~r:t 1 (>11 I )
... 1,h; !I :·:;;f , I I ,.,,,I ! ~I I q ,\I( I I
' ) ~ : .' ( ) I ' 1: I ~ I l I : . : I I ( I i" ~ r ,
J·32
J-33
P-J\
J-33
Scenario: Base
'·' P -3•)
p.1
J.I
p./
J./
P .J
p., J·l
H
p.'
,.,
p .5
·6
p. 7
J.l
,.,
J.!
p. 9
P-1 I
J-3 1 p .33 J-29
p,32
J-30
P-38
.l-13
P-21
J-11
J-16
p .16
P· 12
p , 13 P-15
p. 1 J J-1 5
J-11 J.13 J-1J
ft\1-
J.]l
_l.l'
"'· '1 1'1 I '', ··:r l •I .. , : 1 1'-;., r Ii ·I ·1 •
p.;z o
P -19 J -19
J-18
p. 18
J.17
P-1'
('11•jt 't I tHlllll!!'I .1()£: SC lll l l 17
I '.1 ti • >t i 'J'd )' l fl!,' 11
I 1 I 1
Node El eva tion Demand Demand
Label (ft) Type (gpm)
J-1 308.40 demand 0 00
J-2 307 .70 d emand 0 .00
J-3 309.8 1 d emand 0 .00
J-4 311.26 demand 10 .00
J-5 313.19 demand 0.00
J-6 314.97 demand 23 .00
J-7 31504 demand 000
J-8 316.80 demand 10.00
J-9 319.73 demand 0 .00
J-10 321 .2 1 demand 20 .00
J-11 321.60 demand 0.00
J-12 320.68 demand 12 .00
J-13 320.55 demand 0 .00
J-14 320.42 demand 0 .00
J-15 320 .51 demand 0 .00
J-16 324 .40 demand 20 .00
J-17 319 .03 demand 20 .00
J-18 319 .09 demand 0 .00
J-19 319.12 demand 0 .00
J-20 324 .86 demand 20 .00
J-21 323 .55 d emand 0 .00
J-22 315 .69 demand 18.00
J-23 311.48 demand 0 .00
J-24 320.62 demand 0.00
J-25 319.79 demand 0 .00
J-26 319 .79 demand 0 .00
J-27 315.64 demand 0 .00
J-28 310.78 demand 0 .00
J-29 320 .90 demand 0 .00
J-30 320 .60 demand 35 .00
J-31 320.4 0 demand 0 .00
J-32 319.60 demand 0 .00
J-33 320 .00 demand 0 .00
J-34 317 .00 demand 1 ,000 .00
J-35 316 .10 dema nd 0 .00
J-36 315 .60 demand 9 .00
J-37 317 .80 demand 7 .50
J-38 320.40 demand 7 .50
J-39 322 .30 demand 0 .00
J-40 322 .30 demand 10 .50
J-41 328 .30 demand 0 .00
t ,• 1. 1' •.. 1, !I' ·:_ ·1 'I , 11 • 1;:1 , !
t ;1.1 ·1 1 • · 1.1 ·n · l'l•I l•,·t .,1;11! r.J.·1!1·•'1' 11 ·1
Scenario: Base
Steady State Analysis
Junction Report
Demand Calculated Hydrauli c Pressure
Pattern Demand Grade (psi)
(gpm) (ft)
Fixed 0 .00 491 .6 9 79 .26
Fixed 0 .00 491.42 79.44
Fixed 0 .00 490 .2 4 78 .02
Fixed 10.00 489 .98 77 .28
Fixed 0 .00 488 .86 75 .97
Fixed 23 .00 487 .80 74 .74
Fixed 0 .00 487 .77 74 .69
Fi xe d 10 .00 486.74 73.49
Fixed 0 .00 485 .80 71 .81
Fixed 20.0 0 485 .32 70 .97
Fixed 0 .00 485 .19 70.74
Fixed 12.00 486 .03 71 .50
Fixed 0.00 486.09 71 .58
Fixed 0 .00 486.14 71 .66
Fixed 0 .00 486 .25 71 .67
Fixed 20 .00 487.02 70 .32
Fixed 20.00 488.31 73 .20
Fixed 0 .00 488 .43 73 .23
Fixed 0 .00 488.48 73 .24
Fixed 20 .00 490.21 7 1.50
Fixed 0 .00 490 .32 72 .12
Fixed 18.00 490 .27 75 .5 0
Fixed 0.00 490 .25 77.31
Fixed 0.00 491 .31 73.81
Fixed 0 .00 491.45 74 .23
Fixed 0 .00 491 .70 74 .34
Fixed 0 .00 491 .80 76.18
Fixed 0.00 491 .91 78.33
Fixed 0.00 482.44 69.86
Fixed 35.00 482.14 69 .85
Fixed 0 .00 481.54 69 .68
Fixed 0 .00 478.88 68 .88
Fixed 0 .00 476.67 67.75
Fixed 1,000.00 457 .25 6 0.6 5
Fixed 0 .00 457 .25 6 1 .04
Fixed 9 .00 457.25 6 1.25
Fixed 7 .50 457 .23 60.29
Fixed 7 .50 476.66 67 .57
Fixed 0 .00 478.88 67 .71
Fixed 10.50 478.88 67 .7 1
Fixed 0 .00 478.88 65 .12
" " l
Pro.i<·c 1 F11q1111·•·1 .1 (1E SC ll lJI T/
\N;111·1 1 1\[ 1 ,, l I 111 / It I
I' 1•1·· I 11 I
Link Le ngth Diamete r M a te ri a l Roughn e s ! Minor LO S!
La be l (ft) (in)
P-1 4g ,oo 8 PVC 150.0 0 .00
P-2 4 3.0 0 8 PVC 150 .0 0 .00
P-3 185.00 8 PVC 150.0 0 .00
P-4 33 .00 8 PVC 150.0 0 .00
P-5 146 .00 8 PV C 150.0 0 .00
P-6 138 .00 8 PVC 150 .0 0 .00
P-7 5 .00 8 PVC 150.0 0 .00
P-8 142 .00 8 PVC 150.0 0 .00
P-9 134 .00 8 PVC 150.0 0 .00
P-10 68 .00 8 PVC 150.0 0 .00
P-1 1 20 .00 8 PVC 150.0 0 .00
P-12 321 .00 8 PVC 150 .0 0 .00
P-31 172 .00 8 PVC 150.0 0 00
P-13 19 .00 8 PVC 150.0 0 .00
P-14 18 .00 8 PVC 150.0 0 .00
P -15 43 .00 8 PVC 150 .0 0 .00
P-16 275 .00 8 PVC 150.0 0 .00
P-17 426.00 8 PVC 150.0 0.00
P-18 36 .00 8 PVC 150.0 0.00
P-19 17 .00 8 PVC 150 .0 0 .00
P-20 524 .00 8 PVC 150 .0 0 .00
P-21 32 .00 8 PVC 150 .0 0.00
P-22 235 .00 8 PVC 150.0 0 .00
P-25 197 .00 8 PVC 150.0 0.00
P-23 166.00 8 PVC 150 .0 0 .00
P -24 99 .00 8 PVC 150.0 0 .00
P-26 28.00 8 PVC 150.0 0.00
P-27 50 .00 8 PVC 150.0 0 .00
P-28 138.00 12 PVC 150.0 0 .00
P-29 162 .00 12 PVC 150.0 0 .00
P-30 125.00 12 PVC 150.0 0 .00
P-32 19 .00 8 PVC 150.0 0 .00
P-33 40 .00 8 PVC 150.0 0 .00
P -34 177 .00 8 PVC 150.0 0 .00
P -37 37 .00 6 PVC 150.0 0 .00
P-43 384.00 8 PVC 150.0 0 .00
P-38 329 .00 6 PVC 150 .0 0 .00
P-41 46 .00 3 PVC 150.0 0 .00
P-39 100.00 6 PVC 150.0 0 .00
P -42 96 .00 3 PVC 150.0 0 00
P-40 57 .00 6 PVC 150.0 0.00
P-36 174 .00 3 PVC 150.0 000
P-44 12 .00 8 PVC 150 .0 000
l 1 t I! ! ( : , I:·. I I 1 •4 l, ! It ~:~ 1 • 1 I It 11 1 I ~
I I ' ' ' I ' • : : . I • 1 I ' t • -• .'' : ~
~ : ' I I ' I ! . I I l ' ! I
Scenario: Base
Steady State Analysis
Pipe Report
Initi a l Curre nt Di scha rge Start
Status Statu s (gpm) Hydrauli c
Grade
(ft)
Open Open 54g ,73 492 .00
Open Open 649 . 73 49 1 .69
Open Open 649 . 7 3 49 1.4 2
Open Open 729 .2 6 490 .24
Open Open 719 .26 489 .98
Open Open 719 .26 488 .86
Open Open 696.26 487 .80
Open Open 696 .26 487 .77
Open Open 686 .26 486 .74
Open Open 686 .26 485 .80
Open Open 666 .26 485 .3 2
Open Open -403 .24 485.19
Open Open 1 ,069 .50 485 .19
Open Open -415 .24 486 .03
Open Open -415 .24 486 .09
Open Ope n -4 15 .24 486.14
Open Open -4 15.24 486 .25
Open Open -435 .24 487 .0 2
Open Open -455 .24 488.31
Open Open -455 .24 488.4 3
Open Open -455.24 488.48
Open Open -475 .24 490 .21
Open Open 97 .53 490.32
Open Open -572.77 490.32
Open Open 79 .53 490 .27
Open Open 79.53 490.25
Open Open -572 .77 491 .31
Open Open -572 .77 49 1.45
Open Open -572 .77 49 1.70
Open Open -572 .77 49 1.80
Open Open -572 .77 49 1.91
Open Open 1 ,069 .50 482 .44
Open Open 1 ,034 .50 482.14
Open Open 1,034 .50 48 1 .54
Open Open 1 ,024 .00 478 .88
Open Open 10 .50 478.88
Open Open 1 ,016 .50 476 .67
Open Open 7 .50 476 .67
Open Open 9 .00 457 .25
Open Open 7 .50 457 .25
Open Open 9 .00 457 .25
Open Open 0 0 0 478 .88
Open Open 10 .50 478 .88
,,
End H ea d loss Fri c ti o n
H ydraulic (ft) S lope
Grade (ft/1 OO Oft)
(ft)
4 9 1 .69 0 .31 6 .35
4 9 1.42 0 .27 6 .35
4 90 .24 1 .18 6 .35
489.98 0 .26 7 .87
488.86 1 .12 7 .6 7
487 .80 1.06 7 .67
487 .77 0 .04 7 .2 2
486.74 1.03 7 .22
485 .80 0 .94 7 .03
485.32 0.48 7 .03
485 .19 0 .13 6 .65
486.03 0 .84 2 .63
482.44 2 .75 15 .97
486.09 0 .05 2 .78
486.14 0 .05 2.77
486.25 0 .12 2 .77
487 .02 0 .76 2 .77
488.3 1 1 .29 3 .03
488.43 0 .12 3 .29
488.48 0 .06 3 .29
490.2 1 1 .72 3 .29
490 .32 0 .11 3 .56
490 .27 0 .04 0.19
491 .31 0 .99 5 .03
490 .25 0 .02 0 .13
490 .24 0 .01 0.13
491.45 0 .14 5 .03
491 .70 0 .25 5 .03
491 .80 0 .10 0 .70
491 .91 0 .11 0 .70
492 .00 0 .09 0 .70
482 .14 0 .30 15 .97
481 .54 0 .60 15 .02
478.88 2 .66 15 .02
476.67 2 .21 59 .83
478.88 0 .12e-2 0 .31e-2
457 .25 19.42 59 .02
476.66 0 .01 0 .20
457 .25 0 .95e-3 0 .01
457 .23 0 .02 0 .20
457 .25 0.5 5e-3 0 .01
478 .88 0 00 0 .00
478 .88 0 .31e-4 0 .25e -2
l'1 1i1 •·1 I 1'1111 1111 •f'f .I CJj :.Cl 1111 I /'
'.,'';11 1 r (.',"\{1 , 1 1110 Ii J
I' .. ' J ...... I' ''I' ; I
Analysis Results
Scenario
Note :
The input data may have been modified si nce th e las t calcul ation was pe rformed .
The calculated results may be outda ted .
Title :
Project Engineer:
Project Date :
Castlegate -Section 6
JOE SCHULTZ
08/01 /05
Comments:
Scenario Summary
Label
Demand Alternative
Physical Alternative
Initial Settings Alternative
Operational Alternative
Age Alternative
Constituent Alternative
Trace Alternative
Fire Flow Alternative
Liquid Characteristics
Liquid
Ki n ematic Viscosity
Network Inventory
Number of Pipes
Number of Reservo irs
Number of Junctions
Number of Pumps
-Constant Power:
-One Point (Des ign Point):
-Standard (3 Point):
-Standard Exten d ed:
-Custom Extended:
-Multiple Point:
Pipe Inventory
Tota l Length
3 in
6 in
Ttll<.: C (1 !;tl!_~q;1!1 ~ · S 1 ~i:111 •ll I )
~ · ',I 1. 10 • ~: I; 11 l \ii, I 1 •. 1 · 11 · I.', r • I
Base
Base-Average Daily
Base-Physical
Base-Initial Settings
Base-Operational
Base-Age Alternative
Base-Constituent
Base-Trace Alternative
Base-Fire Flow
W ater at 20C(68F)
0 .108e-4 ft2/s
43
41
0
0
0
0
0
0
0
5 ,517 .00 ft
316 .00 ft
523 .00 ft
Specific Gravity
Number of Tanks
-Co n s ta nt Area :
-Variable Area :
Number of Valves
-FCV's:
-PBV's:
-P RV's:
-PSV's:
-TCV's:
Number o f Spot Elevations
8 in
12 in
f l(
4
( ' 1 ' 1 ~ ' I I ' 1 1 ' I · 1 : I ' ' ! • I I , ti • .. : " 1 · 1 • I ' 11 " l I 1 r ~ .. I : ' f ' I-I I • ! . ' ' , I l
0
0
0
0
0
0
0
0
0
0
1.00
4 ,253 .00 ft
425.00 ft
Prrq1 ct F-1 1111111 •1•1 .JC1( ~~C l HJ!. I /
1/J· 11i ., I -1\I _I ,. '. 1 111,' 1 f I
1,'•l '\ •1 ,1 ·c 'I I' 1•1•· 1
Label Status Constituent Flow
(mg/I) (gpm)
P-31 Open NIA 1 ,069.50
P-32 Open N/A 1,069.50
P-33 Open N/A 1,034 .50
P-34 Open N/A 1,034 .50
P-36 Open N/A 0 .00
P-37 Open N/A 1 ,024 .00
P-38 Open N/A 1 ,0 16 .50
P-39 Open N/A 9.00
P-40 Open N/A 9 .00
P-41 Open N/A 7.50
P-42 Open N/A 7.50
P-43 Open N/A 10.50
P-44 Open N/A 10 .50
I 'l 'Olf < .... ,l°_o.',1 1 '( ••l l't
11;--. r1l'r1, t•I .1• .1 1 ·· 1
Analys is Results
Scenario : Base
Steady State Analysis
P i pes @ 0 .00 hr
Velocity From To Fr ict ion Minor Total
(fUs) Grade Grade Loss Loss Head loss
(ft) (rt) (ft) (ft) (ft)
6 .83 485.19 4 8 2.44 2 .75 0 .00 2 .7 5
6 .83 482.44 482.14 0 .30 0 .00 0 .30
6 .60 482 .14 481 .54 0 .60 0 .00 0 .60
6 .60 48 1 .54 478 .88 2 .66 0 .00 2 .66
0 .00 478 .88 478 .88 0 .00 0 .00 0 .00
11 .62 478 .88 476 .67 2 .21 0 00 2 .2 1
11 .53 476 .67 457 .25 19.42 0 .00 19.4 2
0 .10 457.25 457 .25 0 .95e-3 0.00 0 .95e-3
0 .10 457.25 457 .25 0 .55e-3 0.00 0 .55e-3
0 .34 476 .67 476 .66 0 .01 0 .00 0 .01
0 .34 457 .25 457 .23 0 .02 0 .00 0 .02
0 .07 478 .88 478 .88 0 .12e-2 0 .00 0 .12e-2
0 .07 478.88 478 .88 0.3 1e -4 0 .00 0 .3 1e-4
Head loss
Grad ie n t
(fU1000ft)
15.97
15 .97
15.02
15 .02
0 .00
59 .83
59 .02
0 .01
0 .01
0 .20
0 .20
0 .31e-2
0 .25e-2
P1 n j'''' ftHJ""''" .IOI S C llUL 17
\,"I/, 1li '1 (·:/\I I •: ·.: I I' I i \ t I
(, r · 1, 1 .', I·····•
Node Elevation Demand
Label (ft) Type
J-1 308.40 demand
J-2 307 .70 demand
J-3 309 .81 demand
J-4 311.26 demand
J-5 313 .19 demand
J-6 314 .97 demand
J-7 315 .04 demand
J-8 316 .80 demand
J-9 319 .73 demand
J-10 321 .21 demand
J-11 321 .60 demand
J-12 320 .68 demand
J-13 320 .55 demand
J-14 320.42 demand
J-15 320 .51 demand
J-16 324 .40 demand
J-17 319 .03 demand
J-18 319.09 demand
J-19 319.12 demand
J-20 324 .86 demand
J-21 323.55 demand
J-22 315 .69 demand
J-23 311.48 demand
J-24 320 .62 demand
J-25 319.79 demand
J-26 319 .79 demand
J-27 315.64 demand
J-28 310.78 demand
J-29 320 .90 demand
J-30 320.60 demand
J-31 320.40 demand
J-32 319.60 demand
J-33 320.00 demand
J-34 317 .00 demand
J-35 316 .10 demand
J-36 315 .60 demand
J-37 317.80 demand
J-38 320.40 demand
J-39 322 .30 demand
J-40 322 .30 demand
J-41 328 .30 demand
Tit le : C;:i s tlega l f~ -Seclion r)
c l1;H!~:.1,•1J'•::trc'.1·l l !·1 1;,1,~d
1:0::1.,'I) l /1 ·~·. I ·~:. ( )~: ~'.·'I r 1 11.'1
Demand
(gpm)
0 00
0 .00
0.00
10.00
0 .00
23 .00
0 .00
10 .00
0 .00
20 .00
0 .00
12 .00
0 .00
0 .00
0 .00
20 .00
20 .00
0 .00
0 .00
20 .00
0 .00
18.00
0 .00
0 .00
0 .00
0.00
0 .00
0 .00
0 .00
35 .00
0 .00
0 .00
0 .00
0 .00
0 .00
9 .00
7 .50
7 .50
0 .00
10.50
1,000.00
Scenario: Base
Steady State Analysis
Junction Report
Demand Calculated Hydraulic Pressure
Pattern Demand Grade (psi)
(gpm) (ft)
Fixed 0 .00 491 .69 79 .26
Fixed 0 .00 491.42 79.44
Fixed 0 .00 490.24 78 .02
Fixed 10.00 489 .98 77 .28
Fixed 0.00 488 .86 75 .97
Fixed 23 .00 487 .80 74.74
Fixed 0 .00 487 .77 74 .69
Fixed 10.00 486 .74 73.49
Fixed 0 .00 485 .80 71 .81
Fixed 20 .00 485 .32 70 .97
Fixed 0 .00 485 .19 70 .74
Fixed 12.00 486 .03 71 .50
Fixed 0 .00 486 .09 71 .58
Fixed 0 .00 486 .14 71 .66
Fixed 0 .00 486 .25 71.67
Fixed 20 .00 487 .02 70 .32
Fixed 20 .00 488 .31 73 .20
Fixed 0 .00 488.43 73.23
Fixed 0 .00 488.48 73.24
Fixed 20 .00 490 .21 71.50
Fixed 0 .00 490 .32 72.12
Fixed 18.00 490 .27 75.50
Fixed 0 .00 490 .25 77.31
Fixed 0 .00 491 .31 73 .81
Fixed 0 .00 491.45 74.23
Fixed 0 .00 491 .70 74.34
Fixed 0 .00 491.80 76 .18
Fixed 0 .00 491.91 78.33
Fixed 0 .00 482.44 69 .86
Fixed 35 .00 482 .14 69.85
Fixed 0.00 481 .54 69 .68
Fixed 0 .00 478.88 68.88
Fixed 0 .00 478 .88 68.70
Fixed 0 .00 478 .87 70.00
Fixed 0 .00 478 .87 70.39
Fixed 9 .00 478 .87 70 .60
Fixed 7 .50 478.85 69 .64
Fixed 7 .50 478.87 68.53
Fixed 0 .00 473 .36 65 .32
Fixed 10.50 473 .36 65 .32
Fixed 1 ,000 .00 470 .90 6 1.67
1 [J<CON GE NU~AL CONl HAC f'OHS
Projc< I E 1H111 1c • ., .IOE ~;c1-11.1 1.·r z
\N;1 li ·1< :.\( 1 •: 1• 1 1r1/ 11·1
I '.1q1 • I cd 1
• • 03 /04 /2004 12 :38 FAX 979 764 3452 COLLEGE STATlON PUB .UTL.
1601 GRAHAM ROAD
COLLEGE STATION TEXAS 77845
Date : 4 MARCH 2004
Nwnber pages including cover sheet - 1
Fax to: 764-7759
Attention: JOE SCHULTZ
Company: TEXCON
From: Butch Willis Water Wastewater Di visi on
Phone: 979-764-3435 Fax : 979-764 -3452
FLOW TEST REPORT
Location: CASTLE GATE DRIVE
Flow hydrant number: V-035
Pitot reading: 80
(GPM): 1140
Stati c hydrant number: V-036
Stati c PSI: 90
Res idual PSI: 85
~001
CASTLEGATE SEC 6 (FP) (05-00500122)
Engineering Review
Comments No. 1
1. As discussed, please pull detention pond berm out from Amberley Place ROW.
2 . As discussed, please revise detention berm detail.
3 . The water line crossing under the high pressure gas line may need additional
protection. Please provide documentation from Citgo with their requirements for this
crossing. Sleeve water line W-1 under gas line? (Sht 5)
4. As proposed, TCEQ requires water line to be a minimum of 2' over sewer line. (W-1
and W-2)
5. Sewer lines buried less than 3.5 feet deep are also required to be backfilled with
cement stabilized sand. (Sht 8)
6. Please change the title of Stormwater Pollution Prevention Plan to Erosion Control
Plan. (Sht 1)
7. Is there curbing on the south side of the concrete apron? (Sht 2)
Reviewed by: Carol Cotter Date: July 13 , 2005
NOTE: Any changes made to the plans, that have not been requested by the City of College Station , must be
explained in your next transmittal letter and "bubbled" on your plans . Any additional changes on these plans
that have not been pointed out to the City of College Station will constitute a completely new review .
Page 2 of 2
FOR OFFICE us: 1~
P&Z CASE NO.: QYi 9'
DATE SUBMITTED:l ..-O(J i216
CITY OF COLLEGE STATION
/'/,11 111i11g & Dc1,rlopmm1 Srrvirff
(Check one) D Minor
($3 00.00)
FINAL PLAT APPLICA
D Amending
($300.00)
u:r-Final
($400.00)
lf'.t=Jd-i
T ION
D Vacating D Replat
($400 .00) ($600.00)*
*Includes public hearing fee
The following items must be submitted by an esta b lished fili ng deadli ne date for P&Z Commission consideration.
MINIM UM SU BM ITT AL REQUIRE
___L' Filing Fee (see above) NOTE: Multiple Sheets -$55 .00 per ad
~Variance Request to Subdivision Regulations -$100 (if applica
~ Development Permit Application Fee of $200 .00 (if applicable).
M EN TS:
ditional sheet
ble)
V' Infrastructure Inspection Fee of $600 .00 (applicable if any publ ic infrastructure is being constructed)
/ Application completed in full.
able).
st be submitted after staff review .)
JJ.A._ Copy of original deed restrictions/covenants for replats (if applic
~ Thirteen (13) folded copies of plat. (A signed mylar original mu
L_ One (1) copy of the approved Preliminary Plat and /or one (1) M
~ Paid tax certificates from City of College Station, Brazos Count
aster Plan (if applicable).
y and College Station l.S.D .
brief explanation as to why they are not. V' A copy of the attached checklist with all items checked off or a
V Two (2) copies of public infrastructure plans associated with th
-=.._ Parkland Dedication req ·rement approved by th _e P rks & Rec
is plat (if applicable).
reation Board , please provide proof of
approval (if applicable). ·(;_ Wl~ -t'Vl~ Ci.
. '&v\ f.£J
Date of Preapp l ication Conference: W\Ml<h 1, -Z..005"
NAME OF SUBDIVISION Casfuga..:t.. ~iv \~'rM -~di
SPECIFIED LOCATION OF PROPOSED SUBDIVISION (Lot & Block) \.IJ(i sf-of Co..sfujLt..11c1 ve on &.Q..Q..ns B-a..i<i~ ~DC..J
r the Project):
:f~Lll~s
City Co{l~e ~tttTYl
ress -
r {jJq_} l£qQ-lo4 I
APPLICANT/PROJECT MANAGER 'S INFORMATION (P rima ry Contact fo
Name bV'"..e.e..¥1S .ProJV"tl JMIJfSfor-$ -W~
Street Address 4-Ho Gv .. ~@J)r\ vi:
State 1}, Zip Code Jlq)Lf-$:' E-Ma il Add
Phone Number ('11~) (/{O-J],,$0 Fa x Numbe
PROPERTY OWNER 'S INFORMATION :
City Cb{f9e.. <tla:h\0V1
ress -
r (q1q) ldD-ID1 I
Name {:;;wR.R)OS ]?ra1 c~ Q, J:YJ \tesk-.S
Street Address q.4-40 Ca.s~a :t,,.,}Vt v C
State -rx Zip Code :11'04-S: E-Mail Add
Phone Number L'lltf) lotto-:JMO Fa x Numbe
City ena~ sT~-tiOv7
res s jC>t' ~lli1~ ~.f-l@fil.w ~ .~e.-+
r [q1q) --rlit v 1-rr'1
ARCHITECT OR ENGINEER'S INFORMATION:
Name lex con -' )of SJ,,Jib, J.B.:·
Street Address \1o1 bra ba <m]._!()a J
State JA Zip Code :11'i>L/S E-Mail Add
Phon e Numb er 01'1) ]'2Lj-..... lJ Jt:) Fa x Numbe
6 /13/03 I 11 ! 5
.,-----
Is there a temporary blanket easement on this property? If so , please provide the Volume and Page # __ _
Acreage -Total Property \ \. \ 1\-2-(Al, · Total # Of Lots ?., 2 R-0-W Acreage j ,frz.;z.. ()..(/ ·
Existing Use : \]a,c.a ,ot Proposed Use : S~VI')~ fa,~~ re.~1tltnb'aJ
Number Of Lots By Zoning District '2. ~ I fTu I I __ _
Average Acreage Of Each Residential Lot By Zoning District:
0 .? I "fiiD
Floodplain Acreage Q
A statement addressing any differences between the Final Plat and approved Master Plan and/or Preliminary Plat (if
applicable):
Requested Variances To Subdivision Regulations & Reason For Same : ~y fDD WvY V'j
Total Linear Footage of
Proposed Public: ,
11-?' Streets
Sidewalks
(1-S'~' Sanitary Sewer Lines
\%l' Water Lines
1-11 I Channels
1'\J' Storm Sewers -Bike Lanes I Paths
Parkland Dedication due prior to filing the Final Plat:
ACREAGE :
___ # of acres to be dedicated + $ ____ development fee
___ # of acres in floodplain
___ # of acres in detention
___ #of acres in greenways
OR
FEE IN LIEU OF LAND :
___ #of Single-Family Dwelling Units X $556 = $ ___ _
_______ (date) Approved by Parks & Recreation Board
NOTE: DIGITAL COPY OF PLAT MUST BE SUBMITTED PRIOR TO FILING.
The applicant .has prepared this application and certifies that the facts stated herein and exhibits attached hereto are true ,
correct, and complete . The undersigned hereby requests approval by the City of College Station of the above -identified
final plat and attests that this request does not amend any covenants or restrictions associated with this plat.
a/kl a2. alt)__
'Signature and Title
6 /13 /03
:n111
7
Glf,,..c. / -12,S
Date
. ,
I •
Design Report
Waterline Fire Flow Analysis
for
Castlegate Subdivision -Section 6
College Station, Texas
August 2005
Prepared By:
TEXCON General Contractors
1707 Graham Road
College Station, Texas 77845
(979) 764-7743
LO INTRODUCTION & DESCRIPTION
The purpose o f thi s re po rt is to provide a description o f th e proposed waterlines to be
co n s tru c te d w ith th e Castlegate Subdivision, Sec tion 6, and to provide th e res ult s or th e
anal ys is of th e w a te rlin es und e r fir e fl ow co ndi tio n s. An ex is tin g 12" wa te rlin e is loca ted
along Cas tl ega te Drive a dja ce nt to Castlega te Section 5, Ph a s e 1. The proposed wa te rlin e to
s uppl y the s ite will co nn ec t to an ex is tin g 8" waterline to be co ns tructed •v ith the Sec tion 5 ,
Pha se 2 development. The water main s for thi s project will be co n s tru c te d u s in g 8", 6" and
3" diam e te r pipe . The 8" a nd 6" waterline for thi s proj ect wi ll b e constructed of DR-14,
PVC pipe m eeting the re quire m e nt s of A WW A C-909 with mechanical j o int fittin gs. T h e
3" pipe w ill b e constructed of SDR-21 , PV C pipe m eetin g the re quire m e nts of AS TM-2241
with m ec hanical joint fittin gs .
2.0 FIRE FLOW REQUIREMENTS
The flo w required for fir e hy drant flow for the s ubdi v is ion is 1,000 gallons per minute
(gpm), for each fire hy drant.
3.0 WATERLINE SYSTEM ANALYSIS
T h e waterline system was analyzed using the Wate rCA D computer program d eve loped b y
Haes tad Methods , Inc. Exhibit" 1" is a schematic of the propose d waterline for Section 6
and the exist in g Section 5 waterlines, which show the lo cations of the fire hydrants
proposed for Section 6 . A normal domestic u se flow of 1.5 gpm was included in th e
analysis for each of the 23 residential lots in Section 6. Thi s results in a nom1al d e mand of
34 .5 gpm, which was included in th e ana lysis.
The residua l pressure in the existing 12" waterline was detem1ined by ca lculatin g th e
headloss at a flow of 1,688 gpm for the ex is ting line. Exhibit "6" presents the res ults of a
pressure/flow test from fire hydrants connected to the existing 12" waterline along
C a s tlegate Drive . A static pressure of 90 p s i and a res idual pressure of 85 psi w ith the
hydrant flow at 1,140 gpm were determined by Co ll ege Station Public Utility personnel.
The res idual pressure of79.6 psi at a flow of 1,688 gpm was ca lculated using the following
e quation:
Whe re: Q R = Q avai labl e @ d es ir ed residua l pressure
Q F = Q during fire flow te s t
HR = press ure drop to d es ired res idual pressure
H F = press ure drop durin g fir e flow tes t
Thi s resu lt s in a residual pre ss ure of79.6 p s i where the ex istin g 8" waterline in Sec ti o n 5 ,
Pha se 1 co nn e cts to the 8" s tub on th e 12" waterline. The h ydra ulic gra d e wa s s e t at thi s
pressure a t th e start o f th e proposed wa te r I in e, Jun ct io n R-1 .
The co mpute r mod e l was run with a lire flow of 1,000 g pm for eac h of th e 2 fir e hyd rant s
propo sed for thi s proj ec t . Ex hibit "2" is a s umm a ry o r th e pip e s ys te m junction nod es wit h
th e fir e hydra nt flow a t Fire H yd ra nt 2 . The lowe s t res idu a l pre s s ure occ urre d in th e s y s te m
a t Jun c tion .J -34 . The pr e s s ur e a t thi s point is es timated by th e mod e l to be 60 .6 p s i. w hi c h
ex ceed s th e minimum or 20 p s i re qu ir ed b y th e T C EQ re g ulation s.
Ex hi bits "4" & "5" are s umm ari es o l' t he p ipe sec t io n s fo r th e syste m und e r thi s d e m a nd
sce na ri o . T he m ax imum ve lo c ity fo r t he 8" wa te r m a in s is 6 .83 fee t pe r seco nd , a nd o cc ur s
in P ip es P-3 1 a nd P-3 2 . T he ma x imu m ve lo c ity for the 6 " wa te r m a in s is 1 1.6 2 fee t p e r
se co nd , a n d o c c u rs in P ip e P-37.
A n 8" wa te rlin e is be in g s tu bbed o ut for th e future d e ve lo pm e nt of th e a dj ace n t tra c t. A n
a dditi o n a l sce na ri o w ith l ,000 gp m fi re h y d ra nt flow a t Junc t io n J-41 , w hi c h wi ll ser ve t hi s
a dj ac e n t t rac t , wa s m o d e led . Ex hi b it "5 " is a s umm a ry o f th e pipe syste m junctio n n o d es
fo r thi s sce na ri o . T h e lowes t re s idu a l pre s s ure occ urre d in th e sys te m at Junct io n J -4 1. T he
pressu re a t thi s p o int is es timate d b y th e m o d e l to be 6 1. 7 p s i, w hi c h exceed s th e minimum
of 20 p s i re quired b y t he T CEQ regul atio ns .
A se p ara te ana lys is was run fo r th e d o m esti c u se . T he minimum res idu a l press ure in th e
sy s te m was 70 . 7 ps i, w hi c h exceeds th e minimum press ure of 35 p s i re quire d b y T C EQ .
Minor losses in thi s syste m were not ca lc ul a te d , as th ey were ass ume d t o b e in s ignifi ca n t.
4.0 CON C LUSIONS
T he wate rlines p ro p osed fo r thi s d eve lo pme nt s ho uld ade qu a te ly prov id e the fir e fl ow
re quire d w ith acce pta bl e v a lu es fo r h eadl oss a nd ve loc ity . T hi s ana lysis was don e assum in g
ad e qu a te res idu a l pressure in th e ex isting 12" water main a lo n g C a s tl ega te Dri ve , as
d e te rmine d b y th e fl ow test.
Hl
H O p.u
J.39
p.]6 p . .,j)
'Jill(~ C ;1 ~:1 1t-~q;1tt.~. S C!C:ltl lll {)
1.h;,..:;;t ;1•I ,•11 111 '!1 lq · ...... 1:•1
J.)2
Scenario : Base
J.27
R · '-·----·-· ;_o__,,.J.2 S
H
P-1
P-1
J.\
P-1
1-1
P-3
.. , J-3
P-5
J-5
P-6
-6
J-1
P-1
J-8
P-9
J-9
J.)1 p,33 J·29
p .32
J.30
J.22
P-10
J-10
P-1 1 J-11
p.31 p., 2
_,,
.3;
J.33
p.n
p.J'J
f \-\ 1-
_l .J J
I
,~J 2
/
11
p .2s J.25
P-16
J.2J
J2 (1
p.22
p.115
p.1 J p., 5
p.1.4 J .15
J.12 J.13 J.I J
: , 1 : • ( 1 1 ·' 1 : , .. 1 1 : : • 11 1 ~ ., r I,., I I: 11 • · •1 ' ~ ' 1 I ' ·1 '• Ir 1 r ", ., 1'1•l t'.' (.I 11 ,'(; I''·:.". I t
J·l 6
P·20
P· 18
J·17
p.17
ritt .1,.1' 1 "!.lHH!''' 1C)E ~;c t H ll 1 /
1,11 II• •d 'fd ) ·::; 1 I' t: I t
;r,i, r". q ·' i , 1 1
Node Ele va ti o n Demand
Labe l (rt) Type
J-1 308.40 d emand
J-2 307 .70 demand
J-3 309.81 demand
J-4 31 1 .26 demand
J-5 313.19 demand
J-6 3 14.97 demand
J-7 315.04 demand
J -8 316 .80 demand
J-9 319 .73 demand
J-10 321 .2 1 demand
J -11 321.60 demand
J-12 320.68 demand
J-13 320.55 demand
J-14 320 .42 demand
J-15 320 .51 demand
J-16 324.40 demand
J-17 319 .03 demand
J-18 319 .09 d emand
J-19 319 .12 demand
J-20 324.86 demand
J-2 1 323.55 demand
J-22 315.69 demand
J-23 311.48 demand
J-24 320.62 demand
J-25 319 .79 demand
J-26 319.79 demand
J-27 315.64 demand
J-28 31 0 .78 demand
J-29 320.90 demand
J-30 320.60 demand
J-31 320.40 demand
J-32 319.60 demand
J-33 320.00 demand
J -34 317.00 demand
J -35 316 .1 0 demand
J-36 315 .60 demand
J-37 317.80 demand
J-38 320.40 demand
J-39 322 .30 demand
J-40 322.30 demand
J -41 328 .30 demand
T1 Hn : C;-1 ~-.111 q;·1tr ~ H Ser:li1 )11 r;
I •11;1 '";1,!!' •:.'lf'.:'t · 1 P.• \'.'Id
Demand
(gpm)
0 .00
0 .00
0 .00
10 .00
0 .00
23 .00
0 .00
10 .00
0 00
20.00
0.00
12.00
0.00
0 .00
0 .00
20.00
20.00
0 .00
0 .00
20.00
0 .00
18.00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
0 .00
35.00
0 .00
0 .00
0 .00
1 ,000 .00
0 .00
9 .00
7 .50
7 .50
0 .00
10 .50
0 .00
1 ·_: i , r ! · " ,.~ 1 · .i .i : 1 ~ : , ... r '· 1 • 1 , . • • ; 1 i , ' 1 r •. 11 • II 1 · 11 1 -~ 1 , , t
Scenario: Base
Steady State Analysis
Junction Report
Demand Calculated Hydrauli c Pressu re
P a ttern Demand Grade (ps i)
(gpm) (ft)
Fixed 0 .00 491 .69 79 .26
Fixed 0 .00 491.42 79.44
Fixed 0 .00 490 .24 78.02
Fixed 10 .00 489 .98 77 .28
Fixed 0 .00 488.86 75 .97
Fixed 23 .00 487 .80 74 .74
Fixed 0 .00 487.77 74 .69
Fixed 10.00 486 .74 73 .49
Fixed 0 .00 485.80 7 1 .81
Fixed 20 .00 485.32 70 .97
Fixed 0 .00 485.19 70 .74
Fixed 12 .00 486.03 71 .50
Fixed 0 .00 486.09 71 .58
Fixed 0 .00 486.14 71 .66
Fixed 0 .00 486.25 71 .67
Fixed 20 .00 487 .02 70.32
Fixed 20 .00 488.31 73 .20
Fixed 0.00 488.43 73 .23
Fixed 0 .00 488.48 73 .24
Fixed 20.00 490 .21 71 .50
Fixed 0.00 490.32 72.12
Fixed 18 .00 490 .27 75.50
Fixed 0 .00 490.25 77 .31
Fixed 0 .00 491 .31 73 .81
Fi xe d 0 .00 491.45 74 .23
Fi xe d 0 .00 491 .70 74 .34
Fixed 0 .0 0 491 .80 76.18
Fixed 0 .00 491.91 78 .33
Fixed 0 .00 482.44 69.86
Fixed 35.00 482.14 69.85
Fixed 0 .00 481 .54 69.68
Fixed 0 .00 478 .88 68.88
Fixed 0 .00 476.67 67 .75
Fixed 1,000 .00 457 .25 60 .65
Fixed 0 .00 457 .25 61 .04
Fi xe d 9 .00 457 .25 6 1 .25
Fixed 7 .50 457 .23 60 .29
Fixed 7 .50 476.66 67 .57
Fi xe d 0 .00 478 .88 67 .71
Fixed 10 .50 478.88 67 .71
Fi xed 0 .00 478 .88 65 .12
" " l
W;1 l1 1( /1! 1 ": 1 jt.1/ lr J
I' t·I· I ,I I
Link Length D iame ter Material Roughne ss Minor Loss
Label (ft) (in)
P-1 49 .00 8 PVC 150 .0 0.00
P-2 43 .00 8 PVC 150 .0 0 .00
P-3 185 .00 8 PVC 150 .0 0 .00
P -4 33 .00 8 PVC 150.0 0 .00
P -5 146 .00 8 PVC 150.0 0 .00
P-6 138 .00 8 PVC 150.0 0.00
P-7 5 .00 8 PVC 150 .0 0 .00
P-8 142 .00 8 PVC 150 .0 0 .00
P-9 134 .00 8 PVC 150.0 0 .00
P-10 68 .00 8 PVC 1 50.0 0 .00
P -11 20 .00 8 PVC 150.0 0 .00
P-12 321 .00 8 PVC 150 .0 0 .00
P -3 1 172 .00 8 PVC 150 .0 0 .00
P-13 19 .00 8 PVC 150 .0 0 00
P-14 18 .00 8 PVC 150 .0 0 .00
P-15 4 3 .00 8 PVC 1 50 .0 0 .00
P -16 275 .00 8 PVC 150 .0 0 .00
P-17 426 .00 8 PVC 150.0 0 .00
P-18 36 .00 8 PVC 150.0 0 .00
P-19 17 .00 8 PVC 150 .0 0 .00
P-20 524 .00 8 PVC 150.0 0 .00
P-2 1 32 .00 8 PVC 150.0 0 .00
P-22 235 .00 8 PVC 150.0 0 .00
P-25 197.00 8 PVC 150.0 0 .00
P-23 166 .00 8 PVC 150.0 0 .00
P -24 99.00 8 PVC 150.0 0.00
P-26 28.00 8 PVC 150.0 0 .00
P -27 50 .00 8 PVC 150 .0 0 .00
P-28 138.00 12 PVC 150.0 0.00
P-29 162 .00 12 PVC 150.0 0.00
P-30 125.00 12 PVC 150.0 0 .00
P-32 19 .00 8 PVC 150.0 0.00
P-33 40 .00 8 PVC 150.0 0 .00
P-34 177 .00 8 PVC 150.0 0 .00
P-37 37 .00 6 PVC 150.0 0 .00
P-4 3 384.00 8 PVC 150.0 0 .00
P -38 329 .0 0 6 PVC 150 .0 0 .00
P-41 46 .00 3 PVC 150.0 0 .00
P-39 100 .00 6 PVC 150.0 0 .00
P-42 96 .00 3 PVC 150.0 0 .00
P-40 57 .00 6 PVC 150.0 0 .00
P-36 174 .00 3 PVC 15 0 .0 0.00
P-44 12 .00 8 PVC 150 .0 0 .00
I 11 I 11'' ··:·
!•;·,!'I 1 I' l'l·l
Scenario: Base
Steady State Analysis
Pipe Report
Initi a l Curren t Di scha rgE S tart
S ta tu s Statu s (gpm ) Hydra ulic
Grade
(ft)
Open Open 649.73 492 .00
Open Open 649.7 3 49 1 .69
Open Open 649.73 49 1.4 2
Open Open 729.26 490 .24
Open Open 719.26 489 .98
Open Open 719.26 488.86
Open Open 696.26 487 .80
Open Open 696 .26 487 .77
Open Open 686 .26 486.74
Open Open 686.26 485.80
Open Open 666 .26 485 .32
Open Open -403 .24 485 .19
Open Open 1 ,069.50 485.19
Open Open -415 .24 486.03
Open Open -415 .24 486 .09
Open Open -415 .2 4 486 .14
Open Open -4 15.24 486 .25
Open Open -435 .24 487 .02
Open Open -455 .24 488 .31
Open Open -455 .2 4 488.43
Ope n Open -455 .2 4 488.48
Open Open -475 .24 490 .21
Open Open 97 .53 490.32
Ope n Open -572 .77 490 .3 2
Ope n Open 79 .53 490 .27
Open Open 79.53 490 .25
Ope n Open -57 2 .77 49 1 .31
Open Open -57 2 .77 491.45
Open Open -572 .77 491 .70
Open Open -57 2 .77 491.80
Open Open -572.77 491 .91
Open Open 1 ,069 .50 482.44
Open Open 1 ,034 50 482 .14
Open Open 1 ,034 .50 48 1 .54
Open Open 1 ,024 .00 478 .88
Open Open 10 .50 478.88
Open Open 1 ,016 .50 476.67
Open Open 7 .50 476 .67
Open Open 9.00 457 .25
Open Open 7 .50 45 7.2 5
Ope n Open 9 .00 457 .25
Open Open 0 .00 478.88
Open Open 10 .50 478 .88
..
jl1r 1 I I'• j .'1 ,1 1 1 '( 11 1 1 1 I
End Headloss Friction
Hydraulic (ft) Slope
Grade (fl/1 OOO ft)
(ft)
491 .69 0 .3 1 6 .35
491.42 0 .27 6 .35
490 .24 118 6 .35
489 .98 0.26 7 .87
488.86 1 .12 7 .67
487 .80 1 .06 7 .67
487 .77 0 .04 7 .22
486 .74 1 .03 7 .22
485 .80 0.94 7 .03
485.32 0.48 7 .03
48 5 .19 0 .13 6 .65
486.03 0 .84 2 .63
482.44 2.75 15 .97
486.09 0 .05 2 .78
486.14 0 .05 2 .77
486 .25 0 .12 2 .77
487 .02 0 .76 2 .77
488 .31 1 .29 3 .03
488.43 0.12 3 .29
488.48 0 .06 3 .29
490.21 1.72 3 .29
490.32 0 .11 3 .56
490 .27 0 .04 0 .19
491 .31 0 .99 5 .03
490 .25 0 .02 0 .13
490 .24 0 .01 0 .13
491.45 0.14 5 .03
491 .70 0.25 5 .03
491 .80 0.10 0 .70
491 .91 0 .1 1 0 .70
492 .00 0 .09 0 .70
482 .14 0 .30 15 .97
481 .54 0 .60 15.02
478 .88 2.66 15 .02
476.67 2.2 1 59 .8 3
478.88 0 .12e-2 0 .3 1e-2
457 .25 19.42 59 .02
476.66 0 .01 0 .20
457 .25 0 .95e-3 0 .01
457 .23 0 .02 0 .20
457 .25 0 .55e-3 0 .0 1
478 .88 0 00 0 .00
478.88 0 .3 1e-4 0 .25e-2
l'1 t>1•·t l1""1 1t 11111 ·r·1 .ICl[ ~·.c:tll/11/
\,\/; ll t I (. ,\( I ' it 1, l 1 I
I' ,<1 ' I····• i' r ;· ' I.
Note:
Analysis Results
Scenario
The input data may have bee n modified since the la st ca lculatio n was pe rform ed .
The calculated results may be outdated .
Title:
Project Engineer:
Project Date :
Castlegate -Secti on 6
JOE SCHULTZ
08/01 /05
Comments :
Scenario Summary
Label Base
Demand Alternative Ba se-Average Daily
Physical Alternative Base-Physical
Initial Settings Alternative Base-Initial Settings
Operational Alternative Base-Opera tiona l
Age Alternative Base-Age Alternative
Constituent Alternative Ba se-Consti tu ent
Trace Alternative Base-Trace Alternative
Fire Flow Alternative Base-Fire Flow
Liquid Characteristics
Liquid Water at 20C(68F)
Kinematic Viscosity 0 .108e-4 ft2 /s
Network Inventory
Number of Pipes 43
Number of Reservoirs
Number of Junctions 41
Number of Pumps 0
-Constant Power: 0
-One Point (Design Point): 0
-Standard (3 Point): 0
-Standard Extended: 0
-Custom Extended : 0
-Multiple Point: 0
P ipe Inventory
Total Length 5,517 .00 ft
3 in 316 .00 ft
6 in 523 .00 ft
1· .I 1. 11··:-;l ;nl 1.'.lt • ·1 · '!· 1,\r ·<I
1·;:1 :·1 (!1 1 "I :• •. ·: l"·.1 I 1 1.11 ".td. ,, !'1111! 11 t
Specific Gravity
Number of Tanks
-Constant Area :
-Variab le Area :
Number of Valves
-FCV's :
-PBV's:
-PRV's:
-PSV's :
-TCV's:
Number of Spot Elevations
8 in
12 in
f l(
4
0
0
0
0
0
0
0
0
0
0
1.00
4 ,2 53 .00 ft
I,
425.00 ft
r""'r(l 111 .1 F11<1 11 11 ·1 ~1 .1or ~~c 1 n11 I/
1_1'J, ll1 ~, (" /d' •'. '. 1 I! l . 1 f 1
·i,t, '111 l ' 1•:•
Label Status Con s tituent F low
{mg /I) (gpm)
P-31 Open NIA 1.069.50
P-32 Open NIA 1,069.50
P-33 Open NIA 1 ,034.50
P-34 Open NIA 1 ,034 .50
P-36 Open NIA 0.00
P-37 Open N/A 1,024 .00
P-38 Open NIA 1 ,016 .50
P-39 Open N/A 9.00
P-40 Open N/A 9.00
P-4 1 Open NIA 7.50
P-42 Open NIA 7 .50
P-43 Open NIA 10.50
P-44 Open N/A 10.50
-I Pit ~ C;!:·,f!. ·~:i;:;11 · -~·:,,~, t 1r111 ;;
• 1··11 '··. •1 .'.•'·1 ··I I'•
1 1;· •• , .. , •. ltj 1: .1 1·1·1
Analysis Results
Scenario: Base
Steady State Analysis
Pipes @ 0 .00 hr
Velocity From To Fricti on Minor Total Head loss
{fl/s) Grade Grade Loss Loss Headloss Gradient
{ft) {ft) (ft) {ft) {ft) {fV1000ft)
6.83 485 .19 482.44 2.75 0 .00 2.75 15 .97
6 .83 482.44 482 .14 0 .3 0 0 .00 0 .30 15.97
6 .60 482.14 481 .54 0 .60 0 .00 0.60 15 .02
6 .60 481.54 478 .88 2.66 0 .00 2.66 15 .02
0 .00 478 .88 478.88 0 .00 0 .00 0 .00 0 .00
11 .62 478 .88 476.67 2 .21 0 .00 2 .21 59 .83
11 .53 476.67 457 .25 19.4 2 0 .00 19.42 59 .02
0 .10 457 .25 457 .25 0 .95e-3 0 .00 0 .95e-3 0 .01
0.10 457 .25 457 .25 0 .55e-3 0 .00 0 .55e-3 0 .01
0 .34 476 .67 476.66 0 .01 0 .00 0 .01 0 .20
0.34 457 .2 5 457 .23 0 .02 0 .00 0 .02 0 .20
0.07 478 .88 478 .88 0 .12e-2 0.00 0 .12e-2 0.31e-2
0 .07 478.8 8 478 .88 0 .31e-4 0.00 0 .3 1 e-4 0 .25e-2
I r xcnN GE N E FU\I. <:ntn l~f\C 11 ll~S
, I 'r, , ·~ • .11 !1 I·:• ·, ·• : ', Id I ," ': l'.. j, t. I
l'1o j<!< 1 f-111p11r···r .l<)L-:-SC llUI. 17
\,'\,', ,,, '! (:/\I , ' : I I' 1/ I 1 I
J.,. ... I ' 1tjl .
Node Elevation Demand
Labe l (ft) Type
J-1 308 .40 demand
J-2 307.70 demand
J -3 309.81 demand
J-4 3 11 .26 demand
J-5 313 .19 demand
J -6 3 14 .97 demand
J-7 315 .04 demand
J-8 3 16 .80 demand
J-9 319. 73 demand
J-10 3 2 1 .2 1 demand
J-11 321.60 demand
J-12 320 .68 demand
J-13 320 .55 demand
J-14 320.42 d emand
J-15 320 .51 d ema nd
J-16 324.40 d emand
J-17 319.03 demand
J-18 319.09 demand
J-19 319.12 demand
J-20 324 .86 deman d
J-21 323 .55 demand
J -22 315 .69 demand
J-23 311 .48 d emand
J -24 320 .62 d emand
J-25 3 19 .79 demand
J-26 319 .79 demand
J-27 315 .64 demand
J-28 310 .78 demand
J-29 320 .90 d e mand
J-30 320 .60 demand
J-31 320.40 demand
J-32 319.60 demand
J-33 320 .00 demand
J -34 317 .00 demand
J -35 316 .10 demand
J-36 315.60 demand
J-37 317 .80 demand
J-38 320.40 demand
J-39 322 .30 demand
J-40 322.30 demand
J-41 328.30 demand
·11tln : C1:1sll egr.11 e -Secli on Ci
,. l1 ;1 '!!~l ;l 1i '.'.·.'trc:'• ·I I '• \"JU!
Demand
(gpm)
0.00
0 .00
0.00
10.00
0 .00
23 .00
0 .00
10 .00
0 .00
20 .00
0 .00
12 .00
0 .00
0 .00
0 .00
20 .00
20.00
0.00
0 .00
20 .00
0 .00
18 .00
0 .00
0.00
0 .00
0 .00
0 .00
0 .00
0 .00
35.00
0 .00
0 .00
0 .00
0 .00
0 .00
9 .00
7 .50
7 .50
0 .0 0
10 .50
1 ,000 .00
Scenario: Base
Steady State Analysis
Junction Report
Demand :Calculated Hydraulic Press ure
Pattern Deman d Grade (psi)
(gpm) (ft)
Fixed 0 .00 4 91 .69 79 .26
Fi xed 0 .00 491.42 79 .44
Fi xe d 0 .00 490 .24 78 .0 2
Fi xe d 10 .00 489 .98 77.28
Fixed 0 .00 488 .86 75 .97
Fixed 23 .00 487 .80 74.74
Fi xe d 0 .00 487 .77 74 .69
Fi xe d 10 .00 486.74 73.49
Fixed 0 .00 485.80 71 .81
Fi xe d 20 .00 485.32 70 .97
Fixed 0 .00 485.19 70 .74
Fixed 12 .00 486.03 71 .50
Fixed 0 .00 486.09 71.58
Fixed 0 .00 486.14 71 .66
Fixed 0 .00 486 .25 71 .67
Fixed 20 .00 487 .02 70.32
Fixed 20 .00 488 .31 73 .20
Fixed 0 .00 488.43 73 .23
Fixed 0 .00 488.48 73.24
Fi xe d 20.00 490 .21 71 .50
Fi xe d 0 .00 490 .32 72.12
Fi xe d 18 .00 490 .27 75 .50
Fixed 0 .00 490 .25 77 .31
Fi xe d 0 .00 491 .31 73 .81
Fi xe d 0.00 491 .45 74 .23
Fixed 0 .00 491 .70 74 .34
Fixed 0.00 491 .80 76.18
Fi xed 0.00 491.91 78.33
Fixed 0 .00 482.44 69.86
Fixed 35.00 482.14 69.85
Fi xe d 0.00 481 .54 69.68
Fixed 0 .00 478.88 68.88
Fixed 0 .00 478.88 68.70
Fi xe d 0 .00 478.87 70 .00
Fi xe d 0 .00 478.87 70 .39
Fi xe d 9 .00 478 .87 70 .60
Fi xed 7 .50 478.85 69.64
Fi xed 7.50 478 .87 68.53
Fixed 0.00 473 .36 65.32
Fi xe d 10.50 473 .36 65 .32
Fixed 1 ,000.00 470 .90 6 1.67
l \":<CON G f"NE:fU\l. CON l 1~/\C TOH S
Projc•< t E1u11nc1 ., .1c1r-~:..~ct II JI I Z
',1\/;1!1 ·1(''.t\f 1 " !, I I' 1,· 11 I
·7 lt11•1 •~'-,t!!1 • f .;,.;~1 • •' 11! rl I I v 1 · 1 1;,/._1 1: ll '.·,i\ (:'l l't1 /~.~---1 ';1 ,1 , I ' HI '' I I '
~ .. 03/0412004 12:38 FAX 979 764 3452 COLLEGE STATfON PUB .UTL .
1601 GRAHAM ROAD
COLLEGE STATION TEXAS 77845
Date: 4 MARCH 2004
Nwnber pages including cover sheet - 1
Fax to: 764-7759
Attention: JOE SCHULTZ
Company: TEXCON
From: Butch Willis Water Wastewater Division
Phone : 979-764-3435 Fax: 979-764-3452
FLOW TEST REPORT
Location: CASTLE GATE DRIVE
Flow hydrant number: V-035
Pitot reading: 80
(GPM): 1140
Static hydrant number: V-036
Static PSI: 90
Residual PSI : 85
~001
Design Report
Proposed Sanitary Sewer Line Improvements
for
Castlegate Subdivision
Section 6
College Station, Texas
July 2005
Prepared B y:
TEXCON General Contractors
1 707 Graham Road
College Station, Texas 77845
(979) 764-7743
'
1.0 INTRODUCTION & DESCRIPTION
The purpo se of this re port is to provid e a description of the proposed sanitary sewer to be
constructed with the Castlegate Subdivision Section 6 , and to provide th e criteria us ed in
the design of this sanitary sewer system. The proj ect will include the construction of
approximately 1,2 54 feet of sanitary s ewer line . The line will service the propos ed
de ve lopment of the Cast legate Subdivision , Section 6, as well as future development of up
to 300 dwelling units on the adjacent property.
2.0 SANITARY SEWER-Design Flow and Pipe Size Calculations
The proposed sewer line is to be constructed of 6" and 8" diameter SDR-26 , PVC and
ductile iron pipe which meets the requirements of ASTM-03034. The proposed manhol es
are 4' diameter manholes, and vary from 6' to 8' in depth, with sewer line slopes ranging
from 0.4 % to 0 .8%. The maximum distance between manholes is less than 500 feet, as
required by the Texas Commission on Environmental Quality (TCEQ). The minimum
allowable slopes for 8" and 6" pipes pe r TCEQ requirements are 0.33 % and 0.50 %,
respectively. All construction shall meet the current City of College Station Standard
Specifications for Sanitary Sewer Construction. The sewer line information is summarized
in Table 1.
3.0 DETERMINATION OF PEAK FLOW VALUES
The peak flows were based on using a daily use of 300 gallons per day for each dwelling
unit. The design peak flow is determined by multiplying the average daily flow by 4.0 ,
which results in the peak hourly flow . The velocities for the lines were calculated using
Manning's Equation. According to the TCEQ , the minimum velocity for sewer systems
flowing full is 2.0 feet per second . As shown in Table 1, the minimum anticipated flow
velocities for the proposed sewer lines at 50% full meet this requirement. The flow for
100% full will not be less than the flow for 50 % full; therefore, the TCEQ requirement is
met. The TCEQ requires that the maximum velocity for sewer systems flow full not
exceed 10 feet per second. The values in Table 1 are well below this maximum velocity .
For the adjacent property, up to 300 dwelling unit s can be added to this sewer line without
exceeding capacity. The sewer line for Section 6 ties into the line for Section 5 , so the
impact of an additional 300 dwelling units has been analyzed . Table 2 shows the data
taken from the "Section 5 & Future Section 6 Sewe r Report," and Table 3 shows the
impact of adding an additional 300 dw e lling units to this line. As shown in T able 3, eve n
with the increase in dwelling units , th e pipe is onl y 85.2% full.
4.0 CONCLUSIONS
It is our d etennination bas ed on th e criteria and d ata de velop ed that th e propo sed sewe r
line will pro v id e sufficient capacit y for the a nti c ip a ted wast ewater flo ws ge nerated b y thi s
development as we ll as the future d eve lo pm e nt of up to 300 dw e llin g unit s on the adjacent
property.
Table 1
Castlegate Subdivision, Section 6 & Future Development of Adjacent Property -Sewer Line Flow Data
0 Manhole No . of Units From Cumula tive Average Percent 50% Full z Size Length Slope Peak Flow
Q) Number Dwell ing Unit Merging Dw elling Daily Flow Full Flow Velocity c
:J From To (in) (ft) (%) Servic es Lines Units (gpm) (cfs) (cfs) (%) (cfs) (fps)
4 3 6 35 1.7 0 .80 7 -7 1.46 0 .003 2 0 .0130 11 .1 0 .250 9 2 .6
"7 3 2 8 326 .0 0.40 4 5 (S -3 ) 16 3.33 0 .0074 0 .02 97 13 .5 0 .382 1 2.2
en 2 1 8 171 .2 0.40 2 5 (S-2) 23 4 .79 0 .0107 0 .0427 16 .0 0 .3821 2 .2
1 Exis ting 8 96.7 0.40 0 up to 300 (S -4) 323 67 .28 0 .1499 0 .5995 66 .7 0 .3821 2 .2
N 2 5 6 206 .3 0 .80 5 5 1.04 0 .0023 0 .0093 9 .4 0.2509 2 .6 JJ -
C'? 3 6 6 157 .3 0 .80 5 -5 1.04 0 .0023 0 .0093 9 .4 0 .2509 2 .6 en
"i" Future 7 8 370 .4 0.40 up to 300 -300 62.4 9 0 .13 92 0 .5568 63 .3 0 .382 1 2 .2
en 7 1 8 96 .7 0.40 0 -300 62.49 0 .1392 0 .5568 6 3.3 0 .382 1 2 .2
n = 0 .013
Refer to Section 6 construction drawings for manhole locations .
Table 2
Castlegate Subdivision , Section 5 & Future Section 6 -Sewer Line Flow Data
0 Manhol e No. of Units From Cumulative Average Percent 50% Full z Size Length Slope Peak Flow
Q) Number Dwe lling Unit Merging Dwelling Daily Flow Full Flow Velocity c:
:.J From To (in) (ft) (%) Servi ces Lines Units (gpm) (cfs) (cfs) (%) (cfs) (fps)
Ir"( 5-16 5-12 8 234.9 0.40 1 23(Sect 6) 24 5.00 0 .01 11 0 .0445 16.4 0 .3821 2 .2 (/)
"'f 5-15 5-14 6 313.6 2 .14 10 -10 2 .08 0 .0046 0 .0186 10.4 0.4104 4 .2
(/) 5-14 5-9 6 173 .4 1.00 5 -15 3.12 0 .0070 0 .0278 15 .1 0.2806 2.9
'7 5-8 5-7 6 314.4 1.98 11 -11 2.29 0.0051 0 .02 04 11 .1 0 .3948 4.0
(/) 5-7 5-2 6 113 .6 2 .15 1 -12 2.50 0.0056 0.0223 11.3 0.4114 4 .2
5-6 5-5 6 476 .9 1.52 13 -13 2.71 0.0060 0 .0241 12 .8 0 .3459 3.5
5-5 5-4 8 300.9 0.40 9 -22 4.58 0.0102 0 .0408 15 .7 0 .3821 2 .2
~ 5-4 5-3 8 338 .7 0.40 6 28 5.83 0.0130 0 .0520 17.7 0 .3821 2 .2 (/)
5-3 5-2 8 234.1 0.40 6 -34 7.08 0 .0158 0 .0631 19.4 0.3821 2.2
5-2 5-1 8 373 .9 1.8 1 8 12(S -3) 54 11 .25 0.0251 0.1002 16 .8 0 .8129 4 .7
5-13 5-12 6 251.4 2.50 8 -8 1.67 0 .0037 0 .0148 9 .0 0.4436 4 .5
5-12 5-11 8 4 53.4 0.40 10 24($-5) 42 8.75 0 .0195 0 .0780 2 1.6 0.3821 2.2
'7 5-1 1 5-10 8 160 .5 0.40 6 -48 10.00 0 .0223 0.0891 23.1 0.3821 2.2
(/) 5-10 5-9 8 227.1 0.40 4 -52 10 .83 0 .0 24 1 0 .0965 24 .0 0 .382 1 2.2
5-9 5-1 8 255.6 1.00 3 15(S-4) 70 14 .58 0 .0325 0.1299 22 .1 0 .6042 3.5
5-1 Existing 8 195.9 1.40 1 54($-2) 125 26.04 0 .0580 0.2320 27.2 0 .7149 4 .1
n = 0.013
Refer to Section 5 construction drawings for manhol e location s .
Table 3
Castlegate Subdivision , Sections 5 & 6 and Future Development on Adjacent Property -Sewer Line Flow Data
0 Manhol e No . o f Un its From Cumulat ive Average Percent 50 % Full z Size Length Slope Peak Flow
QI Number Dwelli ng Unit Mer ging Dwelling Daily Flow Full Flow Velocity c:
:J From To (in) (ft) (%) Servi ces lines Units (gpm) (cfs) (cfs) (%) (cfs) (fps)
I() 5-16 5 -12 8 234 .9 0 .40 1 323(Sect 6 ) 324 6 7 .49 0 .1503 0 .6013 6 6 .8 0 .3821 2 .2 J,
"<f 5-15 5-14 6 3 13 .6 2.14 10 -10 2.0 8 0.0 046 0 .01 86 10.4 0.4 104 4 .2
en 5-1 4 5-9 6 173.4 1.00 5 -15 3.1 2 0 .0070 0 .0 278 15 .1 0 .2806 2 .9
M 5-8 5-7 6 31 4.4 1.98 11 -11 2 .29 0 .00 51 0 .0204 11.1 0.3948 4 .0
J, 5-7 5-2 6 113 .6 2 .15 1 -12 2 .50 0.0056 0 .0223 11.3 0 .4 114 4 .2
5-6 5-5 6 476.9 1.52 13 -13 2 .71 0 .0060 0 .0 241 12 .8 0 .3459 3 .5
5-5 5-4 8 300 .9 0 .4 0 9 -22 4 .58 0 .0 10 2 0 .0408 15.7 0 .3821 2.2
~ 5-4 5-3 8 338 .7 0 .4 0 6 -28 5 .83 0.0 130 0 .0520 17 .7 0 .3821 2 .2 en
5-3 5-2 8 234.1 0.40 6 -34 7 .08 0 .0 158 0 .0 63 1 19.4 0 .382 1 2 .2
5-2 5-1 8 373 .9 1.81 8 12(S -3) 54 11 .25 0 .0 251 0 .1002 16.8 0.81 29 4 .7
5-13 5-12 6 251.4 2.50 8 -8 1.67 0 .0037 0 .0148 9 .0 0.4436 4 .5
5-12 5-1 1 8 453 .4 0.40 10 324(S-5) 342 71 .24 0 .158 7 0 .6348 69 .6 0 .382 1 2 .2
"7 5-11 5-10 8 160.5 0 .4 0 6 -348 72.49 0 .1615 0.6459 70 .5 0.382 1 2 .2
en 5-10 5-9 8 227 .1 0 .4 0 4 -352 73 .32 0 .16 3 3 0.6533 71 .1 0 .382 1 2 .2
5-9 5-1 8 255 .6 1.00 3 15(S-4 ) 370 77 .07 0 .1717 0 .6867 74 .1 0 .6042 3 .5
5-1 Existi ng 8 195 .9 1.4 0 1 54(S-2 ) 425 88.53 0 .19 72 0 .7888 85.2 0 .71 49 4 .1
n =0.013
Re fer to Section 5 construct ion drawings for manhole locations .
Drainage R eport
for
Castlegate Subdivision -Section 6
College Station, Texas
Jul y 2005
Developer:
Greens Prairie Investors, Ltd .
By Greens Prairie Associates, L LC
4490 Castlegate Drive
College Station, Texas 778 45
(979) 690 -7250
Prepared Br:
TEXCON General Contrac tor s
I 707 Graham Road
C olle g e Station, Te xas 77845
(9 79) 7 64 -77 43
CERTCFICATION
I, Joseph P . Schultz, Licensed Professional Engin eer No. 65889, State of Texas , certify that this
report for the drainage design for the Castlegate Subdivision -Section 6, was prepared by m e
in accordance with the provisions of the City of College Station Drainage Policy and Design
Standards for the owners hereof.
TABLE OF CONTENTS
DRAINAGE REPORT
CASTLEGATE SUBDIVISION -SECTION 6
CERTIFICATION .................................................................................................................................................................. 1
TABLE OF CONTENTS ........................................................................................................................................................ 2
LIST OFT ABLES .................................................................................................................................................................. 2
INTRODUCTION .................... ~ .............................................................................................................................................. 3
GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 3
FLOOD HAZARD INFORMATION .................................................................................................................................... 3
DEVELOPMENT DRAINAGE PATTERNS ....................................................................................................................... 3
DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 3
STORM WATER RUNOFF DETERMINATION .............................................................................................................. .4
DETENTION FACILITY DESIGN ...................................................................................................................................... 6
STORM SEWER DESIGN .................................................................................................................................................... 7
CHANNEL DESIGN .............................................................................................................................................................. 8
CONCLUSIONS ..................................................................................................................................................................... 8
APPENDIX A .......................................................................................................................................................................... 9
Time of Co1tce1ttratio11 Equatio1ts & Calculations
APPENDIX B ........................................................................................................................................................................ 17
Storm Se111er Inlet Desig11 Calculations
APPENDIX C ........................................................................................................................................................................ 20
Storm Se111er Pipe & Chatmel Design Calculations
APPENDIX D ........................................................................................................................................................................ 28
Pond Area-Capacity Data, Depth-Discharge Data, & Storage Routing Analysis Parameters
APPENDIX E ........................................................................................................................................................................ 32
Storage Routing Analysis -Detention Pond No. 1
APPENDIX F ......................................................................................................................................................................... 43
Storage Routing Analysis -Dete11tio11 Pond No. 2
EXHIBIT A ............................................................................................................................................................................ 54
Pre-Develop111e11t Drainage Area Map -Detention Ponds
EXHIBIT B ............................................................................................................................................................................ 56
Post-Development Drainage Area Map -Dete11tio11 Po11ds
EXHIBIT C ............................................................................................................................................................................ 58
Post-Developm e11t Drainage Area Map -Storm Se111er Desig11
LIST OF TABLES
TABLE 1 -Rainfall Intensit y Calculations .............................................................................................. 4
TABLE 2 -Time of Concentration (tc) Equations .................................................................................. 5
TABLE 3 -Pre-& Post-Development Runofflnfonnati on -Det ention Eva lu at ion .............................. 5
TABLE 4 -Po st-Deve lopm ent Runofflnforn1ation -Storm Sewer Design ........................................... 5
TABLE 5 -Po st-Deve lopm e nt Runoff Inforn1ation -C ul ve rt No . I ...................................................... 5
TABLE 6 -Pr e-& Post-Development Peak Discharge Comparis on -De te nti on Pond Design ............. G
TABL E 7 -Summ a ry of Maximum Pond Water Levels......................... . .................................. 7
TABL E 8 -Summar y of Channe l Data ............ . ............................................ 8
DRAINAGE REPORT
CASTLEGATE SUBDIVISION -SECTION 6
INTRODUCTION
The purpose of this report is to provide the hydrological effects of the construction of the
Castlegate Subdivision -Section 6 , and to verify that the proposed sto1m drainage system
meets the requirements set forth by the City of College Station Drainage Policy and Design
Standards .
GENERAL LOCATION AND DESCRIPTION
The project is located on a po11ion of a 111.46 acre tract loc ated west of State Highway 6 along
the north side of Greens Prairie Road in Co llege Station, Texas . This report addresses Section
6 of this subdivision, which is made up of 11 . l acres . Section 6 is located adjacent to
Cast legate Section 5, and has access off of Greens Prairie Road. The site is predominantly
wooded . The existing ground elevations range from E levation 317 to Elevation 333 . The
general location of the project site is shown on the vicinity map in Exhibit A.
FLOOD HAZARD INFORMATION
The project site is located in the Spring Creek branch of the Lick Creek Drainage Basin , with a
portion in the Peach Creek Drainage Basin. Most of the proposed developed area of the site is
located in a Zone X Area according to the Flood Insurance Rate Map prepared by the Federal
Emergency Managemenc Agency (FEMA) for Brazos County, Texas and incorporated areas
dated February 9, 2000, panel number 48041C0205-D. This area is shown on Exhibit C as the
100-year floodplain limit. Also shown on this exhibit are the floodway limits as detem1ined by
the Castlegate Floodplain Artalysis Report which was previously submitted. No area of this
development lies within the Flood Hazard Area.
DEVELOPMENT DRAINAGE PATTERNS
Prior to development, the stom1 water runoff for Section 6 flows in two different directions. A
portion of the runoff flows in a northeasterly direction until it enters a tributary of Spring
Creek. Ultimate ly, this runoff flows into Spring Creek and then north to the proposed re g ional
detention facility . Refer to the vicinity map in Exhibit A for the location of this regional
detention facility. The remainder of the runoff from this site flows in a southerly direction into
the Greens Prairie Road right-of-way and then into a tributary of Peach Creek .
DRAINAGE DESIGN CRITERIA
The design parameters for the storm s e w e r and detention facility ana lysis are as fol lo w s :
• T h e Rational Method is utili z ed to d e te rmin e peak storm water runoff rat e s for th e s to rm
sewer d e si g n and the d e te nti o n fa cilit y d es ig n .
• Desi g n Storm Fre quenc y
Storm sew e r sys te m
Sto rm c ulv e rt
De te nti o n foc ilit y an a lys is
I 0 a nd I 00-yea r s torm eve nt s
2 5 and I 00 -ye ar s torm ev e nt s
5, I 0 , 25, 50 a nd I 00-yca r s torm c ,·c nt s
• Runoff Coe fficients
Pre-development
Post-development (single family residential)
c = 0.30
c = 0 .55
• Rainfall Intensity equations and values for Brazos County can be found in Table 1.
• Time of Concentration, tc -Calculations are based on the method found in the TR-55
publication. Refer to Table 2 for the equations a nd Appendix A for calculations. The
runoff flow paths used for calculating the pre-& post-development times of concentration
for the detention pond analysis are shown on Exhibits A & B, respectively , and the tlow
path used for the post-development time of concentration for the stom1 sewer desi g n is
found on Exhibit C. For smaller drainage areas, a minimum tc of l 0 minut es is used to
determine the rainfall intensity values.
STORM WATER RUNOFF DETERMINATION
The peak runoff values were determined ip accordance with the criteria presented in the
previous section for the 5, 10 , 25 , 50, and 100-year storm events. The drainage areas for the
pre-& post-development conditions for the detention pond analysis are shown on Exhibits A &
B , respectively. The drainage areas for the post-development conditions for the stom1 sewer
design are shown on Exhibit C. For the detention pond analysis, the pre-and post-development
runoff conditions are summarized in Table 3 . Post-development runoff conditions for the stotm
sewer design are summarized in Table 4 , and the design for Culvert No. l is summarized in
Table 5 .
TABLE 1 -Rainfall Intensity Calculations
Rainfall Intensity Values (in/hr)
Storm tc =
Event 10 min
Is 7.693
110 8 .635
'2s 9 .861
15-0 11 .148
1100 11.639
Brazos County:
5 )".ear storm 10 )".ear storm
b= 76 b= 80
d= 8 .5 d = 8 .5
e= 0.785 e= 0.763
I = b I (tc+d)e
I = Rainfall Intensity (in/hr)
tc = L/(V*60)
tc =Time of concentration (min)
L = Length (ft)
V = Velocity (ft/sec)
25 )"_ear storm 50 )"_ear storm 100 )".ear storm
b= 89 b= 98 b= 96
d = 8.5 d= 8.5 d= 8.0
e= 0 .754 e = 0.745 e= 0 .730
(Data take n from State Department of Hiqhwa l"_s and Public Transportation H )".dra ulic Manual, page 2-16)
TAB LE 2 -Time of Conc e ntration (tc) E quation s
The tilll e of con ce11 trn tio 11 1vas de terlll i11 ed using 111 e thods fo 11 11d in TR-55 , "Urhw1
Hy drology fo r S 111 all Wat ers heds .. , Th e equations are as f oll o ws:
T i me of Concentration :
For Sheet Fl ow:
For S h a ll ow Concentrated F low:
Tc = T 1<s 1t ce 1 n ow)+ T1<co ncc n1ra 1c<1 s 1t ee 1no"1
w h e re: T 1 =Trave l T ime , min ute s
w here: T 1 =trave l time , hours
n =M a n n ing 's ro ug hness coeffici e nt
L = fl ow length , feet
P2 = 2-year, 24-ho ur rainfa ll = 4 .5"
s = la nd s lope, ft/ft
T 1 =L I (60 *V)
w h e re: T 1 = trave l time, m in ute s
V =V e locity, fps (See F ig 3-1, App. A)
L = flo w length , feet
R efer to A pp e n dix A for calcu latio ns .
TABLE 3 -Pre-& Post-Dev elopment Runoff Information -Detention Evaluation
Area 5 year storm 10 year storm 25 year storm 50 year storm c le Area # (acres) Is Os 110 0 10 l 2s a ,s lso Oso
A 1 A , A.otal c , c , ctotat (m i n) (in/hr) (cfs) (in/hr) (cfs) (in /hr) (cfs) (i n/hr) (cfs)
Pre 101 9.47 0 9.47 0 .30 0 .55 0.30 40 .7 3.570 10.14 4.094 11 .63 4.717 13.40 5.379 15.28
Posl 201 2.53 3.26 5.79 0 .3 0 .55 0.44 43 3.444 8.79 3.953 1009 4 .557 11 .63 5.199 13 .27
Post 202 0 2.4 4 2.44 0 .30 0 .55 0 .55 14 6 .597 8.85 7.437 9 .98 8 .508 11.4 2 9.635 12.93
Post 20 1+202 --------17 .64 -20 .07 -23 .05 26 .20
TABLE 4 -Post-Dev elopment Runoff Information -Storm Sewer Design
Area 5 year storm 10 year storm 25 year storm 50 year s torm c l e
Area# (acres) Is Os 110 a ,. 125 0 25 lso 0 50
A, A 2 A.ota l c, C2 c, ••• , (min) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs)
301 0 0 .1 0 .10 0 .30 0 .55 0 .55 10 7 .6 9 3 0 .42 8.635 0.47 9 .861 0 .54 11 .148 0 .61
302 0 0.1 0 .10 0 .30 0 .55 0 .55 10 7 .693 0 .42 8 .635 0.47 9 .861 0 .54 11 .148 0 .61
30 3 1.24 2 .18 3.42 0 .30 0 .55 0.46 42 .1 3.492 5 .49 4 .007 6 .30 4 .618 7 .25 5 .268 8 .28
304 0 1.02 1 .02 0 .30 0 .55 0 .55 13 .2 6 .787 3 .81 7 .6 4 5 4 .29 8 .744 4 .9 1 9 .898 5 .55
~
305 0 0 .26 0 .26 0 .30 0 .55 0 .55 10 7 .69 3 1 .10 8 .635 1 .23 9 .86 1 1.41 11 .148 1.59 -
306 0 0 .33 0 .33 0 .30 0 .55 0 .55 10 .9 7 .4 11 1 .35 8 .327 1 .51 9 .515 1.73 10.760 1.95
307 1.1 1 .32 2.42 0 .30 0.55 0 .44 37 3 .796 4.01 4 .34 5 4 .59 5 .00 3 5 .28 5 .702 6 0 2
308 0 .79 1.72 2 .5 1 0 .30 0 .55 0.47 27 .2 4 .592 5 .43 5 .229 6 .19 6 .007 7.11 6 .8 3 1 808 --
309 0 0 .84 0 .84 0 .30 0 .55 0 .55 13 .1 6 .812 3 .15 7 .672 3 .54 8.774 4 .05 9 .932 4 .59
--I---------
310 0 0 .77 0 .77 0 .30 0 .55 0 .55 10 7 .693 3 .26 8 .635 3 .66 9 .86 1 4 .18 11 .148 4.7 2 ,_ -
311 0 .58 0 .26 0 .84 0 .30 0 .55 0 .38 10 7 .693 2 .44 8 .635 2.74 9 .86 1 3 .13 11 .148 3 .53
TABL E 5 -Pos t-D eve lo pm e nt Runoff Inform a tion -Cul ve rt No. I
S o u rce o f Fl o w
0 25 0 100
(cfs) (cfs)
Sect 5 . P h 2 De te nti o n Pond 19 2 4 ---------
Se c ti on 6 De te ntio n Pond #2 4 .5 5 .2
Dra in age Area #3 1 1 3 .1 3.7
To t a l F l ow to Cu l vert N o . 1 26 .6 32 .9
100 year storm
1100 0 100
(in /hr) (cfs )
5.628 15 .99
5.442 13 .89
10 053 13.4 9
-27 .38
1 00 year storm
11 00 0 100
(i n /hr) (cfs)
11 .639 0 .64
11 .639 0 .64
5 .5 13 8 .66
10.329 5.79
11 .639 1.66
11 .232 2 .04
5 .962 6 .30
7 .133 8.44
10 .364 4 .79
11 .639 4 .93
11 .639 3 .69
DETENTION FACILITY DESIGN
The detention facil it y handling a po11ion of the runoff from this site is a regional facil it y
designed by L.TA Engineering & Surveying, Inc. Also, a detention pond was constructed
upstream of Cast legate Drive to reduce the peak flow resulting from the Cast legate
deve lopment. The detention facility is located adjacent to Spring Creek prior to Spring Creek
entering the State Highway 6 right-of-way.
A detention facility is also needed for the runoff that flows into the Greens Prairie Road right-
of-way in the Peach Creek drainage basin .
The design storm for the detention facilities is the lOO-year storm event. The detention ponds
are located along the sou them portion of the tract adjacent to Greens Prairie Road. The peak
runoff values were determined in accordance with the criteria presented in previous sections for
the 5, 10, 25, 50 & 100-year storm events for pre-development conditions . Table 3 shows a
summary of these results . The post-development peak runoff values are also summarized in
Table 3.
The area-capacity data, the depth-discharge data, and the storage routing analysis parameters
are provided in Appendix D. The detention pond grading plan is shown in the construction
drawings.
The outlet structure for Detention Pond No . 1 is the 15" outlet pipe. The discharge pipe is 32'
in length with a design slope of 0.5% and a safety end treatment at each end. The pond outlet
structure for Detention Pond No. 2 is a concrete riser structure which is 2.5'x2.5' in size, 2'
high, and with a 2 'x2' opening at its top . There is a 5" wide opening in the front face of the
structure with its invert at Elevation 318 to control the flow . The discharge pipe is a 15"
HDPE, 48 feet in length, with a safety end treatment at the discharge end. Rock riprap will be
placed at the discharge end to control erosion. The pipe has a design slope of 0.5%. The storm
sewer piping for the detention facility outlet pipe will be HDPE pipe. The top of the pond berm
is at Elevation 321.0 .
As shown in Table 6, the peak outflows from the detention facilities are less than the allowable
peak outflow for the design stonn event. Additionally, Table 7 presents the maximum water
surface in the ponds for the 100-year stom1 event, as well as the amount of freeboard provided .
TABLE 6 -Pre-& Post-Development Peak Discharge Comparison -Detention Pond Design
Item Location I Os I 010 I 02s· I Oso I 0 100
I (cfs) I (cfs) I (cfs) I (cfs) I (cfs)
Pre-Development
A Total Discharge From Site (Drainage Area #101) I 10 .14 I 11.63 I 13 .4 0 I 15 .2 8 I 15.99
Post-Development with Ponds
81 Discharg e for Pond No . 1 ·---1 6.30 I 6.99 I 7 .84 I 8.37 I 8 .57
I I I I --
82 Discharg e for Pond No . 2 3.65 4 .02 4 .50 5.00 5 .19
8 Total Discharge for Pond No s . 1 & 2 I 9.95 I 11 .01 I 12.34 I 13 .37 I 13.76
c Decrease in Peak Runoff W i th Detention Ponds I 0.19 I 0 .62 I 1.06 I 1.91 I 2.23
1,
TABLE 7 -S u mmary of Max im u m Po n d Water Levels
Location 0100 Max. Water Surface Top of Berm Freeboard, ft.
(cfs) Eleva t ion, ft. Elev at ion, ft.
Pond #1 8.57 320.3 321 .0 0.7
Pond #2 3.73 320.4 321 .0 0.6
The peak flow out of the detention facility was detem1ined by a Storage Routin g Analysis
based on the Continuity Equation as follows: (Il+I2)+((2sl/dt)-01)=((2s2/dt)+02). The time
interval, dt, used was l minute. The calculations and results of the Storage Routin g Analysis
for Ponds l & 2 are provided in Appendix D .
As shown on Line C of Table 6, the peak runoff from the project site for the post-development
condition is less than or equal to the pre-developm ent peak flow for the site for each stonn
event.
STORM SEWER DESIGN
The storm sewer piping for this project has been selected to be Reinforced Concrete Pipe
(RCP) meeting the requirements of ASTM C-76 , Class III pipe meeting the requirements of
ASTM C-789. The curb inlets will be cast-in-place concrete.
Appendix B presents a summary of the storm sewer inlet design parameters and calculations .
The inlets were designed based on a 10-year design storm. As per College Station guidelines,
the capacities of inlets in sump were reduced by l 0% to allow for clogging.
Inlets for the residential streets were located to maintain a gutter flow depth of 5" or less. This
design depth will prevent the spread of water from reaching the crown of the road for the 10-
year storm event. Refer to Appendix B for a summary of the gutter flow depths . The runoff
intercepted by the proposed storm sewer inlets was calculated using the following equations.
The depth of flow in the gutter was determined by using the Straight Crown Flow equation.
The capacities for the inlets in sump (Inlets 1 & 2) were calculated using the Inlets in Sumps ,
Weir Flow equation with a maximum allowable depth of 7" (5" gutter flow plus 2" gutter
depression). These equations and resulting data are summarized in Appendix B . There are no
Inlets On Grade for this project. The area between the right-of-way and the curb line of the
streets will be graded as necessary to provide a minimum of 6" of freeboard above the curb
line . This wi ll ensure that the runoff from the 100-year stonn event will remain within the
street ri ght -of-way .
Appendix C presents a summary of the storm sewer pipe design parameters and calculations .
All pipes are 18" in diameter or larger. For pipes with 18" and 24" diamete rs , the cross-
sectional area is reduced by 25%, as per College Station requirements . A summary of how this
was achieved is shown in Appendix C as well. The pipes for the stonn sewer system were
designed based on the l 0-year storm event. Ba sed on the d epth of flo w in th e s tr eet d e te rmined
for th e JOO-yea r s torm even t, this runoff will b e conta ined within the street ri ght-of-way until it
enters th e sto rm sewe r system . As re quired b y Co ll ege Station , the velocity of now in th e
sto rm sewer pipe system is not lower than 2.5 feet per seco nd , and it do es no t exceed l 5 fee t
per seco nd. As the data s hows, eve n during low now condition s, th e ve loc it y in th e pipes will
exceed 2 .5 feet per seco nd and preve nt seclilll c nt build-up in the pip es. The llla x imu111 ll ow in
I
the storm sewer pipe system will occur in Pipe No. 1. The maximum velocity for the pipe
syste m in this development will be 6 .3 fe e t per second a nd will occur in Pipe No. 1. Appendix
C contains a summary of the pipe calculations as well as flow diagrams mapping the flows
through the storm sewer system for the l 0 and I 00-year events .
CHANNEL DESIGN
The stonn runoff from a portion of the street is conveyed to the tributary of Spring Creek by a
concrete and grass lin ed channel. The channel design, velocity and depth infom1ation for each
segment are summarized in Table 8 .
TABLE 8 -Summary of Channel Data
Channel 10-yr Storm 100-yr Storm
Channel Channel Height Widt h Slope Manning's
Location Lining Type n Velocity Depth Velocity Depth
Material (in) (ft) (%) (fps) (in) (fps) (in)
Segment 1 Concrete Rectangu lar 12 4 3.0 0 .014 8 .5 4.4 9 .5 5.4
Segment 2 Concrete Rectangu lar 12 4 0 .5 0 .014 4 .8 8 .2 5 .3 10 .2
Segment 3 Grass *Trapezoidal 12 9 0 .5 0 .035 2.0 7 .9 2.2 9.4
*4H:1V side slopes
Refer to Exhibit C for the limits of each segment of the channel.
CONCLUSIONS
The construction of this project will increase the storm water runoff from this site. The
proposed storm sewer system should adequately control the runoff and release it into an
existing drainage, which is a tributary of Spring Creek. As shown in the Castlegate Floodplain
Analysis, the Castlegate Subdivision does not have a significant effect on the 100-year
floodplain water surface elevations or the floodplain limits. The regional detention facility
should adequately control the peak post-development runoff so that it will not have any impact
on the properties downstream of the Crowley Tract. The increased runoff to the south into the
Greens Prairie Road right-of-way has been reduced by the proposed detention faci liti es , and
there should be no flood damage to downstream or adjacent landowners resulting from this
development.
·'·
APPENDIX A
Time of Concentration Equations & Calculations
Drainage Area #101
Sh eet Fl o w :
L= 300
n=
P=
0 .007(L *n)uo =
(P)o s*(S)o4
Concentrated Flow1: V=
L= 159
U(60*V)
Concentrated Flow2 : V=
L= 150
U (60 *V) =
Conce nt rate d Flow2 : V=
L= 233
U (60 *V) =
Tc Calculations -Pre-Development
0 .24 (dense grass)
4 .5
Elev 1=
0 .613 hours =
2 .3 fps (unpaved)
Elev 1=
1 .2 min
2.3 fps (unpaved)
Elev 1=
1.1 min
2 .5 fps (unp aved)
El ev 1=
1.6 min
40.7 min
36 .8 min
329.7 Slope = 0 .011
326.3 Slope = 0 .021
323 .2 Slope = 0.021
317 .5 Slope = 0.024
Tc Calculations -Post-Development
Drainage Area #201
Sheet Flow : n= 0.24 (dense gra ss)
P= 4 .5
L= 300 Elev 1= 333 Elev2 = 329.7 Slope= 0 .011
T1= 0 .007(L*n(0 = 0 .613 hours= 36 .8 min
(P)os*(S)o4
Concentrated Flow1 : V= 2.3 fps (unpaved)
L= 159 Elev 1= 329.7 Elev2 = 326.3 Slope=
T1= U(60*V) = 1.2 min
Concentrated Flow2 : V= 2.3 fps (unpaved)
L= Elev 1= 326.3 Elev2 = 323 '.2 Slope=
T1= U(60*V) 1.1 min
Concentrated Flow3: V=
L= Elev 1= Elev2 = Slope=
Ti= U(60*V) = 3 .2 min
Concentrated Flow4 : V= 5.2 fps (from Mannings Pipe Calculator)
L= 36 Elev 1= Elev2 = Slope=
T1 = U(60*V) = 0.1 min
Concentrated Flow5 : V= 1.4 fps (paved)
L= 52 Elev 1= 317.24 Elev2 = 317 .5 Slope= 0 .005
T1= U(60*V) = 0 .6 min
ITc= 43 .0 min
Drainage Area #202
Sh eet Flow : n= 0 .15 (short gra ss-prairi e )
P= 4 .5
L= 100 El ev 1= 326 .6 Elev 2 = 325 :5 Sl ope = 0.011
T,= 0 .007(L *n(0 = 0 .17 5 hours= 10 .5 min
(P)os*(S)oA
Concentrated Flow1 : V= 2 .9 fps (paved)
L= 218 Elev 1= Elev 2 = Slope= 0.020
T,= L/(60*V) 1.3 min
Co ncentrated Flo w 2: V= 1.9 fps (paved)
L= 167 Ele v 1= Ele v2 = Slope= 0 .008 5
T,= L/(60*V) = 1.5 min
Concentrated Flo w 3: V= 4.2 fps (from Man nings Pipe Ca lc ul ator)
L= 31 Elev ,= 3 18 .44 5 Ele v2 = 31 8.29 Slope= 0 .00 5
T,= L/(60*V) = 0.1 min
Concentrated F low4: V = 1.4 fps (paved)
L= 58 Elev ,= 3 18 .29 Ele v2 = 318 Slope= 0 .00 5
T,= L/(60*V) = 0.7 min
ITc= 14.1 m in
Dra in ag e A rea #30 3
Sheet Flow: n=
P=
L= 300 Elev ,= 33 3 Ele v2 = 329 .7 Slope= 0 .01 1
T,= 0.007 (L *nt0 0.613 hou rs= 36 .8 min
(P)os*(S)04
Concentrated Flow1: V= 2.3 fps (unpaved)
L= 159 Ele v ,= 329.7 Elev2 = 326 .3 Slope= 0.02 1
T,= L/(60*V) 1.2 min
Concentrated Flow2: V= 2 .3 fps (unpaved)
L= 150 Elev,= 326.3 Elev2 = 323 .2 Slope= 0.021
T,= L/(60*V) 1 .1 min
Co nce ntrated Flow 3 : V= 1.9 fp s (p aved)
L= 346 Elev,= Elev2 = Slope= 0 .0085
I
Ti= U (60 *V) =
Drai nage A re a #30 4
Sheet Flow : n=
P=
L= 100
Ti = 0.0 0 7(L *nt° =
(P)o s*{S)o.4
Concentrated Flow1 :
L=
Ti= U(60*V)
Conce ntrated Flow2 :
L= 167
Ti= U(60*V)
Dr a i n age Area #30 5
Sheet Flow:
L=
V=
=
V =
n=
P=
0 .007(L*n (0 =
(P)o s*(S)o.4
Concentrated Fl ow1 :
L= 138
U(60*V)
D rainage Area #306
Shee t Flow :
V=
=
n=
P=
3 .0 min
j Tc= 42 .1 min
0.15 (short grass-prairie )
4.5
Elev ,= 326 .6 Elev2 =
0 .175 hours= 10 .5 min
2.9 fps (paved)
Elev ,= Elev2 =
1.2 min
1.9 fps (paved)
Elev ,= Elev2 =
1.5 min
13.2 min
0 .1 5 (short grass-prairie)
4.5
0 .110 hours = 6 .6 min
1.8 fps (p aved )
1.3 min
7.9 mi n
0 .15 (s ho rt grass-pra iri e )
4 .5
32 5 .5 Slope = 0 .0 11
Slope = 0.020
Slope = 0 .0085
Slope= 0 .0 11
326 Slope = 0 .012
L= 90 Ele v 1= 326 .6 Elev 2 = 325 .6 Slope= 0 .011
I Ti= 0 .007 (L*n(0 = 0 .160 hours= 9 .6 min
(P)os *(S)o.4
Concentrated Flow1 : V= 1.8 fps (paved)
L= 136 Elev 1= Elev2 = Slope= 0 .008
Ti = U(60*V) 1.3 min
ITc= 10 .9 min
Drainage A re a #30 7
Sheet Flow: n= 0.24 (de nse grass )
P= 4 .5
L= 300 Elev1= 336 .2 Elev2 = 332 .2 Slope= . 0 .01 3
Ti = 0 .007(L*nt°0 = 0 .568 hours= 34 .1 min
(P )os*(S)o.4
Concentrated Flow1 : V= 2.4 fps (unpaved)
L= 44 Elev 1= 332.2 Elev2 = 331 .2 Slope= 0 .023
Ti= U(60*V) = 0.3 mi n
Co nc entrated Flow2 : V= 2 .6 fps (unpaved )
L= Elev 1= 0 .027
Ti= U(60*V ) = 1.1 min
Concentrated Flow3 : V= 1.8 fps (paved)
L= 158 Elev 1= Elev2 = Slope= 0 .0075
Ti= U(60*V) = 1.5 min
ITc= 37 .0 min
Dr a inag e Area #30 8
Sheet Flow : n= 0.24 (d ense grass)
P= 4 .5
L= 208 El ev 1= 336 .3 Elev 2 = 332 .8 Slo pe= 0 .017
T1= 0.0 07(L *nt°0 = 0 .386 ho ur s= 23 .2 min
(P)o s*(S)o.4
Concentrated Flow1: V= 2 .3 fps (unpaved)
L= 163 Elev 1= 332.8 Elev2 = 329.5 Slope= 0.020
Ti= L/(60*V ) 1.2 min
Concentrated Flo w2 : V= 1.8 fps (paved)
L= 303 Elev 1= Elev2= Slope= 0.0075
T1= L/(60*V) = 2.8 min
I Tc= 27 .2 mi n
Dra inage A rea #3 09
I Sheet Flow: n= 0.15 (short grass-prairie)
P= 4.5
I L= 92 Elev 1= Elev2= Slope = 0.010
Ti= 0.007(L *n)°0 = 0.170 hours= 10.2 min
I (P)o s*(S)oA
Concentrated Flo w 1: V= 1.8 fps (paved)
L= 310 Elev,= O Elev2 = Slope= 0.008
Ti= L/(60*V) = 2.9 min
ITc= 13.1 min
Drai n age A re a #310
Sheet Flow: n= 0 .15 (short grass-prairie)
P= 4.5
L= 63 Elev 1= Elev2 = Slope= 0.010
Ti= 0 .007(L *n)°0 = 0 .126 hours= 7.6 min
(P)os*(S)oA
Concentrated Flow1 : V= 1.8 fps (unpaved)
L= 197 Elev 1= 325 Elev 2 = 32 2 .5 Slope= 0.013
Ti= L/(60*V) 1.8 min
I Tc= 9.4 min
....
'+--....
'+-
QJ
a.
0 .-
VI
QJ
VI s... ::::s
0 u s...
QJ .....
"' :JC
I
3 -2
.so
.20 -
.10
.06
.04
.02 -
.01 -
.005
I
1
j
J
I
J
I
I
'
J .
b
CZ,[-bl ~ CZ,
"" ~j ~"" .::) j
I
J
I
I
I
2
)
'
.
]
'
'
I
I
4
j
' "
I
I
j
I
I
6
J
'i
J
' IJ
Average velocity, ft/sec
... .
{2 10-Vl -TR-55 . Second Ed ., June L98Gl
~
I I
10
. . .
j
I
I
I
. .
I
I
20
I
I
I
APPENDIXB
Storm Sewer Inlet Design Calculations
I
Castl egate -Section 6
Gutter Depth Check C a l cu l ations
(Refer to Exh ibit C for Gutter Locations)
Gutter A Slope
Location c
Area# (acres) (fUft)
A1 303 3.42 0 .46 0 .0084
---------
A2 301 0 .10 0 .55 0 .01 68
t c
(min)
42.1
-
10 .0 ----·------
A3 304 1.02 0 .55 ----------
A4 302 0 .10 0 .55
-------
81 308 2 .5 1 0.47
------------
82 307 2.42 0 .44 -------
8 3 309 0 .84 0 .55
·-·---------
8 4 306 0 .33 0 .55
T ransve rse (C rown) slope (ft/ft)
27' street = 0.0 330
0.00 84 13.2
----------
0.01 68 10 .0 --------
0 .007 5 27 .2 -------
0 .0075 37 .0 --··-
0 .0075 13 .1 ----
0.00 75 10 .9
10-year storm
110 010 Y 10-actu al
(in/hr) (cfs) (ft) (in)
4.007 6 .30 0 .374 4.49
- -
8 .635 0 .47 0 .125 1.50 -
7 .645 4 .29 0.324 3.89 ---------
8 .635 0 .4 7 0.125 1.50 -------
5 .229 6 .19 0.380 4 .56 ------
4 .345 4 .59 0.340 4 .08
------
7 .672 3.54 0 .308 3.70 --
8 .327 1.51 0 .224 2.69
Straight Crown Flow (Solved t o find actu al depth of flow in gutter, y):
Q = 0.56 * (z/n) * S 112 * y813 ¢ y ={QI [0 .56 * (z/n) * S 112
]}
31 8
n = Ro ughness Co effic ie nt = 0 .0 18
S = Street/G utter Slo pe (ft/ft)
y = Dep th of fl ow at inl et (ft)
z = R eciproca l of crown slope :
27' stree t = 30
Spread o f 100-year storm
Water10 1100 0 100 Y100
(ft) (i n/hr) (cfs) (ft) (i n)
11 .35 5.513 8 .66 0.422 5.06
3.78 11.639 0 .64 0 .140 1.67
·-
9 .83 10 .329 5 .79 0 .363 4 .36 -------
3.78 11 .639 0 .64 0 .140 1.67 -- ----
11 .52 7.133 8.44 0.427 5 .12 -------
10 .30 5.962 6 .30 0 .383 4 .59 --·---
9.35 10 .364 4 .79 0 .345 4 .1 4 ----··------
6.79 11 .23 2 2 .04 0 .25 1 3 .0 1
Castlegate Secti on 6
Inl et Length Calculations
Inlets In Sump
Inlet# Length
flow from A c
ArH # (a cres)
303 3.42 0.46
I 10' --------301 0 .10 0 .55
2 5' 304 1.02 0 .55 --------302 0 .10 0 .55
Trans verse lCrownl slope ffVftl
for 27' street= 0 .033
Straight Crown Flow fSolve d to find actual depth of flow yl·
Q ,.
(els) (els)
6.30 0 .00
0.47 0.00
4 .29 0,00
0 .47 0.00
a· o .56 • (zin) • s"' · v"'"' v • 101 {0 .56 • (zin) • s •~n ~•
n = Roughness Coefficient :: 0 .018
S = StreeVGutter Slope (fVft)
v = Depth of flow at inlet (f\)
Capacity of Inlets o n grade :
Oc = 0 .7 . (1/(H, • H2)] '(H,"'· H2"'J
Oc = Flow capacily of inle t (cfs)
H 1 =a+ y
H2 =a =gutter depression (r Standard ; 4" Recessed)
y = Depth of flow 1n approach gutter (ft)
10yearstorm
<le....,._. °'-Or.-,.,,
fromlntet# (els) (els)
6 .30 6.92
0 .47 0.52
4.29 4.72
0 .47 0.52
(ft)
0.300
0.114
0.260
0.114
y,._.... L1Mt~·4 L,._.... o, ..
(In) (ft) (ft) (els) (els)
3.60 5 .58 10 8 .66 0 .00
1.37 0 .84 0 .00
3.12 3 .92 5 5 .79 0 .00
1.37 0 .64 0 .00
• .. 1nrg,_•r•o.su ·
z = Reciprocal of crown slope
for 27' street = 30
Inlets In sumps Weir Flow:
L. a I (3 • v"'I "' y. (Q I 3L)213
L = Length of inlet opening (ft)
Q =Flow at inlet (cfs)
y = total depth of flow on inlet (ft)
ma x y for inlet in sump = r = 0.583'
100 yeu storm
O...., .. w o,..., QT.._..tft v ...
from lntet ·# (els) (cfs) (ft) (in)
8 .66 9 .53 0.488 5 .86
0 .64 0 .70
5.79 6.37 0.606 7.27
0 ,64 0.70
I
I
I
APPENDIXC
Storm Sewer Pipe & Channel Design Calculations
_'II
Castlegate Subdivision
Section 6
P i pe Calculations
Inlet Outlet 1 O year storm 100 year storm -Culvert Calculator Data
Pipe# Size Length Slope
Invert Elev Invert Elev * Actua I Flow Design Flow V10 Travel Time , Im *Actual Flow Design Flow
%Full
(in) (ft) (%) (ft) (ft) (cfs) (cfs) (fps) (sec) (min) (cfs) (cfs)
1 2-18 30.0 1.10 318.12 317 .79 6.77 10 .93 5.9 52.0 5 0 .08 9 .30 15 .02
---
2 18 23 .8 0 .60 318.48 318.34 4.76 7 .69 4 .9 83 .7 5 0 .08 6 .43 10 .38
'These values reflect the actual flow for the 18" & 24" pipes. The design flow for these pipe sizes reflects a 25% reduction in pipe area .
(Refer to attached calculation for spec ific information.)
V1 00 Top of Inlet HW Elev
(fps) (ft) (ft)
6 .3 321 .0 319 .8 ------
5.9 321 .0 320 .8
Pipe 1 -10 Year Storm
Manning Pipe Calcu lator
Given Input Dat a:
Shape .......................... .
Solving fo r .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow vel ocity ............. .
Circular
Depth of Flow
18 .0000 in
5 .47 00 cfs
0.0llO ft/ft
0 . 0140
9.3661 in
1.7671 ft2
0.9293 ft2
29 .0068 in
56.5487 in
5.8860 fps
4.6135 in
52.0340 %
10.2301 cfs
5.7891 fps
Pipe 1 -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Nu mber ................... .
Chart Descr i ption
ENTRANCE
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning' s n .................... .
Roadway Elevation .............. .
Inlet Eleva tion ................ .
Outlet Elev ation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Result s:
Headwater ...................... .
Slope .......................... .
Ve l ocity ....................... .
Castlega t e S u bdi v isi on
Col Jege S ·a t :io11 , TE::· .. •'
Seel i o n 6
Circular
2
Headwater
1
1
CONCRETE PIPE CULVERT; NO BEVELED RING
SQUARE EDGE EN TRANCE WITH HEADWALL
Off
15 .0200 cfs
0 . 0140
321.0000 ft
318 .12 00 ft
317.7900 ft
18 .0000 in
30 .0000 ft
0 .0000
1.5000 ft
319.8406 ft Inlet Control
0 .0llO ft/ft
6.3293 fps
Pipe 2 -10 Year Storm
Manning Pipe Calculator
Given Input Data :
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
18.0000 i n
7.6900 cfs
0.0060 ft /ft
0 .0140
15.0603 in
1 .7671 ft2
1.5792 ft2
41. 5720 in
56.5487 in
4.8697 fps
5.4700 in
83.6685 %
7.5554 cfs
4 .275 5 fps
Pipe 2 -100 Year Storm
Culvert Calculator
Entered Data :
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description
ENTRANCE
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning's n .................... .
Roadway Elev ation .............. .
Inlet Elevation ................ .
Outlet Elev ation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Castlegate S u bdi vi s i on -Sectio n 6
Cul lege St .--it iun, Ie;·:.i~:
Circular
1
Headwater
1
1
CONCRETE PIPE CULVERT; NO BEVELED RING
SQUARE EDGE ENTRANCE WITH HEADWALL
Off
10 .3800 cfs
0 . 0140
321 .000 0 ft
318.4800 ft
318.3300 ft
18 .0000 in
25 .0000 ft
0 .0000
1.5000 ft
320.8537 ft Inlet Control
0.0060 ft/ft
5 .8739 fps
Concrete Chann el -10 Year Storm -Segment 1
Channel Cal c u lator
Gi ven Input Da ta :
Shape .......................... .
Solving for .................... .
Flowrat e ....................... .
Slope .......................... .
Manning's n .................... .
Height ......................... .
Bottom width ................... .
Computed Results :
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hy draulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent ful 1 ................... .
Rectangular
Depth of Flow
12 .5300 cfs
0.0 300 ft/ft
0.0140
1 2.0000 in
48.0000 in
4 .4416 in
8 .463 1 fps
56.1199 cfs
1.4805 ft2
56.8833 in
3.7480 in
48.0000 in
4.0000 ft2
72.0000 in
37 .0 136 %
Concrete Channel -100 Year Storm -Segment 1
Channel Calculator
Giv en Input Data :
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Rectangular
Depth of Flow
17.1900 cfs
0 .0300 ft /ft
Manning's n . . . . . . . . . . . . . . . . . . . . . 0.0140
Height . . . . . . . . . . . . . . . . . . . . . . . . . . 12.0000 in
Bottom width .................... 48.0000 in
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow a re a ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Cast legate S ubdi ·.:isio11
•:., I I c·~1<:: :; tat i on , Tc·;-:, 1:
Section ··
5 .4445 in
9.4720 fps
56.1199 cfs
1 .8148 ft2
58.8890 in
4 .4378 i n
48.0000 in
4.0000 ft2
72 .0000 in
45.3707 %
Concrete Channel -10 Year Storm -Segment 2
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bottom width ................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Rectangular
Depth of Flow
13. 1500 cfs
0.0050 ft/ft
0 .0140
12.0000 in
48.0000 in
8.2278 in
4.7947 fps
22.9109 cfs
2.7426 ft2
64.4556 in
6.1272 in
48.0000 in
4.0000 ft2
72.0000 in
68.5649 %
Concrete Channel -100 Year Storm -Segment 2
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Rectangular
Depth of Flow
18 .0400 cfs
0.0050 ft/ft
Manning's n ..................... 0.0140
Height . . . . . . . . . . . . . . . . . . . . . . . . . . 12 . 0000 in
Bottom width . . . . . . . . . . . . . . . . . . . . 48.0000 in
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Cast l egate Subdl~islon
Co I., ,,.'.J( ~;L ,'1t. i c.11, Te;-:,,,,
Sec ti o n 6
10.1837 in
5.3144 fps
22.9109 cfs
3.3946 ft2
68.3674 in
7.1499 in
48.0000 in
4.0000 ft2
72.0000 in
84.8640 %
Grass Channel -10 Year Storm -Se gm ent 3
Channel Ca l culator
Given Input Data :
Shape .......................... .
So l vi ng for .................... .
Flowrate ....................... .
Sl ope .......................... .
Ma nning ' s n .................... .
Height ......................... .
Bottom width ................... .
Le ft slope ..................... .
Right slope .................... .
Computed Results :
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trap ezoi dal
Depth of Flow
14 .990 0 cfs
0 .005 0 ft/ft
0.035 0
12 .0000 in
108.0000 in
0 .2500 ft/ft (V/H)
0.2500 ft/ft (V/H)
7.8757 in
1 .9647 fps
32.3 255 cfs
7 .6297 ft2
17 2 .9 44 7 in
6 .3 528 in
171.0056 in
13 . 0000 ft2
206.9545 in
65 .6309 %
Grass Channel -100 Year Storm -Segment 3
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Peri met er ...................... .
Percent full ................... .
Castlegate S ubdi visjon -Sect i on G
Co!Jegc St:at.i.o n, 'l'e>:ci:=·
Trapezoidal
Depth of Flow
20.5600 cfs
0.0050 ft/ft
0.0350
12 .000 0 in
108.0000 in
0.2500 ft/ft (V/H)
0.2 500 ft/ft (V/H)
9 .3822 in
2 .16 83 fps
32.3255 cfs
9 .48 19 ft2
185 .3680 in
7 .36 58 in
183.0580 in
13. 0000 ft2
206.9545 in
78.1854 %
Cul v er t (2-24 " Pipe s) - 2 5 Ye a r Storm
Cul ve r t Ca lcul ator
Ente r ed Data :
Shape .......................... .
Numb e r of Ba rre ls .............. .
S o l v ing f or .................... .
Cha r t Numb er ................ .
Sca l e Nu mbe r ................ .
Chart Descrip ti on ........... .
Scale Des cr iption .............. .
Ov ertopp i ng .................... .
Flowrate ....................... .
Manning' s n .................... .
Roadway Elev ation .............. .
Inlet Elev at i on ................ .
Outlet Elevat i on ............... .
Diamete r ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwate r ...................... .
Computed Results :
Headwate r ...................... .
Slope .......................... .
Velocity ....................... .
Ci r cu l a r
2
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE , PIPE PROJECTING FROM FILL
Off
26 .6 0 00 cfs
0. 0140
321.0000 ft
317.3000 ft
316.8200 ft
24.0000 in
96.0000 ft
0 .2000
2 .0000 ft
319.5372 ft Outlet Cont r o l
0 .0050 ft/ft
4 .2335 fps
Culvert (2 -2 4" Pipes) -100 Year Storm
Culvert Calculator
Entered Data :
Shape .......................... .
Number of Ba r r els .............. .
Solving f or .................... .
Chart Numb e r ................... .
Scale Numbe r ................... .
Chart De scripti on .............. .
ENT RANCE
FILL
Scal e Des c r iption
Ove r topp i ng .................... .
Flowrate ....................... .
Manning' s n .................... .
Roadwa y E l evation .............. .
I nl e t E levat ion ................ .
Ou t l e t El evation ............... .
Diame te r ....................... .
Leng t h .................... .
En t ra n ce Loss ...
Tailwater ...
Computed Results:
Head water .... .
Slope ........ .
Velocity ..... .
Castlega t e Subdivis i o n
Colle-:i e St21L.ic•11, ·;c:·~.:'~"
-Sect i o n 6
Circular
2
Headwater
1
3
CONCR ETE PI PE CULVERT ; NO BEVELED RING
GROOVE EN D ENT RANCE, PIPE PROJECTING FROM
Off
32 .9000 cfs
0. 0140
3 21 .0000 ft
317 .3000 ft
31 6.8200 ft
24.0000 in
96.0 000 ft
0 .200 0
2.0000 f t
3 1 9.9172 ft Outlet Control
0.0050 ft/ft
5.2362 fps
APPENDIXD
Pond Area-Capacity Data, Depth-Discharge Data, & Storage Routing Analysis Parameters
cti on 6 Castlegate Subdiv i sion -Se
Detention Ponds
Pond Area-Capacity Data with Propo sed Contours
V = H * {[A1+A2 + (A1 *A2)112] / 3}
V = volume, ft 2
A= area . rt2
H = difference in elevat ion, ft
Detention Pon d 1
Area -Ca p acit Data
Elevation Depth Area Area Volume Cumulative
Volume
(ft) ft) (ft2) (acres) (ft3) (ft3)
317.50 0 .00 0.00 0 0 0
318 .00 0 .50 1,014.48 0 .0233 169 .08 169 .08
319 .00 1.50 6,0§1 .94 0 .1392 3, 185.43 3,354 .51
320 .00 2 .50 11 ,700.44 0 .2686 8 ,728 .07 12 ,082 .58
321 .00 3.50 15 ,715 .60 0 .3608 13,658.75 25 ,741 .33
Detention Pond 2
A rea -Ca a cit Data
E levation Depth Area Area Volume Cumulative
Volume
(ft) ft) (ft2) acres) (ftJ) (ft3)
318 .00 0.00 0 .00 0 0 .00 0
319 .00 1.00 2,264 .52 0 .0520 679 .36 679 .36
320 .00 2.00 9,013.29 0 .2069 5,418 .05 6,097 .40
321 .00 3.00 11,576.91 0 .2658 14,659 .60 20 ,757 .01
-
90% Cumulative
V o lume
(ftJ)
0.00
152 .17
3,019.06
10 ,874 .32
23,167 .20
90% Cumulative
V o lume
(ftJ)
0 .00
6 11 .42
5,487.66
18,681.31
Elevation
ft
318.00
319.00
320.00
321 .00
Castlegate Subdivision -Section 6
Detention Ponds
Outlet Structure Depth-Discharge Data
Detention Pond 1
Elevation Depth
ft) (ft)
317 .50 0 .00
318.00 0 .50 ---------319.00 1.50 ------·-------
320.00 2 .50
321 .00 3 .50
---------~ Outlet Structure
15" HOPE Pipe
@0 .5%
Q, (cfs)
0 .00 -· -----------0 .88
4 .93
7 .95
10.05
Detention Pond 2
----~----4 5" Wide 15" HOPE Max Flow
Depth Weir Opening Pipe @ 0 .5% Out of
Q Q Structure
(ft) (cfs) (cfs) (cfs)
0.00 0 .00 0 .00 0.00
-----11-----1
1.00 1.23 2 .83 *1 .25
2.00 3 .53 6.63 *3 .53
3.00 9 .05 **9.05
Outlet Structure Information -See Next Sheet
*Weir limits flow
•• Pipe limits flow
Castlegate Subdivision -Section 6
Detention Ponds
Storage Routing Analysis Parameter s
t=60s
Detention Pond No. 1
Elevation Depth Dis c h arge
Q, cfs
317 .50 0.00 0 .00 -·-----318 .00 318 .00 0.88 ----------319 .00 319 .00 4 .93
320.00 320 .00 7 .95 ·--·--321.00 321 .00 10.05
15" Outlet Pipe
t=60s
Detention Pond No. 2
Elevation Depth Discharge
Q, cfs
318 .00 0 .00 0.00
319 .00 1.00 1.25
320 .00 2.00 3.53
321 .00 3 .00 9.05
15" Outlet Structure
2.5'x2.5' Concrete Riser
Inlet Elev . = 318.0
Top Elev .= 320.0
5" Wide Opening in Front
Storage
S, cf
0.00
152 .17
3,019.06
10 ,874 .32
23 ,167.20
Storage
S,C
0 .00
611.42
5,487 .66
18,681 .31
2 s/t
0.00
5.07
100 .6
362.4
772 .2
2 s/t
0 .00
-
4
8
4
20 .3 8
182 .9 2
622 .7 1
-
2 s/t + 0
0.00 -·-·---5.95 -----105.57 ·---370.43 --782.29
2 s/t + 0
0.00
21.63
186.45
631 .76
APPENDIX E
Storage Routing Analysis -Detention Pond No. 1
I
Storage Routing Analysis
Detention Pond 1
5-Year Storm Event
Time Inflow 11+12 Outflow
(min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs)
0 0 .00 0 .00 0 .00 0 .00 0 .00
1 0 .20 0 .20 0.14 0 .20 0.03
2 0.41 0 .61 0 .53 0.76 0 .11
3 0 .61 1.02 1.10 1.56 0 .23
4 0 .82 1.43 1.78 2 .53 0 .37
5 1.02 1.84 2 .55 3 .62 0 .54
6 1.23 2.25 3.38 4.80 0.71
7 1.43 2 .66 4.27 6 .04 0 .88
8 1.64 3 .07 5.46 7 .33 0 .94
9 1.84 3.48 6.93 8 .94 1.00
10 2.04 3 .88 8 .66 10 .82 1.08
11 2.25 4 .29 10 .63 12 .96 1.16
12 2.45 4.70 12 .80 15 .33 1.26
13 2.66 5.11 15 .18 17 .92 1.37
14 2.86 5 .52 17.74 20 .70 1.48
15 3 .07 5 .93 20.47 23 .67 1.60
16 3 .27 6 .34 23 .35 26 .81 1.73
17 3.48 6 .75 26 .37 30 .10 1.86
18 3 .68 7.15 29 .53 33.53 2 .00
19 3.88 7 .. 56 32.80 37 .09 2 .15
20 4 .09 7.97 36 .18 40 .77 2 .30
21 4 .29 8 .38 39 .66 44.56 2.45
22 4 .50 8 .79 43 .23 48.45 2.61
23 4 .70 9 .20 46 .89 52.43 2 .77
24 4 .91 9 .61 50.63 56 .50 2 .94
25 5.11 10 .02 54.44 60 .65 3 .10
26 5.31 10.43 58 .32 64 .87 3 .28
27 5.52 10 .83 62.25 69 .15 3.45
28 5.72 11 .24 66.24 73.49 3 .63
29 5.93 11 .65 70.28 77 .89 3 .80
30 6.13 12.06 74.37 82 .34 3 .99
31 6.34 12.47 78 .51 86 .84 4 .17
32 6.54 12 .88 82 .68 91 .38 4.35
33 6 .75 13.29 86.89 95 .96 4.54
34 6 .95 13.70 91 .13 100.58 4 .73
35 7 .15 14 .10 95.40 105 .23 4 .92
36 7.36 14 .51 99 .95 109 .91 4.98
37 7.56 14 .92 104.80 114.88 5.04
38 7.77 15 .33 109 .94 120.14 5.10
39 7.97 15 .74 115.37 125.68 5.16
40 8.18 16 .15 121 .06 131 .51 5.23
41 8 .38 16 .56 127 .03 137 .62 5.30
42 8 .59 16 .97 133 .26 144 .00 5.37
43 8.79 17 .38 139.75 150 .64 5.44
44 8 .69 17.48 146 .19 157.23 5.52
45 8 .59 17 .27 152.28 163.46 5.59
Storage Routing Analysis
Detention Pond 1
5-Year Storm Event
Time Inflow 11.:tR-Outflow
(min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs)
46 8.48 17 .07 158 .04 169 .35 5 .66
47 8 .38 16 .86 163.46 174 .90 5.72
48 8 .28 16 .66 168 .56 180 .12 5 .78
49 8 .18 16.46 173.34 185 .01 5.84
50 8 .07 16 .25 177 .82 189.59 5.89
51 7 .97 16.05 181 .99 193 .87 5.94
52 7.87 15.84 185.87 197.83 5.98
53 7 .77 15 .64 189.46 201 .51 6 .02
54 7.67 15.43 192 .77 204 .89 6 .06
55 7.56 15 .23 195.80 208 .00 6 .10
56 7.46 15 .02 198 .57 210.83 6.13
57 7.36 14.82 201 .07 213.39 6.16
58 7 .26 14.62 203 .31 215 .68 6 .19
59 7 .15 14.41 205 .31 217 .72 6.21
60 7.05 14.21 207 .06 219 .51 6.23
61 6.95 14 .00 208 .56 221 .06 6 .25
62 6 .85 13 .80 209 .84 222 .36 6 .26
63 6 .75 13.59 210 .89 223.43 6 .27
64 6 .64 13 .39 211 .71 224 .27 6 .28
65 6 .54 13.19 212 .31 224 .89 6 .29
66 6.44 12.98 212 .70 225 .29 6.30
67 6 .34 12.78 212.88 225.48 6.30
68 6 .23 12 .57 212 .86 225.46 6.30
69 6 .13 12.37 212 .64 225 .23 6.29
70 6 .03 12.16 212.22 224 .80 6.29
71 5.93 11 .96 211 .62 224 .18 6 .28
72 5.83 11 .75 210 .83 223 .37 6.27
73 5 .72 11 .55 209 .85 222 .37 6 .26
74 5.62 11 .35 208.70 221 .20 6 .25
75 5.52 11.14 207.37 219 .84 6 .23
76 5.42 10 .94 205.88 218 .31 6 .22
77 5.31 10 .73 204 .22 216 .61 6 .20
78 5.21 10 .53 202.40 214.75 6.17
79 5.11 10 .32 200.42 212 .72 6.15
80 5 .01 10.12 196 .28 210 .54 6 .13
81 4 .91 9 .91 196 .00 208 .20 6 .10
' 82 4.80 9 .71 193 .56 205 .71 6 .07
83 4.70 9 .51 190.98 203 .07 6.04
84 4 .60 9 .30 188 .27 200 .29 6 .01
85 4 .50 9 .10 185.41 197 .36 5 .98
86 4 .39 8 .89 182.42 194 .30 5 .94
87 4 .29 8 .69 179 .29 191 .11 5.91
88 4.19 8.48 176 .04 187 .78 5 .87
89 4 .09 8 .28 172 .67 184 .32 5 .83
90 3.99 8 .07 16 9.17 180.74 5 .79
Storage Routing Analysis
Detention Pond 1
10-Year Storm Event
Time Inflow 11+12 Outflow
(min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs)
0 0 .00 0 .00 0 .00 0 .00 0 .00
0 .23 0 .23 0 .17 0.23 0.03
2 0.47 0.70 0 .61 0 .87 0.13
3 0 .70 1.17 1.26 1.79 0 .26
4 0 .94 1.64 2.04 2 .90 0.43
5 1.17 2.11 2 .93 4.15 0.61
6 1.41 2 .58 3 .88 5.51 0 .81
7 1.64 3 .05 5.09 6 .93 0 .92
8 1.88 3 .52 6 .63 8 .61 0 .99
9 2 .11 3 .99 8.48 10 .62 1.07
10 2 .35 4.46 10 .61 12 .94 1.16
11 2.58 4.93 13 .00 15 .54 1.27
12 2 .82 5.40 15 .62 18.40 1.39
13 3.05 5.87 18.47 21.49 1.51
14 3 .29 6 .34 21 .51 24.80 1.65
15 3 .52 6 .80 24 .74 28.31 1.79
16 3 .75 7 .27 28 .13 32 .01 1.94
17 3.99 7 .74 31 .68 35.87 2 .10
18 4 .22 8 .21 35 .37 39 .89 2 .26
19 4.46 8 .68 39 .20 44 .06 2.43
20 4.69 9.15 43.14 48 .35 2 .60
21 4.93 9 .62 47 .20 52 .76 2.78
22 5.16 10 .09 51.35 57.29 2 .97
23 5.40 10.56 55 .60 61 .91 3 .16
24 5.63 11 .03 59 .94 66 .63 3 .35
25 5.87 11.50 64 .35 71.43 3 .54
26 6.10 11 .97 68 .84 76 .32 3.74
27 6 .34 12.44 73 .39 81.27 3 .94
28 6 .57 12.91 78 .00 86.29 4 .15
29 6 .80 13.38 82 .67 91 .38 4.35
30 7 .04 13 .84 87 .39 96 .51 4.56
31 7 .27 14 .31 92 .16 101.70 4.77
32 7 .51 14.78 97.05 106 .94 4.95
33 7 .74 15.25 102 .29 112.30 5.01
34 7.98 15 .72 107.87 118 .01 5.07
35 8 .21 16.19 113 .78 124 .06 5.14
36 8.45 16 .66 120 .01 130.44 5.21
37 8 .68 17 .13 126 .56 137 .14 5.29
38 8 .92 17 .60 133.42 144 .16 5.37
39 9 .15 18 .07 140 .58 151.49 5.45
40 9 .39 18 .54 148 .04 159 .12 5 .54
41 9 .62 19 .01 155 .78 167 .04 5.63
42 9.86 19.48 163 .81 175 .26 5.72
43 10 .09 19.95 172 .11 183 .75 5.82
44 9 .97 20 .06 180 .34 192 .17 5.92
I 45 9.86 19 .83 188 .15 200.17 6 .01
Storage Routing Analysis
Detention Pond 1
10-Year Storm Event
Time Inflow 11+12 Outflow
(min.) (cfs) (cfs) 2s/t-0 2s/t+O (cfs)
46 9.74 19 .59 195 .55 207.74 6 .09
47 9 .62 19 .36 202.56 214 .91 6.18
48 9 .50 19 .12 209.17 221 .68 6 .25
49 9 .39 18 .89 215.41 228 .06 6 .33
50 9 .27 18 .65 221 .27 234 .06 6.40
51 9 .15 18.42 226 .78 239 .69 6.46
52 9 .03 18 .19 231 .92 244 .96 6 .52
53 8 .92 17 .95 236 .72 249 .87 6 .58
54 8.80 17 .72 241 .18 254.44 6 .63
55 8 .68 17.48 245 .31 258 .66 6 .68
56 8 .56 17.25 249 .12 262.56 6 .72
57 8.45 17 .01 252 .61 266.13 6 .76
58 8 .33 16 .78 255 .79 269 .39 6.80
59 8 .21 16 .54 258 .67 272 .34 6.83
60 8 .10 16 .31 261 .26 274 .98 6 .86
61 7 .98 16 .07 263 .55 277.33 6 .89
62 7 .86 15 .84 265 .57 279 .39 6 .91
63 7 .74 15 .60 267 .31 28 1.17 6.93
64 7 .63 15 .37 268 .78 282 .68 6 .95
65 7 .51 15 .14 269 .99 283 .91 6.96
66 7 .39 14 .90 270.94 284 .89 6 .97
67 7.27 14 .67 271 .64 285.60 6 .98
68 7 .16 14.43 272 .09 286.07 6 .99
69 7 .04 14 .20 272 .31 286.29 6 .99
70 6 .92 13 .96 272 .29 286.27 6 .99
71 6 .80 13 .73 272 .04 286.02 6 .99
72 6.69 13.49 271 .57 285.53 6 .98
73 6.57 13 .26 270.88 284.83 6 .97
74 6.45 13 .02 269 .98 283.90 6.96
75 6 .34 12 .79 268 .86 282 .77 6 .95
76 6 .22 12 .55 267 .55 281.42 6 .94
77 6.10 12 .32 266 .03 279 .87 6 .92
78 5 .98 12 .08 264 .32 278 .12 6.90
79 5 .87 11 .85 262.42 276 .17 6 .88
80 5 .75 11 .62 260 .33 274 .04 6 .85
81 5 .63 11 .38 258 .07 271 .72 6 .82
82 5 .51 11 .15 255 .62 269 .21 6 .80
83 5.40 10 .91 253 .00 266 .53 6 .77
84 5.28 10 .68 250 .21 263 .68 6 .73
85 5.16 10.44 247 .26 260 .65 6.70
86 5.05 10 .21 244 .14 257.47 6 .66
87 4.93 9 .97 240 .87 254 .11 6 .62
88 4 .81 9 .74 237.44 25 0 .60 6.58
89 4 .69 9 .50 233 .86 24 6 .94 6 .54
90 4 .58 9 .27 230 .13 243 .13 6 .50
Storage Routing Analysis
Detention Pond 1
25-Year Storm Event
Time Inflow 11+12 Outflow
(min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs)
0 0 .00 0 .00 0 .00 0 .00 0 .00
0 .27 0 .27 0 .19 0.27 0.04
2 0 .54 0 .81 0 .71 1.00 0 .1 5
3 0 .81 1.35 1.45 2.06 0 .30
4 1.08 1.89 2 .35 3 .34 0.49
5 1.35 2.43 3 .37 4 .79 0 .71
6 1.62 2 .98 4 .55 6 .35 0 .90
7 1.89 3 .52 6 .14 8.07 0.97
8 2 .16 4 .06 8 .09 10.20 1.05
9 2.43 4 .60 10 .38 12 .69 1.15
10 2 .70 5 .14 12 .98 15 .52 1.27
11 2 .98 5.68 15 .87 18 .66 1.40
12 3 .25 6 .22 19 .02 22 .09 1.54
13 3 .52 6.76 22.41 25 .78 1.69
14 3 .79 7.30 26 .02 29.71 1.85
15 4 .06 7.84 29 .83 33 .86 2 .01
16 4 .33 8 .38 33 .83 38.21 2 .19
17 4.60 8 .93 38 .00 42.76 2 .38
18 4 .87 9.47 42 .33 47.47 2 .57
19 5 .14 10.01 46 .81 52 .34 2.77
20 5.41 10 .55 51.42 57 .36 2 .97
21 5.68 11 .09 56 .15 62.51 3.18
22 5.95 11.63 60 .99 67.78 3 .39
23 6 .22 12 .17 65 .94 73.16 3.61
24 6.49 12.71 70 .98 78 .65 3 .84
25 6.76 13.25 76 .11 84 .23 4 .06
26 7.03 13.79 81 .31 89 .90 4 .29
27 7 .30 14 .33 86 .59 95 .65 4.53
28 7 .57 14 .88 91 .94 101.47 4 .76
29 7 .84 15.42 97.46 107 .36 4 .95
30 8 .11 15 .96 103 .38 113.42 5.02
31 8 .38 16 .50 109 .69 119.88 5.09
32 8.65 17 .04 116 .39 126 .73 5.17
33 8 .93 17 .58 123.46 133.97 5 .25
34 9 .20 18 .12 130 .90 141 .58 5.34
35 9.47 18 .66 138 .70 149.56 5.43
36 9.74 19 .20 146 .85 157 .90 5.53
37 10.01 19.74 155 .34 166 .59 5 .63
38 10.28 20 .28 164 .17 175.63 5.73
39 10 .55 20 .83 173 .32 184.99 5.84
40 10 .82 21 .37 182 .80 194.69 5.95
41 11 .09 21 .91 192 .58 20 4.70 6 .06
42 11 .36 22.45 202 .68 2 15 .03 6 .1 8
43 11 .63 22 .99 213 .07 225 .67 6 .30
44 11.49 23 .12 223 .35 236.19 6 .4 2
I 45 11.36 22 .85 233 .14 246 .21 6 .53
Storage Routing Analysis
Detention Pond 1
25-Year Storm Event
Time Inflow 11+12 Outflow
(min.) (cfs) (cfs) 2s/t-0 2s/t+O (cfs)
46 11 .22 22 .58 242.44 255 .72 6 .64
47 11 .09 22 .31 251 .26 264 .75 6 .75
48 10 .95 22 .04 259.62 273 .31 6 .84
49 10 .82 21 .77 267 .52 281 .39 6 .93
50 10 .68 21 .50 274 .98 289 .03 7 .02
51 10.55 21 .23 282 .01 296 .21 7 .10
52 10.41 20 .96 288 .61 302 .97 7 .18
53 10 .28 20 .69 294 .79 309 .30 7 .25
54 10 .14 20.42 300 .57 315 .21 7 .32
55 10 .01 20 .15 305 .95 320 .72 7 .38
56 9 .87 19.88 310 .95 325 .83 7.44
57 9 .74 19 .61 315 .57 330 .56 7 .50
58 9 .60 19 .34 319 .82 334 .91 7 .54
59 9.47 19 .07 323 .70 338 .88 7.59
60 9.33 18 .80 327 .24 342.50 7 .63
61 9 .20 18 .53 330.43 345 .76 7 .67
62 9 .06 18 .26 333 .28 348 .68 7.70
63 8 .93 17 .99 335 .80 351 .26 7 .73
64 8 .79 17 .72 338 .00 353 .52 7 .76
65 8 .65 17.45 339 .89 355.45 7 .78
66 8 .52 17 .17 34 1.47 357 .06 7 .80
67 8 .38 16 .90 342 .75 358 .37 7 .81
68 8 .25 16 .63 343 .73 359.38 7 .82
69 8 .11 16 .36 344.43 360.10 7 .83
70 7 .98 16 .09 344 .85 360.52 7.84
71 7.84 15 .82 345 .00 360.67 7 .84
72 7 .71 15 .55 344 .87 360.55 7.84
73 7 .57 15 .28 344.49 360 .15 7.83
74 7.44 15 .01 343 .85 359 .50 7.83
75 7 .30 14 .74 342 .96 358.59 7 .81
76 7 .17 14.47 341 .82 357.43 7 .80
77 7 .03 14 .20 340.45 356 .02 7 .79
78 6 .90 13 .93 338 .85 354 .38 7 .77
79 6 .76 13 .66 337 .02 352 .51 7 .75
80 6 .63 13 .39 334 .96 350.40 7.72
81 6.49 13.12 33 2.69 348 .08 7.70
82 6 .36 12 .85 330 .20 345 .53 7.67
83 6 .22 12 .58 327 .51 342 .78 7.63
84 6 .09 12 .31 324 .61 339 .82 7 .60
85 5.95 12 .0 4 321.52 336 .65 7 .56
86 5.82 11 .77 318.2 3 333 .28 7 .53
8 7 5.68 11.49 3 14 .75 329 .73 7.49
88 5.54 11 .22 3 11 .09 325 .98 7.44
89 5.41 10 .95 30 7.25 322 .05 7.40
90 5.27 10.68 303 .23 3 17 .93 7 .3 5
Storage Routing Analysis
Detention Pond 1
50-Year Storm Event
Time Inflow 11+12 Outflow
(min.) (cfs) (cfs) 2s/t-0 2s/t+O (cfs)
0 0 .00 0.00 0.00 0 .00 0 .00
0 .31 0.31 0 .22 0.31 0 .05
2 0.62 0.93 0 .80 1.14 0 .17
3 0 .93 1.54 1.65 2 .35 0 .35
4 1.23 2 .16 2 .69 3 .81 0.56
5 1.54 2.78 3 .85 5.46 0.81
6 1.85 3 .39 5.38 7 .24 0 .93
7 2 .16 4 .01 7 .35 9 .39 1.02
8 2.47 4 .63 9 .73 11 .98 1.13
9 2 .78 5.25 12.48 14 .97 1.25
10 3 .09 5.86 15 .58 18 .34 1.38
11 3 .39 6.48 18 .99 22 .06 1.53
12 3 .70 7.10 22 .69 26.09 1.70
13 4 .01 7.72 26 .65 30.40 1.87
14 4 .32 8.33 30 .87 34.99 2 .06
15 4 .63 8 .95 35 .30 39.82 2 .26
16 4 .94 9.57 39 .94 44.87 2.46
17 5.25 10 .18 44 .78 50.13 2 .68
18 5 .55 10 .80 49 .78 55.58 2 .90
19 5.86 11.42 54 .95 61 .20 3 .13
20 6 .17 12.04 60.26 66 .98 3 .36
21 6.48 12.65 65 .71 72 .91 3 .60
22 6 .79 13 .27 71 .28 78.98 3 .85
23 7 .10 13.89 76 .97 85 .17 4.10
24 7.41 14.50 82 .76 91.47 4.36
25 7 .72 15.12 88 .65 97 .88 4.62
26 8.02 15.74 94 .62 104 .38 4 .88
27 8 .33 16 .36 100 .99 110.98 4 .99
28 8 .64 16.97 107 .82 117 .97 5 .07
29 8.95 17 .59 115.10 125.41 5.16
30 9 .26 18 .21 122 .82 133 .31 5.25
31 9.57 18 .82 130 .96 141 .64 5 .34
32 9 .88 19.44 139 .52 150.40 5.44
33 10 .18 20 .06 148.49 159.58 5.55
34 10.49 20 .68 157 .85 169 .16 5.66
35 10 .80 21 .29 167 .61 179 .15 5.77
36 11 .11 21 .91 177 .75 189 .52 5.89
37 11.42 22 .53 188 .25 200 .27 6 .01
38 11 .73 23 .15 199 .13 211.40 6 .14
39 12 .04 23 .76 210.35 222 .89 6 .27
40 12 .34 24 .38 221 .93 234 .73 6.40
41 12 .65 25 .00 233 .84 246 .92 6.54
42 12.96 25 .61 24 6.09 259.45 6 .68
43 13 .27 26 .23 258 .65 272 .32 6.83
44 13 .12 26 .39 271 .09 285 .04 6 .98
45 12 .96 26 .08 282 .94 297 .16 7 .11
Storage Routing Analysis
Detention Pond 1
50-Year Storm Event
Time Inflow 11+12 Outflow
(min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs)
46 12 .81 25.77 294 .21 308 .70 7 .25
47 12 .65 25.46 304 .93 319 .67 7 .37
48 12 .50 25 .15 315 .10 330.08 7 .49
49 12 .34 24 .84 324 .74 339 .94 7.60
50 12 .19 24 .53 333 .59 349.27 7 .84
51 12 .04 24 .23 342 .04 357.81 7 .89
52 11.88 23.92 350 .10 365 .96 7 .93
53 11.73 23.61 357 .78 373.71 7 .97
54 11 .57 23 .30 365.07 381.08 8 .00
55 11.42 22 .99 371 .98 388 .06 8 .04
56 11.26 22 .68 378 .52 394 .66 8.07
57 11.11 22 .37 384 .68 400 .89 8.11
58 10 .96 22.07 390.47 406 .75 8 .14
59 10 .80 21 .76 395.91 412 .23 8 .16
60 10 .65 21.45 400 .97 417 .35 8 .19
61 10.49 21.14 405 .69 422 .11 8 .21
62 10 .34 20 .83 410 .05 426 .52 8 .24
63 10 .18 20 .52 414 .05 430 .57 8 .26
64 10 .03 20 .21 417 .72 434 .27 8 .28
65 9 .88 19.91 421 .04 437 .62 8 .29
66 9 .72 19.60 424 .02 440 .63 8 .31
67 9 .57 19 .29 426 .66 443 .31 8 .32
68 9.41 18 .98 428 .97 445.64 8 .33
69 9 .26 18.67 430 .96 447 .65 8 .34
70 9.10 18.36 432 .62 449 .32 8 .35
71 8.95 18 .05 433 .95 450 .67 8 .36
72 8 .80 17 .74 434 .97 451 .70 8 .36
73 8 .64 17.44 435 .67 452.40 8 .37
74 8.49 17 .13 436 .05 452 .79 8 .37
75 8 .33 16 .82 436 .13 452 .87 8 .37
76 8 .18 16 .51 435 .90 452 .64 8 .37
77 8 .02 16 .20 435 .37 452 .11 8 .37
78 7 .87 15 .89 434 .54 451 .27 8 .36
79 7.72 15 .58 433.41 450 .13 8 .36
80 7.56 15 .28 431 .99 448 .69 8 .35
81 7.41 14 .97 430 .28 446 .96 8 .34
82 7 .25 14 .66 428 .28 444 .94 8 .33
83 7 .10 14 .35 425 .99 442 .63 8 .32
84 6 .94 14 .04 423.42 440 .03 8 .30
85 6 .79 13 .73 420 .58 437 .16 8 .29
86 6 .63 13 .4 2 417.45 434 .00 8 .27
87 6.48 13 .12 414 .05 4 30 .57 8 .26
88 6 .33 12 .8 1 41 0 .39 4 26 .86 8.24
89 6 .17 12 .50 40 6.4 5 422.8 8 8 .22
90 6 .0 2 12 .19 40 2.2 5 4 18 .64 8 .20
I
Storage Routing Analysis
Detention Pond 1
100-Year Storm Event
Time Inflow 11+12 Outflow
(min .) (cfs) (cfs) 2s/t-O 2s/t+O (cfs)
0 0 .00 0 .00 0 .00 0 .00 0 .00
0 .32 0 .32 0 .23 0 .32 0 .05
2 0 .65 0 .97 0 .84 1.20 0 .18
3 0 .97 1.62 1.73 2.46 0 .36
4 1.29 2 .26 2 .81 3 .99 0.59
5 1.62 2.91 4 .03 5.72 0 .85
6 1.94 3 .55 5 .69 7 .58 0 .95
7 2 .26 4 .20 7 .81 9 .89 1.04
8 2 .58 4 .85 10 .35 12 .65 1.15
9 2 .91 5.49 13 .27 15 .84 1.28
10 3 .23 6 .14 16 .56 19.41 1.43
11 3 .55 6 .78 20 .17 23.34 1.59
12 3 .88 7.43 24 .08 27 .60 1.76
13 4.20 8 .08 28 .26 32 .15 1.95
14 4.52 8 .72 32 .70 36 .98 2 .14
15 4 .85 9 .37 37 .37 42 .07 2 .35
16 5 .17 10 .01 42 .26 47 .38 2 .56
17 5.49 10 .66 47 .34 52 .92 2 .79
18 5 .81 11 .31 52 .60 58 .64 3 .02
19 6 .14 11 .95 58 .03 64 .55 3 .26
20 6.46 12 .60 63 .60 70 .62 3 .51
21 6.78 13 .24 69 .32 76 .85 3 .76
22 7.11 13 .89 75 .17 83 .21 4.02
23 7.43 14 .54 81 .14 89 .71 4 .29
24 7.75 15 .18 87 .21 96 .32 4.55
25 8.08 15 .83 93 .39 103 .04 4 .83
26 8.40 16.47 99 .90 109 .86 4.98
27 8 .72 17 .12 106.90 117.02 5.06
28 9 .04 17 .77 114 .37 124 .67 5 .15
29 9 .37 18.41 122 .30 132 .78 5 .24
30 9 .69 19 .06 130 .69 141 .36 5 .34
31 10 .01 19 .70 139.51 150.39 5.44
32 10.34 20 .35 148 .76 159 .86 5 .55
33 10 .66 21 .00 158.43 169 .76 5.66
34 10 .98 21 .64 168 .52 180.08 5.78
35 11 .31 22 .29 179 .00 190 .81 5 .90
36 11.63 22 .93 189.88 201.94 6 .03
37 11 .95 23 .58 201 .14 213.46 6 .16
38 12 .27 24 .23 212 .77 225 .37 6 .30
39 12 .60 24 .87 224 .77 237 .65 6.44
40 12 .92 25.52 237 .13 25 0 .29 6 .58
4 1 13.24 26.16 249.84 263.30 6 .73
42 13 .57 26.81 262 .89 276 .65 6.88
43 13 .89 27.46 276 .27 29 0 .35 7.04
44 13 .73 27 .62 289 .51 303 .8 9 7 .19
45 13 .57 27 .30 302 .13 3 16.81 7 .34
Storage Routing Analysis
Detention Pond 1
100-Year Storm Event
Time Inflow 11+12 Outflow
(min.) (cfs) (cfs) 2s/t-0 2s/t+O (cfs)
46 13.41 26 .97 314 .14 329 .10 7.48
47 13 .24 26.65 325 .57 340 .79 7.61
48 13 .08 26 .33 336.42 351 .89 7 .74
49 12 .92 26 .00 346 .70 362.42 7 .86
50 12 .76 25 .68 356.46 372 .38 7.96
51 12 .60 25 .36 365 .80 381 .82 8 .01
52 12.44 25.03 374 .73 390 .84 8.05
53 12 .27 24.71 383 .25 399.44 8.10
54 12 .11 24.39 391 .36 407 .63 8 .14
55 11 .95 24.07 399 .06 415.42 8 .18
56 11.79 23.74 406 .37 422 .80 8 .22
57 11 .63 23.42 413 .28 429 .79 8 .25
58 11.47 23 .10 419.81 436.38 8.29
59 11 .31 22.77 425 .94 442.58 8 .32
60 11 .14 22.45 431 .70 448.39 8.35
61 10 .98 22 .13 437 .08 453.83 8 .38
62 10 .82 21 .80 442 .08 458 .88 8.40
63 10 .66 21.48 446 .71 463 .56 8.42
64 10.50 21 .16 450 .97 467 .87 8.45
65 10 .34 20.84 454.88 471 .81 8.47
66 10.18 20 .51 458.42 475 .39 8.49
67 10 .01 20 .19 461 .60 478 .61 8 .50
68 9.85 19.87 464.44 481.47 8.52
69 9.69 19.54 466 .92 483 .98 8 .53
70 9.53 19.22 469.06 486 .14 8 .54
71 9 .37 18.90 470 .86 487.96 8.55
72 9.21 18 .57 472 .32 489.43 8.56
73 9.04 18 .25 473.45 490 .57 8 .56
74 8 .88 17 .93 474.24 491 .37 8.57
75 8 .72 17 .60 474 .71 491 .84 8.57
76 8.56 17.28 474 .85 491 .99 8.57
77 8.40 16.96 474 .67 491 .81 8 .57
78 8.24 16.64 474 .17 491 .31 8 .57
79 8 .08 16 .31 473 .36 490.49 8.56
80 7 .91 15.99 472 .24 489 .35 8 .56
81 7 .75 15 .67 470 .81 487 .90 8 .55
82 7 .59 15 .34 469.07 486 .15 8 .54
83 7.43 15 .02 467.03 484 .09 8 .53
84 7 .27 14 .70 464.69 481 .73 8 .52
85 7 .11 14.37 462 .06 479 .07 8.50
86 6 .94 14 .05 459 .13 476 .11 8.49
87 6 .78 13.73 455 .92 472 .86 8.47
88 6 .62 13.41 452.42 469 .32 8.45
89 6.46 13.08 448 .63 465 .50 8.4 3
90 6 .30 12 .76 444 .56 461 .39 8.41
9 1 6 .14 12 .4 4 440 .2 1 4 57 .00 8.39
APPENDIXF
Storage Routing Analysis -Detention Pond No. 2
I
.. 1.;
Storage Routing Analysis
Detention Pond 2
5-Year Storm Event
Time Inflow 11+12 Outflow
(min.} (cfs} (cfs} 2s/t-O 2s/t+O (cfs)
0 0 .00 0 .00 0 .00 0 .00 0 .00
1 0 .63 0.63 0.56 0 .63 0 .04
2 1.26 1.90 2.17 2.46 0 .14
3 1.90 3 .16 4 .72 5.33 0 .31
4 2 .53 4.43 8 .08 9 .14 0 .53
5 3.16 5.69 12 .18 13 .77 0 .80
6 3 .79 6 .95 16 .92 19 .14 1.11
7 4.43 8 .22 22 .54 25 .14 1.30
8 5.06 9.48 29 .24 32 .03 1.39
9 5 .69 10 .75 36 .98 39 .99 1.50
10 6 .32 12 .01 45 .73 48 .99 1.63
11 6 .95 13.28 55.47 59 .01 1.77
12 7 .59 14.54 66 .17 70 .01 1.92
13 8 .22 15 .80 77 .81 81 .98 2.08
14 8 .85 17 .07 90 .35 94 .87 2.26
15 8 .53 17 .38 102 .85 107 .73 2.44
16 8 .22 16 .75 114 .39 119.60 2.61
17 7 .90 16 .12 125.00 130.51 2 .76
18 7.59 15.49 134 .70 140.49 2 .89
19 7.27 14.86 143 .51 149 .55 3 .02
20 6 .95 14.22 151.47 157.74 3 .13
21 6 .64 13.59 158 .59 165 .06 3.23
22 6 .32 12.96 164.91 171 .55 3 .32
23 6.01 12.33 170.43 177 .23 3.40
24 5.69 11.69 175.18 182.12 3.47
25 5 .37 11 .06 179 .19 186 .24 3 .53
26 5.06 10.43 182.48 189 .62 3 .57
27 4 .74 9 .80 185.08 192 .28 3 .60
28 4.43 9 .17 186 .99 194 .24 3 .63
29 4 .11 8 .53 188.24 195 .52 3 .64
30 3 .79 7 .90 188 .84 196 .14 3 .65
31 3.48 7 .27 188 .81 196 .11 3 .65
32 3.16 6 .64 188 .16 195.45 3 .64
33 2.84 6 .01 186 .92 194 .17 3 .63
34 2.53 5.37 185.09 192.29 3 .60
35 2 .21 4.74 182 .68 189 .83 3 .57
36 1.90 4.11 179 .72 186 .79 3 .53
37 1.58 3.48 176 .23 183 .20 3 .49
38 1.26 2 .84 172 .22 179 .08 3.43
39 0 .95 2 .21 167 .70 174.43 3 .36
40 0 .63 1.58 162 .70 169 .28 3.29
41 0 .32 0 .95 157 .22 163.65 3.21
42 0 .00 0 .32 151 .27 157 .53 3 .13
43 0 .00 0 .00 145 .19 151.27 3.04
44 0 .00 0 .00 139 .27 145 .19 2.96
45 0 .00 0 .00 133.5 1 139 .27 2.88
Storage Routing Analysis
Detention Pond 2
5-Year Storm Event
Time Inflow 11+12 Outflow
(min.) (cfs) (cfs) 2slt-0 2slt+O (cfs)
46 0 .00 0.00 127 .92 133 .51 2 .80
47 0 .00 0 .00 122.48 127.92 2 .72
48 0 .00 0 .00 117.19 122.48 2.65
49 0 .00 0.00 112 .04 117 .19 2 .57
50 0 .00 0 .00 107 .04 112.04 2 .50
51 0 .00 0 .00 102 .18 107 .04 2.43
52 0.00 0 .00 97.45 102 .18 2 .36
53 0 .00 0 .00 92 .85 97.45 2.30
54 0 .00 0 .00 88 .38 92.85 2 .24
55 0 .00 0.00 84 .04 88 .38 2 .17
56 0 .00 0 .00 79 .81 84 .04 2 .11
57 0 .00 0 .00 75 .7 0 79.81 2 .05
58 0.00 0 .00 71 .70 75 .70 2 .00
59 0 .00 0 .00 67 .82 71.70 1.94
60 0 .00 0.00 64 .04 67.82 1.89
61 0 .00 0 .00 60 .37 64 .04 1.84
62 0 .00 0 .00 56 .80 60.37 1.79
63 0 .00 0 .00 53 .32 56 .80 1 .74
64 0 .00 0 .00 49 .95 53 .32 1.69
65 0 .00 0 .00 46.66 49.95 1.64
66 0 .00 0 .00 43.47 46.66 1.60
67 0 .00 0 .00 40.37 43.47 1.55
68 0.00 0 .00 37 .35 40.37 1.51
69 0 .00 0 .00 34.41 37 .35 1.47
70 0 .00 0 .00 31 .56 34.41 1.43
71 0 .00 0 .00 28 .78 31 .56 1.39
72 0 .00 0 .00 26 .09 28 .78 1.35
73 0 .00 0 .00 23.46 26 .09 1.31
74 0 .00 0 .00 20 .91 23.46 1.28
75 0 .00 0 .00 18 .4 3 20.91 1.24
76 0 .00 0 .00 16 .02 18.43 1.21
77 0 .00 0.00 13 .68 16 .02 1.17
78 0 .00 0.00 11.40 13 .68 1.14
79 0 .00 0.00 9 .18 11.40 1.11
80 0 .00 0 .00 8 .12 9 .18 0 .53
81 0 .00 0 .00 7 .18 8.12 0.47
82 0 .00 0.00 6 .35 7.18 0.41
83 0 .00 0 .00 5 .62 6 .35 0 .37
84 0 .00 0.00 4 .97 5 .62 0 .32
85 0.00 0 .00 4 .39 4 .97 0 .29
86 0 .00 0 .00 3 .89 4 .39 0 .25
87 0 .00 0 .00 3.44 3 .89 0 .22
88 0 .00 0 .00 3 .04 3.4 4 0 .20
89 0 .00 0 .00 2 .69 3 .04 0 .18
90 0 .00 0 .00 2 .38 2 .69 0 .16
Storage Routing Analysis
Detention Pond 2
10-Year Storm Event
Time Inflow 11+12 Outflow
(min.) (cfs) (cfs) 2s/t-0 2s/t+O (cfs)
0 0 .00 0.00 0.00 0.00 0.00
1 0 .71 0.71 0 .63 0.71 0 .04
2 1.43 2 .14 2.45 2 .77 0 .16
3 2.14 3 .56 5.32 6 .01 0 .35
4 2.85 4 .99 9 .12 10.31 0 .60
5 3.56 6.42 13 .74 15 .53 0.90
6 4 .28 7.84 19 .08 21 .58 1.25
7 4 .99 9.27 25 .67 28 .35 1.34
8 5.70 10.69 33.45 36.36 1.45
9 6.42 12.12 42.41 45.57 1.58
10 7.13 13 .54 52 .50 55 .95 1.72
11 7 .84 14.97 63 .70 67.47 1.88
12 8.55 16.40 75 .98 80.10 2.06
13 9.27 17.82 89 .31 93.80 2 .25
14 9.98 19.25 103 .65 108 .55 2.45
15 9 .62 19 .60 117 .94 123 .25 2 .66
16 9.27 18 .89 131 .14 136 .83 2 .84
17 8.91 18 .18 143 .29 149 .32 3 .02
18 8.55 17.47 154.41 160 .75 3.17
19 8.20 16 .75 164 .52 171 .16 3 .32
20 7.84 16.04 173 .66 180.56 3.45
21 7.49 15.33 181 .87 188 .99 3 .56
22 7.13 14 .61 189.17 196.48 3 .65
23 6 .77 13.90 195.60 203 .07 3 .74
24 6.42 13 .19 201.17 208 .79 3 .81
25 6 .06 12.48 205 .91 213 .65 3 .87
26 5 .70 11.76 209 .84 217 .68 3 .92
27 5 .35 11 .05 212.98 220 .89 3 .96
28 4 .99 10 .34 215 .34 223 .31 3 .99
29 4 .63 9 .62 216.95 224.96 4 .01
30 4 .28 8 .91 217 .82 225.86 4 .02
31 3 .92 8 .20 217.98 226 .02 4 .02
32 3 .56 7.49 217.44 225.46 4 .01
33 3 .21 6 .77 216 .21 224 .21 4 .00
34 2 .85 6 .06 214 .32 222 .27 3 .97
35 2 .50 5.35 211.79 219 .67 3 .94
36 2 .14 4 .63 208 .62 216.42 3 .90
37 1.78 3 .92 204 .83 212 .54 3 .85
38 1.43 3 .21 200.44 208 .04 3 .80
39 1.07 2.50 195.47 202 .94 3 .73
40 0 .71 1.78 189 .93 197 .25 3.66
41 0.36 1.07 183 .82 190 .99 3 .59
42 0 .00 0.36 177 .18 184 .18 3 .50
43 0 .00 0 .00 170 .38 177 .18 3.40
44 0 .00 0 .00 16 3.76 170 .38 3 .31
4 5 0 .00 0 .00 157 .33 163.76 3 .22
Storage Routing Analysis
Detention Pond 2
10-Year Storm Event
Time Inflow 11+12 Outflow
(min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs)
46 0 .00 0 .00 151 .08 157 .33 3 .13
47 0 .00 0 .00 144 .99 151 .08 3 .04
48 0 .00 0 .00 139 .08 144.99 2 .96
49 0 .00 0 .00 133.33 139 .08 2 .87
50 0 .00 0 .00 127 .74 133 .33 2.80
51 0 .00 0 .00 122 .31 127 .74 2 .72
52 0 .00 0 .00 117.02 122 .31 2 .64
53 0 .00 0 .00 111.88 117 .02 2.57
54 0 .00 0 .00 106.88 111 .88 2.50
55 0 .00 0 .00 102.03 106 .88 2.43
56 0 .00 0 .00 97 .30 102 .03 2.36
57 0 .00 0 .00 92 .71 97 .30 2.30
58 0 .00 0 .00 88.24 92 .71 2 .23
59 0 .00 0 .00 83.90 88.24 2.17
60 0 .00 0.00 79 .68 83 .90 2.11
61 0 .00 0 .00 75 .57 79.68 2.05
62 0 .00 0 .00 71 .58 75 .57 2.00
63 0 .00 0 .00 67 .70 71 .58 1.94
64 0 .00 0 .00 63 .92 67 .70 1.89
65 0 .00 0 .00 60 .25 63 .92 1.84
66 0 .00 0 .00 56 .68 60.25 1.78
67 0 .00 0 .00 53 .21 56 .68 1.73
68 0 .00 0 .00 49 .84 53 .21 1.69
69 0 .00 0.00 46 .56 49 .84 1.64
70 0 .00 0.00 43 .37 46 .56 1.59
71 0 .00 0 .00 40 .27 43 .37 1.55
72 0 .00 0 .00 37 .25 40 .27 1.51
73 0 .00 0.00 34 .32 37 .25 1.47
74 0 .00 0 .00 31.47 34 .32 1.43
75 0 .00 0 .00 28 .70 31.47 1.39
76 0 .00 0.00 26 .00 28 .70 1.35
77 0 .00 0 .00 23 .38 26 .00 1.31
78 0 .00 0 .00 20 .83 23 .38 1.27
79 0 .00 0 .00 18 .35 20 .83 1.24
80 0 .00 0 .00 16 .23 18 .35 1.06
81 0 .00 0 .00 14 .36 16 .23 0.94
82 0 .00 0 .00 12 .70 14 .36 0 .83
83 0 .00 0 .00 11 .23 12 .70 0 .73
84 0 .00 0 .00 9 .93 11 .23 0 .65
85 0 .00 0 .00 8.78 9 .93 0 .57
86 0 .00 0 .00 7 .77 8 .78 0.51
87 0 .00 0 .00 6.87 7 .77 0.45
88 0 .00 0 .00 6 .08 6 .87 0.40
89 0 .00 0 .00 5.3 7 6 .08 0 .35
90 0 00 0 .00 4 .75 5 .37 0 .31
Storage Routing Analysis Detention Pond 2 25-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-0 2slt+O (cfs) 0 0.00 0.00 0.00 0.00 0.00 1 0.82 0.82 0.72 0.82 0.05 2 1.63 2.45 2.80 3.17 0.18 3 2.45 4.08 6.09 6.88 0.40 4 3.26 5.71 10.43 11.80 0.68 5 4.08 7.34 15.72 17.77 1.03 6 4.89 8.97 22.11 24.69 1.29 7 5.71 10.60 29.91 32.71 1.40 8 6.53 12.24 39.07 42.14 1.53 9 7.34 13.87 49.57 52.94 1.68 10 8.16 15.50 61.37 65.07 1.85 11 8.97 17.13 74.43 78.50 2.04 12 9.79 18.76 88.71 93.19 2.24 13 10.60 20.39 104.18 109.10 2.46 14 11.42 22.02 120.81 126.21 2.70 -15 11.01 22.43 137.38 143.25 2.93 16 10.60 21.62 152.70 159.00 3.15 17 10.20 20.80 166.80 173.50 3.35 18 9.79 19.99 179.71 186.78 3.53 19 9.38 19.17 191.51 198.88 3.68 20 8.97 18.35 202.23 209.87 3.82 21 8.57 17.54 211.88 219.76 3.94 22 8.16 16.72 220.50 228.60 4.05 23 7.75 15.91 228.10 236.40 4.15 24 7.34 15.09 234.73 243.19 4.23 25 6.93 14.28 240.39 249.00 4.31 26 6.53 13.46 245.12 253.85 4.37 27 6.12 12.64 248.94 257.76 4.41 28 5.71 11.83 251.86 260.76 4.45 29 5.30 11.01 253.92 262.87 4.48 30 4.89 10.20 255.13 264.12 4.49 31 4.49 9.38 255.52 264.51 4.50 32 4.08 8.57 255.10 264.08 4.49 33 3.67 7.75 253.89 262.84 4.48 34 3.26 6.93 251.92 260.82 4.45 35 2.86 6.12 249.20 258.04 4.42 36 2.45 5.30 245.76 254.51 4.37 37 2.04 4.49 241.60 250.24 4.32 38 1.63 3.67 236.76 245.27 4.26 39 1.22 2.86 231.23 239.61 4.19 40 0.82 2.04 225.05 233.27 4.11 41 0.41 1.22 218.23 226.27 4.02 42 0.00 0.41 210.78 218.64 3.93 43 0.00 0.00 203.11 210.78 3.83 44 0 00 0.00 195.64 203.11 3.74 45 0 00 0.00 188.35 195.64 3.64
Storage Routing Analysis
Detention Pond 2
25-Year Storm Event
Time Inflow 11+12 Outflow
(min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs ) --
46 0 .00 0 .00 181 .25 188.35 3 .55
47 0 .00 0 .00 174 .33 181 .25 3.46
48 0 .00 0 .00 167 .61 174.33 3 .36
49 0 .00 0 .00 161 .07 167.61 3 .27
50 0 .00 0 .00 154 .71 161 .07 3 .18
51 0 .00 0 .00 148 .53 154.71 3 .09
52 0 .00 0 .00 142 .52 148.53 3.01
53 0 .00 0 .00 136.67 142.52 2.92
54 0 .00 0 .00 130.99 136.67 2 .84
55 0 .00 0 .00 125.46 130.99 2 .76
56 0 .00 0 .00 120.09 125.46 2 .69
57 0 .00 0 .00 114 .87 120.09 2 .61
58 0.00 . 0 .00 109.79 114.87 2.54
59 0 .00 0 .00 104 .85 109.79 2.47
60 0 .00 0 .00 100.05 104.85 2.40
61 0 .00 0 .00 95 .38 100.05 2 .33
62 0 .00 0 .00 90 .84 95 .38 2 .27
63 0 .00 0 .00 86.42 90 .84 2 .21
64 0 .00 0 .00 82 .13 86.42 2 .15
65 0 .00 0 .00 77 .95 82 .13 2 .09
66 0 .00 0 .00 73 .90 77 .95 2.03
67 0 .00 0.00 69 .95 73.90 1.97
68 0 .00 0 .00 66 .11 69 .95 1.92
69 0 .00 0 .00 62 .38 66 .11 1.87
70 0 .00 0 .00 58 .76 62 .38 1.8 1
71 0 .00 0 .00 55 .23 58.76 1.76
72 0.00 0 .00 51 .80 55 .23 1.71
73 0 .00 0 .00 48.46 51 .80 1.67
74 0 .00 0.00 45 .22 48.46 1.62
75 0 .00 0 .00 42 .07 45.22 1.58
76 0.00 0 .00 39 .00 42 .07 1.53
77 0 .00 0 .00 36 .02 39 .00 1.49
78 0 .00 0 .00 33.12 36.02 1.45
79 0 .00 0 .00 30 .31 33 .12 1.41
80 0 .00 0 .00 27 .57 30 .31 1.37
81 0 .00 0.00 24.90 27.57 1.33
82 0 .00 0.00 22 .31 24 .90 1.30
83 0 .00 0 .00 19.79 22 .31 1.26
84 0 .00 0 .00 17.51 19 .79 1.14
85 0.00 0 .00 15.48 17 .51 1.01
86 0 .00 0 .00 13 .69 15.48 0.89
87 0 .00 0 .00 12 .11 13 .69 0 .79
8 8 0 .00 0.00 10 . 71 12 .11 0 .70
89 0 .00 0 .00 9.47 10 .71 0 .62
9 0 0 .00 0 .00 8.38 9.4 7 0 .55
I
Storage Routing Analysis Detention Pond 2 50-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-0 2s/t+O (cfs) 0 0.00 0.00 0.00 0.00 0.00 0.92 0.92 0.82 0.92 0.05 2 1.85 2.77 3.17 3.59 0.21 3 2.77 4.62 6.89 7.79 0.45 4 3.69 6.47 11.81 13.36 0.77 5 4.62 8.31 17.80 20.12 1.16 6 5.54 10.16 25.28 27.96 1.34 7 6.47 12.01 34.36 37.29 1.47 8 7.39 13.85 44.97 48.21 1.62 9 8.31 15.70 57.09 60.67 1.79 10 9.24 17.55 70.68 74.64 1.98 11 10.16 19.40 85.68 90.07 2.20 12 11.08 21.24 102.06 106.92 2.43 13 12.01 23.09 119.78 125.15 2.68 14 12.93 24.94 138.82 144.72 2.95 15 12.47 25.40 157.77 164.21 3.22 16 12.01 24.47 175.30 182.24 3.47 17 11.54 23.55 191.48 198.85 3.68 18 11.08 22.63 206.37 214.11 3.87 19 10.62 21.70 219.98 228.07 4.05 20 10.16 20.78 232.35 240.76 4.20 21 9.70 19.86 243.52 252.21 4.35 22 9.24 18.93 253.51 262.45 4.47 23 8.77 18.01 262.35 271.52 4.58 24 8.31 17.09 270.07 279.43 4.68 25 7.85 16.16 276.70 286.23 4.77 26 7.39 15.24 282.26 291.94 4.84 27 6.93 14.32 286.79 296.58 4.90 28 6.47 13.39 290.30 300.18 4.94 29 6.00 12.47 292.82 302.77 4.97 30 5.54 11.54 294.38 304.37 4.99 31 5.08 10.62 295.01 305.01 5.00 32 4.62 9.70 294.71 304.70 5.00 33 4.16 8.77 293.52 303.49 4.98 34 3.69 7.85 291.47 301.37 4.95 35 3.23 6.93 288.56 298.39 4.92 36 2.77 6.00 284.82 294.56 4.87 37 2.31 5.08 280.27 289.90 4.81 38 1.85 4.16 274.94 284.43 4.74 39 1.39 3.23 268.84 278.17 4.67 40 0.92 2.31 261.99 271.15 4.58 41 0.46 1.39 254.41 263.37 4.48 42 0.00 0.46 246.11 254.87 4.38 43 0.00 0.00 237.57 246.11 4.27 44 0.00 0.00 229.25 237.57 4.16 45 0.00 0.00 221.13 229.25 4 06
Storage Routing Analysis
Detention Pond 2
50-Year Storm Event
Time Inflow 11+12 Outflow
(min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs)
46 0 .00 0 .00 213.21 221 .13 3 .96
47 0 .00 0 .00 205.48 213 .21 3 .86
48 0 .00 0 .00 197 .95 205.48 3.77
49 0 .00 0 .00 190 .61 197 .95 3.67
50 0.00 0 .00 183.44 190.61 3 .58
51 0.00 0 .00 176.47 183.44 3.49
52 0 .00 0 .00 169 .68 176.47 3.39
53 0 .00 0 .00 163 .09 169 .68 3.30
54 0 .00 0.00 156 .67 163.09 3 .21
55 0 .00 0.00 150.44 156.67 3.12
56 0 .00 0.00 144 .37 150.44 3 .03
57 0.00 0 .00 138.48 144.37 2 .95
58 0.00 0 .00 132.74 138.48 2 .87
59 0.00 0 .00 127 .17 132 .74 2.79
60 0 .00 0 .00 121 .75 127 .17 2.71
61 0 .00 0 .00 116.48 121 .75 2.63
62 0 .00 0 .00 111 .36 116.48 2.56
63 0.00 0 .00 106 .37 111 .36 2.49
64 0 .00 0 .00 101 .53 106 .37 2.42
65 0 .00 0 .00 96.82 101 .53 2 .36
66 0 .00 0 .00 92 .24 96.82 2 .29
67 0 .00 0 .00 87 .78 92 .24 2 .23
68 0 .00 0 .00 83.45 87 .78 2 .17
69 0.00 0 .00 79 .24 83.45 2 .11
70 0 .00 0 .00 75 .15 79 .24 2 .05
71 0 .00 0 .00 71 .17 75.15 1.99
72 0 .00 0 .00 67 .30 71 .17 1.94
73 0 .00 0 .00 63 .54 67.30 1.88
74 0 .00 0 .00 59 .88 63.54 1.83
75 0 .00 0 .00 56 .32 59 .88 1.78
76 0 .00 0 .00 52 .86 56 .32 1.73
77 0 .00 0 .00 49.49 52 .86 1.68
78 0 .00 0 .00 46 .22 49.49 1.64
79 0 .00 0 .00 43 .04 46.22 1.59
80 0 .00 0.00 39.95 43.04 1.55
81 0 .00 0.00 36.94 39 .95 1.50
82 0 .00 0 .00 34 .02 36 .94 1.46
83 0 .00 0 .00 31 .18 34 .02 1.42
84 0 .00 0.00 28.41 31 .18 1.38
85 0 .00 0 .00 25 .73 28.41 1.34
86 0 .00 0.00 23 .11 25 .73 1.31
87 0 .00 0 .00 20 .57 23.11 1.27
88 0.00 0 .00 18 .19 20.57 1.19
89 0 .00 0 .00 16 .09 18.19 1.05
90 0 .00 0 .00 14.23 16 .09 0 .93
Storage Routing Analysis
Detention Pond 2
100-Year Storm Event
Time Inflow 11+12 Outflow
(min .) (cfs) (cfs) 2s/t-0 2s/t+O (cfs)
0 0 .00 0 .00 0 .00 0 .00 0 .00
0 .96 0 .96 0 .85 0 .96 0 .06
2 1.93 2 .89 3 .31 3 .74 0 .22
3 2 .89 4 .82 7.19 8 .13 0.47
4 3.85 6 .75 12.32 13 .93 0.81
5 4 .82 8.67 18.57 21.00 1.21
6 5 .78 10 .60 26.46 29.17 1.35
7 6.75 12 .53 36 .01 38.99 1.49
8 7 .71 14.45 47 .16 50.46 1.65
9 8.67 16 .38 59 .88 63.54 1.83
10 9 .64 18 .31 74 .13 78.19 2 .03
11 10 .60 20 .24 89 .85 94 .36 2 .26
12 11 .56 22 .16 107 .01 112.01 2 .50
13 12 .53 24 .09 125 .57 131 .10 2 .76
14 13.49 26.02 145.49 151.59 3.05
15 13 .01 26 .50 165 .33 171 .99 3 .33
16 12 .53 25.53 183.70 190.86 3.58
17 12 .04 24 .57 200 .67 208.27 3.80
18 11 .56 23 .61 216 .28 224 .27 4.00
19 11 .08 22.64 230 .56 238 .92 4 .18
20 10 .60 21 .68 243 .55 252 .24 4 .35
21 10 .12 20.72 255 .28 264 .26 4.49
22 9 .64 19 .75 265 .77 275.03 4.63
23 9.15 18 .79 275 .07 284 .56 4 .75
24 8 .67 17 .83 283 .20 292 .90 4.85
25 8 .19 16.86 290 .18 300 .06 4 .94
26 7 .71 15 .90 296 .06 306 .08 5.01
27 7 .23 14 .94 300 .84 310 .99 5.07
28 6 .75 13 .97 304 .57 314 .82 5.12
29 6 .26 13 .01 307 .27 317 .58 5.16
30 5 .78 12 .04 308 .96 319 .31 5.18
31 5 .30 11 .08 309 .67 320 .04 5.19
32 4 .82 10 .12 309 .42 319 .79 5.18
33 4 .34 9 .15 308 .24 318 .58 5.17
34 3 .85 8 .19 306 .15 316.43 5.14
35 3 .37 7 .23 303 .17 313 .37 5.10
36 2.89 6 .26 299 .32 309.43 5.05
37 2.41 5.3 0 294 .63 304 .62 4 .99
38 1.93 4 .34 289.12 298 .97 4 .92
39 1.45 3 .37 282 .80 292.49 4 .84
40 0 .96 2.41 275.70 285 .21 4 .75
41 0.48 1.45 267 .84 277 .15 4 .65
42 0 .00 0.48 259 .23 268 .32 4 .54
43 0 .00 0 .00 25 0.37 259 .23 4.43
44 0 .00 0 .00 24 1.72 250 .37 4 .32
45 0 .00 0.00 233.29 241.72 4 .22
Storage Routing Analysis
Detention Pond 2
100-Year Storm Event
Time Inflow 11+12 Outflow
(min.) (cfs) (cfs) 2s/t-0 2s/t+O (cfs)
46 0 .00 0 .00 225 .07 233.29 4 .11
47 0 .00 0.00 217.05 225 .07 4 .01
48 0 .00 0 .00 209 .24 217.05 3 .91
49 0 .00 0 .00 201.61 209 .24 3 .81
50 0 .00 0 .00 194 .17 201 .61 3.72
51 0 .00 0 .00 186 .92 194 .17 3.63
52 0 .00 0 .00 179 .85 186 .92 3.54
53 0 .00 0.00 172 .97 179 .85 3.44
54 0 .00 0 .00 166 .29 172.97 3 .34
55 0 .00 0 .00 159 .78 166 .29 3 .25
56 0.00 0 .00 153.46 159.78 3 .16
57 0 .00 0 .00 147 .31 153.46 3 .07
58 0 .00 0 .00 141 .34 147 .31 2.99
59 0.00 0 .00 135 .52 141 .34 2.91
60 0 .00 0 .00 129 .87 135 .52 2.83
61 0 .00 0 .00 124 .38 129 .87 2.75
62 0.00 0 .00 119 .04 124 .38 2.67
63 0.00 0 .00 113 .84 119 .04 2.60
64 0 .00 0 .00 108.79 113.84 2.53
65 0 .00 0 .00 103 .88 108 .79 2.46
66 0 .00 0 .00 99.10 103.88 2.39
67 0 .00 0 .00 94.46 99 .10 2 .32
68 0.00 0 .00 89 .94 94.46 2 .26
69 0 .00 0.00 85 .55 89 .94 2 .20
70 0 .00 0.00 81 .29 85 .55 2 .13
71 0 .00 0 .00 77 .14 81 .29 2 .08
72 0 .00 0 .00 73 .10 77.14 2 .02
73 0 .00 0 .00 69 .18 73.10 1.96
74 0 .00 0 .00 65 .36 69 .18 1.91
75 0 .00 0.00 61 .65 65 .36 1.85
76 0 .00 0 .00 58 .04 61 .65 1.80
77 0.00 0 .00 54 .54 58 .04 1.75
78 0.00 0 .00 51 .13 54 .54 1.71
79 0 .00 0 .00 47.81 51 .13 1.66
80 0 .00 0 .00 44 .59 47 .81 1.61
81 0.00 0 .00 41.45 44 .59 1.57
82 0 .00 0 .00 38.40 41.45 1.52
83 0 .00 0.00 35.44 38.40 1.48
84 0 .00 0 .00 32 .56 35.44 1.44
85 0.00 0 .00 29 .75 32 .56 1.40
86 0 .00 0.00 27 .03 29.75 1.36
87 0 .00 0 .00 24 .38 27 03 1.32
88 0.00 0 .00 21 .80 24.38 1.29
89 0 .00 0 .00 19.28 21 .80 1.26
90 0 .00 0 .00 17 .05 19 .28 1 . 11
EXHIBIT A
Pre-Development Drainage Area Map -Detention Ponds
I
~.j