Loading...
HomeMy WebLinkAbout11 Castlegate SubSec Le 05-35 Greens Prairie Rd.~v DEVELOPMENT PERMIT PERMIT NO. 05-35 Project: CASTLEGATE SECTION 6 COlllGl STATION FOR AREAS INSIDE THE SPECIAL FLOOD HAZARD AREA RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE SITE LEGAL DESCRIPTION: Castlegate , Section 6 All Lots DATE OF ISSUE: 09/01/05 OWNER: Greens Prairie Investors , Ltd. 4490 Castlegate Drive College Station, Texas 77845 TYPE OF DEVELOPMENT: SPECIAL CONDITIONS: SITE ADDRESS: 2270 Greens Prairie Road DRAINAGE BASIN: Spring Creek VALID FOR 12 MONTHS CONTRACTOR: Full Development Permit TEXCON General Contractors 1707 Graham Road College Station, Texas 77845 All construction must be in compliance with the approved construction plans All trees required to be protected as part of the landscape plan must be completely barricaded in accordance with Section 7.5 .E., Landscape/Streetscape Plan Requirements of the City's Unified Development Ordinance, prior to any operations of this permit. The cleaning of equipment or materials within the drip line of any tree or group of trees that are protected and required to remain is strictly prohibited . The disposal of any waste material such as , but not limited to , paint, oil, solvents , asphalt, concrete , mortar, or other harmful liquids or materials within the drip line of any tree required to remain is also prohibited . TCEQ PHASE II RULES IN EFFECT . The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design Criteria . If it is determined the prescribed erosion control measures are ineffective to retain all sediment onsite , it is the contractors responsibility to implement measures that will meet City, State and Federal requirements . The Owner and/or Contractor shall assure that all disturbed areas are sodden and establishment of vegetation occurs prior to removal of any silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor shall also insure that any disturbed vegetation be returned to its original condition, placement and state . The Owner and/or Contractor shall be responsible for any damage to adjacent properties, city streets or infrastructure due to heavy machinery and/or equipment as well as erosion, siltation or sedimentation resulting from the permitted work . In accordance with Chapter 13 of the Code of Ordinances of the City of College Station , measures shall be taken to insure that debris from construct ion, erosion , and sedimentation shall not be deposited in city streets , or existing drainage facil ities . I hereby grant this permit for development of an area inside the special flood hazard area . All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer in the development permit application for the above named project and all of the codes and ordinances of the City of College Station that apply. ()q-Dl -oS- Date ~~ Owner/Agent/Contractor Date I 01-A ug -05 CONSTRUCTION COST ESTIMATE CASTLEGATE SUBDIVIS ION -SECTION 6 COLLEGE STATION , TEXAS Item Estimated Unit Estim a ted No . Description Qua ntity Pri ce Cost Sitework 1 Mobili zation/Layout 1 LS $5 ,000 .00 $5,000 2 Site Preparation 2 .5 AC $3 ,500.00 $8,750 3 Silt Fence 790 LF $3.00 $2,370 4 Construction Exit -Rock 20 TONS $55.00 $1 , 100 5 Erosion & Sediment Control Maintenance 1 LS $2 ,000 .00 $2,000 6 Hydromul c h/Hydros eeding 7 ,000 SY $0.50 $3 ,500 7 Tops oil Stripping & Replacement 800 CY $5.00 $4,000 8 Excavation/Grading -Street Constr. -Export 2 ,320 CY $6.00 $13 ,920 9 Concrete Apron 1 ,480 SF $5 .50 $8 ,140 10 Lime Stabilized Subgrad e 5 ,795 SY $3.25 $18,834 11 Base Material -6" depth 4,660 SY $7.00 $32,620 12 Asphalt Paving -1 1/2" depth 4,660 SY $6.00 $27 ,960 13 Concrete Curb and Gutter 2 ,955 LF $8.25 $24 ,379 14 Concrete Ribbon Curb 85 LF $7.60 $646 15 Landscape Sleeves (2 -4" 25' PVC) 50 LF $12.00 $600 Subto ta l $153,819 Storm Drainage & Detention Pond 16 Drainage Pipe -24" RCP -Structural 192 LF $56.00 $10 ,752 17 Drainage Pipe -18" RCP -Non-Structural 90 LF $45 .00 $4 ,050 18 Drainage Pipe -15" HOPE Pipe -Non-Str . 90 LF $35 .00 $3 ,150 19 Concrete S.E.T. -24" RCP 4 EA $2,400.00 $9 ,6 00 20 Con crete S.E.T. -18" RCP 3 EA $2, 100.00 $6,300 21 Concrete S.E.T. -15" 3 EA $1,600.00 $4 ,800 22 Topsoil Stripping & Repla cement 300 CY $5.00 $1 ,500 23 Excavation -Export 600 CY $6 .00 $3,600 24 Excavation -Placed as Fill Material 300 CY $4.00 $1,200 25 Drainage Ditch Grading 245 LF $5.00 $1,225 26 Rock Riprap 20 TON $55.00 $1 , 100 27 Pond Outlet Structure 2 LS $2,500.00 $5,000 28 Concrete Channel -5' Wide 870 SF $6 .00 $5 ,220 29 Concrete Flume -2' Wide 240 SF $5.00 $1.200 Subto tal $58,697 W ater 30 8" Water PVC CL200 (C909) -Structural 131 LF $28.00 $3,668 3 1 8" Water PVC CL200 (C909) -Non-Structural 706 LF $22.00 $15,532 32 6" Water PVC CL200 (C909) -Structural 103 LF $26.00 $2,678 33 6" Water PVC CL 20 0 (C909) -Non-Structural 389 LF $20.00 $7,780 34 3" Water PVC CL200 (C909) -Non-Stru ctura l 145 LF $16 .00 $2 ,320 35 8" 11.25 deg. M.J . Bends 2 EA $300.00 $600 36 6" 11 .25 deg. M.J . Bends 5 EA $250.00 $1,25 0 37 3" 11.25 deg. M.J. Bends 3 EA $200 .00 $600 38 8" Gate Valves 4 EA $750.00 $3,000 39 6" Gate Valve s EA $550.00 $550 40 3" Gate Valves 2 EA $350 .0 0 $700 41 8" M.J . Tee 4 EA $350.00 $1,400 42 6" M.J . Tee 2 EA $300.00 $600 43 Fire Hydrant Assembl y 2 EA $2,400 .00 $4,800 44 Vertical Extension for Fire Hydrant 2 EA $250 .0 0 $500 45 Connect to Existing 8" Waterline 1 EA $500.00 $500 46 2" Bl owo ff A sse mb ly 5 EA $400.00 $2,000 47 Water Services -1" Long 3 EA $750 00 $2,250 48 Water Services -1" Sho rt 4 EA $400.00 s 1 ()()0 4 <') W ;·t1 er Sr~rv i cc:s · I r," ~:;1 ·11.,1 El\ $ :-.ori f1 ( i '.'.;r 1(,11 I' 1:1· 1 •I. " 1 · 50 W ater Services -1.5 " Lon g 7 EA $830.00 $5 ,8 10 Subtotal $58 ,638 Sewer 51 6" SOR 26 C-224 1 Pipe Non-Structur al 460 LF $22.00 $10,120 52 6 " SOR 26 C-22 41 Pipe Stru c tur al 256 LF $30.00 $7,680 53 8" SOR 26 C-3 034 Pipe Non-Stru ctur al 59 4 LF $26 .00 $15,444 54 8" Class 350 Ductile Iron Pipe Structura l 372 LF $34 .00 $12 ,648 55 Manholes -<8' Depth 5 EA $2 ,200 .00 $1 1 ,000 56 Manholes -8'-1 O' Depth 2 EA $2,400 .00 $4,80 0 57 4" Sewer Service Single SS 2 EA $350 .00 $700 58 4" Sewer Service Sing le LS 1 EA $600.00 $600 59 6" Sewer Service Double SS 7 EA $500 .00 $3,500 60 6" Sewer Service Double LS 3 EA $8 00 .00 $2 ,400 6 1 Conn ec t to Existing Manhol e EA $1 ,000 .00 $1,000 Subtotal $69,892 Total Sitework $153,819 Total Storm Drainage $58 ,697 Total Water $58,638 Total Sewer $69 892 TOTAL CONSTRUCTION! $341:0461 Date: To: From: Subject: Remarks: TEX CON TRANSMITTAL August 2 , 2005 Bridgette George Development Coordinator Development Services City of College Station Joe Schultz~ Texcon GenJ;I Contractors Phone: (979) 764-7743 Revised Construction Drawings Castlegate, Section 6 Co ll ege Station, Texas 8'--4-tJG l(Oq ~ GS-ld...J- Attached is 1 copy of the revised conshT1ction drawings for the above- referenced project. Additional sealed copies will be provided if you have no additional comments. A lso attached ar~ 2 copies eac h of the Sanitary Sewer Design Report, the Waterline Fire flow analysis and the Engineer 's cost estimate. Let me know if you need anyth in g else or h ave any questions. ' . ' Castlegate Subdivision, Section 6 Response to Engineering Review Comments No. 1 1 . The detention pond grading on Sheet 4 has been re v ised so that the detention pond is not in the Amberely Place R-0-W. 2. The detail on Sheet 4 has been revised. 3 . Citgo requires a minimum clearance of 24" between their pipeline and the waterline. The profile of Waterline W-1 has been lowered to achieve this clearance. The depth of the pipeline shown is based on Citgo personnel depth checks of the line . The profile of Waterline W-7 for Castle gate Section 5 , Phase 2 , has also been revised to lower the waterl ine. Citgo prefers the waterline be constructed of PVC pipe because ductile iron pipe or steel casing could interfere with their cathodic protection. 4. In accordance with TCEQ regulations 290.44, (e)(B)(V), the sewer line under the waterline is pressure rated , a 20 ' joint is centered under the waterline and embedded in cement stabilized sand. Also , a 20' segment of waterline is centered over the crossing. A copy of the TCEQ requirements are attached. 5. The sewer will be backfilled with cement stabiliz ed sand where it is less than 3.5 ' deep. 6 . The title of Sheet 1 has been changed . 7 . Yes , the la yd own curb is continuous on the left side. • Texas Natural Resource Conservation Commission Chapter 290 -Public Drinking Water Page 48 centerline of the wastewater main or lateral. The potable waterline shall be at least two feet above the wastewater main or lateral. Whenever possible, the crossing shall be centered between the joints of the wastewater main or lateral. The wastewater pipe shall have a minimum pipe stiffness of 115 psi at 5 .0% deflection. The wastewater main or lateral shall be embedded in cement stabilized sand (see §290.44(e)(4)(B)(vi) of this title) for the total length of one pipe segment plus 12 inches beyond the joint on each end. (iv) Where a new potable waterline crosses a new, non-pressure rated wastewater main or lateral and a standard length of the wastewater pipe is less than 18 feet in length, the potable water pipe segment shall be centered over the wastewater line. The materials and method of installation shall conform with one of the following options : (I) Within nine feet horizontally of either side of the waterline , the wastewater pipe and joints shall be constructed with pipe material having a minimum pressure rating of at least 150 psi. An absolute minimum vertical separation distance of two feet shall be provided. The wastewater main or lateral shall be located below the waterline . (II) All sections of wastewater main or lateral within nine feet horizontally of the waterline shall be encased in an 18 foot (or longer) section of pipe . Flexible encasing pipe shall have a minimum pipe stiffness of 115 psi at 5.0% deflection. The encasing pipe shall be centered on the waterline and shall be at least two nominal pipe diameters larger than the wastewater main or lateral. The space around the carrier pipe shall be supported at five-foot (or less) intervals with spacers or be filled to the springline with washed sand. Each end of the casing shall be sealed with water tight non-shrink cement grout or a manufactured water tight seal. An absolute minimum separation distance of six inches between the encasement pipe and the waterline shall be provided. The wastewater line shall be located below the waterline. (III) When a new waterline crosses under a wastewater main or lateral, the waterline shall be encased as described for wastewater mains or laterals in subclause (II) of this clause or constructed of ductile iron or steel pipe with mechanical or welded joints as appropriate. An absolute minimum separation distance of one foot between the water line and the wastewater main or lateral shall be provided. Both the waterline and wastewater main or lateral must pass a pressure and leakage test as specified in A WW A C600 standards . ------· (v) Where a new potable waterline crosses a new, pressure rated wastewater main or lateral, one segment of the waterline pipe shall be centered over the wastewater line such that the joints of the waterline pipe are equidistant and at least nine feet horizontally from the centerline of the wastewater main or lateral. The potable waterline shall be at least six inches above the wastewater main or lateral. Whenever possible, the crossing shall be centered between the joints of the wastewater main or lateral. The wastewater pipe shall have a minimum pressure rating of at least 150 psi. The wastewater main or lateral shall be embedded in cement stabilized sand (see clause (vi) of this subparagraph) for the total length of one pipe segment plus 12 inches beyond the joint on each end. -----------· ---- Design Report Waterline Fire Flow Analysis for Castlegate Subdivision -Section 6 College Station, Texas August 2005 Prepared By: TEXCON General Contractors 1707 Graham Road College Station, Texas 77845 (979) 764-7743 1.0 INTRODLl (TION & DES C RIPTIO N The purpos e o r thi s re p o r t is to pro v id e a descripti o n o f th e prnposcd wat e rlin e s to be co ns tru c te d w ith th e Castlegate Subdivision, Sec:tio11 6, and lo provide th e res ult s of th e analys is of the waterlines und er fir e fl ow c o nditi o n s . A n e x is tin g 12" wa te rlin e is loca ted along C a s tl e ga te Drive adjacent to Ca s tlegate Sectio n 5, Ph ase I. The proposed wa te rlin e to s uppl y the s it e will co nn ect to an ex ist in g 8" waterline to be co n s tru c ted with th e Sec ti o n 5 , Phase 2 development. The water m a in s for thi s project will be co n s tru c te d u s in g 8 '', 6 " a nd 3" diam ete r pipe. The 8" and 6" wa te rlin e for thi s project wi ll be co nst ru cted of DR-14 , PVC pipe m ee tin g the req uire m e nt s of A WWA C -909 with m ec ha ni ca l joint fittin gs . T he 3" pipe w ill b e constructed of SD R-21 , PVC pipe m eet in g the requirements of ASTM-2241 w ith mechanical joint fittin gs. 2.0 FIRE FLOW REQUIREMENTS The fl ow required for fire hydrant fl ow for th e s ubdi v is ion is 1,000 ga ll o n s p er minute (gpm), fo r each fir e h y drant. 3.0 WATERLINE SYSTEM ANALYSIS The wate rlin e system was analyzed u si n g the Wate rCA D computer program d eve lo ped by Haestad Methods, Inc . Exhibit ''l'' is a schematic of the proposed wate rline for Sec tion 6 and the ex is ting Section 5 waterlines, which show th e locations of the fir e h ydrants proposed for Section 6 . A normal domes tic use flow of 1.5 gpm was include d in th e analysis for each of the 23 residential lo ts in Section 6. This results in a nom1 a l demand of 34.5 gp m , w hich was includ e d in th e ana lysi s. The residual pressure in the exis tin g 12" waterline was d e te m1in e d by ca lculating th e head lo ss at a flow of 1,6 88 g pm for th e existing lin e . Exhibit "6" presents the res ult s of a press ure/flow te s t from fire hydrants connected to th e existing 12" waterline along Castl egate Drive . A static pressure of 90 psi and a res idual pressure of 85 p s i with the hydrant flow at 1,140 gpm were d e te m1in e d by Co ll ege Station Public Utility personnel. The residual pressure of79.6 p s i at a fl ow of 1,688 gpm was calculated u s ing the following equation: Where : QR = Q ava ilabl e @ d es ire d residual press ure QF = Q during fir e flow tes t H R = press ure drop to des ired res idual press ure H F = press ure drop durin g fir e fl ow test Thi s re s ult s in a res idual press ure of 79.6 p s i w here th e ex isti ng 8" waterlin e in Section 5 , Pha se 1 co nn ec ts to the 8" stub on the 12" waterlin e. The h ydra uli c grade wa s se t at thi s press ure a t the sta rt of th e proposed wate rlin e , Junc ti o n R-1. The co mputer m ode l was run w ith a lire ll ow o r 1,000 g prn for eac h of th e 2 fir e hy drant s pro posed fo r thi s project. Ex hibit "2" is a s umm a ry o r th e pipe sys te m j un c ti on nod es " ith th e fir e hydrant fl ow a t Fire Hy drant 2 . The lowes t res idu al pre ss ure occ urr e d in the sys te m at Jun c tion .1 -34 . T h e pre ssure a t th is po int is es tima ted b y th e m od e l to be 60 .6 p s i. w hi c h c.'<cc cd s th e minimum or 20 p s i re quire d by th e TC EQ regul a ti o ns. Ex hib its "4" & "5" are s umm aries or the p ip e sect io ns fo r th e sys te m un der thi s demand sce na ri o. T he m axi mum ve loc it y fo r t he 8" wa te r m a in s is 6 .83 fee t pe r seco nd , and occ ur s in Pip es P-3 1 a nd P-32. Th e m axi mu m ve loc ity fo r th e 6" water m a in s is 1 1.62 fe e t pe r seco nd , a nd occ urs in P ipe P-37 . A n 8" wate rlin e is be in g s tu b be d o ut fo r th e futur e d eve lopm e nt of th e adj ace n t trac t. An a dditi o na l scen a ri o w ith 1,000 gp m fi re hydrant flow at Junctio n J-41 , w hi c h w ill se r ve thi s a dj acen t trac t , wa s m o d e le d. Ex hi b it "5" is a s umm a ry of th e pip e syste m junc ti o n nodes for thi s scenari o . T he lowes t res idu a l press ure occ urre d in th e syste m a t Junc ti o n J-4 1. T he pressure a t thi s po int is es tima te d by the mode l to b e 61 .7 p s i, w hi c h exceed s th e minimum o f 20 ps i re quire d by th e TCEQ regul a t io ns. A s e p ara te an a lys is was run fo r th e d o m esti c use. T he minimum res idu a l press ure in the sys te m w a s 70.7 p s i, w hi c h exceed s th e minimum pressure of 35 p s i re quire d by TCEQ. Minor losses in thi s syste m were no t ca lc ulate d , as th ey were ass um e d to b e in s ig nifi ca n t. 4 .0 CONCLUSIONS T he waterlines propose d fo r thi s d evelo pme nt s ho uld ad e qu a te ly pro v id e th e fir e fl ow re quire d w ith ac ceptable va lu es fo r headlo s s and ve lo c ity . Thi s ana lys is was d o n e assuming adequa te res idual pressure in the ex is ting 12 " w a te r main along C astl egate Dri ve, as d e te rmine d by the flow test. J.n H O p.4 J J-39 P-36 p.u Title C ;1 :-;ll ;~<_.J;d(· · Sr~r:t 1 (>11 I ) ... 1,h; !I :·:;;f , I I ,.,,,I ! ~I I q ,\I( I I ' ) ~ : .' ( ) I ' 1: I ~ I l I : . : I I ( I i" ~ r , J·32 J-33 P-J\ J-33 Scenario: Base '·' P -3•) p.1 J.I p./ J./ P .J p., J·l H p.' ,., p .5 ·6 p. 7 J.l ,., J.! p. 9 P-1 I J-3 1 p .33 J-29 p,32 J-30 P-38 .l-13 P-21 J-11 J-16 p .16 P· 12 p , 13 P-15 p. 1 J J-1 5 J-11 J.13 J-1J ft\1- J.]l _l.l' "'· '1 1'1 I '', ··:r l •I .. , : 1 1'-;., r Ii ·I ·1 • p.;z o P -19 J -19 J-18 p. 18 J.17 P-1' ('11•jt 't I tHlllll!!'I .1()£: SC lll l l 17 I '.1 ti • >t i 'J'd )' l fl!,' 11 I 1 I 1 Node El eva tion Demand Demand Label (ft) Type (gpm) J-1 308.40 demand 0 00 J-2 307 .70 d emand 0 .00 J-3 309.8 1 d emand 0 .00 J-4 311.26 demand 10 .00 J-5 313.19 demand 0.00 J-6 314.97 demand 23 .00 J-7 31504 demand 000 J-8 316.80 demand 10.00 J-9 319.73 demand 0 .00 J-10 321 .2 1 demand 20 .00 J-11 321.60 demand 0.00 J-12 320.68 demand 12 .00 J-13 320.55 demand 0 .00 J-14 320.42 demand 0 .00 J-15 320 .51 demand 0 .00 J-16 324 .40 demand 20 .00 J-17 319 .03 demand 20 .00 J-18 319 .09 demand 0 .00 J-19 319.12 demand 0 .00 J-20 324 .86 demand 20 .00 J-21 323 .55 d emand 0 .00 J-22 315 .69 demand 18.00 J-23 311.48 demand 0 .00 J-24 320.62 demand 0.00 J-25 319.79 demand 0 .00 J-26 319 .79 demand 0 .00 J-27 315.64 demand 0 .00 J-28 310.78 demand 0 .00 J-29 320 .90 demand 0 .00 J-30 320 .60 demand 35 .00 J-31 320.4 0 demand 0 .00 J-32 319.60 demand 0 .00 J-33 320 .00 demand 0 .00 J-34 317 .00 demand 1 ,000 .00 J-35 316 .10 dema nd 0 .00 J-36 315 .60 demand 9 .00 J-37 317 .80 demand 7 .50 J-38 320.40 demand 7 .50 J-39 322 .30 demand 0 .00 J-40 322 .30 demand 10 .50 J-41 328 .30 demand 0 .00 t ,• 1. 1' •.. 1, !I' ·:_ ·1 'I , 11 • 1;:1 , ! t ;1.1 ·1 1 • · 1.1 ·n · l'l•I l•,·t .,1;11! r.J.·1!1·•'1' 11 ·1 Scenario: Base Steady State Analysis Junction Report Demand Calculated Hydrauli c Pressure Pattern Demand Grade (psi) (gpm) (ft) Fixed 0 .00 491 .6 9 79 .26 Fixed 0 .00 491.42 79.44 Fixed 0 .00 490 .2 4 78 .02 Fixed 10.00 489 .98 77 .28 Fixed 0 .00 488 .86 75 .97 Fixed 23 .00 487 .80 74 .74 Fixed 0 .00 487 .77 74 .69 Fi xe d 10 .00 486.74 73.49 Fixed 0 .00 485 .80 71 .81 Fixed 20.0 0 485 .32 70 .97 Fixed 0 .00 485 .19 70.74 Fixed 12.00 486 .03 71 .50 Fixed 0.00 486.09 71 .58 Fixed 0 .00 486.14 71 .66 Fixed 0 .00 486 .25 71 .67 Fixed 20 .00 487.02 70 .32 Fixed 20.00 488.31 73 .20 Fixed 0 .00 488 .43 73 .23 Fixed 0 .00 488.48 73 .24 Fixed 20 .00 490.21 7 1.50 Fixed 0 .00 490 .32 72 .12 Fixed 18.00 490 .27 75 .5 0 Fixed 0.00 490 .25 77.31 Fixed 0.00 491 .31 73.81 Fixed 0 .00 491.45 74 .23 Fixed 0 .00 491 .70 74 .34 Fixed 0 .00 491 .80 76.18 Fixed 0.00 491 .91 78.33 Fixed 0.00 482.44 69.86 Fixed 35.00 482.14 69 .85 Fixed 0 .00 481.54 69 .68 Fixed 0 .00 478.88 68 .88 Fixed 0 .00 476.67 67.75 Fixed 1,000.00 457 .25 6 0.6 5 Fixed 0 .00 457 .25 6 1 .04 Fixed 9 .00 457.25 6 1.25 Fixed 7 .50 457 .23 60.29 Fixed 7 .50 476.66 67 .57 Fixed 0 .00 478.88 67 .71 Fixed 10.50 478.88 67 .7 1 Fixed 0 .00 478.88 65 .12 " " l Pro.i<·c 1 F11q1111·•·1 .1 (1E SC ll lJI T/ \N;111·1 1 1\[ 1 ,, l I 111 / It I I' 1•1·· I 11 I Link Le ngth Diamete r M a te ri a l Roughn e s ! Minor LO S! La be l (ft) (in) P-1 4g ,oo 8 PVC 150.0 0 .00 P-2 4 3.0 0 8 PVC 150 .0 0 .00 P-3 185.00 8 PVC 150.0 0 .00 P-4 33 .00 8 PVC 150.0 0 .00 P-5 146 .00 8 PV C 150.0 0 .00 P-6 138 .00 8 PVC 150 .0 0 .00 P-7 5 .00 8 PVC 150.0 0 .00 P-8 142 .00 8 PVC 150.0 0 .00 P-9 134 .00 8 PVC 150.0 0 .00 P-10 68 .00 8 PVC 150.0 0 .00 P-1 1 20 .00 8 PVC 150.0 0 .00 P-12 321 .00 8 PVC 150 .0 0 .00 P-31 172 .00 8 PVC 150.0 0 00 P-13 19 .00 8 PVC 150.0 0 .00 P-14 18 .00 8 PVC 150.0 0 .00 P -15 43 .00 8 PVC 150 .0 0 .00 P-16 275 .00 8 PVC 150.0 0 .00 P-17 426.00 8 PVC 150.0 0.00 P-18 36 .00 8 PVC 150.0 0.00 P-19 17 .00 8 PVC 150 .0 0 .00 P-20 524 .00 8 PVC 150 .0 0 .00 P-21 32 .00 8 PVC 150 .0 0.00 P-22 235 .00 8 PVC 150.0 0 .00 P-25 197 .00 8 PVC 150.0 0.00 P-23 166.00 8 PVC 150 .0 0 .00 P -24 99 .00 8 PVC 150.0 0 .00 P-26 28.00 8 PVC 150.0 0.00 P-27 50 .00 8 PVC 150.0 0 .00 P-28 138.00 12 PVC 150.0 0 .00 P-29 162 .00 12 PVC 150.0 0 .00 P-30 125.00 12 PVC 150.0 0 .00 P-32 19 .00 8 PVC 150.0 0 .00 P-33 40 .00 8 PVC 150.0 0 .00 P -34 177 .00 8 PVC 150.0 0 .00 P -37 37 .00 6 PVC 150.0 0 .00 P-43 384.00 8 PVC 150.0 0 .00 P-38 329 .00 6 PVC 150 .0 0 .00 P-41 46 .00 3 PVC 150.0 0 .00 P-39 100.00 6 PVC 150.0 0 .00 P -42 96 .00 3 PVC 150.0 0 00 P-40 57 .00 6 PVC 150.0 0.00 P-36 174 .00 3 PVC 150.0 000 P-44 12 .00 8 PVC 150 .0 000 l 1 t I! ! ( : , I:·. I I 1 •4 l, ! It ~:~ 1 • 1 I It 11 1 I ~ I I ' ' ' I ' • : : . I • 1 I ' t • -• .'' : ~ ~ : ' I I ' I ! . I I l ' ! I Scenario: Base Steady State Analysis Pipe Report Initi a l Curre nt Di scha rge Start Status Statu s (gpm) Hydrauli c Grade (ft) Open Open 54g ,73 492 .00 Open Open 649 . 73 49 1 .69 Open Open 649 . 7 3 49 1.4 2 Open Open 729 .2 6 490 .24 Open Open 719 .26 489 .98 Open Open 719 .26 488 .86 Open Open 696.26 487 .80 Open Open 696 .26 487 .77 Open Open 686 .26 486 .74 Open Open 686 .26 485 .80 Open Open 666 .26 485 .3 2 Open Open -403 .24 485.19 Open Open 1 ,069 .50 485 .19 Open Open -415 .24 486 .03 Open Open -415 .24 486 .09 Open Ope n -4 15 .24 486.14 Open Open -4 15.24 486 .25 Open Open -435 .24 487 .0 2 Open Open -455 .24 488.31 Open Open -455 .24 488.4 3 Open Open -455.24 488.48 Open Open -475 .24 490 .21 Open Open 97 .53 490.32 Open Open -572.77 490.32 Open Open 79 .53 490 .27 Open Open 79.53 490.25 Open Open -572 .77 491 .31 Open Open -572 .77 49 1.45 Open Open -572 .77 49 1.70 Open Open -572 .77 49 1.80 Open Open -572 .77 49 1.91 Open Open 1 ,069 .50 482 .44 Open Open 1 ,034 .50 482.14 Open Open 1,034 .50 48 1 .54 Open Open 1 ,024 .00 478 .88 Open Open 10 .50 478.88 Open Open 1 ,016 .50 476 .67 Open Open 7 .50 476 .67 Open Open 9 .00 457 .25 Open Open 7 .50 457 .25 Open Open 9 .00 457 .25 Open Open 0 0 0 478 .88 Open Open 10 .50 478 .88 ,, End H ea d loss Fri c ti o n H ydraulic (ft) S lope Grade (ft/1 OO Oft) (ft) 4 9 1 .69 0 .31 6 .35 4 9 1.42 0 .27 6 .35 4 90 .24 1 .18 6 .35 489.98 0 .26 7 .87 488.86 1 .12 7 .6 7 487 .80 1.06 7 .67 487 .77 0 .04 7 .2 2 486.74 1.03 7 .22 485 .80 0 .94 7 .03 485.32 0.48 7 .03 485 .19 0 .13 6 .65 486.03 0 .84 2 .63 482.44 2 .75 15 .97 486.09 0 .05 2 .78 486.14 0 .05 2.77 486.25 0 .12 2 .77 487 .02 0 .76 2 .77 488.3 1 1 .29 3 .03 488.43 0 .12 3 .29 488.48 0 .06 3 .29 490.2 1 1 .72 3 .29 490 .32 0 .11 3 .56 490 .27 0 .04 0.19 491 .31 0 .99 5 .03 490 .25 0 .02 0 .13 490 .24 0 .01 0.13 491.45 0 .14 5 .03 491 .70 0 .25 5 .03 491 .80 0 .10 0 .70 491 .91 0 .11 0 .70 492 .00 0 .09 0 .70 482 .14 0 .30 15 .97 481 .54 0 .60 15 .02 478.88 2 .66 15 .02 476.67 2 .21 59 .83 478.88 0 .12e-2 0 .31e-2 457 .25 19.42 59 .02 476.66 0 .01 0 .20 457 .25 0 .95e-3 0 .01 457 .23 0 .02 0 .20 457 .25 0.5 5e-3 0 .01 478 .88 0 00 0 .00 478 .88 0 .31e-4 0 .25e -2 l'1 1i1 •·1 I 1'1111 1111 •f'f .I CJj :.Cl 1111 I /' '.,'';11 1 r (.',"\{1 , 1 1110 Ii J I' .. ' J ...... I' ''I' ; I Analysis Results Scenario Note : The input data may have been modified si nce th e las t calcul ation was pe rformed . The calculated results may be outda ted . Title : Project Engineer: Project Date : Castlegate -Section 6 JOE SCHULTZ 08/01 /05 Comments: Scenario Summary Label Demand Alternative Physical Alternative Initial Settings Alternative Operational Alternative Age Alternative Constituent Alternative Trace Alternative Fire Flow Alternative Liquid Characteristics Liquid Ki n ematic Viscosity Network Inventory Number of Pipes Number of Reservo irs Number of Junctions Number of Pumps -Constant Power: -One Point (Des ign Point): -Standard (3 Point): -Standard Exten d ed: -Custom Extended: -Multiple Point: Pipe Inventory Tota l Length 3 in 6 in Ttll<.: C (1 !;tl!_~q;1!1 ~ · S 1 ~i:111 •ll I ) ~ · ',I 1. 10 • ~: I; 11 l \ii, I 1 •. 1 · 11 · I.', r • I Base Base-Average Daily Base-Physical Base-Initial Settings Base-Operational Base-Age Alternative Base-Constituent Base-Trace Alternative Base-Fire Flow W ater at 20C(68F) 0 .108e-4 ft2/s 43 41 0 0 0 0 0 0 0 5 ,517 .00 ft 316 .00 ft 523 .00 ft Specific Gravity Number of Tanks -Co n s ta nt Area : -Variable Area : Number of Valves -FCV's: -PBV's: -P RV's: -PSV's: -TCV's: Number o f Spot Elevations 8 in 12 in f l( 4 ( ' 1 ' 1 ~ ' I I ' 1 1 ' I · 1 : I ' ' ! • I I , ti • .. : " 1 · 1 • I ' 11 " l I 1 r ~ .. I : ' f ' I-I I • ! . ' ' , I l 0 0 0 0 0 0 0 0 0 0 1.00 4 ,253 .00 ft 425.00 ft Prrq1 ct F-1 1111111 •1•1 .JC1( ~~C l HJ!. I / 1/J· 11i ., I -1\I _I ,. '. 1 111,' 1 f I 1,'•l '\ •1 ,1 ·c 'I I' 1•1•· 1 Label Status Constituent Flow (mg/I) (gpm) P-31 Open NIA 1 ,069.50 P-32 Open N/A 1,069.50 P-33 Open N/A 1,034 .50 P-34 Open N/A 1,034 .50 P-36 Open N/A 0 .00 P-37 Open N/A 1 ,024 .00 P-38 Open N/A 1 ,0 16 .50 P-39 Open N/A 9.00 P-40 Open N/A 9 .00 P-41 Open N/A 7.50 P-42 Open N/A 7.50 P-43 Open N/A 10.50 P-44 Open N/A 10 .50 I 'l 'Olf < .... ,l°_o.',1 1 '( ••l l't 11;--. r1l'r1, t•I .1• .1 1 ·· 1 Analys is Results Scenario : Base Steady State Analysis P i pes @ 0 .00 hr Velocity From To Fr ict ion Minor Total (fUs) Grade Grade Loss Loss Head loss (ft) (rt) (ft) (ft) (ft) 6 .83 485.19 4 8 2.44 2 .75 0 .00 2 .7 5 6 .83 482.44 482.14 0 .30 0 .00 0 .30 6 .60 482 .14 481 .54 0 .60 0 .00 0 .60 6 .60 48 1 .54 478 .88 2 .66 0 .00 2 .66 0 .00 478 .88 478 .88 0 .00 0 .00 0 .00 11 .62 478 .88 476 .67 2 .21 0 00 2 .2 1 11 .53 476 .67 457 .25 19.42 0 .00 19.4 2 0 .10 457.25 457 .25 0 .95e-3 0.00 0 .95e-3 0 .10 457.25 457 .25 0 .55e-3 0.00 0 .55e-3 0 .34 476 .67 476 .66 0 .01 0 .00 0 .01 0 .34 457 .25 457 .23 0 .02 0 .00 0 .02 0 .07 478 .88 478 .88 0 .12e-2 0 .00 0 .12e-2 0 .07 478.88 478 .88 0.3 1e -4 0 .00 0 .3 1e-4 Head loss Grad ie n t (fU1000ft) 15.97 15 .97 15.02 15 .02 0 .00 59 .83 59 .02 0 .01 0 .01 0 .20 0 .20 0 .31e-2 0 .25e-2 P1 n j'''' ftHJ""''" .IOI S C llUL 17 \,"I/, 1li '1 (·:/\I I •: ·.: I I' I i \ t I (, r · 1, 1 .', I·····• Node Elevation Demand Label (ft) Type J-1 308.40 demand J-2 307 .70 demand J-3 309 .81 demand J-4 311.26 demand J-5 313 .19 demand J-6 314 .97 demand J-7 315 .04 demand J-8 316 .80 demand J-9 319 .73 demand J-10 321 .21 demand J-11 321 .60 demand J-12 320 .68 demand J-13 320 .55 demand J-14 320.42 demand J-15 320 .51 demand J-16 324 .40 demand J-17 319 .03 demand J-18 319.09 demand J-19 319.12 demand J-20 324 .86 demand J-21 323.55 demand J-22 315 .69 demand J-23 311.48 demand J-24 320 .62 demand J-25 319.79 demand J-26 319 .79 demand J-27 315.64 demand J-28 310.78 demand J-29 320 .90 demand J-30 320.60 demand J-31 320.40 demand J-32 319.60 demand J-33 320.00 demand J-34 317 .00 demand J-35 316 .10 demand J-36 315 .60 demand J-37 317.80 demand J-38 320.40 demand J-39 322 .30 demand J-40 322 .30 demand J-41 328 .30 demand Tit le : C;:i s tlega l f~ -Seclion r) c l1;H!~:.1,•1J'•::trc'.1·l l !·1 1;,1,~d 1:0::1.,'I) l /1 ·~·. I ·~:. ( )~: ~'.·'I r 1 11.'1 Demand (gpm) 0 00 0 .00 0.00 10.00 0 .00 23 .00 0 .00 10 .00 0 .00 20 .00 0 .00 12 .00 0 .00 0 .00 0 .00 20 .00 20 .00 0 .00 0 .00 20 .00 0 .00 18.00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 0 .00 35 .00 0 .00 0 .00 0 .00 0 .00 0 .00 9 .00 7 .50 7 .50 0 .00 10.50 1,000.00 Scenario: Base Steady State Analysis Junction Report Demand Calculated Hydraulic Pressure Pattern Demand Grade (psi) (gpm) (ft) Fixed 0 .00 491 .69 79 .26 Fixed 0 .00 491.42 79.44 Fixed 0 .00 490.24 78 .02 Fixed 10.00 489 .98 77 .28 Fixed 0.00 488 .86 75 .97 Fixed 23 .00 487 .80 74.74 Fixed 0 .00 487 .77 74 .69 Fixed 10.00 486 .74 73.49 Fixed 0 .00 485 .80 71 .81 Fixed 20 .00 485 .32 70 .97 Fixed 0 .00 485 .19 70 .74 Fixed 12.00 486 .03 71 .50 Fixed 0 .00 486 .09 71 .58 Fixed 0 .00 486 .14 71 .66 Fixed 0 .00 486 .25 71.67 Fixed 20 .00 487 .02 70 .32 Fixed 20 .00 488 .31 73 .20 Fixed 0 .00 488.43 73.23 Fixed 0 .00 488.48 73.24 Fixed 20 .00 490 .21 71.50 Fixed 0 .00 490 .32 72.12 Fixed 18.00 490 .27 75.50 Fixed 0 .00 490 .25 77.31 Fixed 0 .00 491 .31 73 .81 Fixed 0 .00 491.45 74.23 Fixed 0 .00 491 .70 74.34 Fixed 0 .00 491.80 76 .18 Fixed 0 .00 491.91 78.33 Fixed 0 .00 482.44 69 .86 Fixed 35 .00 482 .14 69.85 Fixed 0.00 481 .54 69 .68 Fixed 0 .00 478.88 68.88 Fixed 0 .00 478 .88 68.70 Fixed 0 .00 478 .87 70.00 Fixed 0 .00 478 .87 70.39 Fixed 9 .00 478 .87 70 .60 Fixed 7 .50 478.85 69 .64 Fixed 7 .50 478.87 68.53 Fixed 0 .00 473 .36 65 .32 Fixed 10.50 473 .36 65 .32 Fixed 1 ,000 .00 470 .90 6 1.67 1 [J<CON GE NU~AL CONl HAC f'OHS Projc< I E 1H111 1c • ., .IOE ~;c1-11.1 1.·r z \N;1 li ·1< :.\( 1 •: 1• 1 1r1/ 11·1 I '.1q1 • I cd 1 • • 03 /04 /2004 12 :38 FAX 979 764 3452 COLLEGE STATlON PUB .UTL. 1601 GRAHAM ROAD COLLEGE STATION TEXAS 77845 Date : 4 MARCH 2004 Nwnber pages including cover sheet - 1 Fax to: 764-7759 Attention: JOE SCHULTZ Company: TEXCON From: Butch Willis Water Wastewater Di visi on Phone: 979-764-3435 Fax : 979-764 -3452 FLOW TEST REPORT Location: CASTLE GATE DRIVE Flow hydrant number: V-035 Pitot reading: 80 (GPM): 1140 Stati c hydrant number: V-036 Stati c PSI: 90 Res idual PSI: 85 ~001 CASTLEGATE SEC 6 (FP) (05-00500122) Engineering Review Comments No. 1 1. As discussed, please pull detention pond berm out from Amberley Place ROW. 2 . As discussed, please revise detention berm detail. 3 . The water line crossing under the high pressure gas line may need additional protection. Please provide documentation from Citgo with their requirements for this crossing. Sleeve water line W-1 under gas line? (Sht 5) 4. As proposed, TCEQ requires water line to be a minimum of 2' over sewer line. (W-1 and W-2) 5. Sewer lines buried less than 3.5 feet deep are also required to be backfilled with cement stabilized sand. (Sht 8) 6. Please change the title of Stormwater Pollution Prevention Plan to Erosion Control Plan. (Sht 1) 7. Is there curbing on the south side of the concrete apron? (Sht 2) Reviewed by: Carol Cotter Date: July 13 , 2005 NOTE: Any changes made to the plans, that have not been requested by the City of College Station , must be explained in your next transmittal letter and "bubbled" on your plans . Any additional changes on these plans that have not been pointed out to the City of College Station will constitute a completely new review . Page 2 of 2 FOR OFFICE us: 1~ P&Z CASE NO.: QYi 9' DATE SUBMITTED:l ..-O(J i216 CITY OF COLLEGE STATION /'/,11 111i11g & Dc1,rlopmm1 Srrvirff (Check one) D Minor ($3 00.00) FINAL PLAT APPLICA D Amending ($300.00) u:r-Final ($400.00) lf'.t=Jd-i T ION D Vacating D Replat ($400 .00) ($600.00)* *Includes public hearing fee The following items must be submitted by an esta b lished fili ng deadli ne date for P&Z Commission consideration. MINIM UM SU BM ITT AL REQUIRE ___L' Filing Fee (see above) NOTE: Multiple Sheets -$55 .00 per ad ~Variance Request to Subdivision Regulations -$100 (if applica ~ Development Permit Application Fee of $200 .00 (if applicable). M EN TS: ditional sheet ble) V' Infrastructure Inspection Fee of $600 .00 (applicable if any publ ic infrastructure is being constructed) / Application completed in full. able). st be submitted after staff review .) JJ.A._ Copy of original deed restrictions/covenants for replats (if applic ~ Thirteen (13) folded copies of plat. (A signed mylar original mu L_ One (1) copy of the approved Preliminary Plat and /or one (1) M ~ Paid tax certificates from City of College Station, Brazos Count aster Plan (if applicable). y and College Station l.S.D . brief explanation as to why they are not. V' A copy of the attached checklist with all items checked off or a V Two (2) copies of public infrastructure plans associated with th -=.._ Parkland Dedication req ·rement approved by th _e P rks & Rec is plat (if applicable). reation Board , please provide proof of approval (if applicable). ·(;_ Wl~ -t'Vl~ Ci. . '&v\ f.£J Date of Preapp l ication Conference: W\Ml<h 1, -Z..005" NAME OF SUBDIVISION Casfuga..:t.. ~iv \~'rM -~di SPECIFIED LOCATION OF PROPOSED SUBDIVISION (Lot & Block) \.IJ(i sf-of Co..sfujLt..11c1 ve on &.Q..Q..ns B-a..i<i~ ~DC..J r the Project): :f~Lll~s City Co{l~e ~tttTYl ress - r {jJq_} l£qQ-lo4 I APPLICANT/PROJECT MANAGER 'S INFORMATION (P rima ry Contact fo Name bV'"..e.e..¥1S .ProJV"tl JMIJfSfor-$ -W~ Street Address 4-Ho Gv .. ~@J)r\ vi: State 1}, Zip Code Jlq)Lf-$:' E-Ma il Add Phone Number ('11~) (/{O-J],,$0 Fa x Numbe PROPERTY OWNER 'S INFORMATION : City Cb{f9e.. <tla:h\0V1 ress - r (q1q) ldD-ID1 I Name {:;;wR.R)OS ]?ra1 c~ Q, J:YJ \tesk-.S Street Address q.4-40 Ca.s~a :t,,.,}Vt v C State -rx Zip Code :11'04-S: E-Mail Add Phone Number L'lltf) lotto-:JMO Fa x Numbe City ena~ sT~-tiOv7 res s jC>t' ~lli1~ ~.f-l@fil.w ~ .~e.-+ r [q1q) --rlit v 1-rr'1 ARCHITECT OR ENGINEER'S INFORMATION: Name lex con -' )of SJ,,Jib, J.B.:· Street Address \1o1 bra ba <m]._!()a J State JA Zip Code :11'i>L/S E-Mail Add Phon e Numb er 01'1) ]'2Lj-..... lJ Jt:) Fa x Numbe 6 /13/03 I 11 ! 5 .,----- Is there a temporary blanket easement on this property? If so , please provide the Volume and Page # __ _ Acreage -Total Property \ \. \ 1\-2-(Al, · Total # Of Lots ?., 2 R-0-W Acreage j ,frz.;z.. ()..(/ · Existing Use : \]a,c.a ,ot Proposed Use : S~VI')~ fa,~~ re.~1tltnb'aJ Number Of Lots By Zoning District '2. ~ I fTu I I __ _ Average Acreage Of Each Residential Lot By Zoning District: 0 .? I "fiiD Floodplain Acreage Q A statement addressing any differences between the Final Plat and approved Master Plan and/or Preliminary Plat (if applicable): Requested Variances To Subdivision Regulations & Reason For Same : ~y fDD WvY V'j Total Linear Footage of Proposed Public: , 11-?' Streets Sidewalks (1-S'~' Sanitary Sewer Lines \%l' Water Lines 1-11 I Channels 1'\J' Storm Sewers -Bike Lanes I Paths Parkland Dedication due prior to filing the Final Plat: ACREAGE : ___ # of acres to be dedicated + $ ____ development fee ___ # of acres in floodplain ___ # of acres in detention ___ #of acres in greenways OR FEE IN LIEU OF LAND : ___ #of Single-Family Dwelling Units X $556 = $ ___ _ _______ (date) Approved by Parks & Recreation Board NOTE: DIGITAL COPY OF PLAT MUST BE SUBMITTED PRIOR TO FILING. The applicant .has prepared this application and certifies that the facts stated herein and exhibits attached hereto are true , correct, and complete . The undersigned hereby requests approval by the City of College Station of the above -identified final plat and attests that this request does not amend any covenants or restrictions associated with this plat. a/kl a2. alt)__ 'Signature and Title 6 /13 /03 :n111 7 Glf,,..c. / -12,S Date . , I • Design Report Waterline Fire Flow Analysis for Castlegate Subdivision -Section 6 College Station, Texas August 2005 Prepared By: TEXCON General Contractors 1707 Graham Road College Station, Texas 77845 (979) 764-7743 LO INTRODUCTION & DESCRIPTION The purpose o f thi s re po rt is to provide a description o f th e proposed waterlines to be co n s tru c te d w ith th e Castlegate Subdivision, Sec tion 6, and to provide th e res ult s or th e anal ys is of th e w a te rlin es und e r fir e fl ow co ndi tio n s. An ex is tin g 12" wa te rlin e is loca ted along Cas tl ega te Drive a dja ce nt to Castlega te Section 5, Ph a s e 1. The proposed wa te rlin e to s uppl y the s ite will co nn ec t to an ex is tin g 8" waterline to be co ns tructed •v ith the Sec tion 5 , Pha se 2 development. The water main s for thi s project will be co n s tru c te d u s in g 8", 6" and 3" diam e te r pipe . The 8" a nd 6" waterline for thi s proj ect wi ll b e constructed of DR-14, PVC pipe m eeting the re quire m e nt s of A WW A C-909 with mechanical j o int fittin gs. T h e 3" pipe w ill b e constructed of SDR-21 , PV C pipe m eetin g the re quire m e nts of AS TM-2241 with m ec hanical joint fittin gs . 2.0 FIRE FLOW REQUIREMENTS The flo w required for fir e hy drant flow for the s ubdi v is ion is 1,000 gallons per minute (gpm), for each fire hy drant. 3.0 WATERLINE SYSTEM ANALYSIS T h e waterline system was analyzed using the Wate rCA D computer program d eve loped b y Haes tad Methods , Inc. Exhibit" 1" is a schematic of the propose d waterline for Section 6 and the exist in g Section 5 waterlines, which show the lo cations of the fire hydrants proposed for Section 6 . A normal domestic u se flow of 1.5 gpm was included in th e analysis for each of the 23 residential lots in Section 6. Thi s results in a nom1al d e mand of 34 .5 gpm, which was included in th e ana lysis. The residua l pressure in the existing 12" waterline was detem1ined by ca lculatin g th e headloss at a flow of 1,688 gpm for the ex is ting line. Exhibit "6" presents the res ults of a pressure/flow test from fire hydrants connected to the existing 12" waterline along C a s tlegate Drive . A static pressure of 90 p s i and a res idual pressure of 85 psi w ith the hydrant flow at 1,140 gpm were determined by Co ll ege Station Public Utility personnel. The res idual pressure of79.6 psi at a flow of 1,688 gpm was ca lculated using the following e quation: Whe re: Q R = Q avai labl e @ d es ir ed residua l pressure Q F = Q during fire flow te s t HR = press ure drop to d es ired res idual pressure H F = press ure drop durin g fir e flow tes t Thi s resu lt s in a residual pre ss ure of79.6 p s i where the ex istin g 8" waterline in Sec ti o n 5 , Pha se 1 co nn e cts to the 8" s tub on th e 12" waterline. The h ydra ulic gra d e wa s s e t at thi s pressure a t th e start o f th e proposed wa te r I in e, Jun ct io n R-1 . The co mpute r mod e l was run with a lire flow of 1,000 g pm for eac h of th e 2 fir e hyd rant s propo sed for thi s proj ec t . Ex hibit "2" is a s umm a ry o r th e pip e s ys te m junction nod es wit h th e fir e hydra nt flow a t Fire H yd ra nt 2 . The lowe s t res idu a l pre s s ure occ urre d in th e s y s te m a t Jun c tion .J -34 . The pr e s s ur e a t thi s point is es timated by th e mod e l to be 60 .6 p s i. w hi c h ex ceed s th e minimum or 20 p s i re qu ir ed b y th e T C EQ re g ulation s. Ex hi bits "4" & "5" are s umm ari es o l' t he p ipe sec t io n s fo r th e syste m und e r thi s d e m a nd sce na ri o . T he m ax imum ve lo c ity fo r t he 8" wa te r m a in s is 6 .83 fee t pe r seco nd , a nd o cc ur s in P ip es P-3 1 a nd P-3 2 . T he ma x imu m ve lo c ity for the 6 " wa te r m a in s is 1 1.6 2 fee t p e r se co nd , a n d o c c u rs in P ip e P-37. A n 8" wa te rlin e is be in g s tu bbed o ut for th e future d e ve lo pm e nt of th e a dj ace n t tra c t. A n a dditi o n a l sce na ri o w ith l ,000 gp m fi re h y d ra nt flow a t Junc t io n J-41 , w hi c h wi ll ser ve t hi s a dj ac e n t t rac t , wa s m o d e led . Ex hi b it "5 " is a s umm a ry o f th e pipe syste m junctio n n o d es fo r thi s sce na ri o . T h e lowes t re s idu a l pre s s ure occ urre d in th e sys te m at Junct io n J -4 1. T he pressu re a t thi s p o int is es timate d b y th e m o d e l to be 6 1. 7 p s i, w hi c h exceed s th e minimum of 20 p s i re quired b y t he T CEQ regul atio ns . A se p ara te ana lys is was run fo r th e d o m esti c u se . T he minimum res idu a l press ure in th e sy s te m was 70 . 7 ps i, w hi c h exceeds th e minimum press ure of 35 p s i re quire d b y T C EQ . Minor losses in thi s syste m were not ca lc ul a te d , as th ey were ass ume d t o b e in s ignifi ca n t. 4.0 CON C LUSIONS T he wate rlines p ro p osed fo r thi s d eve lo pme nt s ho uld ade qu a te ly prov id e the fir e fl ow re quire d w ith acce pta bl e v a lu es fo r h eadl oss a nd ve loc ity . T hi s ana lysis was don e assum in g ad e qu a te res idu a l pressure in th e ex isting 12" water main a lo n g C a s tl ega te Dri ve , as d e te rmine d b y th e fl ow test. Hl H O p.u J.39 p.]6 p . .,j) 'Jill(~ C ;1 ~:1 1t-~q;1tt.~. S C!C:ltl lll {) 1.h;,..:;;t ;1•I ,•11 111 '!1 lq · ...... 1:•1 J.)2 Scenario : Base J.27 R · '-·----·-· ;_o__,,.J.2 S H P-1 P-1 J.\ P-1 1-1 P-3 .. , J-3 P-5 J-5 P-6 -6 J-1 P-1 J-8 P-9 J-9 J.)1 p,33 J·29 p .32 J.30 J.22 P-10 J-10 P-1 1 J-11 p.31 p., 2 _,, .3; J.33 p.n p.J'J f \-\ 1- _l .J J I ,~J 2 / 11 p .2s J.25 P-16 J.2J J2 (1 p.22 p.115 p.1 J p., 5 p.1.4 J .15 J.12 J.13 J.I J : , 1 : • ( 1 1 ·' 1 : , .. 1 1 : : • 11 1 ~ ., r I,., I I: 11 • · •1 ' ~ ' 1 I ' ·1 '• Ir 1 r ", ., 1'1•l t'.' (.I 11 ,'(; I''·:.". I t J·l 6 P·20 P· 18 J·17 p.17 ritt .1,.1' 1 "!.lHH!''' 1C)E ~;c t H ll 1 / 1,11 II• •d 'fd ) ·::; 1 I' t: I t ;r,i, r". q ·' i , 1 1 Node Ele va ti o n Demand Labe l (rt) Type J-1 308.40 d emand J-2 307 .70 demand J-3 309.81 demand J-4 31 1 .26 demand J-5 313.19 demand J-6 3 14.97 demand J-7 315.04 demand J -8 316 .80 demand J-9 319 .73 demand J-10 321 .2 1 demand J -11 321.60 demand J-12 320.68 demand J-13 320.55 demand J-14 320 .42 demand J-15 320 .51 demand J-16 324.40 demand J-17 319 .03 demand J-18 319 .09 d emand J-19 319 .12 demand J-20 324.86 demand J-2 1 323.55 demand J-22 315.69 demand J-23 311.48 demand J-24 320.62 demand J-25 319 .79 demand J-26 319.79 demand J-27 315.64 demand J-28 31 0 .78 demand J-29 320.90 demand J-30 320.60 demand J-31 320.40 demand J-32 319.60 demand J-33 320.00 demand J -34 317.00 demand J -35 316 .1 0 demand J-36 315 .60 demand J-37 317.80 demand J-38 320.40 demand J-39 322 .30 demand J-40 322.30 demand J -41 328 .30 demand T1 Hn : C;-1 ~-.111 q;·1tr ~ H Ser:li1 )11 r; I •11;1 '";1,!!' •:.'lf'.:'t · 1 P.• \'.'Id Demand (gpm) 0 .00 0 .00 0 .00 10 .00 0 .00 23 .00 0 .00 10 .00 0 00 20.00 0.00 12.00 0.00 0 .00 0 .00 20.00 20.00 0 .00 0 .00 20.00 0 .00 18.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 35.00 0 .00 0 .00 0 .00 1 ,000 .00 0 .00 9 .00 7 .50 7 .50 0 .00 10 .50 0 .00 1 ·_: i , r ! · " ,.~ 1 · .i .i : 1 ~ : , ... r '· 1 • 1 , . • • ; 1 i , ' 1 r •. 11 • II 1 · 11 1 -~ 1 , , t Scenario: Base Steady State Analysis Junction Report Demand Calculated Hydrauli c Pressu re P a ttern Demand Grade (ps i) (gpm) (ft) Fixed 0 .00 491 .69 79 .26 Fixed 0 .00 491.42 79.44 Fixed 0 .00 490 .24 78.02 Fixed 10 .00 489 .98 77 .28 Fixed 0 .00 488.86 75 .97 Fixed 23 .00 487 .80 74 .74 Fixed 0 .00 487.77 74 .69 Fixed 10.00 486 .74 73 .49 Fixed 0 .00 485.80 7 1 .81 Fixed 20 .00 485.32 70 .97 Fixed 0 .00 485.19 70 .74 Fixed 12 .00 486.03 71 .50 Fixed 0 .00 486.09 71 .58 Fixed 0 .00 486.14 71 .66 Fixed 0 .00 486.25 71 .67 Fixed 20 .00 487 .02 70.32 Fixed 20 .00 488.31 73 .20 Fixed 0.00 488.43 73 .23 Fixed 0 .00 488.48 73 .24 Fixed 20.00 490 .21 71 .50 Fixed 0.00 490.32 72.12 Fixed 18 .00 490 .27 75.50 Fixed 0 .00 490.25 77 .31 Fixed 0 .00 491 .31 73 .81 Fi xe d 0 .00 491.45 74 .23 Fi xe d 0 .00 491 .70 74 .34 Fixed 0 .0 0 491 .80 76.18 Fixed 0 .00 491.91 78 .33 Fixed 0 .00 482.44 69.86 Fixed 35.00 482.14 69.85 Fixed 0 .00 481 .54 69.68 Fixed 0 .00 478 .88 68.88 Fixed 0 .00 476.67 67 .75 Fixed 1,000 .00 457 .25 60 .65 Fixed 0 .00 457 .25 61 .04 Fi xe d 9 .00 457 .25 6 1 .25 Fixed 7 .50 457 .23 60 .29 Fixed 7 .50 476.66 67 .57 Fi xe d 0 .00 478 .88 67 .71 Fixed 10 .50 478.88 67 .71 Fi xed 0 .00 478 .88 65 .12 " " l W;1 l1 1( /1! 1 ": 1 jt.1/ lr J I' t·I· I ,I I Link Length D iame ter Material Roughne ss Minor Loss Label (ft) (in) P-1 49 .00 8 PVC 150 .0 0.00 P-2 43 .00 8 PVC 150 .0 0 .00 P-3 185 .00 8 PVC 150 .0 0 .00 P -4 33 .00 8 PVC 150.0 0 .00 P -5 146 .00 8 PVC 150.0 0 .00 P-6 138 .00 8 PVC 150.0 0.00 P-7 5 .00 8 PVC 150 .0 0 .00 P-8 142 .00 8 PVC 150 .0 0 .00 P-9 134 .00 8 PVC 150.0 0 .00 P-10 68 .00 8 PVC 1 50.0 0 .00 P -11 20 .00 8 PVC 150.0 0 .00 P-12 321 .00 8 PVC 150 .0 0 .00 P -3 1 172 .00 8 PVC 150 .0 0 .00 P-13 19 .00 8 PVC 150 .0 0 00 P-14 18 .00 8 PVC 150 .0 0 .00 P-15 4 3 .00 8 PVC 1 50 .0 0 .00 P -16 275 .00 8 PVC 150 .0 0 .00 P-17 426 .00 8 PVC 150.0 0 .00 P-18 36 .00 8 PVC 150.0 0 .00 P-19 17 .00 8 PVC 150 .0 0 .00 P-20 524 .00 8 PVC 150.0 0 .00 P-2 1 32 .00 8 PVC 150.0 0 .00 P-22 235 .00 8 PVC 150.0 0 .00 P-25 197.00 8 PVC 150.0 0 .00 P-23 166 .00 8 PVC 150.0 0 .00 P -24 99.00 8 PVC 150.0 0.00 P-26 28.00 8 PVC 150.0 0 .00 P -27 50 .00 8 PVC 150 .0 0 .00 P-28 138.00 12 PVC 150.0 0.00 P-29 162 .00 12 PVC 150.0 0.00 P-30 125.00 12 PVC 150.0 0 .00 P-32 19 .00 8 PVC 150.0 0.00 P-33 40 .00 8 PVC 150.0 0 .00 P-34 177 .00 8 PVC 150.0 0 .00 P-37 37 .00 6 PVC 150.0 0 .00 P-4 3 384.00 8 PVC 150.0 0 .00 P -38 329 .0 0 6 PVC 150 .0 0 .00 P-41 46 .00 3 PVC 150.0 0 .00 P-39 100 .00 6 PVC 150.0 0 .00 P-42 96 .00 3 PVC 150.0 0 .00 P-40 57 .00 6 PVC 150.0 0 .00 P-36 174 .00 3 PVC 15 0 .0 0.00 P-44 12 .00 8 PVC 150 .0 0 .00 I 11 I 11'' ··:· !•;·,!'I 1 I' l'l·l Scenario: Base Steady State Analysis Pipe Report Initi a l Curren t Di scha rgE S tart S ta tu s Statu s (gpm ) Hydra ulic Grade (ft) Open Open 649.73 492 .00 Open Open 649.7 3 49 1 .69 Open Open 649.73 49 1.4 2 Open Open 729.26 490 .24 Open Open 719.26 489 .98 Open Open 719.26 488.86 Open Open 696.26 487 .80 Open Open 696 .26 487 .77 Open Open 686 .26 486.74 Open Open 686.26 485.80 Open Open 666 .26 485 .32 Open Open -403 .24 485 .19 Open Open 1 ,069.50 485.19 Open Open -415 .24 486.03 Open Open -415 .24 486 .09 Open Open -415 .2 4 486 .14 Open Open -4 15.24 486 .25 Open Open -435 .24 487 .02 Open Open -455 .24 488 .31 Open Open -455 .2 4 488.43 Ope n Open -455 .2 4 488.48 Open Open -475 .24 490 .21 Open Open 97 .53 490.32 Ope n Open -572 .77 490 .3 2 Ope n Open 79 .53 490 .27 Open Open 79.53 490 .25 Ope n Open -57 2 .77 49 1 .31 Open Open -57 2 .77 491.45 Open Open -572 .77 491 .70 Open Open -57 2 .77 491.80 Open Open -572.77 491 .91 Open Open 1 ,069 .50 482.44 Open Open 1 ,034 50 482 .14 Open Open 1 ,034 .50 48 1 .54 Open Open 1 ,024 .00 478 .88 Open Open 10 .50 478.88 Open Open 1 ,016 .50 476.67 Open Open 7 .50 476 .67 Open Open 9.00 457 .25 Open Open 7 .50 45 7.2 5 Ope n Open 9 .00 457 .25 Open Open 0 .00 478.88 Open Open 10 .50 478 .88 .. jl1r 1 I I'• j .'1 ,1 1 1 '( 11 1 1 1 I End Headloss Friction Hydraulic (ft) Slope Grade (fl/1 OOO ft) (ft) 491 .69 0 .3 1 6 .35 491.42 0 .27 6 .35 490 .24 118 6 .35 489 .98 0.26 7 .87 488.86 1 .12 7 .67 487 .80 1 .06 7 .67 487 .77 0 .04 7 .22 486 .74 1 .03 7 .22 485 .80 0.94 7 .03 485.32 0.48 7 .03 48 5 .19 0 .13 6 .65 486.03 0 .84 2 .63 482.44 2.75 15 .97 486.09 0 .05 2 .78 486.14 0 .05 2 .77 486 .25 0 .12 2 .77 487 .02 0 .76 2 .77 488 .31 1 .29 3 .03 488.43 0.12 3 .29 488.48 0 .06 3 .29 490.21 1.72 3 .29 490.32 0 .11 3 .56 490 .27 0 .04 0 .19 491 .31 0 .99 5 .03 490 .25 0 .02 0 .13 490 .24 0 .01 0 .13 491.45 0.14 5 .03 491 .70 0.25 5 .03 491 .80 0.10 0 .70 491 .91 0 .1 1 0 .70 492 .00 0 .09 0 .70 482 .14 0 .30 15 .97 481 .54 0 .60 15.02 478 .88 2.66 15 .02 476.67 2.2 1 59 .8 3 478.88 0 .12e-2 0 .3 1e-2 457 .25 19.42 59 .02 476.66 0 .01 0 .20 457 .25 0 .95e-3 0 .01 457 .23 0 .02 0 .20 457 .25 0 .55e-3 0 .0 1 478 .88 0 00 0 .00 478.88 0 .3 1e-4 0 .25e-2 l'1 t>1•·t l1""1 1t 11111 ·r·1 .ICl[ ~·.c:tll/11/ \,\/; ll t I (. ,\( I ' it 1, l 1 I I' ,<1 ' I····• i' r ;· ' I. Note: Analysis Results Scenario The input data may have bee n modified since the la st ca lculatio n was pe rform ed . The calculated results may be outdated . Title: Project Engineer: Project Date : Castlegate -Secti on 6 JOE SCHULTZ 08/01 /05 Comments : Scenario Summary Label Base Demand Alternative Ba se-Average Daily Physical Alternative Base-Physical Initial Settings Alternative Base-Initial Settings Operational Alternative Base-Opera tiona l Age Alternative Base-Age Alternative Constituent Alternative Ba se-Consti tu ent Trace Alternative Base-Trace Alternative Fire Flow Alternative Base-Fire Flow Liquid Characteristics Liquid Water at 20C(68F) Kinematic Viscosity 0 .108e-4 ft2 /s Network Inventory Number of Pipes 43 Number of Reservoirs Number of Junctions 41 Number of Pumps 0 -Constant Power: 0 -One Point (Design Point): 0 -Standard (3 Point): 0 -Standard Extended: 0 -Custom Extended : 0 -Multiple Point: 0 P ipe Inventory Total Length 5,517 .00 ft 3 in 316 .00 ft 6 in 523 .00 ft 1· .I 1. 11··:-;l ;nl 1.'.lt • ·1 · '!· 1,\r ·<I 1·;:1 :·1 (!1 1 "I :• •. ·: l"·.1 I 1 1.11 ".td. ,, !'1111! 11 t Specific Gravity Number of Tanks -Constant Area : -Variab le Area : Number of Valves -FCV's : -PBV's: -PRV's: -PSV's : -TCV's: Number of Spot Elevations 8 in 12 in f l( 4 0 0 0 0 0 0 0 0 0 0 1.00 4 ,2 53 .00 ft I, 425.00 ft r""'r(l 111 .1 F11<1 11 11 ·1 ~1 .1or ~~c 1 n11 I/ 1_1'J, ll1 ~, (" /d' •'. '. 1 I! l . 1 f 1 ·i,t, '111 l ' 1•:• Label Status Con s tituent F low {mg /I) (gpm) P-31 Open NIA 1.069.50 P-32 Open NIA 1,069.50 P-33 Open NIA 1 ,034.50 P-34 Open NIA 1 ,034 .50 P-36 Open NIA 0.00 P-37 Open N/A 1,024 .00 P-38 Open NIA 1 ,016 .50 P-39 Open N/A 9.00 P-40 Open N/A 9.00 P-4 1 Open NIA 7.50 P-42 Open NIA 7 .50 P-43 Open NIA 10.50 P-44 Open N/A 10.50 -I Pit ~ C;!:·,f!. ·~:i;:;11 · -~·:,,~, t 1r111 ;; • 1··11 '··. •1 .'.•'·1 ··I I'• 1 1;· •• , .. , •. ltj 1: .1 1·1·1 Analysis Results Scenario: Base Steady State Analysis Pipes @ 0 .00 hr Velocity From To Fricti on Minor Total Head loss {fl/s) Grade Grade Loss Loss Headloss Gradient {ft) {ft) (ft) {ft) {ft) {fV1000ft) 6.83 485 .19 482.44 2.75 0 .00 2.75 15 .97 6 .83 482.44 482 .14 0 .3 0 0 .00 0 .30 15.97 6 .60 482.14 481 .54 0 .60 0 .00 0.60 15 .02 6 .60 481.54 478 .88 2.66 0 .00 2.66 15 .02 0 .00 478 .88 478.88 0 .00 0 .00 0 .00 0 .00 11 .62 478 .88 476.67 2 .21 0 .00 2 .21 59 .83 11 .53 476.67 457 .25 19.4 2 0 .00 19.42 59 .02 0 .10 457 .25 457 .25 0 .95e-3 0 .00 0 .95e-3 0 .01 0.10 457 .25 457 .25 0 .55e-3 0 .00 0 .55e-3 0 .01 0 .34 476 .67 476.66 0 .01 0 .00 0 .01 0 .20 0.34 457 .2 5 457 .23 0 .02 0 .00 0 .02 0 .20 0.07 478 .88 478 .88 0 .12e-2 0.00 0 .12e-2 0.31e-2 0 .07 478.8 8 478 .88 0 .31e-4 0.00 0 .3 1 e-4 0 .25e-2 I r xcnN GE N E FU\I. <:ntn l~f\C 11 ll~S , I 'r, , ·~ • .11 !1 I·:• ·, ·• : ', Id I ," ': l'.. j, t. I l'1o j<!< 1 f-111p11r···r .l<)L-:-SC llUI. 17 \,'\,', ,,, '! (:/\I , ' : I I' 1/ I 1 I J.,. ... I ' 1tjl . Node Elevation Demand Labe l (ft) Type J-1 308 .40 demand J-2 307.70 demand J -3 309.81 demand J-4 3 11 .26 demand J-5 313 .19 demand J -6 3 14 .97 demand J-7 315 .04 demand J-8 3 16 .80 demand J-9 319. 73 demand J-10 3 2 1 .2 1 demand J-11 321.60 demand J-12 320 .68 demand J-13 320 .55 demand J-14 320.42 d emand J-15 320 .51 d ema nd J-16 324.40 d emand J-17 319.03 demand J-18 319.09 demand J-19 319.12 demand J-20 324 .86 deman d J-21 323 .55 demand J -22 315 .69 demand J-23 311 .48 d emand J -24 320 .62 d emand J-25 3 19 .79 demand J-26 319 .79 demand J-27 315 .64 demand J-28 310 .78 demand J-29 320 .90 d e mand J-30 320 .60 demand J-31 320.40 demand J-32 319.60 demand J-33 320 .00 demand J -34 317 .00 demand J -35 316 .10 demand J-36 315.60 demand J-37 317 .80 demand J-38 320.40 demand J-39 322 .30 demand J-40 322.30 demand J-41 328.30 demand ·11tln : C1:1sll egr.11 e -Secli on Ci ,. l1 ;1 '!!~l ;l 1i '.'.·.'trc:'• ·I I '• \"JU! Demand (gpm) 0.00 0 .00 0.00 10.00 0 .00 23 .00 0 .00 10 .00 0 .00 20 .00 0 .00 12 .00 0 .00 0 .00 0 .00 20 .00 20.00 0.00 0 .00 20 .00 0 .00 18 .00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 35.00 0 .00 0 .00 0 .00 0 .00 0 .00 9 .00 7 .50 7 .50 0 .0 0 10 .50 1 ,000 .00 Scenario: Base Steady State Analysis Junction Report Demand :Calculated Hydraulic Press ure Pattern Deman d Grade (psi) (gpm) (ft) Fixed 0 .00 4 91 .69 79 .26 Fi xed 0 .00 491.42 79 .44 Fi xe d 0 .00 490 .24 78 .0 2 Fi xe d 10 .00 489 .98 77.28 Fixed 0 .00 488 .86 75 .97 Fixed 23 .00 487 .80 74.74 Fi xe d 0 .00 487 .77 74 .69 Fi xe d 10 .00 486.74 73.49 Fixed 0 .00 485.80 71 .81 Fi xe d 20 .00 485.32 70 .97 Fixed 0 .00 485.19 70 .74 Fixed 12 .00 486.03 71 .50 Fixed 0 .00 486.09 71.58 Fixed 0 .00 486.14 71 .66 Fixed 0 .00 486 .25 71 .67 Fixed 20 .00 487 .02 70.32 Fixed 20 .00 488 .31 73 .20 Fixed 0 .00 488.43 73 .23 Fixed 0 .00 488.48 73.24 Fi xe d 20.00 490 .21 71 .50 Fi xe d 0 .00 490 .32 72.12 Fi xe d 18 .00 490 .27 75 .50 Fixed 0 .00 490 .25 77 .31 Fi xe d 0 .00 491 .31 73 .81 Fi xe d 0.00 491 .45 74 .23 Fixed 0 .00 491 .70 74 .34 Fixed 0.00 491 .80 76.18 Fi xed 0.00 491.91 78.33 Fixed 0 .00 482.44 69.86 Fixed 35.00 482.14 69.85 Fi xe d 0.00 481 .54 69.68 Fixed 0 .00 478.88 68.88 Fixed 0 .00 478.88 68.70 Fi xe d 0 .00 478.87 70 .00 Fi xe d 0 .00 478.87 70 .39 Fi xe d 9 .00 478 .87 70 .60 Fi xed 7 .50 478.85 69.64 Fi xed 7.50 478 .87 68.53 Fixed 0.00 473 .36 65.32 Fi xe d 10.50 473 .36 65 .32 Fixed 1 ,000.00 470 .90 6 1.67 l \":<CON G f"NE:fU\l. CON l 1~/\C TOH S Projc•< t E1u11nc1 ., .1c1r-~:..~ct II JI I Z ',1\/;1!1 ·1(''.t\f 1 " !, I I' 1,· 11 I ·7 lt11•1 •~'-,t!!1 • f .;,.;~1 • •' 11! rl I I v 1 · 1 1;,/._1 1: ll '.·,i\ (:'l l't1 /~.~---1 ';1 ,1 , I ' HI '' I I ' ~ .. 03/0412004 12:38 FAX 979 764 3452 COLLEGE STATfON PUB .UTL . 1601 GRAHAM ROAD COLLEGE STATION TEXAS 77845 Date: 4 MARCH 2004 Nwnber pages including cover sheet - 1 Fax to: 764-7759 Attention: JOE SCHULTZ Company: TEXCON From: Butch Willis Water Wastewater Division Phone : 979-764-3435 Fax: 979-764-3452 FLOW TEST REPORT Location: CASTLE GATE DRIVE Flow hydrant number: V-035 Pitot reading: 80 (GPM): 1140 Static hydrant number: V-036 Static PSI: 90 Residual PSI : 85 ~001 Design Report Proposed Sanitary Sewer Line Improvements for Castlegate Subdivision Section 6 College Station, Texas July 2005 Prepared B y: TEXCON General Contractors 1 707 Graham Road College Station, Texas 77845 (979) 764-7743 ' 1.0 INTRODUCTION & DESCRIPTION The purpo se of this re port is to provid e a description of the proposed sanitary sewer to be constructed with the Castlegate Subdivision Section 6 , and to provide th e criteria us ed in the design of this sanitary sewer system. The proj ect will include the construction of approximately 1,2 54 feet of sanitary s ewer line . The line will service the propos ed de ve lopment of the Cast legate Subdivision , Section 6, as well as future development of up to 300 dwelling units on the adjacent property. 2.0 SANITARY SEWER-Design Flow and Pipe Size Calculations The proposed sewer line is to be constructed of 6" and 8" diameter SDR-26 , PVC and ductile iron pipe which meets the requirements of ASTM-03034. The proposed manhol es are 4' diameter manholes, and vary from 6' to 8' in depth, with sewer line slopes ranging from 0.4 % to 0 .8%. The maximum distance between manholes is less than 500 feet, as required by the Texas Commission on Environmental Quality (TCEQ). The minimum allowable slopes for 8" and 6" pipes pe r TCEQ requirements are 0.33 % and 0.50 %, respectively. All construction shall meet the current City of College Station Standard Specifications for Sanitary Sewer Construction. The sewer line information is summarized in Table 1. 3.0 DETERMINATION OF PEAK FLOW VALUES The peak flows were based on using a daily use of 300 gallons per day for each dwelling unit. The design peak flow is determined by multiplying the average daily flow by 4.0 , which results in the peak hourly flow . The velocities for the lines were calculated using Manning's Equation. According to the TCEQ , the minimum velocity for sewer systems flowing full is 2.0 feet per second . As shown in Table 1, the minimum anticipated flow velocities for the proposed sewer lines at 50% full meet this requirement. The flow for 100% full will not be less than the flow for 50 % full; therefore, the TCEQ requirement is met. The TCEQ requires that the maximum velocity for sewer systems flow full not exceed 10 feet per second. The values in Table 1 are well below this maximum velocity . For the adjacent property, up to 300 dwelling unit s can be added to this sewer line without exceeding capacity. The sewer line for Section 6 ties into the line for Section 5 , so the impact of an additional 300 dwelling units has been analyzed . Table 2 shows the data taken from the "Section 5 & Future Section 6 Sewe r Report," and Table 3 shows the impact of adding an additional 300 dw e lling units to this line. As shown in T able 3, eve n with the increase in dwelling units , th e pipe is onl y 85.2% full. 4.0 CONCLUSIONS It is our d etennination bas ed on th e criteria and d ata de velop ed that th e propo sed sewe r line will pro v id e sufficient capacit y for the a nti c ip a ted wast ewater flo ws ge nerated b y thi s development as we ll as the future d eve lo pm e nt of up to 300 dw e llin g unit s on the adjacent property. Table 1 Castlegate Subdivision, Section 6 & Future Development of Adjacent Property -Sewer Line Flow Data 0 Manhole No . of Units From Cumula tive Average Percent 50% Full z Size Length Slope Peak Flow Q) Number Dwell ing Unit Merging Dw elling Daily Flow Full Flow Velocity c :J From To (in) (ft) (%) Servic es Lines Units (gpm) (cfs) (cfs) (%) (cfs) (fps) 4 3 6 35 1.7 0 .80 7 -7 1.46 0 .003 2 0 .0130 11 .1 0 .250 9 2 .6 "7 3 2 8 326 .0 0.40 4 5 (S -3 ) 16 3.33 0 .0074 0 .02 97 13 .5 0 .382 1 2.2 en 2 1 8 171 .2 0.40 2 5 (S-2) 23 4 .79 0 .0107 0 .0427 16 .0 0 .3821 2 .2 1 Exis ting 8 96.7 0.40 0 up to 300 (S -4) 323 67 .28 0 .1499 0 .5995 66 .7 0 .3821 2 .2 N 2 5 6 206 .3 0 .80 5 5 1.04 0 .0023 0 .0093 9 .4 0.2509 2 .6 JJ - C'? 3 6 6 157 .3 0 .80 5 -5 1.04 0 .0023 0 .0093 9 .4 0 .2509 2 .6 en "i" Future 7 8 370 .4 0.40 up to 300 -300 62.4 9 0 .13 92 0 .5568 63 .3 0 .382 1 2 .2 en 7 1 8 96 .7 0.40 0 -300 62.49 0 .1392 0 .5568 6 3.3 0 .382 1 2 .2 n = 0 .013 Refer to Section 6 construction drawings for manhole locations . Table 2 Castlegate Subdivision , Section 5 & Future Section 6 -Sewer Line Flow Data 0 Manhol e No. of Units From Cumulative Average Percent 50% Full z Size Length Slope Peak Flow Q) Number Dwe lling Unit Merging Dwelling Daily Flow Full Flow Velocity c: :.J From To (in) (ft) (%) Servi ces Lines Units (gpm) (cfs) (cfs) (%) (cfs) (fps) Ir"( 5-16 5-12 8 234.9 0.40 1 23(Sect 6) 24 5.00 0 .01 11 0 .0445 16.4 0 .3821 2 .2 (/) "'f 5-15 5-14 6 313.6 2 .14 10 -10 2 .08 0 .0046 0 .0186 10.4 0.4104 4 .2 (/) 5-14 5-9 6 173 .4 1.00 5 -15 3.12 0 .0070 0 .0278 15 .1 0.2806 2.9 '7 5-8 5-7 6 314.4 1.98 11 -11 2.29 0.0051 0 .02 04 11 .1 0 .3948 4.0 (/) 5-7 5-2 6 113 .6 2 .15 1 -12 2.50 0.0056 0.0223 11.3 0.4114 4 .2 5-6 5-5 6 476 .9 1.52 13 -13 2.71 0.0060 0 .0241 12 .8 0 .3459 3.5 5-5 5-4 8 300.9 0.40 9 -22 4.58 0.0102 0 .0408 15 .7 0 .3821 2 .2 ~ 5-4 5-3 8 338 .7 0.40 6 28 5.83 0.0130 0 .0520 17.7 0 .3821 2 .2 (/) 5-3 5-2 8 234.1 0.40 6 -34 7.08 0 .0158 0 .0631 19.4 0.3821 2.2 5-2 5-1 8 373 .9 1.8 1 8 12(S -3) 54 11 .25 0.0251 0.1002 16 .8 0 .8129 4 .7 5-13 5-12 6 251.4 2.50 8 -8 1.67 0 .0037 0 .0148 9 .0 0.4436 4 .5 5-12 5-11 8 4 53.4 0.40 10 24($-5) 42 8.75 0 .0195 0 .0780 2 1.6 0.3821 2.2 '7 5-1 1 5-10 8 160 .5 0.40 6 -48 10.00 0 .0223 0.0891 23.1 0.3821 2.2 (/) 5-10 5-9 8 227.1 0.40 4 -52 10 .83 0 .0 24 1 0 .0965 24 .0 0 .382 1 2.2 5-9 5-1 8 255.6 1.00 3 15(S-4) 70 14 .58 0 .0325 0.1299 22 .1 0 .6042 3.5 5-1 Existing 8 195.9 1.40 1 54($-2) 125 26.04 0 .0580 0.2320 27.2 0 .7149 4 .1 n = 0.013 Refer to Section 5 construction drawings for manhol e location s . Table 3 Castlegate Subdivision , Sections 5 & 6 and Future Development on Adjacent Property -Sewer Line Flow Data 0 Manhol e No . o f Un its From Cumulat ive Average Percent 50 % Full z Size Length Slope Peak Flow QI Number Dwelli ng Unit Mer ging Dwelling Daily Flow Full Flow Velocity c: :J From To (in) (ft) (%) Servi ces lines Units (gpm) (cfs) (cfs) (%) (cfs) (fps) I() 5-16 5 -12 8 234 .9 0 .40 1 323(Sect 6 ) 324 6 7 .49 0 .1503 0 .6013 6 6 .8 0 .3821 2 .2 J, "<f 5-15 5-14 6 3 13 .6 2.14 10 -10 2.0 8 0.0 046 0 .01 86 10.4 0.4 104 4 .2 en 5-1 4 5-9 6 173.4 1.00 5 -15 3.1 2 0 .0070 0 .0 278 15 .1 0 .2806 2 .9 M 5-8 5-7 6 31 4.4 1.98 11 -11 2 .29 0 .00 51 0 .0204 11.1 0.3948 4 .0 J, 5-7 5-2 6 113 .6 2 .15 1 -12 2 .50 0.0056 0 .0223 11.3 0 .4 114 4 .2 5-6 5-5 6 476.9 1.52 13 -13 2 .71 0 .0060 0 .0 241 12 .8 0 .3459 3 .5 5-5 5-4 8 300 .9 0 .4 0 9 -22 4 .58 0 .0 10 2 0 .0408 15.7 0 .3821 2.2 ~ 5-4 5-3 8 338 .7 0 .4 0 6 -28 5 .83 0.0 130 0 .0520 17 .7 0 .3821 2 .2 en 5-3 5-2 8 234.1 0.40 6 -34 7 .08 0 .0 158 0 .0 63 1 19.4 0 .382 1 2 .2 5-2 5-1 8 373 .9 1.81 8 12(S -3) 54 11 .25 0 .0 251 0 .1002 16.8 0.81 29 4 .7 5-13 5-12 6 251.4 2.50 8 -8 1.67 0 .0037 0 .0148 9 .0 0.4436 4 .5 5-12 5-1 1 8 453 .4 0.40 10 324(S-5) 342 71 .24 0 .158 7 0 .6348 69 .6 0 .382 1 2 .2 "7 5-11 5-10 8 160.5 0 .4 0 6 -348 72.49 0 .1615 0.6459 70 .5 0.382 1 2 .2 en 5-10 5-9 8 227 .1 0 .4 0 4 -352 73 .32 0 .16 3 3 0.6533 71 .1 0 .382 1 2 .2 5-9 5-1 8 255 .6 1.00 3 15(S-4 ) 370 77 .07 0 .1717 0 .6867 74 .1 0 .6042 3 .5 5-1 Existi ng 8 195 .9 1.4 0 1 54(S-2 ) 425 88.53 0 .19 72 0 .7888 85.2 0 .71 49 4 .1 n =0.013 Re fer to Section 5 construct ion drawings for manhole locations . Drainage R eport for Castlegate Subdivision -Section 6 College Station, Texas Jul y 2005 Developer: Greens Prairie Investors, Ltd . By Greens Prairie Associates, L LC 4490 Castlegate Drive College Station, Texas 778 45 (979) 690 -7250 Prepared Br: TEXCON General Contrac tor s I 707 Graham Road C olle g e Station, Te xas 77845 (9 79) 7 64 -77 43 CERTCFICATION I, Joseph P . Schultz, Licensed Professional Engin eer No. 65889, State of Texas , certify that this report for the drainage design for the Castlegate Subdivision -Section 6, was prepared by m e in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners hereof. TABLE OF CONTENTS DRAINAGE REPORT CASTLEGATE SUBDIVISION -SECTION 6 CERTIFICATION .................................................................................................................................................................. 1 TABLE OF CONTENTS ........................................................................................................................................................ 2 LIST OFT ABLES .................................................................................................................................................................. 2 INTRODUCTION .................... ~ .............................................................................................................................................. 3 GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 3 FLOOD HAZARD INFORMATION .................................................................................................................................... 3 DEVELOPMENT DRAINAGE PATTERNS ....................................................................................................................... 3 DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 3 STORM WATER RUNOFF DETERMINATION .............................................................................................................. .4 DETENTION FACILITY DESIGN ...................................................................................................................................... 6 STORM SEWER DESIGN .................................................................................................................................................... 7 CHANNEL DESIGN .............................................................................................................................................................. 8 CONCLUSIONS ..................................................................................................................................................................... 8 APPENDIX A .......................................................................................................................................................................... 9 Time of Co1tce1ttratio11 Equatio1ts & Calculations APPENDIX B ........................................................................................................................................................................ 17 Storm Se111er Inlet Desig11 Calculations APPENDIX C ........................................................................................................................................................................ 20 Storm Se111er Pipe & Chatmel Design Calculations APPENDIX D ........................................................................................................................................................................ 28 Pond Area-Capacity Data, Depth-Discharge Data, & Storage Routing Analysis Parameters APPENDIX E ........................................................................................................................................................................ 32 Storage Routing Analysis -Detention Pond No. 1 APPENDIX F ......................................................................................................................................................................... 43 Storage Routing Analysis -Dete11tio11 Pond No. 2 EXHIBIT A ............................................................................................................................................................................ 54 Pre-Develop111e11t Drainage Area Map -Detention Ponds EXHIBIT B ............................................................................................................................................................................ 56 Post-Development Drainage Area Map -Dete11tio11 Po11ds EXHIBIT C ............................................................................................................................................................................ 58 Post-Developm e11t Drainage Area Map -Storm Se111er Desig11 LIST OF TABLES TABLE 1 -Rainfall Intensit y Calculations .............................................................................................. 4 TABLE 2 -Time of Concentration (tc) Equations .................................................................................. 5 TABLE 3 -Pre-& Post-Development Runofflnfonnati on -Det ention Eva lu at ion .............................. 5 TABLE 4 -Po st-Deve lopm ent Runofflnforn1ation -Storm Sewer Design ........................................... 5 TABLE 5 -Po st-Deve lopm e nt Runoff Inforn1ation -C ul ve rt No . I ...................................................... 5 TABLE 6 -Pr e-& Post-Development Peak Discharge Comparis on -De te nti on Pond Design ............. G TABL E 7 -Summ a ry of Maximum Pond Water Levels......................... . .................................. 7 TABL E 8 -Summar y of Channe l Data ............ . ............................................ 8 DRAINAGE REPORT CASTLEGATE SUBDIVISION -SECTION 6 INTRODUCTION The purpose of this report is to provide the hydrological effects of the construction of the Castlegate Subdivision -Section 6 , and to verify that the proposed sto1m drainage system meets the requirements set forth by the City of College Station Drainage Policy and Design Standards . GENERAL LOCATION AND DESCRIPTION The project is located on a po11ion of a 111.46 acre tract loc ated west of State Highway 6 along the north side of Greens Prairie Road in Co llege Station, Texas . This report addresses Section 6 of this subdivision, which is made up of 11 . l acres . Section 6 is located adjacent to Cast legate Section 5, and has access off of Greens Prairie Road. The site is predominantly wooded . The existing ground elevations range from E levation 317 to Elevation 333 . The general location of the project site is shown on the vicinity map in Exhibit A. FLOOD HAZARD INFORMATION The project site is located in the Spring Creek branch of the Lick Creek Drainage Basin , with a portion in the Peach Creek Drainage Basin. Most of the proposed developed area of the site is located in a Zone X Area according to the Flood Insurance Rate Map prepared by the Federal Emergency Managemenc Agency (FEMA) for Brazos County, Texas and incorporated areas dated February 9, 2000, panel number 48041C0205-D. This area is shown on Exhibit C as the 100-year floodplain limit. Also shown on this exhibit are the floodway limits as detem1ined by the Castlegate Floodplain Artalysis Report which was previously submitted. No area of this development lies within the Flood Hazard Area. DEVELOPMENT DRAINAGE PATTERNS Prior to development, the stom1 water runoff for Section 6 flows in two different directions. A portion of the runoff flows in a northeasterly direction until it enters a tributary of Spring Creek. Ultimate ly, this runoff flows into Spring Creek and then north to the proposed re g ional detention facility . Refer to the vicinity map in Exhibit A for the location of this regional detention facility. The remainder of the runoff from this site flows in a southerly direction into the Greens Prairie Road right-of-way and then into a tributary of Peach Creek . DRAINAGE DESIGN CRITERIA The design parameters for the storm s e w e r and detention facility ana lysis are as fol lo w s : • T h e Rational Method is utili z ed to d e te rmin e peak storm water runoff rat e s for th e s to rm sewer d e si g n and the d e te nti o n fa cilit y d es ig n . • Desi g n Storm Fre quenc y Storm sew e r sys te m Sto rm c ulv e rt De te nti o n foc ilit y an a lys is I 0 a nd I 00-yea r s torm eve nt s 2 5 and I 00 -ye ar s torm ev e nt s 5, I 0 , 25, 50 a nd I 00-yca r s torm c ,·c nt s • Runoff Coe fficients Pre-development Post-development (single family residential) c = 0.30 c = 0 .55 • Rainfall Intensity equations and values for Brazos County can be found in Table 1. • Time of Concentration, tc -Calculations are based on the method found in the TR-55 publication. Refer to Table 2 for the equations a nd Appendix A for calculations. The runoff flow paths used for calculating the pre-& post-development times of concentration for the detention pond analysis are shown on Exhibits A & B, respectively , and the tlow path used for the post-development time of concentration for the stom1 sewer desi g n is found on Exhibit C. For smaller drainage areas, a minimum tc of l 0 minut es is used to determine the rainfall intensity values. STORM WATER RUNOFF DETERMINATION The peak runoff values were determined ip accordance with the criteria presented in the previous section for the 5, 10 , 25 , 50, and 100-year storm events. The drainage areas for the pre-& post-development conditions for the detention pond analysis are shown on Exhibits A & B , respectively. The drainage areas for the post-development conditions for the stom1 sewer design are shown on Exhibit C. For the detention pond analysis, the pre-and post-development runoff conditions are summarized in Table 3 . Post-development runoff conditions for the stotm sewer design are summarized in Table 4 , and the design for Culvert No. l is summarized in Table 5 . TABLE 1 -Rainfall Intensity Calculations Rainfall Intensity Values (in/hr) Storm tc = Event 10 min Is 7.693 110 8 .635 '2s 9 .861 15-0 11 .148 1100 11.639 Brazos County: 5 )".ear storm 10 )".ear storm b= 76 b= 80 d= 8 .5 d = 8 .5 e= 0.785 e= 0.763 I = b I (tc+d)e I = Rainfall Intensity (in/hr) tc = L/(V*60) tc =Time of concentration (min) L = Length (ft) V = Velocity (ft/sec) 25 )"_ear storm 50 )"_ear storm 100 )".ear storm b= 89 b= 98 b= 96 d = 8.5 d= 8.5 d= 8.0 e= 0 .754 e = 0.745 e= 0 .730 (Data take n from State Department of Hiqhwa l"_s and Public Transportation H )".dra ulic Manual, page 2-16) TAB LE 2 -Time of Conc e ntration (tc) E quation s The tilll e of con ce11 trn tio 11 1vas de terlll i11 ed using 111 e thods fo 11 11d in TR-55 , "Urhw1 Hy drology fo r S 111 all Wat ers heds .. , Th e equations are as f oll o ws: T i me of Concentration : For Sheet Fl ow: For S h a ll ow Concentrated F low: Tc = T 1<s 1t ce 1 n ow)+ T1<co ncc n1ra 1c<1 s 1t ee 1no"1 w h e re: T 1 =Trave l T ime , min ute s w here: T 1 =trave l time , hours n =M a n n ing 's ro ug hness coeffici e nt L = fl ow length , feet P2 = 2-year, 24-ho ur rainfa ll = 4 .5" s = la nd s lope, ft/ft T 1 =L I (60 *V) w h e re: T 1 = trave l time, m in ute s V =V e locity, fps (See F ig 3-1, App. A) L = flo w length , feet R efer to A pp e n dix A for calcu latio ns . TABLE 3 -Pre-& Post-Dev elopment Runoff Information -Detention Evaluation Area 5 year storm 10 year storm 25 year storm 50 year storm c le Area # (acres) Is Os 110 0 10 l 2s a ,s lso Oso A 1 A , A.otal c , c , ctotat (m i n) (in/hr) (cfs) (in/hr) (cfs) (in /hr) (cfs) (i n/hr) (cfs) Pre 101 9.47 0 9.47 0 .30 0 .55 0.30 40 .7 3.570 10.14 4.094 11 .63 4.717 13.40 5.379 15.28 Posl 201 2.53 3.26 5.79 0 .3 0 .55 0.44 43 3.444 8.79 3.953 1009 4 .557 11 .63 5.199 13 .27 Post 202 0 2.4 4 2.44 0 .30 0 .55 0 .55 14 6 .597 8.85 7.437 9 .98 8 .508 11.4 2 9.635 12.93 Post 20 1+202 --------17 .64 -20 .07 -23 .05 26 .20 TABLE 4 -Post-Dev elopment Runoff Information -Storm Sewer Design Area 5 year storm 10 year storm 25 year storm 50 year s torm c l e Area# (acres) Is Os 110 a ,. 125 0 25 lso 0 50 A, A 2 A.ota l c, C2 c, ••• , (min) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) 301 0 0 .1 0 .10 0 .30 0 .55 0 .55 10 7 .6 9 3 0 .42 8.635 0.47 9 .861 0 .54 11 .148 0 .61 302 0 0.1 0 .10 0 .30 0 .55 0 .55 10 7 .693 0 .42 8 .635 0.47 9 .861 0 .54 11 .148 0 .61 30 3 1.24 2 .18 3.42 0 .30 0 .55 0.46 42 .1 3.492 5 .49 4 .007 6 .30 4 .618 7 .25 5 .268 8 .28 304 0 1.02 1 .02 0 .30 0 .55 0 .55 13 .2 6 .787 3 .81 7 .6 4 5 4 .29 8 .744 4 .9 1 9 .898 5 .55 ~ 305 0 0 .26 0 .26 0 .30 0 .55 0 .55 10 7 .69 3 1 .10 8 .635 1 .23 9 .86 1 1.41 11 .148 1.59 - 306 0 0 .33 0 .33 0 .30 0 .55 0 .55 10 .9 7 .4 11 1 .35 8 .327 1 .51 9 .515 1.73 10.760 1.95 307 1.1 1 .32 2.42 0 .30 0.55 0 .44 37 3 .796 4.01 4 .34 5 4 .59 5 .00 3 5 .28 5 .702 6 0 2 308 0 .79 1.72 2 .5 1 0 .30 0 .55 0.47 27 .2 4 .592 5 .43 5 .229 6 .19 6 .007 7.11 6 .8 3 1 808 -- 309 0 0 .84 0 .84 0 .30 0 .55 0 .55 13 .1 6 .812 3 .15 7 .672 3 .54 8.774 4 .05 9 .932 4 .59 --I--------- 310 0 0 .77 0 .77 0 .30 0 .55 0 .55 10 7 .693 3 .26 8 .635 3 .66 9 .86 1 4 .18 11 .148 4.7 2 ,_ - 311 0 .58 0 .26 0 .84 0 .30 0 .55 0 .38 10 7 .693 2 .44 8 .635 2.74 9 .86 1 3 .13 11 .148 3 .53 TABL E 5 -Pos t-D eve lo pm e nt Runoff Inform a tion -Cul ve rt No. I S o u rce o f Fl o w 0 25 0 100 (cfs) (cfs) Sect 5 . P h 2 De te nti o n Pond 19 2 4 --------- Se c ti on 6 De te ntio n Pond #2 4 .5 5 .2 Dra in age Area #3 1 1 3 .1 3.7 To t a l F l ow to Cu l vert N o . 1 26 .6 32 .9 100 year storm 1100 0 100 (in /hr) (cfs ) 5.628 15 .99 5.442 13 .89 10 053 13.4 9 -27 .38 1 00 year storm 11 00 0 100 (i n /hr) (cfs) 11 .639 0 .64 11 .639 0 .64 5 .5 13 8 .66 10.329 5.79 11 .639 1.66 11 .232 2 .04 5 .962 6 .30 7 .133 8.44 10 .364 4 .79 11 .639 4 .93 11 .639 3 .69 DETENTION FACILITY DESIGN The detention facil it y handling a po11ion of the runoff from this site is a regional facil it y designed by L.TA Engineering & Surveying, Inc. Also, a detention pond was constructed upstream of Cast legate Drive to reduce the peak flow resulting from the Cast legate deve lopment. The detention facility is located adjacent to Spring Creek prior to Spring Creek entering the State Highway 6 right-of-way. A detention facility is also needed for the runoff that flows into the Greens Prairie Road right- of-way in the Peach Creek drainage basin . The design storm for the detention facilities is the lOO-year storm event. The detention ponds are located along the sou them portion of the tract adjacent to Greens Prairie Road. The peak runoff values were determined in accordance with the criteria presented in previous sections for the 5, 10, 25, 50 & 100-year storm events for pre-development conditions . Table 3 shows a summary of these results . The post-development peak runoff values are also summarized in Table 3. The area-capacity data, the depth-discharge data, and the storage routing analysis parameters are provided in Appendix D. The detention pond grading plan is shown in the construction drawings. The outlet structure for Detention Pond No . 1 is the 15" outlet pipe. The discharge pipe is 32' in length with a design slope of 0.5% and a safety end treatment at each end. The pond outlet structure for Detention Pond No. 2 is a concrete riser structure which is 2.5'x2.5' in size, 2' high, and with a 2 'x2' opening at its top . There is a 5" wide opening in the front face of the structure with its invert at Elevation 318 to control the flow . The discharge pipe is a 15" HDPE, 48 feet in length, with a safety end treatment at the discharge end. Rock riprap will be placed at the discharge end to control erosion. The pipe has a design slope of 0.5%. The storm sewer piping for the detention facility outlet pipe will be HDPE pipe. The top of the pond berm is at Elevation 321.0 . As shown in Table 6, the peak outflows from the detention facilities are less than the allowable peak outflow for the design stonn event. Additionally, Table 7 presents the maximum water surface in the ponds for the 100-year stom1 event, as well as the amount of freeboard provided . TABLE 6 -Pre-& Post-Development Peak Discharge Comparison -Detention Pond Design Item Location I Os I 010 I 02s· I Oso I 0 100 I (cfs) I (cfs) I (cfs) I (cfs) I (cfs) Pre-Development A Total Discharge From Site (Drainage Area #101) I 10 .14 I 11.63 I 13 .4 0 I 15 .2 8 I 15.99 Post-Development with Ponds 81 Discharg e for Pond No . 1 ·---1 6.30 I 6.99 I 7 .84 I 8.37 I 8 .57 I I I I -- 82 Discharg e for Pond No . 2 3.65 4 .02 4 .50 5.00 5 .19 8 Total Discharge for Pond No s . 1 & 2 I 9.95 I 11 .01 I 12.34 I 13 .37 I 13.76 c Decrease in Peak Runoff W i th Detention Ponds I 0.19 I 0 .62 I 1.06 I 1.91 I 2.23 1, TABLE 7 -S u mmary of Max im u m Po n d Water Levels Location 0100 Max. Water Surface Top of Berm Freeboard, ft. (cfs) Eleva t ion, ft. Elev at ion, ft. Pond #1 8.57 320.3 321 .0 0.7 Pond #2 3.73 320.4 321 .0 0.6 The peak flow out of the detention facility was detem1ined by a Storage Routin g Analysis based on the Continuity Equation as follows: (Il+I2)+((2sl/dt)-01)=((2s2/dt)+02). The time interval, dt, used was l minute. The calculations and results of the Storage Routin g Analysis for Ponds l & 2 are provided in Appendix D . As shown on Line C of Table 6, the peak runoff from the project site for the post-development condition is less than or equal to the pre-developm ent peak flow for the site for each stonn event. STORM SEWER DESIGN The storm sewer piping for this project has been selected to be Reinforced Concrete Pipe (RCP) meeting the requirements of ASTM C-76 , Class III pipe meeting the requirements of ASTM C-789. The curb inlets will be cast-in-place concrete. Appendix B presents a summary of the storm sewer inlet design parameters and calculations . The inlets were designed based on a 10-year design storm. As per College Station guidelines, the capacities of inlets in sump were reduced by l 0% to allow for clogging. Inlets for the residential streets were located to maintain a gutter flow depth of 5" or less. This design depth will prevent the spread of water from reaching the crown of the road for the 10- year storm event. Refer to Appendix B for a summary of the gutter flow depths . The runoff intercepted by the proposed storm sewer inlets was calculated using the following equations. The depth of flow in the gutter was determined by using the Straight Crown Flow equation. The capacities for the inlets in sump (Inlets 1 & 2) were calculated using the Inlets in Sumps , Weir Flow equation with a maximum allowable depth of 7" (5" gutter flow plus 2" gutter depression). These equations and resulting data are summarized in Appendix B . There are no Inlets On Grade for this project. The area between the right-of-way and the curb line of the streets will be graded as necessary to provide a minimum of 6" of freeboard above the curb line . This wi ll ensure that the runoff from the 100-year stonn event will remain within the street ri ght -of-way . Appendix C presents a summary of the storm sewer pipe design parameters and calculations . All pipes are 18" in diameter or larger. For pipes with 18" and 24" diamete rs , the cross- sectional area is reduced by 25%, as per College Station requirements . A summary of how this was achieved is shown in Appendix C as well. The pipes for the stonn sewer system were designed based on the l 0-year storm event. Ba sed on the d epth of flo w in th e s tr eet d e te rmined for th e JOO-yea r s torm even t, this runoff will b e conta ined within the street ri ght-of-way until it enters th e sto rm sewe r system . As re quired b y Co ll ege Station , the velocity of now in th e sto rm sewer pipe system is not lower than 2.5 feet per seco nd , and it do es no t exceed l 5 fee t per seco nd. As the data s hows, eve n during low now condition s, th e ve loc it y in th e pipes will exceed 2 .5 feet per seco nd and preve nt seclilll c nt build-up in the pip es. The llla x imu111 ll ow in I the storm sewer pipe system will occur in Pipe No. 1. The maximum velocity for the pipe syste m in this development will be 6 .3 fe e t per second a nd will occur in Pipe No. 1. Appendix C contains a summary of the pipe calculations as well as flow diagrams mapping the flows through the storm sewer system for the l 0 and I 00-year events . CHANNEL DESIGN The stonn runoff from a portion of the street is conveyed to the tributary of Spring Creek by a concrete and grass lin ed channel. The channel design, velocity and depth infom1ation for each segment are summarized in Table 8 . TABLE 8 -Summary of Channel Data Channel 10-yr Storm 100-yr Storm Channel Channel Height Widt h Slope Manning's Location Lining Type n Velocity Depth Velocity Depth Material (in) (ft) (%) (fps) (in) (fps) (in) Segment 1 Concrete Rectangu lar 12 4 3.0 0 .014 8 .5 4.4 9 .5 5.4 Segment 2 Concrete Rectangu lar 12 4 0 .5 0 .014 4 .8 8 .2 5 .3 10 .2 Segment 3 Grass *Trapezoidal 12 9 0 .5 0 .035 2.0 7 .9 2.2 9.4 *4H:1V side slopes Refer to Exhibit C for the limits of each segment of the channel. CONCLUSIONS The construction of this project will increase the storm water runoff from this site. The proposed storm sewer system should adequately control the runoff and release it into an existing drainage, which is a tributary of Spring Creek. As shown in the Castlegate Floodplain Analysis, the Castlegate Subdivision does not have a significant effect on the 100-year floodplain water surface elevations or the floodplain limits. The regional detention facility should adequately control the peak post-development runoff so that it will not have any impact on the properties downstream of the Crowley Tract. The increased runoff to the south into the Greens Prairie Road right-of-way has been reduced by the proposed detention faci liti es , and there should be no flood damage to downstream or adjacent landowners resulting from this development. ·'· APPENDIX A Time of Concentration Equations & Calculations Drainage Area #101 Sh eet Fl o w : L= 300 n= P= 0 .007(L *n)uo = (P)o s*(S)o4 Concentrated Flow1: V= L= 159 U(60*V) Concentrated Flow2 : V= L= 150 U (60 *V) = Conce nt rate d Flow2 : V= L= 233 U (60 *V) = Tc Calculations -Pre-Development 0 .24 (dense grass) 4 .5 Elev 1= 0 .613 hours = 2 .3 fps (unpaved) Elev 1= 1 .2 min 2.3 fps (unpaved) Elev 1= 1.1 min 2 .5 fps (unp aved) El ev 1= 1.6 min 40.7 min 36 .8 min 329.7 Slope = 0 .011 326.3 Slope = 0 .021 323 .2 Slope = 0.021 317 .5 Slope = 0.024 Tc Calculations -Post-Development Drainage Area #201 Sheet Flow : n= 0.24 (dense gra ss) P= 4 .5 L= 300 Elev 1= 333 Elev2 = 329.7 Slope= 0 .011 T1= 0 .007(L*n(0 = 0 .613 hours= 36 .8 min (P)os*(S)o4 Concentrated Flow1 : V= 2.3 fps (unpaved) L= 159 Elev 1= 329.7 Elev2 = 326.3 Slope= T1= U(60*V) = 1.2 min Concentrated Flow2 : V= 2.3 fps (unpaved) L= Elev 1= 326.3 Elev2 = 323 '.2 Slope= T1= U(60*V) 1.1 min Concentrated Flow3: V= L= Elev 1= Elev2 = Slope= Ti= U(60*V) = 3 .2 min Concentrated Flow4 : V= 5.2 fps (from Mannings Pipe Calculator) L= 36 Elev 1= Elev2 = Slope= T1 = U(60*V) = 0.1 min Concentrated Flow5 : V= 1.4 fps (paved) L= 52 Elev 1= 317.24 Elev2 = 317 .5 Slope= 0 .005 T1= U(60*V) = 0 .6 min ITc= 43 .0 min Drainage Area #202 Sh eet Flow : n= 0 .15 (short gra ss-prairi e ) P= 4 .5 L= 100 El ev 1= 326 .6 Elev 2 = 325 :5 Sl ope = 0.011 T,= 0 .007(L *n(0 = 0 .17 5 hours= 10 .5 min (P)os*(S)oA Concentrated Flow1 : V= 2 .9 fps (paved) L= 218 Elev 1= Elev 2 = Slope= 0.020 T,= L/(60*V) 1.3 min Co ncentrated Flo w 2: V= 1.9 fps (paved) L= 167 Ele v 1= Ele v2 = Slope= 0 .008 5 T,= L/(60*V) = 1.5 min Concentrated Flo w 3: V= 4.2 fps (from Man nings Pipe Ca lc ul ator) L= 31 Elev ,= 3 18 .44 5 Ele v2 = 31 8.29 Slope= 0 .00 5 T,= L/(60*V) = 0.1 min Concentrated F low4: V = 1.4 fps (paved) L= 58 Elev ,= 3 18 .29 Ele v2 = 318 Slope= 0 .00 5 T,= L/(60*V) = 0.7 min ITc= 14.1 m in Dra in ag e A rea #30 3 Sheet Flow: n= P= L= 300 Elev ,= 33 3 Ele v2 = 329 .7 Slope= 0 .01 1 T,= 0.007 (L *nt0 0.613 hou rs= 36 .8 min (P)os*(S)04 Concentrated Flow1: V= 2.3 fps (unpaved) L= 159 Ele v ,= 329.7 Elev2 = 326 .3 Slope= 0.02 1 T,= L/(60*V) 1.2 min Concentrated Flow2: V= 2 .3 fps (unpaved) L= 150 Elev,= 326.3 Elev2 = 323 .2 Slope= 0.021 T,= L/(60*V) 1 .1 min Co nce ntrated Flow 3 : V= 1.9 fp s (p aved) L= 346 Elev,= Elev2 = Slope= 0 .0085 I Ti= U (60 *V) = Drai nage A re a #30 4 Sheet Flow : n= P= L= 100 Ti = 0.0 0 7(L *nt° = (P)o s*{S)o.4 Concentrated Flow1 : L= Ti= U(60*V) Conce ntrated Flow2 : L= 167 Ti= U(60*V) Dr a i n age Area #30 5 Sheet Flow: L= V= = V = n= P= 0 .007(L*n (0 = (P)o s*(S)o.4 Concentrated Fl ow1 : L= 138 U(60*V) D rainage Area #306 Shee t Flow : V= = n= P= 3 .0 min j Tc= 42 .1 min 0.15 (short grass-prairie ) 4.5 Elev ,= 326 .6 Elev2 = 0 .175 hours= 10 .5 min 2.9 fps (paved) Elev ,= Elev2 = 1.2 min 1.9 fps (paved) Elev ,= Elev2 = 1.5 min 13.2 min 0 .1 5 (short grass-prairie) 4.5 0 .110 hours = 6 .6 min 1.8 fps (p aved ) 1.3 min 7.9 mi n 0 .15 (s ho rt grass-pra iri e ) 4 .5 32 5 .5 Slope = 0 .0 11 Slope = 0.020 Slope = 0 .0085 Slope= 0 .0 11 326 Slope = 0 .012 L= 90 Ele v 1= 326 .6 Elev 2 = 325 .6 Slope= 0 .011 I Ti= 0 .007 (L*n(0 = 0 .160 hours= 9 .6 min (P)os *(S)o.4 Concentrated Flow1 : V= 1.8 fps (paved) L= 136 Elev 1= Elev2 = Slope= 0 .008 Ti = U(60*V) 1.3 min ITc= 10 .9 min Drainage A re a #30 7 Sheet Flow: n= 0.24 (de nse grass ) P= 4 .5 L= 300 Elev1= 336 .2 Elev2 = 332 .2 Slope= . 0 .01 3 Ti = 0 .007(L*nt°0 = 0 .568 hours= 34 .1 min (P )os*(S)o.4 Concentrated Flow1 : V= 2.4 fps (unpaved) L= 44 Elev 1= 332.2 Elev2 = 331 .2 Slope= 0 .023 Ti= U(60*V) = 0.3 mi n Co nc entrated Flow2 : V= 2 .6 fps (unpaved ) L= Elev 1= 0 .027 Ti= U(60*V ) = 1.1 min Concentrated Flow3 : V= 1.8 fps (paved) L= 158 Elev 1= Elev2 = Slope= 0 .0075 Ti= U(60*V) = 1.5 min ITc= 37 .0 min Dr a inag e Area #30 8 Sheet Flow : n= 0.24 (d ense grass) P= 4 .5 L= 208 El ev 1= 336 .3 Elev 2 = 332 .8 Slo pe= 0 .017 T1= 0.0 07(L *nt°0 = 0 .386 ho ur s= 23 .2 min (P)o s*(S)o.4 Concentrated Flow1: V= 2 .3 fps (unpaved) L= 163 Elev 1= 332.8 Elev2 = 329.5 Slope= 0.020 Ti= L/(60*V ) 1.2 min Concentrated Flo w2 : V= 1.8 fps (paved) L= 303 Elev 1= Elev2= Slope= 0.0075 T1= L/(60*V) = 2.8 min I Tc= 27 .2 mi n Dra inage A rea #3 09 I Sheet Flow: n= 0.15 (short grass-prairie) P= 4.5 I L= 92 Elev 1= Elev2= Slope = 0.010 Ti= 0.007(L *n)°0 = 0.170 hours= 10.2 min I (P)o s*(S)oA Concentrated Flo w 1: V= 1.8 fps (paved) L= 310 Elev,= O Elev2 = Slope= 0.008 Ti= L/(60*V) = 2.9 min ITc= 13.1 min Drai n age A re a #310 Sheet Flow: n= 0 .15 (short grass-prairie) P= 4.5 L= 63 Elev 1= Elev2 = Slope= 0.010 Ti= 0 .007(L *n)°0 = 0 .126 hours= 7.6 min (P)os*(S)oA Concentrated Flow1 : V= 1.8 fps (unpaved) L= 197 Elev 1= 325 Elev 2 = 32 2 .5 Slope= 0.013 Ti= L/(60*V) 1.8 min I Tc= 9.4 min .... '+--.... '+- QJ a. 0 .- VI QJ VI s... ::::s 0 u s... QJ ..... "' :JC I 3 -2 .so .20 - .10 .06 .04 .02 - .01 - .005 I 1 j J I J I I ' J . b CZ,[-bl ~ CZ, "" ~j ~"" .::) j I J I I I 2 ) ' . ] ' ' I I 4 j ' " I I j I I 6 J 'i J ' IJ Average velocity, ft/sec ... . {2 10-Vl -TR-55 . Second Ed ., June L98Gl ~ I I 10 . . . j I I I . . I I 20 I I I APPENDIXB Storm Sewer Inlet Design Calculations I Castl egate -Section 6 Gutter Depth Check C a l cu l ations (Refer to Exh ibit C for Gutter Locations) Gutter A Slope Location c Area# (acres) (fUft) A1 303 3.42 0 .46 0 .0084 --------- A2 301 0 .10 0 .55 0 .01 68 t c (min) 42.1 - 10 .0 ----·------ A3 304 1.02 0 .55 ---------- A4 302 0 .10 0 .55 ------- 81 308 2 .5 1 0.47 ------------ 82 307 2.42 0 .44 ------- 8 3 309 0 .84 0 .55 ·-·--------- 8 4 306 0 .33 0 .55 T ransve rse (C rown) slope (ft/ft) 27' street = 0.0 330 0.00 84 13.2 ---------- 0.01 68 10 .0 -------- 0 .007 5 27 .2 ------- 0 .0075 37 .0 --··- 0 .0075 13 .1 ---- 0.00 75 10 .9 10-year storm 110 010 Y 10-actu al (in/hr) (cfs) (ft) (in) 4.007 6 .30 0 .374 4.49 - - 8 .635 0 .47 0 .125 1.50 - 7 .645 4 .29 0.324 3.89 --------- 8 .635 0 .4 7 0.125 1.50 ------- 5 .229 6 .19 0.380 4 .56 ------ 4 .345 4 .59 0.340 4 .08 ------ 7 .672 3.54 0 .308 3.70 -- 8 .327 1.51 0 .224 2.69 Straight Crown Flow (Solved t o find actu al depth of flow in gutter, y): Q = 0.56 * (z/n) * S 112 * y813 ¢ y ={QI [0 .56 * (z/n) * S 112 ]} 31 8 n = Ro ughness Co effic ie nt = 0 .0 18 S = Street/G utter Slo pe (ft/ft) y = Dep th of fl ow at inl et (ft) z = R eciproca l of crown slope : 27' stree t = 30 Spread o f 100-year storm Water10 1100 0 100 Y100 (ft) (i n/hr) (cfs) (ft) (i n) 11 .35 5.513 8 .66 0.422 5.06 3.78 11.639 0 .64 0 .140 1.67 ·- 9 .83 10 .329 5 .79 0 .363 4 .36 ------- 3.78 11 .639 0 .64 0 .140 1.67 -- ---- 11 .52 7.133 8.44 0.427 5 .12 ------- 10 .30 5.962 6 .30 0 .383 4 .59 --·--- 9.35 10 .364 4 .79 0 .345 4 .1 4 ----··------ 6.79 11 .23 2 2 .04 0 .25 1 3 .0 1 Castlegate Secti on 6 Inl et Length Calculations Inlets In Sump Inlet# Length flow from A c ArH # (a cres) 303 3.42 0.46 I 10' --------301 0 .10 0 .55 2 5' 304 1.02 0 .55 --------302 0 .10 0 .55 Trans verse lCrownl slope ffVftl for 27' street= 0 .033 Straight Crown Flow fSolve d to find actual depth of flow yl· Q ,. (els) (els) 6.30 0 .00 0.47 0.00 4 .29 0,00 0 .47 0.00 a· o .56 • (zin) • s"' · v"'"' v • 101 {0 .56 • (zin) • s •~n ~• n = Roughness Coefficient :: 0 .018 S = StreeVGutter Slope (fVft) v = Depth of flow at inlet (f\) Capacity of Inlets o n grade : Oc = 0 .7 . (1/(H, • H2)] '(H,"'· H2"'J Oc = Flow capacily of inle t (cfs) H 1 =a+ y H2 =a =gutter depression (r Standard ; 4" Recessed) y = Depth of flow 1n approach gutter (ft) 10yearstorm <le....,._. °'-Or.-,.,, fromlntet# (els) (els) 6 .30 6.92 0 .47 0.52 4.29 4.72 0 .47 0.52 (ft) 0.300 0.114 0.260 0.114 y,._.... L1Mt~·4 L,._.... o, .. (In) (ft) (ft) (els) (els) 3.60 5 .58 10 8 .66 0 .00 1.37 0 .84 0 .00 3.12 3 .92 5 5 .79 0 .00 1.37 0 .64 0 .00 • .. 1nrg,_•r•o.su · z = Reciprocal of crown slope for 27' street = 30 Inlets In sumps Weir Flow: L. a I (3 • v"'I "' y. (Q I 3L)213 L = Length of inlet opening (ft) Q =Flow at inlet (cfs) y = total depth of flow on inlet (ft) ma x y for inlet in sump = r = 0.583' 100 yeu storm O...., .. w o,..., QT.._..tft v ... from lntet ·# (els) (cfs) (ft) (in) 8 .66 9 .53 0.488 5 .86 0 .64 0 .70 5.79 6.37 0.606 7.27 0 ,64 0.70 I I I APPENDIXC Storm Sewer Pipe & Channel Design Calculations _'II Castlegate Subdivision Section 6 P i pe Calculations Inlet Outlet 1 O year storm 100 year storm -Culvert Calculator Data Pipe# Size Length Slope Invert Elev Invert Elev * Actua I Flow Design Flow V10 Travel Time , Im *Actual Flow Design Flow %Full (in) (ft) (%) (ft) (ft) (cfs) (cfs) (fps) (sec) (min) (cfs) (cfs) 1 2-18 30.0 1.10 318.12 317 .79 6.77 10 .93 5.9 52.0 5 0 .08 9 .30 15 .02 --- 2 18 23 .8 0 .60 318.48 318.34 4.76 7 .69 4 .9 83 .7 5 0 .08 6 .43 10 .38 'These values reflect the actual flow for the 18" & 24" pipes. The design flow for these pipe sizes reflects a 25% reduction in pipe area . (Refer to attached calculation for spec ific information.) V1 00 Top of Inlet HW Elev (fps) (ft) (ft) 6 .3 321 .0 319 .8 ------ 5.9 321 .0 320 .8 Pipe 1 -10 Year Storm Manning Pipe Calcu lator Given Input Dat a: Shape .......................... . Solving fo r .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow vel ocity ............. . Circular Depth of Flow 18 .0000 in 5 .47 00 cfs 0.0llO ft/ft 0 . 0140 9.3661 in 1.7671 ft2 0.9293 ft2 29 .0068 in 56.5487 in 5.8860 fps 4.6135 in 52.0340 % 10.2301 cfs 5.7891 fps Pipe 1 -100 Year Storm Culvert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Nu mber ................... . Chart Descr i ption ENTRANCE Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning' s n .................... . Roadway Elevation .............. . Inlet Eleva tion ................ . Outlet Elev ation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Result s: Headwater ...................... . Slope .......................... . Ve l ocity ....................... . Castlega t e S u bdi v isi on Col Jege S ·a t :io11 , TE::· .. •' Seel i o n 6 Circular 2 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING SQUARE EDGE EN TRANCE WITH HEADWALL Off 15 .0200 cfs 0 . 0140 321.0000 ft 318 .12 00 ft 317.7900 ft 18 .0000 in 30 .0000 ft 0 .0000 1.5000 ft 319.8406 ft Inlet Control 0 .0llO ft/ft 6.3293 fps Pipe 2 -10 Year Storm Manning Pipe Calculator Given Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 18.0000 i n 7.6900 cfs 0.0060 ft /ft 0 .0140 15.0603 in 1 .7671 ft2 1.5792 ft2 41. 5720 in 56.5487 in 4.8697 fps 5.4700 in 83.6685 % 7.5554 cfs 4 .275 5 fps Pipe 2 -100 Year Storm Culvert Calculator Entered Data : Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description ENTRANCE Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning's n .................... . Roadway Elev ation .............. . Inlet Elevation ................ . Outlet Elev ation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results: Headwater ...................... . Slope .......................... . Velocity ....................... . Castlegate S u bdi vi s i on -Sectio n 6 Cul lege St .--it iun, Ie;·:.i~: Circular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING SQUARE EDGE ENTRANCE WITH HEADWALL Off 10 .3800 cfs 0 . 0140 321 .000 0 ft 318.4800 ft 318.3300 ft 18 .0000 in 25 .0000 ft 0 .0000 1.5000 ft 320.8537 ft Inlet Control 0.0060 ft/ft 5 .8739 fps Concrete Chann el -10 Year Storm -Segment 1 Channel Cal c u lator Gi ven Input Da ta : Shape .......................... . Solving for .................... . Flowrat e ....................... . Slope .......................... . Manning's n .................... . Height ......................... . Bottom width ................... . Computed Results : Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hy draulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent ful 1 ................... . Rectangular Depth of Flow 12 .5300 cfs 0.0 300 ft/ft 0.0140 1 2.0000 in 48.0000 in 4 .4416 in 8 .463 1 fps 56.1199 cfs 1.4805 ft2 56.8833 in 3.7480 in 48.0000 in 4.0000 ft2 72.0000 in 37 .0 136 % Concrete Channel -100 Year Storm -Segment 1 Channel Calculator Giv en Input Data : Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Rectangular Depth of Flow 17.1900 cfs 0 .0300 ft /ft Manning's n . . . . . . . . . . . . . . . . . . . . . 0.0140 Height . . . . . . . . . . . . . . . . . . . . . . . . . . 12.0000 in Bottom width .................... 48.0000 in Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow a re a ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Cast legate S ubdi ·.:isio11 •:., I I c·~1<:: :; tat i on , Tc·;-:, 1: Section ·· 5 .4445 in 9.4720 fps 56.1199 cfs 1 .8148 ft2 58.8890 in 4 .4378 i n 48.0000 in 4.0000 ft2 72 .0000 in 45.3707 % Concrete Channel -10 Year Storm -Segment 2 Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Height ......................... . Bottom width ................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Rectangular Depth of Flow 13. 1500 cfs 0.0050 ft/ft 0 .0140 12.0000 in 48.0000 in 8.2278 in 4.7947 fps 22.9109 cfs 2.7426 ft2 64.4556 in 6.1272 in 48.0000 in 4.0000 ft2 72.0000 in 68.5649 % Concrete Channel -100 Year Storm -Segment 2 Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Rectangular Depth of Flow 18 .0400 cfs 0.0050 ft/ft Manning's n ..................... 0.0140 Height . . . . . . . . . . . . . . . . . . . . . . . . . . 12 . 0000 in Bottom width . . . . . . . . . . . . . . . . . . . . 48.0000 in Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Cast l egate Subdl~islon Co I., ,,.'.J( ~;L ,'1t. i c.11, Te;-:,,,, Sec ti o n 6 10.1837 in 5.3144 fps 22.9109 cfs 3.3946 ft2 68.3674 in 7.1499 in 48.0000 in 4.0000 ft2 72.0000 in 84.8640 % Grass Channel -10 Year Storm -Se gm ent 3 Channel Ca l culator Given Input Data : Shape .......................... . So l vi ng for .................... . Flowrate ....................... . Sl ope .......................... . Ma nning ' s n .................... . Height ......................... . Bottom width ................... . Le ft slope ..................... . Right slope .................... . Computed Results : Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trap ezoi dal Depth of Flow 14 .990 0 cfs 0 .005 0 ft/ft 0.035 0 12 .0000 in 108.0000 in 0 .2500 ft/ft (V/H) 0.2500 ft/ft (V/H) 7.8757 in 1 .9647 fps 32.3 255 cfs 7 .6297 ft2 17 2 .9 44 7 in 6 .3 528 in 171.0056 in 13 . 0000 ft2 206.9545 in 65 .6309 % Grass Channel -100 Year Storm -Segment 3 Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Peri met er ...................... . Percent full ................... . Castlegate S ubdi visjon -Sect i on G Co!Jegc St:at.i.o n, 'l'e>:ci:=· Trapezoidal Depth of Flow 20.5600 cfs 0.0050 ft/ft 0.0350 12 .000 0 in 108.0000 in 0.2500 ft/ft (V/H) 0.2 500 ft/ft (V/H) 9 .3822 in 2 .16 83 fps 32.3255 cfs 9 .48 19 ft2 185 .3680 in 7 .36 58 in 183.0580 in 13. 0000 ft2 206.9545 in 78.1854 % Cul v er t (2-24 " Pipe s) - 2 5 Ye a r Storm Cul ve r t Ca lcul ator Ente r ed Data : Shape .......................... . Numb e r of Ba rre ls .............. . S o l v ing f or .................... . Cha r t Numb er ................ . Sca l e Nu mbe r ................ . Chart Descrip ti on ........... . Scale Des cr iption .............. . Ov ertopp i ng .................... . Flowrate ....................... . Manning' s n .................... . Roadway Elev ation .............. . Inlet Elev at i on ................ . Outlet Elevat i on ............... . Diamete r ....................... . Length ......................... . Entrance Loss .................. . Tailwate r ...................... . Computed Results : Headwate r ...................... . Slope .......................... . Velocity ....................... . Ci r cu l a r 2 Headwater 1 3 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE , PIPE PROJECTING FROM FILL Off 26 .6 0 00 cfs 0. 0140 321.0000 ft 317.3000 ft 316.8200 ft 24.0000 in 96.0000 ft 0 .2000 2 .0000 ft 319.5372 ft Outlet Cont r o l 0 .0050 ft/ft 4 .2335 fps Culvert (2 -2 4" Pipes) -100 Year Storm Culvert Calculator Entered Data : Shape .......................... . Number of Ba r r els .............. . Solving f or .................... . Chart Numb e r ................... . Scale Numbe r ................... . Chart De scripti on .............. . ENT RANCE FILL Scal e Des c r iption Ove r topp i ng .................... . Flowrate ....................... . Manning' s n .................... . Roadwa y E l evation .............. . I nl e t E levat ion ................ . Ou t l e t El evation ............... . Diame te r ....................... . Leng t h .................... . En t ra n ce Loss ... Tailwater ... Computed Results: Head water .... . Slope ........ . Velocity ..... . Castlega t e Subdivis i o n Colle-:i e St21L.ic•11, ·;c:·~.:'~" -Sect i o n 6 Circular 2 Headwater 1 3 CONCR ETE PI PE CULVERT ; NO BEVELED RING GROOVE EN D ENT RANCE, PIPE PROJECTING FROM Off 32 .9000 cfs 0. 0140 3 21 .0000 ft 317 .3000 ft 31 6.8200 ft 24.0000 in 96.0 000 ft 0 .200 0 2.0000 f t 3 1 9.9172 ft Outlet Control 0.0050 ft/ft 5.2362 fps APPENDIXD Pond Area-Capacity Data, Depth-Discharge Data, & Storage Routing Analysis Parameters cti on 6 Castlegate Subdiv i sion -Se Detention Ponds Pond Area-Capacity Data with Propo sed Contours V = H * {[A1+A2 + (A1 *A2)112] / 3} V = volume, ft 2 A= area . rt2 H = difference in elevat ion, ft Detention Pon d 1 Area -Ca p acit Data Elevation Depth Area Area Volume Cumulative Volume (ft) ft) (ft2) (acres) (ft3) (ft3) 317.50 0 .00 0.00 0 0 0 318 .00 0 .50 1,014.48 0 .0233 169 .08 169 .08 319 .00 1.50 6,0§1 .94 0 .1392 3, 185.43 3,354 .51 320 .00 2 .50 11 ,700.44 0 .2686 8 ,728 .07 12 ,082 .58 321 .00 3.50 15 ,715 .60 0 .3608 13,658.75 25 ,741 .33 Detention Pond 2 A rea -Ca a cit Data E levation Depth Area Area Volume Cumulative Volume (ft) ft) (ft2) acres) (ftJ) (ft3) 318 .00 0.00 0 .00 0 0 .00 0 319 .00 1.00 2,264 .52 0 .0520 679 .36 679 .36 320 .00 2.00 9,013.29 0 .2069 5,418 .05 6,097 .40 321 .00 3.00 11,576.91 0 .2658 14,659 .60 20 ,757 .01 - 90% Cumulative V o lume (ftJ) 0.00 152 .17 3,019.06 10 ,874 .32 23,167 .20 90% Cumulative V o lume (ftJ) 0 .00 6 11 .42 5,487.66 18,681.31 Elevation ft 318.00 319.00 320.00 321 .00 Castlegate Subdivision -Section 6 Detention Ponds Outlet Structure Depth-Discharge Data Detention Pond 1 Elevation Depth ft) (ft) 317 .50 0 .00 318.00 0 .50 ---------319.00 1.50 ------·------- 320.00 2 .50 321 .00 3 .50 ---------~ Outlet Structure 15" HOPE Pipe @0 .5% Q, (cfs) 0 .00 -· -----------0 .88 4 .93 7 .95 10.05 Detention Pond 2 ----~----4 5" Wide 15" HOPE Max Flow Depth Weir Opening Pipe @ 0 .5% Out of Q Q Structure (ft) (cfs) (cfs) (cfs) 0.00 0 .00 0 .00 0.00 -----11-----1 1.00 1.23 2 .83 *1 .25 2.00 3 .53 6.63 *3 .53 3.00 9 .05 **9.05 Outlet Structure Information -See Next Sheet *Weir limits flow •• Pipe limits flow Castlegate Subdivision -Section 6 Detention Ponds Storage Routing Analysis Parameter s t=60s Detention Pond No. 1 Elevation Depth Dis c h arge Q, cfs 317 .50 0.00 0 .00 -·-----318 .00 318 .00 0.88 ----------319 .00 319 .00 4 .93 320.00 320 .00 7 .95 ·--·--321.00 321 .00 10.05 15" Outlet Pipe t=60s Detention Pond No. 2 Elevation Depth Discharge Q, cfs 318 .00 0 .00 0.00 319 .00 1.00 1.25 320 .00 2.00 3.53 321 .00 3 .00 9.05 15" Outlet Structure 2.5'x2.5' Concrete Riser Inlet Elev . = 318.0 Top Elev .= 320.0 5" Wide Opening in Front Storage S, cf 0.00 152 .17 3,019.06 10 ,874 .32 23 ,167.20 Storage S,C 0 .00 611.42 5,487 .66 18,681 .31 2 s/t 0.00 5.07 100 .6 362.4 772 .2 2 s/t 0 .00 - 4 8 4 20 .3 8 182 .9 2 622 .7 1 - 2 s/t + 0 0.00 -·-·---5.95 -----105.57 ·---370.43 --782.29 2 s/t + 0 0.00 21.63 186.45 631 .76 APPENDIX E Storage Routing Analysis -Detention Pond No. 1 I Storage Routing Analysis Detention Pond 1 5-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs) 0 0 .00 0 .00 0 .00 0 .00 0 .00 1 0 .20 0 .20 0.14 0 .20 0.03 2 0.41 0 .61 0 .53 0.76 0 .11 3 0 .61 1.02 1.10 1.56 0 .23 4 0 .82 1.43 1.78 2 .53 0 .37 5 1.02 1.84 2 .55 3 .62 0 .54 6 1.23 2.25 3.38 4.80 0.71 7 1.43 2 .66 4.27 6 .04 0 .88 8 1.64 3 .07 5.46 7 .33 0 .94 9 1.84 3.48 6.93 8 .94 1.00 10 2.04 3 .88 8 .66 10 .82 1.08 11 2.25 4 .29 10 .63 12 .96 1.16 12 2.45 4.70 12 .80 15 .33 1.26 13 2.66 5.11 15 .18 17 .92 1.37 14 2.86 5 .52 17.74 20 .70 1.48 15 3 .07 5 .93 20.47 23 .67 1.60 16 3 .27 6 .34 23 .35 26 .81 1.73 17 3.48 6 .75 26 .37 30 .10 1.86 18 3 .68 7.15 29 .53 33.53 2 .00 19 3.88 7 .. 56 32.80 37 .09 2 .15 20 4 .09 7.97 36 .18 40 .77 2 .30 21 4 .29 8 .38 39 .66 44.56 2.45 22 4 .50 8 .79 43 .23 48.45 2.61 23 4 .70 9 .20 46 .89 52.43 2 .77 24 4 .91 9 .61 50.63 56 .50 2 .94 25 5.11 10 .02 54.44 60 .65 3 .10 26 5.31 10.43 58 .32 64 .87 3 .28 27 5.52 10 .83 62.25 69 .15 3.45 28 5.72 11 .24 66.24 73.49 3 .63 29 5.93 11 .65 70.28 77 .89 3 .80 30 6.13 12.06 74.37 82 .34 3 .99 31 6.34 12.47 78 .51 86 .84 4 .17 32 6.54 12 .88 82 .68 91 .38 4.35 33 6 .75 13.29 86.89 95 .96 4.54 34 6 .95 13.70 91 .13 100.58 4 .73 35 7 .15 14 .10 95.40 105 .23 4 .92 36 7.36 14 .51 99 .95 109 .91 4.98 37 7.56 14 .92 104.80 114.88 5.04 38 7.77 15 .33 109 .94 120.14 5.10 39 7.97 15 .74 115.37 125.68 5.16 40 8.18 16 .15 121 .06 131 .51 5.23 41 8 .38 16 .56 127 .03 137 .62 5.30 42 8 .59 16 .97 133 .26 144 .00 5.37 43 8.79 17 .38 139.75 150 .64 5.44 44 8 .69 17.48 146 .19 157.23 5.52 45 8 .59 17 .27 152.28 163.46 5.59 Storage Routing Analysis Detention Pond 1 5-Year Storm Event Time Inflow 11.:tR-Outflow (min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs) 46 8.48 17 .07 158 .04 169 .35 5 .66 47 8 .38 16 .86 163.46 174 .90 5.72 48 8 .28 16 .66 168 .56 180 .12 5 .78 49 8 .18 16.46 173.34 185 .01 5.84 50 8 .07 16 .25 177 .82 189.59 5.89 51 7 .97 16.05 181 .99 193 .87 5.94 52 7.87 15.84 185.87 197.83 5.98 53 7 .77 15 .64 189.46 201 .51 6 .02 54 7.67 15.43 192 .77 204 .89 6 .06 55 7.56 15 .23 195.80 208 .00 6 .10 56 7.46 15 .02 198 .57 210.83 6.13 57 7.36 14.82 201 .07 213.39 6.16 58 7 .26 14.62 203 .31 215 .68 6 .19 59 7 .15 14.41 205 .31 217 .72 6.21 60 7.05 14.21 207 .06 219 .51 6.23 61 6.95 14 .00 208 .56 221 .06 6 .25 62 6 .85 13 .80 209 .84 222 .36 6 .26 63 6 .75 13.59 210 .89 223.43 6 .27 64 6 .64 13 .39 211 .71 224 .27 6 .28 65 6 .54 13.19 212 .31 224 .89 6 .29 66 6.44 12.98 212 .70 225 .29 6.30 67 6 .34 12.78 212.88 225.48 6.30 68 6 .23 12 .57 212 .86 225.46 6.30 69 6 .13 12.37 212 .64 225 .23 6.29 70 6 .03 12.16 212.22 224 .80 6.29 71 5.93 11 .96 211 .62 224 .18 6 .28 72 5.83 11 .75 210 .83 223 .37 6.27 73 5 .72 11 .55 209 .85 222 .37 6 .26 74 5.62 11 .35 208.70 221 .20 6 .25 75 5.52 11.14 207.37 219 .84 6 .23 76 5.42 10 .94 205.88 218 .31 6 .22 77 5.31 10 .73 204 .22 216 .61 6 .20 78 5.21 10 .53 202.40 214.75 6.17 79 5.11 10 .32 200.42 212 .72 6.15 80 5 .01 10.12 196 .28 210 .54 6 .13 81 4 .91 9 .91 196 .00 208 .20 6 .10 ' 82 4.80 9 .71 193 .56 205 .71 6 .07 83 4.70 9 .51 190.98 203 .07 6.04 84 4 .60 9 .30 188 .27 200 .29 6 .01 85 4 .50 9 .10 185.41 197 .36 5 .98 86 4 .39 8 .89 182.42 194 .30 5 .94 87 4 .29 8 .69 179 .29 191 .11 5.91 88 4.19 8.48 176 .04 187 .78 5 .87 89 4 .09 8 .28 172 .67 184 .32 5 .83 90 3.99 8 .07 16 9.17 180.74 5 .79 Storage Routing Analysis Detention Pond 1 10-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs) 0 0 .00 0 .00 0 .00 0 .00 0 .00 0 .23 0 .23 0 .17 0.23 0.03 2 0.47 0.70 0 .61 0 .87 0.13 3 0 .70 1.17 1.26 1.79 0 .26 4 0 .94 1.64 2.04 2 .90 0.43 5 1.17 2.11 2 .93 4.15 0.61 6 1.41 2 .58 3 .88 5.51 0 .81 7 1.64 3 .05 5.09 6 .93 0 .92 8 1.88 3 .52 6 .63 8 .61 0 .99 9 2 .11 3 .99 8.48 10 .62 1.07 10 2 .35 4.46 10 .61 12 .94 1.16 11 2.58 4.93 13 .00 15 .54 1.27 12 2 .82 5.40 15 .62 18.40 1.39 13 3.05 5.87 18.47 21.49 1.51 14 3 .29 6 .34 21 .51 24.80 1.65 15 3 .52 6 .80 24 .74 28.31 1.79 16 3 .75 7 .27 28 .13 32 .01 1.94 17 3.99 7 .74 31 .68 35.87 2 .10 18 4 .22 8 .21 35 .37 39 .89 2 .26 19 4.46 8 .68 39 .20 44 .06 2.43 20 4.69 9.15 43.14 48 .35 2 .60 21 4.93 9 .62 47 .20 52 .76 2.78 22 5.16 10 .09 51.35 57.29 2 .97 23 5.40 10.56 55 .60 61 .91 3 .16 24 5.63 11 .03 59 .94 66 .63 3 .35 25 5.87 11.50 64 .35 71.43 3 .54 26 6.10 11 .97 68 .84 76 .32 3.74 27 6 .34 12.44 73 .39 81.27 3 .94 28 6 .57 12.91 78 .00 86.29 4 .15 29 6 .80 13.38 82 .67 91 .38 4.35 30 7 .04 13 .84 87 .39 96 .51 4.56 31 7 .27 14 .31 92 .16 101.70 4.77 32 7 .51 14.78 97.05 106 .94 4.95 33 7 .74 15.25 102 .29 112.30 5.01 34 7.98 15 .72 107.87 118 .01 5.07 35 8 .21 16.19 113 .78 124 .06 5.14 36 8.45 16 .66 120 .01 130.44 5.21 37 8 .68 17 .13 126 .56 137 .14 5.29 38 8 .92 17 .60 133.42 144 .16 5.37 39 9 .15 18 .07 140 .58 151.49 5.45 40 9 .39 18 .54 148 .04 159 .12 5 .54 41 9 .62 19 .01 155 .78 167 .04 5.63 42 9.86 19.48 163 .81 175 .26 5.72 43 10 .09 19.95 172 .11 183 .75 5.82 44 9 .97 20 .06 180 .34 192 .17 5.92 I 45 9.86 19 .83 188 .15 200.17 6 .01 Storage Routing Analysis Detention Pond 1 10-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-0 2s/t+O (cfs) 46 9.74 19 .59 195 .55 207.74 6 .09 47 9 .62 19 .36 202.56 214 .91 6.18 48 9 .50 19 .12 209.17 221 .68 6 .25 49 9 .39 18 .89 215.41 228 .06 6 .33 50 9 .27 18 .65 221 .27 234 .06 6.40 51 9 .15 18.42 226 .78 239 .69 6.46 52 9 .03 18 .19 231 .92 244 .96 6 .52 53 8 .92 17 .95 236 .72 249 .87 6 .58 54 8.80 17 .72 241 .18 254.44 6 .63 55 8 .68 17.48 245 .31 258 .66 6 .68 56 8 .56 17.25 249 .12 262.56 6 .72 57 8.45 17 .01 252 .61 266.13 6 .76 58 8 .33 16 .78 255 .79 269 .39 6.80 59 8 .21 16 .54 258 .67 272 .34 6.83 60 8 .10 16 .31 261 .26 274 .98 6 .86 61 7 .98 16 .07 263 .55 277.33 6 .89 62 7 .86 15 .84 265 .57 279 .39 6 .91 63 7 .74 15 .60 267 .31 28 1.17 6.93 64 7 .63 15 .37 268 .78 282 .68 6 .95 65 7 .51 15 .14 269 .99 283 .91 6.96 66 7 .39 14 .90 270.94 284 .89 6 .97 67 7.27 14 .67 271 .64 285.60 6 .98 68 7 .16 14.43 272 .09 286.07 6 .99 69 7 .04 14 .20 272 .31 286.29 6 .99 70 6 .92 13 .96 272 .29 286.27 6 .99 71 6 .80 13 .73 272 .04 286.02 6 .99 72 6.69 13.49 271 .57 285.53 6 .98 73 6.57 13 .26 270.88 284.83 6 .97 74 6.45 13 .02 269 .98 283.90 6.96 75 6 .34 12 .79 268 .86 282 .77 6 .95 76 6 .22 12 .55 267 .55 281.42 6 .94 77 6.10 12 .32 266 .03 279 .87 6 .92 78 5 .98 12 .08 264 .32 278 .12 6.90 79 5 .87 11 .85 262.42 276 .17 6 .88 80 5 .75 11 .62 260 .33 274 .04 6 .85 81 5 .63 11 .38 258 .07 271 .72 6 .82 82 5 .51 11 .15 255 .62 269 .21 6 .80 83 5.40 10 .91 253 .00 266 .53 6 .77 84 5.28 10 .68 250 .21 263 .68 6 .73 85 5.16 10.44 247 .26 260 .65 6.70 86 5.05 10 .21 244 .14 257.47 6 .66 87 4.93 9 .97 240 .87 254 .11 6 .62 88 4 .81 9 .74 237.44 25 0 .60 6.58 89 4 .69 9 .50 233 .86 24 6 .94 6 .54 90 4 .58 9 .27 230 .13 243 .13 6 .50 Storage Routing Analysis Detention Pond 1 25-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs) 0 0 .00 0 .00 0 .00 0 .00 0 .00 0 .27 0 .27 0 .19 0.27 0.04 2 0 .54 0 .81 0 .71 1.00 0 .1 5 3 0 .81 1.35 1.45 2.06 0 .30 4 1.08 1.89 2 .35 3 .34 0.49 5 1.35 2.43 3 .37 4 .79 0 .71 6 1.62 2 .98 4 .55 6 .35 0 .90 7 1.89 3 .52 6 .14 8.07 0.97 8 2 .16 4 .06 8 .09 10.20 1.05 9 2.43 4 .60 10 .38 12 .69 1.15 10 2 .70 5 .14 12 .98 15 .52 1.27 11 2 .98 5.68 15 .87 18 .66 1.40 12 3 .25 6 .22 19 .02 22 .09 1.54 13 3 .52 6.76 22.41 25 .78 1.69 14 3 .79 7.30 26 .02 29.71 1.85 15 4 .06 7.84 29 .83 33 .86 2 .01 16 4 .33 8 .38 33 .83 38.21 2 .19 17 4.60 8 .93 38 .00 42.76 2 .38 18 4 .87 9.47 42 .33 47.47 2 .57 19 5 .14 10.01 46 .81 52 .34 2.77 20 5.41 10 .55 51.42 57 .36 2 .97 21 5.68 11 .09 56 .15 62.51 3.18 22 5.95 11.63 60 .99 67.78 3 .39 23 6 .22 12 .17 65 .94 73.16 3.61 24 6.49 12.71 70 .98 78 .65 3 .84 25 6.76 13.25 76 .11 84 .23 4 .06 26 7.03 13.79 81 .31 89 .90 4 .29 27 7 .30 14 .33 86 .59 95 .65 4.53 28 7 .57 14 .88 91 .94 101.47 4 .76 29 7 .84 15.42 97.46 107 .36 4 .95 30 8 .11 15 .96 103 .38 113.42 5.02 31 8 .38 16 .50 109 .69 119.88 5.09 32 8.65 17 .04 116 .39 126 .73 5.17 33 8 .93 17 .58 123.46 133.97 5 .25 34 9 .20 18 .12 130 .90 141 .58 5.34 35 9.47 18 .66 138 .70 149.56 5.43 36 9.74 19 .20 146 .85 157 .90 5.53 37 10.01 19.74 155 .34 166 .59 5 .63 38 10.28 20 .28 164 .17 175.63 5.73 39 10 .55 20 .83 173 .32 184.99 5.84 40 10 .82 21 .37 182 .80 194.69 5.95 41 11 .09 21 .91 192 .58 20 4.70 6 .06 42 11 .36 22.45 202 .68 2 15 .03 6 .1 8 43 11 .63 22 .99 213 .07 225 .67 6 .30 44 11.49 23 .12 223 .35 236.19 6 .4 2 I 45 11.36 22 .85 233 .14 246 .21 6 .53 Storage Routing Analysis Detention Pond 1 25-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-0 2s/t+O (cfs) 46 11 .22 22 .58 242.44 255 .72 6 .64 47 11 .09 22 .31 251 .26 264 .75 6 .75 48 10 .95 22 .04 259.62 273 .31 6 .84 49 10 .82 21 .77 267 .52 281 .39 6 .93 50 10 .68 21 .50 274 .98 289 .03 7 .02 51 10.55 21 .23 282 .01 296 .21 7 .10 52 10.41 20 .96 288 .61 302 .97 7 .18 53 10 .28 20 .69 294 .79 309 .30 7 .25 54 10 .14 20.42 300 .57 315 .21 7 .32 55 10 .01 20 .15 305 .95 320 .72 7 .38 56 9 .87 19.88 310 .95 325 .83 7.44 57 9 .74 19 .61 315 .57 330 .56 7 .50 58 9 .60 19 .34 319 .82 334 .91 7 .54 59 9.47 19 .07 323 .70 338 .88 7.59 60 9.33 18 .80 327 .24 342.50 7 .63 61 9 .20 18 .53 330.43 345 .76 7 .67 62 9 .06 18 .26 333 .28 348 .68 7.70 63 8 .93 17 .99 335 .80 351 .26 7 .73 64 8 .79 17 .72 338 .00 353 .52 7 .76 65 8 .65 17.45 339 .89 355.45 7 .78 66 8 .52 17 .17 34 1.47 357 .06 7 .80 67 8 .38 16 .90 342 .75 358 .37 7 .81 68 8 .25 16 .63 343 .73 359.38 7 .82 69 8 .11 16 .36 344.43 360.10 7 .83 70 7 .98 16 .09 344 .85 360.52 7.84 71 7.84 15 .82 345 .00 360.67 7 .84 72 7 .71 15 .55 344 .87 360.55 7.84 73 7 .57 15 .28 344.49 360 .15 7.83 74 7.44 15 .01 343 .85 359 .50 7.83 75 7 .30 14 .74 342 .96 358.59 7 .81 76 7 .17 14.47 341 .82 357.43 7 .80 77 7 .03 14 .20 340.45 356 .02 7 .79 78 6 .90 13 .93 338 .85 354 .38 7 .77 79 6 .76 13 .66 337 .02 352 .51 7 .75 80 6 .63 13 .39 334 .96 350.40 7.72 81 6.49 13.12 33 2.69 348 .08 7.70 82 6 .36 12 .85 330 .20 345 .53 7.67 83 6 .22 12 .58 327 .51 342 .78 7.63 84 6 .09 12 .31 324 .61 339 .82 7 .60 85 5.95 12 .0 4 321.52 336 .65 7 .56 86 5.82 11 .77 318.2 3 333 .28 7 .53 8 7 5.68 11.49 3 14 .75 329 .73 7.49 88 5.54 11 .22 3 11 .09 325 .98 7.44 89 5.41 10 .95 30 7.25 322 .05 7.40 90 5.27 10.68 303 .23 3 17 .93 7 .3 5 Storage Routing Analysis Detention Pond 1 50-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-0 2s/t+O (cfs) 0 0 .00 0.00 0.00 0 .00 0 .00 0 .31 0.31 0 .22 0.31 0 .05 2 0.62 0.93 0 .80 1.14 0 .17 3 0 .93 1.54 1.65 2 .35 0 .35 4 1.23 2 .16 2 .69 3 .81 0.56 5 1.54 2.78 3 .85 5.46 0.81 6 1.85 3 .39 5.38 7 .24 0 .93 7 2 .16 4 .01 7 .35 9 .39 1.02 8 2.47 4 .63 9 .73 11 .98 1.13 9 2 .78 5.25 12.48 14 .97 1.25 10 3 .09 5.86 15 .58 18 .34 1.38 11 3 .39 6.48 18 .99 22 .06 1.53 12 3 .70 7.10 22 .69 26.09 1.70 13 4 .01 7.72 26 .65 30.40 1.87 14 4 .32 8.33 30 .87 34.99 2 .06 15 4 .63 8 .95 35 .30 39.82 2 .26 16 4 .94 9.57 39 .94 44.87 2.46 17 5.25 10 .18 44 .78 50.13 2 .68 18 5 .55 10 .80 49 .78 55.58 2 .90 19 5.86 11.42 54 .95 61 .20 3 .13 20 6 .17 12.04 60.26 66 .98 3 .36 21 6.48 12.65 65 .71 72 .91 3 .60 22 6 .79 13 .27 71 .28 78.98 3 .85 23 7 .10 13.89 76 .97 85 .17 4.10 24 7.41 14.50 82 .76 91.47 4.36 25 7 .72 15.12 88 .65 97 .88 4.62 26 8.02 15.74 94 .62 104 .38 4 .88 27 8 .33 16 .36 100 .99 110.98 4 .99 28 8 .64 16.97 107 .82 117 .97 5 .07 29 8.95 17 .59 115.10 125.41 5.16 30 9 .26 18 .21 122 .82 133 .31 5.25 31 9.57 18 .82 130 .96 141 .64 5 .34 32 9 .88 19.44 139 .52 150.40 5.44 33 10 .18 20 .06 148.49 159.58 5.55 34 10.49 20 .68 157 .85 169 .16 5.66 35 10 .80 21 .29 167 .61 179 .15 5.77 36 11 .11 21 .91 177 .75 189 .52 5.89 37 11.42 22 .53 188 .25 200 .27 6 .01 38 11 .73 23 .15 199 .13 211.40 6 .14 39 12 .04 23 .76 210.35 222 .89 6 .27 40 12 .34 24 .38 221 .93 234 .73 6.40 41 12 .65 25 .00 233 .84 246 .92 6.54 42 12.96 25 .61 24 6.09 259.45 6 .68 43 13 .27 26 .23 258 .65 272 .32 6.83 44 13 .12 26 .39 271 .09 285 .04 6 .98 45 12 .96 26 .08 282 .94 297 .16 7 .11 Storage Routing Analysis Detention Pond 1 50-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs) 46 12 .81 25.77 294 .21 308 .70 7 .25 47 12 .65 25.46 304 .93 319 .67 7 .37 48 12 .50 25 .15 315 .10 330.08 7 .49 49 12 .34 24 .84 324 .74 339 .94 7.60 50 12 .19 24 .53 333 .59 349.27 7 .84 51 12 .04 24 .23 342 .04 357.81 7 .89 52 11.88 23.92 350 .10 365 .96 7 .93 53 11.73 23.61 357 .78 373.71 7 .97 54 11 .57 23 .30 365.07 381.08 8 .00 55 11.42 22 .99 371 .98 388 .06 8 .04 56 11.26 22 .68 378 .52 394 .66 8.07 57 11.11 22 .37 384 .68 400 .89 8.11 58 10 .96 22.07 390.47 406 .75 8 .14 59 10 .80 21 .76 395.91 412 .23 8 .16 60 10 .65 21.45 400 .97 417 .35 8 .19 61 10.49 21.14 405 .69 422 .11 8 .21 62 10 .34 20 .83 410 .05 426 .52 8 .24 63 10 .18 20 .52 414 .05 430 .57 8 .26 64 10 .03 20 .21 417 .72 434 .27 8 .28 65 9 .88 19.91 421 .04 437 .62 8 .29 66 9 .72 19.60 424 .02 440 .63 8 .31 67 9 .57 19 .29 426 .66 443 .31 8 .32 68 9.41 18 .98 428 .97 445.64 8 .33 69 9 .26 18.67 430 .96 447 .65 8 .34 70 9.10 18.36 432 .62 449 .32 8 .35 71 8.95 18 .05 433 .95 450 .67 8 .36 72 8 .80 17 .74 434 .97 451 .70 8 .36 73 8 .64 17.44 435 .67 452.40 8 .37 74 8.49 17 .13 436 .05 452 .79 8 .37 75 8 .33 16 .82 436 .13 452 .87 8 .37 76 8 .18 16 .51 435 .90 452 .64 8 .37 77 8 .02 16 .20 435 .37 452 .11 8 .37 78 7 .87 15 .89 434 .54 451 .27 8 .36 79 7.72 15 .58 433.41 450 .13 8 .36 80 7.56 15 .28 431 .99 448 .69 8 .35 81 7.41 14 .97 430 .28 446 .96 8 .34 82 7 .25 14 .66 428 .28 444 .94 8 .33 83 7 .10 14 .35 425 .99 442 .63 8 .32 84 6 .94 14 .04 423.42 440 .03 8 .30 85 6 .79 13 .73 420 .58 437 .16 8 .29 86 6 .63 13 .4 2 417.45 434 .00 8 .27 87 6.48 13 .12 414 .05 4 30 .57 8 .26 88 6 .33 12 .8 1 41 0 .39 4 26 .86 8.24 89 6 .17 12 .50 40 6.4 5 422.8 8 8 .22 90 6 .0 2 12 .19 40 2.2 5 4 18 .64 8 .20 I Storage Routing Analysis Detention Pond 1 100-Year Storm Event Time Inflow 11+12 Outflow (min .) (cfs) (cfs) 2s/t-O 2s/t+O (cfs) 0 0 .00 0 .00 0 .00 0 .00 0 .00 0 .32 0 .32 0 .23 0 .32 0 .05 2 0 .65 0 .97 0 .84 1.20 0 .18 3 0 .97 1.62 1.73 2.46 0 .36 4 1.29 2 .26 2 .81 3 .99 0.59 5 1.62 2.91 4 .03 5.72 0 .85 6 1.94 3 .55 5 .69 7 .58 0 .95 7 2 .26 4 .20 7 .81 9 .89 1.04 8 2 .58 4 .85 10 .35 12 .65 1.15 9 2 .91 5.49 13 .27 15 .84 1.28 10 3 .23 6 .14 16 .56 19.41 1.43 11 3 .55 6 .78 20 .17 23.34 1.59 12 3 .88 7.43 24 .08 27 .60 1.76 13 4.20 8 .08 28 .26 32 .15 1.95 14 4.52 8 .72 32 .70 36 .98 2 .14 15 4 .85 9 .37 37 .37 42 .07 2 .35 16 5 .17 10 .01 42 .26 47 .38 2 .56 17 5.49 10 .66 47 .34 52 .92 2 .79 18 5 .81 11 .31 52 .60 58 .64 3 .02 19 6 .14 11 .95 58 .03 64 .55 3 .26 20 6.46 12 .60 63 .60 70 .62 3 .51 21 6.78 13 .24 69 .32 76 .85 3 .76 22 7.11 13 .89 75 .17 83 .21 4.02 23 7.43 14 .54 81 .14 89 .71 4 .29 24 7.75 15 .18 87 .21 96 .32 4.55 25 8.08 15 .83 93 .39 103 .04 4 .83 26 8.40 16.47 99 .90 109 .86 4.98 27 8 .72 17 .12 106.90 117.02 5.06 28 9 .04 17 .77 114 .37 124 .67 5 .15 29 9 .37 18.41 122 .30 132 .78 5 .24 30 9 .69 19 .06 130 .69 141 .36 5 .34 31 10 .01 19 .70 139.51 150.39 5.44 32 10.34 20 .35 148 .76 159 .86 5 .55 33 10 .66 21 .00 158.43 169 .76 5.66 34 10 .98 21 .64 168 .52 180.08 5.78 35 11 .31 22 .29 179 .00 190 .81 5 .90 36 11.63 22 .93 189.88 201.94 6 .03 37 11 .95 23 .58 201 .14 213.46 6 .16 38 12 .27 24 .23 212 .77 225 .37 6 .30 39 12 .60 24 .87 224 .77 237 .65 6.44 40 12 .92 25.52 237 .13 25 0 .29 6 .58 4 1 13.24 26.16 249.84 263.30 6 .73 42 13 .57 26.81 262 .89 276 .65 6.88 43 13 .89 27.46 276 .27 29 0 .35 7.04 44 13 .73 27 .62 289 .51 303 .8 9 7 .19 45 13 .57 27 .30 302 .13 3 16.81 7 .34 Storage Routing Analysis Detention Pond 1 100-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-0 2s/t+O (cfs) 46 13.41 26 .97 314 .14 329 .10 7.48 47 13 .24 26.65 325 .57 340 .79 7.61 48 13 .08 26 .33 336.42 351 .89 7 .74 49 12 .92 26 .00 346 .70 362.42 7 .86 50 12 .76 25 .68 356.46 372 .38 7.96 51 12 .60 25 .36 365 .80 381 .82 8 .01 52 12.44 25.03 374 .73 390 .84 8.05 53 12 .27 24.71 383 .25 399.44 8.10 54 12 .11 24.39 391 .36 407 .63 8 .14 55 11 .95 24.07 399 .06 415.42 8 .18 56 11.79 23.74 406 .37 422 .80 8 .22 57 11 .63 23.42 413 .28 429 .79 8 .25 58 11.47 23 .10 419.81 436.38 8.29 59 11 .31 22.77 425 .94 442.58 8 .32 60 11 .14 22.45 431 .70 448.39 8.35 61 10 .98 22 .13 437 .08 453.83 8 .38 62 10 .82 21 .80 442 .08 458 .88 8.40 63 10 .66 21.48 446 .71 463 .56 8.42 64 10.50 21 .16 450 .97 467 .87 8.45 65 10 .34 20.84 454.88 471 .81 8.47 66 10.18 20 .51 458.42 475 .39 8.49 67 10 .01 20 .19 461 .60 478 .61 8 .50 68 9.85 19.87 464.44 481.47 8.52 69 9.69 19.54 466 .92 483 .98 8 .53 70 9.53 19.22 469.06 486 .14 8 .54 71 9 .37 18.90 470 .86 487.96 8.55 72 9.21 18 .57 472 .32 489.43 8.56 73 9.04 18 .25 473.45 490 .57 8 .56 74 8 .88 17 .93 474.24 491 .37 8.57 75 8 .72 17 .60 474 .71 491 .84 8.57 76 8.56 17.28 474 .85 491 .99 8.57 77 8.40 16.96 474 .67 491 .81 8 .57 78 8.24 16.64 474 .17 491 .31 8 .57 79 8 .08 16 .31 473 .36 490.49 8.56 80 7 .91 15.99 472 .24 489 .35 8 .56 81 7 .75 15 .67 470 .81 487 .90 8 .55 82 7 .59 15 .34 469.07 486 .15 8 .54 83 7.43 15 .02 467.03 484 .09 8 .53 84 7 .27 14 .70 464.69 481 .73 8 .52 85 7 .11 14.37 462 .06 479 .07 8.50 86 6 .94 14 .05 459 .13 476 .11 8.49 87 6 .78 13.73 455 .92 472 .86 8.47 88 6 .62 13.41 452.42 469 .32 8.45 89 6.46 13.08 448 .63 465 .50 8.4 3 90 6 .30 12 .76 444 .56 461 .39 8.41 9 1 6 .14 12 .4 4 440 .2 1 4 57 .00 8.39 APPENDIXF Storage Routing Analysis -Detention Pond No. 2 I .. 1.; Storage Routing Analysis Detention Pond 2 5-Year Storm Event Time Inflow 11+12 Outflow (min.} (cfs} (cfs} 2s/t-O 2s/t+O (cfs) 0 0 .00 0 .00 0 .00 0 .00 0 .00 1 0 .63 0.63 0.56 0 .63 0 .04 2 1.26 1.90 2.17 2.46 0 .14 3 1.90 3 .16 4 .72 5.33 0 .31 4 2 .53 4.43 8 .08 9 .14 0 .53 5 3.16 5.69 12 .18 13 .77 0 .80 6 3 .79 6 .95 16 .92 19 .14 1.11 7 4.43 8 .22 22 .54 25 .14 1.30 8 5.06 9.48 29 .24 32 .03 1.39 9 5 .69 10 .75 36 .98 39 .99 1.50 10 6 .32 12 .01 45 .73 48 .99 1.63 11 6 .95 13.28 55.47 59 .01 1.77 12 7 .59 14.54 66 .17 70 .01 1.92 13 8 .22 15 .80 77 .81 81 .98 2.08 14 8 .85 17 .07 90 .35 94 .87 2.26 15 8 .53 17 .38 102 .85 107 .73 2.44 16 8 .22 16 .75 114 .39 119.60 2.61 17 7 .90 16 .12 125.00 130.51 2 .76 18 7.59 15.49 134 .70 140.49 2 .89 19 7.27 14.86 143 .51 149 .55 3 .02 20 6 .95 14.22 151.47 157.74 3 .13 21 6 .64 13.59 158 .59 165 .06 3.23 22 6 .32 12.96 164.91 171 .55 3 .32 23 6.01 12.33 170.43 177 .23 3.40 24 5.69 11.69 175.18 182.12 3.47 25 5 .37 11 .06 179 .19 186 .24 3 .53 26 5.06 10.43 182.48 189 .62 3 .57 27 4 .74 9 .80 185.08 192 .28 3 .60 28 4.43 9 .17 186 .99 194 .24 3 .63 29 4 .11 8 .53 188.24 195 .52 3 .64 30 3 .79 7 .90 188 .84 196 .14 3 .65 31 3.48 7 .27 188 .81 196 .11 3 .65 32 3.16 6 .64 188 .16 195.45 3 .64 33 2.84 6 .01 186 .92 194 .17 3 .63 34 2.53 5.37 185.09 192.29 3 .60 35 2 .21 4.74 182 .68 189 .83 3 .57 36 1.90 4.11 179 .72 186 .79 3 .53 37 1.58 3.48 176 .23 183 .20 3 .49 38 1.26 2 .84 172 .22 179 .08 3.43 39 0 .95 2 .21 167 .70 174.43 3 .36 40 0 .63 1.58 162 .70 169 .28 3.29 41 0 .32 0 .95 157 .22 163.65 3.21 42 0 .00 0 .32 151 .27 157 .53 3 .13 43 0 .00 0 .00 145 .19 151.27 3.04 44 0 .00 0 .00 139 .27 145 .19 2.96 45 0 .00 0 .00 133.5 1 139 .27 2.88 Storage Routing Analysis Detention Pond 2 5-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2slt-0 2slt+O (cfs) 46 0 .00 0.00 127 .92 133 .51 2 .80 47 0 .00 0 .00 122.48 127.92 2 .72 48 0 .00 0 .00 117.19 122.48 2.65 49 0 .00 0.00 112 .04 117 .19 2 .57 50 0 .00 0 .00 107 .04 112.04 2 .50 51 0 .00 0 .00 102 .18 107 .04 2.43 52 0.00 0 .00 97.45 102 .18 2 .36 53 0 .00 0 .00 92 .85 97.45 2.30 54 0 .00 0 .00 88 .38 92.85 2 .24 55 0 .00 0.00 84 .04 88 .38 2 .17 56 0 .00 0 .00 79 .81 84 .04 2 .11 57 0 .00 0 .00 75 .7 0 79.81 2 .05 58 0.00 0 .00 71 .70 75 .70 2 .00 59 0 .00 0 .00 67 .82 71.70 1.94 60 0 .00 0.00 64 .04 67.82 1.89 61 0 .00 0 .00 60 .37 64 .04 1.84 62 0 .00 0 .00 56 .80 60.37 1.79 63 0 .00 0 .00 53 .32 56 .80 1 .74 64 0 .00 0 .00 49 .95 53 .32 1.69 65 0 .00 0 .00 46.66 49.95 1.64 66 0 .00 0 .00 43.47 46.66 1.60 67 0 .00 0 .00 40.37 43.47 1.55 68 0.00 0 .00 37 .35 40.37 1.51 69 0 .00 0 .00 34.41 37 .35 1.47 70 0 .00 0 .00 31 .56 34.41 1.43 71 0 .00 0 .00 28 .78 31 .56 1.39 72 0 .00 0 .00 26 .09 28 .78 1.35 73 0 .00 0 .00 23.46 26 .09 1.31 74 0 .00 0 .00 20 .91 23.46 1.28 75 0 .00 0 .00 18 .4 3 20.91 1.24 76 0 .00 0 .00 16 .02 18.43 1.21 77 0 .00 0.00 13 .68 16 .02 1.17 78 0 .00 0.00 11.40 13 .68 1.14 79 0 .00 0.00 9 .18 11.40 1.11 80 0 .00 0 .00 8 .12 9 .18 0 .53 81 0 .00 0 .00 7 .18 8.12 0.47 82 0 .00 0.00 6 .35 7.18 0.41 83 0 .00 0 .00 5 .62 6 .35 0 .37 84 0 .00 0.00 4 .97 5 .62 0 .32 85 0.00 0 .00 4 .39 4 .97 0 .29 86 0 .00 0 .00 3 .89 4 .39 0 .25 87 0 .00 0 .00 3.44 3 .89 0 .22 88 0 .00 0 .00 3 .04 3.4 4 0 .20 89 0 .00 0 .00 2 .69 3 .04 0 .18 90 0 .00 0 .00 2 .38 2 .69 0 .16 Storage Routing Analysis Detention Pond 2 10-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-0 2s/t+O (cfs) 0 0 .00 0.00 0.00 0.00 0.00 1 0 .71 0.71 0 .63 0.71 0 .04 2 1.43 2 .14 2.45 2 .77 0 .16 3 2.14 3 .56 5.32 6 .01 0 .35 4 2.85 4 .99 9 .12 10.31 0 .60 5 3.56 6.42 13 .74 15 .53 0.90 6 4 .28 7.84 19 .08 21 .58 1.25 7 4 .99 9.27 25 .67 28 .35 1.34 8 5.70 10.69 33.45 36.36 1.45 9 6.42 12.12 42.41 45.57 1.58 10 7.13 13 .54 52 .50 55 .95 1.72 11 7 .84 14.97 63 .70 67.47 1.88 12 8.55 16.40 75 .98 80.10 2.06 13 9.27 17.82 89 .31 93.80 2 .25 14 9.98 19.25 103 .65 108 .55 2.45 15 9 .62 19 .60 117 .94 123 .25 2 .66 16 9.27 18 .89 131 .14 136 .83 2 .84 17 8.91 18 .18 143 .29 149 .32 3 .02 18 8.55 17.47 154.41 160 .75 3.17 19 8.20 16 .75 164 .52 171 .16 3 .32 20 7.84 16.04 173 .66 180.56 3.45 21 7.49 15.33 181 .87 188 .99 3 .56 22 7.13 14 .61 189.17 196.48 3 .65 23 6 .77 13.90 195.60 203 .07 3 .74 24 6.42 13 .19 201.17 208 .79 3 .81 25 6 .06 12.48 205 .91 213 .65 3 .87 26 5 .70 11.76 209 .84 217 .68 3 .92 27 5 .35 11 .05 212.98 220 .89 3 .96 28 4 .99 10 .34 215 .34 223 .31 3 .99 29 4 .63 9 .62 216.95 224.96 4 .01 30 4 .28 8 .91 217 .82 225.86 4 .02 31 3 .92 8 .20 217.98 226 .02 4 .02 32 3 .56 7.49 217.44 225.46 4 .01 33 3 .21 6 .77 216 .21 224 .21 4 .00 34 2 .85 6 .06 214 .32 222 .27 3 .97 35 2 .50 5.35 211.79 219 .67 3 .94 36 2 .14 4 .63 208 .62 216.42 3 .90 37 1.78 3 .92 204 .83 212 .54 3 .85 38 1.43 3 .21 200.44 208 .04 3 .80 39 1.07 2.50 195.47 202 .94 3 .73 40 0 .71 1.78 189 .93 197 .25 3.66 41 0.36 1.07 183 .82 190 .99 3 .59 42 0 .00 0.36 177 .18 184 .18 3 .50 43 0 .00 0 .00 170 .38 177 .18 3.40 44 0 .00 0 .00 16 3.76 170 .38 3 .31 4 5 0 .00 0 .00 157 .33 163.76 3 .22 Storage Routing Analysis Detention Pond 2 10-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs) 46 0 .00 0 .00 151 .08 157 .33 3 .13 47 0 .00 0 .00 144 .99 151 .08 3 .04 48 0 .00 0 .00 139 .08 144.99 2 .96 49 0 .00 0 .00 133.33 139 .08 2 .87 50 0 .00 0 .00 127 .74 133 .33 2.80 51 0 .00 0 .00 122 .31 127 .74 2 .72 52 0 .00 0 .00 117.02 122 .31 2 .64 53 0 .00 0 .00 111.88 117 .02 2.57 54 0 .00 0 .00 106.88 111 .88 2.50 55 0 .00 0 .00 102.03 106 .88 2.43 56 0 .00 0 .00 97 .30 102 .03 2.36 57 0 .00 0 .00 92 .71 97 .30 2.30 58 0 .00 0 .00 88.24 92 .71 2 .23 59 0 .00 0 .00 83.90 88.24 2.17 60 0 .00 0.00 79 .68 83 .90 2.11 61 0 .00 0 .00 75 .57 79.68 2.05 62 0 .00 0 .00 71 .58 75 .57 2.00 63 0 .00 0 .00 67 .70 71 .58 1.94 64 0 .00 0 .00 63 .92 67 .70 1.89 65 0 .00 0 .00 60 .25 63 .92 1.84 66 0 .00 0 .00 56 .68 60.25 1.78 67 0 .00 0 .00 53 .21 56 .68 1.73 68 0 .00 0 .00 49 .84 53 .21 1.69 69 0 .00 0.00 46 .56 49 .84 1.64 70 0 .00 0.00 43 .37 46 .56 1.59 71 0 .00 0 .00 40 .27 43 .37 1.55 72 0 .00 0 .00 37 .25 40 .27 1.51 73 0 .00 0.00 34 .32 37 .25 1.47 74 0 .00 0 .00 31.47 34 .32 1.43 75 0 .00 0 .00 28 .70 31.47 1.39 76 0 .00 0.00 26 .00 28 .70 1.35 77 0 .00 0 .00 23 .38 26 .00 1.31 78 0 .00 0 .00 20 .83 23 .38 1.27 79 0 .00 0 .00 18 .35 20 .83 1.24 80 0 .00 0 .00 16 .23 18 .35 1.06 81 0 .00 0 .00 14 .36 16 .23 0.94 82 0 .00 0 .00 12 .70 14 .36 0 .83 83 0 .00 0 .00 11 .23 12 .70 0 .73 84 0 .00 0 .00 9 .93 11 .23 0 .65 85 0 .00 0 .00 8.78 9 .93 0 .57 86 0 .00 0 .00 7 .77 8 .78 0.51 87 0 .00 0 .00 6.87 7 .77 0.45 88 0 .00 0 .00 6 .08 6 .87 0.40 89 0 .00 0 .00 5.3 7 6 .08 0 .35 90 0 00 0 .00 4 .75 5 .37 0 .31 Storage Routing Analysis Detention Pond 2 25-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-0 2slt+O (cfs) 0 0.00 0.00 0.00 0.00 0.00 1 0.82 0.82 0.72 0.82 0.05 2 1.63 2.45 2.80 3.17 0.18 3 2.45 4.08 6.09 6.88 0.40 4 3.26 5.71 10.43 11.80 0.68 5 4.08 7.34 15.72 17.77 1.03 6 4.89 8.97 22.11 24.69 1.29 7 5.71 10.60 29.91 32.71 1.40 8 6.53 12.24 39.07 42.14 1.53 9 7.34 13.87 49.57 52.94 1.68 10 8.16 15.50 61.37 65.07 1.85 11 8.97 17.13 74.43 78.50 2.04 12 9.79 18.76 88.71 93.19 2.24 13 10.60 20.39 104.18 109.10 2.46 14 11.42 22.02 120.81 126.21 2.70 -15 11.01 22.43 137.38 143.25 2.93 16 10.60 21.62 152.70 159.00 3.15 17 10.20 20.80 166.80 173.50 3.35 18 9.79 19.99 179.71 186.78 3.53 19 9.38 19.17 191.51 198.88 3.68 20 8.97 18.35 202.23 209.87 3.82 21 8.57 17.54 211.88 219.76 3.94 22 8.16 16.72 220.50 228.60 4.05 23 7.75 15.91 228.10 236.40 4.15 24 7.34 15.09 234.73 243.19 4.23 25 6.93 14.28 240.39 249.00 4.31 26 6.53 13.46 245.12 253.85 4.37 27 6.12 12.64 248.94 257.76 4.41 28 5.71 11.83 251.86 260.76 4.45 29 5.30 11.01 253.92 262.87 4.48 30 4.89 10.20 255.13 264.12 4.49 31 4.49 9.38 255.52 264.51 4.50 32 4.08 8.57 255.10 264.08 4.49 33 3.67 7.75 253.89 262.84 4.48 34 3.26 6.93 251.92 260.82 4.45 35 2.86 6.12 249.20 258.04 4.42 36 2.45 5.30 245.76 254.51 4.37 37 2.04 4.49 241.60 250.24 4.32 38 1.63 3.67 236.76 245.27 4.26 39 1.22 2.86 231.23 239.61 4.19 40 0.82 2.04 225.05 233.27 4.11 41 0.41 1.22 218.23 226.27 4.02 42 0.00 0.41 210.78 218.64 3.93 43 0.00 0.00 203.11 210.78 3.83 44 0 00 0.00 195.64 203.11 3.74 45 0 00 0.00 188.35 195.64 3.64 Storage Routing Analysis Detention Pond 2 25-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs ) -- 46 0 .00 0 .00 181 .25 188.35 3 .55 47 0 .00 0 .00 174 .33 181 .25 3.46 48 0 .00 0 .00 167 .61 174.33 3 .36 49 0 .00 0 .00 161 .07 167.61 3 .27 50 0 .00 0 .00 154 .71 161 .07 3 .18 51 0 .00 0 .00 148 .53 154.71 3 .09 52 0 .00 0 .00 142 .52 148.53 3.01 53 0 .00 0 .00 136.67 142.52 2.92 54 0 .00 0 .00 130.99 136.67 2 .84 55 0 .00 0 .00 125.46 130.99 2 .76 56 0 .00 0 .00 120.09 125.46 2 .69 57 0 .00 0 .00 114 .87 120.09 2 .61 58 0.00 . 0 .00 109.79 114.87 2.54 59 0 .00 0 .00 104 .85 109.79 2.47 60 0 .00 0 .00 100.05 104.85 2.40 61 0 .00 0 .00 95 .38 100.05 2 .33 62 0 .00 0 .00 90 .84 95 .38 2 .27 63 0 .00 0 .00 86.42 90 .84 2 .21 64 0 .00 0 .00 82 .13 86.42 2 .15 65 0 .00 0 .00 77 .95 82 .13 2 .09 66 0 .00 0 .00 73 .90 77 .95 2.03 67 0 .00 0.00 69 .95 73.90 1.97 68 0 .00 0 .00 66 .11 69 .95 1.92 69 0 .00 0 .00 62 .38 66 .11 1.87 70 0 .00 0 .00 58 .76 62 .38 1.8 1 71 0 .00 0 .00 55 .23 58.76 1.76 72 0.00 0 .00 51 .80 55 .23 1.71 73 0 .00 0 .00 48.46 51 .80 1.67 74 0 .00 0.00 45 .22 48.46 1.62 75 0 .00 0 .00 42 .07 45.22 1.58 76 0.00 0 .00 39 .00 42 .07 1.53 77 0 .00 0 .00 36 .02 39 .00 1.49 78 0 .00 0 .00 33.12 36.02 1.45 79 0 .00 0 .00 30 .31 33 .12 1.41 80 0 .00 0 .00 27 .57 30 .31 1.37 81 0 .00 0.00 24.90 27.57 1.33 82 0 .00 0.00 22 .31 24 .90 1.30 83 0 .00 0 .00 19.79 22 .31 1.26 84 0 .00 0 .00 17.51 19 .79 1.14 85 0.00 0 .00 15.48 17 .51 1.01 86 0 .00 0 .00 13 .69 15.48 0.89 87 0 .00 0 .00 12 .11 13 .69 0 .79 8 8 0 .00 0.00 10 . 71 12 .11 0 .70 89 0 .00 0 .00 9.47 10 .71 0 .62 9 0 0 .00 0 .00 8.38 9.4 7 0 .55 I Storage Routing Analysis Detention Pond 2 50-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-0 2s/t+O (cfs) 0 0.00 0.00 0.00 0.00 0.00 0.92 0.92 0.82 0.92 0.05 2 1.85 2.77 3.17 3.59 0.21 3 2.77 4.62 6.89 7.79 0.45 4 3.69 6.47 11.81 13.36 0.77 5 4.62 8.31 17.80 20.12 1.16 6 5.54 10.16 25.28 27.96 1.34 7 6.47 12.01 34.36 37.29 1.47 8 7.39 13.85 44.97 48.21 1.62 9 8.31 15.70 57.09 60.67 1.79 10 9.24 17.55 70.68 74.64 1.98 11 10.16 19.40 85.68 90.07 2.20 12 11.08 21.24 102.06 106.92 2.43 13 12.01 23.09 119.78 125.15 2.68 14 12.93 24.94 138.82 144.72 2.95 15 12.47 25.40 157.77 164.21 3.22 16 12.01 24.47 175.30 182.24 3.47 17 11.54 23.55 191.48 198.85 3.68 18 11.08 22.63 206.37 214.11 3.87 19 10.62 21.70 219.98 228.07 4.05 20 10.16 20.78 232.35 240.76 4.20 21 9.70 19.86 243.52 252.21 4.35 22 9.24 18.93 253.51 262.45 4.47 23 8.77 18.01 262.35 271.52 4.58 24 8.31 17.09 270.07 279.43 4.68 25 7.85 16.16 276.70 286.23 4.77 26 7.39 15.24 282.26 291.94 4.84 27 6.93 14.32 286.79 296.58 4.90 28 6.47 13.39 290.30 300.18 4.94 29 6.00 12.47 292.82 302.77 4.97 30 5.54 11.54 294.38 304.37 4.99 31 5.08 10.62 295.01 305.01 5.00 32 4.62 9.70 294.71 304.70 5.00 33 4.16 8.77 293.52 303.49 4.98 34 3.69 7.85 291.47 301.37 4.95 35 3.23 6.93 288.56 298.39 4.92 36 2.77 6.00 284.82 294.56 4.87 37 2.31 5.08 280.27 289.90 4.81 38 1.85 4.16 274.94 284.43 4.74 39 1.39 3.23 268.84 278.17 4.67 40 0.92 2.31 261.99 271.15 4.58 41 0.46 1.39 254.41 263.37 4.48 42 0.00 0.46 246.11 254.87 4.38 43 0.00 0.00 237.57 246.11 4.27 44 0.00 0.00 229.25 237.57 4.16 45 0.00 0.00 221.13 229.25 4 06 Storage Routing Analysis Detention Pond 2 50-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-O 2s/t+O (cfs) 46 0 .00 0 .00 213.21 221 .13 3 .96 47 0 .00 0 .00 205.48 213 .21 3 .86 48 0 .00 0 .00 197 .95 205.48 3.77 49 0 .00 0 .00 190 .61 197 .95 3.67 50 0.00 0 .00 183.44 190.61 3 .58 51 0.00 0 .00 176.47 183.44 3.49 52 0 .00 0 .00 169 .68 176.47 3.39 53 0 .00 0 .00 163 .09 169 .68 3.30 54 0 .00 0.00 156 .67 163.09 3 .21 55 0 .00 0.00 150.44 156.67 3.12 56 0 .00 0.00 144 .37 150.44 3 .03 57 0.00 0 .00 138.48 144.37 2 .95 58 0.00 0 .00 132.74 138.48 2 .87 59 0.00 0 .00 127 .17 132 .74 2.79 60 0 .00 0 .00 121 .75 127 .17 2.71 61 0 .00 0 .00 116.48 121 .75 2.63 62 0 .00 0 .00 111 .36 116.48 2.56 63 0.00 0 .00 106 .37 111 .36 2.49 64 0 .00 0 .00 101 .53 106 .37 2.42 65 0 .00 0 .00 96.82 101 .53 2 .36 66 0 .00 0 .00 92 .24 96.82 2 .29 67 0 .00 0 .00 87 .78 92 .24 2 .23 68 0 .00 0 .00 83.45 87 .78 2 .17 69 0.00 0 .00 79 .24 83.45 2 .11 70 0 .00 0 .00 75 .15 79 .24 2 .05 71 0 .00 0 .00 71 .17 75.15 1.99 72 0 .00 0 .00 67 .30 71 .17 1.94 73 0 .00 0 .00 63 .54 67.30 1.88 74 0 .00 0 .00 59 .88 63.54 1.83 75 0 .00 0 .00 56 .32 59 .88 1.78 76 0 .00 0 .00 52 .86 56 .32 1.73 77 0 .00 0 .00 49.49 52 .86 1.68 78 0 .00 0 .00 46 .22 49.49 1.64 79 0 .00 0 .00 43 .04 46.22 1.59 80 0 .00 0.00 39.95 43.04 1.55 81 0 .00 0.00 36.94 39 .95 1.50 82 0 .00 0 .00 34 .02 36 .94 1.46 83 0 .00 0 .00 31 .18 34 .02 1.42 84 0 .00 0.00 28.41 31 .18 1.38 85 0 .00 0 .00 25 .73 28.41 1.34 86 0 .00 0.00 23 .11 25 .73 1.31 87 0 .00 0 .00 20 .57 23.11 1.27 88 0.00 0 .00 18 .19 20.57 1.19 89 0 .00 0 .00 16 .09 18.19 1.05 90 0 .00 0 .00 14.23 16 .09 0 .93 Storage Routing Analysis Detention Pond 2 100-Year Storm Event Time Inflow 11+12 Outflow (min .) (cfs) (cfs) 2s/t-0 2s/t+O (cfs) 0 0 .00 0 .00 0 .00 0 .00 0 .00 0 .96 0 .96 0 .85 0 .96 0 .06 2 1.93 2 .89 3 .31 3 .74 0 .22 3 2 .89 4 .82 7.19 8 .13 0.47 4 3.85 6 .75 12.32 13 .93 0.81 5 4 .82 8.67 18.57 21.00 1.21 6 5 .78 10 .60 26.46 29.17 1.35 7 6.75 12 .53 36 .01 38.99 1.49 8 7 .71 14.45 47 .16 50.46 1.65 9 8.67 16 .38 59 .88 63.54 1.83 10 9 .64 18 .31 74 .13 78.19 2 .03 11 10 .60 20 .24 89 .85 94 .36 2 .26 12 11 .56 22 .16 107 .01 112.01 2 .50 13 12 .53 24 .09 125 .57 131 .10 2 .76 14 13.49 26.02 145.49 151.59 3.05 15 13 .01 26 .50 165 .33 171 .99 3 .33 16 12 .53 25.53 183.70 190.86 3.58 17 12 .04 24 .57 200 .67 208.27 3.80 18 11 .56 23 .61 216 .28 224 .27 4.00 19 11 .08 22.64 230 .56 238 .92 4 .18 20 10 .60 21 .68 243 .55 252 .24 4 .35 21 10 .12 20.72 255 .28 264 .26 4.49 22 9 .64 19 .75 265 .77 275.03 4.63 23 9.15 18 .79 275 .07 284 .56 4 .75 24 8 .67 17 .83 283 .20 292 .90 4.85 25 8 .19 16.86 290 .18 300 .06 4 .94 26 7 .71 15 .90 296 .06 306 .08 5.01 27 7 .23 14 .94 300 .84 310 .99 5.07 28 6 .75 13 .97 304 .57 314 .82 5.12 29 6 .26 13 .01 307 .27 317 .58 5.16 30 5 .78 12 .04 308 .96 319 .31 5.18 31 5 .30 11 .08 309 .67 320 .04 5.19 32 4 .82 10 .12 309 .42 319 .79 5.18 33 4 .34 9 .15 308 .24 318 .58 5.17 34 3 .85 8 .19 306 .15 316.43 5.14 35 3 .37 7 .23 303 .17 313 .37 5.10 36 2.89 6 .26 299 .32 309.43 5.05 37 2.41 5.3 0 294 .63 304 .62 4 .99 38 1.93 4 .34 289.12 298 .97 4 .92 39 1.45 3 .37 282 .80 292.49 4 .84 40 0 .96 2.41 275.70 285 .21 4 .75 41 0.48 1.45 267 .84 277 .15 4 .65 42 0 .00 0.48 259 .23 268 .32 4 .54 43 0 .00 0 .00 25 0.37 259 .23 4.43 44 0 .00 0 .00 24 1.72 250 .37 4 .32 45 0 .00 0.00 233.29 241.72 4 .22 Storage Routing Analysis Detention Pond 2 100-Year Storm Event Time Inflow 11+12 Outflow (min.) (cfs) (cfs) 2s/t-0 2s/t+O (cfs) 46 0 .00 0 .00 225 .07 233.29 4 .11 47 0 .00 0.00 217.05 225 .07 4 .01 48 0 .00 0 .00 209 .24 217.05 3 .91 49 0 .00 0 .00 201.61 209 .24 3 .81 50 0 .00 0 .00 194 .17 201 .61 3.72 51 0 .00 0 .00 186 .92 194 .17 3.63 52 0 .00 0 .00 179 .85 186 .92 3.54 53 0 .00 0.00 172 .97 179 .85 3.44 54 0 .00 0 .00 166 .29 172.97 3 .34 55 0 .00 0 .00 159 .78 166 .29 3 .25 56 0.00 0 .00 153.46 159.78 3 .16 57 0 .00 0 .00 147 .31 153.46 3 .07 58 0 .00 0 .00 141 .34 147 .31 2.99 59 0.00 0 .00 135 .52 141 .34 2.91 60 0 .00 0 .00 129 .87 135 .52 2.83 61 0 .00 0 .00 124 .38 129 .87 2.75 62 0.00 0 .00 119 .04 124 .38 2.67 63 0.00 0 .00 113 .84 119 .04 2.60 64 0 .00 0 .00 108.79 113.84 2.53 65 0 .00 0 .00 103 .88 108 .79 2.46 66 0 .00 0 .00 99.10 103.88 2.39 67 0 .00 0 .00 94.46 99 .10 2 .32 68 0.00 0 .00 89 .94 94.46 2 .26 69 0 .00 0.00 85 .55 89 .94 2 .20 70 0 .00 0.00 81 .29 85 .55 2 .13 71 0 .00 0 .00 77 .14 81 .29 2 .08 72 0 .00 0 .00 73 .10 77.14 2 .02 73 0 .00 0 .00 69 .18 73.10 1.96 74 0 .00 0 .00 65 .36 69 .18 1.91 75 0 .00 0.00 61 .65 65 .36 1.85 76 0 .00 0 .00 58 .04 61 .65 1.80 77 0.00 0 .00 54 .54 58 .04 1.75 78 0.00 0 .00 51 .13 54 .54 1.71 79 0 .00 0 .00 47.81 51 .13 1.66 80 0 .00 0 .00 44 .59 47 .81 1.61 81 0.00 0 .00 41.45 44 .59 1.57 82 0 .00 0 .00 38.40 41.45 1.52 83 0 .00 0.00 35.44 38.40 1.48 84 0 .00 0 .00 32 .56 35.44 1.44 85 0.00 0 .00 29 .75 32 .56 1.40 86 0 .00 0.00 27 .03 29.75 1.36 87 0 .00 0 .00 24 .38 27 03 1.32 88 0.00 0 .00 21 .80 24.38 1.29 89 0 .00 0 .00 19.28 21 .80 1.26 90 0 .00 0 .00 17 .05 19 .28 1 . 11 EXHIBIT A Pre-Development Drainage Area Map -Detention Ponds I ~.j