Loading...
HomeMy WebLinkAbout51 South Hampton Ph 3 04-22Drainage Report for South Hampton Subdivision Phase 3 College Station, Texas May 2004 Revised July 2004 Deve loper: Nantucket, Ltd. 1101 University Drive East, Suite 10 8 Co llege Station, Texas 778 40 Prepared B y : TEXCON Genera l Contractors 1707 Graham Ro a d Co llege Station , Te as 77845 (979) 764-7743 CERTIFICATION I, Joseph P. Schultz, Licensed Professional Engineer No. 65889, State of Texas, certify that this revised report for the drainage design for Phase 3 of the South Hampton Subdivision in College Station, Texas, was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners hereof, with the exception that storm water runoff detention is not being required for this project since it was detennined during the development of Phase l of the subdivision that the site discharges directly into the TxDOT storm drainage system , which discharges into a tributary of Alum Creek . This tributary is a part of the Alum Creek primary system, which is a part of the Lick Creek drainage basin. Nantucket Lake serves as a detention facility for the Alum Creek drainage basin, and with the South Hampton runoff discharging into this primary system downstream of the lake, the South Hampton peak runoff will have already passed before the peak discharge at Alum Creek, therefore resulting in no increase in the peak runoff in Alum Creek. TABLE OF CONTENTS SOUTH HAMPTON SUBDIVISION -PHASE 3 Revised July 2004 CERTIFICATION .................................................................................................................................................................. 1 TABLE OF CONTENTS ........................................................................................................................................................ 2 LIST OF TABLES .................................................................................................................................................................. 2 INTRODUCTION ................................................................................................................................................................... 3 GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 3 FLOOD HAZARD INFORMATION .................................................................................................................................... 3 DEVELOPMENT DRAINAGE P ATTERNS ....................................................................................................................... 3 DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 3 STORM WATER RUNOFF DETERMINATION ............................................................................................................... 6 STORM SEWER DESIGN .................................................................................................................................................... 6 STORM WATER DETENTION ........................................................................................................................................... 7 CONCLUSIONS ..................................................................................................................................................................... 7 APPENDIX A .......................................................................................................................................................................... 8 Time of Concentratio1t Data & Calculations (Revised) APPENDIX B ........................................................................................................................................................................ 12 Storm Inlet Design Data & Calculatio1ts (Revised) APPENDIX C ........................................................................................................................................................................ 15 Storm Pipe Design Data & Calculations (Revised) EXHIBIT A ............................................................................................................................................................................ 22 Post-Development Drainage Area Map (Revised) LIST OFT ABLES TABLE 1 -Rainfall Intensity & Runoff Data .................................................................................................... 5 TABLE 2 -Time of Concentration (tc) Equations ............................................................................................. 5 TABLE 3 -Post-Development Drainage Data -Revised ........ : .......................................................................... 6 DRAIN AGE REPORT SOUTH HAMPTON SUBDIVISION -PHASE 3 R evis ed July 2004 INTRODUCTION The purpose of this revised repoti is to provide the hydrological effects of the construction of Phase 3 of the South Hampton Subdivision , and to show that the sto nn water runoff wil l be controlled in suc h a manner so as to h ave minimal offsite or downstream impact . GENERAL LOCATION AND DESCRIPTION The project is located on a 4 acre tract loc ated in College Station, Texas . The site is wooded with areas of open land with grass. The existing ground elevations range from elevation 261 to elevation 273. The general location of the project site is shown on the vicinity map in Exhibit A. FLOOD HAZARD INFORMATION The project site is located in the Alum Creek Drainage Basin, which is a part of the Lick Creek Drainage Basin. No portion of the site is located in a Special Flood Hazard Area according to the Flood Insurance Rate Map (FIRM) prepared by the Federal Emergency Management Agency for Brazos County, Texas and incorporated areas dated Febmary 9 , 2000, panel number 48041C0205-D . DEVELOPMENT DRAINAGE PATTERNS Prior to development , storm water runoff from the site generally flows in a notiherly direction. A majority of the runoff flows into an existing concrete flum e and then into the existing storm system, which ties into the stom1 drainage system in the State Highway 6 right-of-way. A small portion of the runoff flows in a northwesterl y direction where it enters th e Nantucket Drive right-of-way. After development, these flow patterns will typically remain the same, however, the water captured by the existing flume wi ll be diverted through the proposed stom1 system, which ties into an e.,'l;isting storm drain inlet before discharging into th e storm drainage system . This system ultimately discharges into Alum Creek . The post-development drainage area boundaries are shown on Ex hibit A. DRAINAGE DESIGN CRITERIA The design parameters for the stom1 sewer are as follows: • The Rational Method is utili zed to determin e pea k stom1 water run off rate s for the storm sewe r desi g n . • Desi gn Stonn Frequency Storm sewe r sys tem • Run off Coe ffi c ient s Single Family R es id enti a l Undeveloped I 0 a nd I 00-year sto rm eve nt s c = 0.50 c = 0.30 • Rain fa ll Int e ns it y equati o ns a nd va lu es for Bra zos Co unt y ca n be found in Ta bl e I. • Time of Concentration, tc -Calculations are b ased on the method found in the TR-55 publication . Refer to Table 2 for the equations and Appendix A for calculations. The runoff flow paths used for calcu lating the times of concentration are shown in Ex hibit A. For smaller drainage areas , a minimum tc of 10 minutes is used to detennine th e rainfall intensity values. TABLE 1 -Rainfall Intensity & Runoff Data Rainfall Intensity Values (in/hr) Storm Event Is '10 bs lso 1100 Brazos County: tc = 10 min 7.693 8.635 9.861 11.148 11 .639 I = b I (tc+d)e I = Rainfall Intens ity (in/hr) tc = U(V*60) le = Time of concentrat io n (min) L = Length (ft) V = Vel ocity (ft/sec) 5 }::'.ea r storm 10 }::'.ear storm 25 }::'.ear storm 50 }::'.ear storm 100 }::'.ear storm b= 76 b= 80 b= 89 b= 98 b= 96 d= 8 .5 d= 8 .5 d = 8 .5 d = 8 .5 d= 8 .0 e= 0 .785 e = 0 .76 3 e = 0 .754 e= 0.745 e= 0.730 (Data taken from State Department of Highwa}::'.s and Public Transportation H}::'.drau lic Manual, page 2-16) TABLE 2 -Time of Concentration (tc) Equation s Th e tim e of concentration was d etermined using methods found in TR-55, "Urban Hydrology for Small Watersh eds." The equations are as follows : Time of Concentration: For Sheet Flow: Tc= T1{sheet n ow)+ T1{concentrated sheet n ow) where: T 1 =Travel Time, minute s 0.007 (n L)°-8 (Pz)o.s s0.4 where: T 1 = travel time , hours n =Mannin g's roughness coeffic ie nt L = flow length , feet P2 = 2-year, 24-hour ra in fall = 4 .5" s = land s lope, ft /ft For S ha llow Concentrated Flow: T 1 =LI (60 *V) R e fe r to Appendi x A for ca lc ul atio ns. where : T 1 =travel time , minute s V =Velocity, fps (See Fi g 3-1, App. E) L = flo w le ngth , feet STORM WATER RUNOFF DET E RMINATION The peak runoff valu es were determined in accord ance with the crit eria presented in th e previous sectio n fo r the 5 , l 0 , 25, 50, and 100-year storm events . The runoff co e ffic ie nts for post-development ca lcul at ions are based on the fut ure d evelop m e nt of this tract , a nd th e peak runo ff va lu es d etermin ed for the post-deve lopment condition a re shown in Tab le 3 . TABLE 3 -Post-Development Drainage Data -R evised Are a t c 5 year storm 10 year storm 25 year storm 50 year storm 100 yea r storm Area# c Is O s 110 010 l2s 0 2s lso O so 1100 0 100 (acres ) (min) (in/hr) (cfs) (in /hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) (in /hr) (cfs) 1 3.65 0 .50 13.4 6 .739 12 .30 7 .592 13.85 8 .684 15.85 9.831 17 .94 10 .258 18 .72 2 1.14 0 .50 10.8 7.441 4.24 8.360 4.77 9 .552 5.44 10.802 6 .1 6 11 .276 6.43 3 0 .58 0 .50 10 7 .693 2.2 3 8.635 2.50 9 .86 1 2 .86 11.148 3 .23 11 .639 3.38 ----- 4 0.52 0.50 10 7 .693 2 .00 8.635 2.24 9 .86 1 2 .56 11.148 2 .90 11 .639 3 .03 5 0.41 0.50 10 7.693 1.58 8 .635 1.77 9 .86 1 2 .02 11 .148 2.29 11 .639 2 .39 6A 3 .35 0.50 27 .0 4 .612 7.73 5 .251 8.80 6 .033 10 .10 6.860 11.49 7.163 12 .00 68 0 .26 0.50 10 7.693 1.00 8 .635 1.12 9.86 1 1.28 11 .148 1.45 11 .639 1.51 The post-development drainage areas are shown on Exhibit A. Even though th e runoff coefficient for the d evelop ed conditions increases the runo ff, the stom1 sewer s ystem conveys the runoff directly to a tributary of Alum Creek. STORM SEWER DESIGN The stonn sewer pip ing for this project h as b een selected to be Reinforced Concre te Pip e (RCP) m eeting the requ~rements of ASTM C-76, Class III p ipe . T h e curb inlets wi ll be cast-in-place co ncrete. Appendix B presents a summary of the storm sewer inlet desi gn parameters and calculations . T h e inlets were d esigned b ased on a 10 -year desi g n storn1 . As per College Station g uid e lin es, the capacities of inle ts in sump were reduced by l 0 % to allow for clogging. In le ts were located to maintain a g utter flow d epth of 5" or less, w hich will pre ve nt th e spread of water from reaching th e crown of the road for the 10-year stom1 event. Refer to Appendix B fo r a summary of the g utter flow depths at various locations. The runoff intercepted by the proposed storm sewer inlets was calc ul ated using the following equations . The depth of flow in the g ut te r was det e rmined by us ing the Strai g ht C rown Flow equation . T he flows intercepted by In lets 1 & 2 were calcul ated by using th e Capacity ofln lets On Grade equat ion . These equations and th e resultin g data a r e summari zed in App e ndix B . There a r e no proposed inlets in s ump for th is ph ase of th e d eve lopme nt. T h e are a b e tw e en the right-of-wa y and the curb line of the s tree ts w ill be filled as nece s sary to provid e a minimum of 6" of fre e board above the c urb lin e . Thi s w ill e nsure th a t th e runoff from th e 100-year storn1 ev e nt w ill re ma in w ith in th e s tr ee t ri g ht-of- w ay. A pp e ndi x C prese nt s a s ummary o r th e s torm sewe r p ipe d es ig n param e te rs a nd ca lc u lati o ns. A ll pip es a re 18" in di a m e te r or lar ge r. T h e pip es for th e s to r m se we r sys te m w e re d es ig n ed ba sed o n th e 10 -yea r s torm event ; ho wev e r, a ll w ill a lso pa ss th e I 00-ycar s to rm event w ithout a n y he a dw a te r . As re q uire d b y C o ll ege S ta tion , th e ve loc it y o r !l ow in th e s to rm s e we r p ipe sys te m is no t lowe r t han 2.5 ree l pe r se co nd , and it docs no t ex ce e d 15 ree l pe r seco nd . As th e cl ;1ta s how s, eve n durin g low ll o\\· c o ncliti o n s, th e \Cloc it y in the (l pip es will exceed 2.5 feet pe r second and prevent sed im e nt build-up in the pip es . Th e m ax imum flow in the storm sewer pip e system wil l occ ur in Pip es lA & lB. App end ix C conta in s a summary of the Manning pip e calc ul ati ons fo r th e storm sewer system for the I 0 and 100-year eve nt s. The maximum ve lo city for the pipe system w ill be 9.8 feet pe r seco nd and wi ll occur in Pipes lA & 1 B . The storm sewer system frolll Cranb erry Drive to Windrift Cov e will be located in a 15' public drainage easement. The storm sewer pipe system passes th e 100-year storm event runoff, therefore, 110 overland flow is proposed for the drainage easement. Th e headwater for Pip e No. 3 is elevation 263.43 for the 100-year stor/ll event. The propose d top oft!t e street is elevation 264.50, as is th e adjacent top of slope of the e..x:isting drainage chmwel. Th erefore, the runoff in th e e..-ds ting channel upstream of Cranberry Drive will be contained within th e drainage easement. The storm sewer pipe system discharges into an existing storm drain inlet. This inlet is a 10' inlet in a sump, and the gutter depth at this inlet is 5.28"for the JO-year sto rm event, and 5.88"for the 100-year storm event. The existing 24" pipe and h ea dwall and th e co ncrete flume, which collect the runoff from an e..x:i stin g drainage ditch and discharge into the e..x:isting storm inlet, will be removed and replaced with the proposed storm sewer piping. The existing ditch. will be filled to drain as shown on th e construction drawin gs. STORM WATER DETENTION The storm water runoff detention is not bei ng required for this project since it was determi ned during the development of Phase l of the su bdi visio n th at the site discharges direct ly into the TxDOT storm drainage system, which dis charges into a tributary of A lum Creek . This tributary is a part of the Alum C reek primary system, which is a part of th e Lick Creek drainage basin. Nantucket Lake serv es as a detention facility for the Alum Creek drainage basin, and with the South Hampton runoff discharging into thi s primary system downstream of the lake, the South Hampto n peak runoff wi ll h ave a lready pass ed before the peak discharge at Alum C reek, therefore res ulting in no increase in the peak runoff in Alum Creek. CONCLUSIONS The construction of this project will increase th e storm water runoff from this si te; ho wever, it should not have a significant impact on the s u1Totmdin g property. No flood damage to downstream or adjacent landow ners is ex pected as a res ult of this d eve lop m ent. APPENDIX A Time of Concentration Data & Calculations (Revised) Time of Concentration Calculations Refer to Exhibit A for flow paths used for calculations. Drainage Area #1: Sheet Flow: Flow length = 125' = L Slope= 3 .7% n = 0.15, short grass , prairie P 2 = 4 .5" ti=0 .007(0 .15*125)0 8 (4.5)05 (0 .037)04 ti = 0.129 hours= 7.7 minutes Shallow Concentrated Flow: Flow length = 535' = L Slope= 2.1% Flume Flow: Drainage Area #2: Sheet Flow: For unpaved surface at 2.1 %, Velocity (V) = 2 .3 fps (see Fig. 3-1) ~ ti= 535' I (60 *2.3) = 3.9 minutes Flow length= 355' = L Slope= 2 .7% For paved surface at 2 . 7%, Velocity (V) = 3 .3 fps (see Fig. 3-1) ti= 355' I (60*3.3) = 1.8 minutes Tc= 7.7 + 3 .9 + 1.8 = 13.4 minutes Flow length = 125' = L Slope= 3.1 % n = 0.15 , short grass, prairie P2 = 4.5" ti= 0 .007 (0.15 * 125)08 (4.5)0·5 (0 .031)04 ti = 0.138 hours = 8 .3 minutes Shallow Concentrated Flow: Flow length = 195' = L Slope = 1.8 % Fluine F lo w: For unpaved surface at 1.8 %, Velocity (V) = 2.15 fps (see Fig . 3-1) ti = 195 ' I (60 *2 . l 5) = 1.5 minute s Flow len gth= 200' = L Slope = 2.7 % For paved s urface at 2.7%, Veloc it y (V) = 3.3 fp s (see Fig. 3-1) ti= 200' I (60*3 .3) = 1.0 minutes Tc= 8.3 + 1.5 + 1.0 = 10.8 minutes Time of Concentration Calculations, continued (R evised July 2 004) R ef er to Exhibit A fo r flow p at hs us ed for ca lcula ti on s . Dra inage A re a #6A : Sh ee t Flo w: Pa vement Flow: F low le ngth = 2 15' = L S lope = 3 .0 % n = 0.24 , den se grass P2 = 4 .5" t( = 0.00 7 (0 .24 * 2 15)0 8 (4 .5)05 (0 .0 3)0 4 t1 = 0 .3 15 ho urs = 18.9 min utes F lo w len gth= 6 8 ' = L S lope = 1.23 % For paved s urface a t 1.23 %, V eloc ity (V) = 2 .2 fp s (see Fi g. 3-1) t1 = 6 8' I (60 *2 .2) = 0.5 minutes Si mi larl y: L = 23 7 ', S = 2%, V = 2 .85 fps , t1 = 1.4 minutes L = 2 17', S = 3%, V = 3 .6 fp s, t1 = 1.0 m inu tes L = 50 3 ', S = 6%, V = 1.6 fps , t1 = 5 .2 min utes Slope = 2 .7% T c= 18 .9 + 0 .5 + 1.4 + 1.0 + 5 .2 = 27.0 minutes +-' <+--+-' <+- GJ a. 0 r- "' GJ "' '-::::s 0 u '-GJ .., ., 3: 3-2 .50 .20 - .10 .06 .04 .02 - .01 - .005 ' 1 j I ·-· j I ) I . , j , ). 0 ::..q, ),_bl ~ -q, ::::,~ c/1 J I j I I j I 2 . . f J ' ' 4 I J I J ) I .. I 6 ' I 'j ' I Av e rage velo c i t y, ft/s e c . , . ' I I I , I I 10 , . . , I Fi1eu~ :J -l.-Avr raicr ve loc itie > fo r estim atinic trn vrl t imr for s h allo w con c rnt raled Oow . (2 10-V l -TR -55. Se co nd Ed., Ju ne !98G) I 20 ~· ' APPENDIXB Storm Inlet Design Data & Calculations (R e vis ed) 12 South Hampton -Phase 3 Depth of Flow in Street Gutter -Revised July 2004 10 -year storm 100-year storm Gutter A c Location (acres) -- - ------ E 1 0 .52 0 .50 ·--------- E2 0 .58 0 .50 ----------- -.. ------------ F1 1.1 0 0 .50 -- ------ F2 0.41 0.5 0 ------- H1 3 .35 0 .50 H2 0 .26 0 .50 Tra nsverse (Cro wn) slope (tuft) for 27' & 39' streets = 0 .0 30 0 Slope (tuft) ----- 0 .0 102 ------ 0.0 160 ------ 0.0100 0 .01 00 0 .0060 0 .00 60 0 10 Y 10-actual 0 100 (cfs) (ft) (in) (cfs) --- 2.25 0 .237 2.84 3 03 ----------- 2 .50 0 .227 2.72 3.38 -.. ---· --- ------- 4 .75 0 .315 3.78 6 .40 -------· --- 1.77 0 .217 2 .61 2.39 ------------ -- 8 .80 0.436 1.12 0 .20 2 --------- 5.24 2 .4 2 (6 " max. for sta nda rd c urb ) 12 .00 1.51 Straight Crown Flow (Solved to find actual depth of flow in gutter, y): Q = 0.56 * (z/n) * S 112 * y8 '3 ¢ y ={QI [0 .56 * (z/n) * S 112 ]}318 n =Rough ness Co effi cient = 0 .018 S = Stree UGutte r Slope {tuft) y = De pth of flow at inl et {ft ) z = Recip rocal of c rown slope : for 27' & 39' s tree ts = 33 Y100 (ft) (i n) 0.265 3.18 --- 0.253 3.04 - 0 .3 52 4.2 2 --- 0.2 43 2 .92 --- ---------- 0.490 5.88 ---- 0 .225 2.71 South Hampton Phase 3 Inlet Length Calculations -Revised July 2004 Inlets In Sump 10 year storm Inlet# L ength Flow from A c a,. Oc:arryover Orot .. QToti1l+10% Y10.actu• Exis ting Inlet# I 2 Area# (acres) (cfs) (cfs) I from Inlet# (cfs) (cfs) (ft) 10' 6A 3.35 0 .50 8 .80 H · 8.80 9.67 0.334 . 68 0 .26 0 .50 1.12 1.12 1.23 0.155 Inlets On Grad e 1 O year storm Length Fl ow ftom y ,. O perfoot Oup-c1ti Obrp .. , Oc:aptured Curry over Area# (ft) I (in) (ft) (cfs) (cfs) (cfs) (cfs) 5' 5 0 .217 -I· 2 .61 0 .52 2.59 -0 .82 1.77 ·---10' 3+4 0 .315 3 .78 0 .61 6 .09 -1 .34 4.75 Transverse (Crown) slope (ft/ft) for 27' & 39' streets= 0 .030 z = Rec iprocal of crown slope for 27' & 39' stree ts = 33 Strai ght Crown Flow (Solved to find actual depth of flow, yl : a= 0.56 • (z /n ) • s "' • y"' ~ y =(QI [0 .56 • (z/n) • s "'n "' n =Roughness Coeffic ient= 0 .018 S = StreeVGutter Slope (ft/ft) y = Depth of flow at inlet (ft) Capacity of Inlets on grade: O c = 0.7 • (1/(H , - H2)] • [H,512 -H2 512 ] Oc = Fl ow capa c it y of in le t (c fs) H, =a+ y H2 =a =gutter depression (2" Standard; 4" Recessed) y = Depth of flow in approach gutter (ft) j from ln l•t f I I I (In) I 4 .01 I 1.85 Ot.yp-tot• (cfs) 0.00 0.00 - 100 year storm L10-Req'd L10 . .ctu.i a, .. Ounyo.,., 0 101 .. Orot.,..10% Y100 (ft) (ft) (cf s) (c f s) I from Inlet# (cfs) (cfs) (ft) I (In) 8.17 10 12 .00 I 12 .00 13.20 0 .626 17.51 1.51 I 1.51 1.66 ·using y,._. r. 0 .583' 100 year storm OcepMotl 0 10-Tot .i Y100 a,.,,_, Oup.e1ty Obrp•• Oc.,tvrM Ourryover a ... 1 ,.to1a1 Ou,1-to11 0 100.Tot.i s Lac:tu.i (cfs) (cfs) (ft) I (I n ) (ft) (cfs) (cfs) (cf s) (cfs) I from ln l•t # (cfs) (cfs) (cfs) (ft/ft) (ft) 1.77 1.77 ~.2 .92 0 .54 2.7 1 -0 .32 2.39 I 0 .00 2.39 2.39 0 .0100 5 4.75 I --- 4.75 4 .22 0.64 6.45 -0 .05 6 .40 0 .00 6.40 6.40 0 .0 100 10 APPENDIXC Storm Pipe Design Data & Calculations (R evised) I S South Hampton Subdivision -Phase 3 P . C I I f R d J I 2004 1pe a cu a ions -ev1se U'Y In let O utlet Pipe# S ize L en gth S l ope Invert Elev Invert El ev (in) (ft) (%) (ft) (ft) 1A 27 50.9 1.40 255.88 255 .17 -- 18 27 232 .6 1.40 259.24 255.98 -- 2 27 38.5 1.20 259 .80 259.34 --~ 3 27 6.0 1.00 260 .26 260 .20 *Actual Flow (cfs) - - - - 1 O year s t o rm 100 year sto rm Design Flow V 10 Travel Time, t110 *Actual Flow De sign Fl ow V 100 % Full % Full (cf s) (f p s ) (sec ) (mi n ) (cfs) (cfs ) (fps) 25.14 9.4 63.9 5 0 .09 -33.99 9.8 81.9 25.14 9 .4 63.9 25 0.41 -33 .99 9 .8 81.9 23.37 8 .7 64 .1 4 0 .07 -31.60 9 .0 82 .2 18 .62 7 .7 58.6 1 0.01 -25.15 8 .2 72.4 *These valu es reflect the actual flow for the 18" & 24" pip es . The d es ign flow for the se pipe s ize s refl ect s a 2 5% redu c ti o n in pipe area . Pipe 3 Culvert Calculator Data : Tailwater = 2 .2 5 ft Top of Road = 264 .50 Headwater, 10-year = 262.99 Headwater, 100-year = 263.43 Travel Time, tnoo (sec) (m in) 5 0.09 24 0.40 4 0 .07 1 0.01 South Hampton Subdivision Phase 3 -Pipe Flow Diagram Revised July 2004 0 10 (cfs) Drainage Areas 1 +2 18.62 I J, Pipe 3 18 .62 J, Inlet 2 4 .75 J, Pipe 2 23 .37 J, Inlet 1 1.77 J, Pipe 1 B 25 .14 J, Junction Box 1 J, Pipe 1A 25 .14 J, Existi ng Inl e t 9 .92 II Into Existi ng Pipe 35 .06 II 0 100 (cfs) Drai nage A reas 1+2 J 25 .15 J, Pipe 3 25 .15 J, Inlet 2 6.45 J, Pipe 2 3 1.60 J, Inlet 1 2 .39 J, Pip e 1 B 33 .99 J, Ju ncti o n Bo x 1 J, Pipe 1A 33 .99 J, Exi sting Inlet 13 .5 1 Into Exis ting Pipe 47 .50 Pipe lA -10 Year Stor m Manning Pipe Calcu l ator Giv en Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hy draulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 27.0000 in 25.1400 cfs 0.0140 ft/ft 0.014 0 17.2655 in 3.9761 ft2 2.6848 ft2 50.0438 in 84.8230 in 9.3638 fps 7.7 2 55 in 63.9464 % 34.0 2 71 cfs 8.5580 fps Pipe lA -100 Year Storm Manning Pipe Calculator Given Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Pe rime t er ............... . Perimet er ...................... . Veloc ity ....................... . Hy draulic Radius ............... . Percent Fu l l ................... . Full fl ow Fl o wra t e ............. . Full fl ow v eloci t y ............. . Circular Depth of Flow 27.0000 in 33.9900 cfs 0. 0140 ft/ft 0 . 0140 22.1032 in 3.9761 ft2 3 .4841 ft 2 61.0 67 3 in 84.8 2 30 in 9.7558 fp s 8 .21 57 in 81 .8636 % 3 4.0 271 cf s 8.55 80 f ps So u th Ha mpt o n S ubdi v i sion -Ph ase 3 -Revised July 2 0 04 College S atio n , Texas Pipe 1 8 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Dep th .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Perc e nt Full ................... . F ull flow Flowrate ............. . Full flow velocity ............. . Circular Dept h of Flow 27.0000 in 25. 1400 cfs 0. 0140 ft/ft 0. 0140 17.2655 in 3.9761 ft2 2.6848 ft2 50 .0438 in 84.8 230 in 9.3638 fps 7.7255 in 63.9464 % 34.0271 cfs 8.5580 fps P ipe 18 -100 Year Storm Manning Pipe Calculator Given Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................ · · · · Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Ful l flow velocity ............. . Circular Depth o f Flow 2 7.0 000 in 33 .990 0 cfs 0. 0140 ft/ft 0. 0140 22.1032 in 3.97 6 1 ft2 3.4841 ft2 61.0673 in 84.8230 in 9.7558 fps 8.2157 in 81.8636 % 34.0271 cfs 8.5580 fps South Ha mpt o n Su b d i vis ion -Ph ase 3 -Revi sed July 20 04 College Station, Texas Pipe 2 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ............................ . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hy draulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 27.0000 in 23.3700 cfs 0 .0120 ft/ft 0. 0140 17.3141 in 3.9761 ft2 2.6935 ft2 50.1450 in 84.8230 in 8.6763 fps 7.7350 in 64.1262 % 31.5030 cfs 7.9231 fps Pipe 2 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimete r ...................... . Velocity ....................... . Hy draulic Radius ............... . Percent Full ................... . Full fl o w Flowrate ............. . Full flo w v elocit y ............. . Circular Depth of Flow 27.0000 in 31.6000 cfs 0.0120 ft/ft 0. 0140 22.2066 in 3.9761 ft2 3.4990 ft2 61. 3366 in 84 .8230 in 9 . 0313 fps 8.2145 in 82.2465 % 31 .5030 cfs 7.9 2 31 fps South Ham pton Subdi v isio n -Ph ase 3 -Revised July 2004 College Station, Texas Pipe 3 -10 Year Storm Manning Pipe Calculator Gi ven Input Data: Shape .......................... . Solving for .................... . Diame te r ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Compute d Results: Depth .......................... . Area ........................... ·. Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow v elocity ............. . Circular Depth of Flow 27.0000 in 18 .6200 cfs 0 .0100 ft/ft 0 . 0140 15.8169 in 3.9761 ft2 2.4203 ft2 47 .0684 in 84 .8230 in 7.6 932 fps 7.40 47 in 58.5812 % 28.7581 cfs 7.2328 fps Pipe 3 -100 Year Storm Manning Pipe Calculator Given Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Compu ted Results: Depth .......................... . Area ........................... . Wette d Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Veloci t y ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full f l ow velocity ............. . Circular Depth of Flow 27 .0000 i n 25.1500 cfs 0 .0100 ft/ft 0. 0140 19.5576 in 3.9761 ft2 3.0845 ft2 54.9753 in 84.8230 in 8.1537 fps 8 .0794 in 72.4356 % 28 .7 581 cfs 7.2328 fps Sout h Hampt o n Subdi v i sion -Phas e 3 -Revi sed July 2 004 College Sta i o n , Texas Entered Data: Pipe 3 -10 Ye a r St o rm Cul v ert Calculato r Shape .......................... . Number of Barrels .............. . Solving for . . . . . . . . . . . . . .... . Chart Number . . . . . . . . . . . . .... . Scale Number ................... . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning's n .................... . Roadway Elevation .............. · . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results : Headwater ...................... . Slope .......................... . Velocity ....................... . Circular 1 Headwater 1 1 CONCRETE PIPE CUL VERT; NO BEVELED RING ENTRANCE SQUARE EDGE ENTRANCE WITH HEADWALL Off 18.6200 cfs 0 .0140 264.5000 ft 260.2600 ft 260.2000 ft 27.0000 in 6.0000 ft 0 .5000 2 .2500 ft 262.9862 ft Outlet Control 0 .0100 ft/ft 4 .6830 fps Pipe 3 -100 Year Storm Culv ert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning's n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter .................... . Length ......................... . Entrance Loss .................. . Tailwater ................ . Computed Results: Headwater ..................... . Slope .......................... . Velocity ....................... . Circular 1 Headwater 1 1 CO NCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE SQUARE EDGE ENTRAN CE WITH HEADWALL Off 25.1500 cfs 0.0140 264.5000 ft 260.2600 ft 260.2000 ft 27.0000 in 6.0000 ft 0.5 000 2.2500 ft 263.4283 ft Outlet Co nt rol 0 .0 100 ft/ft 6.3253 fps South Hampton Subdi v i sion -Phase 3 -Revised July 2004 Co llege Stat io n , Texas EXHIBIT A Post-Development Drainage Area Map (Revised) 22 Drainage Report for South Hampton Subdivision Phase 3 College Station, Texas May 2004 Developer: Nantucket, Ltd. 1101 University Drive East, Suite 108 College Station, Texas 77840 Prepared By: TEXCON General Contractors 1 707 Graham Road College Station , Texas 77845 (9 7 9) 764-7743 CERTIFICATION I , Joseph P. Schultz, Licensed Professional Engineer No . 65889, State of Texas , cetiify that this re port for the drainage design for Phase 3 of the South Hampton Subdivision in College Station, Texas, was prepared by me in accordance with the provisions of the City of College Station Drainage Polic y a nd Design Standards for the owners hereof, with the exception that stom1 water runoff detention is not being required for this project since it was determined during the development of Phase 1 of th e subdivision that the site discharges directly into the TxDOT storm drainage system, which discharg es into a tributary of Alum Creek. This tributary is a part of the Alum Creek primary system , which is a part of the Lick Creek drainage basin. Nantucket Lake serves as a detention facility for the Alum Creek drainage basin, and with the South Hampton runoff discharging into this primary system downstream of the lake, the South Hampton peak runoff will have already passed before the peak discharge at Alum Creek, therefore resulting in no increase in the peak runoff in Alum Creek . ... :"~,'1:\..~"''"" ,:-\£. OF 1;_\\ , -<.. \>-• • • • • • • • "-+-'· ,, ••• ··-\J" ' #'<'.::> •• • *"· "i'."'t , 1t • ' A ~ . • * '" Ill! * . • I'.. ~..................... • * ... I. JOSEPH .............. ~ ::.A ............... ~:. SCHULTZ ~ l~ \ 6sa89 ...... l;gJ ~. 0-<' ·~ <S: Q. ,•' ~ 11 4 ~".CJ I STE~~····'!'.,# ,,ss, .......... ~0J ,,~ 5'-0. 0 Lt TABLE OF CONTENTS SOUTH HAMPTON SUBDIVISION -PHASE 3 CERTIFICATION .................................................................................................................................................................. 1 TABLE OF CONTENTS ........................................................................................................................................................ 2 LIST OF TABLES .................................................................................................................................................................. 2 INTRODUCTION ................................................................................................................................................................... 3 GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 3 FLOOD HAZARD INFORMATION .................................................................................................................................... 3 DEVELOPMENT DRAINAGE P ATTERNS ................................................ ; ...................................................................... 3 DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 3 STORM WATER RUNOFF DETERMINATION ............................................................................................................... 5 STORM SEWER DESIGN .................................................................................................................................................... 5 STORM DETENTION .........................................................................................................................•................................. 6 CONCLUSIONS ..................................................................................................................................................................... 6 APPENDIX A .......................................................................................................................................................................... 7 Time of Concentration Data & Calculations APPENDIX B ........................................................................................................................................................................ 11 Storm Inlet Design Data & Calculations APPENDIX C ........................................................................................................................................................................ 14 Storm Pipe & Channel Design Data & Calculations EXHIBIT A ............................................................................................................................................................................ 21 Post-Development Drainage Area Map LIST OF TABLES TABLE 1 -Rainfall Intensity & Runoff Data ................................................................................................... .4 TABLE 2 -Time of Concentration (tc) Equations ............................................................................................ .4 TABLE 3 -Post-Development Drainage Data .................................................................................................... 5 DRAINAGE REPORT SOUTH HAMPTON SUBDIVISION -PHASE 3 INTRODUCTION The purpos e of this report is to provide the hydrological effects of th e construction of Ph ase 3 of the South Hampton Subdivision, and to show that the storm water runoff will be controlled in such a manner so as to have minimal offsite or downstream impact. GENERAL LOCATION AND DESCRIPTION The project is located on a 4 acre tract located in College Station , Texas. The site is wooded with areas of open land with grass . The existing ground elevations range from elevation 261 to elevation 273. The general location of the project site is shown on the vicinity map in Exhib it A . FLOOD HAZARD INFORMATION The project site is located in the Alum Creek Drainage Basin, which is a part of the Lick C reek Drainage Basin. No portion of the site is located in a Special Flood Hazard Area according to the Flood Insurance Rate Map (FIRM) prepared by the Federal Emergency Management Agency for Brazos County, Texas and incorporated areas dated February 9, 2000, panel number 48041C0205-D . DEVELOPMENT DRAINAGE PATTERNS Prior to development, storm water runoff from the site generally flows in a northerly direction. A majority of the runoff flows into an existing concrete flume and then into the existing storm system, which ties into the storm drainage system in the State Highway 6 right-of-way. A small portion of the runoff flows in a northwesterly direction where it enters the Nantucket Drive right-of-way. After development, these flow patterns will typically remain the same, however, the water captured by the existing flume will be diverted through the proposed storm system, which ties into a new concrete flume before discharging into the existing flume and storm drainage system. This system ultimately discharges into Alum Creek. The post- development drainage area boundaries are shown on Exhibit A . DRAINAGE DESIGN CRITERIA The desi gn param eters for the storm sewer are as fo llow s: • Th e Rational Method is utili zed to d e termin e peak stonn water runoff rates for the storm sewer design . • Des ig n Storm Fre qu e ncy Storm sewer syste m • Run orrcoe rf:ici e nts Si ng le Fami ly Res ide ntial Und eve loped 10 a nd I 00-year s torm eve nt s c = 0.50 c = 0.30 • Rainra ll Int e ns it y equation s a nd va lu es ror Bra zos Co unt y ca n be ro und in Tab le I . • Tim e or Co nce ntrati o n, le -C al cu lat io ns a rc based O il th e mclho cl ro un d in th e TR-55 publi ca tion. Re re r to T a bl e 2 lo r th e equati o ns an d App e ndi x A ro r ca lc ul a ti o ns . The ·' runoff flow paths used for calculating the times of concentration are shown in Exhibit A. For smaller drainage areas , a minimum tc of l 0 minute s is used to det e nnine th e rain fa ll intensity values . TABLE 1 -Rainfall Intensity & Runoff Data Rainfall Intensity Values (in/hr) Storm Event Is 110 l2s lso 1100 Brazos County: le= 10 min 7.693 8.635 9.861 11.148 11 .639 I = b I (tc+d)e I = Rainfall Intensity (in/hr) tc = U(V*60) tc = Time of concentration (min) L = Length (ft) V = Velocity (ft/sec) 5 )!'.ear storm 10 )!'.ear storm 25 )!'.ear storm 50 )!'.ear storm 100 )!'.ear storm b= 76 b= 80 b= 89 b= 98 b = 96 d= 8 .5 d= 8.5 d= 8 .5 d= 8 .5 d= 8 .0 e= 0.785 e= 0 .763 e= 0 .754 e= 0 .745 e= 0 .730 (Data taken from State Department of Highwa)!'.s and Public Transportation H)!'.draulic Manual, page 2-16) TABLE 2 -Time of Concentration (tc) Equations Th e tim e of concentration was determined using methods found in TR -55 , "Urban Hy drology for Small Wat ersheds ." The equations are as follows : Time of Concentration: For S heet Flow: For S h a ll ow Co nce ntrated Fl ow: Re fer to A p p endi x A fo r ca l c ul ati o n s. Tc= Tt(sheet now)+ Tt(concentrated sheet now) where: T 1 =Travel Time , minutes w he re: T 1 =trave l time , hours n =M a n ning's rou ghness coefficient L = fl ow length , feet P2 = 2 -year, 24-h o u r rainfall = 4.5'' s = la n d s lope , ft/ft T 1 = L I (60 *V) w he re: T 1 =trave l time, minut es V =Ve locity , fp s (S ee Fig 3 -1. /\pp. E) L = n ow le ng th , feet STORM WATER RUN O FF D ETERMI NATION The peak runoff va l ues were determin ed in accordance w ith the criteria present ed in th e prev ious section for the 5, l 0, 25, 50 , a nd I 00-year s tom1 even ts . The runoff coefficients for post-deve lopment ca lcu lations are based on th e fut ure d eve lopm e nt of thi s tract , a nd the peak ru noff va lues dete rmined for th e post-dev e lopment condition are shown in Table 3. TABLE 3 -Post-Deve lo pm e n t D ra in age Data Area le 5 y ear s torm 1 O yea r s torm 25 ye ar sto rm 50 year s to rm 100 year sto rm Area# c Is O s 110 0 10 l2s 0 2s lso O so 1100 0100 (acres) (min) (i n /hr) (cfs) (in/h r) (cf s ) (i n/hr) (cfs ) (i n /hr) (cfs) (in/hr) (c fs) 1 3 .83 0 .50 13.4 6.739 12 .9 0 7 .592 14 .54 8 .684 16.63 9 .831 18 .83 10 .258 19.64 2 1.14 0.50 10.8 7.441 4 .2 4 8 .360 4 .77 9 .552 5.44 10 .8 02 6.16 11 .276 6 .43 3 0 .58 0 .50 10 7.693 2.23 8 .635 2.50 9 .861 2 .86 11.148 3.23 11.639 3 .38 4 0 .52 0 .50 10 7 .693 2 .00 8 .635 2 .24 9.86 1 2 .56 11 .148 2 .90 11 .639 3 .0 3 5 0.41 0 .50 10 7 .693 1.58 8 .635 1.77 9.86 1 2.02 11 .148 2.29 11 .639 2 .39 6 0 .73 0 .50 10 7 .693 2.81 8 .635 3 .15 9 .861 3 .60 11 .148 4.07 11 .639 4.25 The post-development drainage areas are s h own on Ex hibit A. Even though the runoff coefficient for the developed conditions increases the runoff, th e stom1 sewer system conveys the runoff directly to a tributary of Alum Creek. STO RM SEWE R D ES IGN The stom1 sewer piping for this project has been selected to be Reinforced Concrete Pipe (RCP) meeting the requirements of ASTM C-76, Class III pipe . The curb in lets will be cast-in-place concrete. Appendix B presents a summary of the storm sewer inlet design parameters and calculations. The inlets were designed based on a 10-year design storm . As per College Station guidelines, the capacities of inlets in sump were reduced by 10% to allow for clogging. Inlets were located to maintain a gutter flow d epth of 5" or less, which will prevent the spread of water from reaching the crown of the road for the 10-year storm event. Refer to Appendix B for a summary of the gutter flow depths a t various locations. The runoff intercepted by the proposed stom1 sewer inlets was calculated using the following equations . T he depth of flow in th e g utter was d eterm in e d by us ing th e Straight Crown Flow equ at io n . The flows inte rc e pte d by In le ts l & 2 were ca lcu la ted by using the C a pac it y of Inl e ts On Grade equ at ion . These equations a nd th e resulting data are sum m ari z ed in Appendix B. There are no inl e ts in s ump for this phase of t he d ev elopm e nt. Th e a rea b e tween th e right-of-wa y and th e c urb li ne of th e stree ts w ill b e filled as n e cessa r y to prov id e a minimum o f 6 " of freebo a rd a bove th e c urb lin e. T hi s will e ns ur e th a t the run o ff from th e I 00-ye ar s torm eve nt w ill re main w ith in t he s tr eet ri g ht-o f-w ay . A pp e ndi x C pr ese nt s a s ummary o f th e s to rm se w er p ip e d es ig n p a ram e te rs a nd ca lc ul a ti o ns. A ll pip es a re 18" in di a m e te r o r large r. Th e pi pes fo r th e s to rm sewe r sys te m we re d es ig n ed ba se d o n th e I O-yea r s to rm eve nt ; ho\\'evc r, a ll w ill a lso p ass th e 100-yea r s to rm eve nt w ith o ut a n y h ea d w at e r . As re quired by Co ll ege S ta ti o n , th e ve loc it y o f n ow in th e s to rm sewe r pip e sys te m is no t IO\\Cr than 2.5 lce t pe r seco nd, and it docs no t exceed 15 fe e t p e r seco nd . f\s th e data s ho\\s , e\"C ll duri ng IO\\ ll O\\" co ndi ti o n , th e ve loc it y in the pip es an d boxes w ill exceed 2.5 fee t pe r seco nd an d jH C\C 11t se dim e nt bui ld -up in th e pip es and box es. The maximum flow in the stonn sewer pipe system will occur in Pipe 1. Appendix C contains a summary of th e Manning pipe calculations for the stonn sewer system for the 10 and 100-year events . The maximum velocity for the pipe system will be 9 .0 feet per second and will occur in Pip e 2 . The storm sewer pipe system discharges into a drainage channel which will hav e a 5' concrete flume to preve nt erosion of th e flow lin e of the channel. The proposed channel is a "v" shaped channel with 4H: l V side s lopes. It w ill be constructed at a slope of 0.63%, and it will carry 7 cfs of flow before th e depth of the flow exceeds the concrete flume height. This is approximately 25% of th e 10-year stom1 event (29 cfs). The depth and velocity of flow in the channel for the 10 -ye ar storm event are 16 .9" and 3.7 fps, and th e depth and velocity of flow for the 100-year storm event are 18 .9" and 3.9 fps . To further prevent erosion of the channel, grass sod will be used to line the channel bank s to a minimum depth of 1.5 feet, which is greater than the 10-year storm flow depth. The channel will be constructed with a minimum depth of 2.5 feet to restrict the flow to the drainage easement. The proposed channel discharges into an existing drainage channel that also has a concrete flume . STORM DETENTION The storm water runoff detention is not being required for this project since it was determined during the development of Phase 1 of the subdivision that the site discharges directly into the TxDOT storm drainage system, which discharges into a tributary of Alum Creek. This tributary is a part of the Alum Creek primary system, which is a part of the Lick Creek drainage basin. Nantucket Lake serves as a detention facility for the Alum Creek drainage basin, and with the South Hampton runoff discharging into this primary system downstream of the lake, the South Hampton peak runoff will have already passed before the peak discharge at Alum Creek, therefore resulting in no increase in the peak runoff in Alum Creek. CONCLUSIONS The construction of this project will increase the storm water runoff from this site, however it should not have a significant impact on the surrounding property. No flood damage to downstream or adjacent landowne rs is ex pected as a result of this dev e lopm e nt. 7 APPENDIX A Time of Concentration Data & Calculations Time of Concentration Calculations Refer to Exhibit A for flow path us ed fo r calculations . Drainage Area #1: Shee t Flow: Flow len gth = 125 ' = L Slope = 3 .7% n = 0 . 15, s hort grass, prairi e P2 = 4 .5" ti = 0.007 (0 .15 * 125)08 (4 .5)05 (0.037)04 ti = 0 .129 hours= 7.7 minutes Shallow Concentrated Flow: Flow length = 535' = L Slope = 2 .1% Flume Flow: Drainage Area #2: Sheet Flow: For unpaved surface at 2.1%, Velocity (V) = 2.3 fps (see Fig. 3-1) ~ ti = 535' I (60*2 .3) = 3.9 minutes Flow len gth = 355' = L Slope = 2.7 % For pave d s urface at 2.7%, Velocity (V) = 3.3 fps (see Fig. 3-1) ti = 355 ' I (60*3 .3) = 1.8 minutes Tc = 7 .7 + 3.9 + 1.8 = 13.4 minutes Flow length = 125' = L Slope = 3 .1% n = 0 .15 , short grass, prairie P2 = 4 .5" ti = 0.007 (0 .15 * 125)°-8 ( 4 .5)0 ·5 (0.031 )0 .4 ti = 0 .13 8 hours= 8.3 minutes Shallow Concentrated Flo w: Flow length = 195 ' = L Slope = 1.8% Flulll e Flow : For unpaved s urfa ce at 1.8 %, Velocity (V) = 2 .15 fps (see Fi g. 3-1) t1 = 195 ' I (60*2.15) = 1.5 minute s Fl o w le ng th = 200' = L S lop e = 2 .7% For paved s urfa ce a t 2.7%, Ve locity (V) = 3.3 fp s (see 17ig . 3-1) t 1 = 200 ' I (60*3.3) = 1.0 minutes T c= 8.3 + 1.5 + 1.0 = 10 .8 minut es .... '+--.... '+- CV a. 0 ..-.,, CV .,, '- :J 0 u '- CV ..... .., :x 3-2 . 50 - .20 - .10 . 06 .04 - . 02 - .01 - .005 I 1 j ' I ' I I ' j 'I ' b q, l_ .... b1 ~ q, 'tr ~, ~~) I ' I I 2 ) ' 1 •. 1, I 4 J J .. ; J J I I 6 i I J ' ' Av e rage ve l ocity, ft/sec . . . I I ., ~ I I 10 . . . j I FiK"U~ :1 .t.-r\vcral(r veloc iti e!!I fl'' C:'\lima linl( l rJvcl time for ~hallow concenlr.iled now. (2 10 -V!-TR-55. Second Cd .. .June l 98G) I 20 .f -I .f APPENDIXB Storm Inlet Design Data & Calculations 11 South Hampton -Phase 3 Depth of Flow in Street Gutter Gutter A c Slope Location (acres) (ft/ft) ---------------- E1 0 .52 0 .50 0 .0102 ·- --------------·· ---·---·-- - E2 0 .58 0 .50 0 .0160 ------------------ --·----------------- F1 1 .10 0 .50 0.0100 F2 0.41 0 .50 0 .0100 ---------- 10-year storm 100-year storm Q10 Y10-actua l Q100 Y100 (cfs) (ft) (in) (cfs) (ft) -------------------·------- 2 .2 5 0 .237 2 .84 3 .03 0 .265 ·-----------------· -- 2 .50 0 .227 2.72 3 .38 0 .253 ------------------- ------------------------ 4 .75 0 .315 3.78 6.40 0 .352 --------- 1.77 0 .217 2.61 2 .3 9 0 .243 ------------- (6" max. for Transverse (Crown) slope {ft/ft} for 27' streets = 0.0300 · standard curb) Straight Crown Flow (Solved to find actual depth of flow in gutter, y): Q = 0.56 * (z/n) * S112 * y813 ¢ y ={QI [0 .56 * (z/n) * S112 ]}318 n =Roughness Coefficient= 0 .018 S = StreeUGutter Slope (ft/ft) y = Depth of flow at inlet (ft) z = Reciprocal of crown slope: for 27' streets = 33 (in) 3 .1 8 3 .04 4.22 2 .92 South Hampton Phase 3 I nl et Length C alculations Inlets On Grade Inl et# l e ngt h Flo w from Area# 1 5' 5 2 10' 3+4 Y10 (ft) I (In) 0.217 I 2.61 0 .315 3.78 1 o year storm Operfool Cup.elf) ab)'pUa ac.,tured O unyo.,., (ft) (cfs) (cfs) (cfs) (cfs) I 1rom Inlet# 0 .52 2.59 ·0.82 1.77 I -- 0 .6 1 6 .09 ·1 .34 4.75 I Transverse !Crown) slo pe !tvftl fo r 27' streets = 0 .030 z = Reciprocal of crown slope for 27' streets = 33 Straight Crown Fl ow (So lved to find ac tual depth of flow, y): a= 0 .56 • (z /n) • s '" · y"' ¢ y =(Qt [0.56 • (z/n) • s '"n"' n =Roughness Coefficient = 0 .018 S = StreeVGutter Slope (tvft) y = Depth of flow at in let (ft) Capacity of Inlets on grade: 0 0 = 0.7. [1 /(H , · H 2 )J '[H 1 512 • H 2 512 ] O c = Flow capac ity of inlet (cfs) H1 =a +y H2 = a =gu tter depression (2" Sta nda rd; 4" Re cessed ) y = Depth of flow in approach g utter (ft ) 100 year storm Oi.y,.-. 0c ...... 0 10 .fot.i Y100 a,_.,_t O c.,..::tty Qbyp•• <lc.,tured Oc.,.ryover Q byp-to!M Oe.,1-tou 0 100.Total s L.,tu., (cfs) (cfs) (els) (ft) I (In) (ft) (cf s) (cfs) (cfs) (cfs) j from Inlet# (cfs) (cfs) (cfs) (ft/ft) (ft) 0 .00 1.77 1.77 o.243 I 2 .92 0.54 2.71 -0 .32 2 .39 I 0.00 2.39 2.39 0.01 00 5 0 .00 4 .75 4 .75 o .352 I 4 .22 0.64 6.45 -0 .05 6.40 I 0.00 6.40 6.40 0.0100 10 APPENDIXC Storm Pipe & Channel Design Data & Calculations 14 South Hampton Subdivision -Phase 3 Pipe Calculations Inlet Outlet 1 O year storm 100 year storm Pip e# Siz e Length S l ope Invert Elev Invert Elev *Actual Flow Design Flow V10 %Full Travel Time, tT1o *Actual Flow Des ign Flow V100 %Full Tra vel T ime , tnoo (in ) (ft) (%) (ft) (ft) (cfs) (cfs) (fps) (sec) (min) (cfs) (cfs) (fps) (sec) (min) 1 30 12.0 0.75 259 .39 259 .30 -25 .83 7.4 66.6 2 0 .03 -34 .86 7.6 88 .4 2 0 .03 -- 2 27 36.6 1.20 260 .08 259 .64 -24 .06 8 .7 65.4 4 0 .07 -32 .4 7 9 .0 8 5 .0 4 0 .07 ---- 3 27 6.0 1.00 26 1.06 261 .00 -19 .31 7.8 60 .0 1 0 .01 -26 .07 8 .2 74 .6 1 0 .01 'The se va lues reflec t the actual flow fo r the 18" & 24" p ipes . The design flow for these pipe sizes reflects a 25% reduction in pipe area . South Hampton Subd iv ision Phase 3 -Pipe Flow Diagram 0 10 (cfs) Drainage Areas 1 +21 19 .31 J, Pipe 3 19 .31 J, Inlet 2 4 .75 J, Pip e 2 24.06 J, Inlet 1 1.77 J, Pipe 1 25 .83 J, Drainage Area 6 3 .15 i nto Propose d Drain age Cha nnel II 28 .98 II 0 100 (cfs) Dra inage Areas 1+2 26.07 J, P ipe 3 26.07 J, Inlet 2 6.4 0 J, Pi pe 2 32 .47 . J, Inlet 1 2.39 J, Pipe 1 34 .86 J, Drainage Area 6 4 .25 Into Proposed Drainage Cha nne l II 39 .11 Pipe 1 -10 Year Storm Manning Pipe Calculator Gi ven Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Compu ted Results: Depth .......................... . Area ......................... · ·· · Wetted Area .................... . Wetted Pe r imeter ............... . Perimeter ...................... . Velocity ....................... . Hy draulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 30 .0000 in 25.8300 cfs 0.007 5 ft/ft 0.014 0 19.9855 in 4 .9087 ft2 3.4736 ft2 57 .2883 in 94.2478 in 7 .4362 fps 8.731 2 i n 66.6184 % 32 .9846 cfs 6 .7196 fps Pipe 1 -100 Year Storm Manning Pipe Calculator Giv en Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Pe rimeter ............... . Peri meter ...................... . Velocity ....................... . Hy drauli c Radius ............... . Percent Full ................... . Full flo w Fl ow r a te ............. . Full flo w v el o cit y ............. . Sout h Ha mp t o n S u bdivisio n -Ph ase 3 Colleg e Stat i o n, Texas Circular Depth of Flow 30.0000 in 34.8600 cfs 0 .0075 ft/ft 0 . 0140 26.522 1 in 4.9087 ft2 4.591 5 ft2 73.4019 in 94 .2478 i n 7.59 23 fps 9.00 76 i n 88.4 071 % 3 2 .9846 cfs 6 .7 1 96 f p s Pipe 2 -10 Year S~or m Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Com puted Result s: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hy draul ic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 27.0000 i n 24.0600 cfs 0 .0120 ft /ft 0. 0140 17 .6693 in 3.9761 ft2 2.7572 ft2 50.8888 in 84 .8230 in 8 .72 63 fps 7.8020 in 65.4420 % 31.5030 cfs 7.9231 fps Pipe 2 -100 Year Storm Manning Pipe Calculator Given Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Ful 1 ................... . Full flow Flowrate ............. . Full flow velocity ............. . South Ha mp t o n S ubd i vjs i o n -Ph ase 3 Co l lege S t a ti o n , Te x as Circular Depth of Flow 27.0000 in 32.4700 cfs 0.0120 ft/ft 0 . 0140 22.9577 in 3.9761 ft2 3.6031 ft2 63.3687 in 84.8230 in 9. 0116 fps 8.1878 in 85.0284 % 31.5030 cfs 7 .9231 fps P i p e 3 -10 Year S~or m Mann i ng Pipe Calc u la tor Gi v en I nput Da t a: Shape .......................... . S olving fo r .................... . Di amete r ....................... . Flowrat e ....................... . Slope .......................... . Manning's n .................... . Comp u ted Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow v elocity ............. . Ci rc ular Depth o f Fl ow 2 7 .0000 i n 19 .3 1 00 cfs 0. 010 0 f t/ft 0.0 140 16 .1940 in 3.9761 ft 2 2.4898 ft2 47 .8360 in 84.8230 in 7 .7556 fps 7.4950 in 59 .9779 % 28 .7581 cfs 7 .2328 fps Pip e 3 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . We tted Area .................... . We tte d P erimeter ............... . Peri meter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocit y ............. . S o uth Ha mp t o n Subdi v i s i o n Col l ege S t at i o n, T exas P h a se 3 Circular Depth of Flow 27.0000 in 26.0700 cfs 0.0100 ft/ft 0 . 0140 20.1482 in 3 .9761 ft2 3 .1822 ft 2 5 6.3142 i n 8 4.8230 i n 8.1925 fps 8.1371 in 7 4 .6230 % 28.7581 cfs 7.2328 fps Dr ainage Channel -1 0 Ye ar S t orm Channel Calculato r Give n Input Data : Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Height ......................... . Bot tom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trape zoidal Depth of Flow 2 8 .9 8 00 cfs 0 .0 063 ft/f t 0 .0 25 0 30 .0000 in 0 .0000 in 0 .2 5 0 0 ft/ft (V/H) 0 .2 50 0 ft/ft (V/H) 16.8884 in 3 .6578 fps 134.1280 cfs 7 .92 27 ft2 139.2 653 in 8.19 2 1 in 135 .1072 in 25 .0000 ft2 247.3863 in 56 .2946 % Drainage Channel -100 Year Storm Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Height ......................... . Bot tom width ................... . Left slope ..................... . Right slope .................... . Comput e d Results: De pth .......................... . Ve loc i ty ....................... . Ful l Fl owra te .................. . F l ow area ...................... . Flow perimeter ................. . Hydrau li c r adi u s ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . So u t h Hampt o n S ubdivisio n -P h ase 3 Co]leg e St ati o n, T exas Trapezoidal Depth of Flow 39. llOO cfs 0.0063 ft/ft 0.0250 30.0000 in 0 .0000 in 0.2500 ft/ft (V/H) 0 .250 0 ft/ft (V/H) 18.897 7 i n 3.9425 fps 134. 1280 cfs 9 .9201 ft2 155.8346 in 9.1667 in 151 .1818 in 25.0000 ft 2 247 .38 63 in 62.9 92 4 % EXHIBIT A Post-Development Drainage Area Map 2 1 Drainage Report for South Hampton Subdivision Phase 3 College Station, Tex as May 2 004 R evis ed July 2004 D eveloper: Nantu cket, Ltd . 1 101 Un iversity Drjve East, Suite 108 Co ll ege Stati on, Texas 7784 0 Prepared By: TEXCON Genera] Contractors 1707 Graham Road College Station , Texas 77845 (979) 764-7743 CERTIFICATION I, Joseph P. Schultz, Licensed Professional Engineer No. 65889, State of Texas, certify that this revised report for the drainage design for Phase 3 of the South Hampton Subdivision in College Station, Texas, was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners hereof, with the exception that storm water runoff detention is not being required for this project since it was detennined during the dev e lopm e nt of Phase l of the subdivision that the site discharges directly into the TxDOT storm drainage system, which discharges into a tributary of Alum Creek. This tributary is a part of the Alum Creek primary system, which is a part of the Lick Creek drainage basin. Nantucket Lake serves as a detention facility for the Alum Creek drainage basin, and with the South Hampton runoff discharging into this primary system downstream of the lake, the South Hampton peak runoff will have already passed before the peak discharge at Alum Creek, therefore resulting in no increase in the peak runoff in Alum Creek. TABLE OF CONTENTS SOUTH HAMPTON SUBDIVISION -PHASE 3 R evised July 2004 CERTIFICATION .................................................................................................................................................................. 1 TABLE OF CONTENTS ........................................................................................................................................................ 2 LIST O F TABLES .................................................................................................................................................................. 2 INTRODUCTION ................................................................................................................................................................... 3 GENERAL LOCATION AND DESC RIPTION .................................................................................................................. 3 FLOOD HAZARD INFORMATION .................................................................................................................................... 3 DEVELOPMENT DRAINAGE PATTERNS ....................................................................................................................... 3 DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 3 STORM WATER RUNOFF DETERMINATION ............................................................................................................... 6 STORM SEWER DESIGN .................................................................................................................................................... 6 STORM WATER DETENTIO N ........................................................................................................................................... 7 CONCLUSIONS ..................................................................................................................................................................... 7 APPENDIX A .......................................................................................................................................................................... 8 Time of Concentration Data & Calculatioll s (Revised) APPENDIX B ........................................................................................................................................................................ 12 Storm Inlet D esign Data & Calculation s (Revised) APPENDIX C ........................................................................................................................................................................ 15 Storm Pipe Design Data & Calculations (Revised) EXHIBIT A ............................................................................................................................................................................ 22 Po st-Developm ent Drainage Area Map (Revised) LIST OF TABLES TABLE 1 -Rainfall Intensity & Runoff Data .................................................................................................... 5 TABLE 2 -Time of Co ncentration (tc) E quations ............................................................................................. 5 TABLE 3 -Post-Development Drainage Data -R evised ................................................................................... 6 DRAINAGE REPORT SOUTH HAMPTON SUBDIVISION -PHASE 3 Revise</ July 2004 INTRODUCTION The purpose of this revised report is to provide the hydrological effects of the construction of Phase 3 of the South Hampton Subdivision , and to show that the storm water runoff will be controlled in such a m a nner so as to ha ve minimal offsite or downstream impact. GENERAL LOCATION AND DESCRIPTION The project is located on a 4 acre tract located in College Station, Texas. The si te is wooded with areas of open land with grass. The existing ground elevations range from elevation 26 l to elevation 273. The general location of the project site is shown on the vicinity map in Exhibit A . FLOOD HAZARD INFORMATION The project site is located in the Alum Creek Drainage Basin, which is a part of the Lick Creek Drainage Basin . No portion of the site is located in a Special Flood Hazard Area according to the Flood Insurance Rate Map (FIRM) prepared by the Federal Emergency Management Agency for Brazos County, Texas and incorporated areas dated February 9, 2000, panel number 48041C0205-D. DEVELOPMENT DRAINAGE PATTERNS Prior to development, storm water runoff from the site generally flows in a northerly direction . A majority of the runoff flows into an existing concrete flume and then into th e existing stom1 system, which ties into the storm drainage system in the State Highway 6 right-of-way . A small portion of the runoff flows in a northwesterly direction where it enters the Nantucket Drive right-of-way. After development, these flow patterns will typically remain the same, however, the water captured by the existing flume will be diverted through the proposed stom1 system, which ties into an existing storm drain inlet before discharging into th e storm drainage system. This system ultimately discharges into Alum Creek. The post-development drainage area boundaries are shown on Exhibit A. DRAINAGE DESIGN CRITERIA The desi gn parameters for the storm sewe r are as fo llows: • The Rational Method is utili zed to d etermin e peak sto rm wate r runo ff rat es fo r the storm sewe r desi g n . • Design Storm Frequency Storm sewer system • Runoff Co e ffic ients Single Fa mil y R esi d e nti a l Und eve loped I 0 a nd I 00-year s torm even ts c = 0 .50 c = 0 .30 • Rainfall Int e ns it y eq uat io ns a nd va lu es for Bra zos Co unt y ca n be louncl in Tab le I . • Time of Concentration, tc -Calculations are based on the method found in the TR-55 publication. Refer to Table 2 for the equations and Appendix A for calculations. The runoff flow paths used for calculating the times of concentration are shown in Exhibit A. For smaller drainage areas , a minimum tc of 10 minutes is used to detennine the rainfall intensity values. TABLE 1 -Rainfall Intensity & Runoff Data Rainfall Intensity Values (in/hr) Storm Event Is 110 '2s lso 1100 Brazos County: t c = 10 min 7.693 8.635 9.861 11 .148 11 .639 I = b I (tc+d)e I = Rainfall Intensity (in/hr) tc = U(V*60) le = Time of concentration (min) L = Length (ft) V = Velocity (ft/sec) 5 y__ear storm 10 y__ear storm 25 y__ear storm 50 y__ear storm 100 y__ear storm b= 76 b= 80 b= 89 b= 98 b= 96 d= 8 .5 d= 8 .5 d= 8 .5 d= 8 .5 d= 8.0 e= 0.785 e= 0.763 e= 0 .754 e= 0.745 e= 0 .730 (Data taken from State Department of Hiqhway__s and Public Transportation Hy__drau/ic Manual, page 2-16) TABLE 2 -Time of Concentration (tc) Equations Th e time of concentration was determin ed using methods found in TR-55 , "Urban Hy drology for Small Wat ersh eds. " The equ ations are as follows: Time of Concentration: For Sheet F lo w : For S hallow Conce ntra ted Fl ow: R efer to Appendix A for ca lcu la ti ons. Tc= Tt(shcct flow)+ Tt(concenlraled sheel flow) where: T 1 =Travel Time, minutes where: T 1 = travel time , hours n =Manning 's rou ghne ss coeffic ie nt L = flo w len g th, fee t P 2 = 2-year, 24 -hour rainfall = 4.5 " s = land s lope, ft /ft T 1 = LI (60*V) where: T 1 =tra ve l time , minu tes V =Veloc it y, fps (See Fi g 3-1, App . E) L = flo w le ng th , feet STORM WATER RUNOFF DETERMINATION The peak runoff valu e s were determin e d in accord a nce with the criteria pre s e nt ed in th e previous s e ction for th e 5 , 10 , 25, 50 , and 100-year storm events . The runoff co e ffici e nts for post-development calculations are based on the fut ure development of this tract , and th e peak runoff va lu es determined for the post-development condition are shown in Tabl e 3 . TABLE 3 -Post-Deve lopme n t Dra in age Data -Revised tc 5 year s t o rm 10 year sto rm 25 year storm 50 year storm 100 year storm Area Area# c 15 Os 110 0 10 12 5 025 150 Oso 1100 0100 (ac res) (min) (in/h r ) (cfs ) (in/h r) (c f s ) (in/hr) (cfs ) (in/hr) (cfs) (in/hr) (cfs) 1 3 .65 0.50 13 .4 6.739 12 .30 7 .592 13 .85 8.684 15 .85 9 .831 17 .94 10 .258 18 .72 2 1.14 0.50 10 .8 7.441 4 .24 8.360 4.77 9 .552 5.44 10 .802 6 .16 11 .276 6.43 3 0 .58 0 .50 10 7 .693 2 .23 8.635 2 .50 9 .86 1 2.86 11 .148 3 .23 11.639 3 .38 4 0 .52 0.50 10 7 .693 2.00 8.635 2.24 9 .861 2.56 11 .148 2 .90 11 .639 3.03 5 0.41 0 .50 10 7.693 1.58 8.635 1.77 9 .861 2.02 11 .148 2.29 11 .63 9 2 .39 6A 3 .35 0 .50 27.0 4 .612 7 .73 5 .251 8 .80 6 033 10.10 6.860 11.4 9 7.16 3 12.00 -------------- 68 0 .2 6 0 .50 10 7.693 1.00 8 .635 1.1 2 9.861 1.28 11.148 1.4 5 11 .639 1.51 The post-development drainage areas are shown on Exhibit A. Even thou g h th e runoff coefficient for the developed conditions increases the runoff, the stonn sewer s ystem conveys the runoff directly to a tributary of Alum Creek. STORM SEWER DESIGN The storm sewer piping for this project has been selected to be Reinforc ed Concrete Pipe (RCP) meeting the requirements of ASTM C-76 , Class III pipe . The curb inlets will be cast-in-place concrete. Appendix B presents a summary of the storm sewer inl e t design parameters and calculations. The inlets were designed based on a 10-year desi gn storm . As per College Station guidelines, the capacities of inlets in sump were reduc ed by 10 % to allow for clogging. Inlets were located to maintain a gutter flow depth of 5" or less , which will pre vent the spread of water from reaching the crown of the road for the 10-year stom1 eve nt . Refer to Appendix B for a summary of the gutter flow depths at various locations . The runoff intercepted b y the proposed stom1 sewer in lets w a s calculated using th e follo w in g equations . The depth of flow in the gutter was d e te rmined b y using th e Straig ht C rown Flow equa tion. Th e flows intercepted by Inlets 1 & 2 were calculated b y usin g th e Capacity of In lets On Grade equation. These equ a tions and th e resultin g d a ta a r e summari zed in App e ndix B . There are no propo sed in le ts in s ump for thi s ph ase of th e developm e nt . The area b e tw ee n the ri ght-of-wa y and th e curb lin e of th e s tr eets w ill be filled as necessary to pro v ide a minimum of 6" of fr ee board a bove th e c urb lin e. T hi s will e nsure th a t th e runoff from th e I 00-ye ar storm e ve nt w il l re main w ithin th e s treet ri g ht -of- wa y. A pp e ndi x C pr ese nt s a s umm a r y o f th e s torm sewe r pip e d es ig n pa ra m e te rs a nd ca lc ul a ti o ns. A ll pip es a re 18" in diam e te r or la rger . Th e pip es for th e s to rm sewe r sys te m w e re d es ig ned ba sed o n th e 10 -year s to rm ev e nt ; ho w e ve r, a ll will a lso pass th e 100-yea r s torm eve nt without a n y hea dwat e r . A s required b y C oll ege St a tion , th e ve loc it y o f n ow in th e s to rm sew e r pip e sys te m is no t lowe r than 2.5 fee t pe r seco nd , and it docs no t exceed 15 fee t p e r seco nd . As th e d;1ta s hows , eve n duri ng low ll ow co nditi on s. the\ e loc it y in the pipes will exceed 2 .5 feet per second and prevent sediment build-up in the pipes. The maximum flow in th e stonn sewer pipe system will occur in Pipes IA & IB. Appendix C contains a summary of the Maiming pipe calculations for the stonn sewer system for the l 0 and 100-year events. The maximum velocity for the pipe system will be 9.8 feet per second and will occur in Pipes IA & I B. The storm sewer system from Crauberry Drive to Wi11drift Cove will be located in a 15' public drainage easeme11t. The storm sewer pipe system passes the I 00-year storm eveut runoff, therefore, 1w overlaud flow is proposed for the drainage easemeut. The headwater for Pipe No. 3 is elevatiou 263.43 for the JOO-year storm event. The proposed top of the street is elevation 264.50, as is the adjace11t top of slope of the existi11g draiuage chanuel. Therefore, the runoff ill the existi11g cha1111el upstream of Crauberry Drive will be contained within the drainage easement. The storm sewer pipe system discharges into a11 existi11g storm drain inlet. This inlet is a I 0' ill/et in a sump, and the gutter depth at this inlet is 5.28 "for the 10-year storm event, a11d 5. 88 "for the 100-year storm event. The existi11g 24 "pipe a11d headwall a11d the concrete flume, which collect the runoff from an existiug draiuage ditch aud discharge iuto the existing storm inlet, will be removed and replaced with the proposell storm sewer piping. The existing ditch will be filled to drain as shown on the coustruction drawings. STORM WATER DETENTION The storm water runoff detention is not being required for this project since it was determined during the development of Phase 1 of the subdivision that the site discharges directly into the TxDOT storm drainage system, which disch arges into a tributary of Alum Creek. This tributary is a part of the Alum Creek primary system, which is a part of the Lic k Creek drainage basin. Nantucket Lake serves as a detention facility for the Alum Creek drainage basin, and with the South Hampton runoff discharging into this primary system downstream of the lake, the South Hampton peak runoff will have already passed before the peak discharge at Alum Creek, therefore resulting in no increase in the peak runoff in Alum Creek. CONCLUSIONS The construction of this project will increase the stonn water runoff from this site; however, it s hould not have a significant impact on the surrounding prope1iy . No flood damage to downstream or adjacent landowners is expected as a result of this development. APPENDIX A Time of Concentration Data & Calculations (Revised) Time of Concentration Calculations Refer to Exhibit A for flow paths used for calculations. Drainage Area #1: Sheet Flow: Flow length = 125' = L Slope= 3 .7% n = 0. 15 , short grass, prairie P2 = 4.5" ti= 0.007 (0 .15 * 125)08 (4.5)0 5 (0 .037)04 ti= 0.129 hours= 7 .7 minutes Shallow Concentrated Flow: Flow length = 535' = L Slope= 2.1% Flume Flow: Drainage Area #2: Sheet Flow: For unpaved surface at 2.1 %, Velocity (V) = 2 .3 fp s (see Fig. 3-1) -7 ti= 535 ' I (60*2 .3 ) = 3.9 minutes Flow length= 355' = L Slope= 2.7% For paved surface at 2 .7%, Velocity (V) = 3 .3 fps (see Fig . 3-1) ti= 355' I (60*3.3) = 1.8 minutes Tc= 7 .7 + 3.9 + 1.8 = 13.4 minutes Flow length= 125' = L Slope= 3.1% n = 0.15, short grass, prairie P2 = 4.5" ti= 0.007 (0.15 * 125)°-8 (4.5)05 (0.031)0 4 ti= 0 .138 hours= 8 .3 minutes Shallow Concentrated Flow: Flow length = 195' = L Slope= 1.8% Fluine Flow : For unpaved surface at 1.8%, Velocity (V) = 2 .15 fps (se e Fig. 3-1) -7 ti = 195' I (60*2 . l 5) = 1.5 minutes Flow length= 200' = L Slope= 2.7 % For pa ve d surface at 2 .7%, Veloc it y (V) = 3 .3 fps (see Fi g. 3-1) ti= 200' I (60*3.3) = 1.0 minute s Tc= 8 .3 + 1.5 + 1.0 = l 0.8 minutes Time of Concentration Calculations, continued (Revised July 2004) R efe r to Exhibit A for flow paths used for calcu lation s. Drainage Area #6A: Sh eet Flow: Pa ve ment Flow: Flow length= 215 ' = L Slope = 3 .0% n = 0 .24 , dense grass P2 = 4.5" ti = 0 .007 (0 .2 4 * 215)0 8 (4.5)0·5 (0.03)04 ti= 0.315 hours= 18 .9 minutes Flow length = 68 ' = L Slope = 1.23 % For paved surface at 1.23 %, Velocity (V) = 2.2 fps (see Fig . 3-1) ti = 68 ' I (60 *2.2) = 0.5 minutes Similarly: L = 23 7', S = 2%, V = 2.85 fps , ti = 1.4 minutes L = 217', S = 3%, V = 3.6 fps, ti= 1.0 minutes L = 503 ', S = 6%, V = 1.6 fps , ti= 5.2 minutes Slope = 2 .7% Tc= 18.9 + 0 .5 + 1.4 + 1.0 + 5.2 = 27.0 minutes .... '+--.... '+- GJ a. 0 .- Ill GJ Ill '-::s 0 (.J '- Q.I ~ ., :JC 3-2 .50 .20 - .10 .06 .04 . 02 - .01 - .005 I l j -~ I ' I I ' ' , ' . "b q, I_'-b I ~ q, 'b ~, ::::,0 Q.'t1 ) I ) I ' I z 1, ' I 4 J J I J j I I I 6 j I ' ' I Av e ra ge ve lo ci ty, f t /sec . . . . J I I I , I I 10 . . . I Fiicu"' :J-L -,\v~raK~ vc loci t ic> for cs li ma t i nK l rnvd tim e for s h allo w c on c ~nl ra t c d Oow _ (2 10-V !-TR -55 . Seco nd Ed .. Ju ne 198G) I 20 l ~· '. APPENDIXB Storm Inlet Design Data & Calculations (Revised) 12 South Hampton -Phase 3 Depth of Flow in Street Gutter -Revised July 2004 10-year storm Gutter A c Slope 0 10 Y 10-actua l 0 100 Location (acres) (ft/ft) (cfs) (ft) (in) (cfs) ------------------- E1 0 .52 0 .50 0 .010 2 2.25 0 .2 37 2 .84 3 .03 --~---· --· ------------- E2 0 .58 0 .5 0 0 .01 60 2 .50 0 .227 2 .72 3.38 ------------------ -------------------------------- F1 1.10 0 .50 0.0100 4 .75 0 .315 3.78 6 .4 0 ---------------------- F2 0.41 0 .50 0.0100 1.77 0 .2 17 2 .61 2.39 --------------·------------------------ H1 3 .35 0 .50 H2 0 .26 0 .50 Transvers e (Crown ) slope {ft/ft) for 27' & 39' streets = 0 .0300 0.0060 0.0060 8 .80 0.4 36 1.12 0 .202 5 .24 2.42 (6" ma x . fo r s tandard curb) Straight Crown Flow (Solved to find actual depth of flow in gutter, y): Q = 0 .56 * (z/n) * S 112 * y8 '3 ~ y ={QI [0.56 * (z/n) * S 112]}318 n = Roughness Coefficient= 0 .018 S = StreeUGutter Slope (ft/ft) y = Depth of flow at inlet (ft) z = Re cipro cal of crown slope : for 27' & 39 ' streets = 33 -- 12 .00 1.51 100-year storm Y 100 (ft) (in) -- 0 .265 3.18 -- 0 .253 3.04 - - 0 .352 4.22 -- 0 .24 3 2 .92 - ---- 0.4 90 5.88 --- 0.225 2.71 ---- South Hampton Phase 3 Inlet Length Calculations -R evised July 2004 Inl ets In Sump 1 O year storm Inlet# Length Flowlro m A c o,, O c •rtyovM Orot•I O rot•l+t0% YtO.-::t\.l.i Ex1st111g Inlet# 1 2 Area# (a cres) (els) (els) I from Inlet# (els) (els) (ft) 10' 6A 3.35 0.50 8.80 I 8.80 9.67 0.334 -·-->----- 68 0.26 0.50 1.12 I 1.12 1.23 0.155 Inlets On Grade 10 year storm Length Flow from y,, Oper fool Oupaclt) O bypu• Oup1ured Oc•ryover Area# (ft) I (In) (ft) (els) (els) (els) (els) 5' 5 0 ~1 ~ 0.52 2.59 -0 .82 1.77 ---10' 3+4 0.31 5 3.78 0.61 6.09 ·1.34 4.75 Transverse (Crown) slope (ft/ft) for 27' & 39' streets = 0.030 z = Reciprocal of crown slope for 27' & 39' streets = 33 Straight Crown Flow (Solved t o find actua l depth of flow, yl : Q = 0.56 • (z/n ) • s 112 • y"' ~ y ={QI [0 .56 • (z/n ) • s "'n'" n =Roughness Coefficient= 0 .018 S = StreeVGutte r Slope (fVft) y = Depth of flow at inlet (ft ) Ca pacity of Inlets on grade : Oc = 0.7' [1 /(H , · H ,)] '[H ,'12 -H 2 512 ] O c = Fl ow capacity o f inle t (c fs) H , =a + y H 2 =a= gutter depression (2" Standard; 4" Recessed) y = Depth of flow in approach gutter (ft) I from Inlet f I I I (I n) I 4.01 I 1.85 Obyp-tot• (els) 0.00 0.00 1 OD year storm L 10-R.eq 'd• L 10-aetu.i 0 100 O c.nyoYet Orot.i Orot.i+t"-Y100 (ft) (ft) (els) (els) I from Inlet# (els) (els) (ft) I (I n) 8.17 10 12 .00 I 12 .00 13 .20 0.6261 7.51 1.51 I 1.51 1.66 *using y....,.. • 1· • 0.583' 100 y ear sto rm OupMod 010-Total Y100 a,.,,oot Oupaclty Obypan O c.,tured Oc.,ryo .... r Ottyp-tot .. Ocapl-tod 0 100·To1.i s L.c:1ua1 (els) (els) (ft) I (In) (ft) (els) (els) (els) (cfs) J from inl•t fl. (els) (els) (els) (ft/ft) (ft) 1.77 1.77 o.243 I 2.92 0.54 2.71 -0 .32 2.39 I 0.00 2.39 2.39 0.0100 5 --------- 4.75 4.75 o.352 I 4.22 0.64 6.45 ·0.05 6.40 I 0.00 6.40 6.40 0.0100 10 APPENDIXC Storm Pipe Design Data & Calculations (Revised) I S South Hampton Subdivision -Phase 3 p· C I I R d J I 20 4 1pe a cu at1ons -ev1se u 'Y 0 Inlet O utl et Pipe# S iz e L ength S l o pe Invert Elev Invert Elev (in) (ft) (%) (ft) (ft) 1A 27 50 .9 1.40 255 .88 255 .17 -- 18 27 232.6 1.40 259.24 255.98 - 2 27 38.5 1.20 259.80 259 .34 - 3 27 6 .0 1.00 260 .26 260 .20 *Actual Flow (cfs) - - - - 10 yea r s t o rm 1 00 year s t o rm Desig n Fl ow V 10 Travel Time, tno *Actual Fl ow Design Flow V100 %F ull %F ull (cfs) (fps ) (sec) (m in) (cfs ) (cfs ) (fps ) 25 .14 9.4 63 .9 5 0.09 -33 .99 9.8 81.9 25.14 9.4 63 .9 25 0.41 -33 .99 9.8 81 .9 2 3 .37 8 .7 64 .1 4 0 .07 -31 .60 9 .0 82 .2 18 .62 7 .7 58.6 1 0 .01 -25 .1 5 8.2 72.4 *These valu es reflect the actual flow for the 18" & 24" pipes . The design fl ow for th ese pip e sizes refle cts a 2 5 % redu ction in pipe area. Pipe 3 Culvert Calcu lator Data : Tailwater = 2 .25 ft Top of Road = 264.50 Headwater, 10-year = 262 .99 Headwater, 100-year = 263.43 Travel Time, tn00 (sec) (min) 5 0 .09 24 0.40 4 0.07 1 0 .01 - South Hampton S ubdivi s ion Phase 3 -Pipe Flo w Diagram Revis ed July 2004 010 {cf s) I Dra in age A reas 1+2 18 .62 J, Pipe 3 18.62 J, Inlet 2 4 .75 J, Pipe 2 23 .37 J, Inlet 1 1.77 J, P ipe 18 25 .14 J, Junction Bo x 1 J, Pipe 1A 25 .14 J, Existing Inle t 9 .92 II Into Existi ng Pi pe 35 .0 6 II 0100 {c fs) I Dra inage Areas 1+2 25 .15 J, Pipe 3 25.15 J, Inlet 2 6.45 J, Pipe 2 31 .60 J, Inlet 1 2.39 J, Pipe 1 B 33 .99 J, Jun ctio n Bo x 1 J, Pip e 1A 33 .99 J, Exis ting Inlet 13.5 1 Into Ex isting Pipe 47.50 II Pipe lA -10 Ye ar Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 27.0000 in 25.1400 cfs 0 .0140 ft/ft 0. 0140 17.2655 in 3.9761 ft2 2.6848 ft2 50.0438 in 84.8230 in 9.3638 fps 7.7255 in 63.9464 % 34 .0271 cfs 8.5580 fps Pipe lA -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Vel ocity ....................... . Hydraulic Rad i u s ............... . Percent Full ................... . Full flow Fl owrate ............. . Full flow veloci t y ............. . Circular Depth of Flow 27.0000 in 33.9900 cfs 0. 0140 ft/ft 0. 0140 22.1032 in 3.9761 ft2 3.4841 ft2 61 .067 3 in 84 .8230 in 9.7558 fps · 8 .21 57 i n 81.8636 % 34.0271 cfs 8.5580 fps South Ha mpton S u bd i vision -Ph ase 3 -Revised July 2004 College Stati o n, Texas Pipe lB -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Comp ute d Results: Depth .......................... . Area ........................... . Wette d Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 2 7 .0000 in 25 .1400 cfs 0.0140 ft/ft 0. 0140 17.2655 in 3.9761 ft2 2.6848 ft2 50 .0438 in 84 .8230 in 9.3638 fps 7 .7255 in 63.9464 % 34.0271 cfs 8.5580 fps Pipe lB -100 Year Storm Manning Pipe Calculator Gi ven Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Ve loc ity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow ve loc ity ............. . Circular Depth of Flow 27.0000 in 33 .9900 cfs 0 .0140 ft/ft 0. 0140 22.1032 in 3.9761 ft2 3.4841 ft2 61.0673 in 84.8230 in 9.7558 fps 8 .2157 in 81.863 6 % 34.0 27 1 c f s 8 .5 580 fps South Hampt on Su bdi visio n -Phas e 3 -Revised July 20 04 College S t atio n, Texas Pipe 2 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area .......................... .-. Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radiu s ............... . Percent Full ................... . Full flow Flowrat e ............. . Full flow velocity ............. . Circular Depth of Flow 27.0000 in 23 .3700 cfs 0 .01 2 0 ft/ft 0 .0140 17 .314 1 in 3.9761 ft2 2.6935 ft2 50 .1450 in 84.8230 in 8.6763 fps 7.7 350 in 64.1262 % 31.5030 cf s 7.9231 fps Pipe 2 -100 Year Storm Manning P i pe Calculator Given Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . We tted Perimeter ............... . Perime t er ...................... . Veloci t y ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 27.0000 in 31.6000 cfs 0 .0120 ft/ft 0.0140 22.2066 in 3.9761 ft2 3.4990 ft2 61.3366 in 84.8 230 in 9.0313 fps 8.2145 in 82.2465 % 31.5030 cfs 7.9231 fps South Ha mp ton Subdivision -Ph ase 3 -Re vised July 20 04 College Station, Tex as Pipe 3 -10 Year Sto rm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrat e ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ............................ . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 27 .0000 in 18 .6200 cfs 0 . 0100 ft/ft 0.0140 15.8169 in 3.9761 ft2 2.4203 ft2 47.0684 in 84 .8230 in 7.6932 fps 7.4047 in 58.5812 % 28.7581 cfs 7.2328 fps Pipe 3 -100 Year Storm Manning Pipe Calculator Giv en Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wett e d Perime t e r ............... . Perimet e r ...................... . Velo c ity ....................... . Hydraulic Ra diu s ............... . Percent Full ................... . Full fl ow Flowra te ............. . Full fl ow ve l oc ity ............. . Circular Depth of Flow 27.0000 in 25.1500 cfs 0.0100 ft/ft 0.0140 19 .5576 in 3 .9761 ft2 3.0845 ft2 54 .9753 in 84.8 23 0 in 8 .15 3 7 fps 8 .07 9 4 in 72 .43 56 % 2 8 .7581 cf s 7 .232 8 fps South Ha mpton Subdivision -Ph ase 3 -Revised Jul y 2004 College S ation, Texas Entered Dat a: Pipe 3 -10 Year Storm Culv ert Calculator Shape .......................... . Number of Barrels .............. . Solving for ................. . Chart Number ................ . Scale Number ................ . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning ' s n .................... . Roadway Elevation ............. , . Inlet Elevation ................ . Outlet Elevation ............... . Diamete r ....................... . Length ......................... . Entrance Loss ............. . Tailwater ........... . Computed Results : Headwater ...................... . Slope .......................... . Velocity ....................... . Circular 1 Headwater 1 1 CONCR ETE P I PE CUL VERT ; NO BEVE LED RI NG ENTRANCE SQ UA RE EDG E ENTRAN CE WITH HEADWA LL Off 18.6200 cfs 0 . 0140 264.5000 ft 260 .2600 ft 260 .2 000 ft 27.0000 in 6.0000 ft 0 .5000 2 .2500 ft 262.9862 ft Outlet Control 0.0100 ft/ft 4.6830 fps Pipe 3 -10 0 Year Storm Culvert Calculator Entered Data : Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . Scale Description .............. . Overtopping : ................... . Flowrate ....................... . Manning ' s n .................... . Roadway El evation .............. . Inle t Elevation .............. . Outl et Elevation ............... . Diameter ................. . Length .................... . Entrance Loss ............ . Tailwater ................ . Computed Results: Headwater ...................... . S lop e .......................... . Velocity ....................... . Ci rcul ar 1 Headwater 1 1 CONCR ETE PIPE CULVERT; NO BEVELED RING ENTRANCE SQUARE EDGE ENTRANCE WITH HEADWA LL Off 25.1500 cfs 0. 0140 264.5000 ft 260.260 0 ft 260 .2000 ft 27.0000 in 6 .0000 ft 0 .5000 2.2500 ft 263.4283 ft Outl et Co ntrol 0.0100 ft/ft 6 .32 53 fps South Hampton Subdivision -Ph ase 3 -Revised July 2004 College Station, Texas EXHIBIT A Post-Development Drainage Area Map (Revised) 22 I DEVELOPMENT PERMIT PERMIT NO. 04-22 c.·w Project: SOUTH HAMPTON PHASE 3 COLLE<;[ STATION FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA RE : CHAPTER 13 OF THE COLLEGE STATION CITY CODE SITE LEGAL DESCRIPTION: South Hampton Phase 3 All Lots DATE OF ISSUE: 07/19/04 OWNER: Nantucket , Ltd . -Phyllis Hobson 1101 University Drive East, Suite 108 College Station , Texas 77840 SITE ADDRESS: SH 6 South DRAINAGE BASIN: Alum Creek VALID FOR 9 MONTHS CONTRACTOR: TYPE OF DEVELOPMENT: Full Development Permit SPECIAL CONDITIONS: All construction must be in compliance with the approved construction plans All trees required to be protected as part of the landscape plan must be completely barricaded in accordance with Section 7.5.E ., Landscape/Streetscape Plan Requirements of the City's Unified Development Ordi ance , prior to any operations of this permit. The cleaning of equipment or materials within the drip line of any tree or group of trees that are protected and required to rema in is strictly prohibited . The disposal of any waste material such as , but not limited to , paint , oil , solvents , asphalt , concrete , mortar, or other harmful liquids or materials within the drip line of any tree required to remain is also prohibited . TCEQ PHASE II RULES IN EFFECT. The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design Criteria . If it is determined the prescribed erosion control measures are ineffective to retain all sediment onsite , it is the contractors responsibility to implement measures that will meet City , State and Federal requirements . The Owner and/or Contractor shall assure that all disturbed areas are sodden and establishment of vegetation occurs prior to removal of any silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor shall also insure that any disturbed vegetation be returned to its original condition , placement and state . The Owner and/or Contractor shall be responsible for any damage to adjacent properties , city streets or infrastructure due to heavy machinery and/or equipment as well as erosion , siltation or sedimentation resulting from the permitted work. In accordance with Chapter 13 of the Code of Ordinances of the City of College Station , measures shall be taken to insure that debris from construct ion , erosion , and sedimentation shall not be deposited in city streets, or existing drainage facilit ies . I hereby grant th is permit for development of an area outside the special flood hazard area . All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer in the development permit application for the above named project and all of the codes and ordinances of the City of College Station that apply. 0 7-/?J-o t/ Date 7-/1 -ef Date Item No . 2 3 4 5 Water Lines Mobilization/Layout ENGINEER'S COST ESTIMATE SOUTHHAMPTON-PHASE 1 EXTEND WATERLINE TO PHASE 3 COLLEGE STATION , TEXAS Estimated Description Quantity LS 28-May-0 4 Unit Estimated Price Cost $500.00 $500 6" Water PVC CL200 (C909) structural 74 LF $26 .00 $1,924 6" M .J. Bends 2" Blow off Assembly Tie-in to existing line 1 EA $250 .00 $250 EA $400.00 $400 EA $200.00 $200 Subtotal $3,274 T OT A L CO NSTRUCTION ._I __ $-'-3...:..,2_7__.41 TOTA L ~I __ $3~,2_7~4 1 Item No . 2 3 4 5 Water Lines Mobi lization/Layout ENGINEER'S COST ESTIMATE SOUTHHAMPTON-PHASE1 EXTEND WATERLINE TO PHASE 3 COLLEGE STATION , TEXAS Estimated Description Quantity LS 28-May-04 Unit Estimated Price Cost $500 .00 $500 6" Water PVC CL200 (C909) structural 74 LF $26 .00 $1,924 6" M .J. Bends 2" Blow off Assembly Tie-in to existing line Page 1 o r 1 EA $250.00 $250 EA $400 .00 $400 EA $200 .00 $200 Subtotal $3,274 TOTAL CONSTRUCTION._! __ $_3-'-,2_7~41 TOTA Ll~ __ $3_,2_7~4' Item No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 CONSTRUCTION COST ESTIMATE SOUTH HAMPTON SUBDIVISION COLLEGE STATION, TEXAS PHASE 3 • 11 LOTS Description Sitework Mobilization/Layout Site Preparation -ROW & easements Silt Fence Construction Exit-Rock Hydromulch /Hydroseeding Tie-in to existing pavement I 6' sid ewalk Topsoil Stripping & Replacement Excavation/Grading Lime Stabilized Subgrade Asphalt Paving -1 1/2" depth Base Material -6" depth Concrete Curb and Gutter Concrete Aprons ADA Ramp -corner Concrete Sidewalk End of Roadway Sign -red/black Storm Drainage Drainage Pipe -27" RCP, T & G -structural Drainage Pipe -27" RCP , T & G -non-structural Junction Box Inlets 5' wide Inlets 1 O' wide Inlet Protection Concrete Flume Headwall -27" RCP Remove existing headwall (for 24" pipe), 24" RCP & Cone . Flume Water Lines 6" Water PVC CL200 (C909) non-structural 6" Water PVC Cl200 (C909) structural 3" Water PVC CL200 -non-structural 3" Water PVC CL200 -structural 6" Gate Valves 3" Gate Valves 6" x 3" M .J. Tees 6" 11 .25 deg . M .J . Bend 6" 22.50 deg . M .J . Bend 1" Blowoff Assembly 2" Blowoff Assembly Fire Hydrant Assembly Fire Hydrant Vertical Extens ion Restrain ed Joint -6" Tie-in to existing line Water Services Page 1 of 1 Estimated Quantity 1.1 300 20 2,000 1 250 650 1,950 1,585 1,585 973 498 2 1,400 3 65 289 1 1 1 3 60 1 201 42 100 72 1 1 1 1 2 1 3 1 .6 20 130 4 1 2 LS AC LF TONS SY LS CY CY SY SY SY LF SF EA SF EA LF LF EA EA EA EA SF EA LS LF LF LF LF EA EA EA EA EA EA EA EA EA EA EA EA Unit Price $4,500.00 $5,500.00 $2 .50 $50 .00 $0 .50 $500 .00 $5.00 $4 .00 $3 .10 $5.25 $6.00 $7 .75 $5 .50 $450.00 $2.80 $200.00 Subtotal $50.00 $42 .00 $2,500.00 $2,600 .00 $3,100 .00 $100 .00 $5.00 $2,000 .00 $1,000 .00 Subtotal $20 .00 $28 .00 $15 .00 $20.00 $550.00 $400 .00 $250 .00 $250 .00 $250 .00 $350 .00 $400 .00 $2,250 .00 $200 .00 $175 .00 $100 .00 $700.00 Subtotal LF $30.00 LF $22 .00 EA $700 .00 EA $800 .00 EA $800 .00 EA $2,400 .00 EA $1,000.00 Subtotal 08-Jul-04 Estimated Cost $4 ,500 $6 ,050 $750 $1 ,000 $1 ,000 $500 $1,250 $2,600 $6,045 $8,321 $9 ,5 10 $7,541 $2 ,739 $900 $3,920 $600 .00 $57 ,226 $3 ,250 $12, 138 $2,500 $2,600 $3 ,100 $300 $300 $2 ,000 $1,000 $27 ,188 $4,020 $1, 176 $1 ,500 $1,440 $550 $400 $250 $250 $500 $350 $400 $2 ,250 $200 $525 $100 $4,200 $18,111 $600 $2,860 $2 ,800 $800 $1 ,600 $2,400 $1,000 $12,060 Total Sitework $57,226 Total Storm Drainage $27, 188 Total Water $18, 111 Total Sanitary Sewer $12 ,060 TOTAL CONSTRUCTION'! --...,.$1_1_4~,5...,.8...,51 Item No . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 CONSTRUCTION COST ESTIMATE SOUTH HAMPTON SUBDIVISION COLLEGE STATION , TEXAS PHASE 3 -11 LOTS Description Sitework Mobilization/Layout Site Preparation -ROW & easements Silt Fence Construction Exit-Rock Hydromulch/Hydroseeding Tie-in to existing pavement I 6' sidewalk Topsoil Stripping & Replacement Excavation/Grading Lime Stabilized Subgrade Asphalt Paving -1 1/2" depth Base Material -6" depth Concrete Curb and Gutter Concrete Aprons ADA Ramp -corner Concrete Sidewalk End of Roadway Sign -red/black Storm Drainage Drainage Pipe -27" RCP, T & G -structural Drainage Pipe -27" RCP , T & G -non-structural Junction Box Inlets 5' wide Inlets 10' wid e Inlet Protection Concrete Flume Headwall -27" RCP Remove existing headwall (for 24" pipe), 24" RCP & Cone . Flum e Water Lines 6" Water PVC CL200 (C909) non-structural 6" Water PVC CL200 (C909) structural 3" Water PVC CL200 -non-structural 3" Water PVC CL200 -structural 6" Gate Valves 3" Gate Valves 6" x 3" M.J . Tees 6" 11.25 deg . M .J . Bend 6" 22 .50 deg . M .J. Bend 1" Blowoff Assembly 2" Blowoff Assembly Fire Hydrant Assembly Fire Hydrant Vertical Exten sio n Restrained Joint -6" Tie -in to existing lin e Water Services Page 1 o f1 Estimated Quantity 1.1 300 20 2,000 1 250 650 1,950 1,585 1,585 973 498 2 1,400 3 65 289 1 1 1 3 60 1 1 201 42 100 72 1 1 1 1 2 1 3 1 6 20 130 4 1 2 LS AC LF TONS SY LS CY CY SY SY SY LF SF EA SF EA LF LF EA ., EA EA EA SF EA LS LF LF LF LF EA EA EA EA EA EA EA EA EA EA EA EA Unit Price $4,500 .00 $5 ,500 .00 $2 .50 $50.00 $0 .5 0 $500 .00 $5 .00 $4 .00 $3 .10 $5.25 $6 .00 $7 .75 $5 .50 $450.00 $2 .80 $200 .00 Subtotal $50 .00 $42 .00 $2 ,500 .00 $2,600 .00 $3, 100 .00 $100.00 $5 .00 $2,000 .00 $1 ,000 .00 Subtotal $20 .00 $28 .00 $15 .00 $20 .00 $550 .00 $400 .00 $250.00 $250.00 $250.00 $350 .00 $400 .00 $2,250 .00 $200 .00 $175 .00 $100 .00 $700 .00 Subtotal LF $30 .00 LF $2 2.00 EA $700 .00 EA $800 .00 EA $800 .00 EA $2,400 .0 0 EA $1 ,000 .00 Subtotal 08-Jul-04 Estimated Cost $4,500 $6,050 $750 $1,000 $1 ,000 $500 $1,250 $2,600 $6,045 $8,321 $9,510 $7,541 $2 ,739 $900 $3,920 $600 .00 $57,226 $3 ,250 $12,138 $2 ,500 $2,600 $3 , 100 $300 $300 $2 ,000 $1 .000 $27,188 $4,020 $1, 176 $1,500 $1,440 $550 $400 $250 $250 $500 $350 $400 $2,250 $200 $525 $100 $4,200 $18,111 $600 $2,860 $2 ,800 $800 $1 ,6 00 $2,400 $1,000 $12,060 Total Sitework $57,226 Total Storm Drainage $27,188 Total Water $18 ,111 Total Sanitary Sewer ,-----__ ,...::$....:.1=2•c:.O.:c.60.:., TOTAL CONSTRUCTION._! __ _,_$_11_4_,__,5_8 _,5j Item No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 CONSTRUCTION COST ESTIMATE SOUTH HAMPTON SUBDIVISION COLLEGE STATION, TEXAS PHASE 3 -11 LOTS Description Sitework Mobilization/Layout Site Preparation -ROW & easements Silt Fence Construction Exit-Rock Hydromulch/Hydroseeding Tie-in to existing pavement I 6' sidewalk Topsoil Stripping & Replacement Excavation/Grading Lime Stabilized Subgrade Asphalt Paving -1 1/2" depth Base Material -6" depth Concrete Curb and Gutter Concrete Aprons ADA Ramp -corner Concrete Sidewalk End of Roadway Sign -red/black Storm Drainage Drainage Pipe -27" RCP, T & G -structural Drainage Pipe -27" RCP, T & G -non-structural Junction Box Inlets 5' wide Inlets 10' wide Inlet Protection Concrete Flume Headwall -27" RCP Remove existing headwall (for 24" pipe), 24" RCP & Cone. Flume Water Lines 6" Water PVC CL200 (C909) non -s tructural 6" Water PVC CL200 (C909) structural 3" Water PVC CL200 -non-structural 3" Water PVC CL200 -structural 6" Gate Valves 3" Gate Valves 6" x 3" M.J . Tees 6" 11.25 deg. M.J . Bend 6" 22.50 deg . M.J. Bend 1" Blowoff Assembly 2" Blowoff Assembly Fi re Hydran t Assembly Fire Hydrant Vertical Extension Restrained Joint -6" Tie-in to existing lin e Water Services Estimated Quantity 1 1.1 300 20 2,000 1 250 650 1,950 1,585 1,585 973 498 2 1,400 3 65 289 1 1 3 60 1 1 201 42 100 72 1 1 2 1 1 1 1 3 1 6 20 130 4 1 2 LS AC LF TONS SY LS CY CY SY SY SY LF SF EA SF EA LF LF EA EA EA EA SF EA LS LF LF LF LF EA EA EA EA EA EA EA EA EA EA EA EA Unit Price $4,500 .00 $5 ,500 .00 $2.50 $50 .00 $0.50 $500.00 $5.00 $4 .00 $3.10 $5.25 $6 .00 $7 .75 $5 .50 $450 .00 $2 .80 $200.00 Subtotal $50 .00 $42 .00 $2,500.00 $2,600 .00 $3,100 .00 $100.00 $5.00 $2,000.00 $1,000.00 Subtotal $20.00 $28.00 $15.00 $20.00 $550.00 $400.00 $250.00 $250.00 $250 .00 $350 .00 $400.00 $2 ,250.00 $200 .00 $175 .00 $100.00 $700 .00 Subtotal LF $30 .00 LF $22 .00 EA $700 .00 EA $800 .00 EA $800 .00 EA $2,400 .00 EA $1 ,000.00 Subtotal 08-Jul-04 Estimated Cost .$4,500 $6,050 $750 $1,000 $1,000 $500 $1,250 $2,600 $6,045 $8,321 $9,510 $7,541 $2,739 $900 $3,920 $600 .00 $57,226 $3,250 $12,138 $2,500 $2,600 $3,100 $300 $300 $2,000 $1,000 $27,188 $4,020 $1,176 $1,500 $1,440 $550 $400 $250 $250 $500 $350 $400 $2,250 $200 $525 $100 $4,200 $18,111 $600 $2 ,860 $2 ,800 $800 $1,600 $2,400 $1,000 $12,060 Total Sitework $57,226 Total Storm Drainage $27,188 Total Water $18,111 Total Sanitary Sewer $12,060 TOTAL CONSTRUCTION 'I ---,.-$~11-4~,5...,,.B-,5 I Drainage Report for South Hampton Subdivision Phase 3 College Station, Texas May 2004 Developer: Nantucket, Ltd. 1101 University Drive East, Suite 108 College Station, Texas 77840 Prepared By: TEXCON General Contractors 1 707 Graham Road College Station, Texas 77845 (979) 764-7743 CERTIFICATION I, Joseph P. Schultz, Licensed Professional Engineer No. 65889, State of Texas, certify that this report for the drainage design for Phase 3 of the South Hampton Subdivision in College Station, Texas , was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners hereof, with the exception that stom1 water runoff detention is not being required for this project since it was determined during the development of Phase 1 of the subdivision that the site discharges directly into the TxDOT stom1 drainage system, which discharges into a tributary of Alum Creek. This tributary is a part of the Alum Creek primary system , which is a part of the Lick Creek drainage basin. Nantucket Lake serves as a detention facility for the Alum Creek drainage basin, and with the South Hampton runoff discharging into this primary system downstream of the lake, the South Hampton peak runoff will have already passed before the peak discharge at Alum Creek, therefore resulting in no increase in the peak runoff in Alum Creek. TABLE OF CONTENTS SOUTH HAMPTON SUBDIVISION -PHASE 3 CERTIFICATION .................................................................................................................................................................. 1 TABLE OF CONTENTS ........................................................................................................................................................ 2 LIST OFT ABLES .................................................................................................................................................................. 2 INTRODUCTION ................................................................................................................................................... ~ ............... 3 GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 3 FLOOD HAZARD INFORMATION .................................................................................................................................... 3 DEVELOPMENT DRAINAGE PATTERNS ....................................................................................................................... 3 DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 3 STORM WATER RUNOFF DETERMINATION ............................................................................................................... 5 STORM SEWER DESIGN .................................................................................................................................................... 5 STORM DETENTION ........................................................................................................................................................... 6 CONCLUSIONS ..................................................................................................................................................................... 6 APPENDIX A .......................................................................................................................................................................... 7 Time of Concentration Data & Calculations APPENDIX B ........................................................................................................................................................................ 11 Storm Inlet Design Data & Calculations APPENDIX C ........................................................................................................................................................................ 14 Storm Pipe & Channel Design Data & Calculations EXHIBIT A ............................................................................................................................................................................ 21 Post-Development Drainage Area Map LIST OF TABLES TABLE 1 -Rainfall Intensity & Runoff Data .................................................................................................... 4 TABLE 2 -Time of Concentration (tc) Equations ............................................................................................ .4 TABLE 3 -Post-Development Drainage Data .................................................................................................... 5 DRAINAGE REPORT SOUTH HAMPTON SUBDIVISION -PHASE 3 INTRODUCTION The purpose of this report is to provide the hydrological effects of the construction of Phase 3 of the South Hampton Subdivision, and to show that the storm water runoff will be controlled in such a manner so as to have minimal offsite or downstream impact. GENERAL LOCATION AND DESCRIPTION The project is located on a 4 acre tract located in College Station, Texas . The site is wooded with areas of open land with grass. The existing ground elevations range from e levation 261 to elevation 273. The general location of the project site is shown on the vicinity map in Exhibit A . FLOOD HAZARD INFORMATION The project site is located in the Alum Creek Drainage Basin , which is a part of the Lick Creek Drainage Basin . No portion of the site is located in a Special Flood Hazard Area according to the Flood Insurance Rate Map (FIRM) prepared by the Federal Emergency Management Agency for Brazos County, Texas and incorporated areas dated February 9, 2000, panel number 48041 C0205-D. DEVELOPMENT DRAINAGE PATTERNS Prior to development, storm water runoff from the site generally flows in a northerly direction. A majority of the runoff flows into an existing concrete flume and then into the existing storm system, which ties into the storm drainage system in the State Highway 6 right-of-way . A small portion of the runoff flows in a northwesterly direction where it enters the Nantucket Drive right-of-way. After development, these flow patterns will typically remain the same , however, the water captured by the existing flume will be diverted through the proposed storm system, which ties into a new concrete flume before discharging into the existing flume and storm drainage system. This system ultimately discharges into Alum Creek. The post- development drainage area boundaries are shown on Exhibit A . DRAINAGE DESIGN CRITERIA The desi gn para meters for the storm sewer are as follows : • The Rational Method is utili zed to d e te m1in e peak stonn wate r run off ra tes fo r the s tom1 sewer d esign. • Des ign Storm Freque ncy Stom1 sewer syste m • R un off Coeffic ie nts S in g le Fa mil y R es id enti a l Und eve lo ped 10 a nd 100-year s to rm eve nt s c = 0 .50 c = 0.30 • Ra in fa ll Int e nsity equ a ti o ns a nd va lues ror Braws County ca n be fou nd in Table I. • Tim e or Co nce ntr a ti o n, le -Ca lc ulatio ns a rc ba se d O il the rn e lhocl round in th e TR-55 publicatio n. Rere r to Tab le 2 lo r th e equ ation s a nd Appendi x A ro r ca lc ul at io ns. T he runoff flow paths used for c a lculating the time s o f concentration are shown in Ex hibit A. For smalle r drainage areas , a minimum tc of 10 minutes is use d to d e termin e th e rainfall intensity value s . TABLE 1 -Rainfall Intensity & Runoff Data Rainfall Intensity Values (in/hr) Storm Event Is 110 '2s lso 1100 Brazos County: tc = 10 min 7.693 8 .635 9.861 11 .148 11 .639 I = b I (tc+d)e I = Rainfall Intensity (in/hr) tc = U(V*60) le= Time of concentration (min) L = Length (ft) V =Velocity (ft/sec) 5 Y..ear storm 10 'f..ear storm 25 'i.ear storm 50 'i.ear storm 100 'f..ear storm b= 76 b= 80 b= 89 b= 98 b= 96 d= 8 .5 d= 8 .5 d= 8 .5 d= 8.5 d = 8 .0 e= 0 .785 e= 0.763 e = 0 .754 e= 0.745 e = 0 .730 (Data taken from State Department of Hiqhwa'f..S and Public Transportation HY..draulic Manual, page 2-16) TABLE 2 -Time of Concentration (tc) Equations Th e time of concentration was d etermined using methods found in TR -55 , "Urban Hy drology for Small Wat ersh eds . " The equations are as follows : Time of Concentration: For S hee t F lo w: Fo r S ha ll ow Conce nt ra te d Fl ow : Re fe r to A pp e nd ix A fo r ca lc ul a ti o ns. Tc = T t(sheet flow)+ T t(concentrated sheet fl ow ) where: T1 =Travel Time, minutes w he re : T 1 =trave l tim e, hours n =M anni n g's ro ugh ne ss coeffic ie nt L = fl ow le n gth , fee t P2 = 2-yea r , 24 -h our ra in fa ll = 4.5'' s = la nd s lo pe, ft /ft T 1 = L I (60 *V) w he re: T 1 =tra ve l t ime, m in ut e s V =Ve loc ity , fps (See Fig 3-1, App. E) L = n ow lengt h , fee t ST O RM WATE R R UN O FF D ETERM l NATlON The p eak runoff val ues were d e t e 1mine d in acco rdance w it h the criteria presente d in th e prev ious section for th e 5, 10 , 25 , 50, and 100-y ear sto tm events . The runoff coeffic ients for po s t-d eve lopm e nt calculations are b ased on th e future d eve lo pm e nt of this trac t , a nd the p eak runoff values d e termined for th e po s t -deve lopment condition are s hown in Tabl e 3. TABLE 3 -Post-D eve lopme n t Dra inage Data 5 y ear sto rm 10 year sto r m 25 y ear sto rm 50 y ear storm 100 year sto rm Area le A rea# c Is O s •10 Q 10 l2s 0 2s lso O so •100 0 100 (acres) (min) (i n/hr) (cfs) (in/hr) (c f s) (in/h r) (cfs) (in/h r) (cfs) (in/hr) (cfs) 1 3.83 0 .50 13.4 6 .739 12 .90 7 .592 14 .54 8 .684 16.63 9.831 18 .83 10 .258 19 .64 2 1.14 0 .50 10.8 7.441 4 .24 8.360 4 . 77 9.552 5.44 10.802 6 .1 6 11.276 6.43 3 0.5 8 0 .50 10 7.693 2.23 8.635 2. 50 9 .861 2.86 11 .148 3 .23 11 .6 39 3.38 4 0 .52 0.50 10 7 .693 2.00 8 .635 2. 24 9.861 2.56 11 .148 2 .90 11 .639 3.03 -- 5 0.41 0 .50 10 7 .693 1.58 8 .63 5 1. 77 9 .861 2.02 11 .148 2 .29 11 .639 2 .39 6 0 .73 0.50 10 7 .693 2 .81 8.635 3 . 15 9 .861 3.60 11 .148 4 .07 11 .639 4 .2 5 The post-d eve lopm e nt drainage areas are shown on Exhibit A. Even thoug h the runoff coefficient for the developed conditions increases the runoff, the storm sewer system conveys th e runoff directly to a tributary of A lum Creek. STO RM SEWER D ESIGN The storm sewer piping for this project has been selected to be Reinforced Concrete Pipe (RCP) meeting the requirements of ASTM C -76, Class III pipe. The curb inlets will be cast-in-place concrete. Appendix B presents a summary of the storm sewer inl e t design parameters and calculations. The inlets were designed based on a I 0-year design storm. As per College Station g u idelines, t he capacities of inlets in sump were reduced by 10% to allow for clogging. Inlets were located to maintain a gutter flow depth of 5" or less , which will prevent the spread of water from reaching the crown of the road for the 10-year storm event. Refer to Appendix B for a summary of the gutter flow depths at various locations . The runoff intercepte d by the proposed storm sewer inlets was calcul ated using the following equ a tions . T he depth of flow in the g utt er was d etermined by u s ing th e Straight Crown F low e quation . The flows interce pte d b y Inl e ts I & 2 were calc ul ated by u si n g the Capac it y of Inlets On Grade e qu a tion. T h ese e qu atio n s and the resu ltin g data are sum m a ri zed in A ppend ix B . There are no inl ets in s ump for this phase of th e d e velopment . Th e a rea b e tween th e ri g h t-of-way and th e c urb li ne of the streets w ill b e fi ll ed as necessary to provid e a minimum of 6" of freeboard above th e c urb lin e. T hi s wil l e ns ure that th e runoff from the 100-year sto 1111 eve nt will re ma in within th e s treet ri g ht -o f-wa y. Appe ndi x C prese nt s a s ummary of th e s to rm sewe r pipe d es ig n p a ra m e te rs a nd c al c ul ations. A ll pip es are 18" in di a m e te r o r larger. T h e pip es for th e s to rm sewe r sys te m were d es ig n e d ba sed on th e I 0-ycar s to rm eve nt ; h oweve r , a ll wil l a lso p ass th e I 00-ycar s to rm eve nt w ith o ut any h eadwa te r . As re q uir e d b y C o ll ege S ta tion , th e ve loc it y o f n ow in th e s torm sewe r p ip e sys te m is no t lower than 2.5 fee t p e r seco nd , a nd it d ocs no t exceed 15 feet p er seco nd . As th e d a ta s hO\\S, evc 11 durin g low !l ow co ndition s, th e ve loc it y in th e pip es and boxe s w ill exceed 2 .5 fee t pe r seco nd and pre ve 11l scdi111 e 11t bui ld -up in t he pip es and boxes. The maximum flow in the stom1 sewer pipe system will occur in Pip e l. Appendi x C contai ns a summary of th e Manning pipe calcul ations for th e s tom1 sewe r system for the I 0 and 100-year eve nts . The maximum ve locit y for the pipe system wi ll be 9 .0 feet p er seco nd and will occur in Pip e 2. The stom1 sewer pipe system discharges into a drainage channel which will ha ve a 5 ' concrete flume to prevent e rosion of th e flow line of the chann e l. The propos ed c ha nn e l is a "v" shaped channel with 4H : 1 V side s lopes. It will be constructed at a s lop e of0.63 %, and it will carry 7 cfs of flow before the depth of the flow exceeds the concrete flume height. This is approximately 25% of the 10-year storm event (29 cfs). The d ept h a nd velocity of flow in the channel for the 10-yea r storm eve nt are 16 .9" and 3.7 fps , a nd the depth and ve locity of flow for the 100-year storm event are 18 .9" and 3.9 fps . To furth e r prevent erosion of the channel, grass sod wi ll be used to lin e the channel banks to a minimum depth of 1.5 feet, which is greater than the 10-year storm flow depth . The channel will be constructed with a minimum depth of 2.5 feet to restrict the flow to th e drainage easement. The proposed channel discharges into an existing drainage channel that also has a concrete flume . STORM DETENTION The storm water runoff detention is not being required for this project since it was determined during the development of Phase 1 of the subdivision that the site discharges directly into the TxDOT stonn drainage system, which discharges into a tributary of Alum Creek. This tributary is a part of the Alum Creek primary system, which is a part of the Lick Creek drainage basin. Nantucket Lake serves as a detention facility for the Alum Creek drainage basin, and with the South Hampton runoff discharging into this primary system downstream of the lake, the South Hampton peak runoff will have already passed before the peak discharge at Alum Creek, therefore resulting in no increase in the peak runoff in Alum Creek. CONCLUSIONS The construction of this project will increase the storm water runoff from this site, however it should not have a significant impact on the surrounding property. No flood damage to downstream or adjacent landowners is ex pected as a result of this dev e lopm ent. 7 APPENDIX A Time of Concentration Data & Calculations Time of Concentration Calculations Refer to Ex hibit A fo r flow p ath us ed for ca lcu lations. Drainage Area #1: Sh eet Flo w: Flow le ngth = 12 5 ' = L S lo p e= 3 .7% n = 0 .15 , short grass , prairie P2 = 4 .5" ti= 0.007 (0 .15 * 125)°8 ( 4 .5)0·5 (0.03 7)04 ti= 0 .129 hours = 7 .7 minutes Shallow Con centrated Flo w: Flow length = 535 ' = L Slope= 2 .1% Flum e Flo w: Drainage Area #2: Sheet Flow: For unpaved surface at 2.1 %, Velocity (V) = 2 .3 fp s (see Fig. 3-1) ~ ti = 53 5 ' I (60 *2 .3) = 3 .9 minute s Flow length = 355 ' = L Slope = 2 .7% For p a ved surface at 2 .7 %, Velocity (V) = 3 .3 fps (s ee Fig. 3-1) ti = 3 55' I (60*3.3) = 1.8 minutes T c = 7 .7 + 3 .9 + 1.8 = 13.4 minutes Flow length = 125 ' = L Slope = 3 .1% n = 0 .15 , short grass , prairie P2 = 4.5" ti= 0.007 (0.15 * 125)°·8 ( 4.5)0'5 (0 .031)0 '4 ti= 0 .138 hours= 8 .3 minute s Sha llow Con cen tra ted Flow: F low len gth = 195 ' = L S lope = 1.8 % Fl ulll e Flow: For unp aved s urface at 1.8%, Ve loc ity (V) = 2 .15 fp s (see Fig. 3-1) t, = 19 5 ' I (60 *2.15) = 1.5 m inu te s F low le ngt h = 200 ' = L S lo pe = 2 .7 % Fo r pa ved s urfa ce a t 2.7%, V e lo c it y (V) = 3.3 fp s (sec Fig. 3-1) t, = 200 ' I (60 *3.3 ) = 1.0 m inutes T , = 8.3 + 1.5 + 1.0 = I 0 .8 minutes .... '+--.... '+- cu a. 0 .- VI cu VI ~ :::J 0 u ~ cu ... "' 3: 3 .2 .50 - .20 - .10 .06 .04 - . 02 - .01 - .005 I 1 j ' I J I I ' , j , j . b q, , .... b, ..:.. q, ~ .:..I ~~ j I j I I I I 2 , ' . ' I 4 , I J I i ) I I 6 , j , I j j I i Ave ra ge ve l ocity , ft /sec IJ j . . . ' I I I , I I 10 . . . I Fil(U"' 1 -1.-,\ver.il(c vcloci li e> for C'l imati n l( l r.ivcl time for 'hallow COnCenlr.iled Oow . (2 l0-Vl-TR -55. Seco nd Ed .. June L98!il I 20 APPENDIXB Storm Inlet Design Data & Calculations 1 1 South Hampton -Phase 3 Depth of Flow in Street Gutter Gutter A c Slope Location (acres) (tuft) -·------· ----------------- E1 0.52 0 .50 0 .0102 -----------·-- E2 0.58 0 .50 0 .0160 ----------- ---------------- F1 1.10 0 .50 0 .0100 10-year storm 0 10 Y10-actual 0 100 (cfs) (ft) (in) (cfs) ---·------- 2.25 0 .2 37 2 .84 3.03 --- 2 .50 0.227 2.72 3 .38 ---·--·---- ---------------- 4 .75 0 .3 15 3.78 6.40 ----------------------- F2 0.41 0 .50 -----·-- Transverse (Crown) slope (ft/ft) for 27' streets = 0.0300 0.0100 1.77 -- 0 .217 2.61 ---- (6" max . for · standard curb) Straight Crown Flow (Solved to find actual depth of flow in gutter, y): Q = 0 .56 * (z/n) * S 112 * ys13 Q y ={QI (0.56 * (z/n) * S112]}31s n = Roughness Coefficient= 0 .018 S = StreeUGutter Slope (ft/ft) y = Depth of flow at inlet (ft) z = Reciprocal of crown slope: for 27' streets = 33 2 .39 100-yea r storm Y 100 (ft) (in) ---- 0 .265 3.18 --- 0.253 3.04 ----- -------- 0 .352 4.22 --- 0.243 2.92 --- South Hampton Phase 3 Inlet Length Calculati ons In le ts O n Grade In le t# Length Flow from Area# I 5' 5 2 10' 3+4 y,. (ft ) I (in) 0.217 I 2 .61 0 .315 3.78 1 O year storm O p.,1001 Oupac:lti a by pan ac.lured <lc.arryooww (ft) (els) (els) (els) (els) I from lnl•U 0.52 2 .59 -0 .82 1.77 I 0 .61 6 .09 -1 .34 4 .75 I Transverse (C rown) slope (fVftl for 27' streets ; 0 .030 z ; Re c iprocal of crown slope for 27' streets ; 33 Straight C row n Flow (Solve d to find actual depth of flow, yl : a; o .s6 • (z/n ) • s '" · y'" <:> y; (Q t [0.56 • (zln) • s "'n31' n; Roughness Coefficient; 0 .018 S ; StreeVGutter Slope (fVft) y ; Depth of flow at inlet (ft) Capacity of Inlets on grade : O c ; 0 .7 • [1 /(H1 -H2)] • [H1 512 -H,'12 ] O c ; Flow capacity of inle t (cfs) H ,; a+ y H2 ; a ; gutler depression (2" Standard ; 4" Recessed) y; Depth of flow in approach gutle r (ft) a .,.,_. (els) 0 .00 0 .00 100 year storm a. ...... Q10-Tot• Y100 a,_,_ Oupac:lty Qltyp•• Ouptufed O c.,ryo ... •r Qbyp-totail OupMotl 0100-Totfll s LIC:tuai (els) (els) (ft) I (In) (ft) (els) (els) (els) (els) I from l nl•ll (els) (els) (els) (ft/ft) (ft) 1.77 1.77 o .243 I 2 .92 0 .54 2.71 -0 .32 2 .39 I 0.00 2.39 2.39 0.01 00 5 ------4 .75 4 .75 o .352 I 4 .22 0 .64 6.45 -0 .05 6.40 I 0.00 6.40 6 .40 0.0 100 10 APPENDIXC Storm Pipe & Channel Design Data & Calculations 14 South Hampton Subdivision -Phase 3 Pipe Calculations Inlet Outlet 10 year storm 100 year storm Pi pe# Size Length Slope Invert Elev Invert Elev *Actual Flow Design Flow V10 Travel Time , tno *Actual Flow Design Flow V100 Travel Time , trioo %Full %Full (i n) (ft ) (%) (ft) (ft) (cfs) (cfs) (fps) (sec) (min) (cfs) (cfs) (fps) (sec) (min) 1 30 12.0 0.75 259.39 259 .30 -25.83 7.4 66 .6 2 0 .03 -34 .86 7.6 88 .4 2 0.0 3 -- 2 27 36.6 1.20 260.08 259 .64 -24 .06 8 .7 65.4 4 0 .07 -32.47 9 .0 85 .0 4 0 .07 -- 3 27 6.0 1.00 261.06 261 .00 -19.31 7 .8 60 .0 1 0 .01 -26.07 8.2 74.6 1 0.01 "These value s reflect the actu al flow fo r the 18" & 24" pipes . The design flow for these pipe sizes reflects a 25% reduction in pipe area . South Hampton Subdivision Phase 3 -Pipe Flow Diagram 0 10 (cfs) Drainage Areas 1 +2 19 .31 J, Pipe 3 19 .31 J, Inlet 2 4 .75 J, Pi pe 2 24.06 J, Inlet 1 1.77 J, Pipe 1 25 .83 J, Drainage Area 6 3 .15 Into Proposed Drainage Channel II 28 .98 II 0 100 (cfs) Drainage Areas 1+2 I 26 .07 J, Pipe 3 26 .07 J, Inlet 2 6.40 J, Pipe 2 32.47 J, Inl et 1 2 .39 J, Pip e 1 34 .86 J, Drainage Area 6 4 .25 Into Proposed Drainage Channel II 39 .11 II Pipe 1 -10 Year Storm Manning Pipe Calculator Given Inp ut Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ................... · · · · · · · ·· · Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hy draulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 3 0 .0000 i n 25.8300 cfs 0.0075 ft/ft 0.0140 19.9855 in 4.9087 ft2 3.4736 ft2 57 .2 883 in 94.2478 i n 7 .4362 fps 8.7312 in 66.6184 % 32 .9846 cfs 6.7196 fps Pipe 1 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results : Depth .......................... . Area ........................ · · · · Wetted Area .................... . Wetted P er imeter ............... . Peri meter ...................... . Velocity ....................... . Hy draulic Radius ............... . Percent Full ................... . Full flow Fl o wra t e ............. . Full fl o w v e loc ity ............. . Sout h Ha mpto n Subdivision -Phase 3 College Station , Texas Circular Depth of Flow 30 .0000 in 34 .8600 cfs 0 .00 75 ft/ft 0 .0140 26.5221 in 4.9087 ft2 4.5915 ft2 73.4019 in 94.2 478 in 7 .5 923 fps 9.0076 i n 88 .4071 % 32.9846 cfs 6 .7 1 96 fps Pipe 2 -10 Year S~orm Manning Pipe Calculator Giv en Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area .................... · · · · · · · · Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 27 .0000 in 24 .0600 cfs 0.01 2 0 ft/ft 0.0140 17 .6693 in 3 .9761 ft2 2.7572 ft2 50 .8888 in 84.8230 in 8 .7263 fps 7.8020 in 65 .4420 % 31.5030 cfs 7.9231 fps Pipe 2 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Ful l flow Flowrate ............. . Full flow velocity ............. . South Hampt o n Subdivision -Ph ase 3 College Stati o n, Texas Circular Depth of Flow 27.0000 in 32.4700 cfs 0.0120 ft/ft 0. 0140 22.9577 in 3.9761 ft2 3.6031 ft2 63.36 87 in 84 .8230 in 9. 0116 fps 8.1878 i n 85.0284 % 31.5030 cfs 7.9231 fps -----·------------------------------ Pipe 3 -10 Year Storm Mann i ng Pipe Cal cula tor Given Input Data: Sha pe .......................... . Solving for .................... . Diamet er ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Ve loc ity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Fl owra t e ............. . Full flow v elocity ............. . Circular Depth of Fl ow 27 .000 0 in 1 9.3100 cfs 0 .0100 ft/ft 0. 0140 16.1940 in 3 .976 1 ft2 2 .4 898 ft2 47.8360 in 84 .8230 in 7.7 556 f ps 7 .4950 in 59 .9779 % 28.7 581 cfs 7.2328 fps Pipe 3 -100 Year Storm Manning Pipe Calcu lator Given Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results : Depth .......................... . Area ........................... . Wet t ed Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radi u s ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow ve l ocity ............. . South Ha mp ton Subdivis i on Col lege Sta ion, Texas Ph ase 3 Circular Depth of Flow 27 .000 0 in 26.0700 cfs 0 .0100 ft/ft 0 .0140 20.1482 in 3 .9761 ft2 3.1822 f t2 56.3142 in 84 .8230 in 8 .1925 fps 8.1371 in 74.6230 % 28.7581 cfs 7.2328 fps Drainage Channel -10 Year Storm Channe l Calcu l ator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results : Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Are a ........................... . Perimeter ...................... . Percent full ................... . Trapezoidal Depth of Flow 28.9800 cfs 0.0063 ft/ft 0.0 2 50 30 .0000 in 0.0000 in 0.2500 ft/ft (V/H) 0 .2500 ft/ft (V/H) 16 .8884 i n 3.6578 fps 134. 1280 cfs 7 .9227 ft2 139 .2653 in 8.1921 in 135 .1072 in 25 .0000 ft2 247.3863 in 56.2946 % Drainage Channel -100 Ye a r Storm Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Resu l ts : Depth .......................... . Ve loc ity ....................... . Full F lowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radi u s ............... . Top width ...................... . Area ........................... . Perimet er ...................... . Percent full ............ . So u t h Hampt o n S ubdi vls i o n -Ph ase 3 College Statio n, Texas Trapezoidal Depth of Flow 39.llOO cfs 0.0063 ft/ft 0 .0250 30.0000 in 0 .0000 in 0 .2500 ft/ft (V/H) 0.2500 ft/ft (V/H) 18 .897 7 in 3.9425 fp s 134. 1280 c f s 9.9201 ft2 1 55.8346 i n 9 .1667 i n 1 51 .1818 in 25.0000 ft2 247.3863 in 62.992 4 % EXHIBIT A Post-Development Drainage Area Map 2 1 Q'.3~ v FOR OFFICE USE ONLY P&Z CASE NO .: Q4 -} ~ S-- DATE SUBMITTED: 5-1./[J'--/ FINAL PLAT APPLICATION (Check one) D Minor ($300.00) D Amending ($300 .00) D Final ($400 .00) D Vacating ($400.00) l:2f Replat ($600.00)* *Includes public hearing fee The following items must be submitted by an established filing deadline date for P&Z Commission consideration . MINIMUM SUBMITTAL REQUIREMENTS: _x__Filing Fee (see above) NOTE : Multiple Sheets -$55.00 per additional sheet N/A Variance Request to Subdivision Regulations -$100 (if applicable) _x__oevelopment Permit Application Fee of $200.00 (if applicable). _x__lnfrastructure Inspection Fee of $600.00 (applicable if any public infrastructure is being constructed) _LApplication completed in full. !:!J.Pr_Copy of original deed restrictions/covenants for replats (if applicable). _x__ Thirteen (13) folded copies of plat. (A signed mylar original must be submitted after staff review .) _* _One (1) copy of the approved Preliminary Plat and/or one (1) Master Plan (if applicable). _LPaid tax certificates from City of College Station , Brazos County and College Station l.S .D. _LA copy of the attached checklist with all items checked off or a brief explanation as to why they are not. _x_ Two (2) copies of public infrastructure plans associated with this plat (if applicable). _::_Parkland Dedication requirement approved by the Parks & Recreation Board, please provide proof of approval (if applicable). * Pending ** Previously Approved Date of Preapplication Conference: ___ O_c.._\-_c~~--<r __ b_1,........L_o_o_1 ___________ _ NAME OF SUBDIVISION South Hampton -Phase 3 SPECIFIED LOCATION OF PROPOSED SUBDIVISION (Lot & Block) Lots 1-3, Block 5; Lot 4. Block 3; Lots 1-4, Block 6 APPLICANT/PROJECT MANAGER'S INFORMATION (Primary Contact for the Project): Street Address 1101 University Drive East. Suite 108 State Texas Zip Code ~77~8~4~0 ___ _ Phone Number (979) 846-5735 PROPERTY OWNER'S INFORMATION: City College Station E-Mail Address phyllis@brazosla ndrealty.com Fax Number (979) 846-0652 Name ~~~~~~~~~~N=an~t=uc~k=e~t=Lt=d~·~~~~~~~~~~~~~~~~~~~~ Street Address 1101 University Drive East, Suite 108 State Texas Zip Code ~77~8~4~0 ___ _ Phone Number (979) 846-5735 ARCHITECT OR ENGINEER'S INFORMATION : City College Stat ion E-Mail Address ph yll is @braz os lan d realty .com Fa x Number (979) 846-0652 Name ~~~~~--'T~e=xc=o~n~-~J=o=e~S=c~hu=l=tz~P~·=E~-~~~~~~~~~~~~~~~~~~~~ Street Address 1707 Graham Road State Texas Zip Code 77846 Phone Number (979) 764-7743 6/13 /03 C ity College Station E-Mail Address joeschultz@texcon .net Fax Number (979) 764 -7759 I o f I Is there a temporary blanket easement on this property? If so, please provide the Volume N/ A; and Page# __ _ Acreage -Total Property l \ . 5 7 ] Total# Of Lots 11 R-0-W Acreage 0 · ~ ~ Exist ing Use : -"-V=a=ca=n"'""'"t __________ _ Proposed Use :_S~in ... g~le~-f~a~m=il.._y ~re~s~id~e~n~tia=I _______ _ Number Of Lots By Zoning District _ 11_ /POD P~aJe 1 ti.._ 3 I r>oc Average Acreage Of Each Residential Lot By Zon ing District: f2-~ \ .,_.ic- 0\c.Jt 3 o. 3 7 I PDD -z_ .4 °1 I ~DO Floodplain Acreage 0 .0 ~ \ ... T A statement addressing any differences between the Final Plat and approved Master Plan and/or Preliminary Plat (if appl icable): N/A Requested Varia nces To Subdivision Regulations & Reason For Same : ~N=o~ne-=---------------- Requested Oversize Participation : ~N=o~ne-=----------------------------- Total Linear Footage of Proposed Public: f)Z-Streets 1.-7-0 Sidewalks l~ l Sanitary Sewer Lines 5-z S' Water Lines ·z:z_ z_ Channels 5S Storm Sewers 0 Bike Lanes I Paths Parkland Dedication due prior to filing the Final Plat: ACREAGE : ___ # of acres to be dedicated + $ ____ development fee ___ # of acres in floodplain # of acres in detention --- ___ # of acres in greenways OR FEE IN LIEU OF LAND : 11 #of Single-Family Dwelling Units X $556 = $ 6, 116 .00 N/A (date) Approved by Parks & Recreation Board NOTE: DIGITAL COPY OF PLAT MUST BE SUBMITTED PRIOR TO FILING. The applicant has prepared this application and certifies that the facts stated herein and exhibits attached hereto are true , correct, and complete. The undersigned hereby requests approval by the City of College Station of the above -identified final plat and attests that this request does not amend any covenants or restrictions associated with this plat. Date 6/13 /03 2 of 2 ~ .•.. SUPPLEMENTAL DEVELOPMENT PERMIT INFORMATION Application is hereby made for the following development SPEJ!<ific site/waterway alterations : ~ f='r"' S .f-r "'-c..-ht' ct. c_ o -n S .fr. .. J-, ~ .-.. -h .5 o -Ph. ~ ~ \I\ ACKNOWLEDGMENTS: I, .J~~cf l 5 c1J+z.,. P'h'1 I/; f Hof,/,,,. , design engineer/owner, hereby acknowledge or affirm that: The information and conclusions contained in the above plans and supporting documents comply with the current requirements of the City of College Station , Texas City Code, Chapter 13 and its associated Drainage Policy and Design Standards . As a condition of approval of this permit application, I agree to construct the improvements proposed in this ~~or~=nts and the requirements of Chapter 3 o! Col ege talion City Code. ~ e~tyvm~r(s) CERTIFICATIONS: (for proposed alterations within designated flood hazard areas.) A .I, certify that any nonresidential structure on or proposed to be on this site as part of this application is designated to prevent damage to the structure or its contents as a result of flooding from the 100 year storm . Engineer Date B . I, certify that the finished floor elevation of the lowest floor, including any basement, of any residential structure, proposed as part of this application is at or above the base flood elevation established in the latest Federal Insurance Administration Flood Hazard Study and maps, as amended. Engineer Date -J~s~ Engineer Date D. I, , do certify that the proposed alterations do not raise the level of the 100 year flood above elevation established in the latest Federal Insurance Administration Flood Hazard Study. Engineer Date Conditions or comments as part of approval : ___________________________ _ In accordance with Chapter 13 of the Code of Ordinances of the City of College Station , measures shall be taken to insure that debris from construction, erosion , and sedimentation shall not be deposited in city streets , or existing drainage facilities. All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer for the above named project. All of the applicable codes and ordinances of the City of College Station shall apply . 6 /13/03 3 of 3