Loading...
HomeMy WebLinkAbout29 Development Permit 01-05 Castlegate Sec 4 Ph 2Drainage Report for Castlegate Subdivision Section 4, Phase 2 College Station, Texas January 2001 Developer: Greens Prairie Investors, Ltd. By Greens Prairie Associates, LLC 5010 Augusta Colle ge Station, Texas 77845 (979) 693-7830 Prepared Ev: TEXCON General Contractors 1707 Graham Road College Station, Tex 8,~ 77845 (979) 690-7711 REVIEWED FOR C<'" n n• '" "1CE FEB 1 2 2001 COLLEGi:: ~ A 110N ENGINEER! G I I CERTIFICATION I, Joseph P. Schultz , Licensed Professional Engineer No . 65889 , State of Texas , certify that this report for the drainage design for the Castlegate Subdivision, Section 4, Phase 2 was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners hereof. _,,,,,,, --i~ OF -,.. ,, .I'-<._~ ••••••••••• t:.+-_ ,, 10 .•. * ·.;S'c.S' •• ,,, .. . , "* . ·. * I. "* : ·. * .. J i .................................. ~ l .. AQgf .. ~ .. r;..~9.~.~.~ll. ... .1 · l,'1:l• •ll:-...: "i'b\~ asaag Q /t'J I fa~··f.<]ISTE~~··0· ~ ~ "' .$' '5' • • • • • • • • ~ ., \\ .. ~ONAL <;;._.,#" ,,,~- l---lS'~O{ Josep TABLE OF CONTENTS DRAINAGE REPORT CASTLEGATE SUBDIVISION SECTION 4, PHASE 2 CERTIFICATION .................................................................................................................................................................. 1 TABLE OF CONTENTS ........................................................................................................................................................ 2 LIST OFT ABLES .................................................................................................................................................................. 3 INTRODUCTION ................................................................................................................................................................... 4 GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 4 FLOOD HAZARD INFORMATION .................................................................................................................................... 4 DEVELOPMENT DRAINAGE PATTERNS ....................................................................................................................... 4 DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 5 STORM WATER RUNOFF DETERJ\iIINATION ............................................................................................................... 5 DETENTION FACILITY DESIGN ...................................................................................................................................... 7 STORM SEWER DESIGN .................................................................................................................................................... 7 CONCLUSIONS ..................................................................................................................................................................... 8 APPENDIX A .......................................................................................................................................................................... 9 Storm Sewer Inlet Design Calculations APPENDIX B ........................................................................................................................................................................ 11 Storm Sewer Pipe Design Calculations EXHIBIT A ............................................................................................................................................................................ 27 Of/site Infrastructure Plan for Castlegate Subdivision EXHIBIT B ............................................................................................................................................................................ 29 Post-Development Drainage Area Map 2 LIST OF TABLES TABLE 1-Rainfall Intensity Calculations ........................................................................................................ 6 TABLE 2 -Post-Development Runoff Information ........................................................................................... 6 3 DRAINAGE REPORT CASTLEGATE SUBDIVISION SECTION 4, PHASE 2 INTRODUCTION The purpose of this report is to provide the hydrological effects of the construction of the Castlegate Subdivision, Section 4, Phase 2, and to verify that the proposed storm drainage system meets the requirements set forth by the City of College Station Drainage Policy and Design Standards . GENERAL LOCATION AND DESCRIPTION The project is located on a 162 acre tract located west of State Highway 6 along the north side of Greens Prairie Road in College Station, Texas. This report addresses Section 4, Phase 2 of this subdivision, which is made up of 22.94 acres . The site is wooded with the vegetation primarily consisting of oak trees and yaupons . The existing ground elevations range from elevation 322 to elevation 340. The general location of the project site is shown on the vicinity map in Exhibit B. FLOOD HAZARD INFORMATION The project site is located in the Spring Creek branch of the Lick Creek Drainage Basin. The site is located in a Zone X Area according to the Flood Insurance Rate Map prepared by the Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated areas dated July 2, 1992, panel number 48041 C0205-C. Zone X Areas are determined to be outside of the 500-year floodplain. LJA Engineering & Surveying, Inc. submitted a Request for Conditional Letter of Map Revision (CLOMR) to FEMA to outline a proposed 100-year floodplain area. This CLOMR No. 00-06-844R was approved by FEMA on 9/8/2000. The proposed floodplain area does not affect Section 4. Section 4 will continue to be in a Zone X Area. DEVELOPMENT DRAINAGE PATTERNS Prior to development, the storm water runoff for this tract flows in one general direction . For Section 4, Phase 2, a majority of the acreage flows toward the center of the tract and then to the north into the natural drainage at the northern end of the tract. Ultimately, the runoff flows north to the proposed regional detention facility. Refer to the Offsite Infrastructure Plan in Exhibit A for the location of this proposed detention facility. 4 DRAINAGE DESIGN CRITERIA The design parameters for the storm sewer are as follows: • The Rational Method is utilized to determine peak storm water runoff rates for the storm sewer design. • Design Storm Frequency Storm Sewer system • Runoff Coefficients Pre-development 10 and 100-year storm events Post-development (single family residential) c = 0.30 c = 0.55 • Rainfall Intensity values for Brazos County for a minimum time of concentration of 10 minutes can be found in Table 1. Where a longer time of concentration was necessary, it is noted in the respective table, and the intensities are calculated with the higher values where required . • Time of Concentration, tc -Due to the small sizes of the drainage areas, the calculated times of concentration, tc, are less than 10 minutes . Therefore, a minimum tc of 10 minutes is used in most cases to determine the rainfall intensity values. Where a longer time of concentration was necessary, it is noted and used accordingly. STORM WATER RUNOFF DETERMINATION The peak runoff values were determined in accordance with the criteria presented in the previous section for the 5, 10, 25, 50, and 100-year storm events. The runoff coefficients are based on the future development of this tract. The drainage areas for post-development are shown in Exhibit B . Post-development runoff conditions are summarized in Table 2. 5 TABLE 1 -Rainfall Intensity Calculations Rainfall lntensit Values in/hr Stonn t.:= I = b I {tc+d)e Event 10min I = Rainfall Intensity (in /hr) Is 7 .693 110 8 .635 tc = U(V*60) l2s 9 .861 le= Time of concentration (min) lso 11 .148 L = Length (ft) 1100 11 .639 V =Velocity (ft/sec) Brazos County: 5 v..ear storm 10 v..ear storm 25 v..ear storm 50 v..ear storm 100 v..ear storm b = 76 b = 80 b = 89 b = 98 b = 96 d = 8 .5 d = 8 .5 d = 8 .5 d = 8 .5 d = 8 .0 e = 0 .785 e = 0.763 e = 0.754 e = 0 .745 e = 0.730 (Data taken from State Department of Highwav..s and Public Transportation Hv..draulic Manual, page 2-16) TABLE 2 -Post-Development Runoff Information A c Area# \ (acres) \ -3 1 .73 0 .55 J 63 0 .79 0 .55 \ 64 1.25 0 .55 ,) 73 1 .83 0 .55 ,~74 1.47 0 .55 ·n 5 1 .51 0 .55 \76 0 .54 0 .55 .J 77 0 .70 0.55 1 ~8 2 .10 0 .55 1"7 9 0.88 0 .55 \~o 2 .21 0 .55 I '8 1 0 .97 0.55 ,82 1 .26 0 .55 83 1 .24 0.55 '8 4 1 .72 0 .55 .)3 5 1 .51 0 .55 86 1 .20 0 .55 '87 1 .78 0 .55 The Rational Method: Q =CIA Q = Flow (cfs) A= Area (acres) C = Runoff Coeff. I= Rainfall Intens i ty (in/hr) tc Os 010 (min) (cfs) (cfs) 1 0 7 .32 8 .22 1 0 3 .34 3 .75 1 0 5 .29 5 .94 10 7 .74 8.69 10 6 .22 6 .98 10 6 .39 7 .17 10 2 .28 2 .56 10 2 .96 3 .32 10 8 .89 9 .97 1 0 3 .72 4.18 1 0 9 .35 10 .50 10 4 .10 4 .61 10 5 .33 5 .98 10 5 .25 5 .89 10 7 .28 8 .17 1 0 6 .39 7 .17 1 0 5 .08 5 .70 10 7 .53 8.45 6 02s Oso 0100 (cfs) (cfs) (cfs) 9 .38 10 .61 11 .07 4 .28 4.84 5.06 6 .78 7 .66 8 .00 9 .93 11 .22 11 . 71 7 .97 9 .01 9.41 8 .19 9 .26 9 .67 2 .93 3 .31 3.46 3 .80 4.29 4.48 11 .39 12 .88 13 .44 4.77 5.40 5 .63 11 .99 13 .55 14 .15 5.26 5 .95 6 .2 1 6 .83 7 .73 8 .07 6 .73 7 .60 7 .94 9 .33 10 .55 11 .0 1 8 .19 9 .26 9 .67 6 .51 7 .36 7 .68 9.65 10 .91 11 .3 9 DETENTION FACILITY DESIGN The detention facility handling the runoff from this site will be a regional facil ity designed by LJA Engineering & Surveying, Inc . Refer to the Offsite Infrastructure Plan in Exhibit A for the location of this proposed detention facility . The runoff from this project flows into existing drainages and then into Spring Creek . The detention facility is located adjacent to Spring Creek prior to Spring Creek entering the State Highway 6 right-of-way. STORM SEWER DESIGN The storm sewer piping for this project has been selected to be Reinforced Concrete Pipe (RCP) meeting the requirements of ASTM C-7 6, Class III pipe. The curb inlets and junction boxes will be cast-in-place concrete . Appendix A presents a summary of the storm sewer inlet design parameters and calculations . The inlets were designed based on a 10-year design storm. As per College Station guidelines, the capacities of inlets in sump were reduced by 10% to allow for clogging. Inlets were located to maintain a gutter flow depth of 5" or less , which will prevent the spread of water from reaching the crown of the road for the 10-year storm event. The runoff intercepted by the proposed storm sewer inlets was calculated using the following equations. The depth of flow in the gutter was determined by using the Straight Crown Flow equation. The flow intercepted by Inlets 409, 410 , 414 & 415 was calculated by using the Capacity of Inlets On Grade equation. The capacities for the inlets in sumps (Inlets 411, 412 & 413) were calculated using the Inlets in Sumps, Weir Flow equation with a maximum allowable depth of 7" (5" gutter flow plus 2" gutter depression). These equations and the resulting data are summariz ed in Appendix A. Appendix B presents a summary of the storm sewer pipe design parameters and calculations. All pipes are 18" in diameter or larger. For pipes with 18" and 24" diameters, the cross- sectional area is reduced by 25%, as per College Station requirements. A summary of how this was achieved is shown in Appendix B as well. The pipes for the storm sewer system were designed based on the 10-year storm event; however, all will also pass the 100-year storm event without any headwater. Based on the depth of flow in the street determined for the 100-year storm event, this runoff will be contained within the street right-of-way until it enters the storm sewer system. As required by College Station, the velocity of flow in the storm sewer pipe system is not lower than 2.5 feet per second, and it does not exceed 15 feet per second. As the data shows , even during low flow conditions, the velocity in the pipes will exceed 2.5 feet per second and prevent sediment build-up in the pipes. The maximum flow in the storm sewer pipe system will occur in Pipe No. 412 .. The maximum velocity for the pipe system in Section 4, Phase 2 will be 10 .5 feet per second and will occur in Pipe No. 412 . Appendix B contains a summary of the Manning pipe calculations as well as flow diagrams mapping the flows through the storm sewer system for t~e 10 and 100-year events . 7 CONCLUSIONS The construction of this project will significantly increase the storm water runoff from this site. The proposed storm sewer system should adequately control the runoff and release it info existing drainages. Also, the regional detention facility and the proposed ponds in the park area should adequately reduce the peak post-development runoff to less than the pre-development runoff for the design storm event. This will prevent any impact on the properties downstream of this project. 8 APPENDIX A Storm Sewer Inlet Design Calculations 9 / ,,,. {/ v .v I/ " J/ < /, ,r " v v v ~ Castlegate Subdivision Section 4 • Phase 2 Inlet Length Calculations Inlets In Sump 10 year storm Flow"°"' A c Q,. °"'"'-o,. ... Orotlll+10'Mo Inlet# Length & Type Area# (acres) (cfsl (cfs) from ln .. tt (cfs) (cfs) Section 4/Phas• 1 (for lnformatlonat purpos88 cin lvl .. ,/, 1 ..... ,, .. ., 1-· .. :.·,;. .. ,." ~ •401 1 O' Standard 66 0.49 0.55 2.33 2.33 2.56 70 1.18 0.55 5.60 5.60 6.16 ,,. •404 5' Standard 63 0.79 0.55 3.75 3.75 4 .13 Section 4/Phase 2 '"· ~ , 75 1.51 0.55 7.17 0.79 ..aa,.t(l:)."(15,.tOll 7.97 8.76 .. 407 15' Standard 77 0.70 0.55 3.32 2.49 410 5.81 6.39 ....... 408 1 o· Standard 64 1.25 0.55 5.94 5.94 6.53 76 0.54 0.55 2.56 0.00 409 2.56 2.82 V 411 15' Standard 79 / O.BB 0.55 4.18 r 4.18 4 .60 , BO .,_.,. 2.21 0.55 10 .50 ~ 10.50 11 .55 412 'Standard 83 V' 1.24 0.55 5.89 ...... 1.62 "' 415 7.51 v 8.26 85 1.51 0.55 7.17..-7.17 7.89 ))-3 Y' 15' Standard /82 1.26 0.55 5.98 // 0.00 414 v 5.98 6.58 ,,. t.--'84 1.72 0.55 8.17 -~ 8.17 8 .99 Y .. 301 15' Standard 3 1.73 0.55 8.22 8.22 9 .04 87 1.78 0.55 8.45 8.45 9.30 Inlets were constructed as a part of Section 4, Phase 1, but affect the design of Secllon 4 , Phase 2 . .. Inlets will be constructed during Section 3, Phase 1 construction. Inlets On Grade 10 year storm Inlet# Length & Type fb#trom y,, Q,_,_ o. .. -Qbyp•• °"'"'-Area# (ft) (In) (ft) (cfs) (cfs) (cf•) fromln .. t• Section 4/Phasa 1 lfor lnformatlonal Du rDOS88 on lvl ' ' •402 10' Recessed 65 0.296 3.55 0.54 5.37 -2 .33 0 •403 1 O' Recessed 71 0.301 3.61 0.56 5.61 -1 .62 o ·405 15' Recessed 72 0.369 4.43 0.65 9.79 -0 .67 0 •405 1 O' Reces sed 74 0.325 3.90 0.62 6.19 0.79 0 Section 4/Philse 2 ,< 414 ..-'1 O' Recessed 81 0.352 4.22 0.62 6.20 -1 .59 0 415 , 1 O' Recessed 73 0.399 4.79 0.71 7.07 <'.r.62J.J 0 409 v1 o· Recessed 86 0.339 4.07 0.66 6.61 -0 .91 0 410 v-1 O' Recessed 78 0.396 4.75 0.75 7.49 t;.2.49Y 0 . Inlets were constructed as a part of Section 4 , Phase 1, but affec t the design of Section 4, Phase 2 . Transverse (Crown) slope (ft/ft) = 0 .038 Straight Crown Flow (Solved to find actual depth of flow, yl : a= o.ss • (zln) • s 112 • y'13 <:> y = {O / (o .ss • (zln) • s 112n"' n = Roughness Coefficient = z = Reciproc al of crown slope = S = StreeVGutter Slope (ft/ft) y = Depth of flow at inlet (ft) Capacity of Inlets on grade : Oc = 0 .7 • [1 /(H 1 -H,j] • [H 1lll. H2 512] Oc = Flow capacity of inlet (els) H, =a+ y 0 ,016 26 H 2 =a = gutter depression (2" Standard ; 4" Recessed) y = Depth of flow in approach gutter (ft) .... .... - - Y10..-1u111 (ft) (In) i-':': ·'' 0.212 2.55 0.295 3.54 0 .254 3.05 . 0.337 4 .04 0 .299 3.59 0 .302 3,62 0.220 2.64 0.264 3.17 0 .373 4.48 0.329 3.95 0 .324 3.89 0.303 3.63 0.340 4.08 0.341 4.09 0.344 4.13 Qbyp<tot .. Oc'P"fot.i (cfsl (cfs) 0.00 5.37 0.00 5.61 0.00 9.79 0.79 6.19 -·. 0.00 6.20 1.62 7.07 0.00 6.61 l/'2.4\V 7.49 100 year storm L 10-1t9e1'd . L10-ec1:u• o, .. Cc.ry-o,. ... Orot.i+10'llo y,., (ft) (ft) (cf•) (cf•) ' ' 6.53 GQ) 3.14 7.55 3.09 C s__,1 5.06 11.35 15 V 9.67 4.71 4.48 5.39 7.00 10/ 8.00 3.46 0.63 12 .09t.. 15 -5.63 14.15 12 .09'"'"1-15 / 7.94 4.14 9.67 11 .66'"". 15 I; 8.07 0.00 11.01 13.73 15 l-"'11 .07 11 .39 • u1ing y_ • r • 0.583' Q 10·Totlll y,., Q,_,_ (cfs) (ft) (In) (ft) 5.37 0.301 3.61 0.56 5.61 0.307 3.68 0.59 9 .79 0.402 4 .82 0.70 6.98 0.364 4 ,36 0.66 "· 6.20 0.360 4.31 0.66 8,69 0.446 6.36 0.76 6.61 0.359 4.31 0.70 9.97 0.443 5.31 0.61 Inlets In sumps. Weir Flow : L = Q I (3 • y ,,,) <:> y z (QI 3L)213 L = Length of inlet opening (ft) Q = Flow at inlet (cfs) y = total depth of flow on inlet (ft) max y for inlet in sump = 7" = 0 .583' from lntet# (cfsl (cfsl (ft) (In) 3.14 3.45 0 .536 6.43 7.55 8.31 5.06 5.56 0.516 6.19 .t02,40l,405,.0S 14,38 15.81 0.706 8.47 410 9.87 10.66 8.00 8.80 0.561 6.98 409 4.09 4.50 5,63 6.20 0.616 7.39 14.15 15.56 415 12.08 13.29 ... 0.656 7.87 9.67 10.63 , 4 14 8.0 7 8.87 0 .601 7.22 11 .01 12.11 11 .07 12.18 0 .671 8.05 11 .39 12.53 100 year storm o. ........ o..,,. •• °"'"'-Qbyp-.totlll (cfs) (cf•) (cfs) from lnlett (cfs) 5.64 -1.54 0 0.00 5.91 -0 .53 0 0.00 10.43 1.87 0 1.67 6.57 2.84 0 2.84 6.57' l...o.3V o 0.00 7.57 ('4 . 14 0 4.14 7.05 0.63 " 0 0.63 6.05 rs.39 o 5,39 Clc.,.ot .. 0100.rcul s L1etu.r (cfs) (cfs) (ft/ft) (fl ) 5.64 5.64 0.0285 10 '- 5.91 5.91 0.0285 10 10.43 12.29 0.0291 15 6.57 9.41 0 ,0291 10 " 6.57 6.57 0.0151 10 7.57 11 ,71 0.0151 10 7.05 ~ 0.0206 10 6.05 13.44 0.0208 10 APPENDIXB Storm Sewer Pipe Design Calculations 11 Castlegate Subdivision Pipe Calculations -Section 4 , Phase 2 Inlet Outlet 10 year storm 100 year storm Size Pi pe# Length Slope Invert Elev In vert Elev *Actual Fl ow Design flow V1 0 %Full Travel Time , t,10 •Actual Flow Design Flow V100 % Full Travel Time, t Hta (in) / (ft) (%) (ft) v (ft) (cfs) (cfs) v (fps) (sec) (min) (els) (els) (fps) (sec) ~422 18 " 26 .1-' 1.4cY 325.8[V' 325.43 V' 7 .07 11.42 v 7.4 81 .0 4 0 .06 7.57 12 .23 7.4 88.9 4 ---- 2-1 ---I- J 419 23.9' 0 .60 ~ 320 .34 ..... 320.20 ,_ 14.68 ~ 6 .0 59.3 4 0 .07 21 .75 6.4 79 .9 4 ---- ~1 2 4-~ v 3~ 1.1¥ 324 .93 .... ::::-321.54 y' 13 .27 I 21 .43 J It 8 .0 79 .6 39 0 .64 14.14 22 .84 8 .0 85.7 39 -- )\420 24 v 90 .4/ 1.10 . / 321 .44 v 320.45 ;/ 13.27 ii 21 .43 II 8 .0 79 .6 11 0 .19 14.14 22.84 8 .0 85.7 11 t.41 8 4Y 187 .9 ~ .... 0.40"' 318 .95 v 318 .20 v 27.42 6 .0 47 .9 31 0.52 54.97 7.0 76 .3 27 ........ 417 42 ..... 381 .0v v 0.40 .. 318 .10 ......... 316 .58 V' 27.42 6 .0 47 .9 64 1.06 54.97 7.0 76 .3 54 ~16 4 ~ 203 .3 . 0 .4a.... 316.48 v 315.67 ....... 27.42 6 .0 47.9 34 0 .56 54.97 7.0 76.3 29 /415 42 .. 247 .3 0 .56 ... 315 .57 ...... 314.19 .,... 42.10 7 .6 56 .0 33 0 .54 74.75 8.1 90 .8 31 ~ 412 42/ 35.3 v v 0 .90 313.64 / 313.32 "' 56.20 9 .8 57.8 4 0 .06 89.85 10.5 83.3 3 - • \414 18 " 26 .1,.... 1.50 • 320.3Y 319.96 ii 6 .6 1 10.68 7 .6 73.8 3 0 .06 7.05 11 .39 7.7 78 .1 3 )(413 24 .; 117.CY 1.25 ... 319.46 v 318.00 y 14.10 22.77 8 .5 79 .3 14 0 .23 15.10 24.39 8 .5 85.9 14 " *These values reflect the actual flow for the 18" & 24" pipes . The design fl ow for these pipe sizes reflects a 25% reduction in pipe area . (Refer to attached calculation for speci fic information .) (min) 0 .06 -- 0 .06 -- 0 .64 0 .19 0.45 0 .91 0.48 0.51 0.06 0 .06 0 .23 City of College Station requirement to Reduce Cross-Sectional Area of 18" & 24" Pipes by 25% Using Mannings Equation from page 48 of the College Station Drain age Policy & Des ign Standards Ma nual : Q = 1.49/n *A * R213 * S 112 Q =Flow Capacity (cfs) 18" Pipe: Pipe si ze (inches)= 18 Wetted Perimeter W P, (ft)= 4 .71 Cross-Sectional Area A, (tt2 ) = 1. 766 Reduced Area AR, (ft2 ) = 1 .325 Hydraulic Radius R =A/WP, (ft)= 0 .375 Reduced Hydr Radius RR= A R/Wp, (ft)= 0 .281 Roughness Coefficient n = 0 .014 Friction Slope of Conduit Sr. (ft/ft) = 0 .01 Example Calculation : Slope Fl ow Capaci ty Reduced Flow Capacity % Difference s Q Ored uced Oreduced/Q 0.005 6 .91 4 .28 0.619 0 .006 7.57 4 .69 0.619 0.007 8 .18 5 .06 0.619 24" Pipe: Pipe size (inches)= 24 Wetted Perimeter WP • (ft)= 6 .28 Cross-Sectional Area A , (tt2) = 3 .14 Reduced Area AR . (tt2) = 2 .355 Hydraulic Radius R = A/WP • (ft) = 0 .5 Reduced Hydr Radius RR= A R/Wp , (ft)= 0 .375 Roughness Coefficient n = 0 .014 Friction Slope of Conduit S1o (ft/ft)= 0.01 Example Calculation : Slope Flow Ca pa ci ty Redu ced Flow Capacity % Difference s Q Ored uced Ored uceiQ 0 .005 14 .89 9 .22 0.619 0 .006 16 .31 10.1 0.619 0 .007 17.61 10.9 0.619 Conclusion: Multiply actual Q in 18" & 24" pipes by 1.615 to reflect a 25 % reduction in the cross-sectional area called for on page 47 , paragraph 5 of the College Station Drainage Policy & Design Standards manual. Castlegate Subdivision Section 4, Phase 2 -Pipe Flow Diagram 0 10 (cfs) Inlet 415 1 7.07 J, Pipe 422 1 7 .07 J, Inlet 414 1 6 .20 J, Pipe 421 1 13 .27 J, June Box 407 J, Pipe 4201 13 .27 lnlet412 I 14.68 J, J, lnlet413 I 14 .15 ~ Pipe 419 1 14.68 J, Pipe 418 1 42.10 J, June Box 40 6 J, Pipe 417 1 42 .10 J, June Box405 Inlet 409 1 6 .61 J, J, Pipe 416 1 42 .10 Pipe 4141 6 .61 J, J, Inlet 411 I 14 .68 Inlet 410 1 7.49 J, J, Pipe 415 1 56 .78 Pipe 413 1 14.10 \I IC I----, • June Box 404 • l llPipe 412 1 70 .88 II Castlegate Subdivision Section 4, Phase 2 -Pipe Flow Diagram 0 100 (cfs) Inlet 415 1 7 .57 .J, Pipe 422 1 7 .57 .J, Inlet 414 1 6.57 .J, Pipe 421 1 14.14 .J, June Box 407 J, I Pipe 4201 14.14 Inlet 412 1 21 .75 I .J, .J, 1 lnlet413 I 19.08 ~ Pipe 4191 21 .75 .J, Pipe 418 1 54.97 , IP .J, June Box 406 .J, v Pipe 417 1 54.97 J, June Box 405 Inlet 409 7 .05 .J, l/ Pipe 4161 54 .97 Pipe .J, 414 7.05 .J, v Inlet 411 I 19 .78 • Inlet .J, 410 8 .05 .J, .J, Pipe 415 1 74 .75 1 Pipe 413 15 .10 ~ " -, ---, _ June Box 404 _ l llPipe 412 1 89 .85 II / Pipe 412 -10 Year Storm (Revised 2/2/01) Mann ing Pi p e Calculator Given Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 42.0000 in 70.8800 cfs 0 .0 090 ft/ft 0 .0140 28.4098 in 9. 6211 ft2 6.9260 ft2 81. 1191 in 131.9469 in 10.2339 fps 12.2948 in 67.6423 % 88.6292 cfs 9 . 2119 fps Pipe 412 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 42 .0000 in 89 .8500 cfs 0.0090 ft/ft 0.0140 34 .9721 in 9 . 6211 ft2 8.5610 ft2 96.5471 in 131.9469 in 10.4952 fps 12 .7688 in 83.2668 % 88.6292 cfs 9.2119 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas Pipe 413 -10 Year Storm Mann i ng Pipe Calculator Given Input Data: Shap e .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24.000 0 in 22. 7700 cfs ./ 0 .0125 ft/ft 0. 0140 19 .0429 in 3 .1416 ft2 2.6732 ft2 52 .7529 in 75 .3 982 in 8 .51 78 fps / 7 .2 971 in / 79 .3456 % 23.4860 cfs 7.4758 fps Pipe 413 -100 Year Storm Manning Pipe Calculator Given Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24. 0000 in / 24.3900 cfs 0.0125 ft/ft 0. 0140 20 .6218 in 3.1416 ft2 2.8722 ft2 56 .9381 in 75 .3982 in 8.4919 fps / 7 .2639 in / 85.9244 % 23.4860 cfs 7.4758 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas Pipe 414 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 18.0000 in 10.6800 cfs 0.0150 ft/ft 0. 0140 13.2758 in 1 . 7671 ft2 1.3972 ft2 37 .1855 in 56 .54 87 in 7 .6439 fps 5.4106 in 73.7543 % 11 .946 2 cfs 6.7602 fps / Pipe 414 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 18.0000 in 11 .3900 cfs 0.0150 ft/ft 0 . 0140 14.0528 in 1.7671 ft2 1 .4802 ft2 39 .004 2 in 56.5487 in 7 .694 8 fps 5 .464 8 in 78. 0710 % 11.9462 cfs 6 .7602 fps / Castlegate Subdivision, Section 4 , Phase 2 College Station, Texas Pipe 415 -10 Year Storm (Revised 2 /2 /01) Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diamet er ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow veloci ty ............. . Circular Dep th of Fl ow 42.0000 in 42.1000 cfs 0.0056 ft/f t 0.0140 23. 50ll in 9 .62ll ft2 5.5383 ft 2 70 .98 76 in 131. 9469 in 7.6016 fps ll . 2346 in 55.9551 % 69.9116 cfs 7 .2 665 fps Pipe 415 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 42.0000 in 74.7500 cfs 0.0056 ft/ft 0 .014 0 38.1232 in 9 .6211 ft2 9.1760 ft2 106.0165 in 131 .94 69 in 8 .1463 fps 12.4636 in 90.7696 % 69 .9116 cfs 7 .266 5 fps Castlegate Subdivision, Section 4, Phase 2 Coll~ge Station, Texas Pipe 416 -10 Year Storm (Revised 2/2/01) Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ......................... · · · Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow veloc i ty ............. . Circular Depth of Flow 42 .0000 in 42 .1 000 cfs 0.0 040 ft/ft 0.0140 26 .2 021 in 9 . 6211 ft2 6.3122 ft2 76 .4 871 in 131.9469 in 6.6696 fps 11 . 8838 in 62.3860 % 59.0861 cfs 6.1413 fps Pipe 416 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 42.0000 in 54.9700 cfs 0.00 4 0 ft/ft 0.0140 32.0585 in 9. 6211 ft2 7.8800 ft2 89 .2664 in 131.9469 in 6.9 759 fps 1 2. 7116 in 76.3299 % 59.0861 cfs 6 .1413 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas Pipe 417 -10 Year Storm (Revised 2 /2/01) Mann ing Pipe Calculator Given Input Data: Shape .......................... . Solv ing for .................... . Di ameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............ ~ .. . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 42 .0000 in 42 .1 000 cfs 0.0040 ft/ft 0 .0140 26 .202 1 in 9.6 211 ft2 6.3122 ft2 76.4871 in 131 .946 9 in 6.6696 fps 11.8838 in 62.3860 % 59 .0861 cfs 6 .1413 fps Pipe 417 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 42 .000 0 in 54 .9700 cfs 0 .0040 ft /ft 0 . 0140 32.0585 in 9 . 6211 ft2 7.8800 ft2 89 .2 664 in 131.9469 in 6 .97 59 fps 12 . 7116 in 76.3299 % 59 .0861 cfs 6.1413 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas Pi p e 41 8 -10 Ye ar Storm (Revised 2 /2 /01) Ma nning Pi p e Calcula tor Given I nput Da ta: Shape .......................... . Solv ing f o r .................... . Diamete r ....................... . Fl o wrat e ....................... . Slope .......................... . Manning' s n .................... . Co mp u t e d Resul t s: Depth .......................... . Area ........................... . Wetted Ar ea .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full f l ow velocity ............. . Circ ul a r Dept h of Flo w 4 2 .0 000 i n 4 2 .1 0 00 c fs 0.00 4 0 ft/f t 0. 0 14 0 26.2 021 in 9 . 6 2 11 ft 2 6 .31 2 2 ft2 76 .4871 in 131.94 69 in 6.6696 fps 11 .8838 in 62.3860 % 59.0861 cfs 6 .1413 fps Pipe 418 -1 00 Year Stor m Manning Pipe Calcul ator Give n Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Peri meter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Ci rcular Depth of Flow 42 .0000 in 54.9700 cfs 0 .0040 ft/ft 0.0140 32.0585 i n 9. 6211 ft2 7 .8800 ft2 89 .2664 in 13 1.9469 in 6 .9759 fps 1 2.7116 in 7 6 .3299 % 5 9.0861 cfs 6 .1 4 1 3 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas Pipe 419 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 27. 0000 in / 14 .68 00 cfs 0.0060 ft/ft 0. 0140 15 .9981 in 3.9761 ft2 2.4537 ft2 47.4366 in 84.8230 in 5 .9827 fps / 7.4487 in / 59.2521 % 22.2760 cfs 5.6025 fps Pipe 419 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 27.0000 in / 21.7500 cfs 0.0060 ft/ft 0. 0140 21.5758 in 3.9761 ft2 3.4063 ft2 59.7255 in 84 .8230 in 6.3852 fps / 8.2128 in / 79.9103 % v 22.2760 cfs 5.6025 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas I Pipe 420 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . S olving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24.0000 in / 2 1.4300 cfs 0 . 0110 ft/ft 0. 0140 19.1051 in 3 .1416 ft2 2.6816 ft2 52.9066 in 75.3982 in 7.9915 fps 7.2987 in 79.6044 % 22.0318 cfs 7.0129 fps Pipe 420 -100 Ye a r Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24.0000 in 22.8400 cfs 0.0110 ft/ft 0 . 0140 20.5705 i n 3 .1 416 ft2 2.8662 ft2 56.7909 in 75 .3982 in 7 .9688 fps 7.26 75 in 85 .7 104 % / 22.0318 cfs 7 .0129 fps Castlegate Subdivision, Section 4, Phase 2 Co l lege Station, Texas Pipe 421 -10 Year Storm Manning Pipe Calculator Given I nput Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24 . 0000 in / 21.4300 cfs O.OllO ft/ft 0. 0140 19.1051 in 3.1416 ft2 2.6816 ft2 52.9066 in 75.3982 in 7. 9915 fps ../ 7 .2987 in / 79.6044 % 22.0318 cfs 7.0129 fps Pipe 421 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24.0000 in 22 . 8400 cfs / O.OllO ft/ft 0. 0140 20 .5705 in 3.1416 ft2 2.8662 ft2 56.7909 in 75.3982 in 7.9688 fps / 7.2675 in ../ 85.7104 % 22 .0318 cfs 7 .0129 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas Pipe 422 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diamete r ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................ ·. · · Wetted Area .................... . Wetted Perimete r ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 18.0000 in 11.4200 cfs "'/ 0. 0140 ft/ft 0 .0140 14.5847 in 1.7671 ft2 1.5338 ft2 40 .323 8 in 56.5487 in 7.4454 fps 5.4775 in 81. 0264 % 11.5411 cfs 6.5309 fps Pipe 422 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results : Depth .......................... . Area .......................... ·. Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 18 .0000 in 12 .2300 cfs / 0. 0140 ft /ft 0 . 0140 15 .9962 in 1 .767 1 ft2 1.6595 ft2 44 .30 25 in 56 .54 87 in 7.3696 fps 5.3941 in 88 .8678 % 11. 5411 cfs 6.5309 fps Castlegate Subdivision, Sect i on 4, Phase 2 College Station, Texas EXHIBIT A Offsite Infrastructure Plan for Castlegate Subdivision 27 ,· ~ • J Item No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ENGINEERS COST ESTIMATE CASTLEGATE SUBDIVISION COLLEGE STATION , TEXAS SECTION 4 -PHASE 2 Estimated Description Quantity Sitework Mobilization/Layout 1.0 Erosion /Seeding/bale dams/constr. Entr. 1.0 Site Preparation 4.6 Topsoil Stripping & Replacement 1,501 Excavation/Grading 3,893 Lime Stabilized Subgrade 8,487 Concrete Curb and Gutter 5,598 Base Material -6" depth 6,621 Base Material -7" depth 0 Asphalt Paving -1 1 /2" depth 6,621 Concrete Apron 540 Storm Drainage 18" RCP -structural backfill 56 24" RCP -non-structural backfill 522 27" RCP -structural backfill 26 42" RCP -structural backfill 255 42" RCP -non-structural backfill 808 Junction boxes 4 Inlets 1 O' wide 4 Inlets 15' wide 3 Rip Rap at channel discharges 0 Remove culvert and modify access road 1 REVIEWED FOk C()t\JIF:'I I ICE FEB 0 1 2001 COLLEGE Sl k I IUl\J ENGINEERING Page 1 of 2 25-Jan-01 Unit Estimated Price Cost LS $8,000 .00 $8,000.00 LS $6,000.00 $6,000.00 AC $3,000.00 $13,800.00 CY $4.00 $6,004.00 CY $3.50 $13,625.50 SY $3.00 $25,461.00 LF $7.00 $39,186 .00 SY $5.75 $38,070.75 SY $6 .50 $0.00 SY $4.25 $28,139.25 SF $5.00 $2,700.00 Subtotal $180,986.50 LF $36.00 $2,016.00 LF $32.00 $16,704.00 LF $46.00 $1, 196.00 LF $105.00 $26,775.00 LF $85.00 $68,680.00 EA $2,500.00 $10,000.00 EA $3,200.00 $12 ,800.00 EA $4,000.00 $12,000.00 TN $40.00 $0.00 LS $950.00 $950.00 Subtotal $151,121.00 ...... ,. Waterline 22 8" Waterline -PVC(C900)-structural backfill 23 8" Waterline -PVC(C900)-non -structu ral backfill 24 6" Waterline -PVC(C900)-structural backfill 25 6" Waterline -PVC(C900)-non-structural backfill 26 Gate Valves -8" 27 Gate Valves -6 " 28 M.J. Bends and Tees 8" 29 M.J . Bends and Tees 6" 30 Connect to Existing 31 Water Services 32 Fire Hydrant Assembly 33 2" Blow off Assembly Sanitary Sewer 34 8" SOR 26 Pipe -structural backfill 35 8" SOR 26 Pipe -non structural backfill 36 6" SOR 26 Pipe -structural backfill 37 6" SOR 26 Pipe -non structural backfill 38 Tie-in to existing Manhole 39 Sewer Services 40 6" Stack Pipe Riser (extra long) 41 Add drop to Manhole 42 Manholes -13' depth Page 2 of 2 50 LF $30.00 $1,500.00 1,990 LF $26.00 $51 ,740 .00 88 LF $26 .00 $2 ,288 .00 500 LF $18.00 $9 ,000 .00 4 EA $600.00 $2,400.00 1 EA $500 .00 $500 .00 14 EA $300.00 $4 ,200 .00 2 EA $250.00 $500.00 2 EA $350 .00 $700 .00 47 EA $700 .00 $32,900.00 4 EA $2,000 .00 $8 ,000.00 1 EA $400.00 $400.00 Subtotal $114,128.00 80 LF $35.00 $2,800 .00 1,243 LF $30.00 $37 ,290.00 50 LF $25.00 $1,250 .00 1,342 LF $20 .00 $26,840.00 1 EA $300.00 $300.00 46 EA $700.00 $32,200.00 8 LS $300.00 $2,400 .00 2 LS $500.00 $1,000 .00 12 EA $2,400.00 $28,800.00 Subtotal $132,880.00 Total Sitework $180,986.50 Total Storm Drainage $151,121.00 Total Water $114,128 .00 Total Sanitary Sewer $132,880.00 TOTAL CONSTRUCTION $579, 115.50 Engineering @5% $28,955. 78 Contingency@5% $28,955.78 TOTAL PROJECT $637,027.05 ~~ COLLlGl STATION DEVELOPMENT PERMIT PERMIT NO. 100005 DP-CASTLEGA TE SUB SEC 4 PH 2 FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE SITE LEGAL DESCRIPTION: CASTLEGATE SUBDIVISION SECTION 4, PHASE 2 DATE OF ISSUE: MARCH 02, 2001 OWNER: WALLACE PHILLIPS GREENS PRAIRIE INVESTORS , LTD . 5010 AUGUSTA COLLEGE STATION, TEXAS 77845 SITE ADDRESS: 2270 GREENS PRAIRIE RD W DRAINAGE BASIN: SPRING CREEK VALID FOR 12 MONTHS CONTRACTOR: TYPE OF DEVELOPMENT: FULL DEVELOPMENT PERMIT SPECIAL CONDITIONS: All construction must be in compliance with the approved construction plans. All trees must be barricaded, as shown on plans, prior to any construction. Any trees not barricaded will not count towards landscaping points. Barricades must be 1' per caliper inch of the tree diameter. The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design Criteria. The Owner and/or Contractor shall assure that all disturbed areas are sodden and establishment of vegetation occurs prior to removal of any silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor shall also insure that any disturbed vegetation be returned to its original condition, placement and state. The Owner and/or Contractor shall be responsible for any damage to adjacent properties, city streets or infrastructure due to heavy machinery and/or equipment as well as erosion, siltation or sedimentation resulting from the permitted work. Any trees required to be protected by ordinance or as part of the landscape plan must be completely fenced before any operations of this permit can begin. In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to insure that debris from construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage facilities . I hereby grant this permit for development of an area outside the special flood hazard area. All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer in the development permit application for the above named project and all of the codes and ordinances of the City of College Station that apply. Owner/ Agent/Contractor Date ..L-C?2-t?/ Date . .. -' Item No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ENGINEERS COST ESTIMATE CASTLEGATE SUBDIVISION COLLEGE STATION, TEXAS SECTION 4 -PHASE 2 Estimated Description Quantity Sitework Mobilization/Layout 1.0 Erosion /Seeding/bale dams/constr. Entr. 1.0 Site Preparation 4 .6 Topsoil Stripping & Replacement 1,501 Excavation/Grading 3,893 Lime Stabilized Subgrade 8,487 Concrete Curb and Gutter 5 ,598 Base Material -6" depth 6,621 Base Material -7" depth 0 Asphalt Paving - 1 1 /2" depth 6,621 Concrete Apron 540 . Storm Drainage 18" RCP -structural backfill 56 24" RCP -non-structural backfill 522 27" RCP -structural backfill 26 42" RCP -structural backfill 255 42" RCP -non-structural backfill 808 Junction boxes 4 Inlets 1 O' wide 4 Inlets 15' wide 3 Rip Rap at channel discharges 0 Remove culvert and modify access road 1 FEB 0 1 2001 COLLEGE: ~:: t ··.' I U •'~ ENGINEE Ri NG Page 1of2 · 25-Jan-01 Unit Estimated Price Cost LS $8 ,000 .00 $8,000.00 LS $6,000.00 $6,000 .00 AC $3,000 .00 $13,800.00 CY $4.00 $6,004 .00 CY $3.50 $13,625.50 SY $3 .00 $25,461 .00 LF $7.00 $39,186.00 SY $5.75 $38,070.75 SY $6 .50 $0 .00 SY $4.25 $28,139.25 SF $5.00 $2,700.00 Subtotal $180,986.50 ,.;-·' .. :.~;/'- ···~ LF $36.00 $2,016.00 LF $32.00 $16,704.00 LF $46 .00 $1,196.00 LF $105.00 $26,775 .00 LF $85.00 $68,680.00 EA $2,500.00 $10,000.00 EA $3 ,200.00 $12,800.00 EA $4 ,000 .00 $12,000.00 TN $40 .00 $0 .00 LS $950.00 $950.00 Subtotal $151,121.00 J . ,,._ ... I • ~ Waterline 22 8" Waterline -PVC(C900)-structural backfill 23 8" Waterline -PVC(C900)-non-structural backfill 24 6" Waterline -PVC(C900)-structural backfill 25 6" Waterline -PVC(C900)-non-structural backfill 26 Gate Valves -8" 27 Gate Valves -6" 28 M.J. Bends and Tees 8" 29 M.J. Bends and Tees 6" 30 Connect to Existing 31 Water Services 32 Fire Hydrant Assembly 33 2" Blow off Assembly Sanitary Sewer 34 8" SOR 26 Pipe -structural backfill 35 8" SOR 26 Pipe -non structural backfill 36 6" SOR 26 Pipe -structural backfill 37 6" SOR 26 Pipe -non structural backfill 38 Tie-in to existing Manhole 39 Sewer Services 40 6" Stack Pipe Riser (extra long) 41 Add drop to Manhole 42 Manholes -13' depth P::tnfl 2 of? 50 LF $30.00 $1,500 .00 1,990 LF $26.00 $51,740.00 88 LF $26.00 $2,288.00 500 LF $18 .00 $9,000.00 4 EA $600.00 $2,400.00 1 EA $500.00 $500.00 14 EA $300.00 $4,200.00 2 EA $250.00 $500.00 2 EA $350.00 $700.00 47 EA $700 .00 $32,900 .00 4 EA $2,000.00 $8,000 .00 1 EA $400.00 $400.00 Subtotal $114, 128.00 80 LF $35.00 $2,800.00 1,243 · LF $30.00 $37,290.00 50 LF $25.00 $1,250.00 1,342 LF $20.00 $26,840.00 1 EA $300.Q~,; $300.00 ,, 46 EA $700"~0.0 $32,200.00 8 LS ,$300.00 ··. $2,400.00 2 LS $500.00 $1,000.00 12 EA $2,400.00 $28.800.00 Subtotal $132 ;880.00 Total Sitework $180,986.50 Total Storm Drainage $151,121.00 Total Water $114,128.00 Total Sanitary Sewer $132,880.00 TOTAL CONSTRUCTION $579, 115.50 Engineering @5% $28,955.78 Contingency@5% $28,955.78 TOTAL PROJECT $637,027.05 (f ~ COLLlGl STATION DEVELOPMENT PERMIT PERMIT NO. 100005 DP-CASTLEGA TE SUB SEC 4 PH 2 FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE SITE LEGAL DESCRIPTION: CASTLEGATE SUBDIVISION SECTION 4 , PHASE 2 DATE OF ISSUE : MARCH 02 , 2001 OWNER: WALLACE PHILLIPS GREENS PRAIRIE INVESTORS, LTD. 5010 AUGUSTA COLLEGE STATION, TEXAS 77845 SITE ADDRESS: 2270 GREENS PRAIRIE RD W DRAINAGE BASIN: SPRING CREEK VALID FOR 12 MONTHS CONTRACTOR: TYPE OF DEVELOPMENT: FULL DEVELOPMENT PERMIT SPECIAL CONDITIONS: All construction must be in compliance with the approved construction plans. All trees must be barricaded, as shown on plans , prior to any construction. Any trees not barricaded will not count towards landscaping points. Barricades must be 1' per caliper inch of the tree diameter. The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design Criteria. The Owner and/or Contractor shall assure that all disturbed areas are sodden and establishment of vegetation occurs prior to removal of any silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor shall also insure that any disturbed vegetation be returned to its original condition , placement and state. The Owner and/or Contractor shall be responsible for any damage to adjacent properties, city streets or infrastructure due to heavy machinery and/or equipment as well as erosion , siltation or sedimentation resulting from the permitted work. Any trees required to be protected by ordinance or as part of the landscape plan must be completely fenced before any operations of this permit can begin. In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to insure that debris from construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage facilities. I hereby grant this permit for development of an area outside the special flood hazard area. All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer in the development permit application for the above named project and all of the codes and ordinances of the City of College Station that apply. Owner/ Agent/Contractor Date . ~-tt. , ~ ENGINEERS COST ESTIMATE CASTLEGATE SUBDIVISION 25-Jan-01 COLLEGE STATION, TEXAS SECTION 4 -PHASE 2 Item Estimated Unit Estimated No. Description Quantity Price Cost Sitework 1 Mobilization/Layout 1.0 LS $8 ,000 .00 $8,000.00 2 Erosion /Seeding/bale dams/constr. Entr. 1.0 LS $6,000.00 $6,000.00 3 Site Preparation 4.6 AC $3,000.00 $13,800.00 4 Topsoil Stripping & Replacement 1,501 CY $4.00 $6,004.00 5 Excavation/Grading 3,893 CY $3.50 $13,625 .50 6 Lime Stabilized Subgrade 8,487 SY $3.00 $25,461.00 7 Concrete Curb and Gutter 5,598 LF $7 .00 $39,186.00 8 Base Material -6" depth 6,621 SY $5.75 $38,070.75 9 Base Material -7" depth 0 SY $6.50 $0.00 10 Asphalt Paving - 1 1 /2" depth 6,621 SY $4.25 $28,139.25 11 Concrete Apron 540 . SF $5.00 $2.700.00 Subtotal $180,986.50 ',f ~ ,, Storm Drainage •.;- 12 18" RCP -structural backfill 56 LF $36 .00 $2,016.00 13 24" RCP -non-structural backfill 522 LF $32.00 $16,704 .00 14 27" RCP -structural backfill 26 LF $46.00 $1,196.00 15 42" RCP -structural backfill 255 LF $105.00 $26,775.00 16 42" RCP -non-structural backfill 808 LF $85.00 $68,680.00 17 Junction boxes 4 EA $2,500.00 $10,000.00 18 Inlets 1 O' wide 4 EA $3,200.00 $12,800.00 19 Inlets 15' wide 3 ' EA $4 ,000.00 $12,000 .00 20 Rip Rap at channel discharges 0 TN $40.00 $0 .00 21 Remove culvert and modify access road 1 LS $950 .00 $950.00 Subtotal $151,121.00 RE.VIEVVEJ) F ()h C('ll\ 11 n1 ll\ ·'CE ~~ FEB 0 1 2001 COLLE r~~:'.: c:; '··· " ._ ,.(_•-....1 .J l •..• ~ ENGINEE RING Page 1 of 2 J. -.,i - Waterline 22 8" Waterline -PVC(C900)-structural backfill 50 LF $30 .00 $1,500 .00 23 8" Waterline -PVC(C900)-non-structural backfill 1,990 LF $26.00 $51,740 .00 24 6" Waterline -PVC(C900)-structural backfill 88 LF $26.00 $2,288 .00 25 6" Waterline -PVC(C900)-non-structural backfill 500 LF $18 .00 $9,000.00 26 Gate Valves -8" 4 EA $600.00 $2,400.00 27 Gate Valves -6" 1 EA $500.00 $500 .00 28 M.J . Bends and Tees 8" 14 EA $300.00 $4 ,200 .00 29 M.J. Bends and Tees 6" 2 EA $250.00 $500 .00 30 Connect to Existing 2 EA $350.00 $700.00 31 Water Services 47 EA $700.00 $32,900 .00 32 Fire Hydrant Assembly 4 EA $2,000.00 $8,000.00 33 2" Blow off Assembly 1 EA $400.00 $400.00 Subtotal $114,128.00 Sanitary Sewer 34 8" SOR 26 Pipe -structural backfill 80 LF $35.00 $2 ,800.00 35 8" SOR 26 Pipe -non structural backfill 1,243 · LF $30.00 $37,290 .00 36 6" SOR 26 Pipe -structural backfill 50 LF $25.00 $1 ,250.00 37 6" SOR 26 Pipe -non structural backfill 1,342 LF $20.00 $26,840 .00 38 Tie-in to existing Manhole 1 EA $300 .0LY·· $300.00 ·:l "i . 39 Sewer Services 46 EA $700·:00 $32 ,200 .00 ' 40 6" Stack Pipe Riser (extra long) 8 LS .$300.00 ··. $2,400.00 41 Add drop to Manhole 2 LS $500.00 $1,000.00 42 Manholes -13' depth 12 EA $2,400.00 $28,800.00 Subtotal $132,880.00 Total Sitework $180,986.50 Total Storm Drainage $151,121.00 Total Water $114,128.00 Total Sanitary Sewer ~1321880.00 TOTAL CONSTRUCTION $579, 115.50 Engineering @5% $28,955.78 Contingency @5% $28,955.78 TOTAL PROJECT $637,027.05 Paqe 2 of 2 Drainage Report for Castlegate Subdivision Section 4, Phase 2 College Station, Texas January 2001 Developer: Greens Prairie Investors, Ltd. By Greens Prairie Associates, LLC 5010 Augusta College Station, Texas 77845 (979) 693-7830 Prepared By: TEXCON General Contractors 1707 Graham Road College Station, Texas 77845 (979) 690-7711 REVIEWED FOR Cf"'""n' 11\f\ICE FEB 1 2 2001 COLLE:(.,jt: ~I A I ION ENGINEERING CERTIFICATION I, Joseph P. Schultz, Licensed Professional Engineer No. 65889, State of Texas , certify that this report for the drainage design for the Castlegate Subdivision, Section 4 , Phase 2 was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners hereof. _,,,,,,,, --i€. OF /: \ -l'A..,. 't-••••••••••• t:-t ,, ;e:, ••• * ··.-115' •• "' .. . , "* . ·. * I. '*: · .• ·,j , .................................. ~ l .. AQgf.~ .. ~~ .. ~~lf.~.~TL .. .I · l,-0• •<tr.: .,,16··~ 65889 /4J I ··~~f.<}tSTE~~~0· ~-#' " \)s ••••••·• ~ ., \\ ... ~ONAL €_..;' ,,,~- l ~ lS'~O{ Josep TABLE OF CONTENTS DRAINAGE REPORT CASTLEGATE SUBDIVISION SECTION 4, PHASE 2 CERTIFICATION .................................................................................................................................................................. 1 TABLE OF CONTENTS ........................................................................................................................................................ 2 LIST OF TABLES .................................................................................................................................................................. 3 INTRODUCTION ................................................................................................................................................................... 4 GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 4 FLOOD HAZARD INFORMATION .................................................................................................................................... 4 DEVELOPMENT DRAINAGE PATTERNS ...................................................................................................................... .4 DRAINAGE DESIGN CRITERIA ...............•........................................................................................................................ S STORM WATER RUNOFF DETERMINATION ............................................................................................................... 5 DETENTION FACILITY DESIGN ...................................................................................................................................... 7 STORM SEWER DESIGN .................................................................................................................................................... 7 CONCLUSIONS ....................•..•............................................................................................................................................. 8 APPENDIX A .......................................................................................................................................................................... 9 Storm Sewer Inlet Design Calculations APPENDIX B •..............................................................................................................................•........................................ 11 Storm Sewer Pipe Design Calculations EXHIBIT A ............................................................................................................................................................................ 27 Offsite Infrastructure Plan for Castlegate Subdivision EXHIBIT B ............................................................................................................................................................................ 29 Post-Development Drainage Area Map 2 LIST OF TABLES TABLE 1 -Rainfall Intensity Calculations ........................................................................................................ 6 TABLE 2-Post-Development Runofflnformation ........................................................................................... 6 3 DRAINAGE REPORT CASTLEGATE SUBDIVISION SECTION 4, PHASE 2 INTRODUCTION The purpose of this report is to provide the hydrological effects of the construction of the Castlegate Subdivision, Section 4, Phase 2 , and to verify that the proposed storm drainage system meets the requirements set forth by the City of College Station Drainage Policy and Design Standards. GENERAL LOCATION AND DESCRIPTION The project is located on a 162 acre tract located west of State Highway 6 along the north side of Greens Prairie Road in College Station, Texas. This report addresses Section 4, Phase 2 of this subdivision, which is made up of 22.94 acres . The site is wooded with the vegetation primarily consisting of oak trees and yaupons. The existing ground elevations range from elevation 322 to elevation 340. The general location of the project site is shown on the vicinity map in Exhibit B. FLOOD HAZARD INFORMATION The project site is located in the Spring Creek branch of the Lick Creek Drainage Basin. The site is located in a Zone X Area according to the Flood Insurance Rate Map prepared by the Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated areas dated July 2, 1992, panel number 48041C0205-C. Zone X Areas are determined to be outside of the 500-year floodplain. LJA Engineering & Surveying, Inc . submitted a Request for Conditional Letter of Map Revision (CLOMR) to FEMA to outline a proposed 100-year floodplain area. This CLOMR No . 00-06-844R was approved by FEMA on 9/8/2000. The proposed floodplain area does not affect Section 4 . Section 4 will continue to be in a Zone X Area. DEVELOPMENT DRAINAGE PATTERNS Prior to development, the storm water runoff for this tract flows in one general direction. For Section 4, Phase 2, a majority of the acreage flows toward the center of the tract and then to the north into the natural drainage at the northern end of the tract. Ultimately, the runoff flows north to the proposed regional detention facility . Refer to the Offsite Infrastructure Plan in Exhibit A for the location of this proposed detention facility . 4 DRAINAGE DESIGN CRITERIA The design parameters for the storm sewer are as follows: • The Rational Method is utilized to determine peak storm water runoff rates for the storm sewer design. • Design Storm Frequency Storm Sewer system • Runoff Coefficients Pre-development 10 and 100-year storm events Post-development (single family residential) c = 0.30 c = 0.55 • Rainfall Intensity values for Brazos County for a minimum time of concentration of 10 minutes can be found in Table 1. Where a longer time of concentration was necessary, it is noted in the respective table, and the intensities are calculated with the higher values where required. • Time of Concentration, tc -Due to the small sizes of the drainage areas, the calculated times of concentration, tc, are less than 10 minutes. Therefore, a minimum tc of 10 minutes is used in most cases to determine the rainfall intensity values. Where a longer time of concentration was necessary, it is noted and used accordingly. STO RM WATER RUN O FF DETERMINATION The peak runoff values were determined in accordance with the criteria presented in the previous section for the 5, 10, 25, 50, and 100-year storm events. The runoff coefficients are based on the future development of this tract. The drainage areas for post-development are shown in Exhibit B. Post-development runoff conditions are summarized in Table 2. 5 TABLE 1 -Rainfall Intensity Calculations Rainfall Intensity Values (in/hr) Stonn t.:= Event 10 min Is 7 .693 110 8 .635 l2s 9 .861 (50 11 .148 1100 11.639 Brazos County: 5 Y..ear storm 10 'i_ear storm b = 76 b = 80 d = 8.5 d = 8 .5 e = 0 .785 e = 0 .763 I= b I (tc+dt I = Rainfall Intensity (in/hr) tc = U(V*60) le= Time of concentration (min) L = Length (ft) V = Velocity (ft/sec) 25 'i_ear storm 50 'i.ear storm 100 'i_ear storm b = 89 b = 98 b = 96 d = 8.5 d = 8 .5 d = 8 .0 e = 0 .754 e = 0.745 e = 0 .730 (Data taken from State Department of Hiqhwa'i_S and Public Transportation HY..draulic Manual , page 2-16) TABLE 2 -Post-Development Runoff Information A c Area# (acres) 3 1.73 0 .55 63 0 .79 0 .55 64 1 .25 0 .55 73 1.83 0 .55 74 1 .4 7 0.55 75 1 .51 0 .55 76 0 .54 0.55 77 0 .70 0 .55 78 2.10 0 .55 79 0 .88 0.55 80 2 .21 0.55 81 0 .97 0 .55 82 1 .26 0 .55 83 1 .24 0 .55 84 1 . 72 0 .55 85 1 .51 0 .55 86 1 .20 0 .55 87 1 . 7 8 0 .55 The Rational Method: Q =CIA Q = Flow (cfs) A= Area (acres) C = Runoff Coeff . I= Rainfall Intensity (in/hr) tc Os 010 (min) (cfs) (cfs) 10 7 .32 8.22 10 3 .34 3.75 10 5 .29 5 .94 10 7 .74 8 .69 10 6 .22 6 .98 10 6.39 7 .17 10 2 .28 2.56 10 2 .96 3 .32 10 8 .89 9.97 10 3 .72 4 .18 10 9.35 10 .50 10 4 .10 4 .61 10 5 .33 5 .98 10 5.25 5 .89 10 7 .28 8 .17 10 6 .39 7 .17 10 5 .08 5 .70 10 7 .53 8 .45 6 02s Oso 0100 (cfs) (cfs) (cfs) 9 .38 10 .61 11 .07 4 .28 4 .84 5 .06 6 .78 7 .66 8 .00 9 .93 11 .22 11 . 71 7 .97 9.01 9 .41 8 .19 9 .26 9.67 2 .93 3.31 3.46 3 .80 4 .29 4 .48 11 .39 12 .88 13 .44 4 .77 5.40 5 .63 11 .99 13 .55 14 .15 5.26 5 .95 6 .21 6 .83 7 .73 8 .07 6 .73 7 .60 7 .94 9 .33 10 .55 11 .01 8 .19 9 .26 9.67 6 .51 7 .36 7 .68 9.65 10 .91 11 .39 DETENTION FACILITY DESIGN The detention facility handling the runoff from this site will be a regional facility designed by LJA Engineering & Surveying, Inc . Refer to the Offsite Infrastructure Plan in Exhibit A for the location of this proposed detention facility . The runoff from this project flows into existing drainages and then into Spring Creek. The detention facility is located adjacent to Spring Creek prior to Spring Creek entering the State Highway 6 right-of-way. STORM SEWER DESIGN The storm sewer piping for this project has been selected to be Reinforced Concrete Pipe (RCP) meeting the requirements of ASTM C-76, Class ill pipe. The curb inlets and junction boxes will be cast-in-place concrete. Appendix A presents a summary of the storm sewer inlet design parameters and calculations . The inlets were designed based on a 10-year design storm. As per College Station guidelines, the capacities of inlets in sump were reduced by 10% to allow for clogging. Inlets were located to maintain a gutter flow depth of 5" or less , which will prevent the spread of water from reaching the crown of the road for the 10-year storm event. The runoff intercepted by the proposed storm sewer inlets was calculated using the following equations. The depth of flow in the gutter was determined by using the Straight Crown Flow equation. The flow intercepted by Inlets 409, 410, 414 & 415 was calculated by using the Capacity of Inlets On Grade equation. The capacities for the inlets in sumps (Inlets 411, 412 & 413) were calculated using the Inlets in Sumps, Weir Flow equation with a maximum allowable depth of 7" (5" gutter flow plus 2" gutter depression). These equations and the resulting data are summarized in Appendix A. Appendix B presents a summary of the storm sewer pipe design parameters and calculations. All pipes are 18" in diameter or larger. For pipes with 18" and 24" diameters, the cross- sectional area is reduced by 25%, as per College Station requirements. A summary of how this was achieved is shown in Appendix B as well. The pipes for the storm sewer system were designed based on the 10-year storm event; however, all will also pass the 100-year storm event without any headwater. Based on the depth of flow in the street determined for the 100-year storm event, this runoff will be contained within the street right-of-way until it enters the storm sewer system. As required by College Station, the velocity of flow in the storm sewer pipe system is not lower than 2.5 feet per second, and it does not exceed 15 feet per second. As the data shows , even during low flow conditions, the velocity in the pipes will exceed 2 .5 feet per second and prevent sediment build-up in the pipes . The maximum flow in the storm sewer pipe system will occur in Pipe No. 412 . The maximum velocity for the pipe system in Section 4 , Phase 2 will be 10.5 feet per second and will occur in Pipe No. 412. Appendix B contains a summary of the Manning pipe calculations as well as flow diagrams mapping the flows through the storm sewer system for the 10 and 100-year events. ) 7 CONCLUSIONS The construction of this project will significantly increase the storm water runoff from this site . The proposed storm sewer system should adequately control the runoff and release it into existing drainages . Also, the regional detention facility and the proposed ponds in the park area should adequately reduce the peak post-development runoff to less than the pre-development runoff for the design storm event. This will prevent any impact on the properties downstream of this project. 8 APPENDIX A Storm Sewer Inlet Design Calculations 9 Castlegate Subdivision Section 4 -Phase 2 Inlet Length Calculations Inlets In Sump 1 O year storm F'°"'fl'om A c Q,. a....,_ Or ... 0,.Clll .... 1K Inlet# Length & Type Area# (ac res) (cfs) (cfs) from lnlett (cfs) (cfs) Sectlon-4/Phasa 1 (for lnfOnnatlonal purposes cinlyl '· ;--,y.,. ~~.·:-11.•.'$ ·'~'~' ·401 1 O' Standard 66 0.49 0.55 2.33 2.33 2.56 70 1.18 0.55 5.60 5.60 6.16 •404 5' Standard 63 0.79 0.55 3.75 3.75 4.13 Section 4/PhH8 2 .... ;;"·!'• , , ... , .... ~··· .. 407 15' Standard 75 1.51 0.55 7.17 0.79 ~Cl,.«15,408 7.97 8.78 77 0 .70 0.55 3.32 2.49 410 5.81 6.39 -400 10' Standard 64 1.25 0.55 5.94 5.94 6,53 76 0.54 0.55 2 .56 0,00 409 2.56 2 .82 411 15' Standard 79 0.88 0.55 4.18 4.18 4,60 80 2.21 0.55 10 .50 10,50 11 .55 412 15' Standard 83 1.24 0.55 5.89 1.62 415 7.51 8.26 85 1.51 0.55 7.17 7.17 7.89 413 15' Standard 82 1.26 0.55 5.98 0.00 414 5.98 6.58 84 1.72 0.55 8.17 8.17 8.99 .. 301 15' Standard 3 1.73 0.55 8.22 8.22 9.04 87 1.78 0 .55 8.45 8.45 9.30 •inlets were constructed as a part of Section 4 , Phase 1, but affect the design of Section 4, Phase 2 . .. Inlets will be constructed during Section 3, Phase 1 construction . Inlets On Grade 1 o year storm Inlet# Flow from Y10 Qp«fool: a. .. -Q-a....,_ Length & Type Area# (ft) (In) (ft) (cfs) (cfs) (cfs) fromlnlott Section 41Phn• 1 (for lnformaUonal DU """"• on ly} .. ,, " :.O.b..i; ···"''''-' A,:-· •402 1 O' Recessed 65 0.296 3.55 0.54 5.37 -2 .33 0 •403 1 O' Recessed 71 0.301 3.61 0.56 5.61 -1 .62 0 •405 15' Recessed 72 0.369 4.43 0.65 9.79 -0 .67 0 •400 10' Recessed 74 0.325 3.90 0.62 6.19 0 .79 0 Sactlon 4/Phasa 2 414 1 O' Recessed 81 0.352 4.22 0.62 6.20 -1 .59 0 415 1 O' Recessed 73 0.399 4.79 0.71 7.07 1.62 0 409 1 O' Recessed 66 0.339 4.07 0.66 6.61 -0 .91 0 410 1 O' Recessed 78 0.396 4.75 0.75 7.49 2.49 0 . Inlets were constructed as a part of Sectio n 4 , Phase 1, but affect the design of Section 4, Phase 2 . Transverse (Crown) slope (ft/ft) = 0.038 Straig-ht Crown Flow (Solved to find actual depth of flow. yl: Q = o .56 • (zinJ • s 112 • y'" q y = {Q / [0.56 • (zin) • s"'n'" n =Roughness Coefficient= 0 .018 z = Reciprocal of crown slope = 26 S = StreeUGutter Slop e (ft/ft) y = Depth of flow at inlet (ft) Capacitv of Inlets on grade : Oc = 0.7 • [1/(H, • H,)] • [H 1 512 • H,'12] Oc = Flow capacity of inlet (cfs) H , =a+ y H2 =a= gutter depression (2" Standard; 4" Re cessed) y = Depth of flow in approach gutter (ft) .· ·. Y10..aua (ft) (In) ~'."V..;,,_, ... 0.212 2.55 0.295 3.54 0.254 3.05 , _ _., : 0.337 4.04 0.299 3.59 0.302 3,62 0,220 2.64 0.264 3.17 0.373 4.48 0.329 3.95 0.324 3.89 0.303 3.63 0.340 4.08 0 .341 4.09 0.344 4.13 Qbyp-totlll 0 • ..,..001 (cfs) (cfs) ·-; ·' w· 0.00 5.37 0.00 5.61 0.00 9.79 0.79 6.19 , .. 0 .00 6.20 1.62 7.07 0.00 6.61 2.49 7.49 100 year storm L 10-«eq'd . L10...ctu11 o, .. Oc.,.,.,_ Or ... Orot.t+1K y, .. (ft) (ft) (cf•) (cfs) !'')·:•l-• .,. 6.53 10 3.14 7,55 3.09 5 5.06 . 11 .35 15 9.67 4.71 4.48 5.39 7.00 10 8.00 3.46 0.63 12.09 15 5.63 14 .15 12.09 15 7.94 4.14 9.67 11 .66 15 8.07 0.00 11 .01 13 .73 15 11 .07 11 .39 Q10·Tot• y,,. a ....... (cfs) (ft) (In) (ft) -....... ·' ... 5.37 0 .301 3.61 0 .56 5.61 0.307 3.68 0 .59 9.79 0 .402 4.82 0 .70 6.98 0 .364 4.38 0 .66 6.20 0.360 4 .31 0.66 8.69 0.446 5.36 0.76 6.61 0 .359 4.31 0 .70 9.97 0.443 5.31 0.81 Inlets In sumps, Weir Flow : L = QI (3 • y312) q y • (QI 3L)213 L = Length of inlet opening (ft) Q = Flow at Inlet (els) y = total depth of flow on inlet (ft) max y for inlet in sump = 7" = 0 .583' fromln,.t# (cfs) (cfs) (ft) (In) .,. ... , 4 3.14 3.45 0.536 6.43 7.55 8.31 5.06 5.56 0.516 6.19 ··- 402..tOl,405,.tOI 14.38 15.81 0.706 8.47 410 9.87 10.86 8.00 8.80 0 .581 6.98 409 4 .09 4.50 5.63 6.20 0.616 7.39 14.15 15.56 415 12.08 13.29 0.656 7.87 9.67 10.63 414 8.Q7 8.87 0 .601 7.22 11 .01 12.11 11 .07 12.18 0.671 8.05 11 .39 12.53 100 year storm o.-Qbyp•• a....,_ Q b)i>-td:lll (cfsl (cfs) (cfs) from Inlet I (cfs) . .......... ... o., - 5.64 -1 .54 0 0.00 5.91 -0 .53 0 0.00 10.43 1.67 0 1.67 6.57 2.84 0 2.84 - 6.57 -0 .37 0 0.00 7.57 4.14 0 4.14 7.05 0.63 0 0.63 8.05 5.39 0 5.39 Oc.-«oc.i Q100·TOl.lll s L lodu111 (cfs) (cfs) (ft/ft) (ft) 5.64 5.64 0.0285 10 5.91 5.91 0.0285 10 10 .43 12 .29 0.0291 15 6.57 9.41 0.0291 10 6.57 6.57 0.0151 10 7.57 11.71 0.0 151 10 --- 7.05 7.68 0.0208 10 8.05 13.44 0.0208 10 APPENDIXB Storm Sewer Pipe Design Calculations 11 Castlegate Subdivision Pipe Calculations -Section 4, Phase 2 Inlet Outlet 10 year storm 100 year storm Size Pi pe# Length Slope Invert Elev Invert Elev *Actual Flow Design Flow v,. %Full Travel Time, tr 11 *Actual Flow Design Flow v, .. 'lo Full Travel Time , lttoo (in) (ft) 1·1.1 (ft) (ft) (cfs) (cfs) (fps) (sec) (min) (cfs) (cfs) (fps) (sec) 422 18 26 .1 1.40 325 .80 325.43 7.07 11.42 7.4 81 .0 4 0.06 7.57 12 .23 7.4 88 .9 4 419 27 23 .9 0 .60 320 .34 320 .20 14 .68 6.0 59 .3 4 0.07 21 .75 6.4 79 .9 4 421 24 308 .5 1.10 324 .93 321 .54 13 .27 21 .43 8.0 79 .6 39 0 .64 14 .14 22 .84 8.0 85 .7 39 ,_ 420 24 90.2 1.10 321 .44 320 .45 13 .27 21 .43 8.0 79 .6 11 0.19 14 .14 22 .84 8.0 85.7 11 418 42 187.9 0.40 318 .95 3 18.20 27 .42 6.0 47 .9 31 0.52 54 .97 7.0 76 .3 27 417 42 381.0 0.40 318 .10 316 .58 27 .42 6.0 47 .9 64 1.06 54 .97 7.0 76 .3 54 416 42 203.3 0.40 316.48 315 .67 27 .42 6.0 47 .9 34 0.56 54 .97 7.0 76.3 29 --,_ ~ -- 415 42 -247 .3 0 .56 315.57 314 .19 42 .10 7.6 56 .0 33 0 .54 74 .75 8.1 90.8 3 1 412 42 35 .3 0 .90 313.64 313 .32 56 .20 9.8 57 .8 4 0.06 89 .85 10.5 83 .3 3 414 18 26.1 1.50 320 .35 3 19.96 6 .6 1 10 .68 7.6 73 .8 3 0 .06 7.05 11 .39 7.7 78 .1 3 ~ -- 413 24 117.0 1.25 319 .46 318 .00 14.10 22.77 8.5 79 .3 14 0 .23 15 .10 24 .39 8.5 85 .9 14 *These values reflect the actual flow for the 18" & 24" pipes . The design flow for these pipe size s reflects a 25% red uction in pipe area. (Refer to attached calculation for specific information .) (min) 0.06 0.06 f--- f--- 0.64 -- 0 .19 0.45 -- 0 .91 0.48 ~ 0 .51 0.06 0.06 -- 0.23 City of College Station requirement to Reduce Cross-Sectional Area of 18" & 24" Pipes by 25% Using Mannings Equation from page 48 of the College Station Drainage Policy & Design Standards Manual : Q = 1.49/n * A * R213 * S 112 Q =Flow Capacity (cfs) 18" Pipe: Pipe size (inches) = 18 Wetted Perimeter WP , (ft)= 4 .71 Cross-Sectional Area A, (tr) = 1. 766 Reduced Area AR, (tr) = 1.325 Hydraulic Radius R = A/WP • (ft) = 0 .375 Reduced Hydr Radius RR= ~twp. (ft)= 0.281 Roughness Coefficient n = 0 .014 Friction Slope of Conduit S1, (ft/ft)= 0 .01 Example Calculation : Slope Flow Capa ci ty Reduced Flow Capacity % Difference s Q Oreduced Oredu ceiQ 0 .005 6 .91 4 .28 0.619 0 .006 7.57 4 .69 0.619 0 .007 8.18 5 .06 0.619 24" Pipe: Pipe size (inches)= 24 Wetted Perimeter WP· (ft)= 6 .28 Cross-Sectional Area A, (tr) = 3 .14 Reduced Area ~. (tr) = 2 .355 Hydraulic Radius R =A/WP, (ft)= 0.5 Reduced Hydr Radius RR= ARIWp . (ft)= 0 .375 Roughness Coefficient n = 0.014 Friction Slope of Conduit Sr. (ft/ft) = 0 .01 Example Calculation: Slope Flow Capaci ty Reduced Flow Capacity % Difference s Q Ored uced Oreduced /Q 0.005 14.89 9 .22 0.619 0.006 16 .31 10 .1 0.619 0 .007 17.61 10 .9 0.619 Conclusion: Multiply actual Q in 18" & 24" pipes by 1.615 to reflect a 25% reduction in the cross-sectional area called for on page 47 , paragraph 5 of the College Station Drainage Policy & Design Standards manual. Castlegate Subdivision Section 4, Phase 2 -Pipe Flow Diagram 010 (cfs) Inlet 415 1 7.07 J, Pipe 422 1 7.07 J, Inlet 414 1 6.20 J, Pipe 421 1 13 .27 J, June Box 407 J, Pipe 420 1 13.27 lnlet412 I 14 .68 J, J, lnlet413 I 14 .15 f--Pipe 419 1 14.68 J, Pipe 418 / 42 .10 J, June Box 406 J, Pipe 417 1 42 .10 J, June Box 405 Inlet 409 1 6.61 J, J, Pipe 416 / 42.10 Pipe 414 1 6.61 J, J, Inlet 411 I 14.68 Inlet 410 1 7.49 J, J, Pipe415I 56 .78 Pipe 413 1 14 .10 l I/Pipe 412 / 70 .88 /I Castlegate Subdivision Section 4, Phase 2 -Pipe Flow Diagram 0 100 (cfs) Inlet 415 ! 7.57 J, Pipe 422 1 7.57 J, Inlet 414 / 6 .57 J, Pipe421 I 14 .14 J, June Box 407 J, Pipe 420 / 14.14 lnlet412 / 21 .75 J, J, Inlet 413 1 19 .08 ~ Pipe419 / 2 1.75 J, Pipe 418 / 54 .97 J, June Box 406 J, Pipe 417 / 54 .97 J, June Box 405 Inlet 409 / 7.05 J, J, Pipe 416 / 54 .97 Pipe 4 f 4 j 7.05 J, J, lnlet411 J 19.78 Inlet 410 1 8.05 J, J, Pipe 415 / 74 .75 Pipe 413 / 15 .10 l llPipe 412 1 89 .85 II Pipe 412 -10 Year Storm (Revised 2 /2 /01) Manning Pi pe Calculator Given Input Data: Shape ........... · ............... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Fl ow 42.0000 in 70.8800 cfs 0 .00 90 ft/ft 0 . 0140 28 .4 098 in 9. 6211 ft2 6.9260 ft2 81.1191 in 131.9469 in 10.2339 fps 12.2948 in 67.6423 % 88.6292 cfs 9. 2119 fps Pipe 412 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 42 .0000 in 89 .8500 cfs 0.0090 ft/ft 0. 0140 34. 9721 in 9 . 6211 ft2 8.5610 ft2 96 .5471 in 131.9469 in 10.4952 fps 12.7688 in 83.2668 % 88.6292 cfs 9.2119 fps Castlegate Subdivision , Section 4, Phase 2 College Station, Texas Pipe 413 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24 .0000 in 22.7700 cfs 0 .0125 ft/ft 0 .0140 19 .0429 in 3 .1416 ft2 2.6732 ft2 52 .7529 in 75 .39 82 in 8.5178 fps 7 .2 971 in 79.3456 % 23 .4860 cfs 7 .4 758 fps Pipe 413 -100 Year Storm Mann ing Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24.0000 in 24.3900 cfs 0.0125 ft/ft 0. 0140 20.6218 in 3 .141 6 ft2 2.8722 ft2 56.9381 in 75 .3982 in 8 .491 9 fps 7.2639 in 85 .924 4 % 23 .4860 cfs 7 .4 758 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas Pipe 414 -10 Year Storm Manning Pipe Cal cu lator Given Input Da ta : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 18 .0000 in 10 .6800 cfs 0 .01 50 ft/ft 0 . 0140 13.2758 in 1.7671 ft2 1.397 2 ft2 37.1855 in 56 .548 7 in 7.64 39 fps 5.4 106 in 73.7543 % 11.9462 cfs 6.760 2 fps Pipe 414 -100 Year Stor m Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 18.0000 in 11.3900 cfs 0.0150 ft/ft 0. 0140 14.0528 in 1 .7671 ft2 1 .4802 ft2 39.004 2 in 56.5487 in 7 .6948 fps 5 .4648 in 78 .0710 % 11 .9462 cfs 6.7602 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas Pipe 415 -10 Year Storm (Revised 2 /2 /01) Mann i ng Pipe Calcu lat or Given Input Data: Shape .......................... . Solving for .................... . Diamete r ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Dep th of Flow 42.0000 in 42.1000 cfs 0 .0056 ft/ft 0 . 0140 23. 5011 in 9 . 6211 ft2 5 .5383 ft2 70 .9876 in 131.9469 in 7.6016 fps 11.2346 in 55.9551 % 69.9116 cfs 7.2665 fps Pipe 415 -100 Year Storm Manning Pipe Calculator Given Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 42.0000 in 74.7500 cfs 0.0056 ft/ft 0 . 0140 38.1232 in 9. 6211 ft2 9.1760 ft2 106.0165 in 131.9469 in 8.1463 fps 12.4636 in 90.7696 % 69.9116 cfs 7 .2665 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas I Pipe 416 -10 Year Storm (Revised 2/2/01) Mann ing Pipe Calcula t or Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 42.0000 in 42.1000 cfs 0.0040 ft/ft 0 . 0140 26.2021 in 9.621 1 ft2 6.3122 ft2 76.4871 in 131.9469 in 6 .6696 fps 11.8838 in 62.3860 % 59.0861 cfs 6.1413 fps Pipe 416 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 42 .0000 in 54 .9700 cfs 0.0040 ft/ft 0 . 0140 32.0585 in 9. 6211 ft2 7.8800 ft2 89 .2 664 in 131.9469 in 6.9759 fps 12 .7 116 in 76 .3299 % 59 .0861 cfs 6.1413 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas Pip e 41 7 -10 Year S torm (Revised 2/2/01) Ma nning Pipe Ca l culator Given Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Co mputed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............ ~ .. . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Ci rcular De pth of Flow 42.0000 in 4 2 .100 0 cfs 0 .00 4 0 ft/ft 0.01 4 0 26.2 021 in 9.6 2 11 ft2 6.3 12 2 ft2 76.4871 in 131.9469 in 6.6696 fps 11. 8838 in 62.3860 % 59.0861 cfs 6 .1413 fps Pipe 417 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Ci r cu l a r Depth of Flow 42 .0000 in 54 .9700 cfs 0 .0040 ft/ft 0. 0140 32 .0585 in 9 . 6211 ft2 7 .8800 ft2 89 .2664 in 131.9469 in 6.9759 fps 12 . 7116 in 76.3299 % 59.0861 cfs 6 .1413 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas Pipe 418 -10 Year Storm (Revised 2/2/01) Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 42.0000 in 42.1000 cfs 0 .004 0 ft/ft 0 . 0140 26.2021 i n 9.6211 ft2 6 .3122 ft2 76 .4 871 in 131 .94 69 in 6 .6696 fps 11 .8838 in 62 .3860 % 59.0861 cfs 6.1413 fps Pipe 418 -100 Year Storm Manning Pipe Calculator Give n Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circul a r Depth of Flow 42.0000 in 54.9700 cfs 0.0040 ft/ft 0 .0140 32.0585 in 9 . 6211 ft2 7.8800 ft2 89.2 664 in 131. 9469 in 6.9759 fps 12 .7116 in 76.3299 % 59.0861 cfs 6.1413 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas Pipe 419 -10 Year Storm Manning Pi p e Ca lculator Given Input Data: Shape .......................... . Solving for .................... . Diame ter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ................... · · · · · · · · · Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 27.0000 in 14.6800 cfs 0.0060 ft/ft 0 . 0140 15.9981 i n 3.9761 ft2 2.4537 ft2 47.4366 in 84.8230 in 5 .9827 fps 7 .4487 in 59 .2 521 % 22.2760 cfs 5 .6025 fps Pipe 419 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Resu lt s: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow ve locity ............. . Circular Depth of Flow 27.0000 in 21.7500 cfs 0.0060 ft/ft 0 . 0140 21. 5758 in 3 .9761 ft2 3 .4063 ft2 59. 7255 in 84 .82 30 in 6.3852 fps 8.2128 in 79.9103 % 22.2760 cfs 5 .6025 fps Castlegate Subdivi sion, Section 4, Phase 2 College Station , Texas Pipe 420 -10 Year Storm Manning Pipe Calculator Give n Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24.0000 in 21.4300 cfs 0. 0110 ft/ft 0. 0140 19 .1051 in 3.1416 ft2 2 .6816 ft2 52.9066 in 75.3982 in 7.9915 fps 7 .2987 in 79.6044 % 22.0318 cfs 7.0129 fps Pipe 420 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24.0000 in 22.8400 cfs 0 . 0110 ft /ft 0. 0140 20.5705 in 3.1416 ft2 2.8662 ft2 56.7909 in 75.3982 in 7.9688 fps 7.2675 in 85.7104 % 22 .0318 cfs 7.0129 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas Pipe 421 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diamete r ....................... . Flowrat e ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................ · · · · Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24.0000 in 21.4300 cfs 0 .011 0 ft/ft 0. 0140 19.1051 in 3.1416 ft2 2.6816 ft2 52.9066 in 75.3982 in 7 .9915 fps 7 .29 87 in 79.6044 % 22.0318 cfs 7 .0129 fps Pipe 421 -100 Ye ar Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24 .0000 in 22.8400 cfs 0 . 0110 ft/ft 0. 0140 20 .5 705 in 3 .1416 ft2 2.8662 ft2 56.7909 in 75.3982 in 7 .9688 fps 7 .26 75 in 85. 7104 % 22.0318 cfs 7 .0129 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas Pipe 422 -10 Year Storm Mann ing Pipe Calculator Given Input Data: Shape .......................... . So lving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 18.0000 in 11.4200 cfs 0 .0140 ft/ft 0 . 0140 14.5847 in 1.7671 ft 2 1.5338 ft2 40.3238 in 56 .5487 in 7 .4454 fps 5 .477 5 in 81. 0264 % 11 .54 11 cfs 6.5309 fps Pipe 422 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 18.0000 in 12.2300 cfs 0.0140 ft/ft 0. 0140 15 .9962 in 1.7671 ft2 1. 6595 ft2 44 .3025 in 56 .5487 in 7 .3696 fps 5 .3 941 in 88 .8678 % 11.5411 cfs 6.5309 fps Castlegate Subdivision, Section 4, Phase 2 College Station, Texas EXHIBIT A Offsite Infrastructure Plan for Castlegate Subdivision 27 EXHIBITB Post-Development Drainage Area Map 29 Item No . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ENGINEERS COST ESTIMATE CASTLEGATE SUBDIVISION COLLEGE ST A TION , TEXAS SECTION 4 -PHASE 2 Estimated Description Sitework Mob ilization/Layout Erosion /Seeding/bale dams/constr. Entr. Site Preparation Topsoil Stripping & Replacement Excavation/Grading Lime Stabilized Subgrade Concrete Curb and Gutter Base Material -6" depth Base Material -7" depth Asphalt Paving - 1 1 /2" depth Concrete Apron Storm Drainage 18" RCP -structural backfill 24" RCP -non-structural backfill 27" RCP -structural backfill 42" RCP -structural backfill 42" RCP -non-structural backfill Junction boxes Inlets 1 O' wide Inlets 15' wide Rip Rap at channel discharges Remove culvert and modify access road REVIEWED FOR C()l\A QI ll\.f\IC E FEB 0 1 2001 COLLE GE: SlAl 101\1 ENGINEER ING ~~ Page 1 of 2 Quantity 1.0 1.0 4 .6 1,501 3,893 8,487 5,598 6,621 0 6,621 540 56 522 26 255 808 4 4 3 0 1 25 -Jan-01 Unit Estimated Pri ce Cost LS $8,000 .00 $8,000.00 LS $6,000 .00 $6,000 .00 AC $3 ,000 .00 $13,800.00 CY $4 .00 $6,004.00 CY $3 .50 $13,625.50 SY $3.00 $25,461.00 LF $7.00 $39,186.00 SY $5.75 $38 ,070.75 SY $6.50 $0.00 SY $4.25 $28,139 .25 SF $5.00 $2.700.00 Subtotal $180,986.50 LF $36 .00 $2,016.00 LF $32.00 $16 ,704 .00 LF $46 .00 $1,196 .00 LF $105.00 $26 ,775 .00 LF $85.00 $68,680.00 EA $2,500.00 $10 ,000 .00 EA $3,200.00 $12 ,800.00 EA $4 ,000.00 $12 ,000 .00 TN $40.00 $0.00 LS $950.00 $950.00 Subtotal $151,121.00 " Waterline 22 8" Waterline -PVC(C900)-structural backfill 50 LF $30 .00 $1 ,500.00 23 8" Waterline -PVC(C900)-non-structural backfill 1,990 LF $26.00 $51,740.00 24 6" Waterline -PVC(C900)-structural backfill 88 LF $26.00 $2,288 .00 25 6" Waterline -PVC(C900)-non-structural backfill 500 LF $18.00 $9,000.00 26 Gate Valves -8" 4 EA $600.00 $2,400.00 27 Gate Valves -6" 1 EA $500.00 $500.00 28 M .J. Bends and Tees 8" 14 EA $300.00 $4,200.00 29 M.J. Bends and Tees 6" 2 EA $250.00 $500.00 30 Connect to Existing 2 EA $350.00 $700.00 31 Water Services 47 EA $700.00 $32 ,900.00 32 Fire Hydrant Assembly 4 EA $2,000.00 $8,000.00 33 2" Blow off Assembly 1 EA $400.00 $400.00 Subtotal $114,128.00 Sanitary Sewer 34 8" SOR 26 Pipe -structural backfill 80 LF $35.00 $2 ,800.00 35 8" SOR 26 Pipe -non structural backfill 1,243 LF $30.00 $37,290 .00 36 6" SOR 26 Pipe -structural backfill 50 LF $25.00 $1,250 .00 37 6" SOR 26 Pipe -non structural backfill 1 ,342 LF $20.00 $26,840 .00 38 Tie-in to existing Manhole 1 EA $300.00 $300.00 39 Sewer Services 46 EA $700.00 $32,200.00 40 6" Stack Pipe Riser (extra long) 8 LS $300.00 $2,400 .00 41 Add drop to Manhole 2 LS $500.00 $1,000.00 42 Manholes -13' depth 12 EA $2,400.00 $28,800 .00 Subtotal $132,880.00 Total Sitework $180,986.50 Total Storm Drainage $151,121.00 Total Water $114,128.00 Total Sanitary Sewer ~1321880.00 TOTAL CONSTRUCTION $579, 115.50 Engineering @5% $28,955.78 Contingency @5% $28,955.78 TOTAL PROJECT $637,027 .05 Page 2 of 2 Design Report Proposed Sanitary Sewer Line Improvements for Castlegate Subdivision Section 4, Phase 2 College Station, Texas January 2001 Prepared By: TEXCON General Contractors 1 707 Graham Road College Station, Texas 77845 (979) 690-7711 REVIEWED FOR C()l\noi !Af\JCE FEB 0 1 2001 COLLEGE STA nor.J ENGINEERING 1.0 INTRODUCTION & DESCRIPTION The purpose of this report is to provide a description of the proposed sanitary sewer to be constructed with the Castlegate Subdivision, Section 4, Phase 2 , and to provide the criteria used in the design of this sanitary sewer system. The project will include the construction of approximately 2705 feet of sanitary sewer line. The line will service the proposed development of the Castlegate Subdivision, Section 4 , Phase 2, and tie into the previously constructed lines for Section 4, Phase 1 and Section 3, Phase 1. 2.0 SANITARY SEWER -Design Flow and Pipe Size Calculations The proposed sewer line is to be constructed of 6" and 8" diameter SDR-26, PVC pipe which meets the requirements of ASTM-D3034 . The proposed manholes are 4' diameter manholes , and vary from 6' to 17' in depth, with sewer line slopes ranging from 1.21 % to 2.99% for 6" pipe and 0.4% for 8" pipe . The maximum distance between manholes is less than 500 feet, as required by the Texas Natural Conservation Commission (TNRCC). The minimum allowable slopes for 8" and 6" pipes per TNRCC requirements are 0 .33% and 0.50% respectively. All construction shall meet the current City of College Station Standard Specifications for Sanitary Sewer Construction. The sewer line information is summarized in Table 1. 3.0 DETERMINATION OF PEAK FLOW VALVES The peak flows were based on using a daily use of 300 gallons per day for each dwelling unit. The design peak flow is determined by multiplying the average daily flow by 1.5 , which results in the adjusted daily flow . This value is then multiplied by 3.0 to determine the peak hourly flow . The velocities for the lines were calculated using Manning's Equation. According to the TNRCC, the minimum velocity for sewer systems flowing full is 2.0 feet per second. As shown in Table 1, the minimum anticipated flow velocities for the proposed sewer lines at 50% full meet this requirement. The flow for 100% full will not be less than the flow for 50% full; therefore , the TNRCC requirement is met. The TNRCC requires that the maximum velocity for sewer systems flow full not exceed 10 feet per second. The values in Table 1 are well below this maximum velocity. TABLE 1 -SEWER LINE FLOW DATA 0 Manhole No. of Units From Cumulative Average Percent 50% Full z Size Length Slope Peak Flow Q) Number Dwelling Unit Merging Dwelling Daily Flow Full Flow c ...J From To (in) (ft) (%) Services Lines Units (gpm) (cfs) (cfs) (%) (cfs) 416 415 6 322.30 1.21 11 -11 2.29 0 .0051 0 .0230 13.2 0.3086 415 414 6 311 .70 1.64 12 -23 4 .79 0 .0107 0 .0480 17 .5 0 .3593 414 413 8 109.90 0 .40 5 -28 5.83 0 .0130 0 .0585 18 .7 0.3821 M 413 412 8 248 .50 0.40 4 -32 6 .67 0 .0148 0 .0668 20.0 0.3821 ..i-en 412 411 8 330.30 0.40 8 4 (S4-5) 44 9.17 0 .0204 0 .0919 23.4 0 .3821 411 410 8 170.50 0.40 8 -52 10.83 0.0241 0 .1086 25.5 0 .3821 410 409 8 110.20 0.40 6 -58 12.08 0 .0269 0 .1211 26.9 0.3821 409 408 8 283 .90 0.40 1 -59 12.29 0.0274 0 .1232 27.2 0 .3821 418 417 6 447 .20 2.57 18 -18 3.75 0 .0084 0.0376 13.9 0 .4498 1' 417 408 6 133.30 1.42 6 24 5 .00 0 .0111 0.0501 18.5 0.3343 "'2' -en 408 401 8 70.00 0 .40 0 59(S4-3) 83 17.29 0 .0385 0.1733 32.4 0 .3821 I() I 419 412 6 167.10 2 .99 4 4 0.83 0.0019 0 .0084 6 .6 0 .4851 "'2' -en 401 .. ~7 : 8 ,. ~188.30 ,I 1.00 2 83(Pl12),47(Pl11 132 27 .50 0 .0612 0.2756 32.5 0.6042 ~t "~~3o7~1 ~·-~ r.'8 ;~ ~1ot1 ~~1.oo ,, •.. 0 ·. -. ~ · .. 132 . 21.50 ·• .· 0.0612 ;;0'.2756 32.5 0.6042 J FOture ~nent'tO'ManOOle'3oo ~~Jf-tt ··" .16 \t'.~ .. ;, "'.: 148 '. ' 30.83-~ .;.0.0687 I ~~ o.3000 i• ·~~t~· - .;,:300 -· .. 305 •: .},8 «:.f: ~210:8<H i:i.20 : 1·. . 0 .~ ' .~ 148 -~ 30.83 ' ·r,cfa090 '. ''32:9 ., -0.0687 ' 0.6619 .... . I 305 ' .'304 · .·· 8 .< :2~1.80 • 1.50 : 2 150 31.25 .( 0.0696 l'>r.0.3132( 31.2 0.7400 <") : - "' '3<>3 . ; .. •8 '·1 •·273.20~ -:,{5o ... ,, '"'" 304 . ... ·. 3 .;; 153 . 31.87 10.0710 1.:.0.3195 31.6 0.7400 :. Future i::>eWioPment toM8nh'Ole.303 t • ~~; I ~ ,,.·:29 ,:;. ·.· ~. :1., 182 .· i..37.91,.J 0.0844°~ }0~380()"'.;: -~ ";.: ... :::. -~·~ . - ~ 1 ·~·1 1 -i'302 ;~1 1tB:i1 ·11s3:e.oJH~~.oo ·;: l r~..-;-:o ~,~g!,'1,~'J. ~182 /~ '37.91 3 !,0.0844 ~ l il9:380Q~ ~.5 '.;~ ·;;0.6042 . l <;·:so2~~~~ l ~'ltj~f11ool l i.il!6o ~ 1 ;-~,: 0 . ,,,-.M,,_,,,,•, I :~;;;;182 "~~ ,~31.91~ l ~b.0044 J ~:3BOO'tJ l '.~38.5';, -'·0.6042 ; "''·.r;;y~ Shaded area is information previously submitted for approval, but included for informational purposes. n = 0.013 Refer to construction drawings for manhole locations. 4.0 CONCLUSIONS It is our determination based on the criteria and data developed that the proposed sewer line will provide sufficient capacity for the anticipated wastewater flows generated by this development. 2 Velocity (fps) 3 .1 3 .7 2 .2 2.2 2.2 2 .2 2 .2 2.2 4 .6 3.4 2.2 4 .9 3 .5 .,3.5 •.; ·'};;-::.·~ ::·1~3.8 4.2 ···.4 .2 . :·;·~-::, I l't~:s.~j: ... .:ta.5 ~ Design Report Proposed Sanitary Sewer Line Improvements for Castlegate Subdivision Section 4, Phase 2 College Station, Texas January 2001 Prepared By: TEXCON General Contractors 1707 Graham Road College Station, Texas 77845 (979) 690-7711 REVIEWED FOR C()l\ADI I A lCE FEB 01 2001 COLLEGE STAfl01 ENGINEERING ~ 1.0 INTRODUCTION & DESCRIPTION The purpose of this report is to provide a description of the proposed sanitary sewer to be constructed with the Castlegate Subdivision, Section 4, Phase 2, and to provide the criteria used in the design of this sanitary sewer system. The project will include the construction of approximately 2705 feet of sanitary sewer line. The line will service the proposed development of the Castlegate Subdivision, Section 4, Phase 2, and tie into the previously constructed lines for Section 4, Phase 1 and Section 3, Phase 1. 2.0 SANITARY SEWER-Design Flow and Pipe Size Calculations The proposed sewer line is to be constructed of 6" and 8" diameter SDR-26, PVC pipe which meets the requirements of ASTM-D3034. The proposed manholes are 4' diameter manholes, and vary from 6' to 17' in depth, with sewer line slopes ranging from 1.21 % to 2.99% for 6" pipe and 0.4% for 8" pipe. The maximum distance between manholes is less than 500 feet, as required by the Texas Natural Conservation Commission (TNRCC). The minimum allowable slopes for 8" and 6" pipes per TNRCC requirements are 0.33% and 0.50% respectively. All construction shall meet the current City of College Station Standard Specifications for Sanitary Sewer Construction. The sewer line information is summarized in Table 1. 3.0 DETERMINATION OF PEAK FLOW VALVES The peak flows were based on using a daily use of 300 gallons per day for each dwelling unit. The design peak flow is determined by multiplying the average daily flow by 1.5, which results in the adjusted daily flow. This value is then multiplied by 3.0 to determine the peak hourly flow. The velocities for the lines were calculated using Manning's Equation. According to the TNRCC, the minimum velocity for sewer systems flowing full is 2.0 feet per second. As shown in Table 1, the minimum anticipated flow velocities for the proposed sewer lines at 50% full meet this requirement. The flow for 100% full will not be less than the flow for 50% full; therefore, the TNRCC requirement is met. The TNRCC requires that the maximum velocity for sewer systems flow full not exceed 10 feet per second. The values in Table 1 are well below this maximum velocity. TABLE 1 -SEWER LINE FLOW DATA 0 Manhole No.of Units From Cumulative Average Percent 50% Full z Size Length Slope Peak Flow Q) Number Dwelling Unit Merging Dwelling Daily Flow Full Flow c: ...I From To (in) (ft) (%) Services Lines Units (gpm) (cfs) (cfs) (%) (cfs) 416 415 6 322.30 1.21 11 -11 2.29 0 .0051 0.0230 13 .2 0 .3086 415 414 6 311 .70 1.64 12 -23 4.79 0 .0107 0 .0480 17 .5 0 .3593 414 413 8 109.90 0.40 5 -28 5 .83 0 .0130 0 .0585 18 .7 0.3821 C"') 413 412 8 248.50 0.40 4 -32 6 .67 0.0148 0 .0668 20 .0 0 .3821 I ~ Cl) 412 411 8 330.30 0.40 8 4 (S4-5) 44 9.17 0.0204 0 .0919 23.4 0 .3821 411 410 8 170.50 0.40 8 -52 10.83 0 .0241 0.1086 25.5 0.3821 410 409 8 110.20 0.40 6 -58 12.08 0 .0269 0.1211 26.9 0 .3821 409 408 8 283.90 0.40 1 -59 12 .29 0.0274 0 .1232 27.2 0 .3821 418 417 6 447.20 2 .57 18 -18 3 .75 0 .0084 0 .0376 13.9 0 .4498 ...,. 417 408 6 133.30 1.42 6 24 5.00 0 .0111 0 .0501 18.5 0 .3343 ~ - Cl) 408 401 8 70.00 0.40 0 59(S4-3) 83 17 .29 0 .0385 0 .1733 32.4 0 .3821 It) I 419 412 6 167.10 2 .99 4 4 0.83 0.0019 0 .0084 6.6 0.4851 ~ - Cl) ,:; 401 ' ",30],/. . .. 8 188.30.J 1.00 2 83(Ph2),47(Ph1 132 27.50 0 .0612 0 .2756 32.5 0 .6042 .!: \.P3cm'H ~) -~~8 •: 262.10''.I .. 1.00 ·: ·O " -": 132 27.50 ·0.0612 0.2756 32.5 0.6042 ;, Fuh.iret>eve1~ to Manhi:iie~ .', .16 .. -. ~::-'148': 30.83 0.0687 0.3090 - -., . ..-" . 148 .:::3tlfr1 r3o5 :t 8 , '270.801 -1.20 ·o -30.83 ·'· 0.0687 .· 0.3090 32.9 0.6619 "';', ,,,305 ' ~'304 ; 8 241.80 i 1.50 2 -. 150 31.25 0.0696 0.3132 31.2 0.7400 ~-.. - ? .. ~i304.:~ ~;.303 v ·8 .~ 273.20 .,j.50 3 ,:': . 153 31.87 0.0710 0.3195 31.6 0.7400 Futtire oevet6pfnent to .Manhole 303~· 29 .-.;{'. 182 37.91 .. 0.0844 0.3800 -- I ~ f~llr l ~~i ~ka~l ,153.6C>'Ji \:,j.00 .: ,; Q • , __ !fJ-if,~ ~.~:182.;~; I ~';' 37.91 . .i. /o.0844 ·~:.o.3aoo . 38.5 . 0.6042 ,. ~t¥.1 ~.w m j .Y,g'.;;1£11I.'OO~l t,'ioo ;, · 0 ;· ,.'M-t'1) I t.:t:182 ;\~ \~~7.91 ;~ lfo'.0844 ''~0.3800 .. 38.5 "0.6042 ' Shaded area is infonnation previously submitted for approval, but included for infonnational purposes. n = 0.013 Refer to construction drawings for manhole locations. 4.0 CONCLUSIONS It is our determination based on the criteria and data developed that the proposed sewer line will provide sufficient capacity for the anticipated wastewater flows generated by this development. 2 Velocity (fps) 3.1 3.7 2.2 2.2 2 .2 2 .2 2.2 2.2 4 .6 3 .4 2 .2 4 .9 3 .5 3.5 - 3.8 4.2 4.2 - . 3.5 3.5 I • Q~ ~(;0 SUPPLEMENTAL DEVELOPMENT PERMIT IN 0 -'~TION ~plication is hereby made for the following development specific site/waterway alterations: ~~~o~ ,Ji.1W$1e\ALJUf?e coN$m.LC.TION ACKNOWLEDGMENTS: L __ L\)-'~-'-'-__._~'--.... <f1_.H"._..__.._l l.L,,___.l .... fS=-----· design engineer/~_g, hereby acknowledge or affinn that: The infonnation and conclusions contained in the above plans and supporting documents comply with the current requirements of the City of College Station, Texas City Code, Chapter 13 and its associated Drainage Policy and Design Standards. As a condition of approval of this permit application, I agree to construct the improvements proposed in this application according tc these documents and the requirements of Chapter 13 of the College Station City Code. d_#K~ frfM~~ ~ p. Wr Property Owner(s) Con or CERTIFICATIONS: (for proposed alterations within designated flood haz.ard areas.) A. L certify that any nonresidential structure on or proposed to be on this site as part of this application is desi~ted to prevent damage to the structure or its contents as a result of flooding from the l 00 year storm. Engineer Date L , certify that the finished floor elevation of the lowest floor, including any ..ement, of any residential structure, proposed as part of this application is at or above the base flood elevation established in the latest Federal Insurance Administration Flood Hazard Study and maps, as amended. Engineer Date Engineer Date Conditions or comments as part of approval:--------------------------- .::cordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to insure that debris rrom construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage facilities . All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer for the above named project. All of the applicable codes and ordinances of the City of College Station shall apply. FINAL PLAT APPLICATION FNLPAPP.IXlC Jn5199 3 ofJ FOR OFFICE USE 0 \' P&Z CASE NO.: \ -0 DATE SUBMITI'ED:~l....-.,...,..,... __ , FINAL PLAT APPLICATION (check one) Minor _Amending / Final _ Vacating _Replat The following items must be submitted by an established filing deadline date for P & Z Conunission consideration . MINIMUM SUBMITTAL REQUIREMENTS: ~Filing Fee of$200 .00. _L_ Development Permit Application Fee of$100.00 (if applicable). _L Infrastructure Inspection Fee of $300 .00 (applicable if any public infrastructure is being constructed.). ~Application completed in full. ~Thirteen (13) folded copies of plat. (A signed mylar original must be submitted after staff review .) _::::_One (1) copy of the approved Preliminary Plat and/or one (1) Master Plan (if applicable). _L_ Paid tax certificates from City of College Station, Brazos County and College Station I.S .D . ~ A copy of the attached checklist with all items checked off or a brief explanation as to why they are not. _L Two (2)copies of public infrastructure plans associated with this plat (if applicable). APPLICATION DATA -\ME oF suaDMsioN kh?fl-E.61~-re ~@Jl'.Jt~1 oN SIX.no~ 4 P~ k I I jECIFIED LOCATION oF PROPOSED suaDMsroN Noe.nt of 61~2 °ITA't(Z!E;; @A-D, ~ Cf 1*6 e~ ~ ~ +nr~ 40 APPLICANT/PROJECT MANAGER'S INFORMATION (Primary Contact for the Project): Name 6~~~ Jj4'16!D~SJ LID. --W~fftlU..lj::><; Street Address 50 \ 0 /:w.6V...srA U ~l£. City Cn1 1 F?h£ STlrl) oJJ State 11. ZipCode 11<b4-'? E-MailAddress _________ _ Phone Number 'j1'( -/pf? -10?o Fax Number Cf 1j -~Ofo-ILfW PROPER1YOWNER'SINFORMATION: ~l.e: 'f7'f-Z55-4~ Name ~s "{?eA1e.te JdJJ~ne..~, Lat> . StreetAddress 22\D ~U-'71]\: U'2C.LE..-City G>L.lfhE STT&rn.o~ State J"1 Zip Code 11?J4-S E-MailAddress ----------- Phone Number Cf:J1..-(Ql3 -1<62;> Fax Number C[1q -{;/ff) - / +fu ARCIDTECT OR ENGINEER'S INFORMATION: Name :(@.WM-J~ 5c..Uw...-r~,P-t?. StreetAddress l:Zo1 67~ RD. City CoL~E-&ATu..,,J State Ii Zip Code "J1?J4? E-Mail Address joe.svhu...lh::.@ texc.oVl -~eJ- Phone Number qj,~ -(/f. () =11 l I Fax Number CfJ~ ~ fe'JO -Cf 1Cf 1 FINAL PLAT APPLICATION FNLPAPP.DOC 3/lS/99 I of3 TOTALACRESOFSUBDMSION 2.2 .'J4 R-0-WACREAGE 3.10 TOTAL#OFLOTS B7 ---- TUMBER OF LOTS BY ZONING DISTRICT ~1 I fi42"'H I ! __ AVERAGE ACREAGE OF EACH RESIDENTIAL LOT BY ZONING DISTRICT: D. I~ I Yfi\2---H I I ! __ FLOODPLAIN ACREAGE Q PARKLAND DEDICATION ACREAGE __ f~--OR FEE AMOUNT ___ _ f\)~ '900\~ tN ~er. I) f#-. t f S0Cf. ?, Ptf. I · A STATEMENT ADDRESSING ANY DIFFERENCES BE1WEEN TIIE FINAL PLAT AND APPROVED MASTER DEVELOPMENT PLAN AND/OR PRELIMINARY PLAT (IF APPLICABLE): ~ REQUESTED VARIANCES TO SUBDMSION REGULATIONS & REASON FOR SAME ______ _ 1<~ -rb -PDD-~ ~~6 o/AiJDAgl/? REQUESTED OVERSIZE PARTICIPATION off=Sl!'E: vJl\-'fEel.l ~ 1<J.D t-J6 bx:>PJd ~O\t\) 0~ f@PD;ZW ~ r\x4}u)Af 4o TOTAL LINEAR FOOTAGE OF PROPOSED: _ _,,.._1 ....... o....,,2."'-'-STREETS 0 SIDEWALKS -~~-:----~2~1~~~' _SANITARY SEWER LINES _ _.Zfe~z_4~'_WATER LINES _ ___,,O:;..._ __ CHANNELS _ __._.\~_4.;_'1.:.....'_ STORM SEWERS __ .....;O __ BIKE LANES I PATIIS NOTE: DIGITAL COPY OF PLAT (IF APPLICABLE) MUST BE SUBMITTED PRIOR TO FILING. The applicant has prepared this application and certifies that the facts stated herein and exhibits attached hereto are true, correct and complete. The undersigned hereby requests approval by the City of College Station of the above identified final plat. FINAL PLAT APPLICATION FNT .PAPP fVV' '1n<.onn Dat~ , 2 of3