HomeMy WebLinkAbout29 Development Permit 01-05 Castlegate Sec 4 Ph 2Drainage Report
for
Castlegate Subdivision
Section 4, Phase 2
College Station, Texas
January 2001
Developer:
Greens Prairie Investors, Ltd.
By Greens Prairie Associates, LLC
5010 Augusta
Colle ge Station, Texas 77845
(979) 693-7830
Prepared Ev:
TEXCON General Contractors
1707 Graham Road
College Station, Tex 8,~ 77845
(979) 690-7711 REVIEWED FOR
C<'" n n• '" "1CE
FEB 1 2 2001
COLLEGi:: ~ A 110N
ENGINEER! G
I
I
CERTIFICATION
I, Joseph P. Schultz , Licensed Professional Engineer No . 65889 , State of Texas , certify that this
report for the drainage design for the Castlegate Subdivision, Section 4, Phase 2 was prepared
by me in accordance with the provisions of the City of College Station Drainage Policy and
Design Standards for the owners hereof.
_,,,,,,,
--i~ OF -,.. ,, .I'-<._~ ••••••••••• t:.+-_ ,,
10 .•. * ·.;S'c.S' •• ,,, .. . , "* . ·. * I. "* : ·. * .. J i .................................. ~
l .. AQgf .. ~ .. r;..~9.~.~.~ll. ... .1 ·
l,'1:l• •ll:-...: "i'b\~ asaag Q /t'J I fa~··f.<]ISTE~~··0· ~ ~
"' .$' '5' • • • • • • • • ~ .,
\\ .. ~ONAL <;;._.,#" ,,,~-
l---lS'~O{
Josep
TABLE OF CONTENTS
DRAINAGE REPORT
CASTLEGATE SUBDIVISION
SECTION 4, PHASE 2
CERTIFICATION .................................................................................................................................................................. 1
TABLE OF CONTENTS ........................................................................................................................................................ 2
LIST OFT ABLES .................................................................................................................................................................. 3
INTRODUCTION ................................................................................................................................................................... 4
GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 4
FLOOD HAZARD INFORMATION .................................................................................................................................... 4
DEVELOPMENT DRAINAGE PATTERNS ....................................................................................................................... 4
DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 5
STORM WATER RUNOFF DETERJ\iIINATION ............................................................................................................... 5
DETENTION FACILITY DESIGN ...................................................................................................................................... 7
STORM SEWER DESIGN .................................................................................................................................................... 7
CONCLUSIONS ..................................................................................................................................................................... 8
APPENDIX A .......................................................................................................................................................................... 9
Storm Sewer Inlet Design Calculations
APPENDIX B ........................................................................................................................................................................ 11
Storm Sewer Pipe Design Calculations
EXHIBIT A ............................................................................................................................................................................ 27
Of/site Infrastructure Plan for Castlegate Subdivision
EXHIBIT B ............................................................................................................................................................................ 29
Post-Development Drainage Area Map
2
LIST OF TABLES
TABLE 1-Rainfall Intensity Calculations ........................................................................................................ 6
TABLE 2 -Post-Development Runoff Information ........................................................................................... 6
3
DRAINAGE REPORT
CASTLEGATE SUBDIVISION
SECTION 4, PHASE 2
INTRODUCTION
The purpose of this report is to provide the hydrological effects of the construction of the
Castlegate Subdivision, Section 4, Phase 2, and to verify that the proposed storm drainage
system meets the requirements set forth by the City of College Station Drainage Policy and
Design Standards .
GENERAL LOCATION AND DESCRIPTION
The project is located on a 162 acre tract located west of State Highway 6 along the north side
of Greens Prairie Road in College Station, Texas. This report addresses Section 4, Phase 2 of
this subdivision, which is made up of 22.94 acres . The site is wooded with the vegetation
primarily consisting of oak trees and yaupons . The existing ground elevations range from
elevation 322 to elevation 340. The general location of the project site is shown on the vicinity
map in Exhibit B.
FLOOD HAZARD INFORMATION
The project site is located in the Spring Creek branch of the Lick Creek Drainage Basin. The
site is located in a Zone X Area according to the Flood Insurance Rate Map prepared by the
Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated
areas dated July 2, 1992, panel number 48041 C0205-C. Zone X Areas are determined to be
outside of the 500-year floodplain. LJA Engineering & Surveying, Inc. submitted a Request
for Conditional Letter of Map Revision (CLOMR) to FEMA to outline a proposed 100-year
floodplain area. This CLOMR No. 00-06-844R was approved by FEMA on 9/8/2000. The
proposed floodplain area does not affect Section 4. Section 4 will continue to be in a Zone X
Area.
DEVELOPMENT DRAINAGE PATTERNS
Prior to development, the storm water runoff for this tract flows in one general direction . For
Section 4, Phase 2, a majority of the acreage flows toward the center of the tract and then to the
north into the natural drainage at the northern end of the tract. Ultimately, the runoff flows
north to the proposed regional detention facility. Refer to the Offsite Infrastructure Plan in
Exhibit A for the location of this proposed detention facility.
4
DRAINAGE DESIGN CRITERIA
The design parameters for the storm sewer are as follows:
• The Rational Method is utilized to determine peak storm water runoff rates for the storm
sewer design.
• Design Storm Frequency
Storm Sewer system
• Runoff Coefficients
Pre-development
10 and 100-year storm events
Post-development (single family residential)
c = 0.30
c = 0.55
• Rainfall Intensity values for Brazos County for a minimum time of concentration of 10
minutes can be found in Table 1. Where a longer time of concentration was necessary, it is
noted in the respective table, and the intensities are calculated with the higher values where
required .
• Time of Concentration, tc -Due to the small sizes of the drainage areas, the calculated
times of concentration, tc, are less than 10 minutes . Therefore, a minimum tc of 10 minutes
is used in most cases to determine the rainfall intensity values. Where a longer time of
concentration was necessary, it is noted and used accordingly.
STORM WATER RUNOFF DETERMINATION
The peak runoff values were determined in accordance with the criteria presented in the
previous section for the 5, 10, 25, 50, and 100-year storm events. The runoff coefficients are
based on the future development of this tract. The drainage areas for post-development are
shown in Exhibit B . Post-development runoff conditions are summarized in Table 2.
5
TABLE 1 -Rainfall Intensity Calculations
Rainfall lntensit Values in/hr
Stonn t.:= I = b I {tc+d)e
Event 10min I = Rainfall Intensity (in /hr)
Is 7 .693
110 8 .635 tc = U(V*60)
l2s 9 .861 le= Time of concentration (min)
lso 11 .148 L = Length (ft)
1100 11 .639 V =Velocity (ft/sec)
Brazos County:
5 v..ear storm 10 v..ear storm 25 v..ear storm 50 v..ear storm 100 v..ear storm
b = 76 b = 80 b = 89 b = 98 b = 96
d = 8 .5 d = 8 .5 d = 8 .5 d = 8 .5 d = 8 .0
e = 0 .785 e = 0.763 e = 0.754 e = 0 .745 e = 0.730
(Data taken from State Department of Highwav..s and Public Transportation Hv..draulic Manual, page 2-16)
TABLE 2 -Post-Development Runoff Information
A c
Area#
\ (acres)
\ -3 1 .73 0 .55
J 63 0 .79 0 .55
\ 64 1.25 0 .55
,) 73 1 .83 0 .55
,~74 1.47 0 .55
·n 5 1 .51 0 .55
\76 0 .54 0 .55
.J 77 0 .70 0.55
1 ~8 2 .10 0 .55
1"7 9 0.88 0 .55
\~o 2 .21 0 .55
I '8 1 0 .97 0.55
,82 1 .26 0 .55
83 1 .24 0.55
'8 4 1 .72 0 .55
.)3 5 1 .51 0 .55
86 1 .20 0 .55
'87 1 .78 0 .55
The Rational Method:
Q =CIA
Q = Flow (cfs)
A= Area (acres)
C = Runoff Coeff.
I= Rainfall Intens i ty (in/hr)
tc Os 010
(min) (cfs) (cfs)
1 0 7 .32 8 .22
1 0 3 .34 3 .75
1 0 5 .29 5 .94
10 7 .74 8.69
10 6 .22 6 .98
10 6 .39 7 .17
10 2 .28 2 .56
10 2 .96 3 .32
10 8 .89 9 .97
1 0 3 .72 4.18
1 0 9 .35 10 .50
10 4 .10 4 .61
10 5 .33 5 .98
10 5 .25 5 .89
10 7 .28 8 .17
1 0 6 .39 7 .17
1 0 5 .08 5 .70
10 7 .53 8.45
6
02s Oso 0100
(cfs) (cfs) (cfs)
9 .38 10 .61 11 .07
4 .28 4.84 5.06
6 .78 7 .66 8 .00
9 .93 11 .22 11 . 71
7 .97 9 .01 9.41
8 .19 9 .26 9 .67
2 .93 3 .31 3.46
3 .80 4.29 4.48
11 .39 12 .88 13 .44
4.77 5.40 5 .63
11 .99 13 .55 14 .15
5.26 5 .95 6 .2 1
6 .83 7 .73 8 .07
6 .73 7 .60 7 .94
9 .33 10 .55 11 .0 1
8 .19 9 .26 9 .67
6 .51 7 .36 7 .68
9.65 10 .91 11 .3 9
DETENTION FACILITY DESIGN
The detention facility handling the runoff from this site will be a regional facil ity designed by
LJA Engineering & Surveying, Inc . Refer to the Offsite Infrastructure Plan in Exhibit A for the
location of this proposed detention facility . The runoff from this project flows into existing
drainages and then into Spring Creek . The detention facility is located adjacent to Spring
Creek prior to Spring Creek entering the State Highway 6 right-of-way.
STORM SEWER DESIGN
The storm sewer piping for this project has been selected to be Reinforced Concrete Pipe
(RCP) meeting the requirements of ASTM C-7 6, Class III pipe. The curb inlets and junction
boxes will be cast-in-place concrete .
Appendix A presents a summary of the storm sewer inlet design parameters and calculations .
The inlets were designed based on a 10-year design storm. As per College Station guidelines,
the capacities of inlets in sump were reduced by 10% to allow for clogging.
Inlets were located to maintain a gutter flow depth of 5" or less , which will prevent the spread
of water from reaching the crown of the road for the 10-year storm event. The runoff
intercepted by the proposed storm sewer inlets was calculated using the following equations.
The depth of flow in the gutter was determined by using the Straight Crown Flow equation.
The flow intercepted by Inlets 409, 410 , 414 & 415 was calculated by using the Capacity of
Inlets On Grade equation. The capacities for the inlets in sumps (Inlets 411, 412 & 413) were
calculated using the Inlets in Sumps, Weir Flow equation with a maximum allowable depth of
7" (5" gutter flow plus 2" gutter depression). These equations and the resulting data are
summariz ed in Appendix A.
Appendix B presents a summary of the storm sewer pipe design parameters and calculations.
All pipes are 18" in diameter or larger. For pipes with 18" and 24" diameters, the cross-
sectional area is reduced by 25%, as per College Station requirements. A summary of how this
was achieved is shown in Appendix B as well. The pipes for the storm sewer system were
designed based on the 10-year storm event; however, all will also pass the 100-year storm event
without any headwater. Based on the depth of flow in the street determined for the 100-year
storm event, this runoff will be contained within the street right-of-way until it enters the storm
sewer system. As required by College Station, the velocity of flow in the storm sewer pipe
system is not lower than 2.5 feet per second, and it does not exceed 15 feet per second. As the
data shows , even during low flow conditions, the velocity in the pipes will exceed 2.5 feet per
second and prevent sediment build-up in the pipes. The maximum flow in the storm sewer pipe
system will occur in Pipe No. 412 .. The maximum velocity for the pipe system in Section 4,
Phase 2 will be 10 .5 feet per second and will occur in Pipe No. 412 . Appendix B contains a
summary of the Manning pipe calculations as well as flow diagrams mapping the flows through
the storm sewer system for t~e 10 and 100-year events .
7
CONCLUSIONS
The construction of this project will significantly increase the storm water runoff from this site.
The proposed storm sewer system should adequately control the runoff and release it info
existing drainages. Also, the regional detention facility and the proposed ponds in the park area
should adequately reduce the peak post-development runoff to less than the pre-development
runoff for the design storm event. This will prevent any impact on the properties downstream
of this project.
8
APPENDIX A
Storm Sewer Inlet Design Calculations
9
/
,,,.
{/
v
.v
I/
" J/
<
/,
,r
"
v
v
v
~
Castlegate Subdivision
Section 4 • Phase 2
Inlet Length Calculations
Inlets In Sump 10 year storm
Flow"°"' A c Q,. °"'"'-o,. ... Orotlll+10'Mo Inlet# Length & Type
Area# (acres) (cfsl (cfs) from ln .. tt (cfs) (cfs)
Section 4/Phas• 1 (for lnformatlonat purpos88 cin lvl .. ,/, 1 ..... ,, .. ., 1-· .. :.·,;. .. ,." ~
•401 1 O' Standard 66 0.49 0.55 2.33 2.33 2.56
70 1.18 0.55 5.60 5.60 6.16
,,. •404 5' Standard 63 0.79 0.55 3.75 3.75 4 .13
Section 4/Phase 2 '"· ~ , 75 1.51 0.55 7.17 0.79 ..aa,.t(l:)."(15,.tOll 7.97 8.76 .. 407 15' Standard
77 0.70 0.55 3.32 2.49 410 5.81 6.39
....... 408 1 o· Standard 64 1.25 0.55 5.94 5.94 6.53
76 0.54 0.55 2.56 0.00 409 2.56 2.82
V 411 15' Standard 79 / O.BB 0.55 4.18 r 4.18 4 .60 ,
BO .,_.,. 2.21 0.55 10 .50 ~ 10.50 11 .55
412 'Standard 83 V' 1.24 0.55 5.89 ...... 1.62 "' 415 7.51 v 8.26
85 1.51 0.55 7.17..-7.17 7.89
))-3 Y' 15' Standard /82 1.26 0.55 5.98 // 0.00 414 v 5.98 6.58 ,,.
t.--'84 1.72 0.55 8.17 -~ 8.17 8 .99 Y
.. 301 15' Standard 3 1.73 0.55 8.22 8.22 9 .04
87 1.78 0.55 8.45 8.45 9.30
Inlets were constructed as a part of Section 4, Phase 1, but affect the design of Secllon 4 , Phase 2 .
.. Inlets will be constructed during Section 3, Phase 1 construction.
Inlets On Grade 10 year storm
Inlet# Length & Type fb#trom y,, Q,_,_ o. .. -Qbyp•• °"'"'-Area# (ft) (In) (ft) (cfs) (cfs) (cf•) fromln .. t•
Section 4/Phasa 1 lfor lnformatlonal Du rDOS88 on lvl ' '
•402 10' Recessed 65 0.296 3.55 0.54 5.37 -2 .33 0
•403 1 O' Recessed 71 0.301 3.61 0.56 5.61 -1 .62 o
·405 15' Recessed 72 0.369 4.43 0.65 9.79 -0 .67 0
•405 1 O' Reces sed 74 0.325 3.90 0.62 6.19 0.79 0
Section 4/Philse 2 ,<
414 ..-'1 O' Recessed 81 0.352 4.22 0.62 6.20 -1 .59 0
415 , 1 O' Recessed 73 0.399 4.79 0.71 7.07 <'.r.62J.J 0
409 v1 o· Recessed 86 0.339 4.07 0.66 6.61 -0 .91 0
410 v-1 O' Recessed 78 0.396 4.75 0.75 7.49 t;.2.49Y 0 . Inlets were constructed as a part of Section 4 , Phase 1, but affec t the design of Section 4, Phase 2 .
Transverse (Crown) slope (ft/ft) = 0 .038
Straight Crown Flow (Solved to find actual depth of flow, yl :
a= o.ss • (zln) • s 112
• y'13 <:> y = {O / (o .ss • (zln) • s 112n"'
n = Roughness Coefficient =
z = Reciproc al of crown slope =
S = StreeVGutter Slope (ft/ft)
y = Depth of flow at inlet (ft)
Capacity of Inlets on grade :
Oc = 0 .7 • [1 /(H 1 -H,j] • [H 1lll. H2
512]
Oc = Flow capacity of inlet (els)
H, =a+ y
0 ,016
26
H 2 =a = gutter depression (2" Standard ; 4" Recessed)
y = Depth of flow in approach gutter (ft)
....
....
-
-
Y10..-1u111
(ft) (In)
i-':': ·''
0.212 2.55
0.295 3.54
0 .254 3.05 .
0.337 4 .04
0 .299 3.59
0 .302 3,62
0.220 2.64
0.264 3.17
0 .373 4.48
0.329 3.95
0 .324 3.89
0.303 3.63
0.340 4.08
0.341 4.09
0.344 4.13
Qbyp<tot .. Oc'P"fot.i
(cfsl (cfs)
0.00 5.37
0.00 5.61
0.00 9.79
0.79 6.19 -·.
0.00 6.20
1.62 7.07
0.00 6.61
l/'2.4\V 7.49
100 year storm
L 10-1t9e1'd
.
L10-ec1:u• o, .. Cc.ry-o,. ... Orot.i+10'llo y,.,
(ft) (ft) (cf•) (cf•)
' '
6.53 GQ) 3.14
7.55
3.09 C s__,1 5.06
11.35 15 V 9.67 4.71
4.48 5.39
7.00 10/ 8.00
3.46 0.63
12 .09t.. 15 -5.63
14.15
12 .09'"'"1-15 / 7.94 4.14
9.67
11 .66'"". 15 I; 8.07 0.00
11.01
13.73 15 l-"'11 .07
11 .39
• u1ing y_ • r • 0.583'
Q 10·Totlll y,., Q,_,_
(cfs) (ft) (In) (ft)
5.37 0.301 3.61 0.56
5.61 0.307 3.68 0.59
9 .79 0.402 4 .82 0.70
6.98 0.364 4 ,36 0.66
"·
6.20 0.360 4.31 0.66
8,69 0.446 6.36 0.76
6.61 0.359 4.31 0.70
9.97 0.443 5.31 0.61
Inlets In sumps. Weir Flow :
L = Q I (3 • y ,,,) <:> y z (QI 3L)213
L = Length of inlet opening (ft)
Q = Flow at inlet (cfs)
y = total depth of flow on inlet (ft)
max y for inlet in sump = 7" = 0 .583'
from lntet# (cfsl (cfsl (ft) (In)
3.14 3.45 0 .536 6.43
7.55 8.31
5.06 5.56 0.516 6.19
.t02,40l,405,.0S 14,38 15.81 0.706 8.47
410 9.87 10.66
8.00 8.80 0.561 6.98
409 4.09 4.50
5,63 6.20 0.616 7.39
14.15 15.56
415 12.08 13.29 ... 0.656 7.87
9.67 10.63 ,
4 14 8.0 7 8.87 0 .601 7.22
11 .01 12.11
11 .07 12.18 0 .671 8.05
11 .39 12.53
100 year storm
o. ........ o..,,. •• °"'"'-Qbyp-.totlll
(cfs) (cf•) (cfs) from lnlett (cfs)
5.64 -1.54 0 0.00
5.91 -0 .53 0 0.00
10.43 1.87 0 1.67
6.57 2.84 0 2.84
6.57' l...o.3V o 0.00
7.57 ('4 . 14 0 4.14
7.05 0.63 " 0 0.63
6.05 rs.39 o 5,39
Clc.,.ot .. 0100.rcul s L1etu.r
(cfs) (cfs) (ft/ft) (fl )
5.64 5.64 0.0285 10 '-
5.91 5.91 0.0285 10
10.43 12.29 0.0291 15
6.57 9.41 0 ,0291 10 "
6.57 6.57 0.0151 10
7.57 11 ,71 0.0151 10
7.05 ~ 0.0206 10
6.05 13.44 0.0208 10
APPENDIXB
Storm Sewer Pipe Design Calculations
11
Castlegate Subdivision
Pipe Calculations -Section 4 , Phase 2
Inlet Outlet 10 year storm 100 year storm
Size Pi pe# Length Slope
Invert Elev In vert Elev *Actual Fl ow Design flow V1 0 %Full
Travel Time , t,10 •Actual Flow Design Flow V100 % Full
Travel Time, t Hta
(in) / (ft) (%) (ft) v (ft) (cfs) (cfs) v (fps) (sec) (min) (els) (els) (fps) (sec)
~422 18 " 26 .1-' 1.4cY 325.8[V' 325.43 V' 7 .07 11.42 v 7.4 81 .0 4 0 .06 7.57 12 .23 7.4 88.9 4 ----
2-1 ---I-
J 419 23.9' 0 .60 ~ 320 .34 ..... 320.20 ,_ 14.68 ~ 6 .0 59.3 4 0 .07 21 .75 6.4 79 .9 4 ----
~1 2 4-~ v 3~ 1.1¥ 324 .93 .... ::::-321.54 y' 13 .27 I 21 .43 J It 8 .0 79 .6 39 0 .64 14.14 22 .84 8 .0 85.7 39 --
)\420 24 v 90 .4/ 1.10 . / 321 .44 v 320.45 ;/ 13.27 ii 21 .43 II 8 .0 79 .6 11 0 .19 14.14 22.84 8 .0 85.7 11
t.41 8 4Y 187 .9 ~ .... 0.40"' 318 .95 v 318 .20 v 27.42 6 .0 47 .9 31 0.52 54.97 7.0 76 .3 27
........ 417 42 ..... 381 .0v v 0.40 .. 318 .10 ......... 316 .58 V' 27.42 6 .0 47 .9 64 1.06 54.97 7.0 76 .3 54
~16 4 ~ 203 .3 . 0 .4a.... 316.48 v 315.67 ....... 27.42 6 .0 47.9 34 0 .56 54.97 7.0 76.3 29
/415 42 .. 247 .3 0 .56 ... 315 .57 ...... 314.19 .,... 42.10 7 .6 56 .0 33 0 .54 74.75 8.1 90 .8 31
~ 412 42/ 35.3 v v 0 .90 313.64 / 313.32 "' 56.20 9 .8 57.8 4 0 .06 89.85 10.5 83.3 3 -
• \414 18 " 26 .1,.... 1.50 • 320.3Y 319.96 ii 6 .6 1 10.68 7 .6 73.8 3 0 .06 7.05 11 .39 7.7 78 .1 3
)(413 24 .; 117.CY 1.25 ... 319.46 v 318.00 y 14.10 22.77 8 .5 79 .3 14 0 .23 15.10 24.39 8 .5 85.9 14
"
*These values reflect the actual flow for the 18" & 24" pipes . The design fl ow for these pipe sizes reflects a 25% reduction in pipe area .
(Refer to attached calculation for speci fic information .)
(min)
0 .06 --
0 .06 --
0 .64
0 .19
0.45
0 .91
0.48
0.51
0.06
0 .06
0 .23
City of College Station requirement to Reduce Cross-Sectional Area of 18" & 24" Pipes by 25%
Using Mannings Equation from page 48 of the College Station Drain age Policy & Des ign Standards Ma nual :
Q = 1.49/n *A * R213 * S 112
Q =Flow Capacity (cfs)
18" Pipe:
Pipe si ze (inches)= 18
Wetted Perimeter W P, (ft)= 4 .71
Cross-Sectional Area A, (tt2 ) = 1. 766
Reduced Area AR, (ft2 ) = 1 .325
Hydraulic Radius R =A/WP, (ft)= 0 .375
Reduced Hydr Radius RR= A R/Wp, (ft)= 0 .281
Roughness Coefficient n = 0 .014
Friction Slope of Conduit Sr. (ft/ft) = 0 .01
Example Calculation :
Slope Fl ow Capaci ty Reduced Flow Capacity % Difference
s Q Ored uced Oreduced/Q
0.005 6 .91 4 .28 0.619
0 .006 7.57 4 .69 0.619
0.007 8 .18 5 .06 0.619
24" Pipe:
Pipe size (inches)= 24
Wetted Perimeter WP • (ft)= 6 .28
Cross-Sectional Area A , (tt2) = 3 .14
Reduced Area AR . (tt2) = 2 .355
Hydraulic Radius R = A/WP • (ft) = 0 .5
Reduced Hydr Radius RR= A R/Wp , (ft)= 0 .375
Roughness Coefficient n = 0 .014
Friction Slope of Conduit S1o (ft/ft)= 0.01
Example Calculation :
Slope Flow Ca pa ci ty Redu ced Flow Capacity % Difference
s Q Ored uced Ored uceiQ
0 .005 14 .89 9 .22 0.619
0 .006 16 .31 10.1 0.619
0 .007 17.61 10.9 0.619
Conclusion:
Multiply actual Q in 18" & 24" pipes by 1.615 to reflect a 25 % reduction in the
cross-sectional area called for on page 47 , paragraph 5 of the College Station
Drainage Policy & Design Standards manual.
Castlegate Subdivision
Section 4, Phase 2 -Pipe Flow Diagram
0 10 (cfs)
Inlet 415 1 7.07
J,
Pipe 422 1 7 .07
J,
Inlet 414 1 6 .20
J,
Pipe 421 1 13 .27
J,
June Box 407
J,
Pipe 4201 13 .27 lnlet412 I 14.68
J, J,
lnlet413 I 14 .15 ~ Pipe 419 1 14.68
J,
Pipe 418 1 42.10
J,
June Box 40 6
J,
Pipe 417 1 42 .10
J,
June Box405 Inlet 409 1 6 .61
J, J,
Pipe 416 1 42 .10 Pipe 4141 6 .61
J, J,
Inlet 411 I 14 .68 Inlet 410 1 7.49
J, J,
Pipe 415 1 56 .78 Pipe 413 1 14.10
\I IC
I----, • June Box 404 •
l
llPipe 412 1 70 .88 II
Castlegate Subdivision
Section 4, Phase 2 -Pipe Flow Diagram
0 100 (cfs)
Inlet 415 1 7 .57
.J,
Pipe 422 1 7 .57
.J,
Inlet 414 1 6.57
.J,
Pipe 421 1 14.14
.J,
June Box 407
J, I
Pipe 4201 14.14 Inlet 412 1 21 .75 I
.J, .J, 1
lnlet413 I 19.08 ~ Pipe 4191 21 .75
.J,
Pipe 418 1 54.97
,
IP
.J,
June Box 406
.J, v Pipe 417 1 54.97
J,
June Box 405 Inlet 409 7 .05
.J, l/ Pipe 4161 54 .97 Pipe
.J,
414 7.05
.J, v Inlet 411 I 19 .78 • Inlet
.J,
410 8 .05
.J, .J,
Pipe 415 1 74 .75 1 Pipe 413 15 .10
~ "
-, ---, _ June Box 404 _
l
llPipe 412 1 89 .85 II /
Pipe 412 -10 Year Storm (Revised 2/2/01)
Mann ing Pi p e Calculator
Given Input Data :
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
42.0000 in
70.8800 cfs
0 .0 090 ft/ft
0 .0140
28.4098 in
9. 6211 ft2
6.9260 ft2
81. 1191 in
131.9469 in
10.2339 fps
12.2948 in
67.6423 %
88.6292 cfs
9 . 2119 fps
Pipe 412 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
42 .0000 in
89 .8500 cfs
0.0090 ft/ft
0.0140
34 .9721 in
9 . 6211 ft2
8.5610 ft2
96.5471 in
131.9469 in
10.4952 fps
12 .7688 in
83.2668 %
88.6292 cfs
9.2119 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
Pipe 413 -10 Year Storm
Mann i ng Pipe Calculator
Given Input Data:
Shap e .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24.000 0 in
22. 7700 cfs ./
0 .0125 ft/ft
0. 0140
19 .0429 in
3 .1416 ft2
2.6732 ft2
52 .7529 in
75 .3 982 in
8 .51 78 fps /
7 .2 971 in /
79 .3456 %
23.4860 cfs
7.4758 fps
Pipe 413 -100 Year Storm
Manning Pipe Calculator
Given Input Data :
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24. 0000 in /
24.3900 cfs
0.0125 ft/ft
0. 0140
20 .6218 in
3.1416 ft2
2.8722 ft2
56 .9381 in
75 .3982 in
8.4919 fps /
7 .2639 in /
85.9244 %
23.4860 cfs
7.4758 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
Pipe 414 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
18.0000 in
10.6800 cfs
0.0150 ft/ft
0. 0140
13.2758 in
1 . 7671 ft2
1.3972 ft2
37 .1855 in
56 .54 87 in
7 .6439 fps
5.4106 in
73.7543 %
11 .946 2 cfs
6.7602 fps
/
Pipe 414 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
18.0000 in
11 .3900 cfs
0.0150 ft/ft
0 . 0140
14.0528 in
1.7671 ft2
1 .4802 ft2
39 .004 2 in
56.5487 in
7 .694 8 fps
5 .464 8 in
78. 0710 %
11.9462 cfs
6 .7602 fps /
Castlegate Subdivision, Section 4 , Phase 2
College Station, Texas
Pipe 415 -10 Year Storm (Revised 2 /2 /01)
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diamet er ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow veloci ty ............. .
Circular
Dep th of Fl ow
42.0000 in
42.1000 cfs
0.0056 ft/f t
0.0140
23. 50ll in
9 .62ll ft2
5.5383 ft 2
70 .98 76 in
131. 9469 in
7.6016 fps
ll . 2346 in
55.9551 %
69.9116 cfs
7 .2 665 fps
Pipe 415 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
42.0000 in
74.7500 cfs
0.0056 ft/ft
0 .014 0
38.1232 in
9 .6211 ft2
9.1760 ft2
106.0165 in
131 .94 69 in
8 .1463 fps
12.4636 in
90.7696 %
69 .9116 cfs
7 .266 5 fps
Castlegate Subdivision, Section 4, Phase 2
Coll~ge Station, Texas
Pipe 416 -10 Year Storm (Revised 2/2/01)
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ......................... · · ·
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow veloc i ty ............. .
Circular
Depth of Flow
42 .0000 in
42 .1 000 cfs
0.0 040 ft/ft
0.0140
26 .2 021 in
9 . 6211 ft2
6.3122 ft2
76 .4 871 in
131.9469 in
6.6696 fps
11 . 8838 in
62.3860 %
59.0861 cfs
6.1413 fps
Pipe 416 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
42.0000 in
54.9700 cfs
0.00 4 0 ft/ft
0.0140
32.0585 in
9. 6211 ft2
7.8800 ft2
89 .2664 in
131.9469 in
6.9 759 fps
1 2. 7116 in
76.3299 %
59.0861 cfs
6 .1413 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
Pipe 417 -10 Year Storm (Revised 2 /2/01)
Mann ing Pipe Calculator
Given Input Data:
Shape .......................... .
Solv ing for .................... .
Di ameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............ ~ .. .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
42 .0000 in
42 .1 000 cfs
0.0040 ft/ft
0 .0140
26 .202 1 in
9.6 211 ft2
6.3122 ft2
76.4871 in
131 .946 9 in
6.6696 fps
11.8838 in
62.3860 %
59 .0861 cfs
6 .1413 fps
Pipe 417 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
42 .000 0 in
54 .9700 cfs
0 .0040 ft /ft
0 . 0140
32.0585 in
9 . 6211 ft2
7.8800 ft2
89 .2 664 in
131.9469 in
6 .97 59 fps
12 . 7116 in
76.3299 %
59 .0861 cfs
6.1413 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
Pi p e 41 8 -10 Ye ar Storm (Revised 2 /2 /01)
Ma nning Pi p e Calcula tor
Given I nput Da ta:
Shape .......................... .
Solv ing f o r .................... .
Diamete r ....................... .
Fl o wrat e ....................... .
Slope .......................... .
Manning' s n .................... .
Co mp u t e d Resul t s:
Depth .......................... .
Area ........................... .
Wetted Ar ea .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full f l ow velocity ............. .
Circ ul a r
Dept h of Flo w
4 2 .0 000 i n
4 2 .1 0 00 c fs
0.00 4 0 ft/f t
0. 0 14 0
26.2 021 in
9 . 6 2 11 ft 2
6 .31 2 2 ft2
76 .4871 in
131.94 69 in
6.6696 fps
11 .8838 in
62.3860 %
59.0861 cfs
6 .1413 fps
Pipe 418 -1 00 Year Stor m
Manning Pipe Calcul ator
Give n Input Data :
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Peri meter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Ci rcular
Depth of Flow
42 .0000 in
54.9700 cfs
0 .0040 ft/ft
0.0140
32.0585 i n
9. 6211 ft2
7 .8800 ft2
89 .2664 in
13 1.9469 in
6 .9759 fps
1 2.7116 in
7 6 .3299 %
5 9.0861 cfs
6 .1 4 1 3 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
Pipe 419 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
27. 0000 in /
14 .68 00 cfs
0.0060 ft/ft
0. 0140
15 .9981 in
3.9761 ft2
2.4537 ft2
47.4366 in
84.8230 in
5 .9827 fps /
7.4487 in /
59.2521 %
22.2760 cfs
5.6025 fps
Pipe 419 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
27.0000 in /
21.7500 cfs
0.0060 ft/ft
0. 0140
21.5758 in
3.9761 ft2
3.4063 ft2
59.7255 in
84 .8230 in
6.3852 fps /
8.2128 in /
79.9103 % v
22.2760 cfs
5.6025 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
I Pipe 420 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
S olving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24.0000 in /
2 1.4300 cfs
0 . 0110 ft/ft
0. 0140
19.1051 in
3 .1416 ft2
2.6816 ft2
52.9066 in
75.3982 in
7.9915 fps
7.2987 in
79.6044 %
22.0318 cfs
7.0129 fps
Pipe 420 -100 Ye a r Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24.0000 in
22.8400 cfs
0.0110 ft/ft
0 . 0140
20.5705 i n
3 .1 416 ft2
2.8662 ft2
56.7909 in
75 .3982 in
7 .9688 fps
7.26 75 in
85 .7 104 % /
22.0318 cfs
7 .0129 fps
Castlegate Subdivision, Section 4, Phase 2
Co l lege Station, Texas
Pipe 421 -10 Year Storm
Manning Pipe Calculator
Given I nput Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24 . 0000 in /
21.4300 cfs
O.OllO ft/ft
0. 0140
19.1051 in
3.1416 ft2
2.6816 ft2
52.9066 in
75.3982 in
7. 9915 fps ../
7 .2987 in /
79.6044 %
22.0318 cfs
7.0129 fps
Pipe 421 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24.0000 in
22 . 8400 cfs /
O.OllO ft/ft
0. 0140
20 .5705 in
3.1416 ft2
2.8662 ft2
56.7909 in
75.3982 in
7.9688 fps /
7.2675 in ../
85.7104 %
22 .0318 cfs
7 .0129 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
Pipe 422 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diamete r ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results:
Depth .......................... .
Area ........................ ·. · ·
Wetted Area .................... .
Wetted Perimete r ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
18.0000 in
11.4200 cfs "'/
0. 0140 ft/ft
0 .0140
14.5847 in
1.7671 ft2
1.5338 ft2
40 .323 8 in
56.5487 in
7.4454 fps
5.4775 in
81. 0264 %
11.5411 cfs
6.5309 fps
Pipe 422 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results :
Depth .......................... .
Area .......................... ·.
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
18 .0000 in
12 .2300 cfs /
0. 0140 ft /ft
0 . 0140
15 .9962 in
1 .767 1 ft2
1.6595 ft2
44 .30 25 in
56 .54 87 in
7.3696 fps
5.3941 in
88 .8678 %
11. 5411 cfs
6.5309 fps
Castlegate Subdivision, Sect i on 4, Phase 2
College Station, Texas
EXHIBIT A
Offsite Infrastructure Plan for Castlegate Subdivision
27
,· ~ • J
Item
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
ENGINEERS COST ESTIMATE
CASTLEGATE SUBDIVISION
COLLEGE STATION , TEXAS
SECTION 4 -PHASE 2
Estimated
Description Quantity
Sitework
Mobilization/Layout 1.0
Erosion /Seeding/bale dams/constr. Entr. 1.0
Site Preparation 4.6
Topsoil Stripping & Replacement 1,501
Excavation/Grading 3,893
Lime Stabilized Subgrade 8,487
Concrete Curb and Gutter 5,598
Base Material -6" depth 6,621
Base Material -7" depth 0
Asphalt Paving -1 1 /2" depth 6,621
Concrete Apron 540
Storm Drainage
18" RCP -structural backfill 56
24" RCP -non-structural backfill 522
27" RCP -structural backfill 26
42" RCP -structural backfill 255
42" RCP -non-structural backfill 808
Junction boxes 4
Inlets 1 O' wide 4
Inlets 15' wide 3
Rip Rap at channel discharges 0
Remove culvert and modify access road 1
REVIEWED FOk
C()t\JIF:'I I ICE
FEB 0 1 2001
COLLEGE Sl k I IUl\J
ENGINEERING
Page 1 of 2
25-Jan-01
Unit Estimated
Price Cost
LS $8,000 .00 $8,000.00
LS $6,000.00 $6,000.00
AC $3,000.00 $13,800.00
CY $4.00 $6,004.00
CY $3.50 $13,625.50
SY $3.00 $25,461.00
LF $7.00 $39,186 .00
SY $5.75 $38,070.75
SY $6 .50 $0.00
SY $4.25 $28,139.25
SF $5.00 $2,700.00
Subtotal $180,986.50
LF $36.00 $2,016.00
LF $32.00 $16,704.00
LF $46.00 $1, 196.00
LF $105.00 $26,775.00
LF $85.00 $68,680.00
EA $2,500.00 $10,000.00
EA $3,200.00 $12 ,800.00
EA $4,000.00 $12,000.00
TN $40.00 $0.00
LS $950.00 $950.00
Subtotal $151,121.00
...... ,.
Waterline
22 8" Waterline -PVC(C900)-structural backfill
23 8" Waterline -PVC(C900)-non -structu ral backfill
24 6" Waterline -PVC(C900)-structural backfill
25 6" Waterline -PVC(C900)-non-structural backfill
26 Gate Valves -8"
27 Gate Valves -6 "
28 M.J. Bends and Tees 8"
29 M.J . Bends and Tees 6"
30 Connect to Existing
31 Water Services
32 Fire Hydrant Assembly
33 2" Blow off Assembly
Sanitary Sewer
34 8" SOR 26 Pipe -structural backfill
35 8" SOR 26 Pipe -non structural backfill
36 6" SOR 26 Pipe -structural backfill
37 6" SOR 26 Pipe -non structural backfill
38 Tie-in to existing Manhole
39 Sewer Services
40 6" Stack Pipe Riser (extra long)
41 Add drop to Manhole
42 Manholes -13' depth
Page 2 of 2
50 LF $30.00 $1,500.00
1,990 LF $26.00 $51 ,740 .00
88 LF $26 .00 $2 ,288 .00
500 LF $18.00 $9 ,000 .00
4 EA $600.00 $2,400.00
1 EA $500 .00 $500 .00
14 EA $300.00 $4 ,200 .00
2 EA $250.00 $500.00
2 EA $350 .00 $700 .00
47 EA $700 .00 $32,900.00
4 EA $2,000 .00 $8 ,000.00
1 EA $400.00 $400.00
Subtotal $114,128.00
80 LF $35.00 $2,800 .00
1,243 LF $30.00 $37 ,290.00
50 LF $25.00 $1,250 .00
1,342 LF $20 .00 $26,840.00
1 EA $300.00 $300.00
46 EA $700.00 $32,200.00
8 LS $300.00 $2,400 .00
2 LS $500.00 $1,000 .00
12 EA $2,400.00 $28,800.00
Subtotal $132,880.00
Total Sitework $180,986.50
Total Storm Drainage $151,121.00
Total Water $114,128 .00
Total Sanitary Sewer $132,880.00
TOTAL CONSTRUCTION $579, 115.50
Engineering @5% $28,955. 78
Contingency@5% $28,955.78
TOTAL PROJECT $637,027.05
~~
COLLlGl STATION
DEVELOPMENT PERMIT
PERMIT NO. 100005
DP-CASTLEGA TE SUB SEC 4 PH 2
FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA
RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE
SITE LEGAL DESCRIPTION:
CASTLEGATE SUBDIVISION
SECTION 4, PHASE 2
DATE OF ISSUE: MARCH 02, 2001
OWNER:
WALLACE PHILLIPS
GREENS PRAIRIE INVESTORS , LTD .
5010 AUGUSTA
COLLEGE STATION, TEXAS 77845
SITE ADDRESS:
2270 GREENS PRAIRIE RD W
DRAINAGE BASIN:
SPRING CREEK
VALID FOR 12 MONTHS
CONTRACTOR:
TYPE OF DEVELOPMENT: FULL DEVELOPMENT PERMIT
SPECIAL CONDITIONS:
All construction must be in compliance with the approved construction plans.
All trees must be barricaded, as shown on plans, prior to any construction. Any trees not barricaded will not count
towards landscaping points. Barricades must be 1' per caliper inch of the tree diameter.
The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site
in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design
Criteria. The Owner and/or Contractor shall assure that all disturbed areas are sodden and establishment of vegetation
occurs prior to removal of any silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor
shall also insure that any disturbed vegetation be returned to its original condition, placement and state. The Owner
and/or Contractor shall be responsible for any damage to adjacent properties, city streets or infrastructure due to heavy
machinery and/or equipment as well as erosion, siltation or sedimentation resulting from the permitted work.
Any trees required to be protected by ordinance or as part of the landscape plan must be completely fenced before any
operations of this permit can begin.
In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to
insure that debris from construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage
facilities .
I hereby grant this permit for development of an area outside the special flood hazard area. All development shall be in
accordance with the plans and specifications submitted to and approved by the City Engineer in the development permit
application for the above named project and all of the codes and ordinances of the City of College Station that apply.
Owner/ Agent/Contractor
Date
..L-C?2-t?/
Date
. .. -'
Item
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
ENGINEERS COST ESTIMATE
CASTLEGATE SUBDIVISION
COLLEGE STATION, TEXAS
SECTION 4 -PHASE 2
Estimated
Description Quantity
Sitework
Mobilization/Layout 1.0
Erosion /Seeding/bale dams/constr. Entr. 1.0
Site Preparation 4 .6
Topsoil Stripping & Replacement 1,501
Excavation/Grading 3,893
Lime Stabilized Subgrade 8,487
Concrete Curb and Gutter 5 ,598
Base Material -6" depth 6,621
Base Material -7" depth 0
Asphalt Paving - 1 1 /2" depth 6,621
Concrete Apron 540 .
Storm Drainage
18" RCP -structural backfill 56
24" RCP -non-structural backfill 522
27" RCP -structural backfill 26
42" RCP -structural backfill 255
42" RCP -non-structural backfill 808
Junction boxes 4
Inlets 1 O' wide 4
Inlets 15' wide 3
Rip Rap at channel discharges 0
Remove culvert and modify access road 1
FEB 0 1 2001
COLLEGE: ~:: t ··.' I U •'~
ENGINEE Ri NG
Page 1of2 ·
25-Jan-01
Unit Estimated
Price Cost
LS $8 ,000 .00 $8,000.00
LS $6,000.00 $6,000 .00
AC $3,000 .00 $13,800.00
CY $4.00 $6,004 .00
CY $3.50 $13,625.50
SY $3 .00 $25,461 .00
LF $7.00 $39,186.00
SY $5.75 $38,070.75
SY $6 .50 $0 .00
SY $4.25 $28,139.25
SF $5.00 $2,700.00
Subtotal $180,986.50
,.;-·'
.. :.~;/'-
···~
LF $36.00 $2,016.00
LF $32.00 $16,704.00
LF $46 .00 $1,196.00
LF $105.00 $26,775 .00
LF $85.00 $68,680.00
EA $2,500.00 $10,000.00
EA $3 ,200.00 $12,800.00
EA $4 ,000 .00 $12,000.00
TN $40 .00 $0 .00
LS $950.00 $950.00
Subtotal $151,121.00
J . ,,._ ... I
• ~
Waterline
22 8" Waterline -PVC(C900)-structural backfill
23 8" Waterline -PVC(C900)-non-structural backfill
24 6" Waterline -PVC(C900)-structural backfill
25 6" Waterline -PVC(C900)-non-structural backfill
26 Gate Valves -8"
27 Gate Valves -6"
28 M.J. Bends and Tees 8"
29 M.J. Bends and Tees 6"
30 Connect to Existing
31 Water Services
32 Fire Hydrant Assembly
33 2" Blow off Assembly
Sanitary Sewer
34 8" SOR 26 Pipe -structural backfill
35 8" SOR 26 Pipe -non structural backfill
36 6" SOR 26 Pipe -structural backfill
37 6" SOR 26 Pipe -non structural backfill
38 Tie-in to existing Manhole
39 Sewer Services
40 6" Stack Pipe Riser (extra long)
41 Add drop to Manhole
42 Manholes -13' depth
P::tnfl 2 of?
50 LF $30.00 $1,500 .00
1,990 LF $26.00 $51,740.00
88 LF $26.00 $2,288.00
500 LF $18 .00 $9,000.00
4 EA $600.00 $2,400.00
1 EA $500.00 $500.00
14 EA $300.00 $4,200.00
2 EA $250.00 $500.00
2 EA $350.00 $700.00
47 EA $700 .00 $32,900 .00
4 EA $2,000.00 $8,000 .00
1 EA $400.00 $400.00
Subtotal $114, 128.00
80 LF $35.00 $2,800.00
1,243 · LF $30.00 $37,290.00
50 LF $25.00 $1,250.00
1,342 LF $20.00 $26,840.00
1 EA $300.Q~,; $300.00 ,,
46 EA $700"~0.0 $32,200.00
8 LS ,$300.00 ··. $2,400.00
2 LS $500.00 $1,000.00
12 EA $2,400.00 $28.800.00
Subtotal $132 ;880.00
Total Sitework $180,986.50
Total Storm Drainage $151,121.00
Total Water $114,128.00
Total Sanitary Sewer $132,880.00
TOTAL CONSTRUCTION $579, 115.50
Engineering @5% $28,955.78
Contingency@5% $28,955.78
TOTAL PROJECT $637,027.05
(f ~
COLLlGl STATION
DEVELOPMENT PERMIT
PERMIT NO. 100005
DP-CASTLEGA TE SUB SEC 4 PH 2
FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA
RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE
SITE LEGAL DESCRIPTION:
CASTLEGATE SUBDIVISION
SECTION 4 , PHASE 2
DATE OF ISSUE : MARCH 02 , 2001
OWNER:
WALLACE PHILLIPS
GREENS PRAIRIE INVESTORS, LTD.
5010 AUGUSTA
COLLEGE STATION, TEXAS 77845
SITE ADDRESS:
2270 GREENS PRAIRIE RD W
DRAINAGE BASIN:
SPRING CREEK
VALID FOR 12 MONTHS
CONTRACTOR:
TYPE OF DEVELOPMENT: FULL DEVELOPMENT PERMIT
SPECIAL CONDITIONS:
All construction must be in compliance with the approved construction plans.
All trees must be barricaded, as shown on plans , prior to any construction. Any trees not barricaded will not count
towards landscaping points. Barricades must be 1' per caliper inch of the tree diameter.
The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site
in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design
Criteria. The Owner and/or Contractor shall assure that all disturbed areas are sodden and establishment of vegetation
occurs prior to removal of any silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor
shall also insure that any disturbed vegetation be returned to its original condition , placement and state. The Owner
and/or Contractor shall be responsible for any damage to adjacent properties, city streets or infrastructure due to heavy
machinery and/or equipment as well as erosion , siltation or sedimentation resulting from the permitted work.
Any trees required to be protected by ordinance or as part of the landscape plan must be completely fenced before any
operations of this permit can begin.
In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to
insure that debris from construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage
facilities.
I hereby grant this permit for development of an area outside the special flood hazard area. All development shall be in
accordance with the plans and specifications submitted to and approved by the City Engineer in the development permit
application for the above named project and all of the codes and ordinances of the City of College Station that apply.
Owner/ Agent/Contractor Date
. ~-tt. , ~
ENGINEERS COST ESTIMATE
CASTLEGATE SUBDIVISION 25-Jan-01
COLLEGE STATION, TEXAS
SECTION 4 -PHASE 2
Item Estimated Unit Estimated
No. Description Quantity Price Cost
Sitework
1 Mobilization/Layout 1.0 LS $8 ,000 .00 $8,000.00
2 Erosion /Seeding/bale dams/constr. Entr. 1.0 LS $6,000.00 $6,000.00
3 Site Preparation 4.6 AC $3,000.00 $13,800.00
4 Topsoil Stripping & Replacement 1,501 CY $4.00 $6,004.00
5 Excavation/Grading 3,893 CY $3.50 $13,625 .50
6 Lime Stabilized Subgrade 8,487 SY $3.00 $25,461.00
7 Concrete Curb and Gutter 5,598 LF $7 .00 $39,186.00
8 Base Material -6" depth 6,621 SY $5.75 $38,070.75
9 Base Material -7" depth 0 SY $6.50 $0.00
10 Asphalt Paving - 1 1 /2" depth 6,621 SY $4.25 $28,139.25
11 Concrete Apron 540 . SF $5.00 $2.700.00
Subtotal $180,986.50
',f ~ ,,
Storm Drainage •.;-
12 18" RCP -structural backfill 56 LF $36 .00 $2,016.00
13 24" RCP -non-structural backfill 522 LF $32.00 $16,704 .00
14 27" RCP -structural backfill 26 LF $46.00 $1,196.00
15 42" RCP -structural backfill 255 LF $105.00 $26,775.00
16 42" RCP -non-structural backfill 808 LF $85.00 $68,680.00
17 Junction boxes 4 EA $2,500.00 $10,000.00
18 Inlets 1 O' wide 4 EA $3,200.00 $12,800.00
19 Inlets 15' wide 3 ' EA $4 ,000.00 $12,000 .00
20 Rip Rap at channel discharges 0 TN $40.00 $0 .00
21 Remove culvert and modify access road 1 LS $950 .00 $950.00
Subtotal $151,121.00
RE.VIEVVEJ) F ()h
C('ll\ 11 n1 ll\ ·'CE
~~ FEB 0 1 2001
COLLE r~~:'.: c:; '··· " ._ ,.(_•-....1 .J l •..• ~
ENGINEE RING
Page 1 of 2
J. -.,i -
Waterline
22 8" Waterline -PVC(C900)-structural backfill 50 LF $30 .00 $1,500 .00
23 8" Waterline -PVC(C900)-non-structural backfill 1,990 LF $26.00 $51,740 .00
24 6" Waterline -PVC(C900)-structural backfill 88 LF $26.00 $2,288 .00
25 6" Waterline -PVC(C900)-non-structural backfill 500 LF $18 .00 $9,000.00
26 Gate Valves -8" 4 EA $600.00 $2,400.00
27 Gate Valves -6" 1 EA $500.00 $500 .00
28 M.J . Bends and Tees 8" 14 EA $300.00 $4 ,200 .00
29 M.J. Bends and Tees 6" 2 EA $250.00 $500 .00
30 Connect to Existing 2 EA $350.00 $700.00
31 Water Services 47 EA $700.00 $32,900 .00
32 Fire Hydrant Assembly 4 EA $2,000.00 $8,000.00
33 2" Blow off Assembly 1 EA $400.00 $400.00
Subtotal $114,128.00
Sanitary Sewer
34 8" SOR 26 Pipe -structural backfill 80 LF $35.00 $2 ,800.00
35 8" SOR 26 Pipe -non structural backfill 1,243 · LF $30.00 $37,290 .00
36 6" SOR 26 Pipe -structural backfill 50 LF $25.00 $1 ,250.00
37 6" SOR 26 Pipe -non structural backfill 1,342 LF $20.00 $26,840 .00
38 Tie-in to existing Manhole 1 EA $300 .0LY·· $300.00 ·:l "i .
39 Sewer Services 46 EA $700·:00 $32 ,200 .00
' 40 6" Stack Pipe Riser (extra long) 8 LS .$300.00 ··. $2,400.00
41 Add drop to Manhole 2 LS $500.00 $1,000.00
42 Manholes -13' depth 12 EA $2,400.00 $28,800.00
Subtotal $132,880.00
Total Sitework $180,986.50
Total Storm Drainage $151,121.00
Total Water $114,128.00
Total Sanitary Sewer ~1321880.00
TOTAL CONSTRUCTION $579, 115.50
Engineering @5% $28,955.78
Contingency @5% $28,955.78
TOTAL PROJECT $637,027.05
Paqe 2 of 2
Drainage Report
for
Castlegate Subdivision
Section 4, Phase 2
College Station, Texas
January 2001
Developer:
Greens Prairie Investors, Ltd.
By Greens Prairie Associates, LLC
5010 Augusta
College Station, Texas 77845
(979) 693-7830
Prepared By:
TEXCON General Contractors
1707 Graham Road
College Station, Texas 77845
(979) 690-7711
REVIEWED FOR
Cf"'""n' 11\f\ICE
FEB 1 2 2001
COLLE:(.,jt: ~I A I ION
ENGINEERING
CERTIFICATION
I, Joseph P. Schultz, Licensed Professional Engineer No. 65889, State of Texas , certify that this
report for the drainage design for the Castlegate Subdivision, Section 4 , Phase 2 was prepared
by me in accordance with the provisions of the City of College Station Drainage Policy and
Design Standards for the owners hereof.
_,,,,,,,,
--i€. OF /: \ -l'A..,. 't-••••••••••• t:-t ,,
;e:, ••• * ··.-115' •• "' .. . , "* . ·. * I. '*: · .• ·,j , .................................. ~
l .. AQgf.~ .. ~~ .. ~~lf.~.~TL .. .I ·
l,-0• •<tr.: .,,16··~ 65889 /4J I ··~~f.<}tSTE~~~0· ~-#'
" \)s ••••••·• ~ ., \\ ... ~ONAL €_..;' ,,,~-
l ~ lS'~O{
Josep
TABLE OF CONTENTS
DRAINAGE REPORT
CASTLEGATE SUBDIVISION
SECTION 4, PHASE 2
CERTIFICATION .................................................................................................................................................................. 1
TABLE OF CONTENTS ........................................................................................................................................................ 2
LIST OF TABLES .................................................................................................................................................................. 3
INTRODUCTION ................................................................................................................................................................... 4
GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 4
FLOOD HAZARD INFORMATION .................................................................................................................................... 4
DEVELOPMENT DRAINAGE PATTERNS ...................................................................................................................... .4
DRAINAGE DESIGN CRITERIA ...............•........................................................................................................................ S
STORM WATER RUNOFF DETERMINATION ............................................................................................................... 5
DETENTION FACILITY DESIGN ...................................................................................................................................... 7
STORM SEWER DESIGN .................................................................................................................................................... 7
CONCLUSIONS ....................•..•............................................................................................................................................. 8
APPENDIX A .......................................................................................................................................................................... 9
Storm Sewer Inlet Design Calculations
APPENDIX B •..............................................................................................................................•........................................ 11
Storm Sewer Pipe Design Calculations
EXHIBIT A ............................................................................................................................................................................ 27
Offsite Infrastructure Plan for Castlegate Subdivision
EXHIBIT B ............................................................................................................................................................................ 29
Post-Development Drainage Area Map
2
LIST OF TABLES
TABLE 1 -Rainfall Intensity Calculations ........................................................................................................ 6
TABLE 2-Post-Development Runofflnformation ........................................................................................... 6
3
DRAINAGE REPORT
CASTLEGATE SUBDIVISION
SECTION 4, PHASE 2
INTRODUCTION
The purpose of this report is to provide the hydrological effects of the construction of the
Castlegate Subdivision, Section 4, Phase 2 , and to verify that the proposed storm drainage
system meets the requirements set forth by the City of College Station Drainage Policy and
Design Standards.
GENERAL LOCATION AND DESCRIPTION
The project is located on a 162 acre tract located west of State Highway 6 along the north side
of Greens Prairie Road in College Station, Texas. This report addresses Section 4, Phase 2 of
this subdivision, which is made up of 22.94 acres . The site is wooded with the vegetation
primarily consisting of oak trees and yaupons. The existing ground elevations range from
elevation 322 to elevation 340. The general location of the project site is shown on the vicinity
map in Exhibit B.
FLOOD HAZARD INFORMATION
The project site is located in the Spring Creek branch of the Lick Creek Drainage Basin. The
site is located in a Zone X Area according to the Flood Insurance Rate Map prepared by the
Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated
areas dated July 2, 1992, panel number 48041C0205-C. Zone X Areas are determined to be
outside of the 500-year floodplain. LJA Engineering & Surveying, Inc . submitted a Request
for Conditional Letter of Map Revision (CLOMR) to FEMA to outline a proposed 100-year
floodplain area. This CLOMR No . 00-06-844R was approved by FEMA on 9/8/2000. The
proposed floodplain area does not affect Section 4 . Section 4 will continue to be in a Zone X
Area.
DEVELOPMENT DRAINAGE PATTERNS
Prior to development, the storm water runoff for this tract flows in one general direction. For
Section 4, Phase 2, a majority of the acreage flows toward the center of the tract and then to the
north into the natural drainage at the northern end of the tract. Ultimately, the runoff flows
north to the proposed regional detention facility . Refer to the Offsite Infrastructure Plan in
Exhibit A for the location of this proposed detention facility .
4
DRAINAGE DESIGN CRITERIA
The design parameters for the storm sewer are as follows:
• The Rational Method is utilized to determine peak storm water runoff rates for the storm
sewer design.
• Design Storm Frequency
Storm Sewer system
• Runoff Coefficients
Pre-development
10 and 100-year storm events
Post-development (single family residential)
c = 0.30
c = 0.55
• Rainfall Intensity values for Brazos County for a minimum time of concentration of 10
minutes can be found in Table 1. Where a longer time of concentration was necessary, it is
noted in the respective table, and the intensities are calculated with the higher values where
required.
• Time of Concentration, tc -Due to the small sizes of the drainage areas, the calculated
times of concentration, tc, are less than 10 minutes. Therefore, a minimum tc of 10 minutes
is used in most cases to determine the rainfall intensity values. Where a longer time of
concentration was necessary, it is noted and used accordingly.
STO RM WATER RUN O FF DETERMINATION
The peak runoff values were determined in accordance with the criteria presented in the
previous section for the 5, 10, 25, 50, and 100-year storm events. The runoff coefficients are
based on the future development of this tract. The drainage areas for post-development are
shown in Exhibit B. Post-development runoff conditions are summarized in Table 2.
5
TABLE 1 -Rainfall Intensity Calculations
Rainfall Intensity Values (in/hr)
Stonn t.:=
Event 10 min
Is 7 .693
110 8 .635
l2s 9 .861
(50 11 .148
1100 11.639
Brazos County:
5 Y..ear storm 10 'i_ear storm
b = 76 b = 80
d = 8.5 d = 8 .5
e = 0 .785 e = 0 .763
I= b I (tc+dt
I = Rainfall Intensity (in/hr)
tc = U(V*60)
le= Time of concentration (min)
L = Length (ft)
V = Velocity (ft/sec)
25 'i_ear storm 50 'i.ear storm 100 'i_ear storm
b = 89 b = 98 b = 96
d = 8.5 d = 8 .5 d = 8 .0
e = 0 .754 e = 0.745 e = 0 .730
(Data taken from State Department of Hiqhwa'i_S and Public Transportation HY..draulic Manual , page 2-16)
TABLE 2 -Post-Development Runoff Information
A c
Area#
(acres)
3 1.73 0 .55
63 0 .79 0 .55
64 1 .25 0 .55
73 1.83 0 .55
74 1 .4 7 0.55
75 1 .51 0 .55
76 0 .54 0.55
77 0 .70 0 .55
78 2.10 0 .55
79 0 .88 0.55
80 2 .21 0.55
81 0 .97 0 .55
82 1 .26 0 .55
83 1 .24 0 .55
84 1 . 72 0 .55
85 1 .51 0 .55
86 1 .20 0 .55
87 1 . 7 8 0 .55
The Rational Method:
Q =CIA
Q = Flow (cfs)
A= Area (acres)
C = Runoff Coeff .
I= Rainfall Intensity (in/hr)
tc Os 010
(min) (cfs) (cfs)
10 7 .32 8.22
10 3 .34 3.75
10 5 .29 5 .94
10 7 .74 8 .69
10 6 .22 6 .98
10 6.39 7 .17
10 2 .28 2.56
10 2 .96 3 .32
10 8 .89 9.97
10 3 .72 4 .18
10 9.35 10 .50
10 4 .10 4 .61
10 5 .33 5 .98
10 5.25 5 .89
10 7 .28 8 .17
10 6 .39 7 .17
10 5 .08 5 .70
10 7 .53 8 .45
6
02s Oso 0100
(cfs) (cfs) (cfs)
9 .38 10 .61 11 .07
4 .28 4 .84 5 .06
6 .78 7 .66 8 .00
9 .93 11 .22 11 . 71
7 .97 9.01 9 .41
8 .19 9 .26 9.67
2 .93 3.31 3.46
3 .80 4 .29 4 .48
11 .39 12 .88 13 .44
4 .77 5.40 5 .63
11 .99 13 .55 14 .15
5.26 5 .95 6 .21
6 .83 7 .73 8 .07
6 .73 7 .60 7 .94
9 .33 10 .55 11 .01
8 .19 9 .26 9.67
6 .51 7 .36 7 .68
9.65 10 .91 11 .39
DETENTION FACILITY DESIGN
The detention facility handling the runoff from this site will be a regional facility designed by
LJA Engineering & Surveying, Inc . Refer to the Offsite Infrastructure Plan in Exhibit A for the
location of this proposed detention facility . The runoff from this project flows into existing
drainages and then into Spring Creek. The detention facility is located adjacent to Spring
Creek prior to Spring Creek entering the State Highway 6 right-of-way.
STORM SEWER DESIGN
The storm sewer piping for this project has been selected to be Reinforced Concrete Pipe
(RCP) meeting the requirements of ASTM C-76, Class ill pipe. The curb inlets and junction
boxes will be cast-in-place concrete.
Appendix A presents a summary of the storm sewer inlet design parameters and calculations .
The inlets were designed based on a 10-year design storm. As per College Station guidelines,
the capacities of inlets in sump were reduced by 10% to allow for clogging.
Inlets were located to maintain a gutter flow depth of 5" or less , which will prevent the spread
of water from reaching the crown of the road for the 10-year storm event. The runoff
intercepted by the proposed storm sewer inlets was calculated using the following equations.
The depth of flow in the gutter was determined by using the Straight Crown Flow equation.
The flow intercepted by Inlets 409, 410, 414 & 415 was calculated by using the Capacity of
Inlets On Grade equation. The capacities for the inlets in sumps (Inlets 411, 412 & 413) were
calculated using the Inlets in Sumps, Weir Flow equation with a maximum allowable depth of
7" (5" gutter flow plus 2" gutter depression). These equations and the resulting data are
summarized in Appendix A.
Appendix B presents a summary of the storm sewer pipe design parameters and calculations.
All pipes are 18" in diameter or larger. For pipes with 18" and 24" diameters, the cross-
sectional area is reduced by 25%, as per College Station requirements. A summary of how this
was achieved is shown in Appendix B as well. The pipes for the storm sewer system were
designed based on the 10-year storm event; however, all will also pass the 100-year storm event
without any headwater. Based on the depth of flow in the street determined for the 100-year
storm event, this runoff will be contained within the street right-of-way until it enters the storm
sewer system. As required by College Station, the velocity of flow in the storm sewer pipe
system is not lower than 2.5 feet per second, and it does not exceed 15 feet per second. As the
data shows , even during low flow conditions, the velocity in the pipes will exceed 2 .5 feet per
second and prevent sediment build-up in the pipes . The maximum flow in the storm sewer pipe
system will occur in Pipe No. 412 . The maximum velocity for the pipe system in Section 4 ,
Phase 2 will be 10.5 feet per second and will occur in Pipe No. 412. Appendix B contains a
summary of the Manning pipe calculations as well as flow diagrams mapping the flows through
the storm sewer system for the 10 and 100-year events.
)
7
CONCLUSIONS
The construction of this project will significantly increase the storm water runoff from this site .
The proposed storm sewer system should adequately control the runoff and release it into
existing drainages . Also, the regional detention facility and the proposed ponds in the park area
should adequately reduce the peak post-development runoff to less than the pre-development
runoff for the design storm event. This will prevent any impact on the properties downstream
of this project.
8
APPENDIX A
Storm Sewer Inlet Design Calculations
9
Castlegate Subdivision
Section 4 -Phase 2
Inlet Length Calculations
Inlets In Sump 1 O year storm
F'°"'fl'om A c Q,. a....,_ Or ... 0,.Clll .... 1K Inlet# Length & Type
Area# (ac res) (cfs) (cfs) from lnlett (cfs) (cfs)
Sectlon-4/Phasa 1 (for lnfOnnatlonal purposes cinlyl '· ;--,y.,. ~~.·:-11.•.'$ ·'~'~'
·401 1 O' Standard 66 0.49 0.55 2.33 2.33 2.56
70 1.18 0.55 5.60 5.60 6.16
•404 5' Standard 63 0.79 0.55 3.75 3.75 4.13
Section 4/PhH8 2 .... ;;"·!'• , , ... , .... ~···
.. 407 15' Standard 75 1.51 0.55 7.17 0.79 ~Cl,.«15,408 7.97 8.78
77 0 .70 0.55 3.32 2.49 410 5.81 6.39
-400 10' Standard 64 1.25 0.55 5.94 5.94 6,53
76 0.54 0.55 2 .56 0,00 409 2.56 2 .82
411 15' Standard 79 0.88 0.55 4.18 4.18 4,60
80 2.21 0.55 10 .50 10,50 11 .55
412 15' Standard 83 1.24 0.55 5.89 1.62 415 7.51 8.26
85 1.51 0.55 7.17 7.17 7.89
413 15' Standard 82 1.26 0.55 5.98 0.00 414 5.98 6.58
84 1.72 0.55 8.17 8.17 8.99
.. 301 15' Standard 3 1.73 0.55 8.22 8.22 9.04
87 1.78 0 .55 8.45 8.45 9.30
•inlets were constructed as a part of Section 4 , Phase 1, but affect the design of Section 4, Phase 2 .
.. Inlets will be constructed during Section 3, Phase 1 construction .
Inlets On Grade 1 o year storm
Inlet# Flow from Y10 Qp«fool: a. .. -Q-a....,_ Length & Type
Area# (ft) (In) (ft) (cfs) (cfs) (cfs) fromlnlott
Section 41Phn• 1 (for lnformaUonal DU """"• on ly} .. ,, " :.O.b..i; ···"''''-' A,:-·
•402 1 O' Recessed 65 0.296 3.55 0.54 5.37 -2 .33 0
•403 1 O' Recessed 71 0.301 3.61 0.56 5.61 -1 .62 0
•405 15' Recessed 72 0.369 4.43 0.65 9.79 -0 .67 0
•400 10' Recessed 74 0.325 3.90 0.62 6.19 0 .79 0
Sactlon 4/Phasa 2
414 1 O' Recessed 81 0.352 4.22 0.62 6.20 -1 .59 0
415 1 O' Recessed 73 0.399 4.79 0.71 7.07 1.62 0
409 1 O' Recessed 66 0.339 4.07 0.66 6.61 -0 .91 0
410 1 O' Recessed 78 0.396 4.75 0.75 7.49 2.49 0 . Inlets were constructed as a part of Sectio n 4 , Phase 1, but affect the design of Section 4, Phase 2 .
Transverse (Crown) slope (ft/ft) = 0.038
Straig-ht Crown Flow (Solved to find actual depth of flow. yl:
Q = o .56 • (zinJ • s 112 • y'" q y = {Q / [0.56 • (zin) • s"'n'"
n =Roughness Coefficient= 0 .018
z = Reciprocal of crown slope = 26
S = StreeUGutter Slop e (ft/ft)
y = Depth of flow at inlet (ft)
Capacitv of Inlets on grade :
Oc = 0.7 • [1/(H, • H,)] • [H 1
512 • H,'12]
Oc = Flow capacity of inlet (cfs)
H , =a+ y
H2 =a= gutter depression (2" Standard; 4" Re cessed)
y = Depth of flow in approach gutter (ft)
.· ·.
Y10..aua
(ft) (In)
~'."V..;,,_, ...
0.212 2.55
0.295 3.54
0.254 3.05 , _ _., :
0.337 4.04
0.299 3.59
0.302 3,62
0,220 2.64
0.264 3.17
0.373 4.48
0.329 3.95
0.324 3.89
0.303 3.63
0.340 4.08
0 .341 4.09
0.344 4.13
Qbyp-totlll 0 • ..,..001
(cfs) (cfs) ·-; ·' w·
0.00 5.37
0.00 5.61
0.00 9.79
0.79 6.19
, ..
0 .00 6.20
1.62 7.07
0.00 6.61
2.49 7.49
100 year storm
L 10-«eq'd
.
L10...ctu11 o, .. Oc.,.,.,_ Or ... Orot.t+1K y, ..
(ft) (ft) (cf•) (cfs)
!'')·:•l-• .,.
6.53 10 3.14
7,55
3.09 5 5.06 .
11 .35 15 9.67 4.71
4.48 5.39
7.00 10 8.00
3.46 0.63
12.09 15 5.63
14 .15
12.09 15 7.94 4.14
9.67
11 .66 15 8.07 0.00
11 .01
13 .73 15 11 .07
11 .39
Q10·Tot• y,,. a .......
(cfs) (ft) (In) (ft) -....... ·' ...
5.37 0 .301 3.61 0 .56
5.61 0.307 3.68 0 .59
9.79 0 .402 4.82 0 .70
6.98 0 .364 4.38 0 .66
6.20 0.360 4 .31 0.66
8.69 0.446 5.36 0.76
6.61 0 .359 4.31 0 .70
9.97 0.443 5.31 0.81
Inlets In sumps, Weir Flow :
L = QI (3 • y312) q y • (QI 3L)213
L = Length of inlet opening (ft)
Q = Flow at Inlet (els)
y = total depth of flow on inlet (ft)
max y for inlet in sump = 7" = 0 .583'
fromln,.t# (cfs) (cfs) (ft) (In)
.,. ... , 4
3.14 3.45 0.536 6.43
7.55 8.31
5.06 5.56 0.516 6.19
··-
402..tOl,405,.tOI 14.38 15.81 0.706 8.47
410 9.87 10.86
8.00 8.80 0 .581 6.98
409 4 .09 4.50
5.63 6.20 0.616 7.39
14.15 15.56
415 12.08 13.29 0.656 7.87
9.67 10.63
414 8.Q7 8.87 0 .601 7.22
11 .01 12.11
11 .07 12.18 0.671 8.05
11 .39 12.53
100 year storm
o.-Qbyp•• a....,_ Q b)i>-td:lll
(cfsl (cfs) (cfs) from Inlet I (cfs)
. .......... ... o., -
5.64 -1 .54 0 0.00
5.91 -0 .53 0 0.00
10.43 1.67 0 1.67
6.57 2.84 0 2.84 -
6.57 -0 .37 0 0.00
7.57 4.14 0 4.14
7.05 0.63 0 0.63
8.05 5.39 0 5.39
Oc.-«oc.i Q100·TOl.lll s L lodu111
(cfs) (cfs) (ft/ft) (ft)
5.64 5.64 0.0285 10
5.91 5.91 0.0285 10
10 .43 12 .29 0.0291 15
6.57 9.41 0.0291 10
6.57 6.57 0.0151 10
7.57 11.71 0.0 151 10 ---
7.05 7.68 0.0208 10
8.05 13.44 0.0208 10
APPENDIXB
Storm Sewer Pipe Design Calculations
11
Castlegate Subdivision
Pipe Calculations -Section 4, Phase 2
Inlet Outlet 10 year storm 100 year storm
Size Pi pe# Length Slope
Invert Elev Invert Elev *Actual Flow Design Flow v,. %Full
Travel Time, tr 11 *Actual Flow Design Flow v, .. 'lo Full
Travel Time , lttoo
(in) (ft) 1·1.1 (ft) (ft) (cfs) (cfs) (fps) (sec) (min) (cfs) (cfs) (fps) (sec)
422 18 26 .1 1.40 325 .80 325.43 7.07 11.42 7.4 81 .0 4 0.06 7.57 12 .23 7.4 88 .9 4
419 27 23 .9 0 .60 320 .34 320 .20 14 .68 6.0 59 .3 4 0.07 21 .75 6.4 79 .9 4
421 24 308 .5 1.10 324 .93 321 .54 13 .27 21 .43 8.0 79 .6 39 0 .64 14 .14 22 .84 8.0 85 .7 39 ,_
420 24 90.2 1.10 321 .44 320 .45 13 .27 21 .43 8.0 79 .6 11 0.19 14 .14 22 .84 8.0 85.7 11
418 42 187.9 0.40 318 .95 3 18.20 27 .42 6.0 47 .9 31 0.52 54 .97 7.0 76 .3 27
417 42 381.0 0.40 318 .10 316 .58 27 .42 6.0 47 .9 64 1.06 54 .97 7.0 76 .3 54
416 42 203.3 0.40 316.48 315 .67 27 .42 6.0 47 .9 34 0.56 54 .97 7.0 76.3 29 --,_ ~ --
415 42 -247 .3 0 .56 315.57 314 .19 42 .10 7.6 56 .0 33 0 .54 74 .75 8.1 90.8 3 1
412 42 35 .3 0 .90 313.64 313 .32 56 .20 9.8 57 .8 4 0.06 89 .85 10.5 83 .3 3
414 18 26.1 1.50 320 .35 3 19.96 6 .6 1 10 .68 7.6 73 .8 3 0 .06 7.05 11 .39 7.7 78 .1 3
~ --
413 24 117.0 1.25 319 .46 318 .00 14.10 22.77 8.5 79 .3 14 0 .23 15 .10 24 .39 8.5 85 .9 14
*These values reflect the actual flow for the 18" & 24" pipes . The design flow for these pipe size s reflects a 25% red uction in pipe area.
(Refer to attached calculation for specific information .)
(min)
0.06
0.06
f---
f---
0.64 --
0 .19
0.45 --
0 .91
0.48
~
0 .51
0.06
0.06 --
0.23
City of College Station requirement to Reduce Cross-Sectional Area of 18" & 24" Pipes by 25%
Using Mannings Equation from page 48 of the College Station Drainage Policy & Design Standards Manual :
Q = 1.49/n * A * R213 * S 112
Q =Flow Capacity (cfs)
18" Pipe:
Pipe size (inches) = 18
Wetted Perimeter WP , (ft)= 4 .71
Cross-Sectional Area A, (tr) = 1. 766
Reduced Area AR, (tr) = 1.325
Hydraulic Radius R = A/WP • (ft) = 0 .375
Reduced Hydr Radius RR= ~twp. (ft)= 0.281
Roughness Coefficient n = 0 .014
Friction Slope of Conduit S1, (ft/ft)= 0 .01
Example Calculation :
Slope Flow Capa ci ty Reduced Flow Capacity % Difference
s Q Oreduced Oredu ceiQ
0 .005 6 .91 4 .28 0.619
0 .006 7.57 4 .69 0.619
0 .007 8.18 5 .06 0.619
24" Pipe:
Pipe size (inches)= 24
Wetted Perimeter WP· (ft)= 6 .28
Cross-Sectional Area A, (tr) = 3 .14
Reduced Area ~. (tr) = 2 .355
Hydraulic Radius R =A/WP, (ft)= 0.5
Reduced Hydr Radius RR= ARIWp . (ft)= 0 .375
Roughness Coefficient n = 0.014
Friction Slope of Conduit Sr. (ft/ft) = 0 .01
Example Calculation:
Slope Flow Capaci ty Reduced Flow Capacity % Difference
s Q Ored uced Oreduced /Q
0.005 14.89 9 .22 0.619
0.006 16 .31 10 .1 0.619
0 .007 17.61 10 .9 0.619
Conclusion:
Multiply actual Q in 18" & 24" pipes by 1.615 to reflect a 25% reduction in the
cross-sectional area called for on page 47 , paragraph 5 of the College Station
Drainage Policy & Design Standards manual.
Castlegate Subdivision
Section 4, Phase 2 -Pipe Flow Diagram
010 (cfs)
Inlet 415 1 7.07
J,
Pipe 422 1 7.07
J,
Inlet 414 1 6.20
J,
Pipe 421 1 13 .27
J,
June Box 407
J,
Pipe 420 1 13.27 lnlet412 I 14 .68
J, J,
lnlet413 I 14 .15 f--Pipe 419 1 14.68
J,
Pipe 418 / 42 .10
J,
June Box 406
J,
Pipe 417 1 42 .10
J,
June Box 405 Inlet 409 1 6.61
J, J,
Pipe 416 / 42.10 Pipe 414 1 6.61
J, J,
Inlet 411 I 14.68 Inlet 410 1 7.49
J, J,
Pipe415I 56 .78 Pipe 413 1 14 .10
l
I/Pipe 412 / 70 .88 /I
Castlegate Subdivision
Section 4, Phase 2 -Pipe Flow Diagram
0 100 (cfs)
Inlet 415 ! 7.57
J,
Pipe 422 1 7.57
J,
Inlet 414 / 6 .57
J,
Pipe421 I 14 .14
J,
June Box 407
J,
Pipe 420 / 14.14 lnlet412 / 21 .75
J, J,
Inlet 413 1 19 .08 ~ Pipe419 / 2 1.75
J,
Pipe 418 / 54 .97
J,
June Box 406
J,
Pipe 417 / 54 .97
J,
June Box 405 Inlet 409 / 7.05
J, J,
Pipe 416 / 54 .97 Pipe 4 f 4 j 7.05
J, J,
lnlet411 J 19.78 Inlet 410 1 8.05
J, J,
Pipe 415 / 74 .75 Pipe 413 / 15 .10
l
llPipe 412 1 89 .85 II
Pipe 412 -10 Year Storm (Revised 2 /2 /01)
Manning Pi pe Calculator
Given Input Data:
Shape ........... · ............... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Fl ow
42.0000 in
70.8800 cfs
0 .00 90 ft/ft
0 . 0140
28 .4 098 in
9. 6211 ft2
6.9260 ft2
81.1191 in
131.9469 in
10.2339 fps
12.2948 in
67.6423 %
88.6292 cfs
9. 2119 fps
Pipe 412 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
42 .0000 in
89 .8500 cfs
0.0090 ft/ft
0. 0140
34. 9721 in
9 . 6211 ft2
8.5610 ft2
96 .5471 in
131.9469 in
10.4952 fps
12.7688 in
83.2668 %
88.6292 cfs
9.2119 fps
Castlegate Subdivision , Section 4, Phase 2
College Station, Texas
Pipe 413 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24 .0000 in
22.7700 cfs
0 .0125 ft/ft
0 .0140
19 .0429 in
3 .1416 ft2
2.6732 ft2
52 .7529 in
75 .39 82 in
8.5178 fps
7 .2 971 in
79.3456 %
23 .4860 cfs
7 .4 758 fps
Pipe 413 -100 Year Storm
Mann ing Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24.0000 in
24.3900 cfs
0.0125 ft/ft
0. 0140
20.6218 in
3 .141 6 ft2
2.8722 ft2
56.9381 in
75 .3982 in
8 .491 9 fps
7.2639 in
85 .924 4 %
23 .4860 cfs
7 .4 758 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
Pipe 414 -10 Year Storm
Manning Pipe Cal cu lator
Given Input Da ta :
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
18 .0000 in
10 .6800 cfs
0 .01 50 ft/ft
0 . 0140
13.2758 in
1.7671 ft2
1.397 2 ft2
37.1855 in
56 .548 7 in
7.64 39 fps
5.4 106 in
73.7543 %
11.9462 cfs
6.760 2 fps
Pipe 414 -100 Year Stor m
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
18.0000 in
11.3900 cfs
0.0150 ft/ft
0. 0140
14.0528 in
1 .7671 ft2
1 .4802 ft2
39.004 2 in
56.5487 in
7 .6948 fps
5 .4648 in
78 .0710 %
11 .9462 cfs
6.7602 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
Pipe 415 -10 Year Storm (Revised 2 /2 /01)
Mann i ng Pipe Calcu lat or
Given Input Data:
Shape .......................... .
Solving for .................... .
Diamete r ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Dep th of Flow
42.0000 in
42.1000 cfs
0 .0056 ft/ft
0 . 0140
23. 5011 in
9 . 6211 ft2
5 .5383 ft2
70 .9876 in
131.9469 in
7.6016 fps
11.2346 in
55.9551 %
69.9116 cfs
7.2665 fps
Pipe 415 -100 Year Storm
Manning Pipe Calculator
Given Input Data :
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
42.0000 in
74.7500 cfs
0.0056 ft/ft
0 . 0140
38.1232 in
9. 6211 ft2
9.1760 ft2
106.0165 in
131.9469 in
8.1463 fps
12.4636 in
90.7696 %
69.9116 cfs
7 .2665 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
I
Pipe 416 -10 Year Storm (Revised 2/2/01)
Mann ing Pipe Calcula t or
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
42.0000 in
42.1000 cfs
0.0040 ft/ft
0 . 0140
26.2021 in
9.621 1 ft2
6.3122 ft2
76.4871 in
131.9469 in
6 .6696 fps
11.8838 in
62.3860 %
59.0861 cfs
6.1413 fps
Pipe 416 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
42 .0000 in
54 .9700 cfs
0.0040 ft/ft
0 . 0140
32.0585 in
9. 6211 ft2
7.8800 ft2
89 .2 664 in
131.9469 in
6.9759 fps
12 .7 116 in
76 .3299 %
59 .0861 cfs
6.1413 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
Pip e 41 7 -10 Year S torm (Revised 2/2/01)
Ma nning Pipe Ca l culator
Given Input Data :
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Co mputed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............ ~ .. .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Ci rcular
De pth of Flow
42.0000 in
4 2 .100 0 cfs
0 .00 4 0 ft/ft
0.01 4 0
26.2 021 in
9.6 2 11 ft2
6.3 12 2 ft2
76.4871 in
131.9469 in
6.6696 fps
11. 8838 in
62.3860 %
59.0861 cfs
6 .1413 fps
Pipe 417 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Ci r cu l a r
Depth of Flow
42 .0000 in
54 .9700 cfs
0 .0040 ft/ft
0. 0140
32 .0585 in
9 . 6211 ft2
7 .8800 ft2
89 .2664 in
131.9469 in
6.9759 fps
12 . 7116 in
76.3299 %
59.0861 cfs
6 .1413 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
Pipe 418 -10 Year Storm (Revised 2/2/01)
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
42.0000 in
42.1000 cfs
0 .004 0 ft/ft
0 . 0140
26.2021 i n
9.6211 ft2
6 .3122 ft2
76 .4 871 in
131 .94 69 in
6 .6696 fps
11 .8838 in
62 .3860 %
59.0861 cfs
6.1413 fps
Pipe 418 -100 Year Storm
Manning Pipe Calculator
Give n Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circul a r
Depth of Flow
42.0000 in
54.9700 cfs
0.0040 ft/ft
0 .0140
32.0585 in
9 . 6211 ft2
7.8800 ft2
89.2 664 in
131. 9469 in
6.9759 fps
12 .7116 in
76.3299 %
59.0861 cfs
6.1413 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
Pipe 419 -10 Year Storm
Manning Pi p e Ca lculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diame ter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ................... · · · · · · · · ·
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
27.0000 in
14.6800 cfs
0.0060 ft/ft
0 . 0140
15.9981 i n
3.9761 ft2
2.4537 ft2
47.4366 in
84.8230 in
5 .9827 fps
7 .4487 in
59 .2 521 %
22.2760 cfs
5 .6025 fps
Pipe 419 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Resu lt s:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow ve locity ............. .
Circular
Depth of Flow
27.0000 in
21.7500 cfs
0.0060 ft/ft
0 . 0140
21. 5758 in
3 .9761 ft2
3 .4063 ft2
59. 7255 in
84 .82 30 in
6.3852 fps
8.2128 in
79.9103 %
22.2760 cfs
5 .6025 fps
Castlegate Subdivi sion, Section 4, Phase 2
College Station , Texas
Pipe 420 -10 Year Storm
Manning Pipe Calculator
Give n Input Data :
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Computed Results :
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24.0000 in
21.4300 cfs
0. 0110 ft/ft
0. 0140
19 .1051 in
3.1416 ft2
2 .6816 ft2
52.9066 in
75.3982 in
7.9915 fps
7 .2987 in
79.6044 %
22.0318 cfs
7.0129 fps
Pipe 420 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24.0000 in
22.8400 cfs
0 . 0110 ft /ft
0. 0140
20.5705 in
3.1416 ft2
2.8662 ft2
56.7909 in
75.3982 in
7.9688 fps
7.2675 in
85.7104 %
22 .0318 cfs
7.0129 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
Pipe 421 -10 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diamete r ....................... .
Flowrat e ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results:
Depth .......................... .
Area ........................ · · · ·
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24.0000 in
21.4300 cfs
0 .011 0 ft/ft
0. 0140
19.1051 in
3.1416 ft2
2.6816 ft2
52.9066 in
75.3982 in
7 .9915 fps
7 .29 87 in
79.6044 %
22.0318 cfs
7 .0129 fps
Pipe 421 -100 Ye ar Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
24 .0000 in
22.8400 cfs
0 . 0110 ft/ft
0. 0140
20 .5 705 in
3 .1416 ft2
2.8662 ft2
56.7909 in
75.3982 in
7 .9688 fps
7 .26 75 in
85. 7104 %
22.0318 cfs
7 .0129 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
Pipe 422 -10 Year Storm
Mann ing Pipe Calculator
Given Input Data:
Shape .......................... .
So lving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
18.0000 in
11.4200 cfs
0 .0140 ft/ft
0 . 0140
14.5847 in
1.7671 ft 2
1.5338 ft2
40.3238 in
56 .5487 in
7 .4454 fps
5 .477 5 in
81. 0264 %
11 .54 11 cfs
6.5309 fps
Pipe 422 -100 Year Storm
Manning Pipe Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Diameter ....................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Computed Results:
Depth .......................... .
Area ........................... .
Wetted Area .................... .
Wetted Perimeter ............... .
Perimeter ...................... .
Velocity ....................... .
Hydraulic Radius ............... .
Percent Full ................... .
Full flow Flowrate ............. .
Full flow velocity ............. .
Circular
Depth of Flow
18.0000 in
12.2300 cfs
0.0140 ft/ft
0. 0140
15 .9962 in
1.7671 ft2
1. 6595 ft2
44 .3025 in
56 .5487 in
7 .3696 fps
5 .3 941 in
88 .8678 %
11.5411 cfs
6.5309 fps
Castlegate Subdivision, Section 4, Phase 2
College Station, Texas
EXHIBIT A
Offsite Infrastructure Plan for Castlegate Subdivision
27
EXHIBITB
Post-Development Drainage Area Map
29
Item
No .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
ENGINEERS COST ESTIMATE
CASTLEGATE SUBDIVISION
COLLEGE ST A TION , TEXAS
SECTION 4 -PHASE 2
Estimated
Description
Sitework
Mob ilization/Layout
Erosion /Seeding/bale dams/constr. Entr.
Site Preparation
Topsoil Stripping & Replacement
Excavation/Grading
Lime Stabilized Subgrade
Concrete Curb and Gutter
Base Material -6" depth
Base Material -7" depth
Asphalt Paving - 1 1 /2" depth
Concrete Apron
Storm Drainage
18" RCP -structural backfill
24" RCP -non-structural backfill
27" RCP -structural backfill
42" RCP -structural backfill
42" RCP -non-structural backfill
Junction boxes
Inlets 1 O' wide
Inlets 15' wide
Rip Rap at channel discharges
Remove culvert and modify access road
REVIEWED FOR
C()l\A QI ll\.f\IC E
FEB 0 1 2001
COLLE GE: SlAl 101\1
ENGINEER ING
~~
Page 1 of 2
Quantity
1.0
1.0
4 .6
1,501
3,893
8,487
5,598
6,621
0
6,621
540
56
522
26
255
808
4
4
3
0
1
25 -Jan-01
Unit Estimated
Pri ce Cost
LS $8,000 .00 $8,000.00
LS $6,000 .00 $6,000 .00
AC $3 ,000 .00 $13,800.00
CY $4 .00 $6,004.00
CY $3 .50 $13,625.50
SY $3.00 $25,461.00
LF $7.00 $39,186.00
SY $5.75 $38 ,070.75
SY $6.50 $0.00
SY $4.25 $28,139 .25
SF $5.00 $2.700.00
Subtotal $180,986.50
LF $36 .00 $2,016.00
LF $32.00 $16 ,704 .00
LF $46 .00 $1,196 .00
LF $105.00 $26 ,775 .00
LF $85.00 $68,680.00
EA $2,500.00 $10 ,000 .00
EA $3,200.00 $12 ,800.00
EA $4 ,000.00 $12 ,000 .00
TN $40.00 $0.00
LS $950.00 $950.00
Subtotal $151,121.00
"
Waterline
22 8" Waterline -PVC(C900)-structural backfill 50 LF $30 .00 $1 ,500.00
23 8" Waterline -PVC(C900)-non-structural backfill 1,990 LF $26.00 $51,740.00
24 6" Waterline -PVC(C900)-structural backfill 88 LF $26.00 $2,288 .00
25 6" Waterline -PVC(C900)-non-structural backfill 500 LF $18.00 $9,000.00
26 Gate Valves -8" 4 EA $600.00 $2,400.00
27 Gate Valves -6" 1 EA $500.00 $500.00
28 M .J. Bends and Tees 8" 14 EA $300.00 $4,200.00
29 M.J. Bends and Tees 6" 2 EA $250.00 $500.00
30 Connect to Existing 2 EA $350.00 $700.00
31 Water Services 47 EA $700.00 $32 ,900.00
32 Fire Hydrant Assembly 4 EA $2,000.00 $8,000.00
33 2" Blow off Assembly 1 EA $400.00 $400.00
Subtotal $114,128.00
Sanitary Sewer
34 8" SOR 26 Pipe -structural backfill 80 LF $35.00 $2 ,800.00
35 8" SOR 26 Pipe -non structural backfill 1,243 LF $30.00 $37,290 .00
36 6" SOR 26 Pipe -structural backfill 50 LF $25.00 $1,250 .00
37 6" SOR 26 Pipe -non structural backfill 1 ,342 LF $20.00 $26,840 .00
38 Tie-in to existing Manhole 1 EA $300.00 $300.00
39 Sewer Services 46 EA $700.00 $32,200.00
40 6" Stack Pipe Riser (extra long) 8 LS $300.00 $2,400 .00
41 Add drop to Manhole 2 LS $500.00 $1,000.00
42 Manholes -13' depth 12 EA $2,400.00 $28,800 .00
Subtotal $132,880.00
Total Sitework $180,986.50
Total Storm Drainage $151,121.00
Total Water $114,128.00
Total Sanitary Sewer ~1321880.00
TOTAL CONSTRUCTION $579, 115.50
Engineering @5% $28,955.78
Contingency @5% $28,955.78
TOTAL PROJECT $637,027 .05
Page 2 of 2
Design Report
Proposed Sanitary Sewer Line Improvements
for
Castlegate Subdivision
Section 4, Phase 2
College Station, Texas
January 2001
Prepared By:
TEXCON General Contractors
1 707 Graham Road
College Station, Texas 77845
(979) 690-7711
REVIEWED FOR
C()l\noi !Af\JCE
FEB 0 1 2001
COLLEGE STA nor.J
ENGINEERING
1.0 INTRODUCTION & DESCRIPTION
The purpose of this report is to provide a description of the proposed sanitary sewer to be
constructed with the Castlegate Subdivision, Section 4, Phase 2 , and to provide the
criteria used in the design of this sanitary sewer system. The project will include the
construction of approximately 2705 feet of sanitary sewer line. The line will service the
proposed development of the Castlegate Subdivision, Section 4 , Phase 2, and tie into the
previously constructed lines for Section 4, Phase 1 and Section 3, Phase 1.
2.0 SANITARY SEWER -Design Flow and Pipe Size Calculations
The proposed sewer line is to be constructed of 6" and 8" diameter SDR-26, PVC pipe
which meets the requirements of ASTM-D3034 . The proposed manholes are 4' diameter
manholes , and vary from 6' to 17' in depth, with sewer line slopes ranging from 1.21 % to
2.99% for 6" pipe and 0.4% for 8" pipe . The maximum distance between manholes is less
than 500 feet, as required by the Texas Natural Conservation Commission (TNRCC). The
minimum allowable slopes for 8" and 6" pipes per TNRCC requirements are 0 .33% and
0.50% respectively. All construction shall meet the current City of College Station
Standard Specifications for Sanitary Sewer Construction. The sewer line information is
summarized in Table 1.
3.0 DETERMINATION OF PEAK FLOW VALVES
The peak flows were based on using a daily use of 300 gallons per day for each dwelling
unit. The design peak flow is determined by multiplying the average daily flow by 1.5 ,
which results in the adjusted daily flow . This value is then multiplied by 3.0 to determine
the peak hourly flow . The velocities for the lines were calculated using Manning's
Equation. According to the TNRCC, the minimum velocity for sewer systems flowing full
is 2.0 feet per second. As shown in Table 1, the minimum anticipated flow velocities for
the proposed sewer lines at 50% full meet this requirement. The flow for 100% full will
not be less than the flow for 50% full; therefore , the TNRCC requirement is met. The
TNRCC requires that the maximum velocity for sewer systems flow full not exceed 10 feet
per second. The values in Table 1 are well below this maximum velocity.
TABLE 1 -SEWER LINE FLOW DATA
0 Manhole No. of Units From Cumulative Average Percent 50% Full z Size Length Slope Peak Flow
Q) Number Dwelling Unit Merging Dwelling Daily Flow Full Flow c
...J From To (in) (ft) (%) Services Lines Units (gpm) (cfs) (cfs) (%) (cfs)
416 415 6 322.30 1.21 11 -11 2.29 0 .0051 0 .0230 13.2 0.3086
415 414 6 311 .70 1.64 12 -23 4 .79 0 .0107 0 .0480 17 .5 0 .3593
414 413 8 109.90 0 .40 5 -28 5.83 0 .0130 0 .0585 18 .7 0.3821
M 413 412 8 248 .50 0.40 4 -32 6 .67 0 .0148 0 .0668 20.0 0.3821 ..i-en 412 411 8 330.30 0.40 8 4 (S4-5) 44 9.17 0 .0204 0 .0919 23.4 0 .3821
411 410 8 170.50 0.40 8 -52 10.83 0.0241 0 .1086 25.5 0 .3821
410 409 8 110.20 0.40 6 -58 12.08 0 .0269 0 .1211 26.9 0.3821
409 408 8 283 .90 0.40 1 -59 12.29 0.0274 0 .1232 27.2 0 .3821
418 417 6 447 .20 2.57 18 -18 3.75 0 .0084 0.0376 13.9 0 .4498 1' 417 408 6 133.30 1.42 6 24 5 .00 0 .0111 0.0501 18.5 0.3343 "'2' -en
408 401 8 70.00 0 .40 0 59(S4-3) 83 17.29 0 .0385 0.1733 32.4 0 .3821
I()
I 419 412 6 167.10 2 .99 4 4 0.83 0.0019 0 .0084 6 .6 0 .4851 "'2' -en
401 .. ~7 : 8 ,. ~188.30 ,I 1.00 2 83(Pl12),47(Pl11 132 27 .50 0 .0612 0.2756 32.5 0.6042
~t "~~3o7~1 ~·-~ r.'8 ;~ ~1ot1 ~~1.oo ,, •.. 0 ·. -. ~ · .. 132 . 21.50 ·• .· 0.0612 ;;0'.2756 32.5 0.6042
J FOture ~nent'tO'ManOOle'3oo ~~Jf-tt ··" .16 \t'.~ .. ;, "'.: 148 '. ' 30.83-~ .;.0.0687 I ~~ o.3000 i• ·~~t~· -
.;,:300 -· .. 305 •: .},8 «:.f: ~210:8<H i:i.20 : 1·. . 0 .~ ' .~ 148 -~ 30.83 ' ·r,cfa090 '. ''32:9 ., -0.0687 ' 0.6619 .... . I
305 ' .'304 · .·· 8 .< :2~1.80 • 1.50 : 2 150 31.25 .( 0.0696 l'>r.0.3132( 31.2 0.7400 <") : -
"' '3<>3 . ; .. •8 '·1 •·273.20~ -:,{5o ... ,,
'"'"
304 . ... ·. 3 .;; 153 . 31.87 10.0710 1.:.0.3195 31.6 0.7400
:.
Future i::>eWioPment toM8nh'Ole.303 t • ~~; I ~ ,,.·:29 ,:;. ·.· ~. :1., 182 .· i..37.91,.J 0.0844°~ }0~380()"'.;: -~ ";.: ... :::. -~·~ . -
~ 1 ·~·1 1 -i'302 ;~1 1tB:i1 ·11s3:e.oJH~~.oo ·;: l r~..-;-:o ~,~g!,'1,~'J. ~182 /~ '37.91 3 !,0.0844 ~ l il9:380Q~ ~.5 '.;~ ·;;0.6042 .
l <;·:so2~~~~ l ~'ltj~f11ool l i.il!6o ~ 1 ;-~,: 0 . ,,,-.M,,_,,,,•, I :~;;;;182 "~~ ,~31.91~ l ~b.0044 J ~:3BOO'tJ l '.~38.5';, -'·0.6042 ; "''·.r;;y~
Shaded area is information previously submitted for approval, but included for informational purposes.
n = 0.013
Refer to construction drawings for manhole locations.
4.0 CONCLUSIONS
It is our determination based on the criteria and data developed that the proposed sewer
line will provide sufficient capacity for the anticipated wastewater flows generated by this
development.
2
Velocity
(fps)
3 .1
3 .7
2 .2
2.2
2.2
2 .2
2 .2
2.2
4 .6
3.4
2.2
4 .9
3 .5
.,3.5 •.;
·'};;-::.·~
::·1~3.8
4.2
···.4 .2 .
:·;·~-::,
I l't~:s.~j:
... .:ta.5 ~
Design Report
Proposed Sanitary Sewer Line Improvements
for
Castlegate Subdivision
Section 4, Phase 2
College Station, Texas
January 2001
Prepared By:
TEXCON General Contractors
1707 Graham Road
College Station, Texas 77845
(979) 690-7711
REVIEWED FOR
C()l\ADI I A lCE
FEB 01 2001
COLLEGE STAfl01
ENGINEERING
~
1.0 INTRODUCTION & DESCRIPTION
The purpose of this report is to provide a description of the proposed sanitary sewer to be
constructed with the Castlegate Subdivision, Section 4, Phase 2, and to provide the
criteria used in the design of this sanitary sewer system. The project will include the
construction of approximately 2705 feet of sanitary sewer line. The line will service the
proposed development of the Castlegate Subdivision, Section 4, Phase 2, and tie into the
previously constructed lines for Section 4, Phase 1 and Section 3, Phase 1.
2.0 SANITARY SEWER-Design Flow and Pipe Size Calculations
The proposed sewer line is to be constructed of 6" and 8" diameter SDR-26, PVC pipe
which meets the requirements of ASTM-D3034. The proposed manholes are 4' diameter
manholes, and vary from 6' to 17' in depth, with sewer line slopes ranging from 1.21 % to
2.99% for 6" pipe and 0.4% for 8" pipe. The maximum distance between manholes is less
than 500 feet, as required by the Texas Natural Conservation Commission (TNRCC). The
minimum allowable slopes for 8" and 6" pipes per TNRCC requirements are 0.33% and
0.50% respectively. All construction shall meet the current City of College Station
Standard Specifications for Sanitary Sewer Construction. The sewer line information is
summarized in Table 1.
3.0 DETERMINATION OF PEAK FLOW VALVES
The peak flows were based on using a daily use of 300 gallons per day for each dwelling
unit. The design peak flow is determined by multiplying the average daily flow by 1.5,
which results in the adjusted daily flow. This value is then multiplied by 3.0 to determine
the peak hourly flow. The velocities for the lines were calculated using Manning's
Equation. According to the TNRCC, the minimum velocity for sewer systems flowing full
is 2.0 feet per second. As shown in Table 1, the minimum anticipated flow velocities for
the proposed sewer lines at 50% full meet this requirement. The flow for 100% full will
not be less than the flow for 50% full; therefore, the TNRCC requirement is met. The
TNRCC requires that the maximum velocity for sewer systems flow full not exceed 10 feet
per second. The values in Table 1 are well below this maximum velocity.
TABLE 1 -SEWER LINE FLOW DATA
0 Manhole No.of Units From Cumulative Average Percent 50% Full z Size Length Slope Peak Flow
Q) Number Dwelling Unit Merging Dwelling Daily Flow Full Flow c:
...I From To (in) (ft) (%) Services Lines Units (gpm) (cfs) (cfs) (%) (cfs)
416 415 6 322.30 1.21 11 -11 2.29 0 .0051 0.0230 13 .2 0 .3086
415 414 6 311 .70 1.64 12 -23 4.79 0 .0107 0 .0480 17 .5 0 .3593
414 413 8 109.90 0.40 5 -28 5 .83 0 .0130 0 .0585 18 .7 0.3821
C"') 413 412 8 248.50 0.40 4 -32 6 .67 0.0148 0 .0668 20 .0 0 .3821 I
~
Cl) 412 411 8 330.30 0.40 8 4 (S4-5) 44 9.17 0.0204 0 .0919 23.4 0 .3821
411 410 8 170.50 0.40 8 -52 10.83 0 .0241 0.1086 25.5 0.3821
410 409 8 110.20 0.40 6 -58 12.08 0 .0269 0.1211 26.9 0 .3821
409 408 8 283.90 0.40 1 -59 12 .29 0.0274 0 .1232 27.2 0 .3821
418 417 6 447.20 2 .57 18 -18 3 .75 0 .0084 0 .0376 13.9 0 .4498 ...,.
417 408 6 133.30 1.42 6 24 5.00 0 .0111 0 .0501 18.5 0 .3343 ~ -
Cl)
408 401 8 70.00 0.40 0 59(S4-3) 83 17 .29 0 .0385 0 .1733 32.4 0 .3821
It)
I 419 412 6 167.10 2 .99 4 4 0.83 0.0019 0 .0084 6.6 0.4851 ~ -
Cl)
,:; 401 ' ",30],/. . .. 8 188.30.J 1.00 2 83(Ph2),47(Ph1 132 27.50 0 .0612 0 .2756 32.5 0 .6042
.!: \.P3cm'H ~) -~~8 •: 262.10''.I .. 1.00 ·: ·O " -": 132 27.50 ·0.0612 0.2756 32.5 0.6042
;, Fuh.iret>eve1~ to Manhi:iie~ .', .16 .. -. ~::-'148': 30.83 0.0687 0.3090 - -., . ..-" . 148 .:::3tlfr1 r3o5 :t 8 , '270.801 -1.20 ·o -30.83 ·'· 0.0687 .· 0.3090 32.9 0.6619
"';', ,,,305 ' ~'304 ; 8 241.80 i 1.50 2 -. 150 31.25 0.0696 0.3132 31.2 0.7400 ~-.. -
? .. ~i304.:~ ~;.303 v ·8 .~ 273.20 .,j.50 3 ,:': . 153 31.87 0.0710 0.3195 31.6 0.7400
Futtire oevet6pfnent to .Manhole 303~· 29 .-.;{'. 182 37.91 .. 0.0844 0.3800 --
I ~ f~llr l ~~i ~ka~l ,153.6C>'Ji \:,j.00 .:
,; Q • , __ !fJ-if,~ ~.~:182.;~; I ~';' 37.91 . .i. /o.0844 ·~:.o.3aoo . 38.5 . 0.6042 ,.
~t¥.1 ~.w m j .Y,g'.;;1£11I.'OO~l t,'ioo ;, · 0 ;· ,.'M-t'1) I t.:t:182 ;\~ \~~7.91 ;~ lfo'.0844 ''~0.3800 .. 38.5 "0.6042 '
Shaded area is infonnation previously submitted for approval, but included for infonnational purposes.
n = 0.013
Refer to construction drawings for manhole locations.
4.0 CONCLUSIONS
It is our determination based on the criteria and data developed that the proposed sewer
line will provide sufficient capacity for the anticipated wastewater flows generated by this
development.
2
Velocity
(fps)
3.1
3.7
2.2
2.2
2 .2
2 .2
2.2
2.2
4 .6
3 .4
2 .2
4 .9
3 .5
3.5
-
3.8
4.2
4.2
-
. 3.5
3.5
I •
Q~ ~(;0
SUPPLEMENTAL DEVELOPMENT PERMIT IN 0 -'~TION
~plication is hereby made for the following development specific site/waterway alterations:
~~~o~ ,Ji.1W$1e\ALJUf?e coN$m.LC.TION
ACKNOWLEDGMENTS:
L __ L\)-'~-'-'-__._~'--.... <f1_.H"._..__.._l l.L,,___.l .... fS=-----· design engineer/~_g, hereby acknowledge or affinn that:
The infonnation and conclusions contained in the above plans and supporting documents comply with the current requirements of
the City of College Station, Texas City Code, Chapter 13 and its associated Drainage Policy and Design Standards.
As a condition of approval of this permit application, I agree to construct the improvements proposed in this application according tc
these documents and the requirements of Chapter 13 of the College Station City Code.
d_#K~ frfM~~ ~ p. Wr
Property Owner(s) Con or
CERTIFICATIONS: (for proposed alterations within designated flood haz.ard areas.)
A. L certify that any nonresidential structure on or proposed to be on this site as part
of this application is desi~ted to prevent damage to the structure or its contents as a result of flooding from the l 00 year storm.
Engineer Date
L , certify that the finished floor elevation of the lowest floor, including any
..ement, of any residential structure, proposed as part of this application is at or above the base flood elevation established in the
latest Federal Insurance Administration Flood Hazard Study and maps, as amended.
Engineer Date
Engineer Date
Conditions or comments as part of approval:---------------------------
.::cordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to insure that debris
rrom construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage facilities .
All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer for the
above named project. All of the applicable codes and ordinances of the City of College Station shall apply.
FINAL PLAT APPLICATION
FNLPAPP.IXlC Jn5199
3 ofJ
FOR OFFICE USE 0 \'
P&Z CASE NO.: \ -0
DATE SUBMITI'ED:~l....-.,...,..,... __ ,
FINAL PLAT APPLICATION
(check one) Minor _Amending / Final _ Vacating _Replat
The following items must be submitted by an established filing deadline date for P & Z Conunission consideration .
MINIMUM SUBMITTAL REQUIREMENTS:
~Filing Fee of$200 .00.
_L_ Development Permit Application Fee of$100.00 (if applicable).
_L Infrastructure Inspection Fee of $300 .00 (applicable if any public infrastructure is being constructed.).
~Application completed in full.
~Thirteen (13) folded copies of plat. (A signed mylar original must be submitted after staff review .)
_::::_One (1) copy of the approved Preliminary Plat and/or one (1) Master Plan (if applicable).
_L_ Paid tax certificates from City of College Station, Brazos County and College Station I.S .D .
~ A copy of the attached checklist with all items checked off or a brief explanation as to why they are not.
_L Two (2)copies of public infrastructure plans associated with this plat (if applicable).
APPLICATION DATA
-\ME oF suaDMsioN kh?fl-E.61~-re ~@Jl'.Jt~1 oN SIX.no~ 4 P~ k I I
jECIFIED LOCATION oF PROPOSED suaDMsroN Noe.nt of 61~2 °ITA't(Z!E;; @A-D,
~ Cf 1*6 e~ ~ ~ +nr~ 40
APPLICANT/PROJECT MANAGER'S INFORMATION (Primary Contact for the Project):
Name 6~~~ Jj4'16!D~SJ LID. --W~fftlU..lj::><;
Street Address 50 \ 0 /:w.6V...srA U ~l£. City Cn1 1 F?h£ STlrl) oJJ
State 11. ZipCode 11<b4-'? E-MailAddress _________ _
Phone Number 'j1'( -/pf? -10?o Fax Number Cf 1j -~Ofo-ILfW
PROPER1YOWNER'SINFORMATION: ~l.e: 'f7'f-Z55-4~
Name ~s "{?eA1e.te JdJJ~ne..~, Lat> .
StreetAddress 22\D ~U-'71]\: U'2C.LE..-City G>L.lfhE STT&rn.o~
State J"1 Zip Code 11?J4-S E-MailAddress -----------
Phone Number Cf:J1..-(Ql3 -1<62;> Fax Number C[1q -{;/ff) - / +fu
ARCIDTECT OR ENGINEER'S INFORMATION:
Name :(@.WM-J~ 5c..Uw...-r~,P-t?.
StreetAddress l:Zo1 67~ RD. City CoL~E-&ATu..,,J
State Ii Zip Code "J1?J4? E-Mail Address joe.svhu...lh::.@ texc.oVl -~eJ-
Phone Number qj,~ -(/f. () =11 l I Fax Number CfJ~ ~ fe'JO -Cf 1Cf 1
FINAL PLAT APPLICATION
FNLPAPP.DOC 3/lS/99
I of3
TOTALACRESOFSUBDMSION 2.2 .'J4 R-0-WACREAGE 3.10 TOTAL#OFLOTS B7 ----
TUMBER OF LOTS BY ZONING DISTRICT ~1 I fi42"'H I ! __
AVERAGE ACREAGE OF EACH RESIDENTIAL LOT BY ZONING DISTRICT:
D. I~ I Yfi\2---H I I ! __
FLOODPLAIN ACREAGE Q
PARKLAND DEDICATION ACREAGE __ f~--OR FEE AMOUNT ___ _
f\)~ '900\~ tN ~er. I) f#-. t f S0Cf. ?, Ptf. I ·
A STATEMENT ADDRESSING ANY DIFFERENCES BE1WEEN TIIE FINAL PLAT AND APPROVED MASTER
DEVELOPMENT PLAN AND/OR PRELIMINARY PLAT (IF APPLICABLE):
~
REQUESTED VARIANCES TO SUBDMSION REGULATIONS & REASON FOR SAME ______ _
1<~ -rb -PDD-~ ~~6 o/AiJDAgl/?
REQUESTED OVERSIZE PARTICIPATION off=Sl!'E: vJl\-'fEel.l ~ 1<J.D t-J6 bx:>PJd
~O\t\) 0~ f@PD;ZW ~ r\x4}u)Af 4o
TOTAL LINEAR FOOTAGE OF PROPOSED:
_ _,,.._1 ....... o....,,2."'-'-STREETS
0 SIDEWALKS -~~-:----~2~1~~~' _SANITARY SEWER LINES
_ _.Zfe~z_4~'_WATER LINES
_ ___,,O:;..._ __ CHANNELS
_ __._.\~_4.;_'1.:.....'_ STORM SEWERS
__ .....;O __ BIKE LANES I PATIIS
NOTE: DIGITAL COPY OF PLAT (IF APPLICABLE) MUST BE SUBMITTED PRIOR TO FILING.
The applicant has prepared this application and certifies that the facts stated herein and exhibits attached
hereto are true, correct and complete. The undersigned hereby requests approval by the City of College Station
of the above identified final plat.
FINAL PLAT APPLICATION
FNT .PAPP fVV' '1n<.onn
Dat~ ,
2 of3