Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
27 Kenny Cotton's BBQ 04-58 2360 Harvey Mitchell PKWY
Carol Cotter City of College Station Planning & Development PO Box 9960 College Station , TX 77840 MITCHELL MM MORGAN RE: Kenny Cotten 's BBQ-Engineer's Estimate for Public Utilities Dear Carol : January 7, 2005 Per your request, please find attached the engineer's estimate for public utilities for Kenny Co en's BBQ Restaurant. If you have any questions please feel free to contact me . Veronica J.B org Managing Partner cc: file Kenny Cotten Attachment ............... ,,,,,, ...:--=-~ ?,'..}E.t ,,,, ;: A...."i-.. •*' ..... -:i~ .. ,, ( 7 or --~.. "ill -\) ~·.... .... .. ~-' * :' .............. , ~ .... :................... RG~N f VERONICA J :~:.~ .... , ..... , .. ;o ~:········77689 ... 1E_ 1 1. ~ ... -9 '<;<:) •• ;// '1,o~ ..... €°G1sr E.~ .. ··~ -... ~s. ............ <;;.~..:!' '''' 8/0NA.\.. .... ---,,,,,,, .... ~ 5 :\ProJ\0428 -Ke nn y-C otten ' s\docs\0 428 -est imate -publ i c-util ities -B BQ-0 50 1 07. doc 511 UNIVERSITY DRIVE EAST, SUITE 204 • COLLEGE STAT ION, TX 77840 • T 979 .260 .6963 • F 979.260.3564 CIVIL ENGINEERING • HYDRAULICS • HYDROLOGY • UTILITIES • STREETS • SITE PLANS • SUBDIVISIONS info@mitchellandmorgan .com • www.mitchellandmorgan.com Kenn~ Cotten's BBQ -Engineer's Estimate January 2005 Item De scri pti on Unit Qu a nt i~ Un it Cost A mount GEN ERAL IT EMS Mobil ization LS $ 2 ,185 .00 $ 2 ,185 .00 Subto tal $ 2, 185.00 WAT ER ITEMS 2 6" PVC Wate r Line C9 09 CL200 with Structural Backfill LF 110 $ 30.00 $ 3 ,300 .00 3 8" PVC Wate r Line C9 09 CL20 0 w it h Structura l Backfill LF 160 $ 35 .00 $ 5 ,600 .00 4 6" x 2" MJ Tee EA 1 $ 275 .00 $ 275.00 5 8" x 8" MJ Tee EA 2 $ 325 .00 $ 650.00 6 6" x 11 .25 Degree MJ Bend EA 1 $ 275 .00 $ 275 .00 7 6" x 45 De gree MJ Bend EA 2 $ 275 .00 $ 550.00 8 8" x 6" Re du cer EA 2 $ 375 .00 $ 750.00 9 Standard Fi re Hydrant Assembly EA 2 $ 2 ,500 .00 $ 5 ,000 .00 10 8" MJ Gate Va lv e & Bo x EA $ 85 0 .00 $ 850 .00 11 2" Blow-off Valve EA 1 $ 600.00 $ 600 .00 12 Connection to existing system EA 2 $ 2 ,000 .00 $ 4 ,000 .00 Subto tal $ 2 1,850.00 15 % Contingency $ 3,605.25 TOTA L $ 27,640.25 01 /07 /2005 09 :31 FAX 97926 0 3564 MITCHELL and MORG AN -.. --· MITCHELL NrJI MORGAN PLA.N AND DESIGN SPECIALISTS IN CIVIL ENGINEERING Hydraulics • Hydrology • Utilities • Streets • Site Plans • Subdivisions FACSIMILE TRANSMITTAL SHEET TO : Cax-61 GJttu COMPANY: C() cs FROM: DATE: Vtv M tc a._ t/710+ TOTAL NO. OF PAGES INCLUDING COVEll: 3 PHONE NUMBER.: SE NDER'S REFERENCE NUMBER: R..E: YOUR REFERENCE NUMBER: f<wn,yc_u~S 6~ 141001 /003 0 URGENT '°RREVIEW D PLEASE COMMENT D PLEASE REPL y 0 PLEASE RECYCLE NOTES/COMMENTS: 511 University Drive East . Suite 204 • College Station • Texas • 77840 979 .260 .6963 • 979 .260 .3564 fax • info@mitcheltandmorgan .com www.mitchellandmorgan .com 01 /07 /20 0 5 09:31 FAX 9792 6 03564 MITCHELL and MORGA N 141002/003 MITCHE LL MM M O RG A N January 7, 2005 Carol Cott er Ci ty of College Station Plann ing & Development PO Box 9960 Co llege St ation, TX 77840 RE: Kenny Cotten's BBQ-Engineer's Estimate for Public Utilities Dea r Caro l: Per your request, please f ind attached t he engineer's estima t e fo r public ut ilities for Kenny Co en's BBQ Restaurant. If you have any question s please feel free to co ntact me. cc: f ile Kenny Cotte n Attach ment S:\ProJ\042 8-Ken ny-Cott en 's\do cs\0428-est ima te-pub lic-u tilit ies-BB Q-050107 .do c 511 UNIV ERS ITY DR IVE EAST, SUITE 204 • CO LLEGE STATI ON , TX 77840 • T . 979.260.6963 • F . 979.260 3 564 CIVIL ENG INEER ING ' HYDRAULICS • HYDROLOGY • UTILITIES • STR EETS • SITE PLANS • SUBDIVISIONS 1nfo@m itchellandmorgan .com • www.m1tc hell aridmor9an .com 01 /07 /2005 09:32 FAX 9792603564 MIT CHEL L and MORG A 141003 /003 .. Kenn~ Cotten's BBQ -Engineer's Estimate January 2005 Item Description Unit Quanti!Y Unit Cost Amount GENERAL ITEMS Mobilization LS $ 2 ,185 .00 $ 2 ,185 .00 Subtotal $ 2, 185.00 WATER ITEMS 2 6" PVC Water Li ne C909 CL200 w ith Structural Backfill LF 110 $ 30 .00 $ 3 ,300 .00 3 8" PVC Water Li ne C909 CL200 with Structural Backfill LF 160 $ 35 .00 $ 5,600 .00 4 6" x 2" MJ Tee EA 1 $ 275 .00 $ 275 .00 5 8" x 8" MJ Tee EA 2 $ 325 .00 $ 650 .00 6 6" x 11 .25 Degree MJ Bend EA 1 $ 275 .00 $ 275 .00 7 6" x 45 Deg ree MJ Bend EA 2 $ 275 .00 $ 550 .00 8 8" x 6" Reduce r EA 2 $ 375 .00 $ 750 .00 9 Standard Fire Hydrant Assembly EA 2 $ 2 ,500 .00 $ 5 ,000 .00 10 8" MJ Gate Valve & Box EA 1 $ 850 .00 $ 850 .00 11 2" Blow-off Valve EA 1 $ 600 .00 $ 600.00 12 Connection to exist ing system EA 2 $ 2 ,000.00 $ 4 ,000 .00 Subtotal $ 21,850 .00 15% Contingency $ 3,605 .25 TOTAL $ 27,640.25 CITY OF COLLEGE STATION P lanning & D eve lop ment Services 1101 Texas Avenue S outh , P O Box 9 9 60 Colle ge S t a tion , Texas 778 42 Phone 9 7 9.764 .3570 / F ax 979.764.349 6 MEMORANDUM November 9, 2004 TO : Veron ica J .B . Morgan , P.E. -Mitchell and Morgan , LLP / FROM : Bridgette George , Development Coordinator SUBJECT : DP-KENNY COTTEN'S BBQ -Development Permit Staff reviewed the above-mentioned construction documents as requested . The following page is a list of staff review comments detailing items that need to be addressed . Please address the comments and submit the following information for further staff review , approval , and issuance of the development permit: One (1) copy of the fire flow report ; One (1) copy of revised construction plans ; One ( 1) copy of off site Easements for storm sewer and detention pond . If there are comments that you are not addressing with the revised construction documents , please attach a letter explaining the details . If you have any questions or need additional information , please call Alan Gibbs at 979 .764 .3570 . Attachments : Staff review comments cc : Kenneth Cotton , via fax 361 .289 .5442 ./ Case file# ( 04-00100058) Home of Texas A&M University • STAFF REVIEW COMMENTS NO. 1 Project: DP-KENNY COTTEN'S BBQ-DEVELOPMENT PERMIT( 04-00100058) ENGINEERING 1. Provide expansion joints along easements which traverse onsite concrete pavement for future maintenance . 2. Provide offsite Easements for storm sewer and detention pond . 3. Provide a fire flow report. 4. Extend Waterline 'B' to adjacent southern property avoid a dead end by allowing adjacent site to continue line and loop. 5. It appears that swales are needed to capture route runoff into the pond based on the contours and drainage basins . 6. Verify that the proposed velocities are not excessive or that sufficient erosion control is provided. Reviewed by : ALAN GIBBS Date: November 8, 2004 NOTE : Any changes made to the plans , that have not been requested by the City of College Station, must be explained in your next transm ittal letter and "bubbled " on your plans . Any additional changes on these plans that have not been pointed out to the City , will constitute a completely new review . Page 2 of 4 Q4-5K ~·.30 10-t t-Ot/ ~ COTTEN SUBDIVISION DRAINAGE ANALYSIS October 2004 Prepared for LLE E T. T I N 1/. t heart of the R~ea rch Valley By MITCHELL MM MORGAN ENGINEERS & CONSTRUCTORS 511 UNIVER SI TY DR IVE , SUITE 2 04 COLLEGE STATION, TX 77840 OFFI CE (979) 260-6963 FA X (979)260-3564 MITC H ELL MM MORGAN COTTEN'S SUBDIVISION DRAINAGE ANALYSIS INTRODUCTION The purpose o f this drainage report is to present an analysis of the required dra inage infrastructure for the proposed Kenny Cotten 's Barbeque Restaurant, as well as lay the g roundwork for the remainder of the proposed Cotten mixed-use development located in College Station, Te xas . This project is to be located south of FM 2818 between Te xas Avenue and the SH 6 East Bypass . This repo rt will provide analysis of Kenny Cotten 's Barbeque in three developed conditions . First , an analysis of the ex isting (predeveloped conditions), second, an intermediate level of development which reflects the analysis performed for the Dartmouth Drive Ex tension Drainage Analysis completed by Mitchell & Morgan in August, 2004 and lastly the postdeveloped conditions for the barbeque restaurant. One of the most important items to note with this analysis is that it has been completed and presented in two parts . This phasing was done in order to reduce confusion between the drainage design for the subbasins contributing to Bee Creek Ma i n and that of the subbasins contributing to Bee Creek Tributary 'A'. This will become increasingly important as the adjacent mi xed-use development occurs and addendums to the Bee Creek Tributary "A" portion of this report is written to account for the additional development on Lot 4, Block 1 of the Cotten Subdivision , sometimes referred to as the Bertrand p roperty . Each tributary will have will have a separate description with associated ex hibits and appendices that present the drainage design for the respective area. Each of these drainage designs will be independent; but because development of the Cotten property results in the diversion of portions of the drainage from Bee Creek Ma in to Tributary 'A', all the information will be provided in one report. The phasing is contained within this report: Phase A: Bee Creek Main and contributing drainage areas Phase B: Bee Creek Tributary 'A' and contributing drainage areas CERTIFICATION "I hereby cert ify that I am familiar with the adopted ord inances, regulation s, standards, and po li cies of the City of College Station govern ing development, that these plans have been prepared under my supervision, and that this drainage plan complies with governing ord inances and regulations to the best of my knowledge ." "The site of Kenny Cotten's Barbeque Restaurant, Lot 2, Block 1 of the Cotten Subdivision do ot lie within the established area of the special flood hazard as established by the cu re t flood insurance study or flood i~fl<i Gl \\~te map number 48041 C0144C, dated July 2 2 ,, --~~e. ()l'I r~ '' I • f 0""'~ .. ··""'"" ... '-1--<1. 11 • .... * ·" * .... o> ,, ---~* .... ·' ..... ,l -~---++f'---A-'~-----"!""r-.··..,,. .. ...,...,.··"·························: ... ~.~ Ve ronica J.B . rga P ., C.F .~ .. ._;/.<?.~!~~.~ ... ~ ... ~q!:l.~~~.~)0 -l \-04- Registered Professio I Engineer ~ ->l \ 77689 /$; State of Texas No . 77689 111%,·~~?t sTr.'<'-~~ .. ~~ 'i t &s .......... ~0..: \\\\10NAL €..., .... -- "'""''''' 51 1 UNIVERS ITY DRIV E EAST, SUITE 204 • COLL EGE STATIO N, TX 77840 • T 979.260.6963 • F 979.260.3564 CIVIL ENGINEERING • HYDRAULICS • HYDROLOGY • UTILITIES • STREETS • SITE PLANS • SUBDIVISIONS 1nfo@mitchellandmorgan.com • www.m1tchellandmorgan .com PHASE A: BEE CREEK MAIN DRAINAGE ANALYSIS This section of the Cotten 's Subdivision Restaurant Drainage Analysis includes all required drainage analysis for areas contributing to Bee Creek Main. GENERAL LOCATION AND DESCRIPTION Kenny Cotten's Barbeque Restaurant will be located on Lot 2, Block 1 of the Cotten Subdivision, Phase 1, adjacent to and on the east side of the proposed Dartmouth Drive Extension and south of FM 2818 (Harvey Mitchell Parkway) in College Station, Texas. This proposed Dartmouth extension is approximately 2000 feet east of the intersection of FM 2818 and Texas Avenue. More information regard ing Dartmouth Drive was presented in the August 2002 Dartmouth Drive Extension Drainage Analysis completed by Mitchell & Morgan, LLP. The project location is identified in Exhibit OV1 of this report. DRAINAGE BASIN DESCRIPTION As indica t ed in the introduction, a portion of the project is located within the Bee Creek Main watershed. The enti re property is currently undeveloped and is covered with grass and small scrub trees . Whi le much of the upper section of the primary drainage basin is developed, this site lies within the primarily undeveloped lower portion if the basin . Because of the location of this site and the development state in this po rti on of the Bee Creek M ain basin, permitting runoff to flow undeta ined into the receiving stream is a benef icial option . This was discussed in the August 301h Predevelopment Conference w ith the City of College Station . Additional support ing information will be presented later in this report to suppo rt zero-detention on the Bee Creek Main portion of the project. This property is located within the Bee Creek Main drainage basin; however, as seen on Exhibit OV2, no port io n of the proposed restaura nt site lies w ithin the regulatory 100-year floodplai n per the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FI RM ) panel 144C, effective date July 2, 1992 . Curren t ly a majority of Block 1 of the Cotten Sub division and a sign ificant portion of t he surround in g area dra ins in a northeaster ly direction toward a 3-30" RCP culvert located along the eastbound side of FM 2818 . The 3- 30" RC P culvert is co nside red the co nf luence po in t for a ma j o r ity of the st udy area . This information is demonstrated in Exhibit A 1, the Existing Deve lopment Drainage Area Map . Exhibits A 2 and A3 inc lude u pdated drainage areas for the Dartmouth Drive Extension and the proposed Cotten 's Barbeque, respectively. These drainage patterns will be discussed in more detail in the Drainage Facility Design section of this report . DRAINAGE DESIGN CRITERIA A ll drai nage design is in accordance w ith the City of College Station Drainage Po li cy and Design Standards (D PDS). As such: • Design rai nsto rm even t s consist of the 5-, 10-, 25-, 50-, and 100-year storm events. • Flow calcu lations are based on the Rational Method w ith a minimum time of concentration of 10 minutes. Lag time ca lcu lation is based on the Upland Method. • Pipe capacity calculations are based on Manning's Equation with Hydraulic Grade Line analysis performed to determ ine location and extent of storm sewer system su rcharge . • No Detention analysis will be provided to j ustify departing from the zero-increase run off guide lin e sta t ed in the DPDS . Cotten S ubdi visio n Drainage Analysis 2 DRAINAGE FACILITY DESIGN As was the case in the Dartmouth Drive Extension Drainage Analysis, much of the infrastructure included in this investigation was existing TxDOT storm sewer. This was done to more accurately determine flow conditions at the 3-30" RCP culvert used as the study confluence for this project. While most of the FM 2818 drainage areas along for the analysis remain the same as the original TxDOT de sign, the drainage areas along the Cotten property and the surrounding area were modified to more accurately reflect the drainage patterns in the area, both pre-and postdevelopment and provide consistency in the analysis . This has a negligible effect on the analysis as the TxDOT calculations only show capacity, not actual system performance. Predevelopment Drainage Analysis Per Exhibit A 1, flow from Block 1 of the Cotten Subdivision drains in three directions. Approximately 4 .5 acres of the property currently drains to the 3-30" RCP culvert and nearly 1.4 acres of the Cotten Subdivision drains to the single 30" RCP culvert that drains drainage subbasin EA-C. The remaining 1 acre of the Cotte n Subdivision drains south to Bee Creek Tributary 'A' and will be discusses in the Bee Creek Tributary 'A' portion of this report. The TxDOT drainage basins used for the design of FM 2818 have been included in the predevelopment analysis calculations provided in Appendix A. As previously discussed, runoff calculations were performed using the Rational Method . Peak runoff values for each of the drainage basin s are provided in Appendix A-1, Rational Formula Drainage Area Calculations; however, because of the variation in time of concentration between FM 2818 runoff and runoff from drainage basin EA-B the predevelopment peak flow rate for the entire area is more accurately reflected in the Pipe Size Calculations provided as Appendix A-3 for each of the studied rainfall events . As expected, most of the system currently provides capacity for the 100-year peak discharge . Inlet calculations have also been prov ide d as Appendix A-2 to evaluate the current inlet configuration along Harvey Mitchell Parkway for each relevant storm event. Dartmouth Drive Development Wh ile Dartmouth Drive is discussed in the Dartmouth Drive Extension Drainage Analysis, it has been included in this report as an intermediate step in the drainage design process. The results presented in this report for Dartmouth Drive are, for the most part, a restatement of the previously mentioned analysis, with minor changes being addressed to account for the updated topographic survey data in the area. The addition of approximately 1.1 acres of impervious cover as well as the drainage patterns associated with the development is shown in Exhibit A2 . Approximately 150 feet of the Dartmouth Drive Extension will drain to the south toward Bee Creek Tributary 'A'. This portion of Dartmouth Drive will be discussed in the Bee Creek Tributary 'A' Section of this report. The portion of Dartmouth Drive that drains to Bee Creek Main within the development of the Cotten Subdivision required the placement of approximately 172 LF of 3' x 2' RCB and the construction of an expanded junction box at the inlet A8 location shown in Exhibit A2 . One 5' inlet will be placed on either side of the street with 8 LF of 30" RCP feeding into the inlet on the southbound side of Dartmouth . This pipe will provide a discharge lo cation for runoff from the 3.5-acre drainage basin PA-B1. In order to provide future access to emergency vehicles during a major rainfall event, the system was designed to convey the 100-year rainfall event with no headwater . Plan and profile drawings for the construction of this Cotten Subdivision Drainage Analysis 3 infrastructure have been inc luded as Exhibit B. A grading p lan for Dartmouth Drive is provided as Exh ibit C and as Exhibit C2 for Kenny Cotten 's Barbeque Re staurant. Rational method ca lculations, inl et ca lcu lations , and pipe size calculat ions have been provided as Appendices A-1, A-2, and A -3, respect ively . Hydraulic Gr ade Line calculations have been provided as Exhibit D to demonstrate that the 100-year event will pass with out inund ating Dartmouth Dr ive. Postdevelopment Drainage Analysis As demonstrated in Exhibit A3, the construction of Kenny Cotten 's Barbeque Restaurant will result in chang ing drainage patterns . While nearly the entire Lot 2, Block 1, east of Dart m outh Drive will become impervious, a majority will be diverted toward Bee Creek Tributary 'A'. Th is portion of the design will be discussed in the Bee Creek Tr ibutary 'A' portion of this report . The result of this diversion is an offset in the increase of the peak discharge, minimizing the effect that development of the restaurant has on the Bee Creek Main dra in age . A grading plan of the restaurant site has been provided as Exhibit D of thi s report . The runoff will be conveyed to an open back inlet which leave s the par k ing lo t and enters the 3-30" RCP culverts as shown in Exhibit C2 . A 5' recessed inlet will be placed at the north end of the Cotten 's Barbeque parking lot to hand le this runoff. As shown in Appendi x A-3, the 3-30" RCP culvert has more than adequate capacity to carry the flow from the contri bu ting drainage subbas in s for all studied rainfall eve nts. Table 1 provides a comparison of the peak discharge rates for all studied events for each of the development conditions discussed . The diversion of much of the restaurant property to Bee Creek Tributary 'A' also has an impact in the peak discharges seen at the 30" RCP that drains area DA-C. Approximately 1.5 acres of the current d rain age area is removed from Bee Creek Ma in, resulting in a decrease in peak d ischarges at that location . Table 2 details the flow changes at that location . Peak Dischar es from TxDOT 3-30" RCP Culvert (DA-B) 5-Yea r 10-Year 25-Yea r 50-Yea r 100-Yea r Flo w Conditio ns Flo wrat e Flo wrat e Fl o wrat e Flo wrate Flowrate System Outfall All flowrates in cubic fee t per seco nd (cfs) Predeve lopm ent 27 .6 3 1.2 35 .8 38 .3 45.8 Dartmouth Dri ve 3 7 .7 42 .4 48 .5 51 .9 6 1.7 Post developm ent 39.6 44.5 50 .9 54 .6 64.8 Flow Increa se 12 .0 13 .3 15.1 16.3 19.0 Table 1. Peak Discharge Summary for DA-8 Peak Dischar es from TxDOT 30" RCP Culvert (DA-C) 5-Yea r 10 -Yea r 25 -Yea r 50 -Yea r 100-Yea r Flow Condi tions Fl owrate Fl owrat e Fl owrate Flowrate Fl owrat e System Outfall All flowrates in cu b ic fee t per secon d (c fs) Predevelopment 9 .9 10 .8 12 .7 14.2 16 .0 Pos t developm ent 5 .6 6 .1 7 .2 8 .1 9.1 Flow Reduction 4 .3 4 .7 5.5 6 .1 6 .9 Table 2. Peak Discharge Summary for DA -C Cotten Subdi vision Drainage Analysis 4 Hydrograph Timing Analysis for No Detention Because of the close proximity to Bee Creek Main and the location of the development at the lower end of the overall Bee Creek watershed, it is more beneficial to release the runoff undetained from the Cotten Subdivision than to require detention . As a result, detention will not be provided. With a watershed lag time of several hours and a local time of concentration of ju st over 12 minutes, the drainage from this development will pea k on the rising limb of the Bee Creek Main hydrograph . Attenuation of flow will not provide any benefits and in some cases may result in a net increase in the peak flowrate in Bee Creek . Us ing HEC-1 hydrologic models, a timing analysis of the hyd rogr aphs was performed for the predevelopment and postdevelopment condit ions. The postdevelopment analysis included the modified drainage areas as indicated in Appendix B 1 of the report and considered approximately 80% development of the subbasin, allowing for future improvement. In looking at the tables provided below, it is apparent that the peak flow values provided differ between the Rationa l Method and the HEC-1 produced values . It is important to note that the HEC-1 models employed an SCS Type Ill 24-hour storm as opposed to a storm duration of 3 *Tc (time of concentration). In order to apply a con sistent standard to the entire basin , a 24-hour storm was applied to the area in question. This resu lted in lower peak discharge values than those determined using the Rational Method . As the most current Bee Creek model available, the HEC-1 model prepared by Klotz & Associates for the 1998 Bee Creek Study was used as a point of reference and mod ifi ed to reflect the proposed condit ions in the basin . Th is modeling was incorporated into a Carters Creek model to determ ine the effects on the downstream system . Predevelopment Peak Discharges (HEC-1) 5-Yea r 10-Ye ar 25 -Year 50-Year 100-Yea r 500-Y ear Fl o w Co ndition s Flowrat e Fl owrate Flowrat e Flowrat e Fl owrate Fl o wrate - Study Point All flowrate s in cub ic fee t per seco nd (c fs) BEE2 780 9 57 1103 13 08 1484 1776 SH6 East Bypa ss 236 7 2972 34 74 4 136 4 662 5 528 Be e Con fluen ce 321 2 40 8 0 4 838 5828 6690 8 037 Ca rters Co nflue nce 1401 2 17 958 21 247 26 008 30809 3829 8 Table 3. Peak Discharge Increase Comparison Postdevelopment Peak Discharges (HEC-1) 5-Year 10-Ye ar 2 5-Ye ar 50-Yea r 100-Ye ar 500-Y ea r Fl o w Condition s Flowra te Fl o wrat e Flowrate Flowra t e Fl owrate Fl o wrate Study Point All flowra te s in cubic fee t per seco nd (c fs) BEE 2 77 9 9 5 2 10 98 13 02 1476 17 67 BEE4 13 15 17 20 23 27 SH6 Ea st Bypa ss 2366 2 9 71 3472 41 35 4661 5 526 Bee Co nfluen ce 3 2 12 4 080 483 7 5827 6689 8 0 3 6 Carters Co nflu ence 14012 179 58 21247 2 6008 30809 3829 7 Table 4. Peak Discharge Increa se Comparison Cotten Subdivision Drainage Analysis 5 A map showing the proposed deve lopment in re lation to the Bee Creek basins is provided as Appendix B 1. The informat ion provided in Appendix B demonstrates that the timing of the Cotten Subdivision hy drographs does not coincide and that th e release of this runoff wi ll not create adverse impacts . In addition, a comparison of the peak discharges from the Cotten Subdivision to peak discharges at various downst ream study points has been prov ided in Tables 3 and 4 above . CONCLUSION While Tables 1 and 2 indicate t hat there is an increase in t he peak discharge rate from the Cotten barbeque restaurant development at the 3-30" RCP culvert, the difference in peak discharge timing be t ween the Cotten Subdivisio n and the remainder of the Bee Creek Main basin indicates tha t it is more desirable for the bas in to not provide detention at this location . This is indicated in Tables 3 and 4 which show that with the Cotten barbeque restaurant development undetained, the peak discharges in Bee Creek Main to the Carters Creek conflue nce are not increased . The storm sewer system prov ided within this project has amp le capacity for all rainfall events and ens u res that no significant flood ing w il l occu r on the proposed site. In addition, the system is designed to leave Dartmouth Drive passable dur ing the 100-year rainfall event. Exhibit OV3, located in the General Information section shows predeve lopment, Dartmouth development, and postdevelopment hydrograp hs at the re levant study confluence points. Review of the stormwater ana lysis ind icates that the drainage design presented in this report will prov ide ample conveyance to meet the drainage objectives of the City of College Station DPDS and no adverse impacts on the downstream drainage system . Cotten Subdivision Drainage Analysis 6 EXHIBITS EXHIBITD KENNY COTTEN'S BARBEQUE & DARTMOUTH DRIVE EXTENSION Phase A -Bee Creek Main Hydraulic Grade Line Calculations Inlet 3 to Inlet 2 (Per construct ion drawings in Exhibit C) Head/ass Equations (from Manning's) (1) Q = c·:9 )AR~S~ (2) HGL us = HGL DS + H 1 (3) H -S L-L[ n 2 V 2 ) 1 -/ -R1 12 l.49 2 10-Year Event (Per cons tructi on drawings in Exh ibit C) Head/ass Ca lcula tions Q10 = 20.0cfs (Per Appendix A-3 ) S110 = 0 .0017 fl I fl Pipe slope is greater that friction slope. Using Mann in g's Equation (1 ), normal depth in the pipe is determined. Qn -BY BYn ( ) 2 /3 [1.49S 112 )-n B + 2Yn Where Yn is normal depth Yn = l.61fl Using Equa tion (2) above and a norma l depth the downstream and upst rea m water surface elevations are given below . HGL Ds = 258.46fl Downstream HGL us = 258 .63fl Up stream KENNY COTTEN'S BEE MAIN DRAINAGE In put Data Pipe Size = 3' x 2' RCBC Roughness (n) = 0.013 Pipe Length = 94.09 LF Downstre am Invert = 256 .85 ft Upst ream Invert= 257.02 ft Pipe Slop e= 0.00 18 fVft -(0.18%) Calculated Parameters Cross-sectional Area = L x W A= 6 .0 sq . ft. Hydraulic Radius = NP R = 0 .60 ft 100-Year Event (Per co nstruct ion drawings i n Exhibit C) Head/ass Ca lculations Q10 = 29.lcfs (Per Appendix A-3) s1 10 = o.oo35 fll fl Friction slope is greater than pipe slope. Using Equation (3), friction losses through the pipe are determined . H 1 =S1 L = (0 .0035)(94 .09) H 1 =0 .33ft Assumptions Per College Station DPDS, if the downstream tailwater is less than that of the downstream soffit, the soffit elevation is used as the starting tai lwate r elevat io n. Using Equation (2) and the friction losses above the upstream and downstream HGL ele va t ions are given below. HGL Ds = 258.85fl Downstream HGL us = 259.18fl Upstream EXHIBITD KENNY COTTEN'S BARBEQUE & DARTMOUTH DRIVE EXTENSION Phase A -Bee Creek Main Hydraulic Grade Line Calcu lation s Inlet 2 to Inlet 1 (Per construction drawings in Exhibit C) Headloss Equations (from Manning 's) (1) Q=c·:9 )AR ~S ~ (2 ) HGL us = HGL DS + H 1 (3 ) H J =S 1L=L ( i~22 v 2 z) R 1.49 10-Year Event (Per con struction drawings in Exhibit C) Headloss Ca lculations Q10 =16.lc.fe (Per Appendi x A-3) s1 10 =0.0011ft l ft Pipe slope is greater that friction slope . Using Manni ng's Equation (1 ), normal depth in the pipe is determ i ned . Qn -BY BYn ( J 2 /3 (i.49S 112 )-n B + 2Yn Where Yn is normal depth Using Equation (2 ) above and a norma l depth the downstream and upstream water surface elevations are given below . HGL Ds = 258.63ft Downstream HGL us = 258.65 ft Upst rea m Input Data Pipe Size= 3' x 2' RCBC Ro ughness (n ) = 0 .013 Pipe Length = 94.09 LF Downstream Invert = 25 6 .85 ft Upstream Invert= 257 .0 2 ft Pipe Slope= 0 .0 018 ft/ft -(0 .18 %) Calculated Parameters Cross-section a l Area= L x W A= 6.0 sq . ft. Hydrau li c Rad ius= A/P R = 0 .60 ft 100-Year Event (Per construction drawing s in Exhibit C) Head/ass Calculations Q10 = 23 .3cfa (Per App e ndi x A-3 ) s1 10 = o.0023ft l ft Fricti o n slope is greater than p ipe sl ope . Usi ng Equation (3), fri ct ion losses through the pipe ar e determ ined . H I = s IL= (0.0023X78.42) H 1 =0.1 8ft Assumptions Per College Stati o n DPDS, if the downstream tailwater is less than that of the downstrea m soffit, the soffit elevation is used as the starti ng tailwater elevation . Using Equat ion (2) and the friction lo sses above the upst ream and downstream HGL elevation s ar e given be low. HGL Ds = 259.18ft Downstream HGL us = 259.36ft Up stream KENNY COTTEN'S BEE MAIN DRAINAGE 2 258 1.0 0 .8 D 0 .6 0.4 0 .2 I I 0.0 0 .0 / I\ u -r ~ l/ lYn / ~/ / / v 0 .2 0.4 Open Channel Hydraulics v / 0.6 Q /Qfull v ) / / / 0 .8 1.0 Figure 5.3 Discharge in a circular pipe flowing partially full with Manning "n " as a function of water depth . The channel (su barea 2, Fig. 5.4) is generally not s~bdivided even tho ugh the channel bank may have a different Manning's "n" than the channel bottom. Figure 5.4 Compound channel. Example 5.1 Discharge Rate in an Open Channel Water is flowing in a trapezoidal earth channel (n = 0.030) at a depth (y) of 10 .0 ft. The channel has a bottom width (B) of 50 ft and has 4H:1V (4 :1) side slopes (SS). If the channel is on a slope (S) of 0.0005, determine the discharge rate (Q). Q = 1.49 AR213 s 112 n A = (B +SS X y)y = (50 + 4 x 10 )10 = 900sqft APPENDIX A DRAINAGE CALCULATIONS <( w 0 a::: w 0 <( <( a.. w 0 w w 0 a.. w (.') a::: ...J <( a.. <( <( w 0 0 z ...J > Cl) ...J < <( w <( 0 <( w I-ow zw > a::: 8 z a::: <( a::: w 0 :::> <( ...J <( 0 NO. AC. 0.4 0.5 0.9 Existing Conditions EA-8 S.S9 S.S9 0.00 0.00 EAS 0.33 0.00 0.00 0.33 EA6 1.19 1.00 0.00 0.19 EA? 1.8S 1.48 0.00 0.37 EA7A 0.34 0.00 0.00 0.34 EA8 0.4S 0.00 0.00 0.4S Dartmouth Development DA-81 3.SO 3.SO 0.00 0.00 DA-82 O.S4 0.00 0.00 O.S4 DA-83 O.S6 0.00 0.00 O.S6 DA-84 1.13 1.13 0.00 0.00 DAS 0.33 0.00 0.00 0.33 DA6 1.19 1.00 0.00 0.19 DA? 1.8S 1.48 0.00 0.37 DA7A 0.34 0.00 0.00 0.34 DAB 0.4S 0.00 0.00 0.4S Proposed Development PA-81 3.SO 3.SO 0.00 0.00 PA-82 O.S4 0.00 0.00 O.S4 PA-83 O.S6 0.00 0.00 O.S6 PA-84A 0.17 0.17 0.00 0.00 PA-848 0.76 0.00 0.06 0.70 PAS 0.33 0.00 0.00 0.33 PA6 1.19 1.00 0.00 0.19 PA? 1.8S 1.48 0.00 0.37 PA7A 0.34 0.00 0.00 0.34 PA8 0.4S 0.00 0.00 0.4S APPENDIX A-1 RA T/ONAL METHOD RUNOFF CALCULA T/ONS COTTEN'S BEE MAIN DRAINAGE <( >-0 I-(.) ...J 0 I-(.) <( 0 I-I-...J (.) w 8 ~ "' Cl) N "' 0 0 :::> ~ 0 "' 0 ..... ft/s min min In/Hr cfs In/Hr cfs In/Hr 2.24 1.0 17.9 17.9 4.7 10.6 S.8 13.0 6.6 0.30 10.4 0.0 10.0 6.3 1.9 7.7 2.3 8.6 O.S7 10.4 0.0 10.0 6.3 3.6 7.7 4.4 8.6 0.93 10.4 0.0 10.0 6.3 S.9 7.7 7.1 8.6 0.31 10.4 0.0 10.0 6.3 1.9 7.7 2.4 8.6 0.41 10.4 0.0 10.0 6.3 2.6 7.7 3.1 8.6 1.40 1.1 10.3 10.3 6.2 8.7 7.6 10.6 8.S 0.49 3.0 2.6 10.0 6.3 3.1 7.7 3.7 8.6 O.SO 3.0 2.6 10.0 6.3 3.2 7.7 3.9 8.6 0.4S 1.1 6.0 10.0 6.3 2.9 7.7 3.S 8.6 0.30 10.4 0.0 10.0 6.3 1.9 7.7 2.3 8.6 O.S7 10.4 0.0 10.0 6.3 3.6 7.7 4.4 8.6 0.93 10.4 0.0 10.0 6.3 S.9 7.7 7.1 8.6 0.31 10.4 0.0 10.0 6.3 1.9 7.7 2.4 8.6 0.41 10.4 0.0 10.0 6.3 2.6 7.7 3.1 8.6 1.40 1.1 10.3 10.3 6.2 8.7 7.6 10.6 8.S 0.49 3.0 2.6 10.0 6.3 3.1 7.7 3.7 8.6 O.SO 3.0 2.6 10.0 6.3 3.2 7.7 3.9 8.6 0.07 0.9 2.2 10.0 6.3 0.4 7.7 o.s 8.6 0.66 4.7 0.7 10.0 6.3 4.1 7.7 S.O 8.6 0.30 10.4 0.0 10.0 6.3 1.9 7.7 2.3 8.6 O.S7 10.4 0.0 10.0 6.3 3.6 7.7 4.4 8.6 0.93 10.4 0.0 10.0 6.3 S.9 7.7 7.1 8.6 0.31 10.4 0.0 10.0 6.3 1.9 7.7 2.4 8.6 0.41 10.4 0.0 10.0 6.3 2.6 7.7 3.1 8.6 Predevelopment Peak Flowrate 26.4 32.3 Dartmouth Peak Flowrate 33.7 41.0 Postdevelopment Peak Flowrate 3S.4 43.1 Flow Increase 9.0 10.8 0 0 "' 0 0 0 ..... "' N 0 "' 0 ..... 0 N 0 "' 0 ..... 0 cfs In/Hr cfs In/Hr cfs I In/Hr cfs 14.7 7.6 16.9 8.6 19.2 9.7 21.6 2.6 9.9 2.9 11.1 3.3 12.S 3.7 4.9 9.9 S.6 11.1 6.4 12.S 7.2 8.0 9.9 9.1 11.1 10.3 12.S 11.6 2.6 9.9 3.0 11.1 3.4 12.S 3.8 3.S 9.9 4.0 11.1 4.S 12.S S.1 11.9 9.7 13.6 11.0 1S.4 12.4 17.3 4.2 9.9 4.8 11.1 S.4 12.S 6.1 4.4 9.9 S.O 11.1 S.6 12.S 6.3 3.9 9.9 4.S 11.1 S.O 12.S S.7 2.6 9.9 2.9 11.1 3.3 12.S 3.7 4.9 9.9 S.6 11.1 6.4 12.S 7.2 8.0 9.9 9.1 11.1 10.3 12.S 11.6 2.6 9.9 3.0 11.1 3.4 12.S 3.8 3.S 9.9 4.0 11.1 4.S 12.S S.1 11.9 9.7 13.6 11.0 1S.4 12.4 17.3 4.2 9.9 4.8 11.1 S.4 12.S 6.1 4.4 9.9 S.O 11.1 S.6 12.S 6.3 0.6 9.9 0.7 11.1 0.7 12.S 0.8 S.7 9.9 6.S 11.1 7.3 12.S 8.2 2.6 9.9 2.9 11.1 3.3 12.S 3.7 4.9 9.9 S.6 11.1 6.4 12.S 7.2 8.0 9.9 9.1 11.1 10.3 12.S 11.6 2.6 9.9 3.0 11.1 3.4 12.S 3.8 3.S 9.9 4.0 11.1 4.S 12.S S.1 36.4 41.6 47.1 S3.0 46.0 S2.S S9.4 66.7 48.3 SS.2 62.4 70.1 12.0 13.6 15.3 17.1 9/27/2004 0428-drainage-phase2-040903.xls Appendix A-1 ~ ~ ~ ~ i.. ~ < i.. c.!l • ~ <o ~ ~ ~ zZ ell ell 0 ~ ~ ..... < = = = ~~ i.. ~ ·; ·; .... i.. i.. o~ ~o cfs Existing Conditions EA-B 13.0 EAS EA7 2.3 EA6 EA7 4.4 EA7 EA7A 7.1 EA7A EA8 2.4 EA8 3.1 Dartmouth Development DA-Bl 10 .6 DA-B2 3.7 DA-B3 3 .9 DA-B4 3 .S DAS DA7 2.3 DA6 DA7 4.4 DA7 DA7A 7.1 DA7A DA8 2.4 DA8 3 .1 Proposed D evelopm ent PA-Bl 10.6 PA-B2 3.7 PA-B3 3 .9 PA-B4A O.S PA-B4B s.o PAS PA7 2 .3 PA6 PA7 4.4 PA7 PA7A 7 .1 PA7A PA8 2.4 PA8 3 .1 i.. ~ .... 0 c i.. ~ u 0 cfs 0.0 0 .0 0.0 0 .0 0.0 0.0 0 .0 0 .0 0 .0 3.0 0.0 0.0 0 .0 0 .0 0.0 0.0 0.0 0 .0 3.0 3 .0 0.0 0.0 0.0 0.0 0.0 APPENDIX A -2 INLET COMPUTATIONS COTTEN'S BEE MAIN DRAINAGE 5-Year Event ... ~ -= ..... ... ~ 0 -~ ... 0 D ESCRIPTION E--< cfs 13.0 3-30" RCP Headwall 2.3 Recessed Inlet on Grade 4.4 Recessed Inlet on Grade 7.1 Recessed Inlet on Grade 2.4 Recessed Inlet on Grade 3.1 Recessed Inlet on Grade 10 .6 3' x 2' RCBC Headwall 3.7 Recessed Low Point Inlet 3 .9 Recessed Low Point Inlet 6 .S 3-30" RCP Headwall 2.3 Recessed Inlet on Grade 4.4 Recessed Inlet on Grade 7.1 Recessed Inlet on Grade 2.4 Recessed Inlet on Grade 3.1 Recessed Inlet on Grade 10 .6 30" RCP Headwall 3.7 Recessed Low Point Inlet 3.9 Recessed Low Point Inlet 3.S Proposed Grate Inlet 8.0 Recessed Low Point Inlet 2 .3 Recessed Inlet on Grade 4.4 Recessed Inlet on Grade 7.1 Recessed Inlet on Grade 2.4 Recessed Inlet on Grade 3 .1 Recessed Inlet on Grade *Inc ludes 25% Flow Increase for pipe sizes <27" dia. ••See Pl an & Profi le for pipe sl ope used (Pipe slope >or= Friction slope) ~ i.. ~ .J "O .... ~ 0 i.. "O ~ "O .... c ~ O"' .... 0 i.. ~ ~ i.. ~ ~ ~ u < .J .J u 0 C urb In let cfs ft ft cfs 0.00 0.618 3.70 10 0 .00 0 .618 7.11 10 0.00 0.618 11.51 10 0.94 0.618 3.81 10 0 .00 0.61 8 S.04 10 0 .00 0 .00 2.334 1.60 s 0.00 2.334 1.66 s 0.00 0.00 0.618 3.70 10 0 .00 0 .618 7.11 10 0.00 0 .618 11.51 10 0.94 0 .6 18 3.81 10 0.00 0.61 8 S.04 10 0 .00 0 .00 2.334 1.60 s 0.00 2 .334 1.66 s 0 .00 0.00 2 .334 3.4S s 0.00 0 .618 3.70 10 0.00 0 .6 18 7.11 10 0.00 0.61 8 11.51 10 0.94 0.618 3.81 10 0 .00 -· 0 .6 18 S.04 10 0 .00 9/27/2004 04 28 -drai nage-p hase2-040903.xls Ap pendix A-2 ~ ~ ~ ~ -~ < -CJ . ~ <o ~ ~ ~ zz e.o e.o 0 ~ ~ -< = = = ;Z ~ -·; .... ~ ~ > --~< 0 ~ ~o cfs Ex isting Conditions EA-B 14 .7 EAS EA7 2 .6 EA6 EA7 4.9 EA7 EA7A 8 .0 EA7A EA8 2.6 EA8 3 .S Dartmouth Developmen t DA-Bl 11.9 DA-B2 4 .2 DA-B3 4.4 DA-B4 3 .9 D AS D A7 2 .6 DA6 DA7 4 .9 DA7 DA7A 8.0 DA7A DA 8 2 .6 DA 8 3 .S Proposed Development PA-Bl 11.9 PA-B2 4.2 PA -B3 4.4 PA-B4A 0 .6 PA-B4B S.7 PAS PA7 2.6 PA6 PA7 4.9 PA7 PA7 A 8.0 PA 7A PA8 2 .6 PA 8 3.S -~ > 0 c -~ u 0 cfs 0.0 0.0 0 .0 0 .0 0.0 0.0 0.0 0 .0 0.0 3.0 0 .0 0 .0 0 .0 0 .0 0 .0 0.0 0.0 0 .0 3.0 3 .0 0.0 0 .0 0.0 0.0 0 .0 APPENDIX A-2 INLET COMPUTATIONS COTTEN'S BEE MAIN DRAINAGE 10-Year Event ... ~ -= -... ~ 0 -~ ... 0 D ESCRIPTION ~ cfs 14 .7 3-30" RCP Headwall 2.6 Recess ed Inlet on Grade 4 .9 Recessed Inlet on Grade 8 .0 Recessed Inlet on Grade 2.6 Recessed Inlet on Grade 3 .S Recessed Inlet on Grade 11.9 3' x 2' RCBC Headwall 4 .2 Recessed Low Point Inlet 4.4 Recessed Low Point Inlet 6.9 3-30" RCP Headwall 2.6 Recessed Inlet on Grade 4.9 Recessed Inlet on Grade 8.0 Recessed Inlet on Grad e 2.6 Re cessed Inlet on Grade 3 .S Recessed Inlet on Grade I 1.9 30" RCP Headwall 4 .2 Recessed Low Point Inlet 4.4 Recessed Low Point Inlet 3 .6 Propos ed Grate Inl et 8.7 Recessed Low Point Inlet 2.6 Recessed Inlet on Grade 4 .9 Rec esse d Inl et on Grade 8.0 Recessed Inlet on Grade 2.6 Rec essed Inlet on Grade 3 .S Recessed Inlet on Grade *Incl udes 25 % Flow In crease for pipe sizes <27" dia . ••See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) ~ -~ ~ "O > ~ 0 -"O ~ "O .... c ~ > C"' 0 -~ ~ -~ ~ < ~ u ~ ~ u 0 C urb Inlet cfs ft ft cfs 0.00 0 .61 8 4 .l S 10 0.00 0 .618 7.98 10 0 .00 0.618 12 .92 10 1.8 1 0 .618 4.28 10 0.00 0 .618 S.66 10 0 .00 0 .00 2 .334 1.80 s 0 .00 2.334 1.86 s 0.00 0 .00 0.61 8 4. lS 10 0 .00 0.61 8 7 .98 10 0 .0 0 0 .618 12.92 10 1.8 1 0 .618 4.28 10 0 .00 0.61 8 S.66 10 0 .00 0 .00 2.334 1.80 s 0.00 2 .334 1.86 s 0 .00 0.00 2 .334 3 .7 1 s 0 .00 0 .6 18 4 . lS 10 0 .00 0 .6 18 7.98 10 0 .00 0.618 12.92 10 1.81 0 .6 18 4 .28 10 0 .00 0 .618 S.66 10 0 .00 9/27 /2004 0428-drainage-phase2-040903 .xls Append ix A-2 ~ ~ (j,j ~ i.. (j,j < i.. CJ • ~ <o ~ (j,j (j,j zZ bf) bf) 0 ~ ~ -< = .!3 = ~~ i.. .... (j,j ~ ~ ~ i.. i.. ~< o~ ~o cfs Existing Conditions EA-B 16 .9 EAS EA7 2.9 EA6 EA7 S.6 EA7 EA7A 9.1 EA7A EA8 3.0 EA8 4.0 Dartmouth Development DA-Bl 13.6 DA-B2 4.8 DA-B3 5 .0 DA-B4 4.5 DAS DA7 2.9 DA6 DA7 5.6 DA7 DA7A 9.1 DA7A DA8 3.0 DA8 4.0 Proposed Developm ent PA-Bl 13.6 PA-B2 4.8 PA -B3 5 .0 PA-B4A 0 .7 PA-B4B 6.S PAS PA7 2 .9 PA6 PA7 S.6 PA7 PA7A 9 .1 PA7A PA8 3.0 PA8 4.0 i.. (j,j ~ 0 c i.. ~ u 0 cfs 0.0 0.0 0.0 0.0 0.0 0 .0 0.0 0 .0 0.0 3.0 0.0 0 .0 0.0 0.0 0.0 0 .0 0.0 0.0 3.0 3.0 0 .0 0 .0 0.0 0 .0 0.0 APPENDIX A-2 INLET COMPUTA T/ONS COTTEN'S BEE MAIN DRAINAGE 25-Year Event -(j,j -= --~ 0 -~ -0 DESCRIPTION E-- cfs 16.9 3-30" RCP Headwall 2 .9 Recessed In let on Grade S.6 Recessed Inlet on Grade 9.1 Recessed Inlet on Grade 3.0 Recessed Inlet on Grade 4.0 Recessed Inlet on Grade 13.6 3' x 2' RCBC Headwall 4.8 Recessed Low Point Inlet 5.0 Recessed Low Point Inlet 7 .S 3-30" RCP Headwall 2.9 Recessed Inlet on Grade 5 .6 Recessed Inlet on Grade 9.1 Recessed Inlet on Grade 3.0 Recessed Inlet on Grade 4 .0 Recessed Inlet on Grade 13 .6 30" RCP Headwall 4 .8 Recessed Low Point Inlet S.O Recessed Low Point Inlet 3.7 Propo sed Gra te Inl et 9 .5 Recessed Low Point Inlet 2.9 Recessed Inlet on Grade S.6 Recessed Inlet on Grade 9.1 Re cessed Inlet on Grade 3 .0 Recessed Inlet on Grade 4.0 Recessed Inlet on Grade *Includes 25 % Flow Increase for pipe sizes <27" dia . ••See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) ~ i.. (j,j ..j "O ~ (j,j 0 i.. "O (j,j -0 ·~ t ~ i:::r Q i.. ~ (j,j i.. "= ~ ~ u ..j ..j u 0 Curb Inlet cfs ft ft cfs 0 .00 0.618 4.74 10 0 .00 0.618 9.11 10 0.00 0.618 14.76 10 2.94 0.618 4.88 10 0 .00 0.618 6.46 10 0.00 0 .00 2 .334 2 .05 5 0.00 2 .334 2 .13 s 0.00 0.00 0 .618 4 .74 10 0.00 0.618 9 .11 10 0 .00 0.618 14.76 10 2.94 0.618 4 .88 10 0.00 0.618 6.46 10 0 .00 0.00 2.334 2.05 5 0 .00 2 .334 2 .13 5 0 .00 0.00 2 .334 4.05 s 0 .00 0 .618 4 .74 10 0 .00 0.618 9 .11 10 0.00 0.618 14.76 10 2.94 0.618 4.88 10 0 .00 0.618 . 6.46 10 0.00 9/27/2004 0428-dra inage-phase2-040903 .xls Append ix A-2 ~ ~ ~ ~ i.. ~ < i.. CJ • ~ <o :r; ~ ~ zZ b1l b1l 0 -< = ~ ~ = = ;;a ~ i.. ·; ... ~ ~ > i.. i.. Q < OQ QO cfs Ex is tin g Conditions EA-B 19 .2 EAS EA7 3 .3 EA6 EA7 6.4 EA7 EA7A 10.3 EA7A EAS 3.4 EAS 4 .S Da rtmouth De velopment DA-Bl l S.4 DA-B2 S.4 DA-B3 S.6 DA-B4 S.O DAS DA7 3 .3 DA6 DA7 6.4 DA7 DA7A 10.3 DA7A DAS 3.4 DAS 4 .S Prop osed De velopment PA-Bl l S.4 PA-B2 S.4 PA-B3 S.6 PA-B4A 0 .7 PA -B4B 7.3 PAS PA7 3 .3 PA6 PA7 6.4 PA7 PA7A 10.3 PA7A PAS 3.4 PAS 4.S i.. ~ > 0 c i.. ~ u 0 cfs 0.0 0 .0 0.0 0.0 0 .0 0.0 0 .0 0 .0 0 .0 3.0 0 .0 0.0 0.0 0 .0 0.0 0 .0 0.0 0.0 3.0 3 .0 0.0 0.0 0 .0 0.0 0.0 APPENDIX A-2 INLET COMPUTATIONS COTTEN'S BEE MAIN DRAINAGE 50-Year Event -~ -= --~ 0 -~ -0 D ESCRIP TIO N ~ cfs 19.2 3-30" RCP Headwall 3 .3 Recessed Inlet on Grade 6.4 Recessed Inlet on Grade 10 .3 Recessed Inlet on Grade 3.4 Recessed Inlet on Grade 4.S Recessed Inlet on Grade lS.4 3' x 2' RCBC Headwall S.4 Recessed Low Po int Inlet S.6 Recessed Low Point Inlet S.O 3-30" RCP Headwall 3.3 Recessed Inlet on Grade 6.4 Recessed Inlet on Grade 10 .3 Recessed Inlet on Grade 3.4 Recessed Inlet on Grade 4.S Recessed In let on Grade lS.4 30" RCP Headwall S.4 Recessed Low Po int Inlet S.6 Recessed Low Point Inlet 3 .7 Propo sed Grate Inlet 10 .3 Recessed Low Point Inlet 3.3 Recessed Inlet on Grade 6.4 Recessed Inlet on Grade 10 .3 Recessed Inlet on Grade 3.4 Recessed Inlet on Grade 4.S Recessed In let on Grade •includes 25 % Flow Increase for pipe sizes <2 7" dia . ••See Pla n & Profi le for pipe sl ope used (P ipe slope >o r= Friction slope) ~ i.. ~ ~ "O > ~ 0 i.. "O ~ "O ... c ~ > O" 0 i.. ~ ~ i.. ~ ~ < ~ u ~ ~ u 0 C urb Inlet cfs ft ft cfs 0 .00 0.61S S.36 10 0 .00 0 .61S 10 .30 10 0 .19 0 .61S 16 .69 10 4 .13 0 .61S S.S2 10 0 .00 0 .61S 7 .31 10 0 .00 0 .00 2 .334 2 .32 s 0 .00 2 .334 2.41 s 0 .00 0.00 0.61S S.36 10 0 .00 0.61S 10 .30 10 0 .19 0 .61S 16.69 10 4 .13 0 .61 S S.S2 10 0 .00 0.61S 7 .31 10 0 .00 0 .00 2.334 2 .32 s 0 .00 2.334 2.41 s 0.00 0 .00 2.334 4.42 s 0 .00 0 .61S S.36 10 0 .00 0 .61S 10 .30 10 0 .19 0 .61S 16.69 10 4 .13 0 .61S S.S2 10 0 .00 0.61S 7.31 10 0 .00 9/27/2 004 0428 -d ra inage -phase 2-040903 .x ls Appen dix A-2 co: co: ~ ~ ""' ~ < ""' ~ . co: <o ~ ~ ~ zZ ell ell 0 co: co: ,.... < = = = ~~ ""' ... ... ~ co: co: ~ ""' ""' ~< o ~ ~o cfs Existing Conditions EA-B 21.6 EAS EA7 3.7 EA6 EA7 7.2 EA7 EA7A 11.6 EA7A EA8 3.8 EA8 S. l Dartmouth D evelopmen t DA-Bl 17.3 DA-B2 6.1 DA-B3 6.3 DA-B4 S.7 DAS DA7 3.7 DA6 DA7 7.2 DA7 DA7A 11.6 DA7A DA8 3.8 DA8 S.l Proposed D evelopment PA-Bl 17 .3 PA-B2 6.1 PA-B3 6.3 PA-B4A 0 .8 PA-B4B 8.2 PAS PA7 3.7 PA6 PA7 7.2 PA7 PA7A 11.6 PA7A PA8 3 .8 PA 8 S. l ""' ~ ~ 0 C> ""' co: u 0 cfs 0 .0 0.0 0.0 0.0 0 .0 0.0 0.0 0 .0 0.0 3.0 0.0 0 .0 0.0 0 .0 0 .0 0.0 0 .0 0.0 3.0 3.0 0.0 0.0 0.0 0 .0 0.0 APPENDIX A -2 INLET COMPUTATIONS COTTEN'S BEE MAIN DRAINAGE 100-Year Event -~ -= ,.... -co: 0 -co: -0 DESCRIPTION E--- cfs 21.6 3-30" RCP Headwall 3.7 Recessed Inlet on Grade 7.2 Recessed Inlet on Grade 11.6 Recessed Inlet on Grade 3.8 Recessed Inlet on Grade S.l Recessed Inlet on Grade 17.3 3' x 2' RCBC Headwall 6.1 Recessed Low Point Inlet 6.3 Recessed Low Point Inlet 8.7 3-30" RCP Headwall 3.7 Reces se d Inlet on Grade 7.2 Recessed Inlet on Grade 11.6 Recessed Inlet on Grade 3.8 Rece ssed Inlet on Grade S. l Recessed Inlet on Grade 17 .3 30" RCP Headwall 6.1 Recessed Low Point Inl et 6.3 Reces sed Low Point Inlet 3.8 Proposed Grate Inlet 11.2 Recessed Low Point Inl et 3.7 Rece sse d Inlet on Grade 7.2 Reces se d Inlet on Grade 11.6 Recessed Inlet on Grade 3 .8 Recessed Inlet on Grade S. l Rece ssed Inlet on Grade *Inc ludes 25 % Flow Increase for pipe sizes <27" dia. ••See Pl an & Profile for pipe slope used (Pipe slope >or= Friction slope) ~ ""' ~ .j "O ~ ~ 0 ""' "O ~ -d ... C> ~ ~ O"' 0 ""' ~ ~ ""' co: ~ < ~ u .j .j u 0 Curb Inlet cfs ft ft cfs 0.00 0 .618 6 .02 10 0 .00 0.618 11.57 10 0.97 0.618 18 .7S 10 S.41 0 .618 6.20 10 0 .00 0.618 8 .21 10 0.00 0 .00 2.334 2 .61 s 0.00 2.334 2 .70 s 0.00 0 .00 0 .618 6.02 10 0 .00 0 .618 l l.S7 10 0.97 0 .618 18 .7S 10 S.41 0.618 6.20 10 0.00 0 .6 18 8.21 10 0.00 0.00 2.334 2.61 s 0.00 2.334 2.70 s 0.00 0.00 2.334 4 .80 s 0 .00 0.61 8 6.02 10 0.00 0 .6 18 11.5 7 10 0.97 0 .618 18 .7S 10 S.41 0 .6 18 6.20 10 0 .00 0.61 8 8.2 1 10 0.00 9/27/2 00 4 04 28 -d rai nag e-pha se2-040903 .xls A ppendix A-2 0 :z: E-< ~ ~ :z: .... E-< ~ ~ ~ 0 E-< < u ~ < E-< 0 E-< # # Ac. Existing Conditions EA-B IEA8 2.2 EA5 IEA6 0.3 EA6 IEA7 0.9 EA? IEA7A 1.8 EA7A IEA8 2.1 EA8 IEOUT 4.7 Dartmouth Development DA-B 1 I DA-B2 1.4 DA-B2 I DA-B3 1.9 DA-B3 I DA8 2.4 DA-B4 I DA8 0.5 IDA5 IDA6 0.3 DA6 DA? 0.9 DA? IDA7A 1.8 DA7A IDA8 2.1 DA8 I DOUT 5.3 Proposed Development PA-B1 IPA-B2 1.4 PA-B2 I PA-B3 1.9 PA-B3 IPA8 2.4 PA-B4A IPA8 0.1 PA-B4B IPA8 0.7 PA5 IPA6 0.3 PA6 IPA? 0.9 PA? IPA7A 1.8 PA7A IPA8 2.1 PA8 !POUT 5.6 (,J E-< min 17.9 10.0 10.1 10.6 11.3 17.9 10.3 10.3 10.7 10.0 10.0 10.1 10.6 11.3 12.2 10.3 10.3 10.7 10.0 10.0 10.0 10.1 10.6 11.3 12.2 •includes 25% Flow Increase for pipe sizes <27" dia. yr E i.. 0 -r:r:i = bf) ·;;; ~ ~ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 "O ~ ~ 0 t; fi: .::., = "O bf) ~ ·-= "' ;:J ~ cfs 13.0 2.3 6.6 13.4 15.3 27.6 10.6 14.3 17.8 3.5 2.3 6.6 13.4 15.3 37.7 10.6 14.3 17.8 0.5 5.0 2.3 6.6 13.4 15.3 39.6 ••See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) APPENDIX A-3 PIPE SIZE CAL CU LA TIONS COTTEN'S BEE MAIN DRAINAGE -1: ~ 0 1:l fi: -= "' bf) = ·-. ...., "' "O ~ <~ cfs 13.0 2.9 8.3 16.8 15.3 27.6 10.6 14.3 17.8 3.5 2.9 8.3 16.8 15.3 37.7 10.6 14.3 17.8 0.5 6.3 2.9 8.3 16.8 I 15.3 I 39.6 # "' ~ c.. ~ .... 0 0 :z: 3 3 3 3 3 5 Year Event cfs ~ c.. ~ i.. ~ ~ ~ 0 fi: 4.3 2.9 8.3 16.8 15.3 9.2 10.6 14.3 17.8 3.5 2.9 8.3 16.8 15.3 12.6 10.6 14.3 17.8 0.2 6.3 2.9 8.3 16.8 15.3 13.2 = -1: 0 -1: ·-~ ti c.. ·-0 i.. -~ r:r:i O/o 0.01 0.02 0.13 0.55 0.14 0.05 0.07 0.09 0.13 0.01 0.02 0.13 0.55 0.14 0.09 0.07 0.09 0.13 0.00 0.16 0.02 0.13 0.55 0.14 0.10 % ~ c.. 0 00 ~ c.. ~ 12.50 2.00 1.27 0.55 0.43 0.85 1.25 0.17 0.18 12.50 2.00 1.27 0.55 0.43 0.85 1.25 0.17 0.18 5.00 5.49 2.00 1.27 0.55 0.43 0.85 ~ t3 r:r:i 30 24 24 24 30 30 30 BOX BOX· 30 24 24 24 30 30 30 BOX BOX 30 21 24 24 24 30 30 fps .j ~ > 29.6 10.2 8.1 5.3 5.5 7.7 9.4 3.3 3.5 29.6 10.2 8.1 5.3 5.5 7.7 9.4 3.3 3.5 18.7 15.5 10.2 8.1 5.3 5.5 7.7 cfs -1: .c ";j ~ c.. ~ u 436.1 32.1 25.6 16.7 27.0 113.5 46.0 20.0 20.8 145.4 32.1 25.6 16.7 27.0 113.5 46.0 20.0 20.8 275.8 37.2 32.1 25.6 16.7 27.0 113.5 = E-< \J :z: ~ ~ 8 70 240 220 291 85 8 78 94 8 70 240 220 291 85 8 78 94 17 70 240 220 291 85 ~ E E::: ~ ... ~ i.. E-< min 0.00 0.11 0.49 0.69 0.88 0.18 Q.01 0.39 0.45 0.00 0.11 0.49 0.69 0.88 0.18 0.01 0.39 0.45 0.00 0.02 0.11 0.49 0.69 0.88 0.18 "O = ~ @) (,J E-< min 17.9 10.1 10.6 11.3 12.2 18.0 10.3 10.7 11.2 10.0 10.1 10.6 11.3 12.2 12.4 10.3 10.7 11.2 10.0 10.0 10.1 10.6 11.3 12.2 12.4 E-< = = E-< \J s ~ ~ = 3 2 3 2 3 2 3 2 9/27/2004 0428-drainage-phase2-040903.xls Appendix A-3 0 z E-< ~ ...,;j z .... E-< ~ ...,;j ~ 0 E-< < u ...,;j < E-< 0 E-< # # Ac. Existing Conditions EA-B IEA8 2.2 EA5 IEA6 0.3 EA6 IEA7 0.9 EA? IEA?A 1.8 EA7A IEA8 2.1 EA8 IEOUT 4.7 Dartmouth Development DA-B 1 I DA-B2 1.4 DA-B2 I DA-B3 1.9 DA-B3 IDA8 2.4 DA-B4 DAB 0.5 DA5 DA6 0.3 DA6 DA? 0.9 DA? DA?A 1.8 DA7A DA8 2.1 DA8 DOUT 5.3 Proposed Development PA-B1 IPA-B2 1.4 PA-B2 PA-B3 1.9 PA-B3 PA8 2.4 PA-B4A PA8 0.1 PA-B4B PA8 0.7 PA5 PA6 0.3 PA6 PA? 0.9 PA? PA7A 1.8 PA?A PA8 2.1 PA8 POUT 5.6 CJ E-< min 17.9 10.0 10.1 10.6 11.3 17.9 10.3 10.3 10.7 10.0 10.0 10.1 10.6 11.3 12.2 10.3 10.3 10.7 10.0 10.0 10.0 10.1 10.6 11.3 12.2 *Includes 25% Flow Increase for pipe sizes <27" dia. yr E -0 -00 = ell ·;;; Q,j ~ 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 "O ~ Q,j 0 .... -; r.. . .., = "O ell ~ ·-= ~ ;;;;i ~ cfs 14.7 2.6 7.5 15.1 17.2 31.2 11.9 16.1 20.0 3.9 2.6 7.5 15.1 17.2 42.4 11.9 16.1 20.0 0.6 5.7 2.6 7.5 15.1 17.2 44.5 ** See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) APPENDIX A-3 PIPE SIZE CAL CU LA TIONS COTTEN'S BEE MAIN DRAINAGE -!: ~ 0 "O fi: ~ = ~ ell = ·-..... ~ "O Q,j <~ cfs 14.7 3.2 9.3 18.9 17.2 31.2 11.9 16.1 20.0 3.9 3.2 9.3 18.9 17.2 42.4 11.9 16.1 20.0 0.6 7.1 3.2 9.3 18.9 17.2 44.5 # ~ Q,j 0.. p: .... 0 0 z 3 3 3 3 3 10 Year Event cfs Q,j 0.. p: -Q,j ~ ~ 0 fi: 4.9 3.2 9.3 18.9 17.2 10.4 11.9 16.1 20.0 3.9 3.2 9.3 18.9 17.2 14.1 11.9 16.1 20.0 0.2 7.1 3.2 9.3 18.9 17.2 14.8 =-!: 0-!: ·-Q,j ti 0.. ·-0 --r.. rJ'.J O/o 0.01 0.02 0.17 0.69 0.18 0.06 0.08 0.11 0.17 0.01 0.02 0.17 0.69 0.18 0.12 0.08 0.11 0.17 0.00 0.20 0.02 0.17 0.69 0.18 0.13 O/o Q,j 0.. 0 00 Q,j 0.. p: 12.50 2.00 1.27 0.55 0.43 0.85 1.25 0.17 0.18 12.50 2.00 1.27 0.55 0.43 0.85 1.25 0.17 0.18 5.00 5.49 2.00 1.27 0.55 0.43 0.85 ~ N .... rJ'.J 30 24 24 24 30 30 30 BOX BOX 30 24 24 24 30 30 30 BOX BOX 30 21 24 24 24 30 30 fps J ~ ;;;.. 29.6 10.2 8.1 5.3 5.5 7.7 9.4 3.3 3.5 29.6 10.2 8.1 5.3 5.5 7.7 9.4 3.3 3.5 18.7 15.5 10.2 8.1 5.3 5.5 7.7 cfs -!: c .c:i ~ 0.. ~ u 436.1 32.1 25.6 16.7 27.0 113.5 46.0 20.0 20.8 145.4 32.1 25.6 16.7 27.0 113.5 46.0 20.0 20.8 275.8 37.2 32.1 25.6 16.7 27.0 113.5 = E-< CJ z ~ ...,;j 8 70 240 220 291 85 8 78 94 8 70 240 220 291 85 8 78 94 17 70 240 220 291 85 Q,j E E= ~ ~ ~ -E-< min 0.00 0.11 0.49 0.69 0.88 0.18 0.01 0.39 0.45 0.00 0.11 0.49 0.69 0.88 0.18 0.01 0.39 0.45 0.00 0.02 0.11 0.49 0.69 0.88 0.18 "O = ~ @ CJ E-< min 17.9 10.1 10.6 11.3 12.2 18.0 10.3 10.7 11.2 10.0 10.1 10.6 11.3 12.2 12.4 10.3 10.7 11.2 10.0 10.0 10.1 10.6 11.3 12.2 12.4 E-< = = E-< CJ ~ .... .... ~ ~ = 3 2 3 2 3 2 3 2 9/27/2004 0428-drainage-phase2-040903.xls Appendix A-3 0 z E--< ~ ~ z -E--< ~ ~ z -0 E--< < u ~ < E--< 0 E--< # # Ac. Existing Conditions EA-B IEAB EAS IEA6 EA6 IEA7 EA7 IEA7A EA7A IEAB EAB IEOUT Dartmouth Development DA-B 1 I DA-B2 DA-B2 DA-B3 DA-B4 DAS DA6 DA7 DA7A DAB DA-B3 DAB DAB DA6 DA7 DA7A DAB DOUT Proposed Development PA-B1 IPA-B2 PA-B2 I PA-B3 PA-B3 IPAB PA-B4A IPAB PA-B4B IPAB PAS IPA6 PA6 IPA7 PA7 IPA7A PA7A IPAB PAB IPOUT 2.2 0.3 0.9 1.B 2.1 4.7 1.4 1.9 2.4 O.S 0.3 0.9 1.B 2.1 S.3 1.4 1.9 2.4 0.1 0.7 0.3 0.9 1.B 2.1 S.6 c;J E--< min 17.9 10.0 10.1 10.6 11.3 17.9 10.3 10.3 10.7 10.0 10.0 10.1 10.6 11.3 12.2 10.3 10.3 10.7 10.0 10.0 10.0 10.1 10.6 11.3 12.2 *Includes 25% Flow Increase for pipe sizes <27" dia. yr e ... 0 .... rFJ = bJ) ·;;; ~ Q 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S "O ~ ~ 0 .... -= r.. . ...., = "O bJ) C<S ·-= "' ~~ cfs 16.9 2.9 B.S 17.3 19.7 3S.B 13.6 1B.3 22.9 4.S 2.9 B.S 17.3 19.7 4B.S 13.6 1B.3 22.9 0.7 6.S 2.9 B.S 17.3 19.7 S0.9 ••See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) APPENDIX A-3 PIPE SIZE CAL CU LA TIONS COTTEN'S BEE MAIN DRAINAGE -): ~ "O fi: ~ .... = "' bJ) = ·-. ...., "' "O ~ <O cfs 16.9 3.7 10.7 21.6 19.7 3S.B 13.6 1B.3 22.9 4.S 3.7 10.7 21.6 19.7 4B.S 13.6 1B.3 22.9 0.7 B.1 3.7 10.7 21.6 19.7 S0.9 # "' ~ Q. ~ ...... 0 0 z 3 3 3 3 3 25 Year Event cfs ~ Q. ~ ... ~ ~ ~ 0 fi: S.6 3.7 10.7 21.6 19.7 11.9 13.6 18.3 22.9 4.S 3.7 10.7 21.6 19.7 16.2 13.6 1B.3 22.9 0.2 B.1 3.7 10.7 21.6 19.7 17.0 =-): 0-): ·-~ ti Q. ·-0 ... -r.. rFJ % 0.02 0.03 0.22 0.90 0.23 O.OB 0.11 0.14 0.22 0.01 0.03 0.22 0.90 0.23 0.1S 0.11 0.14 0.22 0.00 0.26 0.03 0.22 0.90 0.23 0.17 % ~ Q. 0 00 ~ Q. ~ 12.SO 2.00 1.27 O.SS 0.43 O.BS 1.2S 0.17 0.1B 12.SO 2.00 1.27 O.SS 0.43 O.BS 1.2S 0.17 0.1B S.00 S.49 2.00 1.27 o.ss 0.43 O.BS ~ ~ rFJ 30 24 24 24 30 30 30 BOX BOX 30 24 24 24 30 30 30 BOX BOX 30 21 24 24 24 30 30 fps .J ~ ;... 29.6 10.2 B.1 S.3 S.S 7.7 9.4 3.3 3.S 29.6 10.2 B.1 S.3 s.s 7.7 9.4 3.3 3.S 1B.7 1S.S 10.2 B.1 S.3 S.S 7.7 cfs -): 0 "Cj C<S Q. C<S u 436.1 32.1 2S.6 16.7 27.0 113.S 46.0 20.0 20.B 14S.4 32.1 2S.6 16.7 27.0 113.S 46.0 20.0 20.B 27S.B 37.2 32.1 2S.6 16.7 27.0 113.S = E--< C-' z ~ ~ B 70 240 220 291 BS ~ e E::: a:i > C<S ... E--< min 0.00 0.11 0.49 0.69 O.BB 0.1B "O = ~ @) c;J E--< min 17.9 10.1 10.6 11.3 12.2 1B.O B I 0.01 I 10.3 7B I 0.39 I 10.7 94 I 0.4S I 11.2 B I o.oo I 10.0 E--< = = E--< C-' 8 ~ ~ = 3 2 3 2 70 I 0.11 I 10.1 I I I 240 0.49 1 o.6 220 I 0.69 I 11.3 291 I O.BB I 12.2 BS I 0.1B I 12.4 B 0.01 10.3 7B 0.39 10.7 3 94 0.4S 11.2 3 0.00 10.0 17 0.02 10.0 70 0.11 10.1 240 0.49 10.6 220 0.69 11.3 291 O.BB 12.2 BS 0.1B 12.4 9/27/2004 042B-drainage-phase2-040903.xls Appendix A-3 2 2 0 z E-c ~ ..:I z -E-c ~ ..:I z -0 E-c < u ..:I < E-c 0 E-c # # Ac. Existing Conditions EA-B IEAB 2.2 EA5 IEA6 0.3 EA6 IEA7 0.9 EA? IEA?A 1.B EA?A IEAB 2.1 EAB IEOUT 4.7 Dartmouth Development DA-B 1 I DA-B2 1.4 DA-B2 I DA-B3 1.9 DA-B3 IDAB 2.4 DA-B4 DAB 0.5 DA5 DA6 0.3 DA6 DA? 0.9 DA? DA?A 1.B DA?A DAB 2.1 DAB DOUT 5.3 Proposed Development PA-B1 IPA-B2 1.4 PA-B2 PA-B3 1.9 PA-B3 PAB 2.4 PA-B4A PAB 0.1 PA-B4B PAB 0.7 PA5 PA6 0.3 PA6 PA? 0.9 PA? PA?A 1.B PA?A PAB 2.1 PAB POUT 5.6 CJ E-c min 17.9 10.0 10.1 10.6 11.3 17.9 10.3 10.3 10.7 10.0 10.0 10.1 10.6 11.3 12.2 10.3 10.3 10.7 10.0 10.0 10.0 10.1 10.6 11.3 12.2 *Includes 25% Flow Increase for pipe sizes <27" dia. yr e lo. 0 -rn = l:llJ ·;;.; Cl> Q 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 "O ~ Cl> 0 --; ~ ._, = "O l:llJ ~ ·-= "' ;;::> ~ cfs 1 B.1 3.1 9.1 1B.5 21.1 3B.3 14.6 19.7 24.5 4.B 3.1 9.1 1B.5 21.1 51.9 14.6 19.7 24.5 0.7 6.9 3.1 9.1 1B.5 21.1 54.6 ••See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) APPENDIX A-3 PIPE SIZE CAL CU LA TIONS COTTEN'S BEE MAIN DRAINAGE -l< ~ 0 "O ~ .!! = "' l:llJ ::s ·-._, "' "O Cl> <Q cfs 1B.1 3.9 11.4 23.1 21.1 3B.3 # "' Cl> c. ~ .... 0 0 z 3 3 50 Year Event cfs Cl> c. ~ lo. Cl> ~ ~ 0 ~ 6.0 3.9 11.4 23.1 21.1 12.B = -l< 0 -l< ·-Cl> ti c. ·-0 lo. -~ rn O/o 0.02 0.03 0.25 1.04 0.26 0.10 % Cl> c. 0 00 Cl> c. ~ 12.50 2.00 1.27 0.55 0.43 O.B5 ~ ~ rn 30 24 24 24 30 30 fps .J ~ ~ 29.6 10.2 B.1 5.3 5.5 7.7 cfs -l< c "CJ ~ c. ~ u 436.1 32.1 25.6 16.7 27.0 113.5 = E-c CJ z ~ ..:I B 70 240 220 291 B5 Cl> e E:::: ~ > ~ lo. E-c min 0.00 0.11 0.49 0.69 O.BB 0.1B "O = ~ @) CJ E-c min 17.9 10.1 10.6 11.3 12.2 1B.O 14.6 I 1 I 14.6 I 0.13 I 1.25 I 30 I 9.4 I 46.0 I B I 0.01 I 10.3 19.7 I 1 I 19.7 I 0.16 I 0.17 I BOX I 3.3 I 20.0 I 7B I 0.39 I 10.7 24.5 I 1 I 24.5 I 0.25 I 0.1B I BOX I 3.5 I 20.B I 94 I 0.45 I 11.2 4.B 1 I 4.B I 0.01 I 12.50 I 30 I 29.6 I 145.4 I B I 0.00 I 10.0 E-c = = E-c CJ Q --~ ~ = ' ,, 3 2 3 2 3.9 I 1 I 3.9 I o.03 I 2.00 I 24 I 10.2 I 32.1 I 70 I 0.11 I 10.1 I I I 11.4 1 11.4 0.25 1.27 24 B.1 25.6 240 0.49 10.6 23.1 I 1 I 23.1 I 1.04 I 0.55 I 24 I 5.3 I 16.7 I 220 I 0.69 I 11.3 21.1 I 1 I 21.1 I 0.26 I 0.43 I 30 I 5.5 I 27.0 I 291 I O.BB I 12.2 51.9 I 3 I 17.3 I 0.1B I O.B5 I 30 I 7.7 I 113.5 I B5 I 0.1B I 12.4 14.6 14.6 0.13 1.25 30 19.7 19.7 0.16 0.17 BOX 24.5 24.5 0.25 0.1B BOX 0.7 3 0.2 0.00 5.00 30 B.7 B.7 0.30 5.49 21 3.9 3.9 0.03 2.00 24 11.4 11.4 0.25 1.27 24 23.1 23.1 1.04 0.55 24 21.1 21.1 0.26 0.43 30 54.6 3 1B.2 0.20 O.B5 30 9.4 46.0 3.3 20.0 3.5 20.B 1B.7 275.B 15.5 37.2 10.2 32.1 B.1 25.6 5.3 16.7 5.5 27.0 7.7 113.5 B 0.01 10.3 ?B 0.39 10.7 3 94 0.45 11.2 3 0.00 10.0 17 0.02 10.0 70 0.11 10.1 240 0.49 10.6 220 0.69 11.3 291 O.BB 12.2 B5 0.1B 12.4 912712004 042B-drainage-phase2-040903.xls Appendix A-3 2 2 0 z E--< ~ ,.J z .... E--< ~ ,.J ~ 0 E--< < u ,.J < E--< 0 E--< # # Ac. Existing Conditions EA-B IEA8 2.2 EA5 IEA6 0.3 EA6 IEA7 0.9 EA? IEA7A 1.8 EA7A IEA8 2.1 EA8 IEOUT 4.7 Dartmouth Development DA-B 1 I DA-B2 1.4 DA-B2 I DA-B3 1.9 DA-B3 IDA8 2.4 DA-B4 IDA8 0.5 0.3 IDA5 IDA6 DA6 DA? 0.9 DA? IDA7A 1.8 DA7A IDA8 2.1 DA8 IDOUT 5.3 Proposed Development PA-81 IPA-82 1.4 PA-B2 PA-B3 1.9 PA-83 PA8 2.4 PA-B4A PA8 0.1 PA-848 PA8 0.7 PA5 PA6 0.3 PA6 PA? 0.9 PA? PA7A 1.8 PA7A PA8 2.1 PA8 POUT 5.6 C.I E--< min 17.9 10.0 10.1 10.6 11.3 17.9 10.3 10.3 10.7 10.0 10.0 10.1 10.6 11.3 12.2 10.3 10.3 10.7 10.0 10.0 10.0 10.1 10.6 11.3 12.2 *Includes 25% Flow Increase for pipe sizes <27" dia. yr e i.. 0 -00 = OJ) ·~ Q,j Cl 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 "O ~ Q,j 0 ~ fi: .=.. = "O OJ) ~ ·-= "' ;:::i ~ cfs 21.6 3.7 10.8 21.9 25.0 45.8 17.3 23.3 29.1 5.7 3.7 10.8 21.9 25.0 61.7 17.3 23.3 29.1 0.8 8.2 3.7 10.8 21.9 25.0 64.8 ••See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) APPENDIX A-3 PIPE SIZE CALCULATIONS COTTEN'$ BEE MAIN DRAINAGE -1< ~ 0 ~ fi: -= "' OJ) = ·-._, "' "O Q,j < Cl cfs 21.6 4.7 13.5 27.4 25.0 45.8 17.3 23.3 29.1 5.7 4.7 13.5 27.4 25.0 61.7 17.3 23.3 29.1 0.8 10.3 4.7 13.5 27.4 25.0 64.8 # "' Q,j c.. ~ .... 0 0 z 3 3 3 3 3 100 Year Event cfs Q,j c.. ~ i.. Q,j Po. ~ 0 fi: 7.2 4.7 13.5 27.4 25.0 15.3 = -1< 0 -1< ·-Q,j ti c.. ·-0 i.. -~ 00 O/o 0.03 0.04 0.36 1.46 0.37 0.14 % Q,j c.. 0 Ci.i Q,j c.. ~ 12.50 2.00 1.27 0.55 0.43 0.85 ~ ~ 00 30 24 24 24 30 30 fps ..j ~ > 29.6 10.2 8.1 5.3 5.5 7.7 cfs -1< c ";j ~ c.. ~ u 436.1 32.1 25.6 16.7 27.0 113.5 = E--< 0 z ~ ,.J 8 70 240 220 291 85 Q,j e ~ ~ ;> ~ i.. E--< min 0.00 0.11 0.49 0.69 0.88 0.18 17.3 I 0.18 I 1.25 I 30 I 9.4 I 46.0 I 8 I 0.01 23.3 I 0.23 I 0.17 I BOX I 3.3 I 20.0 I 78 I 0.39 29.1 I 0.35 I 0.18 I BOX I 3.5 I 20.8 I 94 I 0.45 5.7 I 0.02 I 12.50 I 30 I 29.6 I 145.4 I 8 I 0.00 4.7 o.04 I 2.00 I 24 10.2 I 32.1 I 70 I 0.11 13.5 0.36 1.27 24 8.1 25.6 240 0.49 27.4 I 1.46 I 0.55 I 24 I 5.3 I 16.7 I 220 I 0.69 25.0 I 0.37 I 0.43 I 30 I 5.5 I 27.0 I 291 I 0.88 20.6 I 0.25 I 0.85 I 30 I 7.7 I 113.5 I 85 I 0.18 17.3 0.18 1.25 30 9.4 46.0 8 0.01 23.3 0.23 0.17 BOX 3.3 20.0 78 0.39 29.1 0.35 0.18 BOX 3.5 20.8 94 0.45 0.3 0.00 5.00 30 18.7 275.8 0.00 10.3 0.42 5.49 21 15.5 37.2 17 0.02 4.7 0.04 2.00 24 10.2 32.1 70 0.11 13.5 0.36 1.27 24 8.1 25.6 240 0.49 27.4 1.46 0.55 24 5.3 16.7 220 0.69 25.0 0.37 0.43 30 5.5 27.0 291 0.88 21.6 0.28 0.85 30 7.7 113.5 85 0.18 "O c ~ @ C.I E--< min 17.9 10.1 10.6 11.3 12.2 18.0 10.3 10.7 11.2 10.0 10.1 10.6 11.3 12.2 12.4 10.3 10.7 11.2 10.0 10.0 10.1 10.6 11.3 12.2 12.4 E--< = = E--< 0 Cl .... .... ~ ~ = 3 2 3 2 3 2 3 2 9/27/2004 0428-drainage-phase2-040903.xls Appendix A-3 APPENDIXB HEC-1 TIMING ANALYSIS i • •••••••••••••••••••••••••••••••••••••••• FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1 991 U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER VERSION 4. 0. lE 609 SECOND STREET Lahey F77L-EM/32 version 5. 01 Dodson & Assoc i ates, Inc. DAVIS, CALIFORNIA 95616 (9 1 6) 551-1748 RUN DATE 10/07 /04 TIME 10o5lo40 •••••••••••••••••••• *. *. ** * * * * * * * *. * * * * * * x xxxxxxx xxxxx x x x x x x x x x x xxxxxxx xxxx x x x x x x x x x x x xxxxxxx xxxxx x x xx x xxxxx x x x xxx THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73), HEClGS, HEClDB, AND HEClKW. THE DEFINITIONS OF VARIABLES -RTIMP-AND -RTIOR-HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONSo DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSSoWRITE STAGE FREQUENCY, DSSoREAD TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATEoGREEN AND AMPT INFILTRATION KINEMATIC WAVEo NEW FINITE DIFFERENCE ALGORITHM LINE 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2S 26 27 28 29 30 31 32 33 34 3S 36 37 38 39 40 41 42 43 44 4S 46 47 48 LINE 49 so Sl S2 S3 S4 SS HEC-1 INPUT ID ....... l ....... 2 ....... 3. .. 4 .. ..s .. .. 6 ....... 7 ....... 8 ....... 9 ...... 10 ID HYDROLOGIC ANALYSIS OF CARTER CREEK BASIN -COLLEGE STATION TX ID COLLEGE STATION STORMWATER MANAGEMENT PLAN ID EXISTING CONDITION ANALYSIS-COTTEN SUBDIVISION NO DETENT ION ANALYSIS ALL YEAR, 24 HOUR STORM , TYPE III STORM DISTRIBUTION MITCHE LL & MORGAN, LLP -07 OCT 2004 ID ID ID ID ID ID IT IO JP JR USE OF M&M HYDROLOGIC INFORMATION FOR BURTO N (2001), BRIAR(2001), HUDSON(l 998 USE OF KLOTZ & ASSOC. HYDROLOGIC INFORMATION FOR BEE CREEK ( 1998) USE OF NDM, INC. HYDRO LOGIC INFORMATION FOR WOLF PEN CREEK (1996) USE OF WALTON HYDROLOGIC FOR CARTERS CREEK AND CARTERS GROVE (1986) S 01JAN99 0000 SOO 0 PREC 4.S 6.2 7. 4 8 . 4 9. 8 11 13 CARI CARTER CREEK BASIN KK KM BA PB IN PC PC PC PC PC LS UD ** BEGIN HYDROLOGIC ANALYSIS OF CARTER CREEK MAIN CHANNEL ** l.S02 0 1 .0 30 01JAN99 . oos . 064 .217 . 872 . 963 2.90 .010 . 072 .2SO . 886 .969 81 0000 .015 .081 .298 .898 .97S 1 9 . 020 . 091 . soo .910 .981 KK CAR2 CARTER CREEK BASIN II BA 1.494 0 LS 0 78 UD 3 . 59 KK 10 COMBINE CART AND CARII HC 2 KK RS RC RX RY RTllROUTE TO COMP POINT 11 S FLOW -1 . 080 . 06S . 080 3800 1000 310 2000 298 2276 29S 2294 293 KK CAR3CARTER CREEK BASIN III BA 1.249 0 LS 0 77 UD .2S KK llCOMBINE RTll AND CARIII HC 2 . 02S . 102 . 702 .919 . 986 . 0027 2300 289 KK RS RC RX RY KO RT12ROUTE COMB HYDRO TO COMP PT 12 S FLOW -1 .07S .060 .07S 3000 .0027 1000 lSOO 1760 1821 1827 300 288 286 278 278 21 HEC-1 INPUT .031 .114 .7SO . 928 .991 232S 296 1837 286 .037 .128 .783 .936 .996 2400 298 2100 286 .043 .146 . 811 . 943 . 000 3000 308 2900 300 . oso .166 . 834 .9SO . OS7 .189 . 8S4 .957 ID ....... 1 ....... 2 ..... 3 ....... 4 ....... S ...... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK BA LS UD KK HC KK CARVCARTER CREEK BASIN V 3. 718 0 0 80 17 .S9 12COMBINE RT12 AND CAR V RT 1 3ROUTE COMB HYDRO TO COMP PT 13 EXISTING CO NDITIONS -ZERO DETEN TIO N ANA LYSIS PAGE PAGE Appendi x B-2 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 LINE 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 LINE 130 131 132 133 134 RS RC RX RY KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD KK BA LS UD 5 . 075 1000 300 FLCW . 060 1500 288 -1 . 075 1760 286 2800 1821 278 CAR4CARTER CREEK BASIN IV 1.335 0 3.55 77 13CCMB RT13 AND CAR V RT14RCUTE TC CCMP PT 14 5 FLCW -1 .085 .065 .085 1000 298 1600 278 2018 276 7000 2044 267 CAR6CARTER CREEK BASIN VI l. 514 0 79 11 3.67 BRilBRIAR CREEK BASIN 3 .253 0 3 .02 0 81 18 . 0021 1827 278 .0019 2050 267 KK HC l4CCMBINE RT 14 BRil AND CAR VI 3 KK RT14aRCUTE TC CCMP PT 14a RS 5 FLCW -1 RC . 085 . 065 . 085 6200 RX RY 1000 282 1600 275 2975 267 2995 254 K.K CAR6aCART ER CREEK BASIN 6a . 0013 3000 252 1837 286 2088 277 3045 267 KM CREATED TO SIMULATE TIFF PARK DEVELOPMENT ** BA 0.117 0 LS 81 UD l. 07 HEC-1 INPUT 2100 286 2957 278 4700 270 2900 300 3444 298 5200 282 ID ....... l ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ..... 9 ...... 10 KK HC KK RS RC RX RY KK BA LS UD l4aCCMBINE RT l4a AND CAR 6a 2 RT15RCUTE TC CCMP PT 15 5 FLCW -1 . 085 . 065 . 085 3500 1000 1600 2018 2044 298 278 276 267 CAR6bCARTER CREEK BASIN 6b 0 .137 0 79 1 .12 BRTIBURTCN CREEK BASIN I . 0019 2050 267 2088 277 KK KM BA LS UD ** BEGIN HYDROLOGIC ANALYSIS OF BURTON CREEK ** KK BA LS UD KK HC 1.364 0 0 80 44 1 .50 BRT2BURTCN CREEK BASIN II 1.827 0 0 85 39 . 08 30CCMBINE BRTI AND BRTII KK RS RC RX RY RT31RCUTE CCMB HYDRC TC CCMP PT 31 5 FLCW -1 . 070 1000 292 . 014 1065 290 .070 1100 280 4800 1106 272 KK BRT3BURTCN CREEK BASIN III BA 1.317 0 LS 0 88 51 UD l .14 KK 31CCMBINE RT 31 AND BRT III HC 2 KK BTAIBURTCN CREEK TRIB A BASIN I BA 1.400 0 LS 0 86 42 UD 1 .43 KK 32CCMB 31 AND BTAI HC 2 . 0021 1132 272 HEC-1 INPUT 1138 281 2957 278 1760 290 3444 298 1850 292 ID. ... l ...... 2 ....... 3 ....... 4 ....... 5 ....... 6 ..... 7 ....... 8 ....... 9 ...... 10 KK RS RC RX RY RT33RCUTE CCMB 5 FLCW .070 .040 1000 1600 281 276 HYDRC TC CCMP PT 33 -1 . 070 2569 275 6000 2597 261 . 0025 2627 261 2658 276 3100 277 3200 281 EXISTIN G C ON DITION S -ZERO D ETENTIO N ANALYSI S PAGE PAGE A ppendi x B -2 135 136 137 138 139 140 141 142 143 144 145 146 14 7 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 LINE 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 LINE 212 213 KK BRT4BURTON CREEK BASIN IV BA 2.169 0 LS 0 83 29 UD 1. 53 KK BGW7BUR TON CREEK GATEWAY BASIN 7 BA .0438 0 LS 0 87 UD .21 KK BGW6BURTON CREEK GATEWA:f BASIN 6 BA .0037 O 1 LS 0 87 UD .20 KK 1 OCOMBINE BGW7 AND BGW6 HC KK RS RC RX RY KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD RTlOROUTE COMB HYDRO 1 FLOW -1 . 014 990 4.5 . 014 997.9 .014 998 275 999 . 5 TO . 0073 1001 . 5 BGW4BURTON CREEK GATEWAY BASIN 4 .0105 0 0 90 .09 llCOMBINE RTlO AND BGW4 RTllROUTE HYDRO 11 TO STATION 12 1 FLOW -1 . 060 . 040 . 060 1050 . 0095 850 890 975 982 998 274 272 270 268 266 BGW2BURTON CREEK GATEWAY BASIN .0443 0 1 0 75 . 30 HEC-1 INPUT COMP POINT 1002 1002.1 2 1002 266 1010 268 11 1010 4.5 1040 270 ID. ... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK HC KK RS RC RX RY KM RS SA SE SL SS ST KK BA LS UD 12COMBINE RTll AND BGW2 2 RT12ROUTING OF STATION 12 1 .060 730 266 FLOW . 040 775 264 -1 . 060 980 264 550 995 262 .0036 1012 262 RT12 ROUTE 12 THROUGH DETENTION POND 1 FLOW -1 0 .14 .23 .33 .64 257 258 259 260 261 259 12.57 .75 .5 266 22 3 1.5 267. 75 636 1. 5 BGW5BURTON CREEK GATEWAY BASIN .0009 0 1 0 87 0 .09 KK RTBGW5ROUTE HYDRO BC5 TO STATION 20 RS 1 FLOW -1 RC . 060 . 040 . 060 930 . 0194 RX 964 984 989 996 1004 RY 275 274 272 272 274 KK BA LS UD BGW3BURTON CREEK GATEWAY BASIN . 0060 0 75 .23 KK RTBGW3ROUTE BGW3 TO STATION 20 RS RC RX RY KK BA LS UD . 014 990 2.5 FLOW . 014 998.9 2 -1 . 014 999 455 . 0352 999.5 1000.5 . 25 . 25 BGWlBURTON CREEK GATEWAY BASIN 1 . 0074 0 0 75 0.17 1 070 262 .75 262 1006 276 1075 260 . 93 263 1012 278 1 001 1001 . l 2 KK HC 20COMBINE HYDRO RTBGW5, RTBGW3 , AND BGWl 3 KK RS RC RX RY RT20ROUTE HYDRO STATION 20 TO STATION 30 . 060 964 275 FLOW -1 .040 984 274 . 060 989 272 1925 996 272 . 0062 1004 274 HEC-1 INPUT 1006 276 1012 278 1 090 258 . 96 264 1014 280 1010 2.5 1014 280 1. 27 266 1.35 267.75 ID ....... 1 ..... , . 2 ., •.... 3 ....... 4. . ... 5 ....... 6 ....... 7 ....... 8. . . ... 9 ...... 10 KK HC 30COMBINE HYDRO RT12 AND RT20 2 EXISTIN G C ON DITIONS -ZERO DE TENTIO N ANALYSIS PAGE PAGE A pp endi x 8-2 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 33COMB RT33, BRT IV AND 30 KK KM HC END HYDROLOGIC ANALYSIS OF BURTON CREEK •• HUDl KK KM KM KM BA LS UD •• BEGIN HYDROLOGIC ANALYSIS OF HUDSON CREEK ** REPLACED HUD W/ HUDSON CREEK STUDY ** HUD I HUDSON CREEK BASIN I KK RS SA SE SL SS KK BA LS UD KK HC .0525 0 80 . 3 DP 1 FLOW . 0017 316 317 317.5 12.566 324 .5 30 HUD2 . 0171 0 .17 PT 80 -1 .0194 318 . 7 35 .0535 319 . 5 1.5 KK 383+30ROUTE FROM 383+30 TO 374+35 RS STOR -1 .1788 320 SQ 42 86 129 172 sv .33 .64 1.06 1.65 KK BA LS UD HUD3 .1121 0 .14 KK 374+35 HC 2 80 35 KK RS SQ SV 374+35ROUTE FROM 374+35 TO 365+50 1 STOR -1 KK HUD5B BA . 0265 LS UD .23 136 . 41 80 273 1. 49 35 409 1. 93 545 2 .34 HEC-1 INPUT .2632 321 215 2.33 681 2. 69 .3727 322 258 3 . 43 818 3.06 . 4882 323 301 3.89 954 3.65 LINE ID ....... 1. ... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8. 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 KK 365+50 HC 2 KK 365+50ROUTE FROM 365+50 TO 1 54+90 RS 1 STOR -1 SQ 0 136 273 409 545 sv 1.26 2.43 3.4 4.39 KK BA LS UD HUD4 .1362 0 .84 80 KK 180+45ROUTE FROM 180+45 TO 175+20 RS STOR -1 SQ 43 85 128 170 SV .23 .49 1 2.32 KK HUD5A BA LS . 0832 0 UD .47 KK 175+20 HC 2 80 28 KK l 75+20ROUTE 175+20 TO 154+90 RS 1 STOR -1 SQ 43 85 128 SV 2.1 3.5 4.67 KK 154+90 HC 2 KK BA LS UD HUD6 . 0771 0 .18 KK 154+90 HC 2 80 28 KK 154+90ROUTE FROM 154+90 TO 135+20 RS 1 STOR -1 170 5.91 SQ 188 376 563 751 SV KK BA LS UD HUD? .2793 0 1.27 3 .11 80 3.67 9. 71 12.54 HEC-1 INPUT EXISTING CO N DITIONS-ZERO DE TENTIO N ANALYSIS 681 5.75 213 3. 38 213 7.76 939 1 5.41 818 7.09 255 3.67 255 9.51 1127 18.29 954 8.6 298 5.69 298 11.4 1314 21.19 . 6 324 500 4.97 1200 4.63 . 7 325 ... 9 ...... 10 1200 11. 3 600 6.51 600 14.86 1750 26.46 800 6.51 850 16 3500 55 .41 PAGE PAGE App endi x B-2 LINE 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 ID ....... 1 ....... 2 ....... 3 ....... 4 . .5 ....... 6 ....... 7 .. KK 135+20 HC 2 KK RS SQ sv 135+20ROUTE 1 35+20 to 105+70 STOR -1 202 4 03 605 806 31. 56 KK HUD8A BA .1984 LS 0 UD .89 KK HUD8B BA . 3155 LS 0 UD 1. 22 KK SOLAKE HC KK SOLAKE RS 1 SA 6 . 5 SE 304.8 SS 304.8 KK HUD8D BA .1892 LS 0 UD . 73 KK HUD8C BA .1015 LS 0 UD .8 KK HUD8E BA . 0316 LS UD 0 .25 KK CF9D P HC 80 80 FLOW 6 .6 305 100 80 80 80 13.37 -1 306 1. 5 KK 255+58DET POND FOR RS SQ SV STOR 148 15 .99 -1 296 20. 85 24.23 307 1.5 308 CF TO 248+00 444 592 28 .43 35.71 HEC-1 INPUT 1008 38. 6 10 309 7 40 40 .65 1209 45.55 15 310 888 43 .99 . .8 ..... 9 ...... 10 1411 52.8 1 1036 46. 71 1700 87.63 2700 67. 45 3400 1 41 .5 LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 KK 248+00DS OF NOTTINGHAM TO 233+51 RS 1 STOR -1 SQ 135 331 496 661 sv 3.33 5.82 8.26 11.l KK BA LS UD HUD9 .2162 . 77 KK 233+5 1 HC 2 80 14 KK RS SQ SV 233+Slrt from 233+51 to 218+36 1 STOR -1 165 2.87 331 5.89 4 96 13 KK RS SQ sv 218+36rt from 218+36 to 105+70 1 STOR -1 0 165 331 496 KK 105+70 HC 2 KK HUDlO BA . 1534 LS 0 UD . 74 KK 105+70 HC 2 5 .11 10 .13 80 KK RS SQ sv 105+70rt 105+70 to 98+15 1 STOR -1 0 343 686 KK HUDll BA .1230 LS 0 UD .51 KK HUD 1 2 BA . 0943 LS 0 UD .27 3.83 24.61 80 14 80 32 16.76 1 028 62 661 17 661 23.14 1371 69 HEC-1 INPUT EXISTING CONDITIONS -ZERO DETENTION ANALYSIS 826 13. 3 826 20 826 29 .37 1714 72 992 15. 54 991 22.77 991 35.67 2057 75 1157 17. 73 1157 25.36 11 57 42.46 2399 78 3000 37.75 3000 45.12 3000 92. 33 4100 88 .53 6000 138.07 450 0 90.74 PAGE PAGE 10 Appendi x B-2 LINE 371 372 373 374 375 3 76 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 LINE 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 ID ....... 1 ....... 2. .. 3 ....... 4. ... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 1 0 Kl< RS SA DP12 SE 271.5 SL 273 SS 276.S Kl< 98+15 HC 3 FLOW .0144 272 7.07 20 -1 .134 273 . 7 3 Kl< RS SQ SV 98+15rt 98+15 to 62+25 1 STOR -1 0 446 982 Kl< HUD13 BA LS UD .0627 0 . 31 Kl< HUD14A BA . 2107 LS 0 UD .61 14.17 29 .67 80 80 . 4586 274 . 5 1.5 1337 44.19 Kl< PT14art FROM HWY 1 58 TO 62+25 RS 1 FLOW -1 RC .09 .06 .09 4000 RX 800 900 995 1000 RY 321 320 314 311 Kl< HUD14B BA LS UD .3012 1. 37 KK 62+25 HC 4 80 Kl< RS SQ SV 62+2Srt 62+25 to 42+20 1 STOR -1 446 892 5.78 18 .28 Kl< HUDlS BA . 333 LS 0 80 UD 1 .47 1337 24.67 1 .224 275 1783 54.38 .01 1005 311 1783 31. 52 HEC-1 INPUT 2 .133 276 2229 63.69 1010 314 2229 37.23 2.98 277 2675 72 .18 11 0 0 322 2675 42.54 3.784 278 3 1 20 79. 84 1 200 325 3120 47.52 279 5100 114 . 11 5100 67.35 ID ....... 1 ..... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9. Kl< HC Kl< RS SQ SV PTlS 2 42+20rt 42+20 o 26+00 1 STOR -1 446 19.92 892 24.16 1337 28.94 1783 34.91 2229 40. 29 2675 45.13 3120 4 9. 64 5100 67. 4 4.1 282 5800 119 .88 5800 73. 72 . .10 5800 73 .02 Kl< KM HC lSCOMBINE RTlS, CAR 6b, BURTON CREEK, AND HUDSON CREEK (INCL. TIFF PARK END HYDROLOGIC ANALYSIS OF HUDSON CREEK ** Kl< RS RC RX RY Kl< BA LS UD Kl< BA LS UD Kl< HC Kl< RS RC RX RY Kl< BA LS UD Kl< HC RT16ROUTE TO COMP PT 16 5 FLOW -1 .085 .065 .085 800 272 1145 259 2800 251 6800 2929 245 CCGICARTER ' S GROVE TRIB BASIN . 714 0 82 24 1.50 CAR7CARTER CREEK BASIN VII 1 .861 0 0 77 2 .11 16ADD RTl 6 CCGI AND CAR VII 3 RT17ROUTE TO COMP PT 17 5 FLOW -1 .085 .060 .085 1000 255 1400 241 2143 240 4200 2157 230 CAR8CARTER CREEK BASIN VIII .786 0 . so 0 77 1 7ADD RT17 AND CAR VIII Kl< WP NIWOLF PEN CREEK BASIN I .0015 2967 245 .0014 2175 23 0 3347 251 2200 240 KM ** BEGIN HYDROLOGIC ANALYSIS OF WOLF PEN CREEK ** BA .420 0 LS 0 86 47 UD .58 HEC -1 INPUT 5000 254 3500 244 6200 268 4050 252 EXISTING CO NDITIO NS -ZE RO DETENTIO N ANA L YS IS PAGE 11 PAGE 12 A p pe nd ix B -2 LINE 450 451 452 453 454 455 456 457 458 45 9 460 461 462 463 464 465 466 467 468 469 47 0 471 4 72 473 4 74 475 476 477 478 479 480 481 482 483 484 485 486 487 LINE 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 . . ... 7 ....... 8 ....... 9 ...... 10 Kl< BA LS UD Kl< HC Kl< RS RC RX RY Kl< BA LS UD Kl< HC Kl< BA LS UD Kl< HC Kl< RS RC RX RY Kl< BA LS UD Kl< HC Kl< BA LS UD WPCIWOLF PEN CREEK TRIB C BASIN I .910 0 . 88 0 85 45 40COMBINE WPNI AND WPCI RT41ROUTE COMB HYDRO TO COMP PT 41 . 050 1000 300 FLOW . 045 1 015 295 -1 .070 1038 290 2200 1060 278 WPN2WOLF PEN CREEK BASIN II .112 0 91 68 .28 . 005 1070 278 41COMB ROUTED HYDRO AND WPN II WPBIWOLF PEN CREEK TRIB B BAS I N I .228 0 88 53 . 54 42COMB 41 AND WPBI RT43ROUTE COMB HYDRO TO COMP PT 43 5 FLOW -1 .080 1000 290 . 055 1055 282 . 070 1317 280 1600 1335 272 WPN3WOLF PEN CREEK BASIN III .118 0 0 .28 91 69 43COMBINE RT43 AND WPN III 2 . 00 44 1340 272 WPAIWOLF PEN CREEK TRIB A BASIN I .503 0 84 37 1.11 HEC-1 INPUT 1108 288 1357 280 1275 296 1477 284 1399 300 1760 290 ID .... , .1 .•..... 2 ... .3 ....... 4. . .. 5 ....... 6 .....•• 7 ..•.... 8 ....... 9 ...... 10 Kl< HC Kl< RS RC RX RY Kl< BA LS UD Kl< HC Kl< RS RC RX RY Kl< BA LS UD Kl< KM HC Kl< KM HC Kl< RS RC RX RY Kl< BA LS UD Kl< BA LS 44COMBINE 43 AND WPAI 2 RT45ROUTE COMB HYDRO TO COMP PT 45 5 FLOW -1 .075 .055 .075 6000 .0033 1000 1154 1189 1245 1260 276 272 270 26 1 WPN4WOLF PEN CREEK BASIN IV . 703 0 .54 0 93 75 45COMB RT45 AND WPN 4 2 261 RT46ROUTE COMB HYDRO TO COMP PT 4 6 5 FLOW -1 .090 .060 .090 4800 .0015 121 1 1510 1860 1878 1892 252 244 242 237 237 WPNVWOLF PEN CRE EK BAS IN V . 558 0 85 37 1 .33 46COMBINE RT46 AND WPNV 1361 266 1 932 244 1492 270 1995 246 1921 276 2150 254 END COMPUTATIONS FOR WOLF PEN CREEK , ADD TO CARTER CRE EK COMP PT 18 •• 18ADD 17 AND WOLF PEN CREEK ADD WOLF PEN CREEK HYDROGRAPH 2 RT19ROUTE TO COMP PT 19 5 FLOW -1 .085 .060 .085 5800 1000 3000 3265 3279 255 232 231 217 CAR9CARTER CREEK BASIN IX .990 0 77 2.61 CARXCARTER CREEK BASIN X . 4 79 80 13 . 0011 3302 217 3327 233 6200 236 6486 251 EXISTIN G CONDITIONS -ZERO DETENTIO N ANALYSIS PAGE 13 Appendix B -2 528 LINE 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 LINE 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 UD 1. 42 HEC-1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4. . .. 5 ..... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK HC KK RS RC RX RY 19COMBINE RT19,CAR IX, AND CAR X 3 RT20ROUTE TO 5 FLOW .085 .060 1000 3000 255 232 COMP PT 20 -1 . 085 6000 3265 3279 231 217 . 00083 3302 217 KK BEEBSl 3327 233 KM •• BEGIN HYDROLOGIC ANALYSIS OF BEE CREEK •• BA 0.58 BF LE us 0 0. 25 1. 4 KK BEEBS2 BA 0.47 BF LE us 0 0.25 1. 8 -.05 2.0 0.61 -. 05 2.0 0 .61 1. 05 1 .86 . 05 . 86 0. 43 0. 43 KK BEEBSCOMBINE HYDROGRAPHS DOWNSTREAM OF 300 HC 6200 236 6486 251 KK KM RS RC RX RY 310ROUTE 300 TO 320 (Wellborn) REACH TAKEN FROM COLLEGE STATION HEC-1 TOTALBEE.DAT 5 FLOW -1 .03 .06 .03 150 .0111 100 292 101 290 108 288 116 286 136 286 151 166 181 290 288 289 KK BEEBS3 BA 0 . 52 BF LE 0 0 . 25 -. 05 2.0 us 0 . 61 1. 05 1.86 0. 43 KK BEEBSCOMBINE HYDROGRAPHS AT 320 HC 2 KK BEEBNl BA 1. 03 LE us KK HC 0.25 1.8 2 .0 0. 61 1 .86 0. 43 COMBINE HYDROGRAPHS AT 320 10. 5 17.5 HEC-1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4. ... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 1 0 KK RCH 7 FM2818 KM REACH EXTENDS FROM X-SECT. RS l STOR -1 SV SQ KK RCH 12 560 TB-IMP 24 1120 KM REACH EXTENDS FROM X-SECT. RS 2 STOR -1 SV SQ KK BEEBN2 BA 0. 81 LE 0 . 25 us 1 . 3 14 740 2.0 0.61 24 1480 1. 86 38 1680 32 2220 0. 43 .640 TO X-SECT. 58 2240 82 2800 -4.014 TO X-SECT. 40 2960 35 50 3700 KK HC COMBINE HYDROGRAPHS DOWNSTREAM OF 55 KK BA LE us BE El 1. 00 0. 25 2.4 2.0 0.61 KK RCH 4 Bl-IMP 1.86 KM REACH EXTENDS FROM X-SECT. RS STOR -1 0. 43 SV 19 36 53 SQ 340 680 1020 KK HC COMBINE HYDROGRAPHS AT KK RCH TX AV KM RS SV SQ KK KM RS SV SQ KK BA REACH EXTENDS FROM X-SECT . 1 STOR -1 0 14 24 960 1920 RCH 2SH6 BYPASS REACH EXTENDS FROM X-SECT. BEE2 1.22 STOR -1 154 263 1160 2320 32 2880 364 3480 35 4.014 TO X-SECT. 68 87 1360 1700 57 3.600 X-SECT . 46 55 3840 4800 2.390 TO X-SECT. 4 76 604 4640 5800 115 3360 69 4440 1.160 137 3920 . 640 89 5180 . 760 107 126 2040 2380 4.014 78 88 5760 6720 3 .600 770 1 015 6960 8120 EXIS TING CONDITIO NS-ZERO DE TENTIO N ANA L YS IS PAGE 14 PAGE 15 Appendi x B-2 607 608 609 LINE 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 LINE 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 LE us KO 0. 25 1.6 2.0 0. 61 1.86 0. 43 24.5 21 HEC-1 INPUT ID ....... 1 ....... 2. .. 3 ....... 4 ...... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK HC COMBINE HYDROGRAPHS AT 2 KK BEEAl BA 0. 66 LE us 0 .25 1. 5 2 .0 0. 61 1. 86 KK 180ROUTE 170 TO 185 0. 43 60 24.5 KM REACH TAKEN FROM COLLEGE STATION HEC-1 TOTALBEE DAT RS 5 FLOW -1 RC . 025 RX 100 RY 257 .3 KK BEEA2 BA 1.12 LE 0.25 us 0. 9 . 025 170 257.1 2.0 0. 61 . 028 270 256 1. 86 1100 280 254 0 . 43 KK HC COMBINE HYDROGRAPHS AT 185 KK 190ROUTE 185 TO 195 . 002 290 254 35 265 300 258 375 260 KM REACH TAKEN FROM COLLEGE STATION HEC-TOTALBEE DAT RS 5 FLOW -1 RC .035 .03 .035 4900 .0035 RX 37 137 243 318 354 377 509 RY 250 253.7 250 242 242 250 252 KK BEEA3 BA 0. 46 LE 0. 25 us KK HC 2.5 2.0 0. 61 1.86 0. 43 COMBINE HYDROGRAPHS AT 1 95 17.5 KK COMBINE HYDROGRAPHS AT X-SECT. 2.390 HC 2 KK RCH KM REACH EXTENDS FROM X-SECT. 0. 000 TO X-SECT . RS 3 STOR -1 SV SQ KK BA LE us BEE3 0.84 0. 25 3.3 326 1820 2.0 0.61 545 3640 1.86 723 5460 0. 43 879 7280 14 HEC -1 INPUT 1 023 9100 1159 10920 2.390 475 262 708 258 1 289 12740 ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ..... 7 ....... 8 ..... 9 ...... 10 KK PTO. 00 KM END COMPUTATIONS FOR BEE CREEK MAIN CHANNEL AND TRIBUTARIES (ADD TO CC20) HC KK 20ADD RT20 AND BEE CREEK KM ADD BEE CREEK HYDROGRAPH ** HC KK RS RC RX RY RT21ROUTE TO COMP PT 21 . 085 1000 255 FLOW .060 3000 232 -1 .085 3265 231 2200 3279 217 KK CARXICARTER CREEK BASIN XI BA 3.323 0 LS 0 77 UD 4. 60 KK CAR12CARTER CREEK BASIN XII BA 1.118 0 LS 77 UD 1. 79 . 00091 3302 217 KK 21COMBINE RT21, CARXI AND CARXII HC 3 KK RT22ROUTE TO COMP PT 22 RS RC RX RY . 080 1000 243 FLOW . 060 1600 226 -1 .080 2800 223 2000 . 00095 2855 2881 215 215 KK CAR13CARTER CREEK BASIN XIII BA .628 0 LS UD KK HC KK RS 76 2.14 22ADD RT22 AND CARXIII 2 RT23 5 FLOW -1 3327 233 2900 223 6200 236 4918 225 6486 251 6900 246 EXISTIN G CONDITIONS -ZERO DE TENTIO N ANALYSIS PAGE 16 PAGE 17 App endi x B-2 685 686 687 688 689 690 691 692 693 RC RX RY KO KK RS RC RX RY .085 400 230 RT24 5 . 085 1700 220 .060 . 085 700 2800 220 210 FLOW -1 . 060 .085 2000 2800 210 200 10000 . 0014 2855 2881 2900 5500 6000 202 202 210 220 230 21 8000 .00083 2855 2881 2900 6200 6400 192 192 200 210 220 HEC-1 INPUT PAGE 18 LINE ID .. . . . . . 1. . . . . . . 2 . . . . . . . 3 . . . . . . . 4 . . 5 . . . . . . . 6 . ...... 7 ....... 8 ... .... 9 . . . . . . 1 0 694 695 696 697 698 699 700 701 702 KK RS RC RX RY KK BA LS UD RT25 5 FLOW -1 .085 .060 . 085 4400 . 00093 1 100 2800 2855 2881 2900 6800 210 200 195 187 187 1 95 200 CARXIVCARTER CREEK BASIN XIV 10 0 0 75 7.86 25COMBINE ROUTE 25 AND CAR XIV 703 704 705 7 0 6 KK KM HC zz END HYDROLOGIC ANALYSIS OF CARTERS CREEK BASIN •• 1••······································· FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1991 VERSION 4 . 0. lE Lahey F77L-EM/32 version 5. 01 Dodson & Associates , Inc. RUN DATE 10/07/04 TIME 10,51,40 * * * * * * ** •• * * * * * * * * * *. * * * * * * * * * * * * * * * * * * * * 7000 210 HYDROLOGIC ANALYSIS OF CARTER CREEK BASIN -COLLEGE STATION TX COLLEGE STATION STORMWATER MANAGEMENT PLAN EXISTING CONDITION ANALYSIS-COTTEN SUBDIVISION NO DETENTION ANALYSIS ALL YEAR, 24 HOUR STORM , TYPE III STORM DISTRIBUTION MITCHELL & MORGAN , LLP -07 OCT 2004 U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-1748 USE OF M&M HYDROLOGIC INFORMATION FOR BURTON(2001), BRIAR(2001), HUDSON(l998 USE OF KLOTZ & ASSOC. HYDROLOGIC INFORMATION FOR BEE CREEK (1998) 11 IO IT JP JR USE OF NDM, INC. HYDROLOGIC INFORMATION FOR WOLF PEN CREEK (1996 ) USE OF WALTON HYDROLOGIC FOR CARTERS CREEK AND CARTERS GROVE (1986 ) OUTPUT CONTROL VARIABLES IPRNT PRINT CONTROL I PLOT PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE HYDROGRAPH TIME DATA NMIN MINUTES IN COMPUTATION INTERVAL IDATE 1JAN99 STARTING DATE ITIME 0000 STARTING TIME NQ 500 NUMBER OF HYDROGRAPH ORDINATES NDDATE 2JAN99 NDTIME 1735 I CENT 19 COMPUTATION INTERVAL TOTAL TIME BASE ENGLISH UNI TS ENDING DATE ENDING TIME CENTURY MARK 0. 08 HOURS 41. 58 HOURS DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH INCHES LENGTH, ELEVATION FEET FLOW CUBIC FEET PER SECOND STORAGE VOLUME ACRE-FEET SURFACE AREA ACRES TEMPERATURE DEGREES FAHRENHEIT MULTI-PLAN OPTION NPLAN MULTI-RATIO OPTION NUMBER OF PLANS RATIOS OF PRECIPITATION 4.50 6. 20 7. 40 8. 40 9.80 11. 00 13 .00 *** *** *** *** ••• *** *** *** *** ••• *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ••• *** *** *** 43 KK 48 KO RT12 ROUTE COMB HYDRO TO COMP PT 12 OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTRO L QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT 0 . HYDROGRA PH PLOT SCALE PUNCH COMPUTED HYDROGRAPH 21 SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED 500 LAST ORDINATE PUNCHED OR SAVED 0.083 TIME INTERVAL IN HOURS EXISTIN G CO NDITION S -Z ERO DETENTIO N ANA L YS IS App endi x B-2 *** *** *** *** *** *** *** *** *** *** *** ••• *** *** *** *** *** **• *** *** *** *** *** ••• *** *** *** ••• *** *** *** *** *** 605 KK BEE2 609 KO OUTPUT CONTR OL VARIABLES IPRNT PRINT CONTROL I PLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAVl FIRST ORDINATE PUNCHED OR SAVED ISAV2 500 LAST ORDINATE PUNCHED OR SAVED TIMINT 0.08J T IME INTERVAL IN HOURS *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ••• *** *** *** *** *** *** *** *** *** *** *** *** ************** 68J KK RT2J ************** 688 KO OUTPUT CONTROL VARIABLES *** WARNING *** * * * WARNING * * * * * * WARNING * * * * * * WARNING * * * * * * WARNING * * * * * * WARNING * * * *** WARNING *** * * * WARNING * * * IPRNT s I PLOT QSCAL 0 . IPNCH 0 IOUT 21 ISAVl 1 ISAV2 soo T IMINT . 08J PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS UNIT HYDROGRAPH TRUNCATED FROM 474 TO JOO INTERVALS UNIT HYDROGRAPH TRUNCATED FROM 474 TO JOO INTERVALS UNIT HYDROGRAPH TRUNCATED FROM 474 TO JOO INTERVALS UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS UNIT HYDROGRAP H TRUNCATED FROM 474 TO 300 INTERVALS UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS PEAK FLOW AND STAGE (EN D-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS RATIOS APPLIED TO PRECIPITATION OPERATION STATION AREA PLAN HYDROGRAPH AT CARI 1. so FLOW TIME HYDROGRAPH AT CAR2 1. 49 FLOW TIME 2 COMBINED AT 10 3 .00 FLOW TIME ROUTED TO RTll 3.00 FLOW TIME PEAK STAGES STAGE TIME HYDROGRAPH AT CAR3 l.2S FLOW TIME 2 COMBINED AT 11 4.24 FLOW TIME RATIO 1 4.SO 4Sl. 14. 67 324 . lS. S8 7S8. lS.00 7S3 . lS. S8 IN FEET 296.88 1S.S8 267. 1S .2S 1018. lS.SO RATIO 2 6 .20 696. 14.S8 S27 . lS .SO 1199. 15.00 1191. lS. so 297.61 lS.SO 447. lS .17 1633. lS.42 EXISTING CONDITIO NS -ZERO DETENTION ANALYSIS RATIO 3 7. 40 873. 14 . S8 676. lS. 42 1S20. 14. 92 1Sl2. 15.42 298 . 02 lS . 42 S79 . lS. 08 2086. lS.33 RATIO 4 8. 40 1022. 14.S8 802. lS .42 1790 . 14. 92 1781. lS.42 298 .29 lS . 42 692. lS.08 2466. lS.33 RATIO 9. 80 1231. 14.58 981. lS.42 2171. 14. 92 21S9 . lS .42 298 .66 lS .42 8S2 . lS.00 3002. 15.3 3 RATIO 6 11. 00 1410. 14.S8 113S. lS.33 2499. 14. 92 2488. lS.33 298 .98 1S.J3 989. lS.00 3469 . 1S.2S RATIO 7 13. 00 1708. 14.S8 1392. lS. 33 3047. 14. 83 3033. lS.33 299 .33 lS.33 1220. lS.00 4244. 1S.2S Appe ndi x 8 -2 ROUTED TO RT12 4.24 HYDROGRAPH AT CARV 3. 72 2 COMBINED AT 1 2 7.96 ROUTED TO RT 13 7.96 HYDROGRAPH AT CAR4 1.34 2 COMBINED AT 13 9.30 ROUTED TO RT 1 4 9.30 HYDROGRAPH AT CAR6 1. 51 HYDROGRAPH AT BRil 3.25 3 COMBINED AT 14 14.07 ROUTED TO RT14a 14.07 HYDROGRAPH AT CAR6a 0.12 2 COMBINED AT 14a 14 .18 ROUTED TO RT15 14.18 HYDROGRAPH AT CAR6b 0.14 HYDROGRAPH AT BRTI 1.36 HYDROGRAPH AT BRT2 1. 83 2 COMBINED AT 30 3.19 ROUTED TO RT31 3.19 HYDROGRAPH AT BRT3 1. 32 2 COMBINED AT 31 4.51 FLOW TIME 1 016 . 15 .75 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 285.68 15.75 775. 16.58 1766. 16.00 1759. 16. 50 PEAK STAGES IN FEET 1625. 15.83 286.63 15.83 1208. 16.50 2810. 16. 08 2804. 16 .4 2 STAGE 287.04 287 .86 TIME 16.50 16.42 FLOW TIME FLOW TIME FLOW TIME 268. 15. 58 2011. 16.42 1922. 18.08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW T IME 277.50 18.08 346. 15.58 944. 14.83 2663. 17.33 2615. 18.83 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 268. 28 1 8. 83 61. 12.75 2620. 18.83 2609. 19.58 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 278.14 19.58 65. 1 2.83 706. 13.17 818. 13. 75 1 475. 13 .42 1474 . 13. 50 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW 276. 46 13.50 924 . 12 .75 2231 . 448. 15. 50 3222. 16.33 3129 . 17 .50 278 .50 17.5 0 551. 15.50 1461. 14.75 4367. 17.25 4206. 18.50 269.44 18. 50 97. 12.67 4214. 18. 42 4192. 18. 92 278.86 18.92 105. 12.75 1048 . 13.08 1197. 13. 67 2174 . 13. 33 2174. 13.42 277. 64 13 .42 1318. 12.75 3260. EXISTING CO N DITIONS -ZERO DE TENTIO N ANA L YSIS 2076. 1 5.75 287 .13 15 .75 1523. 16 .50 3566. 16.00 3558. 16. 33 288.38 16. 33 581. 15.42 4102. 16. 25 4030. 17. 25 278. 81 17 .25 701. 1 5.50 1 834. 14 .75 5755. 16 .75 5577. 18.00 269.85 18.00 123. 12. 67 5588. 18.00 5564. 18.50 279.33 18.5 0 135. 12.75 1293. 13.08 1467. 13. 67 2673. 13.33 2673. 13. 42 278.40 13 .42 1 596. 12.75 3989. 2459 . 15.67 287.42 15. 67 1788 . 16.42 4197 . 15 . 92 4191. 16.17 288. 68 16.17 694. 15.42 4852. 16.08 4765. 17.08 279. 06 17.08 828. 15. 50 2146. 14.75 6872. 16 .58 6671 . 17.83 270.18 17.83 145. 12.67 6684. 17 .83 6656 . 18 .33 279 .70 18 .33 160. 12.75 1499. 13.08 1692. 13 . 67 3090. 13. 33 3090. 13 .42 278.97 13. 42 1827. 12.75 4603. 2994. 1 5.67 287.75 15 .67 2162. 16.42 5095. 15.83 5089. 16.17 289.09 16.17 854. 15 .33 5901. 16.08 5802. 17.08 279 .41 17.08 1006. 15.42 2586 . 14 .67 8394. 16.42 8180. 17.67 270. 64 17.67 176. 12.67 8196. 17.67 8180 . 18 .08 280 .16 18 .08 195 . 12.75 1786 . 13. 08 2006. 13. 67 3674. 13.33 3673 . 13 .42 279. 72 13 .42 2149. 12 .75 5464 . 3458. 15.58 288.03 15.58 2484. 16.42 5869. 15. 83 5860. 16.17 289.45 16.17 993. 15.33 6806. 16.00 6692. 17.00 279. 71 17 . 00 1160. 15.42 2964. 14 .67 9684. 16.42 9513. 17 .42 271. 01 17.42 202 . 12.67 9533. 17 .42 9505. 17 .75 280.47 17.75 224. 12.75 2033 . 13. 08 2275. 13. 67 4174. 13 .33 4173. 13 .42 280. 32 13.42 2425. 12.75 6195. 4237. 15.5 0 288.47 15.50 3021. 16.42 7151. 15.75 7143 . 16.00 289.93 16. 00 1225. 15. 33 8322. 15.92 8240. 16.67 280.18 16 .67 1416. 15.42 3594. 14 .67 12095. 16.33 11866 . 17 .17 271. 43 17.17 245 . 12.67 11891. 17.17 11860. 17 .50 281.01 17 .50 274. 12.75 2444 . 13. 08 2723. 13. 67 5006. 13. 33 5004. 13 .42 281.17 13 .42 2884. 12.75 7406. Appendi x B-2 HYDROGRAPH AT STAI l . 4 0 2 COMBINED AT 32 5 .91 ROUTED TO RT33 5. 91 HYDROGRAPH AT BRT4 2.17 HY DROG RAPH AT BGW7 0. 0 4 HY DROGRAPH AT BGW6 0. 00 2 COMBINED AT 1 0 0. 05 ROUTED TO RTl O 0 . 05 HYDROGRAPH AT BGW4 0 .0 1 2 COMBINE D AT ll 0. 06 ROUTED TO RTll 0. 06 HYDROGRAPH AT BGW2 0 . 0 4 2 COMBINED AT 12 0 .10 ROUTED TO RT12 0 .10 HYDROGRAPH AT BGW5 0. 00 ROUTED TO RTBGW5 0. 00 HYDROGRAPH AT BGW 3 0. 01 ROUTED TO RTBGW3 0. 01 HYDROGRAPH AT BGWl 0. 0 1 3 COMBINED AT 20 0.0 1 ROUTED TO T I ME FLOW TIME FLO W TIME FLOW TIME 13 .0 B Bl7 . 13. 00 3047 . 13. OB 3035. 13.25 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 270 . 53 13 . 25 1099. 13.1 7 44. 12 .00 4. 12.00 47. 12.00 47. 12 .00 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 2.21 12.00 11. 12 .00 5B. 1 2.00 5B. 12.00 PEAK STAGES IN FEET 13.08 1186 . 13.00 4444. 1 3.08 4432. 1 3 .25 272 . 58 13. 25 1645. 13.17 64. 12 .00 5. 12.00 69. 12.00 69. 12.00 2.56 12.00 16 . 12.00 86. 1 2.00 85. 12.00 STAGE 267. 44 267. 73 TIME 12 .00 12 .00 FLOW TIME FLOW TIME FLOW TIME 31. 1 2.08 88. 12.00 6 1. 12 .3 3 PEAK STAGES IN FEET 50. 1 2.08 135 . 1 2 .00 79 . 12.33 STAGE 259.66 260.1 0 TIME FLOW TIME FLOW TIME 1 2. 33 l. 12 .00 l. 1 2 .00 PEAK STAGES IN FEET 12.33 l. 12.00 l. 12.00 STAGE 272 . 04 272. 06 TIME 1 2.00 12.00 FLOW TIME FLOW TIME 4. 12.00 4. 12.0B PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME 0.6 5 12.0B 5 . 12 .00 1 0 . 12.00 7. 12 .00 7. 12 .00 0.79 12.00 9. 12 .00 1 7. 12.00 EXIS TING CONDITIO NS -ZERO DE TENTIO N ANA L YS IS 13. OB 144 6. 13. 00 5434. 13.08 5421. 13.25 273 .Bl 13. 25 20 3 4 . 13.17 7B. 12. 00 7. 1 2.00 B5 . 12.00 B5. 12.00 2. 78 12 .00 20 . 12.00 1 05. 12.00 1 04. 12.00 267 .BB 12.00 64. 12 .08 l 6B. 12.00 B9. 12. 42 260.39 12.4 2 2. 1 2.00 2. 12.00 272. 07 12.00 9. 12.00 9. 12.0 0 0 . B7 12.00 11 . 12.00 22. 12.00 13. 08 1664. 13. 00 6263. 13. OB 620B. 13. 33 274.70 13. 33 2359 . 13 .17 90 . 12.00 B. 12 .00 9B. 12.00 9B. 12.00 2.95 12.00 22. 12.00 120. 12.00 120. 12.00 26B .Ol 12 .00 76 . 12.08 1 95 . 12.00 96. 12. 42 260. 62 12 .42 2 . 12.00 2 . 12 .00 272. 09 12.00 11. 12.00 10. 12.00 0 .94 12.00 13. 12.00 26. 12.00 13 . OB 1967. 13.00 7427 . 13. 08 7270. 13. 5B 275.6 2 13.58 2Bl3. 13 .17 107. 1 2.00 9. 12.00 116. 12.00 116 . 12 .00 3.1 7 12.00 26. 12.00 142 . 12. 00 142. 12.00 26B.l6 1 2 .00 93. 12.08 234. 1 2.00 105. 12. 42 26 0. 91 12 .42 2. 1 2.00 2 . 1 2 .00 272. 1 0 12 .00 13. 12.00 13 . 12 .00 l. 01 1 2.00 16. 1 2.00 31. 12.00 13.08 2227 . 13. 00 B416. 13.0B 8082. 13.75 275 .99 13. 75 3 2 02. 13.08 1 2 1 . 12.00 10. 12.00 131. 12.00 131. 12.00 3. 34 12.00 30. 12.00 161. 12.00 160 . 12.00 268 .27 12 .00 1 07 . 12.00 267. 1 2 .0 0 111 . 12 .50 261.15 1 2 .50 3 . 12.00 2 . 12 .00 272. ll 12.00 15. 12.00 15. 12.00 l.07 12.00 19. 1 2.00 36. 12 .00 13. OB 265B. 13. 00 10057. 13.0B 959B. 13. B3 276.57 13. B3 3B50 . 13. 08 144. 12.00 12. 12 .00 157. 12.00 1 57 . 1 2.00 3.62 12.00 35. 12 .00 192. 12.00 191. 12 .00 268.45 12.00 131. 1 2.00 322. 12.00 1 20. 12.50 261.50 12 .50 3 . 12 .00 3 . 1 2 .00 272 .14 12 .00 lB. 12.00 18. 12 .00 l.15 12.00 23. 12.00 44. 1 2.00 Appendi x B-2 RT20 2 COMBINED AT 30 3 COMBINED AT 33 HYDROGRAPH AT HUDl ROUTED TO DP 1 HYDROGRAPH AT HUD2 2 COMBINED AT PT 2 ROUTED TO 383+30 HYDROGRAPH AT HUD3 2 COMBINED AT 374+35 ROUTED TO 374+35 HYDROGRAPH AT HUD5B 2 COMBINED AT 365+50 ROUTED TO 365+50 HYDROGRAPH AT HUD4 ROUTED TO 180+45 HYDROGRAPH AT HUD5A 2 COMBINED AT 175+20 ROUTED TO 175+20 2 COMBINED AT 154+90 HYDROGRAPH AT HUD6 2 COMBINED AT 154+90 ROUTED TO 154+90 HYDROGRAPH AT HUD? 2 COMBINED AT 135+20 0 .01 0 .12 8.19 0. 05 0. 05 0 . 02 0. 07 0.07 0 .11 0.18 0.18 0.03 0. 21 0. 21 0.14 0.14 0. 08 0. 22 0. 22 0 . 43 0. 08 0 . 50 0. 50 0. 28 0. 78 FLOW TIME 9. 12.08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 272. 56 12.08 70. 12. 25 4168. 13 .25 43. 12.08 43. 12. 08 PEAK STAGES IN FEET 16 . 12.08 272. 77 12.08 93. 12. 25 6135. 13. 25 67. 12.08 67. 12.08 STAGE 317.93 318.46 TIME 12.08 12.08 FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 16. 12.00 59. 12.00 58 . 12.08 109. 12.00 1 66 . 12.00 161. 12 .08 25. 12.00 186. 12.00 183. 12.08 80. 12.5 0 79. 12.58 68. 12.17 136. 12 .33 119. 12. 67 266. 12.17 72. 12.00 328. 12.08 325. 12 .17 127. 12. 92 399. 1 2.17 24. 12.00 90. 12.00 89. 12.08 160. 12.00 248 . 12.00 242. 12.00 37. 12.00 279. 12.00 275. 12.08 127. 12. 50 123. 12.58 103. 12.17 207. 12.33 181. 12.67 416. 12.17 108. 12.00 511. 12.08 455. 12 .25 204. 12.92 612. 12.42 EXISTING CO NDITIONS -ZERO DETENTI ON ANALYSIS 21. 12.08 272 .90 1 2 .08 1 07. 1 2.17 7529. 13 .17 83. 12 .00 84. 12.08 318.92 12.08 30. 12.00 113. 12.00 111. 12.08 1 97. 12.00 306. 12.00 303. 12.00 46 . 1 2.00 349. 1 2 .00 344 . 1 2.08 1 6 1. 12.50 149. 12.75 128. 12.17 255. 12.25 217. 12.67 513. 12.08 133. 12 .00 639. 12.08 553. 1 2.25 261. 12.92 755. 12. 42 25. 12.08 272 . 98 12.08 117. 12 .17 8643. 13 .17 98. 12.00 98. 12.08 319.42 12.08 35 . 12.00 131. 12.00 129. 12.08 227 . 12.00 354. 12.00 351. 12.00 53. 1 2.00 404. 12 .00 398. 12 .08 189 . 12.50 172. 12.75 149. 12.17 288. 12. 25 249. 12.75 589 . 12 .08 154. 12 .00 735. 12.08 671. 12.25 308. 12.92 889. 12.25 30. 12.08 273.10 12.08 130. 12.17 1 0022. 13 .42 118. 1 2.00 116. 12.08 320 .20 12.08 41. 12.00 155. 12.00 151 . 12.08 270. 12.00 418 . 12.00 415. 12.00 63. 12.00 478. 12.00 471. 12.08 229. 12 .42 210. 12.75 178 . 12.17 340 . 12.33 295. 12.75 693. 12.08 183. 12 .00 866. 12.08 813. 12 .17 374. 12.92 1072. 12.2 5 35. 12.08 273.20 12.08 140. 12.17 11018. 13.50 135. 12.00 131. 12 .08 320.96 12 .08 47 . 12.00 176. 12.00 170. 12.08 306. 12.00 472. 12.00 469. 12.00 71. 12.00 541. 12.0 0 533. 12.08 263. 12.42 255. 12.58 203 . 12 .17 400. 12.50 380. 12.58 781. 12.08 208. 12.00 978. 12.08 924. 12.17 431. 12.92 1223. 12.25 43 . 12.08 273.34 12.08 156. 12.17 13017. 13. 58 1 63. 12.00 154. 12.17 322. 30 12 .17 56. 12 .00 207 . 12.00 199. 12 .17 366 . 12.00 560. 12.00 557 . 12.00 86. 12.00 643. 12.0 0 630. 12.08 320. 12.42 288 . 12.75 244. 12.17 495. 12 .25 463. 12.50 957. 12.25 250. 12.00 1157. 12.08 1110. 12.25 525. 12.83 1504. 12.33 Append ix B -2 ROUTED TO 135+20 0. 78 HYDROGRAPH AT HUD8A 0.20 HYDROGRAPH AT HUD8B 0. 32 2 COMBINED AT SOLA KE 0. 51 ROUTED TO SO LAKE 0. 51 HYDROGRAPH AT HUD8D 0.19 HYDROGRAPH AT HUD8C 0.10 HYDROGRAPH AT HUD8E 0.03 4 COMBINED AT CF9DP 0. 84 ROUTED TO 255+58 0.84 ROUTED TO 248+00 0.84 HYDROGRAPH AT HUD9 0.22 2 COMBINED AT 233+51 1. 05 ROUTED TO 233+51 1. 05 ROUTED TO 2 18+3 6 1. 05 2 COMBINED AT 105+70 1.84 HYDROGRAPH AT HUDlO 0 .15 2 COMBINED AT 105+70 1.99 ROUTED TO 105+70 1 .99 HYDROGRAPH AT HUDll 0 . 12 HYDROGRAPH AT HUD12 0.09 ROUTED TO DP12 o. 09 3 COMBINED AT 98+15 2.21 ROUTED TO 98+15 2 .21 HYDROGRAPH AT HUD13 0.06 FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 342. 1 2 .58 110. 12.58 147. 12.92 249. 12.75 227. 13.08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 306.12 13. 08 116. 12. 42 59. 12.50 26. 12 .00 365. 12.75 307. 13 .33 304. 13. so 139. 12.42 366. 13.33 349 . 1 3.67 336. 14. 08 587 . 13.50 97 . 12.42 629. 13.33 585. 14.00 92. 12.17 87. 12.00 63. 12.25 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 275.53 12. 25 614. 13. 83 607. 14 .17 50. 12.08 531. 12.83 17'7 . 12.50 236. 12.83 402. 12.67 373. 13.00 306. 63 13 . 00 185. 12. 42 95 . 12. 42 40. 12.00 603. 12.67 508. 13.25 500. 13.42 217. 12.42 605 . 13.17 580 . 13. 58 543 . 14.08 954 . 13. 58 1 53 . 12.42 1013 . 13. 42 882. 14.17 143. 12 .17 129 . 12.00 79. 12 . 33 276.63 12.33 929. 13. 75 917. 14 .33 78. 12.08 EXISTING CONDITIONS -ZERO D ETENTIO N ANALYSIS 668. 13 .00 225. 12.50 302. 12. 83 513. 12.67 479. 13. 00 306. 97 13. 00 235. 1 2.33 121. 12.42 51. 12 .00 775. 12.67 673. 13.17 655. 13.42 272. 12.42 789. 13.17 771. 13.42 715. 13.92 1257 . 13.50 193. 12.42 1334. 13.25 1233. 14.00 180. 12.17 160 . 12.00 109. 12.33 277 .11 12. 33 1311. 14. 00 1224 . 14.33 98. 12.08 778 . 12.92 266. 12.50 356. 12.83 605. 12.67 567. 13. 00 307.22 13. 00 277. 12.33 143. 12.42 60. 12 .00 919. 12.67 832. 13.08 813 . 13.25 319. 12.42 989. 13.08 961. 13 .33 876. 13.75 1547. 13 .42 226. 12. 33 1640. 13.33 1606. 13. 58 210. 12.17 185 . 12.00 136. 12. 25 277.40 12.25 1717 . 13.58 1599. 14.00 115. 12 .08 929. 12.83 323. 12.50 433. 12.83 735. 12 .67 691. 12. 92 307.57 12.92 336. 12 .33 174. 12.42 72. 12.00 112 2. 12.67 1063. 12. 92 1033. 13. 08 384. 12.42 1276. 13.00 1249. 13 .17 1105. 13.67 1933. 13.42 274 . 12. 33 2049. 13.33 2039 . 13.42 253. 12.17 221. 12.00 171. 12.25 277.75 12.25 2171. 13.42 2091 . 13.75 138. 12.00 1085. 12.83 372. 12.50 499. 12.83 847 . 12.67 798. 12. 92 307 .85 12 . 92 386. 12.33 200. 12.42 82 . 12.00 1296. 12.67 1259. 12.83 1230. 13.00 440. 12.42 1535. 12. 92 1505. 13. 00 1343. 13 .42 2316 . 13. 33 314 . 12. 33 2456. 13.25 2447 . 13. 33 289. 12 .17 251. 12.00 200. 12.25 278.0 1 12.25 2597. 13. 33 2517 . 13. 58 1 59. 12.00 1334. 12.83 453. 12.50 608. 12.83 1032. 12.67 976. 12.92 308 .28 12.92 470. 12.33 243 . 12.42 99 . 12.00 1585 . 12.58 1553. 12.75 1530. 12 .92 533. 12.42 1932. 12.83 1901. 12.92 1728. 13. 33 2952. 13.17 382 . 12.33 3148. 13. 08 3138. 13 .17 350. 12.17 301. 12.00 249. 12. 25 278.39 12.25 3341. 13 .17 3253. 13 .42 192 . 12.00 Appendix B-2 HYDROGRAPH AT HUD14A 0. 21 ROUT ED TO PT14a 0 . 2 1 HYDROGRAPH AT HUD14B 0 . 30 4 COMBINED AT 62+25 2.78 ROUTED TO 62+25 2.78 HYDROGRAPH AT HUDlS 0 . 33 2 COMBINED AT PTlS 3 .11 ROUTED TO 42+20 3 .11 4 COMBINED AT 15 25.63 RO UTE D TO RT16 25.63 HYDROGRAPH AT CCGI 0. 7 1 HYDROGRAPH AT CAR? 1.86 3 COMBINED AT 1 6 28.20 ROUTED TO RT17 28.20 HYDROGRAPH AT CARS 0. 79 2 COMBINED AT 17 28.99 HYDROGRAPH AT WPNI 0. 42 HYDROGRAPH AT WP CI 0.91 2 COMBINED AT 40 1.33 ROUTED TO RT41 1. 33 HYDROGRAPH AT WPN2 0.11 2 COMBINED AT 41 1 . 44 HYDROGRAPH AT WPBI 0 . 23 FLOW TIME FLOW TIME 138. 12.33 127. 1 2.50 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW T IME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 314 .14 1 2.50 130. 13. 08 786. 13.00 764. 13.5 0 138. 13 .17 897. 13.33 894. 13.50 5650. 13.42 5420. 14 .33 PEAK STAGES IN FEET 221. 12. 25 203. 12.5 0 31 4.79 12.50 210. 13 . 00 11 75. 13. 08 1168. 13.33 222. 13 .17 1387. 13.25 1378. 13.42 8566. 13.33 8004 . 14.42 STAGE 251.93 252 .73 TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 14.33 351. 13 .17 556 . 13.92 6174. 14.25 5999. 15.08 PEAK STAGES IN FEET STAGE 243 .1 0 TIME 1 5.08 FLOW TIME FLOW TIME FLOW T IME FLOW TIME FLOW TIME FLOW T I ME 202. 14.3 3 6185. 15.08 382. 12.25 690. 12 .50 1 042 . 12.33 1 040 . 12.42 PEAK STAGES IN FEET STAGE 28 4.4 7 TIME 12.42 FLOW TIME FLOW TIME FLOW 126. 12.00 1104. 12. 42 220. 14. 42 532. 13 .17 920 . 13.83 9178. 14.33 9015. 14.92 243.87 14. 92 338. 14.25 9332. 14. 92 549. 12.25 1001. 12.50 1 509 . 12.33 1508. 12.42 285. 65 12.42 176. 12.00 1596 . 12.42 313. EXISTING CONDITIONS -ZERO DETENTION ANALYSIS 281. 12.25 255. 12 .50 315 .11 12.50 268. 13.00 1444. 14.17 1436. 14.33 284. 13 .08 1 687. 1 3.17 1676. 13.42 10486. 13 .25 9769. 14.42 253. 23 14.42 661. 13.08 1186. 13 .83 112 7 4 . 14.25 11 077. 14.92 244.38 14 . 92 439 . 14.25 1148 5 . 14 . 92 667 . 1 2 .25 1221. 12.50 1839. 12.33 1838 . 12.42 286. 36 12.42 211. 1 2.00 1947. 12.33 378 . 331. 12 .25 300. 12.50 315.39 12.50 317. 13.00 1918. 13. 83 1893. 14 .00 335. 13.08 2135. 13 . 92 2119. 14.08 11990. 13 .42 11345. 14.33 253.61 14 .33 770. 13. 08 1412. 13.83 13154. 14.25 12978. 14.75 244.7 4 14. 75 524. 14.25 13478. 14 .75 765. 12.25 1403. 12 .50 2114. 12. 33 2113. 12. 42 286 .88 12.42 24 1. 12.00 2237. 12.33 432. 401 . 12 .25 363 . 1 2 .50 315.66 12.5 0 385 . 13. 00 2550 . 1 3.58 2525. 13 .75 4 08. 13.08 2869. 13. 67 2848. 13 .83 144 93. 13.58 13858 . 14.42 254 .02 14.42 922. 13 .08 1731. 13. 75 15978. 14.33 1 5787. 14 . 83 245. 23 14.83 644. 14 .17 16392 . 14 .75 902. 1 2.25 165 9 . 12 .50 2498. 12.33 2497. 12. 42 287 .54 12 .42 282. 12 .00 2648 . 12.33 508. 460 . 12.25 418 . 12.50 315.89 12.50 444. 13.00 3 1 07. 13.42 3078 . 13.58 470. 13 . 08 3501. 13.50 3480. 13.67 16456. 13.67 15847. 14 .50 254.35 14 .50 1052. 13.08 2006. 13.75 18223. 14.42 18043. 14.83 245. 63 14.83 748. 14.17 1 87 4 0. 14.83 1 020. 12.17 1877 . 12.50 2826. 12.33 2826. 12 .42 288. 03 12 .42 317. 12.00 2995. 12.33 573 . 560. 12.25 509. 12.50 316. 23 12.5 0 541. 13.00 4064. 1 3.25 4029. 1 3 .42 574. 13.08 4582. 1 3.33 4550. 13. so 19797. 13 .58 18988. 14.50 254.86 14 .50 1269 . 13.08 2466 . 13. 75 21880. 14. 42 21723. 14 .83 246.18 14.83 922. 14 .17 22589. 14.75 1215. 12.17 2240. 12.50 3372. 12.33 3371. 12.42 288.75 12 .42 375 . 12.00 3570. 12.33 681. Appendi x B-2 2 COMBINED AT 42 1.67 ROUT ED TO RT43 1.67 HYDROGRAPH AT WPNJ 0 .12 2 COMBINED AT 43 1.79 HYDROGRAPH AT WPAI 0.50 2 COMBINED AT 44 2.29 ROUT ED TO RT45 2.29 HYDROGRAPH AT WPN4 0. 70 2 COMBINED AT 45 2.99 ROUT ED TO RT46 2.99 HYDROGRAPH AT WPNV 0. 56 2 COMBINED AT 46 3 .55 2 COMBINED AT 18 32. 54 ROUT ED TO RT1 9 32.54 HYDROGRAPH AT CAR9 0.99 HYDROGRAPH AT CARX 0 .48 3 COMBINED AT 19 34.01 ROUT ED TO RT20 34.01 HYDROGRAPH AT BEEBSl 0. 58 HYDROGRAPH AT BEEBS2 0 . 47 2 COMBINED AT BE EBS 1. 05 ROUTED TO TIME FLOW TIME FLOW TIME 12.17 1311. 12.33 1302. 12.50 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 281. 07 12.50 1 33. 12.00 1357. 12.50 324. 12. 75 1666. 12.50 1 62 4. 12.92 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 266. 51 12.92 7 25. 12.17 2030. 12.58 1886. 13. 42 PEAK STAGES I N FEET STAGE 245.0 4 TIME 1 3.4 2 FLOW TIME FLOW TIME FLOW TIME FLOW TIME 330. 12.92 2180 . 13. 33 7214. 14. 92 6779. 1 6.17 PEAK STAGES IN FEET STAGE 235 .18 TIME 1 6 .17 FLOW TIME FLOW TIME FLOW TIME FLOW TIME 247. 14.50 219. 13. 08 7006. 16. 17 653 4 . 17.75 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 235.34 17.75 262. 12.92 176. 13. 25 431. 13 . 08 12.17 1894. 12. 33 1882. 12.50 281.85 12.50 186. 12.00 1965. 12 .42 477. 12.75 2415. 12.50 2363. 12.83 267 . 33 12.83 1006 . 12.17 2944. 12.58 2775. 13.33 24 5 . 85 13 . 33 483. 12.92 3227 . 13. 25 10752. 14. 75 10292. 15.92 235.92 15 .92 414. 14 .42 343 . 13. 08 10685. 15. 92 10100. 17 .33 236.20 17. 33 393 . 12.92 266. 13.25 648. 13. 00 EXIS TING CO NDITIO NS -ZERO DETENTIO N ANA L YSIS 12.17 2308. 1 2 .33 2293. 12.50 282.28 12.50 223. 12.00 2392. 12.42 585. 12. 75 2945. 12.50 2683. 1 2.83 267. 82 12. 83 1204. 12.17 3595. 12.58 3416. 13. 25 246.34 13 .25 592. 12.92 3981. 13 .17 13191 . 14 . 67 1 2646. 1 5.83 236.41 15 . 83 536. 14 . 33 433. 13. 08 13158. 15.83 1 2504. 17.25 236.78 17.25 485 . 1 2.92 329. 13 . 25 601. 13. 00 12.17 2649. 12. 33 2640. 12.42 282.57 12.42 254. 12.00 2770 . 12 . 33 676. 12.67 3390 . 12. 42 331 4 . 12. 75 268.20 12. 75 1369. 12.17 4152. 12.58 3938. 13 .17 246. 73 13 .17 683. 12.92 4596. 13 .17 15574. 14.58 14 736. 15.75 236.85 15.75 640. 14.33 508 . 13. 08 15363. 15.67 14838 . 16.75 237.19 16 .75 56 1 . 12.92 381. 13. 25 928. 13. 00 12 .17 3132 . 1 2 .33 3122 . 12 . 42 282.90 12.42 297. 12 .00 3270. 12.42 802. 12.67 4012. 1 2. 42 3929. 12.75 268.69 12.75 1600. 1 2.17 4947. 12.58 4706. 13 .17 247.22 13 .17 809. 12.92 5492. 13.08 18740. 1 4.58 1 8291. 1 5. 33 237.33 15.33 786. 1 4.33 614. 13. 00 19165. 15.33 18341. 16. 33 237 .67 16. 33 667. 12.92 454. 13. 25 1105. 13.00 12.17 354 0. 12. 33 3530. 12.4 2 283 .1 8 12.42 334. 12.00 3700. 12. 33 9 11 . 12.67 4540. 12. 42 4455. 12.75 269 .08 12.75 1796. 12 .17 5615. 12.58 5345. 13. OB 247.62 13. 08 916. 12. 92 6247 . 13. 08 21273. 14.58 20903 . 1 5 .33 237.64 15. 33 915 . 14 .33 705. 13. 00 21909. 15. 33 2126 1. 16.25 238.06 16 .25 758. 12. 92 517. 13. 25 1256. 13.00 12.17 4217. 12.33 4209 . 12.42 283.58 12.42 395. 12 .00 4428 . 12.33 1091 . 12.67 5418. 12. 42 5318. 12.75 269. 66 12. 75 2127. 12.17 6727. 12.58 6442. 13.08 248.22 13. 08 1098. 12. 92 7521. 13.08 25652. 14.58 25181. 15.33 238.14 15 .33 1127. 14.25 856. 13. 00 26434. 15.25 25787. 16.17 238.68 16 .17 909. 12. 92 621. 13. 25 1508. 13.00 Appendix B-2 310 1. OS HYDROGRAPH AT BEEBS3 0 . S2 2 COMBINED AT BEEBS l.S7 HYDROGRAPH AT BEEBNl 1 .03 2 COMBINED AT 2 .60 ROUTED TO RCH 7 2.60 ROUTED TO RCH 6 2.60 HYDROGRAPH AT BEEBN2 O.Bl 2 COMB !NED AT 3.41 HYDROGRAPH AT BEEl 1. 00 ROUTED TO RCH 4 1. 00 2 COMBINED AT 4 .41 ROUTED TO RCH 3 4.41 ROUTED TO RCH 2 4 .41 HYDROGRAPH AT BEE2 1 .22 2 COMBINED AT s. 63 HYDROGRAPH AT BEEAl 0. 66 ROUTED TO lBO 0. 66 HYDROGRAPH AT BEEA2 1.12 2 COMBINED AT l.7B ROUTED TO 190 l.7B HYDROGRAPH AT BEEA3 0. 46 2 COMBINED AT 2.24 2 COMBINED AT 7.B7 FLOW TIME 431. 13.0B PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 2BB.73 13. OB 1B4. 13.SO 606. 13 .17 403. 13.2S 1007. 13.17 97B. 13.SO 973. 13. 67 42S. 12.B3 1301. 13.42 339. 13 . B3 309 . 14. so 1 S46. 13. SB 1 S39 . 1 3 .7S 1 241. 1 S.2S S29. 13 .OB 14BB. lS.00 300. 1 3 .00 300. 13.0B PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 2S6 .BS 13. OB 727. 12.SO 971. 12.SB 964. 12.B3 PEAK STAGES IN FEET 64B. 13. OB 2B9 .2S 13.0B 277. 13.42 912. 13.17 S99. 13 .2S 1S09. 13.17 14S6. 13. so 1449. 13.67 616. 12.B3 1923. 13 .42 497. 13.B3 4S9. 14 .42 2294. 13.SB 22B7 . 13 .7S 19S6. lS. 00 7BO. 13 .0B 2367. 14.7S 442. 13. 00 441. 13. OB 2S7.16 13. OB lOSO. 12.SO 1412. 12.SB 140S. 12.7S STAGE 24S.26 24S.96 TIME FLOW TIME FLOW TIME FLOW TIME 12.B3 142. 13. 92 1062. 12.B3 1 992. 14 .1 7 12.7S 213. 13. 92 1SS2. 12 .83 3176. 14.2S EXISTING CON DITIO NS -ZERO DETENTIO N ANALYSIS BOl. 13. 00 2B9.S4 13. 00 342. 13 .42 112B. 13 .17 73B. 13.2S 1B63. 13 .17 1779. 13. SB l 77S. 13.67 7S2 . 12.B3 2363. 13.33 609. 13. B3 S64. 14.42 2BlS. 13. SB 2Bl0. 13 .67 244B. 14. 92 BS7. 13. OB 2972. 14.67 S42. 13. 00 S41. 13. OB 2S7.37 13. OB 1277. 12. so 1723. 12.SB 1717. 1 2 .7S 246.39 1 2.7S 263. 13 .92 1B97. 12.B3 400B. 14.17 927. 13. 00 2B9.76 13. 00 397. 13 .42 1307. 13 .17 BS3. 13.2S 21S7. 13.17 2041. 13.SB 2036 . 13.7S B64. 12 .B3 2694. 13.42 702. 13. B3 6Sl. 14 .42 3233. 13.67 3214. 13.B3 2B6B. 14. 92 1103. 13. OB 3474. 14.67 624 . 13 .00 624. 13. OB 2S7. S l 13. OB 1466. 12.SO 19Bl. 12 .SB 1974 . 12 .7S 246. 71 12.7S 30S. 13 .92 21BS. 12 .B3 466S. 14.17 1104 . 13 . 00 290. 02 13 .00 473. 13 .42 1SS6. 13 .17 1014. 13 .2S 2S6B. 13 .17 2402. 13.67 2397. 13. 7S 1020. 12.B3 3166. 13. 42 B32. 13.B3 772. 14.42 3BlS. 13.67 3793. 13.B3 3421. lS.00 130B. 13. OB 4136. 14.67 740. 13 . 00 739. 13.0B 2S7. 63 13.0B 1729 . 12.SO 23S9. 12 .SB 234B. 12.7S 247 .lS 12.7S 364. 13 .92 2S99. 12.7S SSB7. 14 .00 12S6. 13.00 290 .22 13. 00 S3B . 13 .42 1770 . 13 .1 7 11S2 . 13. 2S 2919. 13.17 2712. 13 .67 270S. 13. 7S 11S4. 12.B3 3S60. 13.SO 944. 13.B3 B77. 14.4 2 4311. 13.67 4299. 13.B3 3BS1. lS.00 14B4. 13. OB 4662. 14.67 B39. 13 .00 B3B. 13.0B 2S7. 73 13. OB 19S4 . 12.SO 266S. 12 .SB 26S6. 12.7S 247.46 12.7S 4 1 4. 13 .92 2944. 12.7S 63S9. 14.00 lSOB. 13. 00 290 .S2 13. 00 647. 13 .42 2126. 13 .17 13B2. 13 .2S 3S04. 13.17 3177. 13.7S 316B. 13 .92 137B. 12.7S 41SS. 13. 33 1130. 13.B3 10S3. 14.42 S070. 13. 7S S026. 14.00 4S91. lS.OB 1776. 13. OB SS2B. 14.7S 1004. 13 . 00 1003. 13. OB 2S7.90 13.0B 2329. 12.SO 31Bl. 12.SB 3171. 12 .7S 247.97 12.7S 497 . 13 . 92 3Sl9. 12.7S 762S. 13. 67 Appendi x B-2 ROUTED TO HYDROGRAPH AT 2 COMBINED AT 2 COMBINED AT ROUTED TO HYDROGRAPH AT HYDROGRAPH AT 3 COMBINED AT ROUTED TO HYDROGRAPH AT 2 COMBINED AT ROUTED TO ROUTED TO ROUTED TO HYDROGRAPH AT 2 COMBINED AT PLAN 1 ... RCH 1 BEE3 PTO. 00 20 RT21 CARXI CAR12 RT22 CAR13 22 RT23 RT24 RT25 CARXIV 25 RATIO OF PMF 4.50 6. 20 7. 40 8. 40 9.80 11. 00 13. 00 7. 87 0 . 84 8. 71 42. 72 42. 72 3.32 1. 12 47.16 47.16 0.63 47.79 47.79 47.79 47.79 10.00 FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 1790. 16. 33 203. 14.75 1948. 16.17 8285. 17. 58 8237. 18.08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 235. 66 18.08 562. 16.83 368. 1 3.58 8827. 18.08 8785. 18.50 PEAK STAGES IN FEET STAGE 226 . 20 TIME 1 8. 50 FLOW TIME FLOW TIME FLOW TIME 173. 1 4.00 8828. 1 8.50 8376. 20.17 PEAK STAGES IN FEET STAGE 2 1 4.18 TIME 20.17 FLOW TIME 8049. 2 1 . 92 PEAK STAGES IN FEET STAGE TIME FLOW TIME 204 . 9 4 21.92 7930. 23.08 PEAK STAGES IN FEET 2943. 15 . 75 308 . 14 .75 3213. 15. 67 12772. 17.08 12703. 17.58 236.69 17.58 933. 16. 67 611. 13. 50 13727 . 17.58 13702. 17.83 226.99 17.83 292 . 13. 92 13784. 17.83 13088. 19.42 215 . 34 19 .42 12573. 20. 92 206 .17 20.92 12338. 22.08 STAGE 198.23 199.06 TIME FLOW TIME 23.08 104 1. 20.58 22.08 1771. 20.42 3732. 15.58 382. 14.75 4080. 15.50 15892. 17.00 15858. 17.33 237.23 17.33 1208. 16.58 790. 13.50 1 7218 . 17.25 17187 . 17.58 227 .49 17 .58 381 . 1 3.83 1 7299. 17.58 16515. 19. 08 215 . 93 19. 08 15940. 20 . 50 206.93 20.50 15704. 21.42 199.45 21.42 2317. 20.33 4422. 15.42 444. 14.67 4838. 15.33 18994 . 16.67 18913. 16 . 92 237.63 16 . 92 1441. 16.58 94 1 . 13 .42 20588. 16.92 20517. 17. 25 227 . 97 17.25 456. 13. 83 20664 . 17. 25 19452. 18.75 216. 42 18. 75 18778. 20.17 207.4 4 20.17 18511. 21.08 199.76 21.08 2784. 20.25 5324 . 15.33 531. 14.67 5828 . 15 .25 23710. 16.25 23598 . 16.58 238.23 16.58 1772. 16.50 1155. 13 .42 25715. 1 6.50 25660 . 16 .75 228 . 54 16 .75 563. 13. 83 25872. 16.75 24119. 18.17 217. 08 18.17 22961. 19.58 208.18 19.58 22572 . 20.58 200.22 20.58 3450. 20.17 6102. 15 .17 606 . 14.67 6690 . 15.08 27382. 16.08 27300. 16.42 238 . 71 16 .42 2058. 16.50 1339 . 13 .42 29765. 16 .42 29711. 16 .67 228.97 16 .67 654. 13.83 29963. 16.67 28291. 18.00 217. 59 18.00 27084. 19.25 208.75 19.25 26784. 19. 92 200.55 19.92 4030. 20.17 7317. 15.00 730. 14.67 8037. 15.00 3 3204 . 16.00 33154. 16.25 239.35 16.25 2537 . 16.42 1646 . 13 .42 36213. 16.25 36160. 16 .50 229.66 16.50 808. 13 .75 36486. 16.50 34926. 17.75 218.35 17.75 33601. 19.00 209. 63 19.00 33313. 19.67 201.02 19.67 5006. 20. 08 57.79 FLOW 8867. 14012. 17958. 21247. 26008 . 20. 50 30809 . 19.92 38298 . 19.67 TIME 23.00 22.08 21 .33 21.08 SUMMARY OF DAM OVERTOPPING/BREACH ANA LYSIS FOR STAT ION (PEAKS SHOWN ARE FOR INTERNAL TIME STEP USED DURING BR EAC H RT12 FORMATION) ELEVATION STORAGE OUTFLOW MAXIMUM RESERVOIR W .S .ELEV 259. 66 260 .10 260.39 260.62 260.91 261.15 261. 50 INITIAL VALUE 259.00 MAXIMUM DEPTH OVER DAM .00 0.00 . 00 . 00 . 00 . 00 . 00 2. 0. MAXIMUM STORAGE AC-FT 4. 7. 9 . 11 . 13 . 16 . 20. SPILLWAY CREST 266. 00 142. 200. TOP OF DAM 267. 75 215. 376. MAXIMUM OUTFLOW CFS DURATION TIME OF TIME OF OVER TOP MAX OUTFLOW FAILURE 61. 79. 89 . 96. 1 05. 111. 120. HOURS HOURS HOURS .00 12.33 .00 .00 12.33 0.00 .00 12.42 0.00 0 .00 12.42 0 .00 0.00 12 .42 0.00 0.00 12.50 0.00 0.00 12.50 0.00 EXIS TING CO NDITIO NS-ZERO DETENTIO N A NALYSIS Append ix B-2 i •••••• ••••••••••••••••••••••••••••••••••• FLOOD HYDROGRAPH PACKAGE (HEC-1 ) MAY 1 991 U. S . ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CE NTER VERSION 4. 0. lE 609 SECOND STREET Lahey F77L-EM/32 version 5. 01 Dodson & Associates, Inc. DAVIS, CALIFORNIA 95616 (916) 551-1748 RUN DATE 10/07 /0 4 TIME 10 '55' 36 ......................................... x x x xxxxxxx xxxxx x x x x x xx x x x x x xxxxxxx xxxx x xxxxx x x x x x x x x x x x x x x xxxxxxx xxxxx xxx THIS PROGRAM REPLACES AL L PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73), HEClGS , HEClDB, AND HEClKW. THE DEFINITIONS OF VARIABLES -RTIMP-AND -RT IOR-HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE . THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN?? VERSION NEW OPTIONS, DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS 'WRITE STAGE FREQUENCY, DSSoREAD T IME SERIES AT DESIRED CALCULATIO N INTERVAL LOSS RATEoGREEN AND AMPT INFILTRATION KINEMATIC WAVEo NEW FINITE DIFFERENCE ALGORITHM LINE 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4 0 41 42 43 LINE 44 45 46 47 48 49 5 0 51 52 53 54 55 HEC-1 INPUT ID ....... 1 ... .2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 ID HYDRO LOGIC ANALYSIS OF CARTER CREEK BASI N -COLLEGE STATION TX ID CO LLE GE STATION STORMWATER MANAGEMENT PLAN ID PROPOSED CONDI T ION ANALYSIS-COTTEN SUBDIV I SION NO DETENTIO N ANALYSIS AL L YEAR, 24 HOUR STORM , TYPE III STORM DISTRIBUTION MITCHELL & MORGAN, LL P -07 OCT 2004 ID ID ID ID ID ID ID IT IO JP JR USE OF M&M HYDROLOGIC INFORMATION FOR BURTON(2001), BRIAR(2001), HUDSON(l998 USE OF KLOTZ & ASSOC . HYDROLOGIC INFORMATION FOR BEE CREEK (1998) USE OF NDM, INC. HYDROLOGIC INFORMATION FOR WOLF PEN CRE EK (1996) USE OF WALTON HYDROLOGIC FOR CARTERS CREEK AND CARTERS GROVE (1986) MODIFICAT I ON TO BEE2 FOR UPDATED DEVELOPMENT -BEE4 ADDED 5 01JAN99 0000 500 0 PREC 4 .5 6. 2 7 . 4 8. 4 9. 8 11 13 CARICARTER CREEK BASIN KK KM BA PB IN PC PC PC PC PC LS UD ** BEGIN HYDROLOGIC ANALYSIS OF CARTER CREEK MAIN CHANNEL •• 1. 502 0 1. 0 30 Q.1JAN99 0000 .005 . 064 . 217 . 872 .963 0 2.90 .010 . 072 . 250 .886 .969 81 .015 .081 .298 .898 .975 19 . 020 . 091 .500 . 910 .981 KK BA LS UD CAR2CARTER CREEK BASIN II 1. 494 0 78 3 .59 KK HC lOCOMBINE CART AND CARII KK RS RC RX RY RTllROUTE TO COMP POINT 11 . 080 1000 310 FLOW . 065 2000 298 -1 . 080 2276 295 3800 2294 293 KK CAR3CARTER CREEK BASIN III BA 1.249 0 LS 0 77 UD .25 KK llCOMBINE RTll AND CARIII HC 2 . 025 .102 . 702 .919 . 986 .0027 2300 289 HEC-1 INPUT .031 . 11 4 . 750 .928 .991 2325 296 .037 .128 . 783 .936 .996 2400 298 . 0 4 3 .1 46 . 8 11 . 943 1. 000 3000 308 .050 .166 . 834 .950 . 057 .1 89 . 854 . 957 ID ....... 1 ....... 2 ....... 3 ...... 4 ....... 5. . .. 6 ....... 7 ....... 8 ....... 9 ...... 10 RT12ROUTE COMB HYDRO TO COMP PT 12 5 FLOW -1 KK RS RC RX RY KO . 075 . 060 . 075 3000 . 0027 1 000 1500 1760 1 82 1 1 827 300 288 286 278 278 21 KK CARVCART ER CREEK BASIN V BA 3. 718 0 LS 0 80 17 UD .59 KK 12COMBINE RT12 AND CAR V HC 2 1 837 286 2100 286 2900 300 PR OPOSED C O NDITIONS -Z E RO D E TE N TION ANALYSIS PAGE PAGE Append ix B-2 S6 S7 SB S9 60 61 62 63 64 6S 66 67 6B 69 70 71 72 73 74 7S 76 77 7B 79 BO Bl B2 B3 B4 BS B6 LINE B7 BB B9 90 91 92 93 94 9S 96 97 9B 99 100 101 102 1 03 104 lOS 106 1 07 lOB 109 110 111 112 113 114 llS 116 117 llB 119 120 121 122 123 124 12S 126 127 12B LINE 129 130 131 132 133 134 KK RS RC RX RY RT13ROUTE COMB HYDRO TO COMP PT 13 KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD S FLCW -1 . 07S 1000 300 . 060 lSOO 2BB . 07S 1760 2B6 2BOO 1B21 27B CAR4CARTER CREEK BASIN IV l .33S 0 77 3.SS 13COMB RT13 AND CAR V RT14ROUTE TO COMP PT 14 .OBS 1000 29B FLCW .06S 1600 27B -1 . OBS 201B 276 7000 2044 267 CAR6CARTER CREEK BASIN VI 1.514 0 3.67 79 11 KK BRilBRIAR CREEK BASIN BA 3.2S3 0 LS UD . 02 Bl lB .0021 1B27 27B .0019 20SO 267 KK HC 14COMBINE RT 14 BRil AND CAR VI 3 KK RT14aROUTE TO COMP PT 14a RS S FLCW -1 RC RX RY . 08S 1000 2B2 . 06 S 1600 27S .OBS 297S 267 6200 299S 2S4 . 0013 3000 2S2 HEC-1 INPUT 1B37 2B6 20BB 277 304S 267 2100 2B6 29S7 27B 4700 270 2900 300 3444 29B S200 2B2 ID ....... 1 ....... 2 ....... 3 ....... 4 ....... S ....... 6 ....... 7 ....... B ....... 9 ...... 10 KK CAR6aCARTER CREEK BASIN 6a KM •• CREATED TO SIMULATE TIFF PARK DEVELCPMENT •• BA 0 .117 LS 0 Bl UD 1. 07 KK 14aCOMBINE RT 14a AND CAR 6a HC KK RS RC RX RY RTl SROUTE TO COMP PT l S S FLCW -1 . OBS . 06S . OBS 1000 1600 201B 29B 27B 276 3SOO 2044 267 KK CAR6bCARTER CREEK BASIN 6b BA LS UD 0 .137 0 1. 1 2 79 KK BRTIBURTON CREEK BASIN I . 0019 20SO 267 20.BB 277 KM BEGIN HYDROLCGIC ANALYSIS OF BURTON CREEK •• BA 1.364 0 LS UD KK BA LS UD KK HC KK RS RC RX RY KK 80 44 l.SO BRT2BURTON CREEK BASIN II l.B27 0 2.0B 8S 39 30COMBINE BRTI AND BRTII 2 RT31ROUTE COMB HYDRO TO COMP PT 31 S FLOW -1 . 070 . 014 . 070 4BOO . 0021 1000 106S 1100 1106 1132 292 290 2BO 272 272 BRT3BURTON CREEK BASIN III BA 1.317 LS 0 BB Sl UD 1. 14 KK HC KK BA LS UD 31COMBINE RT 31 AND BRT III 2 BTAIBURTON CREEK TRIB A BASIN I 1.400 0 B6 42 1. 43 HEC-1 INPUT 11 3B 2Bl 29S7 27B 1760 290 3444 29B lBS O 292 ID ....... 1 ....... 2 ...... 3 ....... 4 ....... S. ..6 ....... 7 ....... B ....... 9 ...... 10 KK HC KK RS RC RX 32COMB 31 AND STAI RT33ROUTE COMB HYDRO TO COMP PT 33 . 070 1000 FLCW . 040 1600 -1 .070 2S69 6000 2S97 . 002S 2627 26SB 3100 3200 PROPOSED CONDITIONS -ZERO DETENTION ANALYSIS PAGE PAGE Appendix B-2 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 LINE 1 70 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 RY KK BA LS UD KK BA LS UD KK BA LS UD KK HC 281 276 275 261 BRT4BURTON CREEK BASIN IV 2.169 0 0 83 29 1.53 BGW7BURTON CREEK GATEWAY BASIN 7 . 0438 0 87 .21 BGW6BURTON CREEK GATEWAY BASIN 6 .0037 0 1 0 87 .20 lOCOMBINE BGW7 AND BGW6 2 RTlOROUTE COMB HYDRO TO 261 276 277 COMP POINT KK RS RC RX RY 1 . 014 990 4.5 FLOW . 014 997.9 -1 . 014 998 2 275 999 . 5 . 0073 1 001 . 5 1002 1002.l KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD BGW4BURTON CREEK GATEWAY BASIN 4 .0105 0 0 90 . 09 l lCOMBINE RT l O AND BGW4 RTllROUTE HYDRO 11 TO STATION 12 FLOW -1 . 060 . 040 . 060 1050 . 0095 850 890 975 982 998 274 272 270 268 266 BGW2BURTON CREEK GATEWAY BASIN .0443 0 0 75 .30 HEC-1 INPUT 1002 266 1010 268 ID ...... 1. . ... 2. ... 3 ....... 4 ....... 5 ....... 6 ....... 7. KK HC KK RS RC RX RY 12COMBINE RTll AND BGW2 2 RT12ROUTING OF STATION 12 1 FLOW -1 .060 .040 .060 550 730 775 980 995 266 264 264 262 . 0036 1012 262 KM RT12 ROUTE 12 THROUGH DETENTION POND RS 1 FLOW -1 0 SA SE SL 257 259 SS 266 ST 267.75 .14 258 12.57 22 636 . 23 259 .75 .33 260 . 5 1.5 1 .5 KK BA LS UD BGW5BURTON CREEK GATEWAY BASIN .0009 0 1 0 87 .09 . 64 261 KK RTBGW5ROUTE HYDRO BC5 TO STATION 20 RS RC RX RY 1 . 060 964 275 FLOW . 040 984 274 -1 .060 989 272 930 996 272 .0194 1004 274 KK BA LS UD BGW3BURTON CREEK GATEWAY BASIN 3 .006 0 0 1 75 .23 KK RTBGW3ROUTE BGW3 TO STATION 20 RS FLOW -1 RC RX RY KK BA LS UD . 014 990 2.5 . 014 998.9 . 014 999 455 999. 5 .25 BGW l BURTON CR EEK GATEWAY BASIN .0074 0 1 0 75 0.17 . 0352 1000. 5 .25 1070 262 .75 262 1 006 276 1001 KK HC 20COMBINE HYDRO RTBGW5, RTBGW3, AND BGWl 3 KK RS RC RX RY RT20ROUTE HYDRO STATION 20 TO STATION 30 1 FLOW -1 . 060 964 275 .040 984 274 .060 989 272 1925 996 . 0062 1004 272 274 HEC-1 INPUT 1006 276 1075 260 . 93 263 1012 278 1001.1 1012 278 281 11 1010 4.5 1040 270 ... 8 ....... 9 .... 10 1 090 258 .96 264 1014 280 1010 2.5 1014 280 1 .27 1.35 266 267.75 LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 213 214 KK HC 30COMBINE HYDRO RT12 AND RT20 PR OPO SED CONDITIO NS -ZERO DE TENTIO N ANALYSIS PAGE PAGE A ppe ndi x B -2 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 2 4 3 244 2 4 5 246 247 248 249 250 251 252 253 254 LINE 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 33COMB RT33 , BR T IV AND 30 KK KM HC END HYDROLOGIC ANALYSIS OF BURTON CREEK •• 3 KK HUDl KM •• BEGIN HYDROLOGIC ANALYSIS OF HUDSON CREEK KM * * REPLACED HUD W / HUDSON CREEK STUDY * * KM HUD I HUDSON CREEK BAS IN I BA LS UD KK RS SA SE SL SS KK BA LS . 0525 . 3 DP 80 FLOW . 0017 3 1 6 317 317.5 12.566 32 4 .5 30 HUD2 . 0171 0 80 UD .17 KK PT 2 HC -1 .0194 318 . 7 35 . 0535 3 1 9 . 5 1.5 KK 383+30ROUTE FROM 383+30 TO 374+35 RS SQ SV KK BA LS HUD3 .112 1 0 UD .14 KK 374+35 HC 2 STOR 42 .33 80 -1 86 . 64 35 129 1. 06 KK 374+35ROUTE FROM 374+35 TO 365+50 RS STOR -1 .1788 320 172 1. 65 SQ 1 36 273 409 545 SV .41 1.49 1.93 2.34 KK HUD5B BA LS UD .0265 0 .23 80 35 HEC-1 INPUT .2632 32 1 2 1 5 2.33 681 2.69 ID ....... 1 ....... 2 ....... 3 ....... 4 ..... 5 ....... 6 .. KK 365+50 HC KK RS SQ SV 365+50ROUTE FROM 365+50 TO 154+90 KK BA LS UD HUD4 .1362 0 .84 STOR -1 1 36 273 1.26 2. 43 80 409 3.4 KK RS SQ SV 180+45ROUTE FROM 1 80+4 5 TO 175+20 1 STOR -1 43 85 128 KK HUD5 A BA . 0832 LS UD .47 KK 175+20 HC 2 . 23 . 49 80 28 KK l 75+20ROUTE 175+20 TO 154+90 RS STOR -1 SQ 43 85 128 SV KK 154+90 HC 2 KK HUD6 BA . 07 71 LS UD .18 KK 154+90 HC 2.1 80 3.5 4.67 28 KK 154 +90ROUTE FROM 1 54+90 TO 135+20 RS STOR -1 5 4 5 4.39 170 2.32 170 5. 91 SQ 188 376 563 751 SV 3 .11 3 .67 9 .71 12.54 KK BA LS UD HUD? .2793 0 1.27 80 HEC-1 INPUT 68 1 5. 75 213 3.38 2 1 3 7 . 76 939 15.41 PROPOSED CO NDITIONS -ZERO DETENTION ANA L YSIS . 3727 322 258 3.43 818 3 .06 . 4882 323 301 3.89 954 3 .65 .6 324 500 4.97 1200 4.63 . 7 325 . .7 ....... 8 ....... 9 ...... 10 818 7.09 255 3 .67 255 9 . 51 1127 18.29 954 8 .6 298 5 .69 298 11 .4 1314 21.19 1200 11.3 600 6.51 600 14. 86 1750 26 .46 800 6.51 850 16 3500 55.41 PAGE PAGE Appe nd ix B-2 LINE 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 3 1 0 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 ID ..... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 .. KI< 135+20 HC KI< RS SQ SV 135+20ROUTE 135+20 to 105+70 KI< HUD8 A BA .1984 STOR -1 202 8 403 13 .37 LS 80 UD .89 KI< HUD8B BA LS UD .3155 0 1 .22 KI< SOLAKE HC 2 KI< SOLAKE RS SA SE SS 1 6 .5 304. 8 304. 8 KI< HUD8D BA .1 892 LS UD .73 KI< HUD8C BA LS UD .1015 0 . 8 KI< HUD8E BA LS UD .03 1 6 0 .25 KI< CF9DP HC 80 FLOW 6 .6 305 1 00 80 80 80 -1 7 306 1 .5 KI< 255+58DET POND FOR CF RS 1 STOR -1 SQ 0 1 48 296 SV 15 .99 20 .85 605 2 4 .23 307 1.5 806 31.56 9 308 TO 248+00 444 592 28.43 35.71 HEC-1 INPUT 1 008 38 .6 10 309 740 40.65 1209 45.55 15 310 888 43.99 .. 8 ....... 9 ...... 1 0 1411 52.8 1 1036 46. 71 1700 87. 63 2700 67. 45 3400 141. 5 LINE ID ......• 1.... .2... . .3 ....... 4 ....... 5 ....... 6 .....•• 7 ..•.... 8 ....... 9 ..... 10 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 KI< RS SQ sv 248+00DS OF NOTTINGHAM TO 233+51 l STOR -1 KI< BA LS UD HUD9 . 2162 . 77 KK 233+51 HC 2 135 3.33 80 331 5.82 14 4 96 8. 26 KI< RS SQ sv 233+5 lrt from 233+5 1 to 218+36 l STOR -1 0 1 65 331 496 2.87 5. 89 13 KK 218+36 r t from 2 1 8+36 to 1 05+70 RS l STOR -1 SQ 0 1 65 33 1 496 SV KI< 105+70 HC 2 KI< HUDlO BA .1534 LS 0 UD . 74 KI< 105+70 HC 2 5 .11 1 0 .13 80 KK 1 0 5+70rt 105+70 to 98+15 RS 1 STOR -1 1 6 .76 SQ 343 686 1 028 sv 3 .83 24.61 62 KI< HUD ll BA .1230 LS UD .51 KI< HUD12 BA LS UD .094 3 0 . 27 80 14 80 32 66 1 11. l 661 17 661 23 .14 1371 69 HEC-1 INPUT 826 13 . 3 826 20 8 2 6 29.37 1 71 4 72 PROPOSED CO NDITIONS -ZERO DETENTION ANALYSIS 992 15.54 991 22. 77 991 35.67 2057 75 11 57 17. 73 1157 25.36 1157 4 2 . 4 6 2399 78 3000 37.75 3000 45.12 3000 6000 92.33 138.07 4100 88 .53 4500 90. 74 PAGE PAGE 10 Appendix B-2 LINE 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 LINE 411 412 413 414 415 416 417 418 41 9 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 441 448 449 450 ID .....•• l. ...... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK RS SA SE SL SS DP12 271. 5 273 276.5 KK 98+15 HC 3 FLOW . 0144 272 7.07 20 -1 .134 273 . 7 KK RS SQ sv 98+15rt 98+15 to 62+25 l STOR -1 0 446 982 KK HUD13 BA . 0627 LS UD . 31 KK HUD14A BA LS UD .2107 0 .61 14 .17 29. 67 80 80 . 4586 274 . 5 l. 5 1337 44.19 KK PT14art FROM HWY 158 TO 62+25 RS l FLOW -1 RC .09 .06 .09 4000 RX 800 900 995 1000 RY 321 320 314 311 KK HUD14B BA .3012 LS 0 UD 1 .37 KK 62+25 HC 4 80 K.K 62+25rt 62+25 to 42+20 RS l STOR -1 SQ 446 892 1337 sv 5.78 18.28 24.67 KK HUD15 BA . 333 LS UD 1.47 80 l. 224 275 1783 54.38 . 01 1005 311 1783 31. 52 HEC-1 INPlIT .133 276 2229 63.69 1010 314 2229 37. 23 2.98 277 2675 72 .18 1100 322 2675 42.54 . 784 278 3120 79. 84 1 200 325 3120 47.52 279 510 0 114 .11 5100 67 .35 4.1 282 5800 119.88 5800 73. 72 ID ....•.. 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 .... 10 KK HC PT15 KK 42+20rt 42+20 o 26+00 RS l STOR -1 SQ 44 6 892 SV 1 9.92 24.16 1337 28.94 1783 34.91 2229 40.29 2675 45 .13 3120 49. 64 5100 67.4 5800 73.02 KK KM HC 15COMBINE RT15, CAR 6b, BURTON CREEK, AND HUDSON CREEK (INCL. TIFF PARK END HYDROLOGIC ANALYSIS OF HUDSON CREEK ** KK RS RC RX RY RT16ROlITE TO COMP PT 16 5 FLOW -1 .085 .065 .085 800 1145 2800 272 259 251 6800 2929 245 KK CCGICARTER'S GROVE TRIB BASIN BA . 714 0 LS 0 82 24 UD l. 50 KK CAR7CARTER CREEK BASIN VII BA 1.861 0 LS 77 UD 2.11 KK HC 16ADD RT16 CCGI AND CAR VII 3 KK RS RC RX RY RT17ROlITE TO COMP PT 17 5 FLOW -1 .085 .060 .085 1000 255 1400 241 2143 240 4200 2 1 57 230 KK CAR8CARTER CREEK BASIN VIII BA .786 0 LS 0 77 UD 2. 50 KK l 7ADD RTl 7 AND CAR VIII HC 2 KK WPNIWOLF PEN CREEK BASIN I . 0015 2967 245 .0014 2175 230 3347 251 2200 240 KM ** BEGIN HYDROLOGIC ANALYSIS OF WOLF PEN CREEK ** BA . 420 LS UD .58 86 47 5000 254 3500 244 6200 268 4050 252 PROPOSED COND ITIO NS -ZERO DETENTION ANALYSIS PAGE 11 Ap pe ndi x B-2 LINE 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 LINE 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 HEC-1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ......• 7 ..•.... 8 ....... 9 ...... 10 KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD KK HC KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD KK HC KK BA LS UD WPCIWOLF PEN CREEK TRIB C BASIN I . 910 0 0 85 45 .88 40COMBINE WPNI AND WPCI 2 RT41ROUTE COMB HYDRO TO COMP PT 41 5 FLOW -1 .050 .045 .070 2200 .005 1000 1015 1038 1060 1070 300 295 290 278 WPN2WOLF PEN CREEK BASIN II .112 91 68 .28 41COMB ROUTED HYDRO AND WPN II 2 WPBIWOLF PEN CREEK TRIB B BASIN I .228 0 .54 42 COMB 2 88 53 41 AND WPBI 278 RT43ROUTE COMB HYDRO TO COMP PT 43 5 FLOW -1 . 080 . 055 . 070 1600 . 0044 1000 290 1 055 282 131 7 280 1335 272 WPN3WOLF PEN CREEK BASIN III .118 0 0 .2 8 91 69 43COMBINE RT43 AND WPN III 1340 272 WPAIWO LF PEN CREEK TRIB A BASIN I . 503 84 37 1.11 HEC-1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5. KK HC KK RS RC RX RY KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD 44COMBINE 43 AND WPAI RT45ROUTE COMB HYDRO TO COMP PT 45 5 FLOW -1 .075 .055 .075 6000 .0033 1000 1154 276 272 1189 270 1245 26 1 WPN4WOLF PEN CREEK BASIN IV . 703 0 93 75 . 54 45COMB RT45 AND WPN 4 1260 261 RT46ROUTE COMB HYDRO TO COMP PT 46 5 FLOW -1 .090 .060 .090 4800 .0015 1211 252 151 0 244 1860 242 1878 237 WPNVWOLF PEN CREEK BASIN V . 558 0 0 85 37 1. 33 46COMBINE RT46 AND WPNV 1892 237 1108 288 1357 280 1275 296 1477 284 1399 300 1760 290 . .. 6 ....... 7 ....... 8 ....... 9 ...... 10 1361 266 1932 244 1492 270 1995 246 1921 276 2150 254 KK KM HC END COMPUTATIONS FOR WOLF PEN CREEK , ADD TO CARTER CR EEK COMP PT 18 •• KK KM HC KK RS RC RX RY KK BA LS UD KK BA 18ADD 17 AND WOLF PEN CREEK ADD WOLF PEN CREEK HYDROGRAPH RT19ROUTE TO COMP PT 19 5 FLOW -1 . 085 . 060 . 085 5800 1000 3000 3265 3279 255 232 231 217 CAR9CARTER CREEK BASIN IX .990 0 77 2.61 CARXCARTER CREEK BASIN X .479 0 . 0011 3302 217 3327 233 6200 236 6486 251 PROPOSED CONDITIONS -ZERO DETENTION ANALYSIS PAGE 12 PAGE 13 Appendix 8-2 5 2 8 529 LINE 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 LINE 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 LS UD 1. 4 2 80 13 HEC-1 INPtrr ID ....... 1 ....... 2 ....... 3 ..... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK HC KK RS RC RX RY 1 9COMB I NE RT19,CAR IX, AND CAR X 3 RT20ROtrrE TO COMP PT 20 5 FLOW -1 .085 .060 .085 6000 .00083 1000 3000 3265 3279 3302 255 232 231 217 217 KK BEEBS l 3327 233 KM *• BEGIN HYOROLOGIC ANALYSIS OF BEE CREEK ** BA 0 .58 BF 0 -. 05 1. 05 LE us 0 . 25 1 .4 KK BEEBS2 BA 0.47 BF 0 LE . 25 us 1. 8 2 .0 0 . 61 - . 05 2.0 0. 61 1.86 . 05 1 .86 0. 43 0. 43 KK BEEBSCOMBINE HYDROGRAPHS DOWNSTREAM OF 300 HC 2 KK 3 1 0ROtrrE 300 TO 320 (Wellborn) 620 0 236 6486 251 KM REACH TAKEN FROM COLLEGE STATION HEC-1 TOTALBEE. DAT RS 5 FLOW -1 RC .03 .06 .03 150 .0111 RX RY 100 292 KK BEEBS3 BA 0. 52 BF 0 LE . 25 1 01 290 - . 05 2.0 us 0.61 108 288 1. 05 1 . 86 116 286 0. 4 3 KK BEE BSCOMBINE HYDROGRAPHS AT 320 HC 2 KK BEEBN l BA 1.03 LE us 0 . 25 1.8 2.0 0. 61 1. 86 0 . 43 KK HC CO MBI NE HYDROGRAPHS AT 320 2 136 286 10.5 17.5 HEC-1 INPtrr 151 288 166 289 181 290 ID ....... 1 ....... 2 ....... 3 .. . . 4 ....... 5. .. 6 ....... 7 ....... 8 .. KK RCH 7 FM2 81 8 KM REACH EXTENDS FROM X-SECT. RS SV SQ KK RCH STOR 1 2 560 TB -IMP -1 24 11 20 KM REACH EXTENDS FRO M X-SECT. RS 2 STOR -1 SV SQ KK BEEBN2 BA 0. 81 LE 0. 25 us 1 . 3 14 740 2 .0 0 .6 1 24 1 480 1 .86 38 1680 32 2220 0. 43 .640 TO X-SECT. 58 2240 82 2800 -4. 014 TO X-S ECT. 40 2960 35 50 3700 KK HC COMBINE HYDROGRAPHS DOWNSTREAM OF 55 KK BA LE us BE El 1. 00 0. 25 2. 4 2 .0 0. 61 KK RCH 4 Bl -IMP 1 .86 KM REACH EXTE NDS FROM X-SECT . RS SV SQ STOR 19 340 -1 36 680 0. 4 3 53 1 020 KK HC COMBINE HYDROGRAPHS AT 2 KK RCH TX AV KM RS SV SQ KK KM RS SV SQ KK REACH EXTENDS FROM X-SECT. 1 STOR -1 14 2 4 960 1920 RCH 2SH6 BYPASS REACH EXTENDS FROM X-SECT. STOR -1 1 54 263 11 60 2320 BEE2 32 2880 364 3480 35 4. 014 TO X-SECT. 68 1360 57 87 1 700 3 .600 X-SECT . 46 55 3840 4800 2.390 TO X-SECT. 4 76 604 4640 5800 115 3360 69 4440 107 2040 1.160 137 3920 . 640 89 5 1 80 5.760 126 2380 4. 014 78 88 5760 6720 3.600 770 1 015 6960 8120 .. 9 ...... 10 PROPOSE D CO NDITIONS -ZERO DETENTI ON ANA LYSIS PAGE 14 PAGE 15 Appendi x B-2 607 608 609 610 LINE 611 612 613 6 14 615 6 1 6 6 17 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 64 7 648 649 650 651 652 LINE 6 53 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 67 4 675 676 677 678 679 68 0 681 682 683 684 685 BA LE us KO 1.214 0. 25 1.6 2.0 0. 61 1.86 0. 43 24 .5 21 HE C -1 INPUT ID. .. 1 ....... 2 ....... 3 ....... 4 ....... 5 ..... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK BEE4 BA .00898 LE 0 . 25 us KO 0. 42 2 .0 0. 61 1. 86 0. 43 KK HC COMBINE HYDROGRAPHS AT 3 KK BEEAl BA LE us 0 . 66 0. 25 1.5 2 .0 0. 61 1.86 KK 180ROUTE 170 TO 185 0. 43 80 2 1 60 2 4 .5 KM REACH TAKEN FROM COLLEGE STATION HE C-1 TOTALBEE DAT RS 5 FLOW -1 RC RX RY . 0 25 100 257 . 3 KK BEEA2 BA 1.12 LE 0.25 us 0 .9 .025 17 0 257.l 2.0 0 . 61 .028 270 256 1. 86 1100 280 254 0. 43 KK HC COMBI NE HYDROGRAPHS AT 185 190ROUTE 185 TO 195 . 002 290 254 35 265 300 258 375 260 KK KM RS RC RX RY REACH TAKEN FROM COLLEGE STATION HEC -TOTALBEE. DAT 5 FLOW -1 .035 .03 .035 4900 .0035 37 250 137 253.7 243 250 318 242 354 2 42 KK BEEAJ BA 0.46 LE us KK HC KK HC 0. 25 2.5 2 .0 0. 61 1.86 0. 43 COMBINE HYDROGRAPHS AT 195 2 17.5 COMBINE HYDROGRAPHS AT X-SECT . 2.390 2 RCH 1 377 250 KK KM RS sv SQ REACH EXTENDS FROM X-SECT. 0.000 TO X-SECT. STOR -1 326 18 20 545 3640 723 879 5460 7280 HEC-1 INPUT 1023 9100 509 252 1159 1092 0 2 .390 475 262 708 258 1289 12740 ID ....... 1 •...... 2 ....... 3 ....... 4. ..5 ..... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK BA LE us BEEJ 0 . 84 0. 25 3.3 KK PTO .DO 2.0 0. 61 1.86 0. 43 14 KM END COMPUTAT IONS FOR BEE CRE EK MAIN CHAN NEL AND TRIBUTARIES (ADD TO CC20) HC KK KM HC 20ADD RT20 AND BEE CR EEK ADD BEE CREEK HYDROGRAPH ** RT21ROUTE TO COMP PT 21 5 FLOW -1 KK RS RC RX RY .085 .060 .085 2200 .00091 1000 3000 3265 3279 3302 255 232 2 3 1 217 217 KK CARXICARTER CR EEK BASIN XI BA 3 .323 0 LS 0 77 UD 4. 60 KK CAR12CARTER CREEK BASIN XII BA LS UD 1.118 0 .79 0 77 KK HC 21COMBINE RT21, CARXI AND CARXII 3 KK RS RC RX RY RT22ROUTE TO COMP PT 22 5 FLOW -1 .0 80 .060 .080 1000 243 1600 226 2800 223 2000 2855 215 KK CAR 13CART ER CREEK BASIN XIII BA . 628 LS 76 . 00095 288 1 215 3327 233 2900 223 6200 236 4918 225 6486 251 6900 246 PROPOSED COND ITIONS -ZERO DETENTION ANALYSIS PAGE 1 6 PAGE 17 Appendix B -2 686 UD 2. 14 687 KK 22ADD RT22 AND CARXIII 688 HC 689 KK RT23 690 RS 5 FLOW -1 691 RC . 085 . 060 . 085 10000 . 0014 692 RX 400 700 2800 2855 2881 2900 5500 6000 693 RY 230 220 210 202 202 210 220 230 694 KO 21 HEC-1 INPUT PAGE 18 LINE ID. . . . . . . 1. ...... 2. ...... 3 ....... 4 .. . 5 .. . ... 6 . . . . . . . 7. ...... 8 .... . . . 9 . . . . . . 10 695 KK RT24 696 RS 5 FLOW -1 697 RC .085 .060 .085 8000 . 00083 698 RX 1700 2000 2800 2855 2881 699 RY 220 210 200 192 192 700 KK RT25 701 RS 5 FLOW -1 702 RC . 085 . 060 . 085 4400 . 00093 703 RX 100 2800 2855 2881 704 RY 210 200 195 187 187 705 KK CARXIVCARTER CREEK BASIN XIV 706 BA 10 0 707 LS 75 708 UD 7 .86 709 KK 25COMBINE ROUTE 25 AND 710 KM END HYDROLOGIC ANALYSIS 711 HC 712 zz l *. * * * * * * * * * * * * * * * * *. * * * * *. * * * * ** * *. *. ** * * FLOOD HYDROGRAPH PACKAGE (HEC-1 ) MAY 1991 VERSION 4. 0. lE Lahey F77L-EM/32 version 5. 01 Dodson & Associates, Inc. RUN DAT E 10/07 /04 TIME 10 ' 55 ' 36 * * ***** * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * CAR XIV OF CARTERS 2900 6200 6400 200 210 220 2900 6800 7000 195 200 2 1 0 CREEK BASIN ** HYDROLOGIC ANALYSIS OF CART ER CREEK BASIN -COLLEGE STATION TX COLLEGE STATION STORMWATER MANAGEMENT PLAN PROPOSED CONDITION ANALYSIS-COTTEN SUBDIVISION NO DETENTION ANALYSIS ALL YEAR, 24 HOUR STORM , TYPE III STORM DISTRIBUTION MITCHELL & MORGAN, LLP -07 OCT 2004 U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-1748 USE OF M&M HYDROLOGIC INFORMATION FOR BURTON(2001), BRIAR(2001), HUDSON(l998 USE OF KLOTZ & ASSOC. HYDROLOGIC INFORMATION FOR BEE CREEK (1998) 12 IO IT JP JR 44 KK 4 9 KO USE OF NDM, INC. HYDROLOGIC INFORMATION FOR WOLF PEN CREEK (1 996) USE OF WALTON HYDROLOGIC FOR CARTERS CREEK AND CARTERS GROV E (1986) MODIFICATION TO BEE2 FOR UPDATED DEVELOPMENT -BEE4 ADDED OUT PUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL !PLOT PLOT CONTROL QSCAL 0 . HYDROGRAPH PLOT SCAL E HYDROGRAPH TIME DATA NMIN MINUTES IN COMPUTATION INTERVAL IDATE 1JAN99 STARTING DATE ITIME 0000 STARTING TIME NQ 500 NUMBER OF HYDROGRAPH ORDINATES NDDATE 2 J AN99 ENDING DAT E NDTIME 1 735 ENDING TIME I CENT 19 CENTURY MARK COMPUTATION INTERVAL 0.08 HOURS TOTAL TIME BAS E 41.58 HOURS ENGLISH UNITS DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH INCHES LENGTH , ELEVATION FEET FLOW CUBIC FEET PER SECOND STORAGE VO LUME ACRE-FEET SURFAC E AREA ACRES TEMP ERATURE DEGREES FAHRENHEI T MULTI-PLAN OPTION NPLAN NUMBER OF PLANS MU LT I-RATIO OPTION RATIOS OF PRECI PI TATION 4.50 6.20 7.40 8. 40 9.80 11. 00 13. 00 *** *** *** *** •••••• *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ••• *** *** *** *** *** *** *** RT12 ROUTE COMB HYDRO TO COMP PT 12 OUTPUT CONTROL VARIABLES PROPOSED CONDITIONS -ZERO DETENTIO N ANA L YSIS App endi x B-2 IPRNT PRINT CONTRO L I PLOT 0 PLOT CONTRO L QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 500 LAST ORDINATE PUNCHED OR SAVED TIMINT 0.083 TIME INTERVAL IN HOURS *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ••• *** *** *** *** *** *** 606 KK 610 KO 611 KK 615 KO BEE2 OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT ************** BEE4 ************** OUTPUT CONTROL IPRNT I PLOT QSCAL IPNCH IOUT ISAVl ISAV2 TIMINT PLOT CONTROL 0 . HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 21 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 500 LAST ORDINATE PUNCHED OR SAVED 0.083 TIME INTERVAL IN HOURS VARIABLES 0. 0 21 1 500 0. 083 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS *** *** *** *** *** *** *** *** ••• *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 689 KK RT23 694 KO OUTPUT CONTROL VARIAB LE S IPRNT PRINT CONTROL I PLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAP H PLOT SCALE IPNCH PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 500 LAST ORDINATE PUNCHED OR SAVED TIMINT 0. 083 TIME INTERVAL IN HOURS ••• WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS *** WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS *** WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 4 74 TO 300 INTERVALS *** WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS *** WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS *** WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS *** WARNING *** UNIT HYOROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS *** WARNING *** UNIT H'iDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS PEAK FLOW AND STAGE (E ND-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS RATIOS APPLIED TO PRECIPITATION PROP OSE D C ON DITIONS -ZERO D E TENTIO N ANA LYSIS Appendi x B-2 OPERATION STATION AREA PLAN HYDROGRAPH AT CARI 1.50 HYDROGRAPH AT CAR2 1. 49 2 COMBINED AT 10 3.00 ROUTED TO RTll 3.00 HYDROGRAPH AT CAR3 1.25 2 COMBINED AT 11 4.24 ROUTED TO RT12 4.24 HYDROGRAPH AT CARV 3. 72 2 COMBINED AT 12 7.96 ROUTED TO RT13 7 .96 HYDROGRAPH AT CAR4 1. 34 2 COMBINED AT 1 3 9. 30 ROUT ED TO RT14 9 .30 HYDROGRAPH AT CAR6 1. 51 HYDROGRAPH AT BRil 3.25 3 COMBINED AT 14 14 .07 ROUTED TO RT14a 14.07 HYDROGRAPH AT CAR6a 0 .12 2 COMBINED AT 14a 14.18 ROUTED TO RT1 5 14.18 RATIO 1 RATIO 2 RATIO 3 RATIO 4 RATIO 5 RATIO 6 RATIO 7 4.50 6.20 7.40 8.40 9.80 11.00 13 .00 FLOW TIME FLOW TIME FLOW TIME FLOW TIME 451. 14 .67 324 . 15.58 758. 1 5 . 00 753. 1 5.58 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 296.88 15.58 267. 15. 25 1018. 15.50 1016. 15.75 PEAK STAGES IN FEET STAGE TIME FLO W TIME FLOW TIME FLOW TIME 285.68 1 5 .75 775. 16.58 1766 . 1 6.00 1759. 16.50 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 287. 04 16.50 268. 15.58 2011. 16. 42 1922. 18.08 PEAK STAGES IN FEET STAGE 277 . 50 TIME 18.08 FLOW T IME FLOW TIM E FLOW T IME FLOW TIME 346. 15. 58 94 4 . 14.83 2663. 17. 33 2615. 1 8.83 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 268. 28 18.83 61 . 12.75 2620. 18. 83 2609. 1 9. 58 PEAK STAGES IN FEET STAGE T IME 278.14 1 9 .58 696. 14. 58 527. 15.50 1199. 15.00 1191. 1 5.50 297 .61 15.50 447 . 15 .17 1633. 15 . 42 1625. 15. 83 286. 63 15.83 1208. 16.50 2810. 16.08 2804. 16.42 287.86 16.42 448. 15 . 50 3222. 16.33 3129. 17. 50 278.50 17.50 551. 15 .50 1461. 14.75 4367. 17 .25 4206. 18.50 269. 44 18 . 50 97. 12.67 4214. 18.42 4192. 18.92 278.86 18. 92 873. 14.58 676. 15.42 1520. 1 4 . 92 151 2. 1 5. 42 2 98. 02 1 5. 42 579 . 1 5. 08 2086. 15.33 2076. 15.75 287.13 1 5.75 1 523. 1 6.50 3566. 16.00 3558. 1 6.33 288.38 1 6 .33 581. 15 .42 4102. 16. 25 4030. 17.25 278.81 1 7.25 701. 1 5. 50 1 834 . 14 .75 5755. 1 6.75 5577. 18.00 269 .85 18. 00 123 . 12.67 5588 . 18. 00 5564. 1 8.50 279.33 18.50 1022. 14. 58 802. 15.42 1790. 14 . 92 1781 . 15 .42 298.29 15.42 692 . 15. 08 2466. 15.33 2459. 15.67 287.42 15.67 1788. 16 .42 4197. 15.92 4191. 16 .17 288 .68 16.17 694. 15.42 4852. 16.08 4765. 17.08 279.06 17.08 828. 15 . 50 2146. 14.75 6872 . 16 .58 6671. 17.83 270.18 17. 83 145 . 12.67 6684 . 17.83 6656. 18. 33 279. 70 18.33 1231. 14.58 981. 15.42 2171. 1 4. 92 2159 . 1 5 .42 298.66 1 5.42 852. 15.00 3002. 15.33 2994. 15. 67 287.75 15.67 2162. 16 .42 5095 . 15.83 5089. 16 .17 289 .09 1 6.17 854. 15 .33 5901. 16. 08 5802. 17.08 279.41 17.08 1006. 1 5.42 2586. 14.67 8394. 1 6.42 8180. 17. 67 270 . 64 17. 67 176. 12.67 8196. 17.67 8180. 18.08 280.16 18.08 1410. 14.58 1135. 15.33 2499 . 14. 92 2488 . 15 .33 298.98 15.33 989. 15. 00 3469. 15.25 3458. 15.58 288.03 15.58 2484. 16. 42 5869. 15.83 5860. 16.17 289 .45 16.1 7 993. 15 .33 6806. 16 . 00 6692. 17.00 279. 71 17.00 1160. 15.42 2964. 14.67 9684. 16 .42 9513. 17.42 271. 01 17.42 202 . 12 .67 9533 . 17.42 9505. 17.75 280.47 17.75 1708. 14 .58 1392. 15.33 3047. 14.83 3033. 15.33 299.33 15.33 1220 . 15 . 00 4244. 15 .25 4237. 15 . 50 288.47 15. 50 3021. 16. 42 7151. 15. 75 7143. 16.00 289.93 16.00 1225. 15.33 8322 . 15 .92 8240. 16.67 280.18 16.67 1416. 15.42 3594 . 14.67 12095. 16. 33 11866. 17.17 271.43 17 .17 245. 12.67 11891. 17 .17 11860. 17.50 281.01 17.50 PROPOSED CO NDITIO NS -ZERO DETENTIO N ANALYSIS App endi x B-2 HYDROGRAPH AT CAR6b 0 .14 HYDROGRAPH AT BRTI 1. 36 HYDROGRAPH AT BRT2 1.83 2 COMBINED AT 30 3.19 ROUTED TO RT3 1 3.19 HYDROGRAPH AT BRT3 1. 32 2 COMBINED AT 31 4.51 HYDROGRAPH AT STAI 1.40 2 COMBINED AT 32 5.91 ROUTED TO RT33 5.91 HYDROGRAPH AT BRT 4 2.17 HYDROGRAPH AT BGW7 0.04 HYDROGRAPH AT BGW6 0.00 2 COMBINED AT 10 0. 05 ROUTED TO RTlO 0 . 05 HYDROGRAPH AT BGW4 0.01 2 COMBINED AT 11 0 . 06 ROUTED TO RTll 0.06 HYDROGRAPH AT BGW2 0.04 2 COMBINED AT 12 0 .10 ROUTED TO RT12 0 .10 HYDROGRAPH AT BGW5 0. 00 FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 65. 12.83 706. 13.17 818. 13. 75 1475. 13 .42 1474. 13. 50 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 276.46 13 .50 924. 12.75 2231. 13 .08 817. 13.00 3047. 13.08 3035. 13 .25 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 270. 53 13 .25 1 099. 13 .17 44. 12.00 4. 12. 00 47. 12.00 47. 12.00 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 2 .21 12 .00 11. 12 .00 58. 12.00 58. 12.00 PEAK STAGES IN FEET 105. 12 .75 1048. 13. 08 1197. 13 .67 2174. 13.33 2174. 13 .42 277. 64 13.42 1318. 12.75 326 0 . 13. 08 1186. 13. 00 4444. 13 . 08 4432. 13 .25 272. 58 13. 25 1645 . 13 .17 64 . 1 2.00 5 . 12 .00 69. 12 .00 69. 12 . 00 2.56 12.00 16. 12.00 86. 12.00 85 . 12 .00 STAGE 267 . 44 267. 73 TIME 12 .00 12.00 FLOW TIME FLOW TIME FLOW TIME 31. 12.08 88. 12.00 61. 12.33 PEAK STAGES IN FEET 50 . 12.08 135 . 12 .00 79 . 12.33 STAGE 259. 66 260 .10 TIME FLOW TIME 1 2.33 1 . 12.00 12. 33 1. 12.00 135. 12.75 1293. 13 . 08 1467. 13 .67 2673. 13 .33 2673. 13.42 278.40 13 .42 1596. 1 2.75 3989. 1 3 .08 1446. 13. 00 5434. 13.08 5421. 13.25 273.81 13. 25 2034 . 13 .17 78 . 1 2.00 7. 12.00 85. 12.00 85. 12.00 .78 12.00 20. 12 .00 1 05 . 12.00 1 04 . 12.00 267.88 1 2 .00 64. 12.0 8 168 . 12. 00 89 . 12. 42 260 .39 12.42 2 . 12.00 PR O POSED CONDITIONS -ZERO D ETENTIO N ANALYSIS 160. 12. 75 1499. 13 . 08 1692. 13.67 3090. 13.33 3090. 13.42 278.97 13 .42 1827. 12.75 4603. 13.08 1664. 13. 00 6263. 13 .08 6208. 13. 33 274.70 13. 33 2359 . 13 .17 90 . 12.00 8. 12.00 98. 12.00 98. 12.00 2.95 12.00 22. 12.00 120. 12 .00 120. 12.00 268.01 12.00 76. 12.08 195. 12.00 96. 12.42 260 .62 12.42 2. 12.00 195 . 12. 75 1786 . 13. 08 2006. 13 .67 3674. 13 .33 3673 . 13.42 279. 72 13 .42 2149. 12.75 5464. 13.08 1967 . 13.00 7427. 13. 08 7270. 13.58 275 . 62 13 .58 2813. 13 .17 107. 1 2.00 9. 12.00 116. 12.00 116. 12.00 3.17 12.00 26. 12.00 142. 12 .00 142. 1 2.00 268.16 12 .00 93. 12 .08 234 . 12.00 105. 12.42 260.91 12.42 2. 12.00 224. 12.75 2033. 13.08 2275. 13 .67 4174 . 13 .33 4173. 13. 42 280.32 13 .42 2425. 12. 75 6195. 13.08 2227. 13.00 8416 . 13.08 8082. 13. 75 275.99 13 .75 3202. 13 .08 121. 12.00 10. 12.00 131. 12.00 131. 12.00 3.34 12.00 30 . 12.00 161. 12.00 160. 12.00 268.27 12.00 107. 12.00 267. 12.00 111 . 12.50 261.1 5 12.50 3. 12.00 274. 12 .75 2444. 13. 08 2723. 13 .67 5006. 13 .33 5004. 13.42 281.17 13.42 2884. 12.75 7406 . 13. 08 2658. 13.00 10057. 13. 08 9598. 13.83 276.57 13. 83 3850. 13 . 08 144. 12 .00 12. 12.00 157. 12.00 157. 12.00 3.62 12.00 35. 12.00 192. 12.00 191. 12.00 268.45 12.00 131. 12.00 322. 12 .00 120. 12 .50 261 .50 12 .50 3. 12.00 App e ndi x B-2 ROUTED TO RTBGW5 0 .00 HYDROGRAPH AT BGW3 0.01 ROUTED TO RTBGW3 0. 01 HYDROGRAPH AT BGWl 0. 0 1 3 COMBINED AT 20 0 . 01 ROUTED TO RT20 0. 01 2 COMBINED AT 30 0 .12 3 COMBINED AT 33 8.19 HYDROGRAPH AT HUDl 0.05 ROUTED TO DP 1 0.05 HYDROGRAPH AT HUD2 0.02 2 COMBINED AT PT 2 0 . 07 ROUTED TO 383+30 0 . 07 HYDROGRAPH AT HUD) 0 .11 2 COMBINED AT 37 4 +35 0.18 ROUTED TO 374+35 0.18 HYDROGRAPH AT HUD5B 0 . 03 2 COMBINED AT 365+50 0. 21 ROUTED TO 365+50 0 . 21 HYDROGRAPH AT HUD4 0.14 ROUTED TO 180+45 0 . 14 HYDROGRAPH AT HUD5A 0.08 2 COMBINED AT 175+20 0 . 22 FLOW TIME l. 12.00 PEAK STAGES IN FEET STAGE 272. 04 TIME 12.00 FLOW TIME FLOW TIME 4. 12.00 4. 12.08 PEAK STAGES IN FEET STAGE 0. 65 TIME 12.08 FLOW T IME FLOW TIME FLOW TIME 5. 12.00 10. 12.00 9. 12 .08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 272. 56 12.08 70. 12. 25 4168. 13 .25 43. 12. 08 43. 12.08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TI ME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW 317. 93 12.08 16. 12 .00 59 . 12 .00 58. 12.08 1 09. 12.00 166. 1 2.00 161. 12 .08 25. 12 .00 1 86. 12. 00 183. 12.08 80. 12.50 79 . 12 .58 68. 12.17 136. l. 12.00 272.06 12.00 7 . 12.00 7. 12 .00 0 . 79 12.00 9. 12.00 17. 12.00 16. 12.08 272. 77 12.08 93. 12 .25 6135. 13.25 67. 12.08 67 . 12.08 318.46 12.08 24. 12.00 90. 12.00 89. 12.08 160. 12.00 248. 12.00 242. 12.00 37. 12.00 279. 12 .00 275. 12.08 127. 12.50 123. 12.58 103. 12.17 207. 2. 12.00 272. 07 12.00 9. 12.00 9. 12 .00 0. 87 1 2 .00 11 . 1 2.00 22. 1 2.00 21. 12.08 272 . 90 12.08 107. 12.17 7529. 13 .17 83. 12.00 84 . 12 .08 318. 92 12.08 30. 12.00 113. 1 2 .00 111. 12.08 197. 1 2 .00 306. 1 2.00 303. 1 2.00 46. 1 2.00 349 . 12.00 344. 12.08 161. 12.50 14 9. 12.75 128 . 12.17 255 . PROPOSED CONDITIONS -ZERO DETENTION ANALYSIS 2. 1 2.00 272 . 09 12.00 11. 12 .00 10. 12.00 0 . 94 12.00 13. 12.00 26. 12.00 25. 12.08 272. 98 12.08 117 . 12.17 8643. 13 .17 98 . 12.00 98. 12 .08 319 .42 12 .08 35 . 12.00 131. 12.00 129. 12 .08 227. 12 .00 354. 12.00 351. 12.00 53. 12 .00 404. 12.00 398. 12.08 189. 12.50 172. 12 .75 149. 12 .17 288. 2. 12.00 272. 10 12.00 13. 12.00 13 . 12 .00 1.01 1 2 .00 16 . 12.00 31 . 12.00 30 . 12.08 273.10 12.08 130. 12.17 1 0022. 13 .42 118 . 12.00 116 . 12 .08 320.20 12.08 41. 12.00 155. 12.00 151. 12.08 270. 12.00 418. 12.00 415. 1 2 .00 63. 12.00 478. 12.00 471. 12.08 229. 12. 42 210 . 12 .75 178. 12.17 340. 2. 12 .00 272.11 12.00 15. 12.00 15 . 12.00 l. 07 12.00 19. 12 .00 36. 12.00 35. 12.08 273.20 12.08 140. 12.17 1101 8. 13 . 50 135. 12 .00 131. 12.08 320.96 12.08 47. 12.00 176. 12.00 170. 12.08 306. 12.00 472. 12.00 469. 12 .00 71. 12.00 541. 12 .00 533. 12.08 263 . 12.42 255. 12 .58 203. 12.17 400 . 3 . 12.00 272.14 12 .00 18. 12.00 18. 12.00 1.15 12.00 23. 12.00 44. 12.00 43. 12.08 273 .34 12.08 1 56 . 12 .17 13017. 13.58 163. 12.00 154. 12 .17 322.30 12.17 56. 12.00 207. 12.00 199. 12.17 366. 12.00 560. 12.00 557. 12 .00 86. 12.00 643. 12.00 630. 12.08 320. 12 .42 288. 12.75 244. 12.17 495. Appendi x B -2 + ROUTED TO 175+20 0. 22 2 COMBINED AT 154+90 0. 43 HYDROGRAPH AT lillD6 0.08 2 COMBINED AT 154+90 0.50 ROUTED TO 154+90 0.50 HYDROGRAPH AT lillD7 0. 28 2 COMBINED AT 135+20 0. 78 ROUTED TO 135+20 0.78 HYDROGRAPH AT lillD8A 0. 20 HYDROGRAPH AT HUD8B 0. 32 2 COMBINED AT SO LAKE 0.51 ROUTED TO SO LAKE 0 .51 HYDROGRAPH AT HUD8D 0 . 19 HYDROGRAPH AT lillD8C 0 .10 HYDROGRAPH AT HUD8E 0. 03 4 COMBINED AT CF9DP 0.84 ROUTED TO 255+58 0.84 ROUTED TO 248+00 0. 84 HYDROGRAPH AT HUD9 0. 22 2 COMBINED AT 233+51 l. 05 ROUTED TO 233+51 l. 05 ROUTED TO 218+36 l. 05 2 COMBINED AT 105+70 l. 84 HYDROGRAPH AT HUD l O 0.15 2 COMBINED AT 105+70 1.99 ROUTED TO TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW T IME FLOW TIME FLOW TIME FLOW TIME 12.33 119. 12.67 266. 12.17 72. 12.00 328 . 12. 08 325. 12.17 1 27. 12.92 399. 12.17 342. 12.58 110. 12.58 1 47. 12.92 249. 12 .75 227. 13. 08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW T I ME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 306.12 13 .08 11 6 . 1 2. 42 59. 1 2.50 26. 12.00 365. 12.75 307. 13 .33 304. 13 .50 139. 12.42 366. 13. 33 349. 13 .67 336. 14.08 587. 13 .50 97. 12 .42 629. 13 .33 12.33 181. 12.67 416. 12.17 108. 12.00 511. 12 .08 455 . 12.25 204. 12. 92 612. 12 .42 531. 12.83 177. 12.50 236. 12.83 402. 12 .67 373. 13 .00 306.63 13 .00 185 . 12.42 95. 12. 42 40. 12.00 603. 12 .67 508. 13. 25 500. 13 .42 217. 12.42 605. 13 .17 580. 13. 58 543 . 14. 08 95 4 . 13. 58 153. 12. 42 1013. 13.42 12.25 217 . 12.67 513. 12.08 133. 1 2.00 639. 12.08 553. 12 .25 261. 1 2. 92 755. 12.42 668. 13.00 225. 1 2.50 302 . 12.83 513. 1 2 .67 479. 13 . 00 306.97 13.00 235. 1 2 .33 121. 12.42 51. 12.00 775. 1 2.67 673. 13. 17 655. 13 .42 272. 1 2.42 789. 13.17 771. 13 .42 715. 13.92 1257. 13 .50 193. 1 2.42 1334 . 13. 25 PR OPOSED COND ITIO NS -ZE RO DE TENTIO N ANALYSIS 12.25 249 . 12.75 589. 12.08 154. 12 .00 735. 12.08 671. 12 .25 308 . 12. 92 889. 12.25 778. 12.92 266. 12.50 356 . 12 .83 605. 12.67 567. 13 . 00 307. 22 13.00 277. 12 .33 143. 12. 42 60. 12.00 919. 12 .67 832 . 13.08 813. 13. 25 319. 12.42 989. 13.08 961. 13.33 876 . 13 .75 1547 . 13 .42 226. 12.33 1640. 13.33 1 2.33 295. 1 2 .75 693 . 1 2 .08 183. 1 2 .00 866. 1 2.08 813. 1 2.17 374 . 12.92 1072 . 12.25 929. 1 2 .83 323. 12.50 433 . 12 .83 735. 12.67 691. 12 .92 307 .57 12.92 336. 12.33 174 . 12. 42 72. 12.00 1122. 1 2 .67 1063 . 12.92 1 033. 13. 08 384. 12.42 1276. 13 .00 1249. 13 .17 1105. 1 3.67 1933. 13.42 274. 12 .33 2049. 13 .33 1 2 .50 380. 12 .58 781. 12.08 208. 12.00 978. 12 .08 924. 12.17 431. 12.92 1223 . 12.25 1085. 12 .83 372. 12 .50 499. 12.83 847 . 12.67 798 . 12.92 307 .85 12. 92 386. 12. 33 200. 12.42 82. 12.00 1296. 12.67 1259 . 12.83 1230. 13. 00 440. 12.42 1535. 12.92 1505. 13. 00 1343. 13. 4 2 2316. 13. 33 31 4 . 12.33 2456 . 13.25 12. 25 463. 12.50 957. 12. 25 250. 12.00 1157 . 12.08 1110 . 12 . 25 525. 12.83 1504. 12. 33 1334 . 12.83 453 . 12.50 608. 12 .83 1 0 32. 12.67 976. 12. 92 308.28 12. 92 470. 12.33 243. 12.42 99 . 12.00 1585. 12.58 1553. 12.75 1530. 12. 92 533. 12.42 1932. 12 .83 1901. 12. 92 1728 . 13. 33 2952. 13 .17 382. 12 .33 3148. 13. 08 A pp endi x B-2 105+70 1 .99 HYDROGRAPH AT HUDll 0 .12 HYDROG RAPH AT HUD 1 2 0 . 09 ROUTED TO DP 1 2 0.09 3 COMBINED AT 98+15 2 .21 ROUTED TO 98+15 2.21 HYDROGRAPH AT HUD13 0. 06 HYDROGRAPH AT HUD14A 0. 21 ROUTED TO PT14a 0. 21 HYDROGRAPH AT HUD 14B 0. 30 4 COMBINED AT 62+25 2.78 ROUTED TO 62+25 2.78 HYDROGRAPH AT HUD15 0. 33 2 COMBINED AT PT15 3 .11 ROUTED TO 42+20 3 .11 4 COMBINED AT 15 25.63 ROUTED TO RT16 25. 63 HYDROGRAPH AT CCGI 0 . 71 HYDROGRAPH AT CAR? 1. 86 3 COMBINED AT 1 6 28.20 ROUTED TO RT17 28.20 HYDROGRAPH AT CARS 0 .79 2 COMBINED AT 1 7 28.99 FLOW TIME FLOW TIME FLOW TIME F LOW TIME 585. 14.00 92. 12.17 87. 12.00 63. 12.25 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME F LOW TIME 275.53 12.25 614. 13 .83 607. 14.17 50. 12.08 138. 12. 33 127. 12 .50 PEAK STAGES IN FEET STAGE 3 14 .14 TIME 1 2 .50 FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 130. 13. 08 786. 13. 00 764. 13 .50 138. 13 .17 897 . 13 . 33 894. 13 . 50 5650. 13 .42 5420. 14 .33 PEAK STAGES IN FEET STAGE TIM E FLOW TIME FLOW TIME FLOW TIME FLOW TIME 251. 93 14.33 351. 1 3.1 7 556. 13. 92 6174. 14.25 5999. 15. 08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME 243.10 15.08 202. 14 .33 6 1 85. 1 5 . OB 882. 14.17 143. 12.17 129. 12.00 79. 12.33 276. 63 12 .33 929 . 13. 75 917. 14.33 78. 12.08 221. 12.25 203. 12 .50 31 4 .79 12.50 210. 13.00 1175. 13. OB 1168 . 13. 33 222. 13 .17 1387. 13 .25 1378. 13.42 8566. 13. 33 8004. 14 .42 252.73 14.42 532 . 13 .17 920. 13. 83 9178. 14. 33 9015. 14. 92 243.87 14 . 92 338. 14.25 9332. 14 .92 1233 . 14.00 180. 12.17 160 . 12.00 109. 12. 33 277.11 12.33 1311. 14.00 1224. 14 .33 98. 12.0B 281. 12. 25 255. 12 .50 3 15 .11 12 .50 268. 1 3.00 1444. 14.1 7 1436. 14.33 284. 1 3.08 1 687. 13 .17 1 676. 13.42 1 04 86 . 1 3.25 9769. 14 .4 2 253.23 14.4 2 661. 1 3.0B 1186 . 13. 83 11274 . 14. 25 11077 . 14.92 244.38 14.92 4 39. 14. 25 11485. 14 .92 PROPOSE D CO NDITIONS -ZERO DETENTION ANALYSIS 1606 . 13.58 210. 12.17 185. 12.00 136. 12.25 277.40 12. 25 1717. 13.58 1599. 14.00 115. 12.08 331. 12. 25 300. 12 .50 315.39 12.50 317. 13.00 1918. 13 .83 1893. 14.00 335. 13. 08 2135. 13. 92 2119. 14.0B 11990. 13 .42 11345. 14. 33 253.61 14 .33 770. 13. OB 1412. 13 .83 13154 . 14 .25 12978. 14.75 244 .74 14.75 524. 14 .25 13478. 14. 75 2039. 13 .42 253. 12. 17 221. 12 .00 171. 12. 25 277. 75 12.25 2171. 13 .42 2091. 13. 75 138. 1 2.00 401. 12.25 363. 12.50 315.66 12 .50 385. 1 3.00 2550. 13 . 58 2525. 13.75 408. 13. 08 2869 . 13 .67 2848. 13.83 144 93. 13 .58 1 3858 . 14 .42 25 4 .02 14 .42 922. 13.08 1731. 13. 75 15978. 14.33 15787 . 14.83 245.23 14.83 644 . 14.1 7 16392 . 14.75 2447. 13 . 33 289. 12 .17 251. 12.00 200. 12.25 278.01 12.25 2597. 13 .33 2517. 13. 58 159. 12.00 460. 12.25 418. 12 .50 315.89 12.50 444 . 13.00 3107. 13 .42 3078. 13.58 470. 13.0B 3501. 13.50 3480. 13.67 16456. 13. 67 15847 . 14.50 254 .35 14.50 1052. 13.0B 2006 . 13 .75 18223. 14.42 18043. 14.83 245 .63 14. 83 748 . 14 .1 7 18740. 14. 83 3138. 13.17 350 . 12.17 301. 12 .00 249. 12 .25 278 .39 12.25 3341. 13.1 7 3253. 13. 42 192. 12 .00 560. 12.25 509. 12.50 3 1 6.23 12 .50 541 . 13.00 4064. 13.25 4029 . 13. 42 574. 13.08 4582. 13.33 4550. 13.50 19797. 13.58 18988 . 14.50 254 .86 14.50 1269. 13 .08 2466. 13. 75 21880. 14 .42 21723. 14.83 246.18 14 .83 922. 14.17 22589. 14.75 Appendix B-2 HYDROGRAPH AT WPNI 0. 42 HYDROGRAPH AT WPCI 0. 91 2 COMBINED AT 40 l.33 ROUTED TO RT41 l.33 HYDROGRAPH AT WPN2 0.11 2 COMBINED AT 41 l .44 HYDROGRAPH AT WPBI 0. 23 2 COMBINED AT 42 1.67 ROUTED TO RT43 l .67 HYDROGRAPH AT WPN3 0 .12 2 COMBINED AT 43 l. 79 HYDROGRAPH AT WPAI 0.50 2 COMBINED AT 44 2. 29 ROUTED TO RT45 2 .29 HYDROGRAPH AT WPN4 0 . 70 2 COMBINED AT 45 2.99 ROUTED TO RT46 2.99 HYDROGRAPH AT WPNV 0. 56 2 COMBINED AT 46 3.55 2 COMBINED AT 18 32. 54 ROUTED TO RT19 32.54 HYDROGRAPH AT CAR9 0. 99 FLOW TIME FLOW TIME FLOW TIME FLOW TIME 382 . 12.25 690 . 12.50 1042 . 12 . 33 1040 . 12.42 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 284 .47 12.42 126. 12 .00 1104. 12.42 220. 12.17 1311. 12 .33 1302. 12.50 PEAK STAGES IN FEET STAGE 281.07 TIME 12 .50 FLOW TIME FLOW TIME FLOW TI ME FLOW TIME FLOW TIME 133. 12 .00 1357 . 12.50 324. 12. 75 1666. 12.50 1624. 12 . 92 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 266.51 12. 92 725. 12.17 2030. 12 .58 1886 . 13 .42 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 24 5. 04 1 3.42 330. 12.92 2180. 13 .33 7214. 14. 92 6779 . 16.17 PEAK STAGES IN FEET 549. 12.25 1001. 12.50 1509. 12. 33 1508. 12. 42 285.65 12. 42 176. 12.00 1596. 12. 42 313. 12.17 1894. 12.33 1882. 12 .50 281.85 12.50 186. 12.0 0 1965. 12.42 477. 12 .75 2415. 12.50 2363. 12.83 267. 33 12.83 1006. 12.17 2944. 12.58 2775. 13. 33 245.85 13.33 483. 12. 92 3227. 13 .25 10752 . 14 . 75 10292. 15. 92 STAGE 235.18 235.92 TIME 16 .17 15.92 FLOW TIME 247. 14.50 414. 14 . 42 667. 12.25 1221. 12.50 1839. 12 .33 1 838 . 12 .42 286 .36 12.42 211. 12.00 1947. 1 2 .33 378 . 12 .17 2308. 12.33 2293. 12.5 0 282 .28 12 .50 223. 12 .00 2392. 12. 42 585. 12.75 2945. 12.50 2883. 12.83 267.82 12 .83 1204. 12.17 3595 . 12.58 34 1 6 . 13. 25 246.34 13. 25 592 . 1 2 . 92 3981. 13 .17 13191. 14.67 12646 . 15.83 236 .4 1 15.83 536 . 14.33 PR OP OS ED CONDITIONS -ZERO D ETENTIO N ANALYSIS 765. 12.25 1403. 12.50 2114 . 12.33 2113. 12.42 286.88 12.42 241. 12.00 2237 . 12.33 432 . 12 .17 2649. 12.33 2640. 12. 42 282.57 12.42 254. 12.00 2770. 12.33 676. 12. 67 3390. 12 .42 3314. 12.75 268.20 12.75 1369. 12.17 4152. 12.58 3938. 13.17 246 .73 13.17 683. 12.92 4596. 13 .17 15574. 14 .58 14736. 15.75 236.85 15.75 640. 14.33 902. 12.25 1659. 12.50 2498 . 12.33 2497. 12.42 287.54 12.42 282. 12.00 2648. 12.33 508. 12.1 7 3132. 12.33 3122 . 12.42 282.90 12.42 297 . 12.00 3270. 12. 42 802. 12.67 4012. 12.42 3929. 12 .75 268.69 12. 75 1600 . 12.17 4947. 12 .58 47 06. 13 .17 247.22 13 .17 809 . 12. 92 5492. 13 .08 18740 . 14.58 18291 . 15. 33 237.33 15.33 788. 14. 33 1020. 12.17 1877. 12.50 2826. 12 .33 2826. 12.42 288.03 12. 42 317. 12 .00 2995. 12.33 573. 12.17 3540. 12 .33 3530. 12. 42 283.18 12. 42 334 . 12.00 3700. 12 . 33 911. 12.67 4540. 12 .42 4455. 12.75 269.08 12. 75 1798. 12.17 5615. 12.58 5345. 13. 08 247.62 13 . 08 918. 12 . 92 6247. 13. 08 21273. 14.58 20903. 15 .33 237.64 15 .33 915. 14 .33 1215. 12 .17 2240. 12.50 3372. 12.33 3371 . 12. 42 288. 75 12. 42 375. 12.00 3570. 12.33 681. 12.17 4217. 12. 33 4209. 12. 42 283.58 12. 42 395. 12.00 4428. 12.33 1091. 12.67 5418. 12.42 5318. 12.75 269.66 12.75 2127. 12.17 6727. 12.58 6442. 13.08 248.22 13. 08 1098 . 12 .92 7521. 13.08 25652 . 14.58 25181. 15.33 238 .14 15. 33 1127. 14 .25 A ppe ndi x B-2 HYDROGRAPH AT CARX 0 .48 3 COMBINED AT 1 9 34 .0 1 ROUTED TO RT20 34.01 HYDROGRAPH AT BEEBSl 0.58 HYDROGRAPH AT BEEBS2 0 . 47 2 COMBINED AT BEEBS 1. 05 ROUTED TO 3 1 0 1. 05 HYDROGRAPH AT BEEBS3 0. 52 2 COMBINED AT BEEBS 1.57 HYDROGRAPH AT BEEBNl 1.03 2 COMBINED AT 2. 60 ROUTED TO RCH 7 2.60 ROUTED TO RCH 6 2.60 HYDROGRAPH AT BEEBN2 0. 81 2 COMBINED AT 3. 41 HYDROGRAPH AT BE El 1. 00 ROUTED TO RCH 4 1. 00 2 COMBINED AT 4.41 ROUTED TO RCH 3 4.41 ROUTED TO RCH 2 4.4 1 HYDROGRAPH AT BEE2 1. 21 HYDROGRAPH AT BEE4 0. 01 3 COMBINED AT 5.63 HYDROGRAPH AT BEEAl 0 .66 ROUTED TO 180 0 .66 FLOW TIME FLOW TIME FLOW TIME 219. 13.08 7006 . 1 6 .17 6534. 17 .75 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 235.34 17. 75 262. 12. 92 176 . 13. 25 431. 13 . 08 431. 13. 08 PEAK STAGES IN FEET STAGE 288. 73 TIME 13.08 FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW 184. 13.50 606. 13 .17 403 . 13 .25 1007. 13.17 978. 13. 50 973 . 13.67 425. 12.83 1301. 13 .42 339. 13.83 309. 14. 50 1546 . 13.58 1539. 13. 75 1 241. 15.25 527 . 13.08 9. 12.08 1488. 1 5. 00 300. 13 .00 300. 343. 13.08 10685. 15 .92 10100. 17.33 236 .20 17.33 393 . 12.92 266 . 13. 25 648. 13 .00 648. 13.08 289 .25 13.08 277 . 13.42 9 1 2. 13.17 599 . 13 . 25 1509 . 13 .17 1456. 13. 50 1449. 13 .67 616. 12. 83 1923. 13 .42 497 . 13. 83 459. 14 .42 2294. 13. 58 2287. 13.75 1956. 15. 00 776. 13.08 13. 12.08 2366. 14. 75 442. 13.00 441. 433 . 13.08 13 1 58. 15 .83 12504. 1 7.25 236 .78 17.25 485. 12.92 329. 1 3.25 801. 13. 00 801. 13. 00 289. 54 13.00 342 . 13.42 1128. 13.17 738 . 13. 25 1863. 13.17 1779. 13. 58 1775. 13 .67 752. 12.83 2363. 1 3.33 609. 13.83 564. 14 .42 2815. 13.58 2810. 13 .67 2448 . 14. 92 952. 13.08 15. 12.08 2971. 14. 67 542. 13. 00 541. PROPOSED CO NDITIONS -ZERO DETENTION ANALYSIS 508 . 13. 08 15363. 15.67 14838 . 16 .75 237.19 16.75 561. 12.92 381. 13. 25 928. 13.00 927. 13.00 289 . 76 13 .00 397. 13 .42 1307. 13 .17 853 . 13 . 25 2157. 13 .17 2041. 13. 58 2036. 13.75 864. 12.83 2694. 13 .42 702. 13. 83 651. 14 .42 3233 . 13. 67 3214. 13.83 2868. 14. 92 1098 . 13.08 17. 12.08 3472. 14. 67 624. 13.00 624. 614. 13. 00 1 9165 . 1 5.33 1 8341 . 16.33 237.67 16.33 667. 1 2 .92 454. 13.25 1105. 13.00 11 04. 13.00 2 90 . 02 13. 00 473. 13.42 1556. 13 .17 1 014. 13 . 25 2568. 13.17 2402. 13. 67 2397 . 13. 75 1020. 12.83 3166. 13 .42 832. 13.83 772. 14.42 3815 . 13. 67 3793. 13. 83 3421. 15.00 1302. 13. 08 20 . 12.08 4135. 14 .67 740 . 13. 00 739. 705. 13 . 00 21909 . 15.33 21261. 16.25 238 .06 16 .25 758. 12.92 517 . 13 . 25 1256. 13. 00 1256. 1 3.00 290. 22 13 . 00 538. 13.42 1770. 13 .17 1152. 13 .25 2919. 13 .17 2712. 13 .67 2705. 13. 75 1154. 12.83 3560. 13 . 50 944. 13.83 877. 14 .42 4311. 13.67 4299. 13.83 385 1 . 15.00 1476. 13.08 23. 12.08 466 1 . 14. 67 839. 13.00 838 . 856. 13. 00 26434. 15.25 25787. 16.17 238.68 16.17 909 . 12. 92 621. 13. 25 1508 . 13. 00 1508. 13 .00 290.52 13 .00 64 7. 13 .42 2126 . 13 .17 1382. 13.25 3504 . 13 .17 3177. 13. 75 3168. 13.92 1378. 12.75 4155. 13. 33 1130. 13.83 1053. 14 .42 5070. 13.75 5026. 14.00 4591. 15 .08 1767. 13. 08 27. 12.08 5526 . 14 . 75 1004 . 13.00 1003. Appendi x B-2 HYDROGRAPH AT BEEA2 1.12 2 COMBINED AT 1.78 ROUTED TO 1 90 1 .78 HYDROGRAPH AT BEEA3 0. 46 2 COMBINED AT 2.24 2 COMBINED AT 7.87 ROUTED TO RCH 1 7.87 HYDROGRAPH AT BEE3 0. 84 2 CO MBINE D AT PTO. 00 8. 71 2 COMBINED AT 20 42. 72 ROUTED TO RT2 1 42 .72 HYDROGRAPH AT CARXI 3.32 HYDROGRAPH AT CAR 1 2 1.12 3 COMBINED AT 2 1 47.16 ROUTED TO RT22 47.16 HYDROGRAPH AT CAR13 0 . 63 2 COMBINED AT 22 47.79 ROUT ED TO RT23 47 .79 ROUTED TO RT24 47.79 ROUTED TO RT25 47.79 TIME 13. 08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 256 .85 13. 08 727. 12.50 971 . 1 2 .58 964 . 12.83 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 245 .26 12 .83 142. 13.92 1062. 12.83 1992. 14.17 1790. 16. 33 203. 14.75 1948 . 1 6.17 8285 . 1 7 .58 8237. 18. 08 PEAK STAGES IN FEET 13. 08 257.16 13. 08 1050 . 12.50 1412. 12 .58 14 05. 12.75 2 45 .96 12.75 213 . 13.92 1552. 12.83 3175. 14.25 2943. 15 . 75 308. 14.75 3213. 15.67 12771. 17.08 12703. 17.58 STAGE 235. 66 236. 69 TIME 18.08 17.58 FLOW TIME FLOW TIME FLOW TIME FLOW TIME 562. 16. 83 368. 13. 58 8827 . 18.08 8785 . 18. 50 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 226. 20 18.5 0 173 . 14. 00 8828. 18.5 0 8376 . 20.17 PEAK STAGES IN FEET STAGE TIM E FLOW TIME 214 .18 20 .1 7 8049 . 21. 92 PEAK STAGES IN FEET STAGE TIME FLOW TIME 204.94 21. 92 7930 . 23.08 PEAK STAGES IN FEET 933 . 16.67 611. 13. 50 13727. 17.58 13701. 17.83 226 .99 17.83 292 . 13. 92 13783. 17. 83 13088. 19.42 215.34 19 .42 12573. 20.92 206.17 20.92 12338 . 22.08 1 3.08 257.37 1 3 .08 1 277. 12.50 1 723. 1 2.58 1717. 12.75 246 .39 12.75 263. 13. 92 1897. 12. 83 4006. 14.17 3731. 15.58 382. 14 .75 4080. 1 5.50 158 9 1. 17.00 15858 . 1 7 .33 237.23 1 7 .33 1208 . 16.58 790. 13 .50 17217. 17.25 17186. 1 7.58 227.49 17.58 381. 1 3 .83 17298. 17.58 16 5 1 5 . 19. 08 2 1 5.93 1 9. 08 15939 . 20.50 206.93 20.50 15704. 21. 42 PROPOSED CONDITIONS -ZERO DETENTIO N ANALYSIS 1 3 .08 257 .51 13.08 1466. 12.50 1981. 12 .58 1974 . 12.75 246 . 71 12.75 305. 13. 92 2185. 12.83 4664. 14.17 4422. 15.42 444. 14. 67 4837 . 15.33 18993 . 16.67 18912 . 16 . 92 237 .63 16 .92 1441 . 16.58 941. 13. 42 20588. 16. 92 20516. 17 . 25 227.97 17.25 456 . 13. 83 20663. 17.25 19451. 18. 75 216 .42 18 .75 18777 . 20.17 207. 44 20.17 18511. 21. 08 1 3 .08 257 .63 13.08 1 729. 1 2.50 2359. 12.58 2348 . 12.75 247 .15 12.75 364. 13 .92 2599. 12.75 5585. 14.00 5323. 15.33 531 . 14. 67 5827. 1 5 .25 23709. 16.25 23597 . 16 .58 238 .23 1 6.50 1772. 1 6.50 1155. 13 .42 25714. 16.5 0 25658. 16.7 5 228. 54 16. 75 563 . 13 . 83 25871. 16. 75 24118 . 18 .17 217.08 18.1 7 22960. 19. 58 208.18 19.58 22572. 20.58 13. 08 257.73 13. 08 1954. 12.50 2665. 12.58 2656 . 12.75 247.46 12.75 414. 13 .92 2944. 12.75 6356. 14. 00 6101. 15.17 606. 14.67 6689. 15 . 08 27381. 16.08 27299 . 16 .42 238 . 71 1 6 .42 2058. 16.50 1339. 13.42 29764. 16. 42 29710. 16.67 228.97 16. 67 654. 13 .83 29962. 16.67 28290. 18.00 217.59 18.00 27084. 19.25 208.75 19.25 26784. 19.92 13. 08 257.90 13 . 08 2329 . 12 .50 3181. 12.58 3171. 12 .75 247.97 12 .75 497. 13.92 3519. 12 .75 7622 . 13 .67 7316. 15.00 730. 14.67 8036. 15.00 33202. 16.00 33153 . 16.25 239.35 16.25 2537 . 16.42 1646. 13 . 42 36211. 16.25 36159. 16.50 229.66 16.50 808. 13. 75 36484. 16.50 34925 . 17.75 218.35 17.75 33600. 19.00 209. 63 19.00 33313. 19. 67 Appendix B-2 STAGE 198. 23 199 . 06 199.4 5 199 . 76 200. 22 200 . 55 201 .02 TIME 23.08 22 . 08 21. 42 21 . 08 20 . 58 19. 92 19 .67 HYDROGRAPH AT CARXIV 10. 00 FLOW 1041. 1771. 2317. 2784. 3450 . 4030. 5006. T IME 20 .58 20.42 20.33 20.25 20.17 20.17 20. 08 2 COMBINED AT 25 57.79 FLOW 8868 . 14012. 17958. 21247. 26008. 30809. 38297. TIME 23.00 22.08 21 .33 21 .08 20 . 50 19 .92 19. 67 SUMMARY OF DAM OVERTOP PING/BREACH ANALYSIS FOR STATION RT12 (PEAKS SHOWN ARE FOR INTERNAL TIME STEP US ED DURING BREACH FORMATION) PLAN INITIAL VALUE SPILLWAY CREST TOP OF DAM ELEVATION 259. 00 266.00 267. 75 STORAGE 2. 142. 215. OUTFLOW 0. 200. 376. RATIO MAXIMUM MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF TIME OF OF RESERVOIR DEPTH STORAGE OUTFLOW OVER TOP MAX OUTFLOW FAILURE PMF W.S .ELEV OVER DAM AC-FT CFS HOURS HOURS HOURS 4.50 259.66 0 .00 4. 6 1 . 0.00 12. 33 0. 00 6.20 260.10 0.00 7. 79. 0 . 00 12.3 3 0. 00 7. 40 260.39 0. 00 9. 89. 0. 00 12.42 0. 00 8. 40 260.62 0. 00 11. 96. 0 . 00 12.42 0.00 9. 80 260. 91 0. 00 1 3. 105. 0. 00 12.42 0.00 11 . 00 261 .15 0 . 00 16. 111. 0. 00 12 .50 0.00 13.00 261.50 0. 00 20. 120. 0.00 12.5 0 0.00 *** NORMAL END OF HEC-1 *** PROPOSED CONDITIONS -ZERO DETENTION ANALYSIS Appendix B -2 PHASE B: BEE CREEK TRIBUTARY 'A 1 DRAINAGE ANALYSIS This section of the Cotten's Subdivision Drainage Analysis includes all required drainage analysis fo r those dra inage areas contributing to Bee Creek Tributary 'A'. GENERAL LOCATION AND DESCRIPTION Kenny Cotten's Barbeque will be located on Lot 2, Block 1 of the Cotten Subdivision, Phase 1, adjacent to and on the east side of the proposed Dartmouth Drive Extension and south of FM 2818 (Harvey Mitchell Parkway) in Col lege Station, Texas. This proposed Dartmouth extension is approximately 2000 feet east of the intersection of FM 2818 and Texas Avenue . More information regarding Dartmouth Drive was presented in the August 2002 Dartmouth Drive Extension Drainage Analysis completed by Mitchell & Morgan, LLP . The proposed detentio n facility wi ll serve the Cotten barbeque restaurant as well as a future mixed-use development on Lot 4, Block 1 of the Cotten Subdivision, henceforth referred to as the Bertrand property . With the development of the barbeque restaurant, this facility will be designed and constructed as a detention pond . As the mixed-use deve lop ment commences, this detention pond will be reconstructed to act as a retention facility that will be an amenity to the ove rall development. The project location is identified in Exhibit OV1 of the General Information section of this report . DRAINAGE BASIN DESCRIPTION As indicated in the introdu ction, this portion of the project is lo cated within the Bee Creek Tributary 'A ' watershed. This site lies within the lower portion of the basin northwest of Crystal Park Plaza . Much like the portion of Lot 2, Block 1 wh ich drains to Bee Creek Main, the remain der of the property which drains to Bee Creek Tributary 'A' is current ly undeveloped and covered by only grass land and scrub trees . A portion of Lot 4, Block 1, the Bertrand property, will be discussed in this report as it provides an area for the detention pond . The Bertrand property in its ent irety will be discussed in future drainage analysis as part of the development of the mixed-use concept. Unlike the Bee Creek Main drainage area of the barbeque restaurant site, detention/retent ion will be provided for the Tributary 'A' portion of the deve lopm ent and any future mixed-use development that occurs on the Bertrand property (Lot 4, Block 1 ). As seen on Exh ibit OV2, this property is located within the Bee Creek Tributary 'A ' drainage ba sin . A portion of the Bertrand property is loca t ed within the regulatory 100-year floodplain per the Federal Eme rgency Management Agency (FEMA) Flood In surance Rate Map (FIRM) panel 144(, effective date July 2, 1992 . Currently, only a small portion of Block 1 of the Cotten Subdiv ision drains in a southeast erly direction toward Bee Creek Tributary 'A'. This in formation is demonstrated in Exhibit E 1, the Ex ist ing Development Drainage Area Map . Exhibits E2 and E3 include updated drainage areas for the remainder of the Dartmouth Drive Exten sio n and the proposed Cotten's Barbeque Restaurant, re spectively . All of the Bertrand property d rains to Bee Creek Tributary 'A' and is also included in the aforementioned drainage area maps . These drainage patterns will be discussed in more detail in the Drainage Facility Design section of this report. While the most accurate floodplain information available is provided on the maps, topographic survey of the property differs from the existing aerial topography used by the City of College Station to delineate the floodplain on their GIS mapping as well as on the FEMA map panel. Futu re pha ses of the development may i ncorporate a Letter of Map Amendment (LOMA) to proper ly identi fy the floodplain lim its based upon field topography . Cotten Subdi vision Drainage Analysis 7 DRAINAGE DESIGN CRITERIA All drainage design is in accordance with the City of College Station Drainage Policy and Design Standards (DPDS). As such : • Design rainstorm events consist of the 5-, 10-, 25-, 50-, and 100-year storm events . • Flow calculat ion s are based on the Rational Method with a minimum time of concentration of 10 minutes . Lag time ca lculation is based on the Upland Method . • Pipe capacity calculations are based on Manning's Equation with Hydraulic Grade Line analysis performed to determine location and extent of storm sewe r system surcharge . • Detention will be provided to reduce postdevelopment peak runoff discharges to those of the predevelopment rate . DRAINAGE FACILITY DESIGN In contrast to the Bee Creek Main side of the development, little existing drainage infrastructure exists in the Bee Creek Tributary 'A ' portion of thi s development. For the purposes of Phase B of this report, the main study confluence will be located at a small cut which appears to be the location of a small priva te driveway culvert identifi ed on Exh ibi t E1 of this report. The culvert has since been removed and only a cut exists to drain the upper section of th e property . Future development on the property will requ ir e th e removal of the interior drive and new study points will have to be established . An 18" CMP culvert exists at the east end of the property that drains area EA-D 1. This cu lvert is also identified in Exhibit E 1. Predevelopment Drainage Analysis Exhibit E 1 demonstrates that a significant portion (7 .28 ac.) of the drainage area that includes Block 1 of the Cotten Subdivis ion and the Bertrand prop erty which drains to Bee Creek Tri butary 'A' is blocked by the raised nature of the interio r drive and discharges as a point disc h arge at the cut o r old culvert location . App roximately 1.05 acres of the 7 .28 acres comes fro m Lot 2, Block 1 of the Cotten Subdivision or the barbeque restaurant. The remaining acreage is from the undeveloped Bertrand property. Then draining to the 18" CMP culvert is approx im ately 2 .17 acres of undeveloped property that will be part of the future mixed-use concept. Peak runoff values fo r each of the dra inage basins are provided in Appendix C-1, Rational Formula Drainage Area Calculation . Dartmouth Drive Development As evidenced in Exhibit E2 of the report, approximately 1 50 feet of the Dartmouth Drive Extension d iscussed with the first phase of this project drains to Bee Creek Tributary 'A'. This portion of Dartmouth accounts for approximately 0.33 acres of development at the top of the drainage area and was not included in the August 2002 Dartmouth Drive Extension Drainage Analysis completed by Mitchell & Morgan, LLP . In loo king at the Rational Method calculations and the summary tables provided below it is apparent that this part of Dartmouth has little overall effect on t he drainage patterns and results in a net peak discharge increase of 1.3 cfs for the 100-year storm . No drainage infrastructure was designed as part of this phase; rather its drainage design is to sheet flow at the present time across Lo t 4, Block 1 of the Co tten Subdi vi sion. Thi s drainage de sign will change as Dartmouth Drive is extended and an outfall loca t ion for the drainage infrastructure construct ed as part of th e street is contemplated. The grading plan for Dartmouth Drive is Cotten Subdivision Drainage Analysis 8 included as Exhibit C and demonstrates what portion s of Dartmouth drain toward Bee Creek Tributary 'A'. Postdevelopment Drainage Analysis The development of Kenny Cotten's Barbeque Restaurant on Lot 2, Block 1 of the Cotten Subdivision results in a significant change in the drainage patterns on the property . The most significant change is the addition of 2 .1 acres of contributing area to Bee Creek Tributary 'A ' from the predevelopment condition. This diversion comes from drainage areas EA-B and EA - C on the Bee Creek Main side and was discussed in the previously in this report. Exhibit E3 shows the postdevelopment drainage areas for the Bee Creek Tributary 'A' side of the development. Drainage for the restaurant will be carried into the proposed detention pond through a series of storm sewer pipes . Drainage area PA-C2 will enter the system via a 5' inlet (C2) and flow to inlet C 1 in 200 LF of 18" RCP. The flow from PA-C 1 will enter into a 5' Inlet (C 1) and combine with the PA-C2 flow . The total runoff will drain via 202 LF of 24" RCP and enter on the upstream side of the proposed detention pond . Plan and profile drawings of the proposed drainage infrastructure have been provided as Exhibit F. In order to reduce postdevelopment peak discharge levels to predevelopment levels a detention pond was included in the design . The placement of the detention pond was largely dependant on the future mi xed-use development on the Bertrand property. Conceptual plans for development on the property include a large, multi-level retention/detention pond that will serve as an aesthetic amenity as well as provide runoff storage for the completed development. The proposed detention pond for Kenny Cotte n's Barbeque Restaurant was designed to define the shape of this future retention pond and be easily modified to the final configuration . The outfall structure includes a 12" RCP with a sloped headwall at the south end of the detention pond as will as an overflow structure . Detention routing calculations have been provided for all of the studied rainfall events as Appendix C-3 . Flow from the outfall and the emergency spill way discharge into the study confluence shown on Exhibits E3 and F. A grading plan of the development has been provided as Exhibit G. Hydraulic Grade Line calcu lations have been provided as Exhibit H to ensure that the tailwater from the detention pond does not backup the sto rm sewer at Kenny Cotten's Barbeque Restaurant site . As indicated by Table 5 below, the drainage design reduces the overall postdevelopment flows to less than the predevelopment peak flowrates. When combined with drainage area PA-D1, Bee Creek Tributary 'A ' sees an overall reduction in flows from the predevelopment conditions as a result of the dra in age design. Runoff hydrographs for each of the confluence points have been provided on Exhibit OV3 in the General Information Section of this report. Peak Dischar es from Cut at Interior Road (DA-02) 5-Year 10-Yea r 25-Year 50-Year 100-Year Flow Condition s Flowrate Flowrate Fl owrate Flowrate Fl o wrate System Outfall All flowrates in cubic feet per second (cfs) Predevelopment 22.4 25 .1 2 8 .7 3 2 .5 36.5 Po stdevelopment 3 3.8 3 8 .0 43.4 48 .0 55.1 Po st -detention 22 .5 24 .8 27 .7 30 .7 34 .0 Flow Reduction 0 .0 0 .3 1.0 1.8 2 .5 Table 5. Peak Discharge Summary for DA-D2 Cotten Subdivision Drainage Analysis 9 Peak Discharges from 18" CMP Culvert (DA-01) 5-Year 10-Year 25-Year 50-Yea r 100-Year Flow Co ndition s Flowrate Fl owrate Fl owrate Flowrate Flowrate Sys t em Outfall All flowrates in cubic feet per second (cfs) Predevelopment 8.3 9 .4 10 .7 11.5 13.6 Postdevelopment 8 .2 9.2 10.5 11.3 13.4 Flow Reduction 0 .1 0 .2 0 .2 0.2 0 .2 Overall Sys tem Peak 0.0 0.5 1.2 2.0 2.7 Flo w Reduction Table 6. Peak Discharge Summary for DA -01 CONCLUSIONS Table 5 above demonstrates that, as a result of the Kenny Co tten's Barbeque restaurant, there is an increase in the postdeveloped peak discharges at the Bertrand property interior road cut that serves as the Bee Creek Tributary 'A' study confluence . As illustrated in Table 5, it can also be seen that this flow is effectively attenuated to below predevelopment peak discharge rate s through the use of a proposed detention pond. Tabl e 6 provides a total of flow reduction that Bee Creek Tributary 'A' will see as a result of the development of the barbeque restaurant project The storm sewer system on the restaurant site provides ample capacity for all rainfall events and ensures that no significant flooding will occur on the proposed site . Exhibit OV3 , located in the General Information section shows predevelopment, Dartmouth development, and postdevelopment hydrographs at the relevant stu dy confluence points . Review of the stormwater analysis indicates that the drainage design presented in this report will provide ample conveyance and detention to meet the drainage objectives of the City of College Station DPDS . Cotten Subdivision Drainage Analysis 10 EXHIBITS EXHIBITH KENNY COTTEN'S BARBEQUE & DARTMOUTH DRIVE EXTENSION Phase B -Bee Creek Tributary 'A' Hydraulic Grade Line Calculations Sta. 4+01 .91 to Sta. 2+12.20 (Per construct ion drawings in Exhibit G) Headloss Equatio ns (fro m Manning's) (1) Q = c·:9 )AR ~S ~ (2) HGL us = HGL Ds + H 1 (3) H -S L-L( n 2 V 2 ) 1-I -R I 12 1.4 9 2 7 0-Year Event (Per const ruction drawings in Exhibit C) Headloss Ca lculations Q10 = 15.3cft (Per Appendix A-3) s /I O = 0.0014ft I ft Pipe slope is greater tha t friction slope. Using Mann ing's Equat ion (1 ), normal depth in the pipe is determined . Normal depth in a pipe may be determined using the ra ti on of the act u al discharge to capacity discharge QI Q1uu = 15.3 /27.9 = 0 .55 Per Figure 5 .3 provided, the ratio of normal depth to pipe diamete r is provided below. Yn I D= 0.58 3 Yn = 1.46/t Using Equat ion (2) and the normal depth, the downstream and upstream water surface elevations are give n below WSE DS = 263.96 WSE us = 264.82 Downstream Up stream KENNY COTTEN'S BEE TRIBUTARY A DRAINAGE Inpu t Data Pipe Size = 30 " RCP Roughness (n) = 0.013 Pipe Lengt h = 187 . 21 LF Downstream Invert= 262 .50 ft Upstream Invert= 263.36 ft Pipe Slope = 0 .0046 ft/ft -(0 .46 %) Calculated Param eters Cross-secti onal Area = L x W A= 4 .91 sq. ft. Hydraulic Radiu s = f.VP R = 0.625 ft 700-Year Event (Per construction drawings in Exhibit C) Head/ass Ca lculations Q io = 22.2cft (Pe r Append ix A-3) s /IO = 0.0029 ft I ft Pipe slope is greater that friction slope . Using Manning's Equat ion (1 ), normal depth in the pipe is determined . Normal depth in a p ipe may be determined using the ration of the actual discharge to capacity discharge Q /Q/111/ = 22.2 /27 .9 = 0.8 0 Per Figure 5 .3 provided, the ratio of normal depth to pipe d iameter is provided below. Yn I D= 0.817 Yn = 2.04ft Using Equa ti on (2) and the normal depth, the downstream and upstream water surface elevations are g iven below. WSEDS = 264.54 WSEus = 265.40 Downstream Upstream EXHIBIT D KENNY COTTEN'S BARBEQUE & DARTMOUTH DRIVE EXTENSION Phase B -Bee Creek Tributary 'A ' Hydraulic Grade Line Calculations Sta. 2+12.20 to Sta. 0+03.00 (Per construction drawings in Exhibit G) Head/ass Equations (from Manning 's) (1) Q = c·:9 )AR ~S ~ (2) HGL us = HGL DS + H 1 (3) H =S L=L[ n 2 V 2 ) I I R 1/2 1.49 2 10-Year Event (Per construction drawings in Exhibit C) Head/ass Ca lcu lations Q10 = 4.70cfs (Pe r Appendix A-3) s110 = o.002oft 1 ft Pipe slope is greater that fr iction slope. Usi ng Manning's Equation (1 ), normal depth in the pipe is determined . Normal depth in a pipe may be determined using the ration of the actua l discharge to capacity discharge Q /Qfull = 4.70 /9 .50 = 0.49 Per Figure 5.3 prov ided , the ratio of norma l depth to pipe diameter is provided below . Yn I D= 0 .550 Yn = 0.83/t Using Equation (2) and the normal depth, the downstream and upstream water surface elevations are given below WSED S = 265.19 WSE us = 266.88 Downstream Upstream KENN Y COITEN'S BEE TRIBUTARY A DRAINAGE Input Data Pipe Size= 18" RCP Roughness (n) = 0 .013 Pipe Length = 187 . 21 LF Downstream Invert= 264 .36ft Upstream Invert = 266.05 ft Pipe Slo pe= 0 .0082 f t/ft -(0.82%) Calculated Parameters Cross-sectional Area = L x W A = 1 . 77 sq. ft. Hydraulic Radius= NP R = 0.375 ft 100-Year Event (Per constr uction drawings in Exhibit C) Head/ass Ca lculations Q10 = 6.80cfs (Per App endix A-3) S 1 10 = 0.0042ft I ft Pipe slope is greater that friction slope. Using Manning's Equat ion (1 ), normal depth in the pipe is determined . Norma l depth in a pipe may be determined using the ration of the actual discharge to capacity discharge QI Q11111 = 6.8 /9 .5 = 0.72 Per Figure 5.3 provided, the ratio of normal depth to pipe diameter is provided below. Yn I D= 0 .680 Yn = l.02ft Using Equation (2) and the normal depth, the downstream and upstream water surface elevations are given below . WSEDS = 265.38 WSEu s = 267.07 Downstream Upstream 2 APPENDIXC DRAINAGE CALCULATIONS ct w c 0:: w c ct ct a.. w c w w 0 a.. w C) 0:: ..J ct a.. ct w 0 0 ct ..J > "' ..J z ct Wet cct w ~ I-cw zw > 0:: 8 z 0:: ct 0:: w c ::> ct ..Jct c NO. AC. 0.4 0.5 0.9 I Existing Conditions EA-D1 2.17 2.17 0.00 0.00 EA-D2 7.28 7.28 0.00 0.00 Dartmouth Development DA-D1 2.17 2.17 0.00 0.00 DA-D2 7.14 6.81 0.00 0.33 Proposed Development PA-C1 1.68 0.00 0.33 1.35 PA-C2 0.51 0.00 0.06 0.45 PA-D1 2.16 2.16 0.00 0.00 PA-D2A 4.62 4.29 0.00 0.33 PA-D2B 1.20 1.20 0.00 0.00 PA-D2C 0.50 0.50 0.00 0.00 POND 0.00 0.00 0.00 0.00 APPENDIX C-1 RA TJONAL METHOD RUNOFF CALCULA TJONS COTIEN'S BEE TRIB 'A' DRAINAGE ct ~ 0 0 (,) ..J I-(,) ct 0 I-I-..J (,) w 8 ~ ra "' 0 ::> ft/s I min min 0.87 1.2 6.9 10.0 2.91 1.5 9.7 10.0 0.87 1.2 6.9 10.0 3.02 1.5 9.7 10.0 1.38 1.9 5.0 10.0 0.44 1.7 1.4 10.0 0.86 1.2 6.1 10.0 2.01 1.5 9.7 10.0 0.48 1.1 5.1 10.0 0.20 1.1 5.1 10.0 0.00 10.4 0.0 10.0 Predevelopment Peak Flowrate Dartmouth Peak Flowrate Postdevelopment Peak Flowrate Overall Flow Increase £:! In/Hr 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 N 0 cfs 5.5 18.4 5.5 19.1 8.7 2.8 5.5 12.7 3.0 1.3 0.0 23.9 24.6 34.0 10.1 !!? In/Hr I 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 in 0 cfs 6.7 22.4 6.7 23.2 10.6 3.4 6.6 15.5 3.7 1.5 0.0 29.1 29.9 41.3 12.3 0 !: In/Hr 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 0 in ..... in N 0 £:! 0 cfs In/Hr cfs 7.5 9.9 8.5 25.1 9.9 28.7 7.5 9.9 8.5 26.1 9.9 29.8 11.9 9.9 13.6 3.8 9.9 4.3 7.4 9.9 8.5 17.4 9.9 19.8 4.2 9.9 4.7 1.7 9.9 2.0 0.0 9.9 0.0 32.6 37.3 33.6 38.3 46.4 53.0 13.8 15.7 0 0 0 0 0 in 0 ..... !!? 0 !: 0 In/Hr cfs I In/Hr cfs 11.1 9.7 12.5 10.9 11.1 32.5 12.5 36.5 11.1 9.7 12.5 10.9 11.1 33.7 12.5 37.8 11.1 15.4 12.5 17.3 11.1 4.9 12.5 5.5 11.1 9.6 12.5 10.8 11.1 22.4 12.5 25.2 11.1 5.4 12.5 6.0 11.1 2.2 12.5 2.5 11.1 0.0 12.5 0.0 42.1 47.3 43.3 48.7 59.9 67.3 17.8 20.0 9/27/2004 0428-drainage-Bertrand-040923.xls Appendix C-1 ~ ~ lo. ~ ~ lo. ~ ~ < lo. > CJ • ~ 0 <o ~ ~ ~ zZ bJ) bJ) " 0 ~ ~ .... < = = = lo. ~~ lo. ~ ~ ·; ... u ~ > lo. lo. Q < OQ Q O 0 cfs cfs Existing Conditions EA-Dl 6.7 0 .0 EA -D 2 22.4 0 .0 Dartmouth De ve lopment D A-D I 6.7 0 .0 D A-D 2 23 .2 3 .0 Propo sed Developm ent PA-Cl 10 .6 0 .0 PA -C2 3.4 3.0 PA -Dl 6.6 3.0 PA -D 2A 25.2 0.0 P A-D2B 6 .0 0.0 PA -D 2C 2 .5 0 .0 APPENDIX C -2 INLET COMPUTATIONS COTTEN 'S BEE TRIB 'A' DRAINAGE 5-Year Event -~ -= .... -~ 0 -~ -0 DESCRIPTIO N E-i cfs 6 .7 18 11 CMP Culvert 22.4 6 .7 18" CMP Culvert 26.2 10 .6 Recessed Low Po int In let 6.4 Recessed Low Point Inlet 9 .6 18" CMP Cu lve rt 25.2 6 .0 2 .5 ~ ,.j lo. ~ ~ ~ < u cfs 2 .33 2 .33 lo. ~ "O > ~ 0 "O -d ·;; c C" 0 lo. ~ lo. ~ p::: ~ u ,.j ,.j 0 C urb Inlet ft ft cfs 0 .00 0 .00 0 .00 0 .00 4 .55 5 0.00 2 .7 3 5 0 .00 0 .00 0.00 0 .00 0 .00 9/27 /20 04 0428 -dra in age-Bertrand -040923 .x ls Ap pend ix C-2 ~ ~ .. ~ ~ .. ~ ~ < .. .. ~ . ~ 0 <o ~ ~ ~ zZ eJ) eJ) c 0 ~ ~ """"< = = = .. ~~ .. ~ ·; .... ~ ~ u .. .. .. Q < O Q Q O 0 cfs cfs Existing Conditions EA-D l 7.5 0 .0 EA-D 2 25.1 0 .0 Dartmouth Developm ent DA -DI 7.5 0 .0 DA -D 2 26.1 3.0 Proposed Developm ent P A-C l 11.9 0.0 PA-C2 3.8 3.0 PA-D l 7.4 3.0 PA-D 2A 25.2 0 .0 PA-D 2B 6.0 0.0 P A-D 2C 2.5 0 .0 APPENDIX C-2 INLET COMPUTATIONS COTTEN'S BEE TRIB 'A' DRAINAGE 10 -Ye ar Event -~ -= """" -~ 0 -~ -0 DESCRIPTION E-; cfs 7 .5 18" CMP C ulvert 25 .1 7 .5 18" CMP C ulvert 29.1 11.9 R ecessed L ow P oint Inl et 6 .8 Recessed Low Poi nt Inl et 10 .4 18" CMP C ul ve rt 25 .2 6 .0 2 .5 ~ .. ~ ~ "'O .. ~ 0 .. "'O ~ "'O .... c ~ CT' .. 0 .. ~ ~ .. ~ ~ < ~ u ~ ~ u 0 Curb Inl et cfs ft ft cfs 0 .00 0.00 0.00 0.00 2 .33 5 .10 10 0.00 2.33 2 .90 5 0 .00 0 .00 0.00 0 .00 0.00 9/27 /20 04 042 8-drainage-Bertrand-040923 .x ls Ap pe ndix C-2 c-= c-= .. ~ ~ .. ~ ~ < .. > Co-' • c-= 0 <o ~ ~ ~ zZ CJ) CJ) c 0 co: co: .... < r;:: = = .. ;2 ~ .. co: .... .... ~ c-= co: u > .. .. Q < O Q Q 0 0 cfs cfs Existing Conditions EA-Dl 8.5 0.0 EA-D2 28.7 0.0 Dartm outh Development DA-Dl 8.5 0.0 DA-D2 29 .8 3.0 Proposed Development PA-Cl 13.6 0.0 PA-C2 4.3 3 .0 PA-Dl 8.5 3.0 PA-D2A 25.2 0 .0 PA-D2B 6.0 0.0 PA-D2C 2 .5 0 .0 APPENDIX C-2 INLET COMPUTATIONS COTTEN'S BEE TRIB 'A' DRAINAGE 25 -Year Event -~ -= .... -c-= 0 -; -0 DESCRIPTIO N E-- cfs 8 .5 18" CMP Culvert 28.7 8.5 18" CMP Culvert 32.8 13.6 Recesse d Low Point Inlet 7.3 Recessed Low Po in t Inlet 11.5 18" CMP Culvert 25.2 6.0 2.5 ~ .. ~ ~ "O > ~ 0 .. "O ~ "O .... c ~ O"' > 0 .. ~ ~ .. c-= ~ < ~ u ~ ~ u 0 Curb Inlet cfs ft ft cfs 0.00 0 .00 0.00 0 .00 2.33 5.83 10 0.00 2.33 3.13 5 0.00 0.00 0 .00 0.00 0.00 912712004 0428-drainage-Bertrand-040923 .x ls Appendix C-2 ~ ~ -Q,j ~ -Q,j Q,j < -... "" . ~ 0 <o ~ Q,j Q,j zz ~ ~ c 0 ~ ~ """"< r:;::::: = = -~~ -~ .... .... Q,j ~ ~ u ... --Q < O Q Q O 0 cfs cfs Existing Conditions EA-Dl 9 .7 0 .0 EA-D2 32.5 0.0 Dartmouth Development DA-Dl 9.7 0.0 DA -D 2 33.7 3.0 P roposed Development PA-C l 15.4 0 .0 PA-C2 4 .9 3 .0 PA-Dl 9 .6 3 .0 PA -D 2A 25.2 0.0 PA-D2B 6.0 0.0 PA -D 2C 2.5 0 .0 APPENDIX C-2 INLET COMPUTATIONS COTTEN'S BEE TRIB 'A' DRAINAGE 50-Year Event ..... Q,j -= """" ..... ~ 0 -~ ..... 0 D ESCRIPTI ON E-- cfs 9.7 18" CMP Cul ve rt 32.5 9.7 18" CMP Cul ve rt 36.7 15.4 Recesse d Low Point Inlet 7.9 R ecesse d Low Poi nt Inl et 12.6 18" CMP Cul ve rt 25 .2 6.0 2.5 ~ -Q,j J "O ... Q,j 0 -"O Q,j -d ·;; c ~ O" 0 -~ Q,j -~ ~ < ~ u J J u 0 Curb In let cfs ft ft cfs 0 .00 0 .00 0.00 0.00 2.33 6.59 10 0.00 2.33 3.37 5 0 .00 0 .00 0 .00 0 .00 0.00 9/27/2004 0428-drai na ge-Bertrand-040923 .x ls App endix C-2 ~ ~ -Q,j ~ -Q,j Q,j < -;;.. CJ . ~ 0 <o ~ Q,j Q,j zZ eJl eJl c 0 ~ ~ .... < i;::: = = -~~ -~ .... .... Q,j ~ co: u ;;.. --Q < OQ QO 0 cfs cfs Existing Conditions EA-Dl 10.9 0.0 EA-D2 36.5 0.0 Dartmouth Development D A-D l 10.9 0.0 D A-D 2 37.8 3.0 P roposed Development PA-Cl 17.3 0.0 PA-C2 5.5 3.0 PA-Dl 10.8 3.0 PA -D 2A 2 5 .2 0.0 P A-D2B 6.0 0 .0 P A-D 2C 2.5 0.0 APPENDIX C-2 INLET COMPUTATIONS COTTEN'S BEE TRIB 'A' DRAINAGE 100 -Year Even t -Q,j = .... -~ 0 -~ -0 DESCRIPTION E-- cfs 10 .9 18" CMP C u lve rt 36.5 10.9 18" CMP Culvert 40.8 17 .3 R ecessed Low Point Inl et 8.5 Recessed Low P oi nt Inl et 13.8 18" CMP Cul ve rt 2 5.2 6.0 2 .5 ~ .J -Q,j Po. ~ < u cfs 2.33 2.33 -Q,j "O ;;.. Q,j 0 "O -d '> c O"' 0 -Q,j -~ ~ Po. u .J .J 0 C urb Inl e t ft ft cfs 0 .00 0.00 0 .00 0.00 7.41 10 0.00 3.63 5 0.00 0 .00 0.00 0 .00 0.00 9/27/20 04 042 8-draina ge-Bertrand-040 92 3 .x ls Ap pen dix C-2 # # Ac. min y r cfs Existing Conditions EA-D1 EOUT1 0 .9 10 .0 5 6 .7 EA-D2 EOUT2 2 .9 10.0 5 22.4 Dartmouth Development DA-D1 DOUT1 0 .9 10 .0 5 6 .7 DA-D2 DOUT2 3 .0 10.0 5 23 .2 Proposed Development PA-C1 POND 1.8 10.7 5 13.6 PA-C2 PA-C1 0.4 10 .0 5 3.4 PA-D1 POUT1 0 .9 10.0 5 6 .6 POND POUT2 1 .8 11 .3 5 13 .3 *Includes 25% Flow Increase for pipe sizes <27" dia . ••See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) ••• The interior road cut is modeled as a 2' x2' Box, but is actually larger. APPENDIX C-3 PIPE SIZE CAL CU LA TIONS COTTEN'S BEE TRIB 'A' DRAINAGE 5 Year Event cfs # cfs O/o O/o " 8 .3 8.3 0.63 1.11 22.4 22.4 0 .60 2.43 8 .3 8 .3 0.63 1 .11 23 .2 23 .2 0 .65 2.43 13 .6 13 .6 0 .11 0.42 4 .2 4 .2 0 .16 0 .80 8 .3 8 .3 0 .62 1.11 13 .3 13 .3 0 .21 2.43 ~ N -rr.i 18 BOX 18 BOX 30 18 18 BOX fps 6 .3 11 .2 6.3 11.2 5.5 5 .3 6 .3 11 .2 cfs 11 .1 45 .0 11 .1 45 .0 26 .8 9.4 11 .1 45 .0 min min ' ' 36 0 .10 10 .1 14 0 .02 10.0 2 2 36 0 .10 10 .1 14 0 .02 10.0 2 2 203 0 .62 11 .3 210 0 .65 10 .7 36 0 .10 10 .1 14 0 .02 11 .3 2 2 9/27/2004 0428-drainage-Bertrand-040923 .xls Appendix C-3 # # Ac. min Existing Conditions EA-D1 EOUT1 0 .9 10.0 EA-D2 EOUT2 2 .9 10 .0 Dartmouth Development DA-D1 DOUT1 0 .9 10 .0 DA-02 DOUT2 3 .0 10.0 Proposed Development PA-C1 POND 1 .8 10 .7 PA-C2 PA-C1 0.4 10 .0 PA-D1 POUT1 0 .9 10 .0 POND POUT2 1.8 11 .3 *Includes 25% Flow Inc rease for pipe sizes <27" dia . yr 10 10 10 10 10 10 10 10 "O ~ ~ 0 --"' ~ .:., c: "O 1:).1) co: ·-c: ~ ;:, Q cfs 7 .5 25 .1 7 .5 26 .1 15.3 3 .8 7.4 14.9 ••See Plan & P rofile for pipe sl ope used (Pipe slope >or= Friction slope) ••• The interior road cut is modeled as a 2' x2' Box, but is actually la rger. APPENDIX C-3 PIPE SIZE CAL CU LA TIONS COTTEN'S BEE TRIB 'A' DRAINAGE cfs 9 .4 25 .1 9.4 26 .1 15.3 4 .7 9 .3 14 .9 # "' ~ Q.. ~ ..... 0 0 z 10 Year Event cfs O/o O/o " 9.4 0.79 1 .11 25 .1 0 .76 2.43 9.4 0 .79 1.11 26 .1 0 .82 2.43 15.3 0 .14 0 .42 4 .7 0 .20 0 .80 9 .3 0 .78 1 .11 14 .9 0 .27 2.43 fp s cfs 18 6.3 11 .1 BOX 11 .2 45 .0 18 6 .3 11 .1 BOX 11 .2 45 .0 30 5 .5 26 .8 18 5 .3 9.4 18 6 .3 11 .1 BOX 11 .2 45 .0 min min 36 0.10 10 .1 14 0 .02 10.0 2 2 36 0 .10 10 .1 14 0 .02 10 .0 2 2 203 0.62 11 .3 210 0 .65 10 .7 36 0 .10 10 .1 14 0 .02 11 .3 2 2 9/27/2 00 4 0428-drainage-Bertrand-040923 .x ls Appendi x C-3 # # Ac. min Existing Conditions EA-D1 EOUT1 0 .9 10.0 EA-D2 EOUT2 2.9 10 .0 Dartmouth Development DA-D1 DOUT1 0.9 10 .0 DA-D2 DOUT2 3 .0 10.0 Proposed Development PA-C1 POND 1 .8 10 .7 PA-C2 PA-C1 0.4 10 .0 PA-D1 POUT1 0 .9 10 .0 POND POUT2 1.8 11 .3 •includes 25% Flow Increase for pipe sizes <27" dia . yr 25 25 25 25 25 25 25 25 "O ~ ~ 0 --"' r.. .::., c "O bJl co: ·-c ~ ;;;;;> Q cfs 8 .5 28 .7 8 .5 29 .8 17 .5 4 .3 8 .5 17 .0 ••See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) ••• The interior road cut is modeled as a 2' x2' Box, but is actually larger. APPENDIX C-3 PIPE SIZE CAL CU LA TIONS COTTEN'S BEE TRIB 'A' DRAINAGE -): ~ 0 "2 ~ -c "' bJl = ·-. ...., "' "O ~ <Q cfs 10 .7 28 .7 10 .7 29 .8 17 .5 5.4 10.6 17 .0 # 25 Year Event cfs % % 10 .7 1 .03 1.11 28 .7 0 .99 2.43 10.7 1 .03 1 .11 29 .8 1.06 2.43 17 .5 0 .18 0.42 5.4 0 .26 0 .80 10 .6 1 .02 1.11 17.0 0 .35 2.43 fps cfs 18 6 .3 11.1 BOX 11 .2 45 .0 18 6 .3 11.1 BOX 11 .2 45 .0 30 5 .5 26.8 18 5 .3 9.4 18 6 .3 11 .1 BOX 11 .2 45.0 min min ' ' 36 0.10 10.1 14 0 .02 10.0 2 2 36 0.10 10 .1 14 0 .02 10 .0 2 2 203 0 .62 11 .3 210 0 .65 10.7 36 0.10 10 .1 14 0 .02 11 .3 2 2 9/27/2004 0428-drainage-Bertrand-040923 .xl s Appendix C-3 # # Ac. min yr cfs Existing Conditions EA-D1 EOUT1 0 .9 10 .0 50 9 .2 EA-D2 EOUT2 2 .9 10.0 50 30 .8 Dartmouth Development DA-D1 DOUT1 0 .9 10 .0 50 9 .2 DA-D2 DOUT2 3 .0 10.0 50 32 .0 Proposed Development PA-C1 POND 1 .8 10.7 50 18.7 PA-C2 PA-C1 0.4 10.0 50 4 .6 PA-D1 POUT1 0 .9 10 .0 50 9 .1 POND POUT2 1.8 11 .3 50 18 .3 *Includes 25% Fl ow Increase for pipe sizes <27" dia . ••See Pl an & Profile for pipe slope used (Pipe slope >o r= Friction slope) ••• The interior road cut is modeled as a 2' x2' Box, but is actually larger. APPENDIX C-3 PIPE SIZE CAL CU LA TIONS COTTEN'S BEE TRIB 'A' DRAINAGE 50 Year Event cfs # cfs % O/o " 11 .5 11 .5 1 .18 1 .11 30 .8 30 .8 1 .14 2.43 11.5 11.5 1.18 1.11 32 .0 32 .0 1.22 2.43 18 .7 18 .7 0 .21 0.42 5 .8 5.8 0 .30 0 .80 11.4 11.4 1 .17 1 .11 18 .3 18 .3 0.40 2.43 ~ N -00 18 BOX 18 BOX 30 18 18 BOX fps 6 .3 11 .2 6.3 11 .2 5.5 5 .3 6 .3 11 .2 cfs 11 .1 45 .0 11.1 45 .0 26.8 9.4 11 .1 45 .0 min min 36 0 .10 10 .1 14 0 .02 10.0 2 2 36 0 .10 10 .1 14 0 .02 10 .0 2 2 203 0 .62 11 .3 210 0.65 10 .7 36 0 .10 10 .1 14 0.02 11 .3 2 2 912712004 0428-drainage-Bertrand-040923.xls Appendix C-3 # # Ac. min yr cfs Existing Conditions EA-D1 EOUT1 0.9 10 .0 100 10.9 EA-D2 EOUT2 2 .9 10.0 100 36.5 Dartmouth Development DA-D1 DOUT1 0 .9 10 .0 100 10 .9 DA-D2 DOUT2 3 .0 10.0 100 37 .8 Proposed Development PA-C1 POND 1.8 10.7 100 22 .2 PA-C2 PA-C1 0.4 10 .0 100 5 .5 PA-D1 POUT1 0 .9 10.0 100 10 .8 POND POUT2 1.8 11 .3 100 21 .7 *Includes 25% Flow Increase for pipe sizes <27" dia . ••See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) ••• The interior road cut is modeled as a 2' x2' Box , but is actually larger. APPENDIX C-3 PIPE SIZE CAL CU LA TIONS COTTEN'S BEE TRIB 'A' DRAINAGE 100 Year Event cfs # cfs O/o % " 13 .6 13.6 1.66 1.11 36 .5 36 .5 1.59 2.43 13 .6 13 .6 1.66 1.11 37 .8 37 .8 1.72 2.43 22 .2 22 .2 0.29 0.42 6 .8 6 .8 0.42 0 .80 13 .5 13 .5 1.64 1.11 21 .7 21 .7 0 .56 2.43 ~ N .... 00 18 BOX 18 BOX 30 18 18 BOX fps 6 .3 11.2 6 .3 11.2 5 .5 5 .3 6.3 11.2 cfs 11 .1 45 .0 11.1 45 .0 26 .8 9.4 11 .1 45 .0 min min I I 36 0 .10 10 .1 14 0 .02 10.0 2 2 36 0 .10 10 .1 14 0.02 10 .0 2 2 203 0.62 11 .3 210 0 .65 10 .7 36 0 .10 10 .1 14 0 .02 11 .3 2 9/27/2004 0428-drainage-Bertrand-040923.xls Appendix C-3 2 APPENDIXD DETENTION CALCULATIONS APPENDIX D-2 Stage/Storage -Stage/Discharge -Storage Indication Curves COTTEN'S BEE TRIB 'A' DRAINAGE Elevation Area Area (ft .) (sf.) (a cres ) 260 .65 0 .0 0 .000 261 .00 644 .0 0 .0 15 261 .50 4504 .0 0 .103 262.00 9162 .0 0 .210 262 .50 14051 .0 0 .323 263.00 153 14 .0 0.352 263 .50 16218.0 0.372 264 .00 17148 .0 0.394 26 4.50 17149 .0 0 .39 4 COTTEN'S BEE TRIS 'A' DRAINAGE Stage-Storage Curve 1.200 1 .000 ~ 0.800 u "' -;-0 .600 Cl "' ~ 0.400 0.2 00 0 .000 /. / / ~/ -~V 260 .50 261 .50 262 .50 263 .50 264 .50 Elevation (msl) Inc. Volm . Volume (ac .-ft .) (ac .-ft .) In vert Elev. (ft.) Ori fi ce D ia . (in .) or Weir Length (ft .) 0 .000 0 .000 0.002 0 .002 0 .026 0 .028 0 .077 0 .105 0 .1 32 0 .237 0 .168 0.406 0 .181 0 .586 0 .191 0 .778 0 .197 0 .975 COTTEN'S BEE TRIS 'A' DRAINAGE Stage-Discharge Curve 60 .0 50 .0 Outlet 1 260 .65 12 We ir (cfs) 0 .00 2 .98 4 .65 5 .86 6 .86 7.73 8.51 9.23 9 .89 • I J ~ 40.0 Q) ~ 30.0 "' .t:: 0 .!!! 20 .0 0 10.0 ___.....- 0 .0 260 .50 - 261 .50 / __..A ( -~ ~ 262.50 263 .50 264 .50 Elevation (msl) Outlet 2 Outlet 3 I Total 0 26 3.25 Flow 0 10 Outfall Wei r (cfs) Weir (cfs ) (cfs ) a + ~ -.l'2 ~~ N 0 .00 0 .00 0 .00 0 .00 0 .00 2 .98 0 .00 0 .00 4 .65 0 .00 0 .00 5.86 0 .00 0 .00 6 .86 0 .00 0.00 7 .73 0 .00 3 .86 12 .37 0 .00 20 .05 29 .28 0 .00 4 3 .14 53 .04 COTTEN'S BEE TRIS 'A' DRAINAGE 1500 1200 900 600 300 0 0 Storage Indication Curve -------- ~ ~ / / !' ./ J j 10 '. 20 30 40 50 60 Discharg e (cfs) 9/27/2004 0428-d ra inage -Bertrand-04 092 3 .xls A p pendi x 0 -2 D.A. D.A. Pond Routing =II: J:: c Q. w ~ z c: Cl ID li'i .... 0 ~ u N + .!. c ::!!: c: "O "O ci:: ~ 0 + iC >-J: c.. (.) -= Qp 13.6 3.7 Tc 11.3 10.0 inc 1.0 1.0 Time cfs I cfs cfs cfs 0.0 0.0 0.0 0.0 1.6 0.0 1.0 1.2 0.4 1.6 4.7 0.0 2.0 2.4 0.7 3.2 7.9 0.0 3.0 3.6 1.1 4.7 11.0 1.3 4.0 4.8 1.5 6.3 14.2 5.5 5.0 6.0 1.9 7.9 17.3 12.1 6.0 7.2 2.2 9.5 20.5 21.0 7.0 8.4 2.6 11.0 23.7 31.9 8.0 9.7 3.0 12.6 26.8 45.5 9.0 10.9 3.3 14.2 30.0 61.8 10.0 12.1 3.7 15.8 32.6 80.8 11.0 13.3 3.5 16.8 33.3 102.0 12.0 13.2 3.3 16.5 32.2 123.3 13.0 12.6 3.1 15.7 30.6 143.2 14.0 12.0 3.0 14.9 29.1 161.2 15.0 11.4 2.8 14.1 27.5 177.4 16.0 10.8 2.6 13.3 25.9 191.9 17.0 10.1 2.4 12.6 24.3 204.7 18.0 9.5 2.2 11.8 22.7 215.8 19.0 8.9 2.0 11.0 21.2 225.3 20.0 8.3 1.9 10.2 19.6 233.0 21.0 7.7 1.7 9.4 18.0 239.1 22.0 7.1 1.5 8.6 16.4 243.6 23.0 6.5 1.3 7.8 14.9 246.5 24.0 5.9 1.1 7.0 13.3 247.8 25.0 5.3 0.9 6.2 11.7 247.5 26.0 4.7 0.7 5.5 10.1 245.6 27.0 4.1 0.6 4.7 8.6 242.2 28.0 3.5 0.4 3.9 7.0 237.3 29.0 2.9 0.2 3.1 5.4 230.9 30.0 2.3 0.0 2.3 4.0 223.0 31.0 1.7 0.0 1.7 2.8 213.8 32.0 1.1 0.0 1.1 1.6 203.5 33.0 0.5 0.0 0.5 0.5 192.2 34.0 0.0 0.0 0.0 0.0 179.8 35.0 0.0 0.0 0.0 0.0 167.1 36.0 0.0 0.0 0.0 0.0 154.6 37.0 0.0 0.0 0.0 0.0 142.2 38.0 0.0 0.0 0.0 0.0 130.2 39.0 0.0 0.0 0.0 0.0 118.4 40.0 0.0 0.0 0.0 0.0 106.8 165.0 0.0 0.0 0.0 0.0 0.0 166.0 0.0 0.0 0.0 0.0 0.0 167.0 0.0 0.0 0.0 0.0 0.0 168.0 0.0 0.0 0.0 0.0 0.0 169.0 0.0 0.0 0.0 0.0 0.0 170.0 0.0 0.0 0.0 0.0 0.0 PEAK FLOWS 13.3 3.7 16.8 0.00 indicates inital condition APPENDIX D-3 Proposed Detention Pond Routing COTTEN'S BEE TRIB 'A' DRAINAGE EVENT= 5 D.A. c: c: 0 :;:; 0 "' t. > .. ~ iii Ci + .... "O + c: c: ci:: ~ a 0 c.. c.. 8.3 10.1 1.0 cfs cfs ft cfs 0.0 0.0 0.00 0.0 1.6 0.88 260.75 0.8 4.7 2.64 260.94 1.6 7.9 3.27 261.03 2.5 12.4 3.47 261.08 3.3 19.6 3.79 261.18 4.1 29.4 4.22 261.30 4.9 41.5 4.76 261.45 5.8 55.6 5.05 261.54 6.6 72.3 5.24 261.62 7.4 91.8 5.47 261.70 8.2 113.4 5.71 261.80 7.9 135.2 5.96 261.90 7.5 155.5 6.19 261.99 7.1 173.8 6.31 262.04 6.7 190.2 6.40 262.08 6.3 204.9 6.48 262.12 5.9 217.8 6.55 262.15 5.5 229.1 6.61 262.18 5.0 238.6 6.67 262.21 4.6 246.4 6.71 262.23 4.2 252.6 6.74 262.24 3.8 257.1 6.77 262.26 3.4 260.0 6.78 262.26 3.0 261.3 6.79 262.27 2.6 261.0 6.79 262.27 2.2 259.2 6.78 262.26 1.8 255.7 6.76 262.25 1.4 250.8 6.73 262.24 0.9 244.3 6.70 262.22 0.5 236.3 6.65 262.20 0.1 227.0 6.60 262.18 0.0 216.6 6.54 262.15 0.0 205.1 6.48 262.12 0.0 192.7 6.41 262.09 0.0 179.8 6.34 262.06 0.0 167.1 6.27 262.02 0.0 154.6 6.18 261.98 0.0 142.2 6.04 261.93 0.0 130.2 5.90 261.87 0.0 118.4 5.77 261.82 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 < N c ci:: c.. 15.5 10.0 1.0 0.0 1.5 3.1 4.6 6.2 7.7 9.3 10.8 12.4 13.9 15.5 14.7 13.9 13.2 12.4 11.6 10.8 10.1 9.3 8.5 7.7 7.0 6.2 5.4 4.6 3.9 3.1 2.3 1.5 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.8 262.27 8.2 15.5 (.) N c ci:: c.. 1.5 10.0 1.0 0.0 0.2 0.3 0.5 0.6 0.8 0.9 1.1 1.2 1.4 1.5 1.5 1.4 1.3 1.2 1.2 1.1 1.0 0.9 0.8 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 D.A. D.A. c w (!) rn ....I 0 ....I~ < c.. Ci N < I-c I-0 I-!:!1 ci:: ci:: 0 0:: ~~ .:.. c.. w w 8.3 22.4 10.1 10.0 1.0 1.0 cfs cfs cfs cfs 0.0 0.0 0.0 0.0 3.4 0.8 2.2 3.1 7.7 1.7 4.5 6.1 10.8 2.5 6.7 9.2 13.6 3.3 9.0 12.3 16.4 4.1 11.2 15.3 19.4 5.0 13.4 18.4 22.4 5.8 15.7 21.5 25.2 6.6 17.9 24.5 28.0 7.4 20.2 27.6 30.7 8.3 22.4 30.6 29.8 8.0 21.3 29.2 28.8 7.5 20.2 27.7 27.8 7.1 19.0 26.2 26.6 6.7 17.9 24.6 25.4 6.3 16.8 23.1 24.3 5.9 15.7 21.6 23.1 5.5 14.6 20.0 21.9 5.1 13.4 18.5 20.7 4.7 12.3 17.0 19.4 4.2 11.2 15.4 18.2 3.8 10.1 13.9 17.0 3.4 9.0 12.4 15.7 3.0 7.8 10.8 14.5 2.6 6.7 9.3 13.2 2.2 5.6 7.8 11.9 1.8 4.5 6.2 10.7 1.4 3.4 4.7 9.4 0.9 2.2 3.2 8.1 0.5 1.1 1.7 6.8 0.1 0.0 0.1 6.6 0.0 0.0 0.0 6.5 0.0 0.0 0.0 6.5 0.0 0.0 0.0 6.4 0.0 0.0 0.0 6.3 0.0 0.0 0.0 6.3 0.0 0.0 0.0 6.2 0.0 0.0 0.0 6.0 0.0 0.0 0.0 5.9 0.0 0.0 0.0 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.7 8.3 22.4 30.7 10/7/2004 0428-drainage-Bertrand-040923.xls Appendix D-3 0.A. O.A. Pond Routing 'It .:: 0 a. w f! c: Cl al z ..... 0 E u N iii + .; 0 :ii! c: "'O < < + ,., 8 iC J: a. a. c: Qp 15.3 4.2 Tc 11.3 10.0 inc 1.0 1.0 Time cfs cfs cfs cfs 0.0 0.0 0.0 0.0 1.8 0.0 1.0 1.4 0.4 1.8 5.3 0.0 2.0 2.7 0.8 3.5 8.9 0.0 3.0 4.1 1.2 5.3 12.4 2.2 4.0 5.4 1.7 7.1 15.9 7.5 5.0 6.8 2.1 8.9 19.5 15.5 6.0 8.1 2.5 10.6 23.0 26.1 7.0 9.5 2.9 12.4 26.6 39.1 8.0 10.8 3.3 14.2 30.1 55.3 9.0 12.2 3.7 15.9 33.6 74.7 10.0 13.5 4.2 17.7 36.6 97.0 11.0 14.9 4.0 18.9 37.4 121.7 12.0 14.8 3.7 18.5 36.2 146.6 13.0 14.1 3.5 17.6 34.4 170.1 14.0 13.4 3.3 16.8 32.6 191.5 15.0 12.8 3.1 15.9 30.9 211.0 16.0 12.1 2.9 15.0 29.1 228.5 17.0 11.4 2.7 14.1 27.3 244.0 18.0 10.7 2.5 13.2 25.5 257.6 19.0 10.0 2.3 12.3 23.8 269.4 20.0 9.4 2.1 11.4 22.0 279.2 21.0 8.7 1.9 10.6 20.2 287.2 22.0 8.0 1.7 9.7 18.5 293.3 23.0 7.3 1.5 8.8 16.7 297.7 24.0 6.7 1.2 7.9 14.9 300.2 25.0 6.0 1.0 7.0 13.2 300.9 26.0 5.3 0.8 6.1 11.4 299.9 27.0 4.6 0.6 5.2 9.6 297.2 28.0 3.9 0.4 4.4 7.8 292.7 29.0 3.3 0.2 3.5 6.1 286.5 30.0 2.6 0.0 2.6 4.5 278.7 31.0 1.9 0.0 1.9 3.2 269.4 32.0 1.2 0.0 1.2 1.8 258.8 33.0 0.6 0.0 0.6 0.6 247.0 34.0 0.0 0.0 0.0 0.0 234.2 35.0 0.0 0.0 0.0 0.0 220.9 36.0 0.0 0.0 0.0 0.0 207.8 37.0 0.0 0.0 0.0 0.0 194.8 38.0 0.0 0.0 0.0 0.0 181.9 39.0 0.0 0.0 0.0 0.0 169.2 40.0 0.0 0.0 0.0 0.0 156.6 165.0 0.0 0.0 0.0 0.0 0.0 166.0 0.0 0.0 0.0 0.0 0.0 167.0 0.0 0.0 0.0 0.0 0.0 168.0 0.0 0.0 0.0 0.0 0.0 169.0 0.0 0.0 0.0 0.0 0.0 170.0 0.0 0.0 0.0 0.0 0.0 PEAK FLOWS 14.9 4.2 18.9 0.00 indicates inital condition APPENDIX D-3 Proposed Detention Pond Routing COTTEN'S BEE TRIB 'A' DRAINAGE EVENT= 10 O.A. c: c: 0 :;:; 0 "' t. > Cll ~ ijj i5 + ..... "'O c: + c: < le c: 0 a a. a. 9.3 10.1 1.0 cfs cfs ft cfs 0.0 0.0 0.00 0.0 1.8 0.99 260.76 0.9 5.3 2.96 260.98 1.8 8.9 3.31 261.04 2.8 14.6 3.57 261.11 3.7 23.4 3.96 261.22 4.6 35.0 4.47 261.37 5.5 49.1 4.98 261.52 6.5 65.7 5.17 261.59 7.4 85.4 5.39 261.68 8.3 108.3 5.65 261.78 9.2 133.6 5.94 261.89 8.9 159.1 6.23 262.00 8.4 182.8 6.36 262.06 8.0 204.5 6.48 262.12 7.5 224.1 6.59 262.17 7.1 241.8 6.68 262.22 6.6 257.5 6.77 262.26 6.1 271.3 6.85 262.29 5.7 283.2 6.91 262.32 5.2 293.1 6.97 262.35 4.7 301.2 7.01 262.37 4.3 307.4 7.04 262.39 3.8 311.8 7.07 262.40 3.4 314.4 7.08 262.40 2.9 315.1 7.09 262.41 2.4 314.1 7.08 262.40 2.0 311.3 7.07 262.40 1.5 306.8 7.04 262.38 1.1 300.6 7.01 262.37 0.6 292.6 6.96 262.35 0.1 283.2 6.91 262.32 0.0 272.5 6.85 262.30 0.0 260.6 6.79 262.26 0.0 247.6 6.72 262.23 0.0 234.2 6.64 262.20 0.0 220.9 6.57 262.16 0.0 207.8 6.50 262.13 0.0 194.8 6.42 262.09 0.0 181.9 6.35 262.06 0.0 169.2 6.28 262.03 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 ct N 0 < a. 17.4 10.0 1.0 0.0 1.7 3.5 5.2 6.9 8.7 10.4 12.2 13.9 15.6 17.4 16.5 15.6 14.8 13.9 13.0 12.2 11.3 10.4 9.6 8.7 7.8 6.9 6.1 5.2 4.3 3.5 2.6 1.7 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.1 262.41 9.2 17.4 (.) N 0 < a. 1.7 10.0 1.0 0.0 0.2 0.3 0.5 0.7 0.9 1.0 1.2 1.4 1.6 1.7 1.6 1.6 1.5 1.4 1.3 1.2 1.1 1.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 O.A. 0.A. 0 w (.!) en ...J 0 ...J ~ ct a. i5 N ct I-0 I-0 ~ < I-!!! 0 0:: ~~ "'" a. w 9.4 25.1 10.1 10.0 1.0 1.0 cfs cfs cfs cfs 0.0 0.0 0.0 0.0 3.8 0.9 2.5 3.4 8.6 1.9 5.0 6.9 11.8 2.8 7.5 10.3 14.9 3.7 10.1 13.8 18.1 4.6 12.6 17.2 21.5 5.6 15.1 20.6 24.8 6.5 17.6 24.1 27.8 7.4 20.1 27.5 30.9 8.3 22.6 31.0 34.0 9.3 25.1 34.4 33.0 8.9 23.9 32.8 31.9 8.5 22.6 31.1 30.6 8.0 21.4 29.4 29.3 7.5 20.1 27.7 28.0 7.1 18.9 25.9 26.6 6.6 17.6 24.2 25.3 6.2 16.3 22.5 24.0 5.7 15.1 20.8 22.6 5.2 13.8 19.1 21.3 4.8 12.6 17.3 19.9 4.3 11.3 15.6 18.5 3.8 10.1 13.9 17.1 3.4 8.8 12.2 15.7 2.9 7.5 10.5 14.3 2.4 6.3 8.7 12.9 2.0 5.0 7.0 11.4 1.5 3.8 5.3 10.0 1.1 2.5 3.6 8.6 0.6 1.3 1.9 7.1 0.1 0.0 0.1 6.9 0.0 0.0 0.0 6.9 0.0 0.0 0.0 6.8 0.0 0.0 0.0 6.7 0.0 0.0 0.0 6.6 0.0 0.0 0.0 6.6 0.0 0.0 0.0 6.5 0.0 0.0 0.0 6.4 0.0 0.0 0.0 6.4 0.0 0.0 0.0 6.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.0 9.4 25.1 34.5 10/7/2004 0428-drainage-Bertrand-040923.xls Appendix D-3 D.A. D.A. =It .:: 0 a. w E z Cl ell iii e ..... N u 0 == "C .( .( >-0 J: a. a. Cl Qp 17.5 4.7 Tc 11.3 10.0 inc 1.0 1.0 Time cfs cfs 0.0 0.0 0.0 0.0 1.0 1.5 0.5 2.0 2.0 3.1 0.9 4.0 3.0 4.6 1.4 6.1 4.0 6.2 1.9 8.1 5.0 7.7 2.4 10.1 6.0 9.3 2.8 12.1 7.0 10.8 3.3 14.2 8.0 12.4 3.8 16.2 9.0 13.9 4.3 18.2 10.0 15.5 4.7 20.2 11.0 17.0 4.5 21.5 12.0 16.9 4.3 21.2 13.0 16.1 4.0 20.2 14.0 15.3 3.8 19.1 15.0 14.6 3.6 18.1 16.0 13.8 3.3 17.1 17.0 13.0 3.1 16.1 18.0 12.2 2.8 15.1 19.0 11.5 2.6 14.1 20.0 10.7 2.4 13.1 21.0 9.9 2.1 12.1 22.0 9.2 1.9 11.1 23.0 8.4 1.7 10.0 24.0 7.6 1.4 9.0 25.0 6.8 1.2 8.0 26.0 6.1 0.9 7.0 27.0 5.3 0.7 6.0 28.0 4.5 0.5 5.0 29.0 3.7 0.2 4.0 30.0 3.0 0.0 3.0 31.0 2.2 0.0 2.2 32.0 1.4 0.0 1.4 33.0 0.6 0.0 0.6 34.0 0.0 0.0 0.0 35.0 0.0 0.0 0.0 36.0 0.0 0.0 0.0 37.0 0.0 0.0 0.0 38.0 0.0 0.0 0.0 39.0 0.0 0.0 0.0 40.0 0.0 0.0 0.0 165.0 0.0 0.0 0.0 166.0 0.0 0.0 0.0 167.0 0.0 0.0 0.0 168.0 0.0 0.0 0.0 169.0 0.0 0.0 0.0 170.0 0.0 0.0 0.0 PEAK FLOWS 17.0 4.7 21.5 0.00 indicates inital condition APPENDIX D-3 Proposed Detention Pond Routing COTTEN'S BEE TRIS 'A' DRAINAGE Pond Routing EVENT= 25 D.A. c: c: 0 0 ~ t. > c: "' ..... 0 :E iii < + ..:. ..... ..... "C c N c: ~ + + c: 0 + c: .( .( rn ti 0 c: N N a. a. a. 10.6 19.8 10.1 10.0 1.0 1.0 cfs cfs cfs cfs ft I cfs 2.0 0.0 0.0 0.0 0.00 0.0 0.0 6.1 0.0 2.0 1.13 260.77 1.1 2.0 10.1 0.0 6.1 3.19 261.00 2.1 4.0 14.2 3.4 10.1 3.37 261.06 3.2 6.0 18.2 10.2 17.5 3.70 261.15 4.2 7.9 22.3 20.0 28.4 4.18 261.28 5.3 9.9 26.3 32.7 42.3 4.79 261.46 6.3 11.9 30.3 48.8 59.0 5.09 261.56 7.4 13.9 34.4 68.5 79.1 5.32 261.65 8.4 15.9 38.4 91.7 102.9 5.59 261.75 9.5 17.9 41.8 118.3 130.1 5.90 261.87 10.5 19.8 42.7 147.6 160.1 6.23 262.00 10.2 18.8 41.3 177.5 190.3 6.40 262.08 9.6 17.9 39.3 205.7 218.9 6.56 262.16 9.1 16.9 37.3 231.6 245.0 6.70 262.22 8.6 15.9 35.3 255.2 268.9 6.83 262.29 8.1 14.9 33.2 276.6 290.5 6.95 262.34 7.5 13.9 31.2 295.7 309.8 7.06 262.39 7.0 12.9 29.2 312.6 326.9 7.15 262.44 6.5 11.9 27.2 327.3 341.8 7.23 262.47 5.9 10.9 25.1 339.9 354.5 7.30 262.51 5.4 9.9 23.1 350.4 365.1 7.34 262.53 4.9 8.9 21.1 358.8 373.5 7.37 262.54 4.4 7.9 19.1 365.1 379.8 7.39 262.56 3.8 6.9 17.0 369.3 384.1 7.41 262.57 3.3 6.0 15.0 371.5 386.4 7.42 262.57 2.8 5.0 13.0 371.7 386.6 7.42 262.57 2.3 4.0 11.0 369.9 384.7 7.41 262.57 1.7 3.0 9.0 366.1 380.9 7.40 262.56 1.2 2.0 6.9 360.3 375.0 7.38 262.55 0.7 1.0 5.1 352.5 367.2 7.35 262.53 0.2 0.0 3.6 343.1 357.7 7.31 262.51 0.0 0.0 2.1 332.1 346.7 7.26 262.49 0.0 0.0 0.6 319.8 334.2 7.19 262.46 0.0 0.0 0.0 306.2 320.4 7.12 262.42 0.0 0.0 0.0 292.1 306.2 7.04 262.38 0.0 0.0 0.0 278.2 292.1 6.96 262.35 0.0 0.0 0.0 264.4 278.2 6.88 262.31 0.0 0.0 0.0 250.8 264.4 6.81 262.27 0.0 0.0 0.0 237.4 250.8 6.73 262.24 0.0 0.0 0.0 224.0 237.4 6.66 262.20 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 7.4 262.57 10.5 19.8 u N 0 .( a. 2.0 10.0 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 D.A. D.A. 0 w (!) rn ...J 0 ...J ~ < a. c N < I-I-0 0 I-!!1 .( .( e g: e~ w w 10.7 28.7 10.1 10.0 1.0 1.0 cfs cfs cfs cfs 0.0 0.0 0.0 0.0 4.4 1.1 2.9 3.9 9.7 2.1 5.7 7.9 13.1 3.2 8.6 11.8 16.6 4.2 11.5 15.7 20.4 5.3 14.4 19.6 24.2 6.3 17.2 23.6 27.7 7.4 20.1 27.5 31.2 8.5 23.0 31.4 34.7 9.5 25.8 35.4 38.3 10.6 28.7 39.3 37.1 10.2 27.3 37.5 35.7 9.7 25.8 35.5 34.2 9.1 24.4 33.5 32.7 8.6 23.0 31.6 31.2 8.1 21.5 29.6 29.7 7.6 20.1 27.7 28.2 7.0 18.7 25.7 26.7 6.5 17.2 23.7 25.2 6.0 15.8 21.8 23.6 5.4 14.4 19.8 22.0 4.9 12.9 17.8 20.5 4.4 11.5 15.9 18.9 3.9 10.0 13.9 17.3 3.3 8.6 11.9 15.7 2.8 7.2 10.0 14.0 2.3 5.7 8.0 12.4 1.7 4.3 6.0 10.8 1.2 2.9 4.1 9.1 0.7 1.4 2.1 7.5 0.2 0.0 0.2 7.3 0.0 0.0 0.0 7.3 0.0 0.0 0.0 7.2 0.0 0.0 0.0 7.1 0.0 0.0 0.0 7.0 0.0 0.0 0.0 7.0 0.0 0.0 0.0 6.9 0.0 0.0 0.0 6.8 0.0 0.0 0.0 6.7 0.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 38.3 10.7 28.7 39.4 10/7/2004 0428-drainage-Bertrand-040923.xls Appendix D-3 D.A. D.A. :it J;; 0 c. w E Cl cc z ~ u N iii 0 :::E "C ci: ci: >-8 J: 0.. 0.. Qp 18.7 5.4 Tc 11.3 10.0 inc 1.0 1.0 Time cfs cfs 0.0 0.0 0.0 0.0 1.0 1.7 0.5 2.2 2.0 3.3 1.1 4.4 3.0 5.0 1.6 6.6 4.0 6.6 2.1 8.8 5.0 8.3 2.7 11.0 6.0 10.0 3.2 13.2 7.0 11.6 3.8 15.4 8.0 13.3 4.3 17.6 9.0 14.9 4.8 19.8 10.0 16.6 5.4 22.0 11.0 18.3 5.1 23.4 12.0 18.1 4.8 22.9 13.0 17.3 4.6 21.8 14.0 16.5 4.3 20.7 15.0 15.6 4.0 19.7 16.0 14.8 3.8 18.6 17.0 14.0 3.5 17.5 18.0 13.1 3.2 16.4 19.0 12.3 3.0 15.3 20.0 11.5 2.7 14.2 21.0 10.6 2.4 13.1 22.0 9.8 2.1 12.0 23.0 9.0 1.9 10.9 24.0 8.2 1.6 9.8 25.0 7.3 1.3 8.7 26.0 6.5 1.1 7.6 27.0 5.7 0.8 6.5 28.0 4.8 0.5 5.4 29.0 4.0 0.3 4.3 30.0 3.2 0.0 3.2 31.0 2.3 0.0 2.3 32.0 1.5 0.0 1.5 33.0 0.7 0.0 0.7 34.0 0.0 0.0 0.0 35.0 0.0 0.0 0.0 36.0 0.0 0.0 0.0 37.0 0.0 0.0 0.0 38.0 0.0 0.0 0.0 39.0 0.0 0.0 0.0 40.0 0.0 0.0 0.0 165.0 0.0 0.0 0.0 166.0 0.0 0.0 0.0 167.0 0.0 0.0 0.0 168.0 0.0 0.0 0.0 169.0 0.0 0.0 0.0 170.0 0.0 0.0 0.0 PEAK FLOWS 18.3 5.4 23.4 a.aa indicates inital condition APPENDIX D-3 Proposed Detention Pond Routing COTTEN'S BEE TRIS 'A' DRAINAGE Pond Routing EVENT= 50 D.A. c: c: 0 :;:; a .. t. > c: "' ..... a ;g w < + .!. c N c: + ..... "C 0 + "C c: + c: ci: ci: iC le a 0 c: 0.. 0.. 0.. 11.4 22.4 10.1 10.0 1.0 1.0 cfs cfs cfs cfs ft cfs 2.2 a.a a.a a.a 0.00 0.0 0.0 6.6 0.0 2.2 1.22 260.79 1.1 2.2 11.0 0.2 6.6 3.21 261.01 2.3 4.5 15.4 4.3 11.2 3.41 261.07 3.4 6.7 19.8 12.1 19.7 3.79 261.18 4.5 9.0 24.2 23.2 31.9 4.33 261.33 5.6 11.2 28.6 37.5 47.4 4.96 261.51 6.8 13.5 33.0 55.7 66.0 5.17 261.59 7.9 15.7 37.3 77.8 88.6 5.43 261.69 9.0 17.9 41.7 103.7 115.1 5.73 261.81 10.2 20.2 45.3 133.2 145.4 6.08 261.94 11.3 22.4 46.3 165.9 178.6 6.34 262.05 10.9 21.3 44.8 199.2 212.2 6.52 262.14 10.3 20.2 42.6 230.6 243.9 6.70 262.22 9.8 19.1 40.4 259.4 273.2 6.86 262.30 9.2 17.9 38.2 285.8 299.8 7.00 262.37 8.6 16.8 36.0 309.8 324.0 7.14 262.43 8.1 15.7 33.8 331.3 345.8 7.26 262.49 7.5 14.6 31.6 350.4 365.1 7.34 262.53 6.9 13.5 29.4 367.2 382.0 7.40 262.56 6.4 12.3 27.2 381.7 396.6 7.46 262.59 5.8 11.2 25.0 393.9 408.9 7.50 262.62 5.2 10.1 22.8 403.9 418.9 7.54 262.64 4.7 9.0 20.6 411.5 426.7 7.57 262.65 4.1 7.8 18.4 417.0 432.2 7.59 262.66 3.6 6.7 16.2 420.2 435.4 7.60 262.67 3.0 5.6 14.0 421.2 436.5 7.61 262.67 2.4 4.5 11.8 420.1 435.3 7.60 262.67 1.9 3.4 9.6 416.7 431.9 7.59 262.66 1.3 2.2 7.4 411.2 426.4 7.57 262.65 0.7 1.1 5.5 403.6 418.7 7.54 262.64 0.2 0.0 3.9 394.1 409.1 7.50 262.62 0.0 0.0 2.2 383.1 398.0 7.46 262.59 0.0 0.0 0.7 370.4 385.3 7.41 262.57 0.0 0.0 0.0 356.4 371.1 7.36 262.54 0.0 0.0 0.0 341.8 356.4 7.31 262.51 0.0 0.0 0.0 327.3 341.8 7.23 262.47 0.0 0.0 0.0 313.0 327.3 7.15 262.44 0.0 0.0 0.0 298.9 313.0 7.08 262.40 0.0 0.0 0.0 284.9 298.9 7.00 262.36 0.0 0.0 0.0 271.0 284.9 6.92 262.33 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 7.6 262.67 11.3 22.4 (.) N 0 ci: 0.. 2.2 10.0 1.0 0.0 0.2 0.4 0.7 0.9 1.1 1.3 1.6 1.8 2.0 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 D.A. D.A. 0 w Cl Ill ...J 0 ...J ~ < 0.. c N < I-0 I-0 ci: ci: I-!!l 0 0:: 0 >< I-0.. w w I-w 11.5 32.5 10.1 10.0 1.0 1.0 cfs cfs cfs cfs 0.0 0.0 0.0 0.0 4.8 1.1 3.2 4.4 10.4 2.3 6.5 8.8 14.2 3.4 9.7 13.1 18.2 4.5 13.0 17.5 22.3 5.7 16.2 21.9 26.5 6.8 19.5 26.3 30.3 7.9 22.7 30.7 34.2 9.1 26.0 35.0 38.1 10.2 29.2 39.4 42.0 11.3 32.5 43.8 40.7 10.9 30.8 41.8 39.0 10.4 29.2 39.6 37.4 9.8 27.6 37.4 35.8 9.2 26.0 35.2 34.1 8.7 24.3 33.0 32.5 8.1 22.7 30.8 30.8 7.5 21.1 28.6 29.1 7.0 19.5 26.4 27.3 6.4 17.8 24.3 25.6 5.8 16.2 22.1 23.8 5.3 14.6 19.9 22.1 4.7 13.0 17.7 20.3 4.1 11.4 15.5 18.5 3.6 9.7 13.3 16.8 3.0 8.1 11.1 15.0 2.4 6.5 8.9 13.2 1.9 4.9 6.7 11.3 1.3 3.2 4.5 9.5 0.7 1.6 2.4 7.7 0.2 0.0 0.2 7.5 0.0 0.0 0.0 7.5 0.0 0.0 0.0 7.4 0.0 0.0 0.0 7.4 0.0 0.0 0.0 7.3 0.0 0.0 0.0 7.2 0.0 0.0 0.0 7.2 0.0 0.0 0.0 7.1 0.0 0.0 0.0 7.0 0.0 0.0 0.0 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.0 11.5 32.5 43.9 10/7/2004 0428-drainage-Bertrand-040923.xls Appendix D-3 • • • • • • • D.A. 'II: .I:. c. ~ Cl Cll ~ u N 0 "C ci: ci: >. :c 0.. 0.. Qp 22.2 6.0 Tc 11.3 10.0 inc 1.0 1.0 Time cfs 0.0 0.0 0.0 1.0 2.0 0.6 2.0 3.9 1.2 3.0 5.9 1.8 4.0 7.9 2.4 5.0 9.8 3.0 6.0 11.8 3.6 7.0 13.8 4.2 8.0 15.7 4.8 9.0 17.7 5.4 10.0 19.7 6.0 11.0 21.6 5.7 12.0 21.5 5.4 13.0 20.5 5.1 14.0 19.5 4.8 15.0 18.5 4.5 16.0 17.5 4.2 17.0 16.6 3.9 18.0 15.6 3.6 19.0 14.6 3.3 20.0 13.6 3.0 21.0 12.6 2.7 22.0 11.6 2.4 23.0 10.7 2.1 24.0 9.7 1.8 25.0 8.7 1.5 26.0 7.7 1.2 27.0 6.7 0.9 28.0 5.7 0.6 29.0 4.7 0.3 30.0 3.8 0.0 31.0 2.8 0.0 32.0 1.8 0.0 33.0 0.8 0.0 34.0 0.0 0.0 35.0 0.0 0.0 36.0 0.0 0.0 37.0 0.0 0.0 38.0 0.0 0.0 39.0 0.0 0.0 40.0 0.0 0.0 165.0 0.0 0.0 166.0 0.0 0.0 167.0 0.0 0.0 168.0 0.0 0.0 169.0 0.0 0.0 170.0 0.0 0.0 PEAK FLOWS 21.6 6.0 0.00 indicates inital condition D.A. 0 w z ii'i :::!! 8 cfs I 0.0 2.6 5.1 7.7 10.3 12.9 15.4 18.0 20.6 23.1 25.7 27.4 26.9 25.6 24.3 23.0 21.8 20.5 19.2 17.9 16.6 15.3 14.0 12.8 11.5 10.2 8.9 7.6 6.3 5.0 3.8 2.8 1.8 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.4 APPENDIX D-3 Proposed Detention Pond Routing COTTEN'S BEE TRIS 'A' DRAINAGE Pond Routing EVENT= 100 D.A. c: c: ~ 0 .. t. > c: .. ~ iii ..... 0 <( + ..:. ..... ..... "C c N c: "C + + 0 + c: c: ci: ci: iC lC c: 0 c: 0 0.. 0.. 0.. 13.5 25.2 10.1 10.0 1.0 1.0 cfs cfs cfs cfs ft cfs 2.6 0.0 0.0 0.0 0.00 0.0 0.0 7.7 0.0 2.6 1.43 260.81 1.3 2.5 12.9 1.2 7.7 3.26 261.03 2.7 5.0 18.0 7.0 14.0 3.54 261.11 4.0 7.6 23.1 16.9 25.0 4.03 261.24 5.4 10.1 28.3 30.7 40.1 4.70 261.43 6.7 12.6 33.4 48.8 58.9 5.09 261.56 8.0 15.1 38.6 71.5 82.2 5.36 261.66 9.4 17.6 43.7 98.7 110.0 5.67 261.79 10.7 20.2 48.8 130.3 142.4 6.04 261.93 12.0 22.7 53.1 166.5 179.2 6.34 262.05 13.4 25.2 54.3 206.4 219.6 6.56 262.16 12.9 23.9 52.5 247.1 260.7 6.79 262.26 12.2 22.7 50.0 285.7 299.7 7.00 262.37 11.6 21.4 47.4 321.2 335.6 7.20 262.46 10.9 20.2 44.8 353.9 368.6 7.35 262.53 10.2 18.9 42.2 383.8 398.7 7.46 262.60 9.6 17.6 39.7 410.9 426.0 7.57 262.65 8.9 16.4 37.1 435.2 450.5 7.66 262.70 8.2 15.1 34.5 456.8 472.3 7.74 262.75 7.6 13.9 32.0 475.7 491.4 7.81 262.78 6.9 12.6 29.4 491.9 507.7 7.88 262.82 6.2 11.3 26.8 505.5 521.3 7.93 262.85 5.5 10.1 24.2 516.3 532.3 7.97 262.87 4.9 8.8 21.7 524.6 540.6 8.00 262.89 4.2 7.6 19.1 530.2 546.2 8.02 262.90 3.5 6.3 16.5 533.2 549.3 8.03 262.90 2.9 5.0 14.0 533.7 549.8 8.03 262.90 2.2 3.8 11.4 531.6 547.6 8.03 262.90 1.5 2.5 8.8 527.0 543.0 8.01 262.89 0.9 1.3 6.5 519.8 535.8 7.98 262.88 0.2 0.0 4.6 510.5 526.4 7.95 262.86 0.0 0.0 2.6 499.2 515.0 7.90 262.83 0.0 0.0 0.8 486.1 501.8 7.85 262.81 0.0 0.0 0.0 471.3 486.9 7.80 262.78 0.0 0.0 0.0 455.9 471.3 7.74 262.74 0.0 0.0 0.0 440.5 455.9 7.68 262.71 0.0 0.0 0.0 425.3 440.5 7.62 262.68 0.0 0.0 0.0 410.1 425.3 7.57 262.65 0.0 0.0 0.0 395.1 410.1 7.51 262.62 0.0 0.0 0.0 380.2 395.1 7.45 262.59 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 8.0 262.90 13.4 25.2 (.) N 0 ci: 0.. 2.5 10.0 1.0 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5 2.4 2.3 2.1 2.0 1.9 1.8 1.6 1.5 1.4 1.3 1.1 1.0 0.9 0.8 0.6 0.5 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 D.A. D.A. 0 w (.!) (/) ..J ~ ..J 0 <( 0.. c N <( f-f-0 0 f-!Q ci: ci: 0 0:: e t;S ..... 0.. w w 13.6 36.5 10.1 10.0 1.0 1.0 cfs cfs cfs cfs 0.0 0.0 0.0 0.0 5.5 1.3 3.6 5.0 11.5 2.7 7.3 10.0 15.9 4.0 10.9 15.0 20.5 5.4 14.6 20.0 25.2 6.7 18.2 25.0 29.7 8.1 21.9 29.9 34.1 9.4 25.5 34.9 38.5 10.7 29.2 39.9 43.0 12.1 32.8 44.9 47.4 13.4 36.5 49.9 45.8 13.0 34.6 47.6 44.0 12.3 32.8 45.1 42.1 11.6 31.0 42.6 40.3 10.9 29.2 40.1 38.4 10.3 27.3 37.6 36.4 9.6 25.5 35.1 34.5 8.9 23.7 32.6 32.5 8.3 21.9 30.1 30.5 7.6 20.1 27.6 28.6 6.9 18.2 25.1 26.6 6.2 16.4 22.6 24.6 5.6 14.6 20.2 22.5 4.9 12.8 17.7 20.5 4.2 10.9 15.2 18.5 3.6 9.1 12.7 16.4 2.9 7.3 10.2 14.4 2.2 5.5 7.7 12.3 1.5 3.6 5.2 10.3 0.9 1.8 2.7 8.2 0.2 0.0 0.2 7.9 0.0 0.0 0.0 7.9 0.0 0.0 0.0 7.9 0.0 0.0 0.0 7.8 0.0 0.0 0.0 7.7 0.0 0.0 0.0 7.7 0.0 0.0 0.0 7.6 0.0 0.0 0.0 7.6 0.0 0.0 0.0 7.5 ,__ ---0.0 0.0 0.0 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.4 13.6 36.5 50.0 10/7/2004 0428-drainage-Bertrand-040923.xls Appendix D-3 COTTEN SUBDIVISION DRAINAGE ANALYSIS October 2004 Prepared for LLE E T T I N ihr hrarr of ihr Rmarrh Valley By MITCHELL M M MORGAN ENGINEERS & CONSTRUCTORS 511 UNIVERSITY DR IVE , SUITE 2 04 COLLEGE STAT IO N, TX 77840 OFFI CE (979) 260-6963 FAX (9 7 9) 26 0-3564 MITCHELL MM MORGAN COTTEN'S SUBDIVISION DRAINAGE ANALYSIS INTRODUCTION The purpose of this drainage report is to present an analysis of the required drainage infrastructure for the proposed Kenny Cotten's Barbeque Restaurant, as well as lay the groundwork for the remainder of the proposed Cotten mi xed-use deve lopment located in College Stat ion, Texas. This project is to be located south of FM 2818 between Te xas Avenue and the SH 6 East Bypass . This report will provide analys is of Kenny Cotten's Barbeque in three deve loped conditions . First, an ana lysis of the existing (predeveloped conditions), second, an intermediate leve l of development wh ich reflects the analysis performed for the Dartmouth Drive Extension Drainage Analysis completed by Mitchell & Morgan in August, 2004 and lastly the postdeve loped conditions for the barbeque restaurant. One of the most important items to note with th is analysis is that it has been completed and presented in two parts . This phasing was done in order to reduce confusion between the drainage design for the subbasins contributing to Bee Creek Main and that of the subbasins contributing to Bee Creek Tributary 'A'. This will become increasingly important as the adjacent mixed-use development occurs and addendums to the Bee Creek Tributary "A" portion of this report is written to account for the additional development on Lot 4, Block 1 of the Cotten Subdivision, sometimes referred to as the Bertrand property . Each tributary will have will have a separate description with associated exhibits and appendices that present the drainage design for the respective area . Each of these drainage designs will be independent; but because development of the Cotten prope rty results in the diversion of portions of the dra inage from Bee Creek Main to Tributary 'A ', all the information will be provided in one report. The phasing is contained within this report Phase A : Bee Creek Main and contributing drainage areas Phase B: Bee Creek Tributary 'A' and contributing drainage areas CERTIFICATION "I hereby certify that I am familiar with the adopted ordinances , regulations, standards, and policies of the City of College Station governing development, that these plans have been prepared under my supervision , and that this drainage plan complies with governing ordinances and regulations to the best of my knowledge ." "The site of Kenny Cotten's Barbeque Restaurant , Lot 2, Block 1 of the Cotten Subdivision does ot lie within the established area of the special flood hazard as established by the cure t flood insurance study or floo_~w~c~~fe map number 4804 1 C0144C, dated July 2, 1 2 ." /.+~>·"'*""""· .. ~..,..~~··,, ,, * .·· "' -., u · I ___ ,, ...... :... ·. * ~ ~VE "ic "··········-.... \.* ~ --=..il.-. --+1+--Pr--'-fl'----il",.__;;JtO:;.,i~. ,,,..,.,, ...... ~J.~ .. M9RGAN -~ I (J -\ \ ~04 Veronica J.B . orga PE ., C.F."1.':P :. 77689 "···.: .. ···~ Registered Professi al Engineer\~ .... ?~o Q .. ..:$ J State of Texas No . 77689 11f0> .. s;· .. !.~.1:~~~··&~~ t,\zoNAL 'f:.~--.: \\\"'"''''' 511 UNIVERS ITY DRIVE EAST, SUI TE 204 • COL LEGE STATIO N, TX 77840 • T 979.260.6963 • F 979.260.3564 CIVIL ENGINEERING • HYDRAULICS • HYDROLOGY • UTILITIES • STREETS • SITE PLANS • SUBDIVISIONS 1nfo@m1tchellandmorgan .com • www.mitchellandmorgan .com PHASE A: BEE CREEK MAIN DRAINAGE ANALYSIS Thi s section of the Cotten's Subdivision Restaurant Drainage Analysis inc lud es all required drainage analysis for areas contributing to Bee Creek Main . GENERAL LOCATION AND DESCRIPTION Kenny Cotten's Barbeque Restaurant will be located on Lot 2, Block 1 of the Cotten Subdivision, Phase 1, adjacent to and on the east side of the proposed Dartmouth Drive Extensio n and south of FM 2818 (Harvey Mitchell Parkway) in College Station, Te xas . This proposed Dartmouth extension is approximately 2000 feet east of the intersection of FM 2818 and Te xas Avenue . More information regarding Dartmouth Drive was presented in the August 2002 Dartmouth Drive Extension Drainage Analysis completed by Mitchell & Morgan, LLP. The proj ect location is identified in Exhibit OV1 of this report. DRAINAGE BASIN DESCRIPTION As indicated in the introduction, a portion of the project is located within the Bee Creek Main watershed. The entire property is currently undeveloped and is covered with grass and small scrub trees . While much of the upper section of the primary drainage basin is developed , this site lies within the primarily undeveloped lower portion if the ba sin . Because of the location of this site and the development state in this portion of the Bee Creek Main basin, permitting runo ff to flow undetained into the receiving stream is a beneficial option . This was discussed in the August 30 1h Predevelopment Conference with the City of College Station . Additional supporting information will be presented later in this report to support zero-detention on the Bee Creek Main portion of the project. This property is located within the Bee Creek Main drainage basin ; however, as seen on Exhibit OV2, no portion of the proposed restaurant site lies within the regulatory 100-year floodplain per the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FI RM) panel 144C, effective date July 2, 1992 . Currently a majority of Block 1 of the Cotten Subdivision and a significant portion of the surrounding area drains in a northeasterly direct ion toward a 3-30" RCP culvert located along the eastbound side of FM 2818. The 3- 30" RCP culvert is considered the confluence point for a majority of the study area. This information is demonstrated in Exhibit A 1, the Existing Development Drainage Area Map. Exhibits A2 and A3 include updated drainage areas for the Dartmouth Drive Extension and the proposed Cotten's Barbeque, respectively. These drainage patterns will be discussed in more detail in the Drainage Facility Design section of this report . DRAINAGE DESIGN CRITERIA All drainage design is in accordance with the City of College Station Drainage Policy and Design Standards (D PDS ). As such : • Design rains torm events consist of the 5-, 10-, 25-, 50-, and 100-year storm events . • Flow calculations are based on the Rational Method with a minimum time of concentration of 10 minutes . Lag time calculation is based on the Upland Method . • Pipe capacity calculations are based on Manning 's Equation with Hydraul ic Grade Line analysis performed to determine location and extent of storm sewer system surcharge . • No Detention analysis w ill be provided to justify departing from the zero-increase runoff guideline stated in the DPDS . Cotten Subdivision Drainage Analysis 2 DRAINAGE FA CILITY DESIGN As was the case in the Dartmouth Drive Extension Drainage Analysis, much of the infrastructure included in this investigation was ex ist ing TxDOT storm sewe r . This was done to more accurately determine f low conditions at the 3-30" RCP culvert used as the study confluence for this project. While most of the FM 2818 drainage areas along for the analysis remain the same as the original TxDOT design, the drainage areas along the Cotten property and the surrounding area were modified to more accurately reflect the drainage patterns in the area, both pre-and postdevelopment and provide consistency in the analysis. This has a negligible effect on the analysis as the TxDOT calculations on ly show capacity, not actual system performance . Predevelopment Dra in age Analysis Per Exhibit A 1, flow from Block 1 of the Cotten Subdivision drains in three directions . Approximately 4 .5 acres of the property currently drains to the 3-30" RCP culvert and nearly 1.4 acres of the Cotten Subdivision drains to the single 30" RCP culvert that drains drainage subbasin EA -C. The remaining 1 acre of the Cotten Subdivision drains south to Bee Creek Tributary 'A ' and w ill be discusses in the Bee Creek Tr ibutary 'A ' portion of this report. The TxDOT dra inage basins used for the design of FM 2818 have been included in the predevelopment analysis calculations provided in Appendix A. As previously discussed, runoff calculations were performed using the Rational Method. Peak runoff values for each of the dra inage basins are prov ided in Appendix A-1, Rational Form ula Drainage Area Ca l culations; however, because of the variation in time of concentration be t ween FM 2818 runoff and runoff from drainage basin EA-B the predevelopment peak flow rate for the entire area is more accu rately reflected in the Pipe Size Calculations provided as Append ix A-3 for each of the studie d rainfall events . As expected, most of the system currently provides capacity for the 100-yea r peak d isc harge . In let ca lcu lations ha ve also bee n provided as Appendix A-2 to evaluate the current in let configuration a long Harvey Mitchell Parkway fo r each relevant storm event. Dartmouth Drive Devel opment W hile Da rtm outh Dr ive is discussed in the Dartmo u th Drive Extension Dra in age Analysis, it has been included in this report as an intermediate step in the drainage design process . The results presented in this report for Dartmouth Drive are, for the most part, a restatement of the previously mentioned analysis, with minor changes being addressed to account for the updated to pograph ic survey data in the area . The addition of approximately 1.1 acres of impervious cover as we ll as the drainage patterns associated wit h the deve lopment is shown in Exhibit A 2 . Approximately 150 feet of the Dartmouth Drive Extension will drain to the south toward Bee Creek Tributary 'A'. This portion of Dartmouth Drive will be discussed in the Bee Creek Tributary 'A' Section of this report. The portion of Dartmouth Drive that drains to Bee Creek Main within the deve lopment of the Cotten Subdivision required the placement of approximately 172 LF of 3' x 2' RCB and the construction of an expanded junction box at the inlet A8 location shown in Exhibit A2 . One 5 ' inlet wi ll be placed on either side of the street with 8 LF of 30" RCP feeding into the inlet on the so ut h bound side of Dart mouth . Th is pipe w ill provide a discharge locat ion for runoff from the 3.5-acre drainage basin PA-B 1. In order to provide future access to emergency vehicles du r ing a major rainfall event, the system was designed to convey the 100-year rainfall event with no headwater . Plan and profile drawings for the construct ion of this Cotten S u bdi vision Drainage Analysis 3 infrastructure have been included as Exhibit B. A grading plan for Dartmouth Drive is provided as Exhibit C and as Exhibit C2 for Kenny Cotten 's Barbeque Restaurant. Rational method calculations, inlet calculations, and pipe size calculations have been provided as Appendices A -1, A-2, and A-3, respectively. Hydraulic Grade Line calculations have been prov ided as Exhibit D to demonstrate that the 100-year event will pass without inundating Dartmouth Drive . Postdevelopment Drainage Analysis As demonstrated in Exhibit A3, the construction of Kenny Cotten's Barbeque Restaurant will result in changing drainage patterns . While nearly the entire Lot 2, Block 1, east of Dartmouth Drive will become impervious, a majority will be diverted toward Bee Creek Tributary 'A'. This portion of the design will be discussed in the Bee Creek Tributary 'A' portion of thi s report. The result of this diversion is an offset in the increase of the peak discharge, minimizing the effect that development of the restaurant has on the Bee Creek Main drainage . A grading plan of the restaurant site has been provided as Exhibit D of this report . The runoff will be conveyed to an open back inlet which leaves the parking lot and enters the 3-30 " RCP culverts as shown in Exhibit C2 . A 5' recessed inlet will be placed at the north end of the Cotten's Barbeque parking lot to handle this runoff. As sho wn in Append ix A-3, the 3-30" RCP culvert has more than adequate capacity to carry the flow from the contributing drainage subbasins for all studied rainfall events. Table 1 provides a comparison of the peak discharge rates for all studied events for each of the development cond it ions discussed . The diversion of much of the restaurant property to Bee Creek Tributary 'A' also has an impact in the peak discharges seen at the 30" RC P that drains area DA-C. Approximately 1.5 acres of the current drainage area is removed from Bee Creek Main , resulting in a decrease in peak discharges at that location. Table 2 detail s the flow changes at that location . Peak Disc har es from TxDOT 3-30M RCP Culvert (DA-B) S-Yea r 10-Year 2S-Year SO-Year 100-Year Flow Conditions Flowrate Flowrate Flowrate Flowrate Flowrate System Outfall All flowrates in cubic feet per second (cfs) Predevelopment 27 .6 31 .2 3S .8 38 .3 45 .8 Dartmouth Drive 37 .7 42.4 48.S 51 .9 61.7 Postdevelopment 39 .6 44.S S0 .9 S4 .6 64.8 Flow Increase 12 .0 13.3 1 S.1 16 .3 19 .0 Table 1. Peak Discharge Summary for DA-8 Peak Dischar es from TxDOT 30M RCP Culvert (DA-C) S-Year 10-Year 2S-Year SO-Yea r 100-Yea r Flow Co nditi ons Flowrate Flowrate Flowrate Flowrate Flowrate System Outfall All f/owrates in cubic feet per second (cfs) Predevelopment 9 .9 10.8 12 .7 14 .2 16 .0 Postdevelopment S.6 6.1 7 .2 8 .1 9 .1 Flow Reduction 4.3 4 .7 S.5 6.1 6.9 Table 2. Peak Discharge Summary for DA-C Cotten Subdivision Drainage Analysis 4 Hydrograph Timing Ana lysis for No Detention Because of t he close proximity to Bee Creek Main and the location of the development at the lower end of the overa ll Bee Creek wa t ershed, it is more bene fi cial to re lease the runoff undetained from the Cotten Subdivision than to require detention. As a result, detention wil l not be provided . W ith a watershed lag time of several hours and a local time of concentration of just over 12 minutes, the drainage from this development will peak on the rising limb of the Bee Creek Main hydrograph . Attenuation of flow will not provide any benefits and in some cases may resu lt in a net inc rease in the peak flowrate in Bee Creek. Using HEC-1 hydro logic models, a timing analysis of the hydrographs was performed for the predevelopment and postdevelopment conditions. The postdevelopment analysis included the modified drainage areas as indicated in Appendix B 1 of the report and considered approximate ly 80% development of the subbasin, all owing fo r future improvement. In looking at th e tables provided be low, it is apparen t that the peak flow va lues prov ided differ between the Rational Method and the HEC-1 pro d uced values. It is important to note that the HEC-1 models employed an SCS Type Ill 24-hour storm as opposed to a storm duration of 3*Tc (t ime of concentration). In order to apply a consisten t standard to the entire basin, a 24-hour st o rm was ap p lied to the area in questio n. This resu lted in lower peak discharge values than those determined using the Rational M ethod . As t he most current Bee Creek model available, the HEC-1 mode l prepared by Klotz & Associates for the 1998 Bee Creek Study was used as a point of reference and modified to reflec t t he proposed conditions in the basin. This mode ling was incorporated into a Carters Creek model to determine the effects on the do wn stream syst em. Predeve lopment Peak Dischar es (HEC -1) 5-Year 10-Year 25-Year 50-Year 100-Year 500-Year Flow Conditions Flowrate Flow rate Flowrate Flowrate Flowrate Flowrate Study Point All flowrates in cubic feet per second (cfs) BEE2 780 957 1103 1308 1484 1776 SH6 Ea st Bypass 2367 2972 3474 4136 4662 5528 Bee Confluence 3212 4080 4838 5828 6690 8037 Carters Confluence 14012 17958 21247 26008 30809 38298 Table 3 . Peak Discharge Increase Comparison Postdevelopment Peak Dischar es (HEC -1) 5-Year 10-Year 25-Yea r 50-Year 100-Year 500-Year Flow Conditions Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Study Point All flowrates in cubic feet per second (ds) BEE2 779 952 1098 1302 1476 1767 BEE4 13 15 17 20 23 27 SH6 East Bypass 2366 2971 3472 4135 4661 5526 Bee Confluence 3212 4080 4837 5827 6689 8036 Carters Confluence 14012 17958 21247 26008 30809 38297 Table 4 . Peak Discharge Increase Comparison Cotten S u bdivision Drain age Analysis 5 A map showing the proposed development in re lation to the Bee Creek basins is provided as Appendix B 1. The information provided in Appendix B demonstrates that the timing of the Cotten Subdivision hydrographs does not coincide and that the release of this runoff will not create adverse impacts. In addition, a comparison of the peak discharges from the Cotten Subdivision to peak discharges at various downstream study points has been provided in Tables 3 and 4 above. CONCLUSION While Tables 1 and 2 indicate that there is an increase in the peak discharge rate from the Cotten barbeque restaurant development at the 3-30" RCP culvert, the difference in peak discharge timing between the Cotten Subdivision and the remainder of the Bee Creek Main basin indicates that it is more desirable for the basin to not provide detention at this location . This is indicated in Tables 3 and 4 which show that with the Cotten barbeque restaurant development undetained, the peak discharges i n Bee Creek Main to the Carters Creek confluence are not increased . The storm sewer system provided within this project has amp le capacity for all rainfall events and ensures that no significant flooding will occur on the proposed site. In addition, the system is designed to leave Dartmouth Drive passable during the 100-year rainfall event. Exhibit OV3, located in the General Information sect ion shows predevelopment, Dartmouth development, and postdevelopment hydrographs at the relevant study confluence points. Review of the stormwater analysis indicates that the drainage design presented in thi s report will provide ample conveyance to meet the drainage objectives of the City of Co ll ege Station DPDS and no adverse impacts on the downstream drainage system . Cotten Subdivision Drainage Analysis 6 EXHIBITS EXHIBITD KENNY COTTEN'S BARBEQUE & DARTMOUTH DRIVE EXTENSION Phase A -Bee Creek Main Hydrau lic Grade Line Ca lculat io ns Inlet 3 to Inlet 2 (Per construction drawings in Exhibit C) Head/ass Equations (from Ma nning's) (1) Q = c·:9 )AR ~S ~ (2) HGL us = HGL DS + H 1 10-Year Event (Per construct ion drawings in Exhibit C) Head/ass Ca lcu lations Q 10 = 20.0 cfs (Per Appe ndi x A-3) S1 10 =0.00I 7ft l ft Pipe slope is greater that friction slope . Using Manning's Eq uation (1 ), normal depth in the pipe is determined. Qn -BY B Yn ( J 2 /3 (l.49S 112 )-n B + 2Yn Where Yn is normal depth Yn = 1.6 1/t Us ing Equat ion (2) above and a normal depth the downstream and upstream water surface elevations are given below . HGL Ds = 2 58.46/t Downstream HGL us = 258.63/t Upstream KENNY COTTEN 'S BEE MAIN DRAINAGE In put Data Pipe Size= 3' x 2' RCBC Roughness (n) = 0.013 Pipe Lengt h = 94.09 LF Downstream Invert= 256 .85 ft Upstream Invert= 257 .02 ft Pipe Slope = 0 .0018 ft/ft -(0.18%) Ca lculated Pa rameters Cross-sectional Area = L x W A = 6.0 sq . ft. Hydraul ic Radius =NP R = 0.60 ft 100-Year Event (Per construction drawings in Exhibit C) Head/ass Ca lculations Q10 = 29 .l cfs (Per Appendix A-3 ) S 1 10 = 0.0035/t I ft Friction slope is greate r than pipe slope. Us ing Equation (3), fr iction losses through the pipe are determined. H 1 =S1 L = (0 .0035 )(94.09) H 1 =0.33/t Assumptions Per College Station DPDS, if the downstream tailwater is less than that of the downstream soffit, the soffit elevation is used as the starting tailwater elevation . Using Eq uati on (2) and t he frict ion losses above the upstream and downstream HGL elevations are given below. HGLDs = 258.85/t Downstream HGL us = 259.18/t Upstream EXHIBITD KENNY COTTEN'S BARBEQUE & DARTMOUTH DRIVE EXTENSION Phase A -Bee Creek Main Hydraulic Grade Line Calculations Inlet 2 to Inlet 1 (Per construction drawings in Exhib it C) Headloss Equations (from Manning's) (2) HGL us = HGL vs +Hf 10-Year Event (Per construct ion drawings in Exhib it C) Headloss Ca lculations Q10 =16.lc.fe (PerAppendixA-3) s f 10 = o.0011ft / ft Pipe slope is greater that friction slope. Using Manning's Equation (1 ), normal depth in the pipe is determined. Where Yn is normal depth Yn = l.40ft Using Equation (2) above and a normal depth the downstream and upstream water surf ace elevations are given below . HGL vs = 258 .63ft Downst ream HGLus = 258.65ft Upstream In put Data Pipe Size = 3' x 2' RCBC Roughness (n) = 0 .013 Pipe Lengt h = 94.09 LF Downstream Inve rt= 256 .85 ft Upstream Invert= 257.02 ft Pipe Slope = 0.0018 ft/ft -(0.18%) Calculated Parameters Cross-sectional Area = L x W A= 6.0 sq. ft. Hydraulic Radius = A/P R = 0.60 ft 100-Year Event (Per cons truction drawings in Exhibit C) Headloss Calculations Q10 = 23 .3 cfa (Per Appendix A-3) s f 1o = o.0023ft l ft Friction slope is greater than pipe slope. Using Equation (3), friction losses through the pipe are determined. H f =SfL=(0.0023X78.42) H f =0.l 8ft Assumptions Per College Station DPDS , if the downstream tailwater is less than that of the downstream soffit, the soffit elevation is used as the starting tailwater e levation. Us ing Equation (2) and the friction losses above the upstream and downstream HGL ele vation s are given below . HGLvs = 259.18ft Downstream HGLus = 259.36ft Upstream KENNY COTTEN'S BEE MAIN DRAINAGE 2 258 1.0 0.8 D 0.6 0 .4 0.2 I I 0.0 0.0 Open Channel Hydraulics / I\ J7 'l"7 v --r / I~ I/ rn v v / v .,V ,Iv JV 0.2 0.4 0.6 0.8 1.0 Q/Qfull Figure 5.3 Discharge in a circular pipe flowing partially full with Manning "n" as a function of water depth. The channel (subarea 2, Fig. 5.4) is generally not subQivided even though the channel~ bank may have a different Manning's "n" than the channel bottom. . ·1 'I' Figure 5.4 Compound channel. Example 5.1 Di.sdiarge Rate in an Open Channel Water is flowing in a trapezoidal earth channel (n = 0.030) at a depth (y) of 10.0 ft. ~. The channel has a bottom width (B) of 50 ft and has 4H:1V (4:1) side slopes (SS). If : the channel is on a slope (S) of 0.0005, determine the discharge rate (Q). Q = 1.49 AR213s112 n A = (B + SS x y)y = (50 + 4 x 10)10 = 900 sq ft APPENDIX A DRAINAGE CALCULATIONS <( w c a::: <( w c <( a. w c w w 0 a. w (!) a::: _J <( a. <( w () 0 <( _J > IJ) _J z <( w <( c <( w ~ I-cw zw > a::: e z a::: <( a::: w c ::::> <( _J <( c NO. AC. 0.4 0.5 I 0.9 Existing Conditions EA-8 5.59. 5.59 0.00 0.00 EA5 0.33 0.00 0.00 0.33 EA6 1.19 1.00 0.00 0.19 EA? 1.85 1.48 0.00 0.37 EA7A 0.34 0.00 0.00 0.34 EA8 0.45 0.00 0.00 0.45 Dartmouth Development DA-81 3.50 3.50 0.00 0.00 DA-82 0.54 0.00 0.00 0.54 DA-83 0.56 0.00 0.00 0.56 DA-84 1.13 1.13 0.00 0.00 DA5 0.33 0.00 0.00 0.33 DA6 1.19 1.00 0.00 0.19 DA? 1.85 1.48 0.00 0.37 DA7A 0.34 0.00 0.00 0.34 DAB 0.45 0.00 0.00 0.45 Proposed Development PA-81 3.50 3.50 0.00 0.00 PA-82 0.54 0.00 0.00 0.54 PA-83 0.56 0.00 0.00 0.56 PA-84A 0.17 0.17 0.00 0.00 PA-848 0.76 0.00 0.06 0.70 PA5 0.33 0.00 0.00 0.33 PA6 1.19 1.00 0.00 0.19 PA? 1.85 1.48 0.00. 0.37 PA7A 0.34 0.00 0.00 0.34 PA8 0.45 0.00 0.00 0.45 APPENDIX A-1 RATIONAL METHOD RUNOFF CALCULA T/ONS COTTEN'S BEE MAIN DRAINAGE <( >-() I-u (.) _J I-(.) <( 0 I-..!:i I-_J w 0 ~ «! IJ) N It) 0 I-() ::::> £:! 0 !2 0 !: ft/s min min I In/Hr I cfs I In/Hr cfs In/Hr 2.24 1.0 17.9 17.9 4.7 10.6 5.8 13.0 6.6 0.30 10.4 0.0 10.0 6.3 1.9 7.7 2.3 8.6 0.57 10.4 0.0 10.0 6.3 3.6 7.7 4.4 8.6 0.93 10.4 0.0 10.0 6.3 5.9 7.7 7.1 8.6 0.31 10.4 0.0 10.0 6.3 1.9 7.7 2.4 8.6 0.41 10.4 0.0 10.0 6.3 2.6 7.7 3.1 8.6 1.40 1.1 10.3 10.3 6.2 8.7 7.6 10.6 8.5 0.49 3.0 2.6 10.0 6.3 3.1 7.7 3.7 8.6 0.50 3.0 2.6 10.0 6.3 3.2 7.7 3.9 8.6 0.45 1.1 6.0 10.0 6.3 2.9 7.7 3.5 8.6 0.30 10.4 0.0 10.0 6.3 1.9 7.7 2.3 8.6 0.57 10.4 0.0 10.0 6.3 3.6 7.7 4.4 8.6 0.93 10.4 0.0 10.0 6.3 5.9 7.7 7.1 8.6 0.31 10.4 0.0 10.0 6.3 1.9 7.7 2.4 8.6 0.41 10.4 0.0 10.0 6.3 2.6 7.7 3.1 8.6 1.40 1.1 10.3 10.3 6.2 8.7 7.6 10.6 8.5 0.49 3.0 2.6 10.0 6.3 3.1 7.7 3.7 8.6 0.50 3.0 2.6 10.0 6.3 3.2 7.7 3.9 8.6 0.07 0.9 2.2 10.0 6.3 0.4 7.7 0.5 8.6 0.66 4.7 0.7 10.0 6.3 4.1 7.7 5.0 8.6 0.30 10.4 0.0 10.0 6.3 1.9 7.7 2.3 8.6 0.57 10.4 0.0 10.0 6.3 3.6 7.7 4.4 8.6 0.93 10.4 0.0 10.0 6.3 5.9 7.7 7.1 8.6 0.31 10.4 0.0 10.0 6.3 1.9 7.7 2.4 8.6 0.41 10.4 0.0 10.0 6.3 2.6 7.7 3.1 8.6 Predevelopment Peak Flowrate 26.4 32.3 Dartmouth Peak Flowrate 33.7 41.0 Postdevelopment Peak Flowrate 35.4 43.1 Flow Increase 9.0 10.8 0 0 It) 0 0 0 ..... It) N 0 0 0 ..... 0 £:! 0 !2 !: 0 cfs In/Hr cfs In/Hr cfs I In/Hr cfs 14.7 7.6 16.9 8.6 19.2 9.7 21.6 2.6 9.9 2.9 11.1 3.3 12.5 3.7 4.9 9.9 5.6 11.1 6.4 12.5 7.2 8.0 9.9 9.1 11.1 10.3 12.5 11.6 2.6 9.9 3.0 11.1 3.4 12.5 3.8 3.5 9.9 4.0 11.1 4.5 12.5 5.1 11.9 9.7 13.6 11.0 15.4 12.4 17.3 4.2 9.9 4.8 11.1 5.4 12.5 6.1 4.4 9.9 5.0 11.1 5.6 12.5 6.3 3.9 9.9 4.5 11.1 5.0 12.5 5.7 2.6 9.9 2.9 11.1 3.3 12.5 3.7 4.9 9.9 5.6 11.1 6.4 12.5 7.2 8.0 9.9 9.1 11.1 10.3 12.5 11.6 2.6 9.9 3.0 11.1 3.4 12.5 3.8 3.5 9.9 4.0 11.1 4.5 12.5 5.1 11.9 9.7 13.6 11.0 15.4 12.4 17.3 4.2 9.9 4.8 11.1 5.4 12.5 6.1 4.4 9.9 5.0 11.1 5.6 12.5 6.3 0.6 9.9 0.7 11.1 0.7 12.5 0.8 5.7 9.9 6.5 11.1 7.3 12.5 8.2 2.6 9.9 2.9 11.1 3.3 12.5 3.7 4.9 9.9 5.6 11.1 6.4 12.5 7.2 8.0 9.9 9.1 11.1 10.3 12.5 11.6 2.6 9.9 3.0 11.1 3.4 12.5 3.8 3.5 9.9 4.0 11.1 4.5 12.5 5.1 36.4 41.6 47.1 53.0 46.0 52.5 59.4 66.7 48.3 55.2 62.4 70.1 12.0 13.6 15.3 17.1 912712004 0428-drainage-phase2-040903.xls Appendix A-1 ~ ~ ~ ~ .. ~ < .. "' . ~ <o ~ ~ ~ zZ b1l b1l 0 ~ ~ -< = .s = ~~ .. ~ ~ ·; > .. .. ~< o ~ ~o cfs Existing Conditions EA-B 13.0 EAS EA7 2 .3 EA6 EA7 4.4 EA7 EA7A 7 .1 EA7A EA8 2.4 EA8 3 .1 Dartmouth D evelopmen t DA-Bl 10 .6 DA-B2 3 .7 DA-B3 3.9 DA-B4 3.S DAS DA7 2 .3 DA6 DA7 4.4 DA 7 DA7A 7 .1 DA7A DA8 2.4 DA8 3 .1 Proposed D evelopm ent PA-Bl 10 .6 PA-B2 3 .7 PA-B3 3 .9 PA -B4A O.S PA-B4B S.O PAS PA7 2 .3 PA6 PA7 4.4 PA7 PA7A 7.1 PA7A PA8 2.4 PA8 3.1 .. ~ > 0 c .. ~ u 0 cfs 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 .0 0 .0 3.0 0 .0 0.0 0.0 0.0 0 .0 0 .0 0.0 0.0 3 .0 3.0 0.0 0.0 0.0 0 .0 0 .0 APPENDIX A -2 INLET COMPUTATIONS COTTEN'S BEE MAIN DRAINAGE 5-Ye a r Event -~ = --~ 0 -~ -0 D ESCRIPTION E-- cfs 13 .0 3-30" RCP Headwall 2 .3 Recessed Inlet on Grade 4.4 Recesse d Inlet on Grade 7.1 Recessed Inlet on Grade 2.4 Rece ssed Inlet on Grade 3.1 Recessed Inlet on Grade 10 .6 3' x 2' RCBC Headwall 3 .7 Recessed Low Point Inlet 3 .9 Recessed Low Point Inlet 6.S 3-30" R CP Headwall 2.3 Recessed Inlet on Grade 4.4 Rece ssed Inlet on Grade 7 .1 Recessed Inlet on Grade 2.4 Recessed Inlet on Grade 3.1 Recessed Inlet on Grade 10.6 30" RCP Headwall 3.7 Recessed Low Point Inlet 3 .9 Recessed Low Point Inlet 3 .S Proposed Grate Inlet 8.0 Recessed Low Point Inl et 2 .3 Recessed Inlet on Grade 4.4 Recessed Inlet on Grade 7.1 Recessed Inlet on Grade 2.4 Recessed Inlet on Grade 3.1 Recessed Inlet on Grade *Includes 25 % Flow Increase for pipe sizes <27" dia . ••See Pl an & Profile for pipe slope used (Pipe slope >or= Friction slope) ~ .. ~ J "O > 0 ~ .. "O ~ "O .... c ~ > O"' 0 .. ~ ~ .. ~ ~ ~ u < J J u 0 Curb Inlet cfs ft ft cfs 0 .00 0.618 3.70 10 0 .00 0 .618 7.11 10 0 .00 0 .6 18 11.51 10 0 .94 0 .618 3 .81 10 0.00 0.61 8 S.04 10 0.00 0 .00 2 .334 1.60 s 0 .00 2.334 1.66 s 0 .00 0 .00 0 .6 18 3.70 10 0 .00 0.618 7 .11 10 0 .00 0.61 8 11.S 1 10 0.94 0 .618 3.81 10 0.00 0 .618 S.04 10 0 .00 0 .00 2 .334 1.60 s 0 .00 ~- 2 .334 1.66 s 0.00 0.00 2.334 3.4S s 0.00 0.61 8 3.70 10 0 .00 0 .618 7 .11 10 0.00 0 .618 11.S 1 10 0.94 0 .6 18 3.81 10 0.00 0.61 8 S.04 10 0.00 9/27/20 04 0428 -d rai nage-pha se2-04 0903 .x ls Ap pendix A-2 co: co: ~ ~ ~ t.. < t.. ~ . co: <o ~ ~ ~ zZ CJ) CJ) 0 co: co: ...... < i:;:::: = = ~~ t.. .... .... ~ co: co: ;;... t.. t.. ~< o~ ~o cfs Ex isting Conditions EA-B 14 .7 EAS EA7 2 .6 EA6 EA7 4.9 EA7 EA7A 8.0 EA 7A EA8 2 .6 EA8 3 .S Dartm o uth De velopm ent DA-Bl 11.9 DA-B2 4 .2 DA-B3 4.4 DA-B4 3.9 DAS DA7 2 .6 DA6 DA7 4.9 DA7 DA7A 8 .0 DA7A DA8 2 .6 DA 8 3.S Propo sed D evelopm ent PA-Bl 11.9 PA-B2 4 .2 PA-B3 4.4 PA-B4A 0.6 PA-B4B S.7 PAS PA7 2 .6 PA6 PA7 4.9 PA7 PA7A 8 .0 PA7A PA8 2 .6 PA 8 3 .S t.. ~ ;;... 0 c t.. co: u 0 cfs 0 .0 0.0 0.0 0.0 0 .0 0 .0 0.0 0 .0 0.0 3.0 0 .0 0.0 0.0 0 .0 0.0 0 .0 0.0 0 .0 3 .0 3.0 0 .0 0 .0 0.0 0 .0 0 .0 APPENDIX A-2 INLET COMPUTATIONS COTTEN'S BEE MAIN DRAINAGE 10-Year Event -~ = ...... -co: 0 -co: -0 DESCRIP TI ON E-- cfs 14.7 3-30 " RCP Headw all 2.6 Recessed Inlet on Grade 4.9 Recessed Inlet on Grade 8.0 Recessed Inlet on Grade 2 .6 Recessed In let on Grade 3 .S Recessed Inlet on Grade 11.9 3' x 2' RCBC Headwall 4.2 Recessed Low Poin t Inl et 4.4 Recessed Low Point Inlet 6 .9 3-30" RCP Hea dwall 2.6 Recessed In let on Grade 4.9 Recessed Inle t on Grade 8 .0 Recessed Inlet on Grade 2 .6 Recessed Inlet on Grade 3.S Recessed Inlet on Grade 11.9 30" RCP Headwall 4.2 Recessed Low Point Inlet 4.4 Recessed Low Point Inlet 3.6 Proposed Grate Inlet 8.7 Recessed Low Point Inlet 2 .6 Recessed Inlet on Grade 4 .9 R ecessed Inlet on Grade 8 .0 Recessed Inlet on Grade 2.6 Recessed Inlet on Grade 3 .S Recessed Inlet on Grad e *Includes 25% Flow Increase for pipe s izes <27" dia . **See Plan & Profile for pipe s lope used (Pipe slope >or= Friction slo pe) r.; t.. ~ ~ "O ;;... ~ 0 t.. "O ~ "O ·;; c ~ O" 0 t.. ~ t.. co: ~ ~ ~ u < ~ ~ u 0 Curb Inlet cfs ft ft cfs 0 .00 0 .6 18 4 .lS 10 0 .00 0.618 7 .98 10 0 .00 0 .618 12.92 10 1.81 0 .618 4 .28 10 0 .00 0.618 S.66 10 0 .00 0.00 2 .334 1.80 s 0 .00 2 .334 1.86 s 0 .00 0.00 0 .6 18 4 .lS 10 0 .00 0 .618 7.98 10 0 .00 -· 0 .61 8 12.92 10 1.8 1 0.618 4 .28 10 0 .00 0.618 S.66 10 0.00 0 .00 2 .334 1.80 s 0 .00 2.334 1.86 s 0 .00 0.00 2.334 3.71 s 0.00 0 .618 4.lS 10 0 .00 0 .618 7 .98 10 0.00 0 .618 12.92 10 1.81 0.618 4.28 10 0 .00 0 .61 8 S.66 10 0 .00 9/27 /2004 0428-dra in age-phase2-040903 .x ls Append ix A-2 co: co: ~ ~ ~ '-< '-CJ . co: <o ~ ~ ~ zZ CJ) CJ) 0 co: co: -< = = = ~~ '-.... .... ~ co: co: .... '-'-Q< OQ QO cfs Existing Conditions EA-B 16.9 EAS EA7 2 .9 EA6 EA7 S.6 EA7 EA7A 9 .1 EA7A EA8 3 .0 EA8 4.0 Dartmouth Developm ent D A -Bl 13 .6 DA-B2 4 .8 DA-B3 S.O DA-B4 4 .S DAS DA7 2.9 DA6 DA7 S.6 DA7 DA7A 9.1 DA7A DA8 3.0 DA8 4.0 Proposed Development PA-Bl 13.6 PA-B2 4 .8 PA-B3 S.O PA-B4A 0.7 PA-B4B 6 .S PAS PA7 2 .9 PA6 PA7 S.6 PA7 PA7A 9.1 PA7A PA8 3 .0 PA8 4.0 '-~ .... 0 c '-co: u 0 cfs 0.0 0 .0 0 .0 0 .0 0 .0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0 .0 0 .0 0.0 0 .0 3.0 3.0 0 .0 0.0 0 .0 0.0 0.0 APPENDIX A-2 INLET COMPUTATIONS COTTEN'S BEE MAIN DRAINAGE 25-Year Event .... ~ = -.... co: 0 -co: .... 0 DESCRIPTION E-- cfs 16 .9 3-30" RCP Headwall 2 .9 Recessed Inlet on Grade S.6 Recessed Inlet on Grade 9.1 Recessed Inlet on Grade 3 .0 Recessed Inlet o n Grade 4.0 Recessed Inlet on Grade 13.6 3' x 2' RCBC Headwall 4 .8 Recessed Low Point Inlet S.O Recessed Low Point Inlet 7 .S 3-30" RCP Headwall 2.9 Recessed Inlet on Grade S.6 Recessed Inlet on Grade 9.1 Recessed Inlet on Grade 3 .0 Recessed Inlet on Grade 4.0 Recessed Inlet on Grade 13.6 30" RCP Headwall 4.8 Recessed Low Point Inlet S.O Recessed Low Point Inlet 3.7 Proposed Grate Inlet 9.S Recessed Low Point Inlet 2.9 Recessed Inlet on Grade S.6 Recessed Inlet on Grade 9.1 Recessed Inlet on Grade 3 .0 Recessed Inlet on Grade 4.0 Recessed Inlet on Grade *Include s 25 % Flow Increase for pipe sizes <27" dia. ••See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) ~ '-~ .J "'O .... ~ 0 '-"'O ~ "'O .... c ~ O' .... 0 '-~ ~ '-co: ~ < ~ u .J .J u 0 Curb Inlet cfs ft ft cfs 0.00 0.618 4.74 10 0 .00 0.618 9 .11 10 0.00 0 .618 14 .76 10 2.94 0.618 4 .88 10 0 .00 0 .618 6.46 10 0 .00 0.00 2.334 2.0S s 0 .00 2 .334 2 .13 s 0 .00 0 .00 0 .618 4 .74 10 0.00 0.618 9.11 10 0 .00 0.618 14.76 10 2.94 0 .618 4 .88 10 0 .00 0.618 6.46 10 0.00 0 .00 2.334 2.0S s 0.00 2.334 2.13 s 0 .00 0 .00 2.334 4 .0S s 0 .00 0.61 8 4.74 10 0 .00 0.618 9 .11 10 0.00 0.618 14.76 10 2 .94 0.618 4.88 10 0 .00 0.618 6.46 10 0 .00 9/27/2004 0428-drainage -phase 2-040903 .xls Append ix A-2 co: co: ~ ~ .. ~ < .. e,, . co: <o ~ ~ ~ zZ b1l b1l 0 co: co: -< = = = ;Z ~ .. ... . .. ~ co: co: > .. .. Q < OQ QO cfs Existing Conditions EA-B 19.2 EAS EA7 3.3 EA6 EA7 6.4 EA7 EA7A 10 .3 EA7A EA8 3.4 EA8 4 .S Dartmouth Developm ent DA-Bl lS.4 DA-B2 S.4 DA-B3 S.6 DA-B4 S.O DAS DA7 3.3 DA6 DA7 6.4 DA7 DA7A 10 .3 DA7A DA8 3.4 DA8 4 .S Proposed D e velopm ent PA-Bl lS.4 PA-B2 S.4 PA-B3 S.6 PA-B4A 0.7 PA-B4B 7.3 PAS PA7 3.3 PA6 PA7 6.4 PA7 PA7A 10.3 PA7A PA8 3.4 PA8 4 .S .. ~ > 0 c .. co: u 0 cfs 0.0 0.0 0.0 0.0 0.0 0 .0 0 .0 0 .0 0 .0 3.0 0.0 0.0 0 .0 0 .0 0 .0 0.0 0 .0 0 .0 3 .0 3.0 0 .0 0 .0 0.0 0.0 0.0 APPENDIX A-2 INLET COMPUTATIONS COTTEN'S BEE MAIN DRAINAGE 50-Year Event ... ~ -= -... co: 0 -co: ... 0 DESCRIPTION E-i cfs 19 .2 3-30" RCP Headwall 3.3 Recessed Inlet on Grade 6.4 Recessed Inlet on Grade 10 .3 Recessed Inlet on Grade 3.4 Recessed Inlet on Grade 4 .S Recessed Inlet on Grade lS.4 3' x 2' RCBC Headwall S.4 Recessed Low Po int Inlet S.6 Recessed Low Point Inlet 8.0 3-30" RCP Headwall 3.3 Recessed Inlet on Grade 6.4 Recessed Inlet on Grade 10 .3 Recessed Inlet on Grade 3.4 Recessed Inlet on Grade 4 .S Recessed Inlet on Grade lS.4 30" RCP Headwall S.4 Recessed Low Point Inlet S.6 Recessed Low Point Inlet 3 .7 Proposed Grate Inl et 10.3 Recessed Low Point Inlet 3 .3 Recessed Inlet on Grade 6.4 Recessed Inlet on Grade 10.3 Recessed Inlet on Grade 3.4 Recessed Inlet on Grade 4 .S Recessed Inlet on Grade *Includes 25% Flow Increase for pipe sizes <27" dia . **See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) ~ .. ~ ~ "O > ~ 0 .. "O ~ "O ... c ~ > O" 0 .. ~ .. co: ~ ~ ~ u < ~ ~ u 0 Curb Inlet cfs ft ft cfs 0 .00 0.618 S.36 10 0 .00 0.618 10 .30 10 0 .19 0.618 16 .69 10 4 .13 0.618 S.S2 10 0 .00 0 .618 7.31 10 0 .00 0 .00 2.334 2.32 s 0 .00 2.334 2.41 s 0 .00 0.00 0.618 S.36 10 0 .00 0.618 10.30 10 0 .19 0.618 16.69 10 4 .13 0 .618 S.S2 10 0 .00 0 .618 7 .31 10 0 .00 0.00 2.334 2 .32 s 0 .00 2 .334 2.41 s 0 .00 0.00 2.334 4.42 s 0.00 0 .618 S.36 10 0.00 0 .618 10 .30 10 0 .19 0.618 16.69 10 4 .13 0.618 S.S2 10 0 .00 0 .618 7 .31 10 0 .00 9/27/2 004 0428-drainage -phase2-040903 .xls Appendix A-2 ~ ~ ~ ~ I. ~ < I. C!l . ~ <o ~ ~ ~ zz b1l b1l 0 ~ ~ lo-; < t;::: .s = ~~ I. .... ~ ~ ~ > I. I. ~< o~ ~o cfs Existing Conditions EA -B 21.6 EAS EA7 3.7 EA6 EA7 7.2 EA7 EA7A 11.6 EA7A EA8 3 .8 EA8 S.l Dartmouth Development DA-Bl 17.3 DA-B2 6.1 DA-B3 6.3 DA-B4 S.7 DAS D A7 3 .7 DA6 DA7 7.2 DA7 DA7A 11.6 DA7A D A8 3.8 DA8 S. l Proposed D evelopm ent PA-Bl 17 .3 PA-B2 6.1 PA-B3 6.3 PA-B4A 0.8 PA-B4B 8 .2 PAS PA7 3.7 PA6 PA7 7.2 PA 7 PA7A 11.6 PA7A PA8 3.8 PA8 S. l I. ~ > 0 c I. ~ u 0 cfs 0.0 0.0 0 .0 0.0 0.0 0 .0 0.0 0.0 0.0 3 .0 0 .0 0 .0 0 .0 0.0 0.0 0.0 0 .0 0 .0 3.0 3.0 0 .0 0.0 0.0 0.0 0.0 APPENDIX A-2 INLET COMPUTATIONS COTTEN'S BEE MAIN DRAINAGE 100-Year Event -~ -= lo-; -~ 0 -~ -0 DESCRIPTION E-- cfs 21.6 3-30" RCP Headwall 3.7 Recessed Inlet on Grade 7 .2 Recessed Inlet on Grade 11.6 Recessed Inlet on Grade 3 .8 Recessed Inlet on Grade S. l Rece ssed Inlet on Grade 17 .3 3' x 2' RCBC Headwall 6.1 Recessed Low Point Inlet 6.3 Rec essed Low Point Inlet 8 .7 3-30" RCP Headwall 3 .7 Recessed Inlet on Grade 7.2 Recessed Inlet on Grade 11.6 Recessed Inlet on Grade 3.8 Recessed Inlet on Grade S. l Recessed Inlet on Grade 17.3 30" RCP Headwall 6 .1 Recessed Low Point Inlet 6 .3 Recessed Low Point Inlet 3.8 Proposed Grate Inlet 11.2 Recessed Low Point Inl et 3.7 R ecessed Inlet on Grade 7 .2 Recessed Inlet on Grade 11.6 Rece ssed Inlet on Grade -- 3.8 Recessed Inlet on Grade S. l Recessed Inlet on Grade *Includes 25% Flow Increase for pipe sizes <27" dia . **See Plan & Profile for pipe slope used (Pipe slope >or= Frictio n slope) ~ I. ~ ~ "O > ~ 0 I. "O ~ "O ·;; c ~ O"' 0 I. ~ ~ I. ~ ~ < ~ u ~ ~ u 0 Curb Inlet cfs ft ft cfs 0 .00 0.618 6.02 10 0 .00 0 .618 11.57 10 0 .97 0.618 18.7S 10 S.41 0.618 6 .20 10 0 .00 0.618 8.21 10 0.00 0.00 2 .334 2 .61 s 0 .00 2.334 2.70 s 0.00 0 .00 0 .618 6 .02 10 0 .00 0.618 l l.S7 10 0.97 0 .618 18 .7S 10 S.41 0 .618 6 .20 10 0 .00 0.618 8.21 10 0 .00 0 .00 2 .334 2 .61 s 0 .00 2 .334 2.70 s 0 .00 0 .00 2.334 4.80 s 0 .00 0 .618 6 .02 10 0.00 0.618 11.5 7 10 0.97 0 .618 18.7S 10 S.41 0 .618 6 .20 10 0 .00 0 .618 8.21 10 0.00 9/27 /2004 0428-drainage-phase2-040903 .xls Append ix A-2 0 z E-< ~ ...:i ~ E-< ~ ...:i z .... 0 E-< < u ...:i < E-< 0 E-< # # Ac. Existing Conditions EA-B IEA8 2.2 EAS IEA6 0.3 EA6 IEA7 0.9 EA? IEA?A 1.8 EA?A IEAB 2.1 EAB IEOUT 4.7 Dartmouth Development DA-B 1 I DA-B2 1.4 DA-82 I DA-B3 1.9 DA-B3 IDAB 2.4 DA-B4 DAB O.S DAS DA6 0.3 DA6 DA? 0.9 DA? DA?A 1.B DA7A DAB 2.1 DAB DOUT S.3 Proposed Development PA-B1 IPA-B2 1.4 PA-B2 IPA-B3 1.9 PA-B3 IPAB 2.4 PA-B4A IPA8 0.1 PA-B4B IPA8 0.7 PAS IPA6 0.3 PA6 IPA? 0.9 PA? IPA7A 1.B PA7A IPAB 2.1 PA8 IPOUT S.6 C.I E-< min 17.9 10.0 10.1 10.6 11.3 17.9 10.3 10.3 10.7 10.0 10.0 10.1 10.6 11.3 12.2 10.3 10.3 10.7 10.0 10.0 10.0 10.1 10.6 11.3 12.2 *Includes 25% Flow Increase for pipe sizes <27" dia. yr e i.. 0 .... rf1 c Oil ·v; ~ ~ 5 s s s s s s s s s s s s s s s s s s s s s s s s "O ~ ~ 0 .... -; ~ . ..., c "O Oil co:·-c ~ ~~ cfs 13.0 2.3 6.6 13.4 1S.3 27.6 10.6 14.3 17.B 3.S 2.3 6.6 13.4 1S.3 37.7 10.6 14.3 17.B o.s 5.0 2.3 6.6 13.4 1S.3 39.6 ••See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) APPENDIX A-3 PIPE SIZE CAL CU LA TIONS COTIEN'S BEE MAIN DRAINAGE -j( ~ 0 "O fi: ~ .... c VJ Oil = ·-• ..., VJ "O ~ <~ cfs 13.0 2.9 8.3 16.B 1S.3 27.6 10.6 14.3 17.B 3.S 2.9 8.3 16.B 1S.3 37.7 10.6 14.3 17.B O.S 6.3 2.9 B.3 16.8 1S.3 39.6 # 5 Year Event VJ ~ 0. p: '-0 0 z cfs ~ 0. p: i.. ~ ~ ~ 0 fi: 3 I 4.3 1 I 2.9 1 8.3 1 I 16.B 1 1S.3 3 I 9.2 10.6 14.3 1 17.B 3.S 2.9 8.3 16.B 1S.3 3 12.6 10.6 14.3 17.B 3 0.2 6.3 2.9 B.3 16.B 1S.3 3 13.2 c -j( 0 -j( ·-~ ti 0. ·-0 i.. -~ rf1 % 0.01 0.02 0.13 O.SS 0.14 O.OS 0.07 0.09 0.13 0.01 0.02 0.13 O.SS 0.14 0.09 0.07 0.09 0.13 0.00 0.16 0.02 0.13 O.SS 0.14 0.10 O/o ~ 0. 0 00 ~ 0. p: 12.SO 2.00 1.27 O.SS 0.43 O.BS 1.2S 0.17 0.1B 12.SO 2.00 1.27 O.SS 0.43 0.8S 1.2S 0.17 0.1B 5.00 5.49 2.00 1.27 O.SS 0.43 O.BS ~ N .... rf1 30 24 24 24 30 30 30 BOX BOX 30 24 24 24 30 30 30 BOX BOX 30 21 24 24 24 30 30 fps ,j ~ > 29.6 10.2 8.1 S.3 S.S 7.7 9.4 3.3 3.S 29.6 10.2 8.1 S.3 S.S 7.7 9.4 3.3 3.S 18.7 1S.5 10.2 B.1 S.3 5.5 7.7 cfs -j( .0 "Cj co: 0. co: u 436.1 32.1 2S.6 16.7 27.0 113.S 46.0 20.0 20.B 14S.4 32.1 2S.6 16.7 27.0 113.S 46.0 20.0 20.B 27S.8 37.2 32.1 25.6 16.7 27.0 113.S = E-< 0 z ~ ...:i 8 70 240 220 291 BS B 7B 94 8 70 240 220 291 BS B 78 94 17 70 240 220 291 8S ~ e E::: Q:j ... co: i.. E-< min 0.00 0.11 0.49 0.69 0.8B 0.1B 0.01 0.39 0.4S 0.00 0.11 0.49 0.69 O.BB 0.1B 0.01 0.39 0.45 0.00 0.02 0.11 0.49 0.69 O.BB 0.1B "O c ~ @) C.I E-< min 17.9 10.1 10.6 11.3 12.2 1B.O 10.3 10.7 11.2 10.0 10.1 10.6 11.3 12.2 12.4 10.3 10.7 11.2 10.0 10.0 10.1 10.6 11.3 12.2 12.4 E-< = = E-< 0 ~ .... .... ~ ~ = 3 2 3 2 3 2 3 2 9/27/2004 0428-drainage-phase2-040903.xls Appendix A-3 0 z E-< ~ ~ ~ E-< ~ ~ z .... 0 E-< < u ~ < E-< 0 E-< # # Ac. Existing Conditions EA-B IEA8 2.2 EA5 IEA6 0.3 EA6 IEA7 0.9 EA? IEA?A 1.8 EA?A IEA8 2.1 EA8 IEOUT 4.7 Dartmouth Development DA-B 1 I DA-B2 1.4 DA-B2 I DA-B3 1.9 DA-B3 IDA8 2.4 DA-B4 !DAB 0.5 DA5 IDA6 0.3 DA6 IDA7 0.9 DA? IDA7A 1.8 DA7A IDA8 2.1 DA8 IDOUT 5.3 Proposed Development PA-81 IPA-82 1.4 PA-B2 PA-B3 1.9 PA-83 PA8 2.4 PA-84A PA8 0.1 PA-848 PA8 0.7 PA5 PA6 0.3 PA6 PA? 0.9 PA? PA7A 1.8 PA?A PA8 2.1 PA8 POUT 5.6 <:J E-< min 17.9 10.0 10.1 10.6 11.3 17.9 10.3 10.3 10.7 10.0 10.0 10.1 10.6 11.3 12.2 10.3 10.3 10.7 10.0 10.0 10.0 10.1 10.6 11.3 12.2 •includes 25% Flow Increase for pipe sizes <27" dia. yr e -0 .... ifJ = bJl ·:;; Q,j ~ 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 "O ~ Q,j 0 .... -; r.. ._, = "O bJl c<: ·-= ~ ;:i ~ cfs 14.7 2.6 7.5 15.1 17.2 31.2 11.9 16.1 20.0 3.9 2.6 7.5 15.1 17.2 42.4 11.9 16.1 20.0 0.6 5.7 2.6 7.5 15.1 17.2 44.5 ••See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) APPENDIX A-3 PIPE SIZE CAL CU LA TIONS COTTEN'S BEE MAIN DRAINAGE 1' ~ 0 "O ~ Q,j .... = "' bJl ::I·-._, "' "O Q,j <~ cfs 14.7 3.2 9.3 18.9 17.2 31.2 # "' Q,j Q.. ~ ..... 0 0 z 3 3 10 Year Event Q,j Q.. ~ -Q,j ~ ~ 0 ~ cfs 4.9 3.2 9.3 18.9 17.2 10.4 = 1' 0 -~ ·-Q,j t> Q.. ·-0 --r.. ifJ O/o 0.01 0.02 0.17 0.69 0.18 0.06 % Q,j Q.. 0 V5 Q,j Q.. ~ 12.50 2.00 1.27 0.55 0.43 0.85 If ~ N .... ifJ 30 24 24 24 30 30 fps .j ~ > 29.6 10.2 8.1 5.3 5.5 7.7 11.9 I 1 I 11.9 I 0.08 I 1.25 I 30 I 9.4 16.1 I 1 I 16.1 I 0.11 I 0.17 I BOX I 3.3 20.0 I 1 I 20.0 I 0.17 I 0.18 I BOX I 3.5 3.9 I 1 3.9 I 0.01 I 12.50 I 30 I 29.6 3.2 I 1 3.2 I 0.02 I 2.00 I 24 I 10.2 9.3 1 9.3 0.17 1.27 24 8.1 18.9 I 1 I 18.9 I 0.69 I 0.55 I 24 5.3 17.2 I 1 I 17.2 I 0.18 I 0.43 I 30 5.5 42.4 I 3 I 14.1 I 0.12 I 0.85 I 30 I 7.7 11.9 11.9 0.08 1.25 30 9.4 16.1 16.1 0.11 0.17 BOX 3.3 20.0 20.0 0.17 0.18 BOX 3.5 0.6 3 0.2 0.00 5.00 30 18.7 7.1 7.1 0.20 5.49 21 15.5 3.2 3.2 0.02 2.00 24 10.2 9.3 9.3 0.17 1.27 24 8.1 18.9 18.9 0.69 0.55 24 5.3 17.2 17.2 0.18 0.43 30 5.5 44.5 3 14.8 0.13 0.85 30 7.7 cfs 1' c "c:i c<: Q.. c<: u 436.1 32.1 25.6 16.7 27.0 113.5 = E-< ~ z ~ ~ 8 70 240 220 291 85 Q,j e ~ ~ ... c<: -E-< min 0.00 0.11 0.49 0.69 0.88 0.18 "O = ~ @) <:J E-< min 17.9 10.1 10.6 11.3 12.2 18.0 46.0 I 8 I 0.01 I 10.3 20.0 I 78 I 0.39 I 10.7 20.8 I 94 I 0.45 I 11.2 145.4 I 8 I o.oo I 10.0 E-< = = E-< ~ ~ .... .... ~ ~ = 3 2 3 2 ~?.1 10 I 0.11 I 10.1 I I I 25.6 240 0.49 10.6 16.7 I 220 I 0.69 I 11.3 27.0 I 291 I 0.88 I 12.2 113.5 I 85 I 0.18 I 12.4 46.0 20.0 20.8 275.8 37.2 32.1 25.6 16.7 27.0 113.5 8 0.01 10.3 78 0.39 10.7 3 94 0.45 11.2 3 0.00 10.0 17 0.02 10.0 70 0.11 10.1 240 0.49 10.6 220 0.69 11.3 291 0.88 12.2 85 0.18 12.4 9/27/2004 0428-drainage-phase2-040903.xls Appendix A-3 2 2 # 0 z ~ ~ ~ ~ # ~ ~ ~ z .... 0 ~ Existing Conditions EA-B IEA8 EA5 IEA6 EA6 IEA7 EA? IEA7A EA?A IEA8 EA8 IEOUT Ac. < u ~ < ~ 0 ~ 2.2 0.3 0.9 1.8 2.1 4.7 Dartmouth Development C.I ~ min 17.9 10.0 10.1 10.6 11.3 17.9 yr s i.. 0 ..... rJl c OJ) ·;;; ~ Q 25 25 25 25 25 25 "O ~ ~ 0 ..... -; ~ . ...., c "O OJ) ei: ·-c ~ ~Q cfs 16.9 2.9 8.5 17.3 19.7 35.8 APPENDIX A-3 PIPE SIZE CAL CU LA TIONS COTTEN'$ BEE MAIN DRAINAGE -1' ~ 0 "O fi: ~ ..... c "' OJ) ::s ·-. ...., "' "O ~ <Q cfs 16.9 3.7 10.7 21.6 19.7 35.B # "' ~ Q.. ~ .... 0 0 z 3 3 25 Year Event cfs ~ Q.. ~ i.. ~ ~ ~ 0 fi: 5.6 3.7 10.7 21.6 19.7 11.9 c -1' 0 -1' ·-~ tj Q.. ·-0 i.. -~ rJl O/o 0.02 0.03 0.22 0.90 0.23 O.OB O/o ~ Q.. 0 00 ~ Q.. ~ 12.50 2.00 1.27 0.55 0.43 O.B5 ~ N .... rJl 30 24 24 24 30 30 fps .J ~ > 29.6 10.2 8.1 5.3 5.5 7.7 cfs -1' c •<j ei: Q.. ei: u 436.1 32.1 25.6 16.7 27.0 113.5 = ~ Co-' z ~ ~ 8 70 240 220 291 B5 ~ s E::: Q;j ;;.. ei: i.. ~ min 0.00 0.11 0.49 0.69 0.88 0.1B "O c ~ @) C.I ~ min 17.9 10.1 10.6 11.3 12.2 1B.O DA-B 1 I DA-82 1.4 I 10.3 I 25 I 13.6 I 13.6 I 1 I 13.6 I 0.11 I 1.25 I 30 9.4 I 46.0 I B I 0.01 I 10.3 DA-82 IDA-83 1.9 I 10.3 I 25 I 18.3 I 1B.3 I 1 I 18.3 I 0.14 I 0.17 I BOX I 3.3 I 20.0 I 78 I 0.39 I 10.7 DA-83 I DAB I 2.4 I 10.7 I 25 I 22.9 I 22.9 I 1 I 22.9 I 0.22 I 0.1B I BOX I 3.5 I 20.B I 94 I 0.45 I 11.2 DA-84 I DAB 0.5 I 10.0 I 25 I 4.5 I 4.5 I 1 4.5 I 0.01 I 12.50 I 30 I 29.6 I 145.4 I 8 I 0.00 I 10.0 ~ = = ~ Co-' Q .... .... ~ ~ = 3 2 3 2 IDA5 IDA6 I 0.3 I 10.0 25 I 2.9 I 3.7 I 1 I 3.7 0.03 I 2.00 I 24 10.2 32.1 70 I 0.11 10.1 I I I DA6DA7 0.9 10.1 25 B.5 10.7 1 10.7 0.22 1.27 24 8.1 25.6 240 0.49 10.6 DA7 IDA7A 1.B I 10.6 I 25 I 17.3 I 21.6 I 1 I 21.6 I 0.90 I 0.55 I 24 I 5.3 I 16.7 I 220 I 0.69 I 11.3 DA?A IDAB 2.1 I 11.3 I 25 I 19.7 I 19.7 I 1 I 19.7 I 0.23 I 0.43 I 30 5.5 I 27.0 I 291 I 0.8B I 12.2 DAB IDOUT 5.3 I 12.2 I 25 I 4B.5 I 4B.5 I 3 I 16.2 I 0.15 I O.B5 I 30 I 7.7 I 113.5 I B5 I 0.1B I 12.4 Proposed Development PA-81 IPA-82 1.4 10.3 25 13.6 13.6 13.6 PA-B2 I PA-83 1.9 10.3 25 1B.3 18.3 18.3 PA-83 IPAB 2.4 10.7 25 22.9 22.9 22.9 PA-B4A IPA8 0.1 10.0 25 0.7 0.7 3 0.2 PA-848 IPAB 0.7 10.0 25 6.5 B.1 B.1 PA5 IPA6 0.3 10.0 25 2.9 3.7 3.7 PA6 IPA7 0.9 10.1 25 B.5 10.7 10.7 PA? IPA?A 1.B 10.6 25 17.3 I 21.6 21.6 PA7A IPAB 2.1 11.3 25 19.7 ! 19.7 19.7 PA8 !POUT 5.6 12.2 25 50.9 50.9 3 17.0 *Includes 25% Flow Increase for pipe sizes <27" dia. ••See Plan & Profile for pipe slope used (Pipe slope >or-Friction slope) 0.11 1.25 30 9.4 0.14 0.17 BOX 3.3 0.22 0.1B BOX 3.5 0.00 5.00 30 18.7 0.26 5.49 21 15.5 0.03 2.00 24 10.2 0.22 1.27 24 B.1 0.90 0.55 24 5.3 0.23 0.43 30 5.5 0.17 0.85 30 7.7 46.0 20.0 20.B 275.B 37.2 32.1 25.6 16.7 27.0 113.5 B 0.01 10.3 7B 0.39 10.7 3 94 0.45 11.2 3 0.00 10.0 17 0.02 10.0 70 0.11 10.1 240 0.49 10.6 220 0.69 11.3 291 O.BB 12.2 85 0.18 12.4 912712004 0428-drainage-phase2-040903.xls Appendix A-3 2 2 0 z E--< ~ ....:i ~ E--< ~ ....:i ~ 0 E--< < u ....:i < E--< 0 E--< # # Ac. Existing Conditions EA-B IEA8 EA5 IEA6 EA6 IEA7 EA? IEA7A EA?A IEA8 EA8 IEOUT Dartmouth Development DA-B 1 I DA-B2 DA-B2 DA-B3 DA-B4 DA5 DA6 DA? DA7A DA8 DA-B3 DA8 DA8 DA6 DA? DA?A DA8 DOUT Proposed Development PA-B1 IPA-82 PA-B2 I PA-B3 PA-83 IPA8 PA-B4A IPA8 PA-B4B IPA8 PAS IPA6 PA6 IPA? PA? IPA?A PA?A IPA8 PA8 !POUT 2.2 0.3 0.9 1.8 2.1 4.7 1.4 1.9 2.4 0.5 0.3 0.9 1.8 2.1 5.3 1.4 1.9 2.4 0.1 0.7 0.3 0.9 1.8 2.1 5.6 C.J E--< min 17.9 10.0 10.1 10.6 11.3 17.9 10.3 10.3 10.7 10.0 10.0 10.1 10.6 11.3 12.2 10.3 10.3 10.7 10.0 10.0 10.0 10.1 10.6 11.3 12.2 *Includes 25% Flow Increase for pipe sizes <27" dia. yr e i.. 0 ..... fJ1 = t)J) ·;;; ~ Q 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 "O =:: ~ 0 t; ~ .::, = "O t)J) co:·-= ~ ;::i Q cfs 18.1 3.1 9.1 18.5 21.1 38.3 14.6 19.7 24.5 4.8 3.1 9.1 18.5 21.1 51.9 14.6 19.7 24.5 0.7 6.9 3.1 9.1 18.5 21.1 54.6 ••See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) APPENDIX A-3 PIPE SIZE CAL CU LA TIONS COTTEN'S BEE MAIN DRAINAGE -!: ~ "O ~ ~ ..... = "' t)J) ::s ·-. ...., "' "O ~ <O cfs 18.1 3.9 11.4 23.1 21.1 38.3 14.6 19.7 24.5 4.8 3.9 11.4 23.1 21.1 51.9 14.6 19.7 24.5 0.7 8.7 3.9 11.4 23.1 21.1 54.6 # "' ~ Q. ~ .... 0 0 z 3 3 3 3 3 50 Year Event cfs ~ Q. ~ i.. ~ Po. =:: 0 ~ 6.0 3.9 11.4 23.1 21.1 12.8 14.6 19.7 24.5 4.8 3.9 11.4 23.1 21.1 17.3 14.6 19.7 24.5 0.2 8.7 3.9 11.4 23.1 21.1 18.2 =-!: 0-!: ·-~ t: Q. ·-0 i.. -~ fJ1 O/o 0.02 0.03 0.25 1.04 0.26 0.10 0.13 0.16 0.25 0.01 0.03 0.25 1.04 0.26 0.18 0.13 0.16 0.25 0.00 0.30 0.03 0.25 1.04 0.26 0.20 % ~ Q. 0 r;) ~ Q. ~ 12.50 2.00 1.27 0.55 0.43 0.85 1.25 0.17 0.18 12.50 2.00 1.27 0.55 0.43 0.85 1.25 0.17 0.18 5.00 5.49 2.00 1.27 0.55 0.43 0.85 ~ N -fJ1 30 24 24 24 30 30 30 BOX BOX 30 24 24 24 30 30 30 BOX BOX 30 21 24 24 24 30 30 fps .J ~ > 29.6 10.2 8.1 5.3 5.5 7.7 9.4 3.3 3.5 29.6 10.2 8.1 5.3 5.5 7.7 9.4 3.3 3.5 18.7 15.5 10.2 8.1 5.3 5.5 7.7 cfs -!: 0 "c:i co: Q. co: u 436.1 32.1 25.6 16.7 27.0 113.5 46.0 20.0 20.8 145.4 32.1 25.6 16.7 27.0 113.5 46.0 20.0 20.8 275.8 37.2 32.1 25.6 16.7 27.0 113.5 = E--< CJ z ~ ....:i 8 70 240 220 291 85 8 78 94 8 70 240 220 291 85 8 78 94 17 70 240 220 291 85 ~ e ~ ~ ;;. co: i.. E--< min 0.00 0.11 0.49 0.69 0.88 0.18 0.01 0.39 0.45 0.00 0.11 0.49 0.69 0.88 0.18 0.01 0.39 0.45 0.00 0.02 0.11 0.49 0.69 0.88 0.18 "O = ~ @) C.J E--< min 17.9 10.1 10.6 11.3 12.2 18.0 10.3 10.7 11.2 10.0 10.1 10.6 11.3 12.2 12.4 10.3 10.7 11.2 10.0 10.0 10.1 10.6 11.3 12.2 12.4 E--< = = ~ CJ Q --~ ~ = 3 2 3 2 3 2 3 2 912712004 0428-drainage-phase2-040903.xls Appendix A-3 0 z E-< r"l ...:l z .... E-< r"l ...:l z .... 0 E-< < u ...:l < E-< 0 E-< # # Ac. Existing Conditions EA-B IEAB 2.2 EA5 IEA6 0.3 EA6 IEA7 0.9 EA? IEA7A 1.B EA7A IEAB 2.1 EAB IEOUT 4.7 Dartmouth Development DA-B 1 I DA-B2 1.4 DA-B2 DA-B3 1.9 DA-B3 DAB 2.4 DA-B4 DAB 0.5 DA5 DA6 0.3 DA6 DA? 0.9 DA? DA7A 1.B DA7A DAB 2.1 DAB DOUT 5.3 Proposed Development PA-B1 IPA-B2 1.4 PA-B2 I PA-B3 1.9 PA-B3 IPAB 2.4 PA-B4A IPAB 0.1 PA-B4B IPAB 0.7 PA5 IPA6 0.3 PA6 IPA? 0.9 PA? IPA7A 1.B PA7A IPAB 2.1 PAB IPOUT 5.6 c.i E-< min yr 17.9 10.0 10.1 10.6 11.3 17.9 e i.. 0 .... rJ1 = OJ) ·;;; ~ Q 100 100 100 100 100 100 "O ~ ~ 0 .... -; ~ ._, = "O OJ) '"= ·-= ~ ;J Q cfs 21.6 3.7 10.B 21.9 25.0 45.B APPENDIX A-3 PIPE SIZE CALCULATIONS COTTEN'S BEE MAIN DRAINAGE -!< ~ 0 "O ii: ~ .... = "' OJ) = ·-._, "' "O ~ <Q cfs 21.6 4.7 13.5 27.4 25.0 45.B # "' ~ 0. ~ ..... 0 0 z 3 3 100 Year Event cfs ~ 0. ~ i.. ~ i:i... ~ 0 ii: 7.2 4.7 13.5 27.4 25.0 15.3 =-!< 0-!< ·-~ ti 0. ·-0 i.. -~ rJ1 % 0.03 0.04 0.36 1.46 0.37 0.14 % ~ 0. 0 00 ~ 0. ~ 12.50 2.00 1.27 0.55 0.43 O.B5 r"l ~ rJ1 30 24 24 24 30 30 fps .J r"l > 29.6 10.2 B.1 5.3 5.5 7.7 cfs -!< .c ·;; '"= 0. '"= u 436.1 32.1 25.6 16.7 27.0 113.5 = E-< C!) z r"l ...:l B 70 240 220 291 B5 ~ e E= ~ ;;.. '"= i.. E-< min 0.00 0.11 0.49 0.69 O.BB 0.1B "O = r"l @) c.i E-< min 17.9 10.1 10.6 11.3 12.2 1B.O 10.3 I 100 I 17.3 I 17.3 I 1 I 17.3 I 0.1B I 1.25 I 30 I 9.4 I 46.0 I B I 0.01 I 10.3 10.3 I 100 I 23.3 I 23.3 I 1 I 23.3 I 0.23 I 0.17 I BOX I 3.3 I 20.0 I 7B I 0.39 I 10.7 10.7 I 100 I 29.1 I 29.1 I 1 I 29.1 I 0.35 I 0.1B I BOX I 3.5 I 20.B I 94 I 0.45 I 11.2 10.0 I 100 I 5.7 I 5.7 I 1 I 5.7 I 0.02 I 12.50 I 30 I 29.6 I 145.4 I B I o.oo I 10.0 E-< = = E-< C!) s ~ ~ = 3 2 3 2 10.0 I 100 I 3.7 I 4.7 I 1 I 4.7 I o.04 I 2.00 24 I 10.2 I 32.1 10 I 0.11 I 10.1 I I I 1D."1 100 10.B 13.5 1 13.5 0.36 1.27 24 B.1 25.6 240 0.49 10.6 10.6 I 100 I 21.9 I 27.4 I 1 I 27.4 I 1.46 I 0.55 I 24 5.3 I 16.7 I 220 I 0.69 I 11.3 11.3 I 100 I 25.0 I 25.0 I 1 I 25.0 I 0.37 I 0.43 I 30 5.5 I 27.0 I 291 IO.BB I 12.2 12.2 I 100 I 61.7 I 61.7 I 3 I 20.6 I 0.25 I O.B5 I 30 I 7.7 I 113.5 I B5 I 0.1B I 12.4 10.3 100 17.3 17.3 17.3 0.1B 1.25 30 9.4 46.0 B 0.01 10.3 10.3 100 23.3 23.3 23.3 0.23 0.17 BOX 3.3 20.0 7B 0.39 10.7 3 2 10.7 100 29.1 29.1 29.1 0.35 0.1B BOX 3.5 20.B 94 0.45 11.2 3 2 10.0 100 O.B O.B 3 0.3 0.00 5.00 30 1B.7 275.B 0.00 10.0 10.0 100 B.2 10.3 10.3 0.42 5.49 21 15.5 37.2 17 0.02 10.0 10.0 100 3.7 4.7 4.7 0.04 2.00 24 10.2 32.1 70 0.11 10.1 10.1 100 10.B 13.5 13.5 0.36 1.27 24 B.1 25.6 240 0.49 10.6 10.6 100 21.9 27.4 27.4 1.46 0.55 24 5.3 16.7 220 0.69 11.3 11.3 100 25.0 25.0 25.0 0.37 0.43 I 30 5.5 27.0 291 O.BB 12.2 12.2 100 64.B 64.B 3 21.6 0.2B O.B5 30 7.7 113.5 B5 0.1B 12.4 •includes 25% Flow Increase for pipe sizes <27" dia. 9/27/2004 042B-drainage-phase2-040903.xls Appendix A-3 ••See Plan & Profile for pipe slope used {Pipe slope >or= Friction slope) APPENDIXB HEC-1 TIMING ANALYSIS 1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOOD HYDROGRA PH PACKAGE ( HEC-1) MAY 1991 U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER VERSION 4. 0. lE 609 SECOND STREET Lahey F77L-EM/32 version 5. 01 Dodson & Associates, Inc. DAVIS, CALIFORNIA 95616 (916) 551-1748 RUN DATE 10/07 /0 4 TIME 10, 51, 40 ** ********* * *************** ** ** * *** ** **** x x x xxxxxxx xxxxx x xx x x x x x x x x x xxxxxxx xxxx x xxxxx x x x x x x x x x x x x x x xxxxxxx xxxxx xxx THIS PROGRAM REPLACES ALL PREVIOUS VER SIONS OF HEC-1 KNOWN AS HECl (JAN 73), HEClGS , HEClDB, AND HEClKW. THE DEFINITIONS OF VARIABLES -RTIMP-AND -RT IOR-HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS' DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS , WRITE STAGE FREQUENCY, DSS,READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE,GREEN AND AMPT INFILTRATION KINEMATIC WAVE, NEW FINITE DIFFERENCE ALGORITHM LINE 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 LINE 49 50 51 52 53 54 55 HEC-1 INPUT ID ....... l. . 2 ....... 3. .4 ..... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 1 0 ID HYDROLOGIC ANALYSIS OF CARTER CREEK BASIN -COLLEGE STATION TX ID COLLEGE STATION STORMWATER MANAGEMENT PLAN ID EXISTING CONDITION ANALYSIS-COTTEN SUBDIVISION NO DETENTION ANALYSIS ALL YEAR, 24 HOUR STORM , TYPE III STORM DISTRIBUTION MITCHELL & MORGAN, LLP -07 OCT 2004 ID ID ID ID ID ID IT IO JP JR US E OF M&M HYDROLOGIC INFORMATI ON FOR BURTON (2001), BRIAR(2001 ), HUDSON(l998 USE OF KLOTZ & ASSOC. HYDROLOGIC INFORMATION FOR BEE CREEK (1998 ) K1( KM BA PB IN PC PC PC PC PC LS UD K1( BA LS UD K1( HC K1( RS RC RX RY K1( BA LS UD K1( HC K1( RS RC RX RY KO USE OF NDM, INC. HYDROLOGIC INFORMATION FOR WOLF PEN CREEK (1996) USE OF WALTON HYDROLOGIC FOR CARTERS CREEK AND CARTERS GROVE (1986) l PREC 01JAN99 0 4.5 0000 6.2 CARI CARTER CREEK BASIN 500 7. 4 8. 4 9.8 11 13 * * BEGIN HYDROLOGIC ANALYSIS OF CARTER CREEK MAIN CHANNEL * * 1.502 0 1 .0 30 01JAN99 .005 .010 . 064 . 072 .217 .250 .872 .886 .963 .969 81 2.90 0000 . 015 .081 .298 .898 .975 19 .020 .091 .500 . 910 . 981 CAR2 CARTER CREEK BASIN II 1.494 78 .59 10 COMBINE CART AND CARII RT llROUTE TO COMP POINT 11 5 FLOW -1 .080 .065 .080 3800 1000 2000 2276 2294 310 298 295 293 CAR3CARTER CREEK BASIN III 1.249 77 3.25 llCOMBINE RTll AND CARIII . 025 .102 . 702 .919 . 986 . 0027 2300 289 RT12ROUTE COMB HYDRO TO COMP PT 12 5 FLOW -1 . 075 1000 300 .060 1500 288 . 075 1760 286 3000 1821 278 . 0027 1827 278 21 HEC-1 INPUT .031 .114 .750 .928 .991 2325 296 1 837 286 .037 .128 . 783 .936 .996 2400 298 2100 286 . 043 .146 .811 .943 1. 000 3000 308 2900 300 . 050 .166 . 834 . 950 . 057 .189 . 854 . 957 ID ....... 1 ....... 2 ....... 3 ...... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK CARVCARTER CREEK BASIN V BA 3 .718 0 LS 0 80 17 UD 4 . 59 KK 12COMBINE RT12 AND CAR V HC K1( RT13 ROUTE COMB HYDRO TO COMP PT 13 EXISTING CONDITIONS -ZERO DETENTION ANALYSIS PAGE PAGE Ap p endi x B-2 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 LINE 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 LINE 130 131 132 133 134 RS RC RX RY .075 1000 300 FLOW . 060 1500 288 -1 . 075 1760 286 2800 1821 278 KK CAR4CARTER CREEK BASIN IV BA 1.33 5 0 LS 0 77 UD 3. 55 KK 13COMB RT13 AND CAR V HC KK RS RC RX RY RT14ROUTE TO COMP PT 14 5 FLOW -1 .085 .065 .085 1000 298 1600 278 2018 276 7000 2044 267 KK BA LS UD CAR6CARTER CREEK BASIN VI KK BA LS UD 1.514 0 79 11 3.67 BRilBRIAR CREEK BASIN 3.253 0 .02 81 18 . 0021 1827 278 .0019 2050 267 KK HC 14COMBINE RT 14 BRil AND CAR VI 3 KK RT14aROUTE TO COMP PT 14a RS RC RX RY 5 . 085 1000 282 FLOW . 065 1600 275 -1 .085 2975 267 6200 2995 254 KK CAR6aCARTER CR EEK BASIN 6a . 0013 3000 252 1837 286 2088 277 3045 267 KM CREAT ED TO SIMULATE TIFF PARK DEVELOPMENT .. BA 0.117 0 LS 0 81 UD 1. 07 HEC-1 INPUT 2100 286 2957 278 4700 270 2900 300 3444 298 5200 282 ID .. .. 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK HC KK RS RC RX RY KK BA LS UD KK KM BA LS UD KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD KK HC KK BA LS UD KK HC 14aCOMBINE RT 14a AND CAR 6a 2 RT15ROUTE TO COMP PT 15 5 FLOW -1 .085 .065 .085 1000 298 1600 278 2018 276 3500 2044 267 CAR6bCARTER CREEK BASIN 6b 0 .1 37 0 79 1 . 12 BRT IBURTON CR EEK BASIN I .0019 2050 267 2088 277 •• BEGIN HYDROLOGIC ANALYSIS OF BURTON CREEK ** 1 . 36 4 0 0 80 44 1.50 BRT2BURTON CREEK BASIN II 1 .827 0 0 85 39 2 .08 3 OCOMBINE BRTI AND BRTII 2 RT31ROUTE COMB HYDRO TO COMP PT 31 5 FLOW -1 .070 .014 .070 4800 .0021 1000 1065 1100 1106 1132 292 290 280 272 BRT3BURTON CREEK BASIN III 1 .317 0 88 51 .14 31COMBINE RT 31 AND BRT III BTAIBURTON CREEK TRIB A BASIN I 1.400 0 1. 4 3 0 86 42 32COMB 31 AND BTAI 272 HEC-1 INPUT 1138 281 2957 278 1760 290 3 444 298 1850 292 ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK RS RC RX RY RT33ROUTE COMB HYDRO TO COMP PT 33 5 FLOW -1 .070 .040 .070 6000 .0025 1000 1600 2569 2597 2627 281 276 275 261 261 2658 276 3100 277 3200 281 EXISTING CONDITIONS -ZERO DETENTION ANALYSIS PAGE PAGE Appendix B-2 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 LINE 169 170 l 71 l 72 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 LINE 212 213 KK BA LS UD KK BA LS UD KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD BRT4BURTON CREEK BASIN IV 2.169 0 83 29 l. 53 BGW7BURTON CREEK GAT EWAY BASIN 7 .0438 0 l 87 .21 BGW6BURTON CREEK GATEWAY BASIN 6 .0037 0 . 20 87 lOCOMBINE BGW7 AND BGW6 RTlOROUTE . 014 990 4.5 FLOW . 014 997.9 COMB HYDRO -l . 014 998 275 999 . 5 TO . 0073 1001 . 5 BGW4BURTON CREEK GATEWAY BASIN 4 . 0105 l 90 . 09 llCOMBINE RTlO AND BGW4 2 RTllROUTE HYDRO ll TO STATION 12 l FLOW -l . 060 850 274 .040 890 272 .060 975 270 1050 982 268 . 0095 998 266 BGW2BURTON CREEK GATEWAY BASIN . 044 3 0 0 75 .30 HEC-l INPUT COMP POINT 10 02 1002. l 2 1002 266 1010 268 ll 1010 4.5 1040 270 ID ......• l ..•.... 2 ....... 3 ....... 4 .. . .5. . ... 6 ......• 7 .. , .... 8 ....... 9 ...... 10 KK HC KK RS RC RX l2COMBINE RTll AND BGW2 RTl2ROUTING OF STATION 12 l FLOW -l .060 .040 .060 730 775 980 550 995 . 0036 1012 RY 266 264 264 262 262 KM RT12 ROUTE 12 THROUGH DETENTION POND RS SA SE 257 SL 259 SS 266 ST 267 .75 FLOW .14 258 12.57 22 636 -l .23 259 .75 3 3 0 .33 260 . 5 l.5 l.5 KK BA LS UD BGW5BURTON CREEK GATEWAY BASIN .0009 0 l 87 .09 KK RTBGW5ROUTE HYDRO BC5 TO STATION 20 RS l FLOW -1 .64 261 RC .060 .040 .060 930 .0194 RX 964 984 989 996 1004 RY KK BA LS UD 275 274 272 272 274 BGW3BURTON CREEK GATEWAY BASIN .0060 0 0 75 . 23 KK RTBGW3ROUTE BGW3 TO STAT ION 20 RS RC RX RY KK BA LS UD . 0 14 990 2.5 FLOW .014 998.9 -1 . 014 999 455 .0352 999 . 5 1000 . 5 . 25 . 25 BGW lBURTON CREEK GATEWAY BASIN l .0074 0 l 0 75 .17 1070 262 .75 262 1006 276 1 0 75 260 .93 263 1012 278 1001 1001. l KK HC 20COMBINE HYDRO RTBGW5, RTBGW3, AND BGWl 3 KK RS RC RX RY RT20ROUTE HYDRO STATION 20 TO STATION 30 l .060 964 275 FLOW . 040 984 274 -l . 060 989 272 1 925 996 272 . 0062 1004 274 HEC-l INPUT 1006 276 1012 278 1090 258 .96 264 1014 280 1010 2.5 1014 280 l .27 l .35 266 267.75 ID ....•.. l •...... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK HC 30COMBINE HYDRO RT12 AND RT20 EXISTING CONDITIONS -ZERO DETENTION ANALYSIS PAGE PAGE Appendix B-2 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 24 1 242 243 244 245 246 247 248 249 250 251 252 253 33COMB RT33, BRT IV AND 30 KK KM HC END HY DROLOGIC ANA LYSIS OF BURTON CREEK ** 3 KK HUDl KM ** BE GI N HYDRO LOGIC ANALYSIS OF mJDSON CRE EK KM * * REPLACED HUD W / HUDSON CREEK ST UDY * • KM mJD I HUDSON CREEK BASIN I BA .0525 LS UD KK RS SA SE SL SS KK BA LS UD KK HC DP 0 . 3 80 FLOW 0 . 0017 316 317 317.5 1 2 .566 324.5 30 HUD2 . 0171 0 .17 PT 80 -1 .0 1 9 4 31 8 . 7 3 35 .0535 319 . 5 1.5 KK 383+30ROUTE FROM 383+30 TO 374+35 RS STOR -1 .1788 320 SQ 42 86 129 172 sv .33 .64 1.06 1.65 KK BA LS mJD3 .112 1 0 UD .14 KK 374+35 HC 2 80 35 KK RS SQ SV 374+35ROUTE FROM 374+35 TO 365+50 KK HUD5B BA . 0265 LS 0 UD . 23 STOR -1 136 . 41 80 273 1 . 4 9 35 409 1 .93 545 2.34 HEC-1 INPUT .2632 321 215 2.33 681 2.69 . 3727 322 258 3.43 818 3.06 . 4 882 323 30 1 3.89 954 3 .65 . 6 324 500 4.97 1200 4.63 . 7 325 LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ..... 7 ....... 8 ....... 9 ...... 10 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 KK 365+50 HC 2 KK 365+50ROUTE FROM 365+50 TO 154+90 RS SQ SV KK BA LS UD mJD4 .1362 0 .84 STOR 1 36 1.26 80 -1 273 2. 43 4 09 3. 4 KK 180+45ROUT E FROM 180+4 5 TO 175+20 RS 1 STOR -1 5 4 5 4 .39 SQ 4 3 85 128 170 sv .23 .4 9 2.32 KK HUD5 A BA LS UD .0832 . 4 7 KK 175+20 HC 2 80 28 KK RS SQ SV 175+20ROUTE 175+20 STOR TO 1 54+90 -1 KK 154+90 HC 2 KK HUD6 BA LS UD . 0771 0 .18 KK 154+90 HC 2 43 85 1 28 2.1 3.5 4.67 80 28 KK RS SQ SV 154+90ROUTE FRO M 154+90 TO 135+20 KK BA LS UD mJD7 .2793 0 1 . 27 STOR -1 188 376 563 3.11 3. 67 9. 71 80 170 5 .91 751 12.54 HE C-1 INPUT EXISTING CON DITIONS -ZERO DETENTION ANALYSIS 68 1 5.75 213 3.38 213 7. 76 939 15. 41 818 7.09 255 3.67 255 9.51 1127 18.29 954 8 .6 298 5. 69 298 11.4 1314 2 1 .19 1200 11. 3 600 6.5 1 600 14.86 1750 26 .46 800 6.51 850 16 3500 55.41 PAGE PAGE Appendix B-2 LINE ID ....... 1. ..• 2 ....... 3 ......• 4 .•••... 5 ....... 6 ..... 7. .. 8 .. . . 9 ...... 10 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 KJ( 135+20 HC KJ( RS SQ SV 135+20ROUTE 135+20 to 105+70 1 STOR -1 KK HUD8A BA LS UD .1984 0 .89 KK HUD8B BA LS UD .3155 0 1. 22 KK SOLAKE HC 2 KK SOLAKE RS SA SE SS 1 6 .5 304. 8 304.8 KK HUD8D BA .1892 LS 0 UD . 73 KK HUD8C BA .1015 LS 0 UD .8 KK HUD8E BA LS .03 1 6 0 UD .25 KK CF9DP HC 202 8 80 80 FLOW 6 .6 305 1 00 80 80 80 403 13 . 37 -1 7 306 1.5 KJ( RS SQ sv 255+58DET POND FOR STOR 148 15 .99 -1 296 20. 85 CF 605 24 .23 307 1.5 806 31.56 308 TO 248+00 444 28.43 592 35. 71 HEC -1 INPUT 1 008 38. 6 10 309 740 4 0 .65 LINE ID ....... 1 ....... 2. .3 ....... 4 ....... 5 ....... 6. 333 334 335 336 337 338 339 340 34 1 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 KJ( RS SQ SV 248+00DS OF NOTTINGHAM TO 233+51 KJ( BA LS HUD9 .2 1 62 UD . 77 KJ( 233+5 1 HC 2 STOR -1 135 3. 33 80 331 5.82 14 4 96 8. 26 KJ( RS SQ SV 233+5 lrt from 233+51 to 218+36 1 STOR -1 1 65 2.87 331 5.89 4 96 13 KJ( RS SQ SV 2 1 8+36rt from 218+36 to 105+70 1 STOR -1 KJ( 105+ 70 HC 2 KK HUD l O BA LS UD .1534 0 . 74 KJ( 105+70 HC 2 165 5 .11 80 331 10.13 KK 105+70rt 105+70 to 98+1 5 RS 1 STOR -1 496 16.76 SQ 0 343 686 1028 SV 3.83 24.61 62 KK HUD ll BA LS .1230 0 UD .51 KK HUD12 BA LS UD .0943 0 .27 80 14 80 32 661 11. l 661 17 661 23 .14 1371 69 HEC-1 INPUT EXISTING CO NDITIONS-ZERO DETENTION ANALYSIS 826 13. 3 826 20 826 29.37 1714 72 1209 45.55 15 310 888 43.99 1411 52.81 1 036 46. 71 1700 87. 63 2700 67.45 3400 141. 5 . .. 7 ...... 8 ....... 9 ...... 10 992 15.54 99 1 22. 77 99 1 35. 67 2057 75 1157 17. 73 1157 25.36 1157 4 2.4 6 2399 78 3000 37.75 3000 45.12 3000 92 .33 4100 88.53 6000 1 38.07 4500 90. 74 PAGE PAGE 10 Appendi x B-2 LINE 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 LINE 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 ID .....•• 1 .••.... 2. .3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 Kl< RS SA SE SL SS DP12 271. 5 273 276.S Kl< 98+15 HC 3 FLOW .0144 272 7.07 20 -1 .13 4 273 . 7 3 KK 98+15rt 98+15 to 62+25 RS 1 STOR -1 SQ 0 446 982 sv KK HUD13 BA LS UD .0627 0 .31 KK HUD14A BA LS UD .2107 0 .61 1 4 .17 29. 67 80 80 . 4 586 274 . 5 1.5 1337 44.19 KK PT14a r t FROM HWY 158 TO 62+25 RS 1 FLCW -1 RC .09 .06 .09 4000 RX RY 800 321 KK HUD14B BA .3012 LS UD 1.37 KK 62+25 HC 4 900 320 80 995 314 KK 62+25rt 62+25 to 42+20 RS 1 STOR -1 1000 311 SQ 0 446 892 1337 SV 5.78 18 .28 24 .67 KK HUDlS BA . 333 LS UD 1.47 80 1.224 275 1783 54.38 . 01 1005 311 1783 31.52 HEC-1 INPlIT 2 .133 276 2229 63.69 1010 314 2229 37.23 2.98 277 2675 72 .18 1100 322 2675 42.54 . 784 278 3 1 20 4 279 5100 4.1 282 5800 79.84 114 .11 119.88 1200 325 3120 4 7. 52 5100 67.35 5800 73. 72 ID ..... 1 ..... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 .... 10 Kl< HC Kl< RS SQ sv PTlS 2 42+20rt 42+20 o 26+00 1 STOR -1 0 446 892 19.92 24.16 1337 28.94 1783 34.91 2229 40.29 2675 45 .13 3120 49. 64 5100 67. 4 5800 73.02 Kl< KM HC lSCOMBINE RTlS, CAR 6b, BURTON CREEK, AND HUDSON CREEK (INCL. TIFF PARK END HYDROLOGIC ANALYSIS OF HUDSON CREEK ** Kl< RS RC RX RY Kl< BA LS UD RT16ROlITE TO COMP PT 1 6 5 FLCW -1 .085 .065 .085 6800 800 272 1145 259 2800 251 2929 245 CCGICARTER'S GROVE TRIB BASIN . 714 0 82 24 1. so KK CAR7CARTER CREEK BASIN VII BA 1.86 1 0 LS 0 77 UD 2.11 Kl< HC Kl< RS RC RX RY Kl< BA LS UD Kl< HC 16ADD RT16 CCGI AND CAR VII 3 RT17ROlITE TO COMP PT 17 5 FLOW -1 .085 .060 .085 1000 1400 2143 255 241 240 4200 2157 230 CAR8CARTER CREEK BASIN VIII . 786 0 2.50 77 l 7ADD RTl 7 AND CAR VI II WPNIWOLF PEN CREEK BASIN I . 0015 2967 245 . 0014 2175 230 3347 251 2200 240 Kl< KM BA LS UD BEGIN HYDROLOGIC ANALYSIS OF WOLF PE N CR EEK ** .420 0 .58 86 47 HEC-1 INPlIT 5000 254 3500 244 6200 268 4050 252 EXISTING CO NDITIONS -ZERO DETENTION ANALYSIS PAGE 11 PAGE 12 Appendix B-2 LINE 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 48 0 481 482 483 484 485 486 487 LINE 488 489 490 491 492 493 494 495 496 497 498 499 5 00 501 502 503 504 505 506 507 5 0 8 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 ID .....•• 1 .••.... 2. .. 3 ....... 4. .. 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD KK HC KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD KK HC KK BA LS UD WPCIWOLF PEN CREEK TRIB C BASIN I . 910 0 0 85 45 .88 40COMBINE WPNI AND WPCI RT41ROUT E COMB HYDRO TO COMP PT 41 5 FLOW -1 .050 .045 .070 2200 .005 1000 1015 1038 1060 1 070 300 295 290 278 278 WPN2WOLF PEN CREEK BASIN II .11 2 0 0 91 68 .28 41COMB ROUTED HYDRO AND WPN II 2 WPBIWOLF PEN CREEK TRIB B BASIN I .228 0 .54 42COMB 0 88 53 41 AND WPBI RT43ROUTE COMB HYDRO TO COMP PT 43 5 FLOW -1 .080 .055 .070 1600 .0044 1000 1055 1317 1335 1340 290 282 280 272 WPN3WOLF PEN CREEK BASIN III .118 0 .28 0 91 69 43COMBINE RT43 AND WPN III 272 WPAIWOLF PEN CREEK TRIB A BASIN I . 503 0 1.11 84 37 HEC-1 INPUT ID ....... 1 ....... 2. .3 ....... 4 ...... 5 .. KK HC KK RS RC RX RY KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD 44COMBINE 43 AN D WPAI RT45ROUTE COMB HYDRO TO COMP PT 45 . 075 1000 276 FLOW . 055 1154 272 -1 . 075 1189 270 6000 1245 261 WPN4WOLF PEN CREEK BASIN IV . 703 0 0 93 75 . 54 45COMB RT45 AND WPN 4 .0033 1260 261 RT 4 6ROUTE COMB HYDRO TO COMP PT 46 5 FLOW -1 .090 .060 .090 4800 .0015 1211 1510 1860 1878 252 244 242 237 WPNVWOLF PEN CREEK BASIN V .558 0 1.33 0 85 37 46COMBINE RT46 AND WPNV 1892 237 11 08 288 1 357 280 1275 296 1477 284 1 399 300 1760 290 . .6 ..... 7 ....... 8 ....... 9 ...... 10 1361 266 1932 244 1492 270 1995 246 192 1 276 215 0 254 KK KM HC END COMPUTATIONS FOR WOLF PEN CREEK , ADD TO CARTER CREEK COMP PT 18 ** KK KM HC KK RS RC RX RY KK BA LS UD KK BA LS 1 8ADD 17 AND WOLF PEN CREEK ADD WOLF PEN CREEK HYDROGRAPH RT19ROUTE TO 5 FLOW .085 .060 1 000 3000 255 232 COMP PT 19 -1 .085 3265 231 5800 3279 217 CAR9CARTER CREEK BASIN IX .990 0 77 2.61 CARXCARTER CREEK BASIN X . 479 0 0 80 13 . 00 11 3302 217 3327 233 6200 236 6486 251 EXISTING CONDITIONS -ZERO DETENTION ANAL YSIS PAGE 13 Append ix B-2 S2B LINE S29 S30 S31 S32 S33 S34 S3S S36 S37 S3B S39 S40 S41 S42 S43 S44 S4S S46 S47 S4B S49 sso SSl SS2 SS3 SS4 SSS SS6 SS7 SSB SS9 S60 S61 S62 S63 S64 S6S S66 S67 LINE S68 S69 S70 S71 S72 S73 S74 S7S S76 S77 S78 S79 SBO SBl SB2 SB3 S84 SBS SB6 SB7 S88 SB9 S90 S91 S92 S93 S94 S9S S96 S97 S9B S99 600 601 602 603 604 60S 606 UD 1. 42 HEC-1 INPUT ID ......• 1 ..•.... 2 ....... 3 ....... 4 ....... S ...... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK HC KK RS RC RX RY 19COMBINE RT19,CAR IX, AND CAR X 3 RT20ROUTE TO COMP PT 20 s . OBS 1000 2SS FLOW . 060 3000 232 -1 . 08S 326S 231 6000 . 00083 3279 3302 217 217 KK BEEBSl 3327 233 KM BA BF LE us ** BEGIN 0. SB HYDROLOGIC ANALYSIS OF BEE CREEK ** 0 .2S 1. 4 KK BEEBS2 BA 0 . 4 7 BF LE us 0 . 2S l .B -.OS 2.0 0. 61 -.OS 2.0 0. 61 .OS 1.86 1. 05 1. B6 0. 43 0. 43 KK BEEBSCOMBINE HYDROGRAPHS · DOWNSTREAM OF 3 0 0 HC KK 310ROUTE 300 TO 320 (Wellborn ) 6200 236 64B6 251 KM REACH TAKEN FROM COLLEGE STATION HEC-1 TOTALBEE . DAT RS 5 FLOW -1 RC RX RY . 03 100 292 KK BEEBS3 BA 0. 52 BF LE 0 0 . 25 .06 101 290 -.05 2.0 us 0.61 . 03 lOB 2BB 1. 05 1. B6 lSO 116 286 0. 43 KK BEEBSCOMBINE HYDROGRAPHS AT 320 HC 2 KK BEEBNl BA 1.03 LE 0. 2S us 1. 8 2.0 0. 61 l.B6 0. 43 KK HC COMBINE HYDROGRAPHS AT 320 2 . 0111 136 2B6 10.5 17 .S HEC-1 INPUT 151 2B8 166 2B9 lBl 290 ID ....... 1 ....... 2. ... 3 ....... 4 ....... 5 ..... 6 ....... 7. . . 8. KK RCH 7 FM2818 KM REACH EXTENDS FROM X-SECT. RS STOR -1 SV so KK RCH 12 560 TB-IMP 24 1120 KM REACH EXTENDS FROM X-SECT. RS 2 STOR -1 SV so KK BEEBN2 BA LE us 0.81 0.2S 1.3 14 740 2.0 0. 61 24 14BO l.B6 3B 16BO 32 2220 0 . 43 .640 TO X-SECT. SB 2240 82 2800 -4.014 TO X-SECT . 40 2960 35 50 3700 KK HC COMBINE HYDROGRAPHS DOWNSTREAM 2 OF 55 KK BA LE us BEEl 1. 00 0. 25 . 4 2.0 0. 61 l. B6 KK RCH 4 Bl-IMP KM RS sv so REACH EXTENDS FROM X-SECT. STOR -1 19 36 340 6BO 0 . 43 S3 1020 KK HC COMBINE HYDROGRAPHS AT KK RCH TX AV KM REACH EXTENDS FROM X-SECT. RS STOR -1 SV so 14 960 KK RCH 2SH6 BYPASS 24 1920 KM REACH EXTENDS FROM X-SECT . RS 2 STOR -1 32 2880 SV 154 263 364 so 1160 2320 34BO KK BA BEE2 1.22 35 4 . 014 TO X-SECT. 6B 87 1360 1700 S7 3.600 X-SECT . 46 55 3840 4BOO 2 .390 TO X-SECT. 476 604 4640 5800 115 3360 69 4440 .160 137 3920 . 640 B9 5180 5. 760 107 126 204 0 23BO 4.014 7B BB 5760 6720 . 600 770 1015 6960 8120 ... 9 ...... 10 EXIS TING COND ITIO NS -ZERO DETENTIO N ANALYSIS PAGE 14 PAGE 15 Appendix B-2 607 608 609 LINE 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 LINE 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 LE us KO 0. 25 1 .6 2.0 0. 61 1.86 0. 43 24.5 21 HEC-1 INPUT ID ......• 1 .••.... 2 ....... 3 ....... 4. . ... 5 ....... 6 ....... 7 ....... 8. KK HC KK BEEAl BA LE us 0.66 0. 25 1.5 COMBINE HYDROGRAPHS AT 2.0 0 . 61 l. 86 0. 43 KK 180ROUTE 170 TO 185 60 24 .5 KM REACH TAKEN FROM COLLEGE STATION HEC-1 TOTALBEE. DAT RS RC . 025 RX 100 RY 257.3 KK BEEA2 BA LE us KK HC 1.12 0. 25 0. 9 FLOW . 025 170 257. l 2.0 0. 61 -1 .028 270 256 l . 86 1100 280 254 0 . 43 COMBINE HYDROGRAPHS AT 185 190ROUTE 185 TO 195 . 002 290 254 35 265 300 258 375 260 475 262 KK KM RS RC RX RY REACH TAKEN FROM COLLEGE STATION HEC-TOTALBEE DAT 5 FLOW -1 .035 .03 .035 4900 .0035 37 250 KK BEEA3 BA 0.46 LE 0.25 us 2.5 KK HC 137 253 .7 2.0 0 . 6 1 243 250 l. 86 318 242 0. 43 COMBINE HYDROGRAPHS AT 195 354 242 17.5 377 250 KK COMBINE HYDROGRAPHS AT X-SECT. 2 .390 HC 2 KK RCH KM RS sv SQ REACH EXTENDS FROM X-SECT. KK BA LE us 3 STOR -1 BEE) 0.84 0. 25 3.3 326 545 1820 3640 2 .0 0. 61 1 .86 .000 TO X-SECT . 723 879 102 3 5460 7280 9100 0 . 43 14 HEC-1 INPUT 509 252 2 .390 708 258 1159 1289 10920 12740 ... 9 ...... 10 ID ....... 1 ..•.... 2 ...... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 .... 10 KK PTO. 00 KM END COMPUTATIONS FOR BEE CREEK MAIN CHANNEL AND TRIBUTARIES (ADD TO CC20) HC 2 KK 2 OADD RT2 0 AND BEE CREEK KM ADD BEE CREEK HYDROGRAPH ** HC KK RS RC RX RY RT21ROUTE TO COMP PT 21 5 FLOW -1 .085 .060 .085 1 000 3000 3265 255 232 231 2200 3279 217 KK CARXICARTER CREEK BASIN XI BA 3.323 0 LS 0 77 UD 4. 60 KK CAR12CARTER CREEK BASIN XII BA 1.118 0 LS 0 77 UD l. 79 .00091 3302 217 KK 21COMBINE RT21, CARXI AND CARXII HC 3 KK RS RC RX RY RT22ROUTE TO COMP PT 22 5 FLOW -1 .080 .060 .080 1000 1600 2800 243 226 223 2000 2855 215 KK CAR 1 3CART ER CREEK BASIN XIII BA .628 0 LS 76 UD .14 KK 22ADD RT22 AND CARXIII HC KK RS RT23 5 FLOW -1 . 00095 2881 215 3327 233 2900 223 6200 236 4918 225 6486 251 6900 246 EXISTING CO NDITIONS -ZERO DETENTION ANALYSIS PAGE 16 PAGE 17 Appendix 8 -2 685 686 687 688 689 690 691 692 693 LINE 694 695 696 697 698 699 700 701 702 RC .085 RX 400 RY 230 KO KK RT24 RS 5 RC .OBS RX 1700 RY 220 ID ....... 1 .. KK RS RC RX RY RT25 5 .085 210 .060 700 220 FLOW .060 2000 210 . . . . . 2. FLOW .060 100 200 . 085 10000 . 0014 2800 2855 2881 210 202 202 21 -1 . 085 8000 . 00083 2800 2855 2881 200 192 192 HEC-1 INPUT . . . . 3. . . . . . . 4 . ...... 5 . -1 . 085 4400 . 00093 2800 2855 2881 195 187 187 KK CARXIVCARTER CREEK BASIN XIV BA 10 0 LS 0 75 UD 7 . 86 KK 25COMBINE ROUTE 25 AND CAR XIV 2900 210 2900 200 . . . . . . 6 . 2900 195 5500 220 6200 210 . . . . . . 7 . 6800 200 703 704 705 706 KM END HYDROLOGIC ANALYSIS OF CARTERS CREEK BASIN ** HC zz 1 ******** ******* ***** * *********** **** ***** FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1991 VERSION 4.0.lE Lahey F77L-EM/32 version 5 .0 1 Dodson & Associates, Inc . RUN DATE 10 /07 /04 TIME 10' 51 o40 ** * * * * *. * * *. *. *. * ** *. *. * * * * * * * * * ** * *. ** * * 6000 230 6400 220 ...... 8 ... 7000 210 HYDROLOGIC ANALYSIS OF CARTER CREEK BASIN -COLLEGE STATION TX COL LEGE STATION STORMWATER MANAGEMENT PLAN EXISTING CONDITION ANALYSIS-COTTEN SUBDIVISION NO DETENTION ANALYSIS ALL YEAR, 24 HOUR STORM , TYPE III STORM DISTRIBUTION MITCHELL & MORGAN, LLP -07 OCT 2004 PAGE 18 . . 9 .... . . 10 U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-1748 USE OF M&M HYDROLOGIC INFORMATION FOR BURTO N (2001), BRIAR(2001), HUDSON(l998 USE OF KLOTZ & ASSOC. HYDROLOGIC INFORMATION FOR BEE CREEK (1998) 11 IO IT JP JR 43 KK 48 KO USE OF NDM, INC. HYDROLOGIC INFORMATION FOR WOLF PEN CREEK (1996) USE OF WALTON HYDROLOGIC FOR CARTERS CREEK AND CARTERS GROVE (1986) OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE HYDROGRAPH TIME DATA NMIN 5 MINUTES IN COMPUTATION INTERVAL IDATE 1JAN99 STARTING DATE ITIME 0000 STARTING TIME NQ 500 NUMBER OF HYDROGRAPH ORDINATES NDDATE 2JAN99 NDTIME 1735 I CENT 19 COMPUTATION INTERVAL TOTAL TIME BASE ENGLISH UNITS ENDING DATE ENDING TIME CENTURY MARK 0.08 HOURS 41. 58 HOURS DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH INCHES LENGTH, ELEVATION FEET FLOW CUBIC FEET PER SECOND STORAGE VOLUME ACRE-FEET SURFACE AREA ACRES TEMPERATURE DEGREES FAHRENHEIT MULTI-PLAN OPTION NP LAN MULTI-RATIO OPTION NUMBER OF PLANS RATIOS OF PRECIPITATION 4.50 6.20 7. 40 8. 40 9. 80 RT12 ROUTE COMB HYDRO TO CO MP PT 12 OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT PLOT CONTROL QSCAL 0. HYDROGRAP H PLOT SCALE IPNCH PUNCH COMPUTED HYDROGRAPH 11. 00 IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 500 LAST ORDINATE PUNCHED OR SAVED TIMINT 0.083 TIME INTERVAL IN HOURS EXISTING CONDITION S -ZERO DE TENTIO N ANALYSIS 13.00 App endi x B-2 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 60S KK BEE2 609 KO OUTPUT CONTROL VARIABLES IPRNT s PRINT CONTROL I PLOT PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 soo LAST ORDINATE PUNCHED OR SAVED TIMINT . 083 TIME INTERVA L IN HOURS *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 683 KK RT23 688 KO OUTPUT CONTROL VARIABLE S IPRNT s PRINT CONTROL I PLOT PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 soo LAST ORDINATE PUNCHED OR SAVED TIMINT 0.083 TIME INTERVAL IN HOURS * * * WARNING * * * UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS * * * WARNING * * * UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS * * * WARNING * * * UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS *** WARNING *** UNIT HYDROGRAP H TRUNCATED FROM 474 TO 300 INTERVALS *** WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS * * * WARNING * * * UNIT HYDROGRAPH TRUNCATED FRO M 474 TO 300 INTERVALS *** WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS *** WARNING *** UNIT HYDROG RAPH TRUNCATED FROM 474 TO 300 INTERVALS PEAK FLOW AND STAGE (END -OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS RATIOS APPLIED TO PRECIPITATION OPERATION STATION AREA PLAN RATIO 1 RATIO 2 RATIO 3 RATIO 4 RATIO RATIO 6 4. so 6 .20 7. 40 8. 40 9 . 80 11. 00 HYDROGRAPH AT CARI l.SO FLOW 4Sl. 696. 873. 1022. 1231. 1410. TIME 14.67 14 .S8 14.S8 14.S8 14.S8 14.S8 HYDROGRAPH AT CAR2 1 .49 FLOW 324. S27. 676. 802. 981 . 113S. TIME 1S.S8 lS.SO lS.42 lS.42 lS.42 lS.33 2 COMBINED AT 10 3 .00 FLOW 7S8. 1199. 1S20. 1790 . 2171. 2499. TIME lS.00 lS.00 14.92 14.92 14.92 14. 92 ROUTED TO RTll 3 .00 FLOW 7S3. 1191. 1Sl2. 1781. 21S9. 2488 . TIME 1S.S8 lS.SO lS.42 lS. 42 lS.42 lS. 33 PEAK STAGES IN FEET STAGE 296 .88 297 .61 298 . 02 298.29 2 98. 66 298.98 TIME 1S.S8 lS . so l S . 42 lS.42 lS.42 lS.33 HYDROGRAPH AT CAR3 1. 2S FLOW 267. 447. S79. 692 . 8S2 . 989. TIME lS. 2S lS .17 lS . 08 lS.08 lS.00 lS.00 2 COMBINED AT 11 4.24 FLOW 1018. 1633. 2086. 2466 . 3002 . 3469 . TIME lS.SO lS.42 lS.33 lS.33 lS .33 1S.2S EXISTING CONDITIONS -ZERO DETENTION ANALYSIS RATIO 7 13. 00 1708. 14.S8 1392. lS.33 3047. 14.83 3033 . lS.33 299 .33 lS. 33 1220. lS. 00 4244. 1S.2S Append ix B-2 ROUTED TO RT12 4 .2 4 HYDROGRAPH AT CARV 3. 72 2 COMBIN ED AT 1 2 7.96 ROUTED TO RT13 7.96 HYDROGRAPH AT CAR4 1.34 2 COMBINED AT 13 9. 30 ROUTED TO RT14 9. 30 HYDROGRAPH AT CAR 6 1. 51 HYDROGRAPH AT BRil 3.25 3 COMBINED AT 14 14.07 ROUTED TO RT14a 14.07 HYDROGRAPH AT CAR6a 0.12 2 COMBINED AT 14 a 14. lB ROUTED TO RT15 14. lB HYDROGRAPH AT CAR6b 0.14 HYDR OGRAPH AT BRTI 1. 36 HYDROGRAPH AT BRT2 l.B3 2 COMBINED AT 30 3.19 ROUTED TO RT31 3 .1 9 HYDROGRAPH AT BRT 3 1 .32 2 COMBINED AT 31 4.51 FLOW TIME 1 016. 15.75 PEAK STAGES IN FEET STAGE 2B5.6B T I ME 15 .7 5 FLOW TIME FLOW TIME FLOW TIME 77S. 16.5B 1766. 1 6.00 1759. 1 6.SO PEAK STAGE S IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 2B7.04 1 6.50 26B. 15 .5 B 2011. 16 .42 1922. lB.OB PEAK STAGES IN FEET STAGE TIME FLOW T I ME FLOW TIME FLOW TIME FLOW TIME 277 .50 l B.OB 346. 1 S.5B 9 44. 14.B3 2663. 17 .33 261S . 1B.B3 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 26B.2B 1B.B3 6 1. 1 2.75 2620. 1B .B3 2609. 19 .5B PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLO W TIME FLOW TIME FLOW TIME 27B .14 19 . SB 65. 12.B3 706 . 13.17 BlB . 1 3 .7S 147S . 13.42 14 74. 13.50 PEAK STAGES IN FEE T STAGE TIME FLOW TIME FLOW 276.46 13. so 924. 12 .75 2231. 1625. 15.B3 2B6.63 15.B3 120B. 1 6.50 2Bl0. 16.0B 2B04. 16. 42 2B7.B6 16. 42 44B. 15.50 3222. 16.33 3129 . 17.50 27B.50 17.SO 551. 15.50 1461 . 14.75 4367 . 17.25 4206. lB.50 269.44 lB.50 97 . 12.67 4214 . lB.42 41 92 . lB. 92 27B.B6 lB .92 l OS. 12.7S 1 04B . 13. OB 11 97. 13 .67 2174. 13.33 2174. 13 .42 277. 64 13.42 131B. 12.7S 3260. EXIS TING CONDITIO NS -ZE RO DETENTIO N ANALYSIS 2076 . 1 5.75 2B7.13 15.75 152 3. 16.50 3566. 16.00 3SSB . 16.33 2BB.3B 16.33 5Bl. 15 .4 2 41 02. 1 6.25 4 030. 1 7.25 27B.B l 1 7.2S 701 . l S. so 1B 34. 14 .75 S755. 1 6.75 5S77 . lB. 00 269.B5 lB. 00 123. 1 2.67 5SBB. lB .00 SS64. lB.50 279.33 lB . so 135 . 12.7S 1 293 . 13 . OB 1 4 67 . 13 .67 2673. 13.33 2673 . 13.42 27B .40 1 3.42 1S96. 1 2.7S 39B9. 24S9. lS.67 2B7.42 l S.67 17BB . 16.42 4197 . lS. 92 4 1 91. 16.17 2BB.6B 16 .17 694. lS .42 4B52. 1 6 .0B 476S. 17 . OB 279.06 17. OB B2B . lS.50 2146. 14.7S 6B7 2 . 16.SB 6671 . 17.B3 270.lB 17.B3 14S. 12 .67 66B4. 1 7 .B3 66S6 . lB.33 279.70 lB. 33 1 60 . 12.75 1499. 13 .OB 1 692. 13.67 3090. 13.33 3090 . 1 3.42 27B.9 7 13 .42 1B27. 12.75 46 03. 2994. 1 5.67 2B7 . 75 l S. 67 2162. 1 6 .42 S09S. lS. B3 SOB9. 16.17 2B9.09 16.17 BS4. l S .33 S90 1 . 16.0B SB02. 17.0B 279.41 17.0B 1006. lS.42 25B6. 14 .67 B394. 16.42 BlBO. 17. 67 270. 64 17.67 176. 12.67 Bl96. 1 7.67 BlBO. lB.OB 2B0.16 lB. OB 195. 12.75 17 B6. 13.0B 2006. 13.67 3674 . 13.33 3673. 1 3.4 2 279. 72 13.42 2149. 12.75 5464. 345 B. 15.5B 2BB.03 15.5B 24B 4. 16.42 SB69. lS . B3 5B60. 16.17 2B9.45 16.17 993 . lS.33 6B06. 16.00 6692 . 17. 00 279. 71 1 7. 00 1160. lS.42 2964. 14 .67 96B 4. 16 .42 9S l3 . 17. 42 271. 01 17 . 42 202. 12.67 9S33 . 17.42 9SOS . 17.75 2B0.4 7 17.75 22 4. 12.75 2033. 13. OB 2275. 13.67 4174. 13. 33 4173. 1 3 .42 2B0 .32 13.4 2 2425. 12.75 6 195. 4237. 15.50 2BB.4 7 lS .SO 3021. 16.42 715 1 . 15.75 7143. 16. 00 2B9.93 16.00 1 225 . 15.33 B322. lS.92 B240. 16.67 2B0.1B 16. 67 1416. lS.42 3S94. 14.67 1209S. 16 .33 11 B66. 17.17 271. 43 17 .17 245 . 1 2 .67 11B91. 17.17 11B60. 17.50 2Bl .Ol 17.50 274. 12.75 2444. 13 .OB 272 3 . 13.67 5006. 13. 33 5004. 13 .42 2Bl .17 13.4 2 2BB4. 12.75 7406. App endix B-2 HYDROGRAPH AT BTAI 1.40 2 COMBINED AT 32 5. 91 ROUTED TO RT 33 5.91 HYDROGRAPH AT BRT4 2.17 HYDROGRAPH AT BGW7 0. 04 HYDROGRAPH AT BGW6 0. 00 2 COMBINED AT 10 0 . 05 ROUTED TO RTlO 0 . 05 HYDROGRAPH AT BGW4 0. 01 2 COMBINED AT 11 0.06 ROUTED TO RTll 0 .06 HYDROGRAPH AT BGW2 0.04 2 COMBINED AT 12 0.10 ROUTED TO RT12 0.10 HYDROGRAPH AT BGW5 0.00 ROUTED TO RTBGW5 0. 00 HYDROGRAPH AT BGW3 0. 01 ROUTED TO RTBGW3 0. 0 1 HYDROGRAPH AT BGWl 0. 01 3 COMBINED AT 20 0. 01 ROUTED TO TIME FLOW TIME FLOW TIME FLOW T I ME 13. 08 817. 13. 00 3047. 13.08 3035. 1 3.25 PEAK STAGES I N FEET STAGE 270 .53 TIME 13. 25 FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 1 099. 1 3.17 44. 1 2.00 4 . 12.00 47. 12.00 47 . 12.00 PEAK STAGES IN FEET STAGE 2.21 TIME FLOW TIME FLOW TIME FLOW TIME 12.00 11. 12.00 58. 12.00 58. 1 2.00 PEAK STAGES I N FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 267. 44 1 2.00 31. 12.08 88. 12 .00 61. 12 .33 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME 259.66 1 2.33 l . 12.00 1 . 12.00 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME 272. 04 12.00 4. 12.00 4. 12.08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME 0 . 65 12.08 5. 12.00 10. 12.00 13. 08 1186 . 13. 00 4444 . 13. 08 4432 . 13. 25 272. 58 13. 25 1 645. 13.17 64. 12.00 5. 12.00 69. 12.00 69. 1 2.00 2.56 12 .00 16. 12.00 86. 12.00 85. 12.00 267. 73 12.00 50. 12.08 135. 12 .00 79 . 12.33 260.10 12.33 1. 12 .00 1. 12 .00 272. 06 12.00 7. 12.00 7. 12.00 0 . 79 12.00 9. 12.00 17. 12.00 EXISTING CO NDITIONS -ZERO DETENTIO N ANA L YSIS 1 3 .08 1446. 1 3 .00 5434 . 13.08 5421 . 1 3.25 273 .81 13. 25 2034. 13 .17 78 . 12.00 7. 12.00 85. 12.00 85. 12.00 . 78 12.00 20. 12.00 105. 12.00 104. 12.00 267.88 12.00 64. 12.08 168. 12.00 89. 1 2.42 260.39 12.42 2 . 12 .00 2. 1 2.00 272. 07 12.00 9. 12.00 9. 12.00 0. 87 12.00 11 . 12.00 22. 12.00 13.08 1664. 13 .00 6263. 13.08 6208. 13.33 274. 70 13.33 2359 . 13.17 90 . 12.00 8. 12.00 98 . 12.00 98. 12.00 2.95 12.00 22. 12.00 120 . 12.00 120 . 12.00 268.01 12.00 76. 12.08 195. 12.00 96. 12.42 260.62 12.42 2 . 12 .00 2. 12.00 272. 09 12.00 11. 12.00 10 . 12.00 0.94 12.00 13. 12.00 26. 12.00 1 3.08 1967. 13 .00 7427. 13.08 7270. 13. 58 275. 62 13.58 2813. 13 .17 107. 12.00 9. 12.00 116. 12 .00 116. 12.00 3.17 12.00 26. 12.00 142 . 12.00 142 . 12 .00 268.16 12 .00 93 . 12 .08 234. 12.00 105. 12 .42 260 .91 12.42 2. 12.00 2. 12.00 272 .10 12.00 13. 12.00 13 . 12.00 1. 01 12.00 16 . 12.00 31. 12.00 13. 08 2227. 13. 00 8416. 13. 08 8082. 13.75 275.99 13. 75 3202. 13. 08 121. 12.00 10. 12.00 131. 12.00 131. 12.00 3.34 12.00 30. 12.00 161. 12 .00 1 60 . 12 .00 268.27 12 .00 107. 12.00 267. 12.00 111. 12.50 261.15 12.50 3 . 12.00 2. 12.00 272 .11 12.00 15. 12.00 15. 12.00 l. 07 12 .00 19. 12.00 36. 12.00 13. 08 2658. 13 .00 10057. 13. 08 9598. 13. 83 276. 57 13. 83 3850. 13 . 08 144. 12.00 12. 12.00 157. 12.00 157. 12.00 3.62 12.00 35. 12.00 192. 12 .00 191. 12 .00 268.45 12 .00 131. 12 .00 322. 12.00 120. 12.50 261 .50 12.50 3. 12 .00 3. 12.00 272 .14 12.00 18. 12.00 18. 12.00 1.15 12 .00 23. 12 .00 44. 12.00 Appendix B-2 RT2 0 2 COMBINED AT 30 3 COMBINED AT 33 HYDROGRAPH AT HUDl ROUTED TO DP 1 HYDROGRAPH AT HUD2 2 COMBINED AT PT 2 ROUTED TO 383+3 0 HYDROGRAPH AT HUD3 2 COMBINE D AT 37 4 +35 ROUTED TO 374+35 HYDROGRAPH AT HUDSB 2 COMBINE D AT 365+50 ROUTED TO 365+50 HYDROGRAPH AT HUD4 ROUTED TO 180+4 5 HYDROG RAPH AT HUD SA 2 COMBINED AT 175+20 ROUTED TO 175+20 2 COMBINED AT 154+90 HYDROGRAPH AT HUD6 2 COMBINED AT 154+9 0 RO UTED TO 154+90 HYDROGRAPH AT HUD? 2 COMBINED AT 1 35+20 0.0 1 0.12 B.19 0. 05 0. 05 0.02 0 . 07 0 . 07 0.11 O.lB O.lB 0. 03 0 .21 0. 2 1 0.14 0 .14 O.O B 0. 22 0 .22 0 . 4 3 0 .OB 0 .5 0 0.50 0.2B 0. 7B FLOW TIME 9. 12.08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 272. 56 1 2 .08 70. 12.2 5 4168. 13. 25 43. 12 .08 43. 12.08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 3 17 .93 1 2.08 1 6 . 1 2 .00 59. 12 .00 58. 12 .0 8 1 09. 12 .00 1 66. 12.0 0 161. 12 .08 25 . 12 .00 18 6 . 12 .00 18 3 . 12 .08 80. 12 .50 79. 12 .58 68. 12 .17 136. 12.33 119 . 12.67 266. 12.1 7 72 . 12.00 328. 12 .08 325 . 12 .17 127. 12. 92 399. 12.17 16. 12 .08 272 . 77 12.08 93. 12 .25 6135. 1 3 .25 67. 12.08 67. 12.08 318.46 12 .08 24. 12 .00 90. 12.00 89. 12 .0 8 16 0. 12.00 248 . 12.00 242. 12.00 37. 1 2.00 279 . 1 2 .00 275. 1 2.08 127 . 1 2.50 123. 12 .58 103. 1 2 .1 7 207. 12.33 181. 12.67 416. 12 .17 108. 12.00 511 . 12.08 455. 12 .25 2 04. 12.92 612. 12 .4 2 EXISTING CONDITIONS -ZERO DETENTION ANALYSIS 21. 12 .0B 272. 90 12.0B 1 07. 12 .17 7529. 13.1 7 B3. 12.00 B4 . 12 .08 31B.92 12.0B 30. 12.00 113 . 12. 00 111. 12 .0B 197 . 12.00 306. 12 .00 303. 1 2 .00 46. 12.00 349 . 12 .00 344. 12.0B 161. 1 2 .50 14 9. 12.75 12B. 12.17 255. 12.25 217. 12.6 7 513. 12. OB 133. 12 .00 639. 12.0B 553 . 12 .25 261 . 12 .92 755. 1 2 .42 25. 12.0B 272. 9B 12.0B 117. 12.17 B643. 13.17 9B. 12.00 9B. 12.0B 319.42 12.0B 35. 12.00 131. 12.00 1 29 . 12.0B 227. 12.00 354. 12.00 351. 12.00 53 . 1 2 .00 404. 12.00 39B. 12.0B 1B9. 12 .50 172. 1 2.75 149. 12.17 2BB. 12.25 249 . 12.75 SB9. 12.0B 154. 12.00 735 . 12.0B 6 71. 12.25 30 B. 12 .92 BB9 . 1 2.2 5 3 0. 12 .0B 273.10 1 2.0B 130. 12 .17 1 0022 . 13.42 llB . 1 2 .00 116 . 12.0B 320.20 12 .0B 41. 12.00 155 . 12.00 151. 12.0B 270 . 12.00 41B . 12.00 415. 1 2 .00 63. 12 .00 4 7B. 12 .00 471 . 12 .0B 229. 12 .42 210. 12.75 17B . 12 .17 340 . 12.33 295. 12. 75 693. 1 2.0B 1B3. 12.00 B66. 12.0B Bl3. 12.17 374 . 12 . 92 1072. 12.25 35. 12.0B 273.20 12.0 B 14 0 . 12.17 1101B. 13 . so 1 35 . 12.00 131 . 1 2.0B 320.96 12.0B 47. 1 2.00 176 . 12.00 170. 12.0B 306. 12.00 472 . 12 .00 469. 12.00 71. 12 .00 541. 12.00 533. 12.0B 263. 12 .42 255. 1 2.SB 203. 12 .17 4 00. 12 .50 3BO. 12.SB 7Bl. 12 .0B 20B. 12.00 97B. 12 .0B 924. 12.17 431. 12 . 92 1223. 12.2 5 43. 12 .0B 273. 34 12.0B 156. 1 2.17 13017. 13.SB 163. 12.00 154. 12.17 322.30 12.17 56. 1 2.00 207 . 12.00 199. 12 .17 366. 12.00 5 60 . 12 .00 55 7. 12.00 B6. 12 .00 643. 12.00 630. 12.0B 3 20. 12.42 2BB. 12 .75 244. 12 .17 495. 12.25 4 63 . 12.50 957. 12.25 250. 12.00 1157. 12.0B 111 0 . 12.25 525. 12 .B3 1504. 12.33 Appendix B-2 + ROUTED TO 135+2 0 0. 78 HYDROGRAPH AT HUD8A 0. 20 HYDROGRAPH AT HUD8B 0. 32 2 COMBINE D AT SO LAKE 0. 51 ROUTED TO SO LAKE 0. 51 HYDROGRAPH AT HUD8D 0.19 HYDROGRAPH AT HUD8C 0.10 HYDROGRAPH AT HUD8E 0.03 4 COMBINED AT CF9DP 0.84 ROUTED TO 255+58 0.84 ROUTED TO 248+00 0 . 84 HYDROGRAPH AT HUD9 0 .22 2 COMBINED AT 233+51 1. 05 ROUTED TO 233+51 1. 05 ROUTED TO 218+36 1. 05 2 COMBINED AT 105+70 1 .84 HYDROGRAPH AT HUDlO 0. 15 2 COMBINED AT 105+7 0 1.99 ROUTED TO 105+7 0 1.99 HYDROGRAPH AT HUDll 0.12 HYDROGRAPH AT HUD12 0.09 ROUTED TO DP 12 0. 09 3 COMBINED AT 98+15 2.21 ROUTED TO 98+15 2.21 HYDROGRAPH AT HUD13 0 . 06 FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 342. 12.58 110. 12.58 147. 12.92 249. 12.75 227. 13 . 08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 306.12 13.08 116. 12 .42 59. 1 2.50 26. 12.00 365. 12.75 307. 13.33 304. 13. 50 139. 12.42 366. 13 .33 349. 13. 67 336. 14 .08 587. 13. 50 97. 12.42 629. 13 .33 585. 14.00 92. 12.17 87 . 12 .00 63. 12.25 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 275.53 12.25 614 . 13.83 607. 14.17 5 0. 12.08 531. 12.83 177. 12.50 236. 12.83 402. 12.67 373. 13.00 306.63 13.00 185. 12.42 95. 12.42 40. 12.00 603. 12.67 508. 13. 25 500. 13.42 217. 12 .42 605. 13 .17 580. 13.58 543. 14 .08 954. 13 . 58 153. 12.42 1013. 13 .42 882. 14.17 143. 12.17 129 . 12 .00 79. 12.33 276. 63 12.33 929 . 13.75 917. 14.33 78. 12.08 EXISTING CONDITI ONS -ZER O DETENTION ANALYSIS 668. 13. 00 225. 12.50 302. 12.83 513 . 12 .67 479 . 13.00 306.97 13. 00 235. 12. 33 121. 12.42 51. 12 .00 775. 12 .67 673. 13 .17 655. 13 .42 272. 12.42 789. 13 .1 7 771. 13. 42 715. 13 . 92 1257. 13. 50 193. 12. 42 1334. 13 .25 1233. 14.00 18 0. 12.17 16 0. 1 2.00 109. 12.33 277 .11 12.3 3 1311. 14 .00 1224. 14.33 98. 12.08 778 . 12 . 92 266 . 12 .50 356. 12.83 605. 12.67 567. 13.00 307.22 13. 00 277. 12.33 143 . 12.42 60 . 12.00 919. 12 .67 832. 13.08 813. 13.25 319. 12.42 989. 13 .08 961. 13. 33 876. 13.75 1547. 13 .42 226. 12.33 1640. 13 .33 1606. 13 .58 210. 12.17 185. 12.00 136. 12.25 277.40 12 .25 1717. 13 .58 1599. 14.00 115. 12.08 929 . 12 .83 323. 12 .50 433. 12.83 735. 12 .67 691. 12.92 307.57 12.92 336 . 12.33 174. 12.42 72. 12.00 1122. 12 .67 1063. 12.92 1033. 13. 08 384. 12.42 1276. 13.00 1249. 13.17 1105. 13 .67 1933. 13 .42 274. 12.33 2049 . 13 .33 2039. 13. 42 253. 12.17 221. 12 .00 171. 12. 25 277.75 12.25 2171. 13.42 2091. 13. 75 1 38 . 12 .00 1085. 12.83 372. 12.50 499. 12.83 847. 12.67 798. 12.92 307.85 12. 92 386. 12.33 200. 12.42 82. 12.00 1296. 12.67 1259. 12.83 1230. 13 .00 440. 12. 42 1535. 12 .92 1505. 13. 00 1343. 13. 42 2316. 13 .33 314. 12.33 2456. 13 .25 2447 . 13. 33 289. 12.17 251. 12.00 200. 12.25 27 8.01 12.25 2597. 13.33 2517. 13.58 159. 12.00 1334. 12.83 453 . 12 .50 608. 12 .83 1032. 12.67 976 . 12.92 308.28 12. 92 470. 12.33 243. 12.42 99. 12.00 1585. 12.58 1553. 12.75 1530. 12.92 533. 12.42 1932. 12 .83 1901. 12.92 1728. 13.33 2952. 13 .17 382 . 12.33 3148. 13. 08 3138. 13.17 350 . 12.17 301. 12.00 249 . 12.25 278.39 12. 25 3341. 13 .17 3253. 13. 42 192. 12.00 A ppendi x B -2 HYDROGRAPH AT HUD 1 4A 0.21 ROUTED TO PT14a 0.21 HYDROGRAPH AT HUD148 0.30 4 COMBINED AT 62+25 2.78 ROUTED TO 62+25 2.78 HYDROGRAPH AT HUDlS 0. 33 2 COMBINED AT PTlS 3 .11 ROUTED TO 42+20 3 .11 4 COMBINED AT lS 2S .63 ROUTED TO RT 1 6 2S.63 HYDROGRAPH AT CCGI 0. 71 HYDROGRAPH AT CAR7 1 .86 3 COMBINED AT 1 6 28.20 ROUTED TO RTl 7 28 .20 HYDROGRAPH AT CARS 0. 79 2 COMBINED AT 17 28.99 HYDROGRAPH AT WPNI 0. 42 HYDROGRAPH AT WPCI 0.91 2 COMBINED AT 40 1. 33 ROUTED TO RT41 1. 33 HYDROGRAPH AT WPN2 0.11 2 COMBINED AT 41 1. 44 HYDROGRAPH AT WPBI 0. 23 FLOW TIME FLOW TIME 138. 12. 33 127. 12.SO PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 314. 14 12.SO 130. 13. 08 786. 13 .00 764. 13. so 138 . 13 .17 897. 13 . 33 894. 13.SO S6SO . 13.42 S420. 14 .33 PEAK STAGES IN FEET 221. 12.2S 203. 12.SO 314.79 12.SO 210. 13. 00 117S. 13.08 1168. 13.33 222. 13.17 1387. 13.2S 1378. 13. 42 8S66. 13. 33 8004. 14.42 STAGE 2Sl. 93 2S2. 73 TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 14 . 33 3Sl . 13 . 17 SS6. 13. 92 6174. 14.2S S999. lS.08 PEAK STAGES IN FEET 14. 42 S32. 13.17 920. 13. 83 9178. 14.33 9 0 1S. 14. 92 STAGE 243.10 243.87 TIME lS.08 14.92 FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 202. 14. 33 618S. lS.08 382. 12. 2S 690. 12.SO 1042. 12.33 1040. 12.42 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW 284.47 12.42 126 . 12.00 1104. 12.42 220. 338. 14. 2S 9332. 14. 92 S49. 12.2S 1001 . 12 .SO 1S09. 12.33 lSOB . 12.42 28S .6S 12.42 176. 12.00 1S96 . 12.42 313. EXISTING CONDITIO NS -ZERO DETENTIO N ANALYSIS 281. 12.2S 2SS. 12.SO 31S .11 12.SO 268. 13.00 1444. 14.17 1436. 14.33 284. 13.08 1687. 13.1 7 1676. 13 .42 10486. 13 .2S 9769 . 14 .42 2S3 .23 14. 42 661. 13.08 1186 . 13. 83 11274 . 14. 2S 11077. 14 .92 244.38 1 4 . 92 439. 14.2S 1148S. 14.92 667. 12.2S 1221. 12.SO 1 839. 12.33 1838 . 12.42 286.36 12.42 211 . 12.00 1947. 12. 33 378. 331. 12.2S 300. 12.SO 31S.39 12.SO 317. 13.00 1918. 13. 83 1893. 14.00 33S. 13. 08 213S. 13.92 2119. 14.08 11990. 13.42 1134S. 14. 33 2S3.61 14.33 770. 13. 08 1412. 13. 83 131S4. 14.2S 12978. 14.7S 244.74 14. 7S S24 . 14 .2S 13478 . 14 .7S 76S . 12.2S 1403. 12.SO 2114. 12 .33 2113 . 12 .42 286.88 12.42 241. 12 .00 2237. 12.33 432. 401. 12 .2S 363. 12 .SO 31S .66 12.SO 38S. 13 .00 2SSO . 13 .SB 2S2S. 13 .7S 408. 13. 08 2869 . 13. 67 2848. 13.83 14493. 13.SB 138S8. 14.42 2S4 .02 14.42 922. 13. 08 1731. 13. 7S 1S978. 14 .33 1S787 . 14 .83 24S . 23 14. 83 644. 14.17 16392. 14 .7S 902. 12.2S 16S9. 12 .SO 24 98. 12 .33 2497 . 12.42 287.S4 12 .42 282 . 12.00 2648. 12.33 SOB. 460. 12.2S 418. 12.SO 31S.89 12 .SO 444. 13 .00 3107. 13.42 3078. 13. SB 470 . 13.08 3S01. 13.SO 3480. 13. 67 164S6. 13.67 1S847. 14. so 2S4.3S 14.SO 10S2. 13. 08 2006. 13. 7S 18223. 14.42 18043. 14.83 24 s . 63 1 4.83 748. 14.17 18740. 14.83 1020. 12.17 1877 . 12 .SO 2826. 12.33 2826. 12.42 288.03 12.42 317. 12.00 299S. 12.33 S73. S60. 12.2S S09. 12 .SO 316 .23 12.SO S41. 13.00 4064. 13.2S 4029. 13.42 S 7 4 . 13. 08 4S82. 13. 33 4SSO . 13. so 19797. 13. SB 18988. 14.S O 2S4.86 14.SO 1269 . 13. 08 2466. 13.7S 21880. 14.42 21723. 14 .83 246.18 14 .83 922. 14 .17 22S89. 14. 7S 121S. 12.17 2240 . 12.SO 3372. 12.33 3371. 12.42 288. 7S 12.42 37S. 12.00 3S70 . 12.33 681. Appendi x B -2 2 COMBINED AT 42 1.67 ROUTED TO RT43 1. 67 HYDROGRAPH AT WPN3 0 .12 2 COMBINED AT 4 3 1.79 HYDROGRAPH AT WPA I o.so 2 COMBINED AT 44 2.29 ROUTED TO RT4S 2.29 HYDROGRAPH AT WPN4 0 . 70 2 COMBINED AT 4S 2.99 ROUTED TO RT46 2.99 HYDROGRAPH AT WPNV O.S6 2 COMBINED AT 46 3.SS 2 COMBINED AT lB 32. S4 ROUTED TO RT19 32.S4 HYDROGRAPH AT CAR9 0.99 HYDROGRAPH AT CARX 0. 4B 3 COMBINED AT 19 34.01 ROUTED TO RT20 34.01 HYDROGRAPH AT BEEBSl 0. SB HYDROGRAPH AT BEEBS2 0. 47 2 COMBINED AT BEEBS 1. OS ROUTED TO TIME FLOW TIME FLOW TIME 12.17 1311. 12.3 3 1302 . 12.SO PEAK STAGES IN FEET STAGE TIME FLOW .TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 2Bl .07 12.SO 133. 12.00 13S7. 12.SO 324. 12.?S 1666. 12.SO 1624 . 12.92 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 266.Sl 12.92 72S. 12.1 7 2030. 12.SB 1 BB6. 13 .42 PEAK STAGES IN FEET STAGE 24 S. 04 TIME 1 3.42 FLOW TIME FLOW TIME FLOW TIME FLOW TIME 330. 1 2 . 92 21BO . 13 . 33 7214. 14.92 6779. 16.17 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 23S .1B 16.17 247. 14. so 219. 13.0B 7006. 16.17 6S34. 17.?S PEAK STAGES IN FEET STAGE 23S .34 TIME 1 7 .?S FLOW TIME FLOW TIME FLOW TIME 262. 12. 92 176. 13 .2S 431 . 13. OB 12.17 1B94. 12 .33 1BB2. 12.SO 2Bl.BS 12.SO 1B6. 12.00 196S. 12.42 477 . 12.?S 241S . 12.SO 2363. 12.B 3 267.33 12.B3 1006. 12.17 2944. 12.SB 277S . 13.33 24S.BS 13. 33 4B3. 12.92 3227. 13 .2S 107S2. 14. 7S 102 92 . lS.92 23S.92 lS. 92 414. 14.42 343. 13 .0B 1068S. lS. 92 10100. 17.33 236 .20 17.33 393. 12. 92 266. 13.2S 64B. 13.00 EXISTING CONDITIONS -ZERO DETENTION ANALYSIS 1 2.17 230B. 1 2.33 2293. 12.SO 2B2.2B 12.SO 223. 12.00 2392. 12. 42 SBS . 12 .?S 294S. 12.SO 2BB3. 12.B3 267. B2 1 2.B3 1204. 12.17 3S9S. 1 2.SB 3416. 13.2 S 246 .34 1 3.2S S92. 1 2.92 39Bl. 13 .17 13191. 14.67 1264 6. 1S.B3 236.41 1S.B 3 S36. 14. 33 433. 13. OB 131SB. 1S.B3 12S04. 17.2 S 236.?B 1 7.2S 4BS. 12.92 329. 1 3.2S BOl. 13. 00 12 .17 2649. 12. 33 2640. 12.42 2B2.S7 12. 42 2S4. 12.00 2770. 12.33 676. 12 .67 3390. 12.42 3314. 12.?S 26B. 20 12.?S 1369. 12.17 41S2. 12.SB 393B. 13.1 7 246.73 13 .17 6B3. 12.92 4S96. 13 .17 1SS74. 14.SB 14736. 1S.7S 236.BS 1S.7S 640. 14. 33 SOB. 13.0B 1S363. lS.67 14B3B . 16.?S 237.19 16. 7S S61. 12. 92 3B l. 13.2S 92B. 13. 00 12 .17 3132 . 12.33 3122. 12 . 42 2B2.90 12.42 297. 12 .00 3270. 12.42 B02. 12.67 4012. 12.42 3929. 12.?S 26B.69 12.?S 1600. 12 .17 4947. 12 .SB 4706. 1 3.17 247. 22 13 .17 B09. 12. 92 S492. 13. OB 1 B740. 14.SB 1B291 . lS.33 237.33 lS.33 ?BB. 14. 33 614. 13. 00 1916S . lS.33 1B341 . 16.33 237.67 16. 33 667. 12.92 4S4. 13. 2S llOS. 13. 00 12.17 3S40 . 12.33 3 S30. 12 . 42 2B3.1 B 12 . 42 334 . 12.00 3700. 12.33 911. 12.67 4S40. 12.42 44SS. 12.?S 269.0B 12.?S 179B. 12.17 S6 1 S . 12.SB S34S. 13.0B 24 7. 62 13. OB 91B. 12.92 6247. 13. OB 21273. 14.SB 20903. lS.33 237.64 lS.33 91S. 14. 33 ?OS. 13. 00 21909. lS.33 21261 . 16.2S 23B.06 16. 2S ?SB. 12.92 517 . 13 . 2S 12S6. 13.00 12.17 4217 . 12.33 4209. 12.42 2B3.SB 12.42 39S. 12.00 442 B. 12.33 1091. 12.67 S41B. 12.42 S31B. 12.?S 269.66 12.?S 2127. 12.17 6727 . 12.SB 6442. 13.0B 24B.22 13.0B 10 9B. 1 2.92 7S21. 13. OB 2S6S2. 14.SB 2S1Bl . lS.33 23B.14 lS.33 1127. 14. 2S BS6. 13. 00 26434. 1S.2S 2S7B7 . 16.17 23B.6B 16.17 909. 12. 92 621. 13.2S lS OB. 13. 00 Appendix B-2 310 1. 05 HYDROGRAPH AT BEEBS3 0.52 2 COMBINED AT BEEBS 1.57 HYDROGRAPH AT BEEBNl 1.03 2 COMBINED AT 2.60 ROUTED TO RCH 7 2.60 ROUTED TO RCH 6 2. 60 HYDROGRAPH AT BEEBN2 0.81 2 COMBINED AT 3. 41 HYDROGRAPH AT BE El 1. 00 ROUTED TO RCH 4 1. 00 2 COMBINED AT 4.41 ROUTED TO RCH 3 4.41 ROUTED TO RCH 2 4 .41 HYDROGRAPH AT BEE2 1. 22 2 COMBINED AT 5.63 HYDROGRAPH AT BEEAl 0. 66 ROUTED TO 1 80 0. 66 HYDROGRAPH AT BEEA2 1.12 2 COMBINED AT 1.78 ROUTED TO 1 90 1.78 HYDROGRAPH AT BEEA3 0. 46 2 COMBINED AT 2.24 2 COMBINED AT 7.87 FLOW TIME 43 1 . 13.08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 2 88. 73 13. 08 184. 13.50 606. 13.17 403. 13.25 1 007. 13.17 978. 13. 50 973. 1 3.67 425. 12.83 1301. 13 .42 339. 13. 83 309. 14.50 1546. 1 3.58 1 539. 13 .75 1241. 15.25 529 . 13. 08 1 488. 15. 00 300. 13. 00 300. 13. 08 PEAK STAGES IN FEET 648. 13.08 289.25 13. 08 277. 13.42 912. 13.17 599. 13.25 1509. 13.17 1456 . 13. 50 1449. 13 .67 616. 12.83 1923. 13.42 497. 13. 83 459. 14.42 2294. 13.58 2287. 13 .75 1956. 15.00 780. 13. 08 2367. 14. 75 442. 13. 00 441. 13. 08 STAGE 256.85 257.16 TIME FLOW TIME FLOW TIME FLOW TIME 13. 08 727. 12.50 971. 12 .58 964. 12.83 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 245.26 12.83 142. 13.92 1 062. 12.83 1 992. 1 4.17 13.08 1050. 12.50 1412. 12.58 1405. 12.75 245.96 12.75 213. 13. 92 1552. 12.83 3176. 14.25 EXIS TING CONDITIONS -ZERO DETENTIO N ANA L YSIS 801. 13. 00 289.54 13. 00 342. 13.42 1128. 13 .17 738 . 13. 25 1863 . 13 .17 1 779. 1 3.58 1 775 . 13. 67 752. 12.83 2363. 13.33 609. 13. 83 564. 1 4 .42 2815. 13.58 2810. 13.67 2448. 14. 92 957 . 13. 08 2972. 14.67 542. 13 . 00 541. 13. 08 257.37 13.08 1 277. 1 2.50 1 723. 12.58 1717. 12. 75 246.39 12 .75 263. 13. 92 1897. 12.83 4008. 1 4 .17 927. 13.00 289.76 13. 00 397. 13.42 1307. 13 .17 853. 13. 25 2157. 13 .17 2041. 13. 58 2036. 13.75 864. 12.83 2694. 13 .42 702. 13. 83 65 1 . 14. 42 3233. 13.67 3214. 13.83 2868. 14.92 1103 . 13. 08 3474. 14.67 624. 13.00 624. 13.08 257.51 13 .08 1466. 12.50 1981. 12.58 1974. 12.75 246. 71 12.75 305. 13. 92 2185. 12.83 4665. 14 .17 1104. 13 .00 290 . 02 13.00 473. 13.42 1556. 13.17 1014. 13.25 2568. 13.17 2402. 13 .67 2397. 13. 75 1020. 12.83 3166 . 13 .42 832. 13 . 83 772. 14 . 42 3815. 13.67 3793. 13. 83 3421. 15.00 1308. 13. 08 4136. 14.67 740. 13.00 739. 13 . 08 257.63 13 . 08 1729. 12.50 2359. 12.58 2348. 12.75 247.15 12.75 364. 13. 92 2599. 12 .75 5587. 14.00 1256. 13. 00 290. 22 13 .00 538. 13. 42 1770. 13.17 1152. 13.25 2919. 13 .17 2712. 13.67 2705. 13. 75 1154. 12.83 3560. 13. 50 944 . 13. 83 877 . 14 .42 4311. 13.67 4299. 13.83 3851. 15.00 1484. 13.08 4662 . 14.67 839. 13. 00 838. 13.08 257.73 13 .08 1954. 12.50 2665. 12.58 2656. 12.75 247.46 12.75 414. 13 .92 2944. 12.75 6359. 14.00 1508. 13. 00 290 . 52 13.00 64 7. 13 .42 2126. 13 .17 1382. 13. 25 3504. 13.17 3177. 13. 75 3168. 13. 92 1378 . 12.75 4155. 13.33 1130. 13. 83 1053. 14 .42 5070. 13. 75 5026. 14.00 4591. 15.08 1776. 13.08 5528. 14.75 1004. 13. 00 1003. 13.08 257.90 13 . 08 2329. 12.50 3181. 12.58 31 71. 12.75 247.97 12.75 497. 13.92 3519. 12 .75 7625. 13. 67 App end ix B-2 ROUTED TO HYD ROGRA PH AT 2 COMBINED AT 2 COMBINED AT ROUTED TO HYDROGRAPH AT HYDROGRAPH. AT 3 COMBINED AT ROUTED TO HYDROGRAPH AT 2 COMBINED AT ROUTED TO ROUTED TO ROUTED TO HYDROGRAPH AT 2 COMBINED AT PLAN RCH 1 BEE3 PTO. 00 20 RT21 CARXI CAR12 21 RT22 CAR13 22 RT2 3 RT24 RT25 CARXIV 25 RATIO OF PMF 4 .50 6.20 7. 4 0 8. 40 9. 80 11 . 00 1 3.00 7.87 0. 84 8. 71 42.72 42. 72 3.32 1.12 47.16 47.16 0 . 63 47.79 47.79 47.79 47.79 10.00 57 .79 FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 179 0. 16.33 203. 14 .75 1 948. 16.1 7 8285. 17.5 8 82 37 . 18.08 PEAK STAG ES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 235.66 18 . 08 562. 1 6 .83 368. 13. 58 8827. 18. 08 8785. 18.50 PEAK STAGES IN FEET STAGE 226. 20 T I ME 18.5 0 FLOW TIME FLOW TIME FLOW TIME 1 73 . 14. 00 8828. 1 8.50 8376. 20.17 PEAK STAGES IN FEET STAGE TIME FLOW TIME 2 14.18 20 .1 7 8049. 21 .92 PEAK STAG ES IN FEET STAGE TIME FLOW TIME 2 0 4. 9 4 21.92 7930. 23.08 PEAK STAGE S IN FEET STAGE TIME FLOW TIME FLOW 198.23 23.08 1 04 1. 20.58 8867. 2943. 15.75 308. 14 .75 3213. 15 .67 12772. 1 7.08 12703 . 17.58 236.69 17.58 933. 16.67 611. 13.50 1 3727. 17.58 13702. 17.83 226.99 17.83 292. 13. 92 13784 . 17.83 13088. 1 9.42 215.34 19.42 12573. 20.92 206 .17 20.92 1 2338 . 22 .08 1 99 . 06 22 .08 1771. 20.42 14012. 3732. 15. 58 382. 1 4.7 5 408 0. 15 . 50 15892. 1 7 .00 1 5858. 1 7 .33 237.23 1 7. 33 1 208. 16. 58 790. 1 3.50 1 72 18. 1 7. 25 17187. 17.58 2 27.4 9 17.58 381. 13. 83 1 7299 . 17.58 1 6515. 19. 08 2 15. 93 19 . 08 1594 0 . 20. 50 206.93 20. 50 15704 . 2 1 .4 2 199.45 21.42 2317. 2 0 .33 17 958. 4422. 15.42 444. 14. 67 4 838 . 15.33 18 99 4. 1 6.67 18 913 . 16.92 237.63 16.92 1441. 16.58 941. 13. 42 20588. 16.92 205 17. 17.2 5 227.97 17.25 456. 1 3 .8 3 20664. 17.25 19452. 1 8 .75 216.4 2 18.75 18778. 20.17 207. 44 20.17 1851 1. 2 1.08 199. 76 21. 08 2784. 20.2 5 21247. 5324. 1 5. 33 531. 14 .67 5828 . 15 .25 23710. 16.25 23598. 1 6.58 238.23 1 6.58 1772. 1 6.50 115 5 . 13 .42 25715. 1 6.50 25660. 16.75 228.54 16.75 563. 13.8 3 25872. 16.75 2411 9. 1 8.1 7 2 1 7.08 18 .17 22961 . 1 9. 58 208.18 19.58 22572. 20.58 200.22 20.58 3450. 20.17 26008. 6102. 15.17 606. 14.67 6690. 15.0 8 27382 . 16.08 27300. 16.42 238 . 71 16. 42 2058. 16.50 1339. 13 .4 2 29765 . 16. 42 29711 . 16.67 228.97 16.67 6 54. 13. 83 29963. 16.67 28291 . 18 .00 217 .59 18 .00 27084. 1 9.25 208. 75 1 9 .25 26784. 19. 92 200.55 19. 92 4030. 20.17 30809. TIME 23.00 22.08 21.33 2 1.0 8 20 .50 19 .92 7317 . 15.00 730 . 14.67 8037. 15.00 33204. 16.00 33 1 54. 16.25 239.35 16.25 2537. 16. 42 1646. 13.42 36213. 16.25 36160. 16.50 229.66 16.50 808 . 13.75 36 4 86. 16.50 3 492 6. 17.75 218.35 17.75 33601. 1 9 . 00 209 . 63 19 . 00 33 313. 1 9.67 201.02 19.67 5006. 20 .08 38298. 19 .67 SUMMAR Y OF DAM OVERTOPPING/BREACH ANALYSIS FOR STATION RT12 (PEAKS SHOWN ARE FOR INTERNAL T IME STEP USED DURING BREACH FORMATION) ELEVATION STORAGE OUTF LOW MAXIMUM RESERVOIR W.S.ELEV 259.66 260 .1 0 260.39 260.62 260. 91 261 .15 261.50 INITIAL VALUE 259 .00 MAXIMUM DEPTH OVER DAM 0 . 00 0 . 00 0. 00 . 00 . 00 0. 00 0 .00 2. 0. MAXIMUM STORAGE AC-FT 4. 7. 9. 11 . 1 3 . 16. 20. SPILLWAY CRE ST 266.00 142. 200. TOP OF DAM 267.75 215. 376. MAXIMUM OUTFLOW CFS DURATION T IME OF TIME OF OVER TOP MAX OUTFLOW FAILURE 6 1 . 79. 89. 96. 1 05. 111. 120. HOURS HOURS HOURS 0.00 1 2.33 0.00 0 .00 1 2.33 0.00 0 .00 12.42 0.00 0.00 1 2.42 0.00 .00 12 .42 .00 0.00 12.5 0 0.00 .00 1 2.50 0.00 EXISTING CONDITIONS -ZERO DE TENTIO N ANALYSIS App endi x B-2 l *** ••••••••••••• * * * * * ********* ••• * ••• **** •• * •• * * ** ••••••••••• * *. * * * * * •••••••• * •• FLOOD HYDROGRAPH PACKAGE (HEC -1) MAY 1 991 U.S . ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER VERSION 4 .0 .lE 6 0 9 SECOND STREET Lahey F77L-EM /32 version 5. 01 Dodson " Associates , Inc. DAVIS, CALIFORNIA 956 16 (916) 551-1748 RUN DATE 10/07/04 TIME 11,10 ,13 ......................................... x x xxxxxxx xxxxx x x x x x x xx x x x x x xxxxxxx xxxx x xxxxx x x x x x x x x x xxx x x x x x xxxxxxx xxxxx THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73), HECl GS, HEClDB, AND HEClKW. THE DEFINITIONS OF VARIAB LES -RTIMP -AND -RTIOR-HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81 . THIS IS THE FORTRAN77 VERSION NEW OPTIONS, DAMBREAK OUT FLOW SUBMERGENCE ' SINGLE EVENT DAMAGE CALCULATION, DSS,WRITE STAGE FREQUENCY, DSS,READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE,GREEN AND AMPT INFILTRATION KINEMATIC WAVE , NEW FINITE DIFFERENCE ALGORITHM LINE 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 LINE 44 45 46 47 48 49 50 51 52 53 54 55 HEC-1 INPUT ID ....... 1. ... 2 ....... 3 ....... 4 ...... 5 ....... 6 ....... 7 ....... 8 ..... 9 ...... 10 ID HYDRO LOGIC ANALYSIS OF CARTER CREEK BASIN -COLLEGE STATION TX ID COLL EGE STATION STORMWATER MANAGEMENT PLAN ID PROPOSED CONDITION ANALYSIS-COTTEN SUBDIVISION NO DETENTION ANALYSIS ALL YEAR , 24 HOUR STORM , TYPE III STORM DISTRIBUTION MITCHELL & MORGAN, LLP -07 OCT 2004 ID ID ID ID ID ID ID IT IO JP JR USE OF M&M HYDROLOGIC INFORMATION FOR BURTON(2001), BRIAR(2001), HUDSON(l998 USE OF KLOTZ & ASSOC. HYDROLOGIC INFORMAT ION FOR BEE CREEK (1998) USE OF NDM, INC. HYDROLOGIC INFORMATION FOR WOLF PEN CREEK (1996) USE OF WALTON HYDROLOGIC FOR CARTERS CREEK AND CARTERS GROVE (1986) MODIFICATION TO BEE2 FOR UPDATED DEVELOPMENT -BEE4 ADDED 5 01JAN99 0000 500 5 0 1 PREC 4.5 6.2 CARICARTER CREEK BASIN 7. 4 8. 4 9 . 8 11 13 Kl( KM BA PB IN PC PC PC PC PC LS BEGIN HYDROLOGIC ANALYSIS OF CARTER CREEK MAIN CHANNEL ** . 502 1 .0 30 01JAN99 .005 .010 .064 .072 .2 17 .250 .872 .886 .963 .969 81 UD 2. 90 0000 .015 .081 . 298 .898 .975 19 . 020 . 091 . 500 . 910 .981 KK CAR2CARTER CREEK BASIN II BA 1 .494 0 LS 0 78 UD 3. 59 KK lOCOMBINE CART AND CARII HC Kl( RS RC RX RY RTllROUTE TO COMP POINT 11 5 FLOW -1 .080 .065 .080 3800 1000 2000 2276 2294 310 298 295 293 KK CAR3CARTER CREEK BASIN III BA 1.249 0 LS 0 77 UD 3. 25 KK llCOMBINE RTll AND CARIII HC . 025 . 102 . 702 .919 . 986 . 0027 2300 289 HEC-1 INPUT . 031 .114 .750 . 928 .991 2325 296 .037 .128 . 783 . 936 .996 2400 298 .043 .146 . 811 .943 1. 000 3000 308 . 050 .166 .83 4 . 950 .057 .189 .854 .957 ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 RT12ROUTE COMB HYDRO TO COMP PT 12 5 FLOW -1 Kl( RS RC RX RY KO . 075 . 060 . 075 3000 . 0027 1000 1500 1760 182 1 1827 300 288 286 278 278 21 KK CARVCARTER CREEK BASIN V BA 3.718 0 LS 0 80 17 UD 4. 59 KK 12COMBINE RT12 AND CAR V HC 1837 286 2100 286 2900 300 PROPOSED CONDITIONS -ZER O DE TENTIO N ANALYSIS PAGE PAGE App end ix B-2 SG S7 S8 S9 GO Gl G2 G3 G4 GS GG G7 G8 G9 70 71 72 73 74 7S 7G 77 78 79 80 81 82 83 84 8S 8G KK RS RC RX RY RT13ROUTE COMB HYDRO TO COMP PT 13 S FLOW -1 . 07S . OGO . 07S 2800 . 0021 1000 300 lSOO 288 l 7GO 1821 28G 278 KK CAR4CARTER CREEK BASIN IV BA l.33S 0 LS 0 77 UD 3 . SS KK 1 3 COMB RT13 AND CAR V HC KK RT14ROUTE TO COMP PT 14 RS RC RX RY s . 08S 1000 298 FLOW . OGS lGOO 278 -1 . 08S 2018 27G 7000 2044 2G7 KK BA LS UD CARGCARTER CREEK BASIN VI KK BA LS UD l.Sl4 0 3.G7 79 11 BRilBRIAR CREEK BASIN 3 .2S3 0 . 02 0 81 18 1827 278 .0019 20SO 2G7 KK HC 14COMBINE RT 14 BRil AND CAR VI 3 KK RS RC RX RY RT14aROUTE TO COMP PT 14a S FLOW -1 .08S .OGS .0 8S 1000 282 1600 27S 297S 2G7 G200 299S 2S4 . 0013 3000 2S2 HEC-1 INPUT 1837 28G 2088 277 304S 2G7 2100 28G 29S7 278 4700 270 2900 300 3444 298 S200 282 LINE ID ....•.. 1 •...... 2 ....... 3 ....... 4. . . s. .. G ....••• 7 ••..... 8 ....... 9 ...... 10 87 88 89 90 91 92 93 94 9S 9G 97 98 99 100 101 102 103 104 lOS lOG 107 108 109 110 111 112 113 114 llS llG 117 118 119 120 121 122 123 124 12S 12G 127 128 LINE 129 130 131 132 133 134 KK CARGaCARTER CREEK BASIN Ga KM CREATED TO SIMULATE TIFF PARK DEVELOPMENT •• BA 0.117 0 LS 0 81 UD 1. 07 KK 14aCOMBINE RT 14a AND CAR Ga HC KK RS RC RX RY RTlSROUTE TO COMP PT lS S FLOW -1 . 08S 1000 298 . OGS 1600 278 . 08S 2018 27G 3SOO 2044 2G7 KK CARGbCARTER CREEK BASIN Gb BA LS UD 0 .137 0 1.12 79 KK BRTIBURTON CREEK BASIN I . 0019 20SO 2G7 2088 277 KM •• BEGIN HYDROLOGIC ANALYSIS OF BURTON CREEK ** BA l.3G4 0 LS 0 80 44 UD 1. SO KK BRT2BURTON CREEK BAS IN II BA 1.827 0 LS 0 8S 39 UD 2 . 08 KK 30COMBINE BRTI AND BRTII HC 2 KK RS RC RX RY RT31ROUTE COMB HYDRO TO COMP PT 31 KK BA LS UD KK HC KK BA LS UD .070 1000 292 FLOW . 014 lOGS 290 -1 . 070 1100 280 4800 llOG 272 BRT3BURTON CREEK BASIN III 1.317 0 0 88 Sl 1.14 31COMBINE RT 31 AND BRT III BTAIBURTON CREEK TRIB A BASIN I 1.400 0 0 8G 42 1. 43 . 0021 1132 272 HEC-1 INPUT 1138 281 29S7 278 17GO 290 ID ....... 1 ....... 2 ....... 3. . . 4 ..... s ..... G ..... 7. KK HC KK RS RC RX 32COMB 31 AND BTAI 2 RT33ROUTE COMB HYDRO TO COMP PT 33 S FLOW -1 . 070 1000 .040 lGOO .070 2SG9 GOOO 2S97 . 002S 2G27 2GS8 3100 PROPOSED CONDITIONS -ZER O DETENTIO N ANALYSIS 3444 298 18SO 292 . 8 . 3200 . . 9 . . .10 PAGE PAGE App end ix 8-2 135 136 137 136 139 140 141 142 143 144 145 146 14 7 146 149 150 151 152 153 154 155 156 157 156 159 160 161 162 163 164 165 166 167 166 169 LINE 170 171 172 173 174 175 176 177 178 179 160 181 162 183 164 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 206 209 210 211 212 LINE 213 214 RY 261 276 275 261 261 KK BRT4B URTON CREEK BASIN IV BA 2.169 0 LS UD KK BA LS UD KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD KK HC KK RS RC RX RY KK BA LS UD 0 1.53 83 29 BGW7BURTON CREEK GATEWAY BASIN 7 . 0438 0 87 .21 BGW6B UR TON CREEK GATEWAY BASIN 6 .0037 0 0 .20 87 lOCOMBINE BGW7 AND BGW6 RT l OROUTE COMB HYDRO TO . 014 990 4 .5 FLOW . 014 997.9 -1 . 014 998 275 999 . 5 . 0073 1001 . 5 BGW4BURTON CREEK GATEWAY BASIN 4 . 0105 0 0 90 . 09 llCO MBINE RTlO ANO BG W4 RTllROUTE HYDRO FLOW . 060 . 04 0 850 890 274 272 11 TO -1 . 060 975 270 STATION 12 1050 . 0095 982 998 268 266 BG W2B URTON CREEK GATEWAY BASIN . 0443 0 0 75 .30 HEC-1 INPUT 276 277 COMP POINT 1002 1002.l 2 1 002 266 1010 268 281 11 1010 4 .5 1 040 2 7 0 IO ....... 1 ....... 2 ....... 3 ..... 4 ..... 5 ....... 6 ....... 7 ....... 6 ....... 9 ...... 10 KK HC KK RS RC RX RY KM RS SA SE SL SS ST 12COMBINE RTll ANO BGW2 RT12ROUTING OF STATION 12 1 FLOW -1 . 060 730 266 .040 775 264 . 060 980 264 550 995 262 RT12 RO UTE 12 THROUGH DETENTION FLOW -1 0 .14 .23 .33 257 258 259 260 259 12.57 .75 .5 266 22 3 1 .5 267.75 636 3 1.5 KK BGW5B URTON CREEK GATEWAY BASIN BA .0009 0 1 LS 0 67 0 UD . 09 . 0036 1012 262 PONO . 64 261 KK RTBGW5ROUTE HYDRO BC5 TO STATION 20 RS 1 FLOW -1 RC .060 .040 .060 930 .0194 RX RY 964 275 984 274 989 272 996 272 KK BA LS UD BGW3BURTON CREEK GATEWAY BASIN .0060 0 0 75 .23 KK RTBGW3ROUTE BGW3 TO STATION 20 RS 1 FLOW -1 RC RX RY . 014 990 2.5 .014 998 . 9 2 . 014 999 455 999.5 .25 1004 274 . 0352 1000.5 . 25 KK BA LS UD BGW l BURTON CREEK GATEWAY BASIN 1 . 0074 0 75 0 .17 1070 262 .75 262 1006 276 1001 KK HC 20COMBINE HYDRO RTBGW5, RTBGW3, AND BGWl KK RS RC RX RY RT20ROUT E HYDRO STATION 20 TO STATION 30 1 .060 964 275 FLOW . 040 984 274 -1 . 060 989 272 1 925 996 .0062 1004 272 274 HEC-1 INPUT 1006 276 ID ....... 1 ....... 2 ....... 3 ....... 4 ..... 5 ..... 6. KK HC 30COMBINE HYDRO RT12 ANO RT20 1075 260 . 93 263 1012 278 1001.l 1012 278 1 090 258 . 96 264 1 014 280 1010 2.5 1014 280 1.27 266 1 .35 267 .75 .. 7 ....... 6 ....... 9 ...... 10 PRO POSED CO ND ITIO NS -ZERO DETENTIO N ANALYSIS PAGE PAGE App endi x B-2 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 33COMB RT33, BRT IV AND 30 KK KM HC END HYDROLOGIC ANALYSIS OF BURTON CREEK ** 3 KK HUD! KM ** BEGIN HYDROLOGIC ANA LYSIS OF HUDSON CR EEK KM ** REPLACED HUD W/ HUDSON CREEK STUDY ** KM HUD I HUDSON CREEK BASIN BA LS UD .0525 0 . 3 KK DP 1 80 RS 1 FLOW SA 0 .0017 SE 316 317 SL 317.5 12.566 SS 324.5 30 KK BA LS UD KK HC HUD2 . 0171 0 .17 PT 2 80 -1 . 0194 318 . 7 3 35 .0535 319 . 5 1. 5 KK RS SQ SV 383+30ROUTE FROM 383+30 TO 374+35 1 STOR -1 KK BA LS HUD3 .1121 0 UD .14 KK 374+35 HC 2 42 .33 80 86 .64 35 129 1. 06 KK RS SQ SV 374+35ROUTE FROM 374+35 TO 365+50 1 STOR -1 KK HUD5B BA . 0265 LS 0 UD .23 136 273 409 . 41 1. 49 1.93 80 35 .1788 320 172 1.65 545 2.34 HEC-1 INPUT .2632 321 215 2.33 68 1 2 .69 .3727 322 258 3 .43 818 3 .06 . 4882 323 301 3 .89 954 3.65 .6 324 500 4.97 1200 4.63 . 7 325 LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5. .. 6 ....... 7 ....... 8 ....... 9 ...... 10 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 KK 365+50 HC 2 KK 365+50ROUTE FROM 365+50 TO 154+90 RS STOR -1 SQ 136 273 409 545 sv 1.26 2.43 3.4 4.39 KK BA LS UD HUD4 .1362 0 . 84 80 KK 180+45ROUTE FROM 180+45 TO 175+20 RS STOR -1 SQ 43 85 128 170 SV .23 .49 2.32 KK HUD5A BA . 0832 LS UD .47 KK 175+20 HC 2 80 28 KK RS SQ sv 175+20ROUTE 175+20 TO 1 54+90 KK 154+90 HC 2 KK BA LS HUD6 . 0771 0 UD .18 KK 154+90 HC 2 STOR -1 43 2 .1 80 85 3.5 28 128 4.67 KK RS SQ SV 154+90ROUTE FROM 154+90 TO 135+20 KK BA LS UD 1 STOR -1 HUD7 . 2793 0 1.27 188 3 .11 80 376 3.67 563 9.71 170 5.91 751 12.54 HEC-1 INPUT 681 5. 75 213 3.38 213 7. 76 939 15.41 PR OPOSE D COND ITIO NS -ZERO DE TENTIO N ANALYSIS 818 7. 09 255 3.67 255 9.51 1127 18 .29 954 8 .6 298 5 . 69 298 11 .4 1 314 21.19 1200 11. 3 600 6 .51 600 14 .86 1750 26.46 800 6.51 850 16 3500 55.41 PAGE PAGE App end ix 8-2 LINE 295 296 297 298 299 300 30 1 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 LINE 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 ID. .1 ....... 2 ....... 3 ....... 4 ..... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK 135+20 HC 2 KK 135+20ROUTE 135+20 to 105+70 RS STOR -1 SQ 202 4 03 605 sv 13.37 24.23 KK HUD8A BA .1984 LS 0 UD .89 KK HUD8B BA . 3155 LS 0 UD 1. 22 KK SOLAKE HC KK SOLAKE RS 1 SA 6.5 SE 304.8 SS 304.8 KK HUD8D BA .1892 LS 0 UD . 73 KK HUD8C BA .1015 LS 0 UD .8 KK HUD8E BA . 0316 LS 0 UD .25 KK CF9DP HC 80 80 FLOW 6.6 305 100 80 80 80 -1 7 306 1.5 307 1 .5 806 31. 56 308 KK 255+5 8 DE T POND FOR CF TO 248+00 RS SQ SV STOR 148 15.99 -1 296 20.85 444 28.4 3 592 35. 71 HEC-1 INPUT 1008 38.6 1 0 309 740 40.65 1209 45.55 15 310 888 43.99 14 11 5 2.8 1 1 036 4 6 .7 1 ID ....... 1 .•..... 2 .. .3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8. J(J( RS SQ SV 248+00DS OF NOTTINGHAM TO 233+51 J(J( BA LS UD HUD9 .2162 0 .77 J(J( 233+51 HC 2 STOR -1 135 3.33 80 331 5.82 14 496 8. 26 KK 233+S l rt from 233+51 to 2 1 8+36 RS 1 STOR -1 SQ 0 165 331 496 SV 2.87 5.89 13 J(J( RS SQ SV 218+36rt from 218+36 to 105+70 1 STOR -1 0 165 331 496 J(J( 105+70 HC 2 KK HUDlO BA .1534 LS 0 UD . 7 4 J(J( 105+70 HC 2 5 .11 10.13 80 J(J( RS SQ SV 105+70rt 105+70 to 98+15 1 STOR -1 KK HUDll BA .1230 LS 0 UD .51 KK HUD12 BA . 0943 LS 0 UD .27 343 686 3.83 24.61 80 14 80 32 16. 76 1028 62 661 11.1 661 17 661 23 .14 1371 69 HEC -1 INPUT 826 13 . 3 826 20 826 29.37 1 714 72 992 15 . 54 991 22.77 991 35. 67 2057 75 1157 1 7.73 11 57 25 .36 11 57 42.46 2399 78 1700 87 .63 2700 67. 45 3400 141. 5 .. 9 ...... 10 3000 37.75 3000 45.12 3000 92. 33 4100 88 .53 6000 138. 07 4500 90. 74 PROPOSED CO NDITIONS -ZERO DETEN TIO N ANAL YSIS PAGE PAGE 10 Append ix B-2 LINE 372 373 374 37S 376 377 378 379 380 381 382 383 384 38S 386 387 388 389 390 391 392 393 394 39S 396 397 398 399 400 401 402 403 404 40S 406 407 408 409 410 LINE 411 412 413 414 41S 416 417 418 419 420 421 422 423 424 42S 426 427 428 429 430 431 432 433 434 43S 436 437 438 439 440 441 442 443 444 44S 446 447 448 449 4SO ID ....••. 1 ••..... 2 ....... 3 ....... 4 ....... S. . ... 6. KK RS SA SE SL SS KK HC DP12 0 271. s 273 276 .S 98+15 3 FLOW .0144 272 7 .07 20 -1 .134 273 . 7 KK RS SQ sv 98+15rt 98+15 to 62+25 1 STOR -1 0 446 982 KK HUD13 BA . 0627 LS UD . 31 Kl< HUD14A BA . 2107 LS 0 UD .61 14.17 29.67 80 80 .4S86 274 . s 1. s 1337 44.19 Kl< PT14art FROM HWY 1S8 TO 62•2S RS 1 FLOW -1 RC .09 .06 .09 4000 RX 800 900 99S 1000 RY 32 1 320 314 31 1 KK HUD14B BA . 3012 LS UD 1. 37 KK 62+25 HC 4 80 K.K 62+25rt 62+25 to 42+20 RS 1 STOR -1 SQ 446 892 SV S.78 18.28 KK HUDlS BA . 333 LS 0 80 UD 1.47 1337 24 .67 1. 224 27S 1783 S4.38 .01 lOOS 311 1783 31 .S2 HEC-1 INPUT 2.133 276 2229 63.69 1 010 3 1 4 2229 37.23 .. 7 ....... 8. 2.98 277 267S 72 .18 1100 322 267S 42. S4 3.784 278 3120 79.84 1 200 32S 3 1 20 47 . S2 . 9 ...... 10 279 SlOO 114 .11 SlOO 67.3S 4 .1 282 S800 119. 88 S800 73. 72 ID ....... 1 ....... 2 ....... 3 ....... 4 ....... S ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK HC KK RS SQ SV PTlS 42+20rt 42+20 o 26+00 1 STOR -1 446 892 19.92 24.16 1337 28. 94 1783 34. 91 2229 40.29 267S 4S .13 3120 49. 64 SlOO 67. 4 S800 73 .02 KK KM HC lSCOMBINE RTlS, CAR 6b, BURTON CREEK, AND HUDSON CREEK (INCL . TIFF PARK END HYDROLOGIC ANALYSIS OF HUDSON CREEK ** KK RS RC RX RY KK BA LS UD KK BA LS UD KK HC KK RS RC RX RY RT16ROUTE TO COMP PT 1 6 s .08S 800 272 FLOW .06S 114S 2S9 -1 .08S 2800 2Sl 6800 2929 24S CCGICARTER'S GROVE TRIB BASIN . 714 0 0 82 24 1. so CAR7CARTER CREEK BASIN VII 1. 861 0 2 .11 77 16ADD RT16 CCGI AND CAR VII 3 RT17ROUTE TO COMP PT 17 S FLOW -1 .08S .060 .08S 4200 1000 2SS 1400 241 2143 240 21S7 230 KK CAR8CARTER CREEK BASIN VIII BA .786 0 LS 0 77 UD 2. SO Kl< 17ADD RT17 AND CAR VIII HC 2 Kl< WPNIWOLF PEN CREEK BASIN I . OOlS 2967 24S . 0014 217S 230 3347 2Sl 2200 240 KM •• BEGIN HYOROLOGIC ANALYSIS OF WOLF PEN CREEK •• BA .420 0 LS 0 86 47 UD .S8 sooo 2S4 3SOO 244 6200 268 40SO 2S2 PROPOSED CONDITIO NS -ZERO DETEN TIO N ANALYSIS PAGE 11 App endi x B-2 LINE 4Sl 4S2 4S3 4S4 4SS 4S6 4S7 4S8 4S9 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 48S 486 487 488 LINE 489 490 491 492 493 494 495 496 497 498 499 soo 501 502 S03 504 sos 506 507 508 509 510 511 512 513 514 515 516 Sl7 518 Sl9 520 521 522 S23 524 525 526 527 HEC-1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4 ....... S ....... 6 ....... 7 ....... 8.. . .. 9 ...... 10 !(]( BA LS UD !(]( HC !(]( RS RC RX RY !(]( BA LS UD !(]( HC !(]( BA LS UD !(]( HC !(]( RS RC RX RY !(]( BA LS UD !(]( HC !(]( BA LS UD WPCIWOLF PEN CREEK TRIB C BASIN I . 910 0 0 . 88 85 45 40COMBINE WPNI AND WPCI RT41ROUTE COMB HYDRO TO COMP PT 41 5 FLOW -1 .oso .045 .070 2200 .oos 1000 1015 1038 1060 1070 300 295 290 278 278 WPN2WOLF PEN CREEK BASIN II .112 0 91 68 . 28 41COMB ROUTED HYDRO AND WPN II 2 WPBIWOLF PEN CREEK TRIS B BASIN I .228 0 0 88 53 .54 4 2COMB 2 41 AND WPBI RT4 3 ROUTE COMB HYDRO TO COMP PT 4 3 S FLOW -1 .080 1000 290 .055 1055 282 .070 1317 280 1600 1335 272 WPN3WOLF PEN CREEK BASIN III .118 91 69 .28 43COMBINE RT43 AND WPN III 2 . 0044 1340 272 WPAIWO LF PEN CREEK TRIS A BASIN I .503 84 37 1.11 HEC-1 INPUT 1108 288 13S7 280 1275 296 1477 284 1399 300 1 760 290 ID ....... 1 ....... 2 ....... 3 .. .. 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 !(]( HC !(]( RS RC RX RY !(]( BA LS UD !(]( HC !(]( RS RC RX RY !(]( BA LS UD !(]( KM HC !(]( KM HC !(]( RS RC RX RY !(]( BA LS UD !(]( BA 44COMBINE 43 AND WPAI 2 RT4 5ROUTE COMB HYDRO TO COMP PT 4 5 5 FLOW -1 . 075 . 055 . 075 6000 . 0033 1000 1154 1189 1 245 1260 276 272 270 261 WPN 4WO LF PEN CREEK BASIN IV . 703 0 0 93 75 . 54 45COMB RT45 AND WPN 4 2 261 RT46ROUTE COMB HYDRO TO COMP PT 46 5 . 090 1211 252 FLOW .060 lSlO 244 -1 . 090 1860 242 4800 1878 237 WPNVWO LF PEN CREEK BASIN V . 558 85 37 .33 4 6COMBINE RT46 AND WPNV .0015 1892 237 1 361 266 1932 244 1492 270 1995 246 1921 276 2 1 50 254 END COMPUTATIONS FOR WOLF PEN CREEK , ADD TO CARTER CR EEK COMP PT 18 ** 2 18ADD 17 AND WOLF PEN CREEK ADD WOLF PEN CREEK HYDROGRAPH 2 RT19ROUTE TO COMP PT 19 5 FLOW -1 .085 .060 .085 5800 1000 3000 3265 3279 255 232 231 217 CAR9CARTER CREEK BASIN IX .990 77 2.6 1 CARXCARTER CREEK BAS IN X .4 79 .0011 3302 217 3327 233 6200 236 6486 251 PR OPOSED CONDITIONS -ZERO DE TEN TIO N ANA L YSIS PAGE 12 PAGE 13 App e ndi x B -2 S2B S29 LINE S30 S31 S32 S33 S34 S3S S36 S37 S3B S39 S40 S41 542 543 544 545 546 54 7 54B 549 550 551 552 553 SS4 555 556 SS7 5SB SS9 560 561 S62 S63 S64 S6S 566 S67 56B LINE 569 570 571 572 573 574 575 576 577 57B 579 5BO 5Bl 5B2 5B3 5B4 5B5 5B6 5B7 5BB 5B9 S90 591 592 593 594 595 S96 597 59B 599 600 601 602 603 604 605 606 LS UD .42 BO 13 HEC-1 INPUT ID ....... 1 ....... 2 ....... 3 ....... 4 ..... 5 ....... 6 ....... 7 ....... B ....... 9 ...... 10 KK HC KK RS RC RX RY 19COMBINE RT19,CAR IX, AND CAR X 3 RT20ROUTE TO 5 FLCW .OB S .060 1000 3000 255 232 COMP PT 20 -1 . OB5 6000 3265 3279 231 217 . OOOB3 3302 217 KK BEEBSl 3327 233 KM BA BF LE us ** BEGIN HYDROLOGIC ANALYSIS OF BEE CREEK ** 0. 5B -. 05 1. 05 0. 25 2.0 l .B6 1.4 0 .61 KK BEEBS2 BA BF LE us 0 . 47 0 0. 25 l.B - . 05 2 .0 0. 61 1. 05 l .B6 0 . 43 0. 43 Kl< BEEBSCOMBINE HYDROGRA PHS DOWNSTREAM OF 300 HC 2 310ROUTE 300 TO 320 (Wellborn ) 6200 236 64B6 251 KK KM RS RC RX RY REACH TAKEN FROM COLLEGE STATION HEC-1 TOTALBEE.DAT .03 100 292 KK BEEBS3 BA 0. 52 BF 0 LE 0.2S us FLCW . 06 1 01 290 -. 05 2 .0 0.61 -1 . 03 lOB 2BB 1. 05 l .B6 150 116 2B6 0. 43 .0111 136 2B6 10. 5 KK BEEBSCOMBINE HYDROGRAPHS AT 320 HC 2 KK BEEBNl BA 1.03 LE 0. 25 US 1. B KK HC 2.0 0. 61 1. B6 0. 43 17.5 COMBINE HYDROGRAPHS AT 320 HEC-1 INPUT 151 2BB 166 289 181 290 ID ....... 1 ....... 2 ....... 3 ..... 4 ..... 5 ...... 6 .....•. 7 ....... B ....... 9 ...... 10 KK RCH 7 FM2818 KM REACH EXTENDS FROM X-SECT. RS STOR -1 SV SQ KK RCH 12 560 TB-IMP 24 1120 KM REACH EXTENDS FROM X-SECT. RS SV SQ KK BEEBN2 BA 0. 81 LE us 0. 25 1. 3 STOR 14 740 2 .0 0. 61 -1 24 1480 1.86 3B 1680 32 2220 0. 43 .640 TO X-SECT. SB 2240 82 2800 -4.014 TO X-SECT. 4 0 2960 3S 50 3700 KK HC COMBINE HYDROGRAPHS DOWNSTREAM 2 OF 55 KK BA LE BEEl 1. 00 0. 25 2.0 us 2.4 0 .61 KK RCH 4 Bl-IMP 1.86 KM REACH EXT ENDS FROM X-SECT . RS 1 STOR -1 SV SQ 19 340 36 680 0. 43 53 1020 KK HC COMBINE HYDROGRAPHS AT KK RCH TX AV KM RS SV SQ KK KM RS sv SQ KK REACH EXTENDS FROM X-SECT. 1 STOR -1 14 24 960 1920 RCH 2SH6 BYPASS REACH EXTENDS FROM X-SECT. STOR -1 154 263 116 0 2320 BEE2 32 2880 364 34BO 35 4.014 TO X-SECT. 68 1360 57 87 1700 3 . 600 X-SECT. 46 55 3840 4800 2.390 TO X-SECT. 4 76 604 4640 5BOO 115 3360 69 4440 107 2040 1.160 137 3920 . 640 B9 Sl80 .760 126 2380 4 .0 1 4 78 88 5760 6720 3.600 770 1015 6960 Bl 20 PROPOSED CONDITIONS -ZERO DETENTION ANALYSIS PAGE 14 PAGE 15 A ppen di x B -2 607 608 609 6 10 LINE 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 LINE 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 BA LE us KO 1.214 0. 25 1.6 2 .0 0.61 1 .86 0. 43 24.5 21 HEC-1 INPUT ID ......• 1 ..•.... 2 ....... 3 ....... 4 ....... 5 . . . ... 6 ....... 7 ....... 8 ....... 9 ...... 1 0 KK BEE4 BA . 00898 LE us KO KK HC 0. 25 0. 42 KK BEEA l BA LE us 0. 66 0. 25 1. 5 2.0 0. 61 1.86 0. 43 COMBINE HYDROGRAPHS AT 2.0 0.61 1. 86 0. 43 KK 180ROUTE 170 TO 1 85 80 21 60 24.5 KM REACH TAKEN FROM CO LLEGE STATION HEC-1 TOTA LBEE DAT RS 5 FLOW -1 RC .025 .025 .028 1 1 00 .002 265 RX 1 00 170 270 280 290 300 375 RY 257.3 257.l 256 254 254 258 260 KK BEEA2 BA 1. 12 LE 0. 25 us KK HC 0.9 2.0 0. 61 1.86 0. 43 COMBINE HYDROGRAPHS AT 185 KK 190ROUTE 185 TO 195 35 KM REACH TAKEN FROM COL LEGE STATION HEC-TOTALBEE DAT RS 5 FLOW -1 RC .035 .03 .035 4900 .0035 RX 37 1 37 243 318 354 377 509 RY 250 KK BEEA3 BA LE us KK HC 0. 46 0. 25 2.5 253.7 2.0 0. 61 250 1.86 242 0 . 43 COMBINE HYDROGRAPHS AT 1 95 242 17.5 KK HC COMBINE HYDROGRAPHS AT X-SECT. 2.390 2 KK RCH 1 250 KM REACH EXTEND S FROM X-SECT. .000 TO X-SECT. RS STOR -1 SV SQ 326 1 820 54 5 3640 723 879 5460 7280 HEC-1 INPUT 1 023 9100 252 1159 10920 2.390 475 262 708 258 1289 12740 ID ....... 1 ..•.... 2 ....... 3 ....... 4 ....... 5. . . ... 6 ....... 7 ....... 8 ....... 9 ...... 10 KK BA LE us BEE3 0. 84 0. 25 3.3 KK PT0.00 2.0 0.61 1. 86 0. 4 3 14 KM END COMPUTATIONS FOR BEE CREEK MAIN CHANNEL AND TRIBUTARIES (ADD TO CC20) HC 2 KK 20ADD RT20 AND BEE CREEK KM ADD BEE CRE EK HYDROGRAPH •• HC KK RS RC RX RY RT21ROUTE TO COMP PT 21 5 FLOW -1 . 085 1000 255 .060 3000 232 .085 3265 231 2200 3279 217 KK CARXICARTER CREEK BASIN XI BA 3.323 0 LS 0 77 UD 4 . 60 KK CAR 12CARTER CREEK BASIN XII BA LS UD 1.118 1. 79 0 77 . 00091 3302 217 KK HC 21COMBINE RT 21, CARXI AND CARXII 3 RT 22ROUTE TO COMP PT 22 5 FLOW -1 KK RS RC RX RY . 080 . 060 . 080 2000 . 00095 1000 243 1600 226 2800 223 2855 215 KK CAR13CARTER CREEK BASIN XIII BA .628 0 LS 0 76 2881 215 3327 233 2900 223 6200 236 4918 225 6486 25 1 6900 246 PROPOSED CONDITIONS -ZERO DETENTION ANALYSIS PAGE 16 PAGE 17 Appendix B-2 686 UD 2.14 687 KK 22ADD RT2 2 AND CARXII I 688 HC 689 KK RT23 690 RS 5 FLOW -1 691 RC .085 .060 . 085 1 0000 . 0014 692 RX 400 700 2800 2855 2881 2900 5500 6000 693 RY 230 220 210 202 202 210 220 230 694 KO 21 HEC-1 INPUT PAGE 18 LINE ID ... . . . . 1. .... . . 2. . . . . . . 3 . . . . . . . 4 . ...... 5 . . ..... 6 . . . 7 .. . . . . . 8 . . ... 9 . . .... 10 695 KK RT24 696 RS 5 FLOW -1 697 RC . 085 . 060 . 085 8000 . 00083 698 RX 1700 2000 2800 2855 2881 699 RY 220 210 200 192 192 700 KK RT25 70 1 RS 5 FLOW -1 702 RC . 085 . 060 . 085 4400 .00093 703 RX 100 2800 2855 2881 704 RY 210 200 195 1 87 187 705 KK CARXIVCARTER CREEK BASIN XIV 706 BA 10 0 707 LS 0 75 708 UD 7 .86 709 KK 2 5COMBINE ROUTE 2 5 AND 710 KM END HYDROLOGI C ANALYSIS 711 HC 2 712 zz l * * ** * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * FLOOD HYDROGRAPH PACKAGE (HEC -1) MAY 1991 VERSION 4. 0. lE Lahey F77L-EM/32 version 5. 01 Dodson & Associates, Inc. RUN DATE 10/07/04 TIME 11,10,13 * ** * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * *. CAR XIV OF CARTERS 2900 6200 6400 200 210 220 2900 6800 7000 195 200 210 CREEK BASIN ** HYDROLOGIC ANALYSIS OF CARTER CREEK BASIN -COLLEGE STATION TX COLLEGE STATION STORMWATER MANAGEMENT PLAN PROPOSED CONDITION ANALYSIS-COTTEN SUBDIVISION NO DETENTIO N ANALYSIS ALL YEAR, 24 HOUR STORM , TYPE III STORM DISTRIBUTION MITCHELL & MORGAN, LLP -07 OCT 2004 U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-1748 USE OF M&M HYDROLOGIC INFORMATION FOR BURTO N (200 1 ), BRIAR(200 1 ), HUDSON(l998 USE OF KLOTZ & ASS OC. HYDROLOGIC INFORMATION FOR BEE CREEK (1 998) 12 IO IT JP JR 44 KK 49 KO USE OF NDM, INC. HYDROLOGIC INFORMATION FOR WOLF PEN CREEK (1996) USE OF WALTON HYDROLOGIC FOR CARTERS CREEK AND CARTERS GROVE (1 986) MODIFICATION TO BEE2 FOR UPDATED DEVELOPMENT -BEE4 ADDED OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT PLOT CONTRO L QSCAL 0. HYDROGRAP H PLOT SCALE HYDROGRAPH TIME DATA NMIN MINUTES IN COMPUTATION INTERVAL IDATE 1JAN99 STARTING DATE ITIME 0000 STARTING TIME NQ 500 NUMBER OF HYDROGRAPH ORDINAT ES NDDATE 2JAN99 ENDING DATE NDTIME 1735 ENDING TIME I CENT 19 CENTURY MARK COMPUTATION INTERVAL .08 HOURS TOTAL TIME BASE 41.58 HOURS ENGLISH UNITS DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH INCHES LENGTH, ELEVATION FEET FLOW CUBIC FEET PER SECOND STORAGE VOLUME ACRE-FEET SURFAC E AREA ACRES TEMPERATURE DEGREES FAHRENHEIT MU LT I-PLAN OPTIO N NP LAN NUMBER OF PLANS MULTI-RATIO OPTION RATIOS OF PRECIPITATION 4.5 0 6.20 7.40 8 .40 9.80 RT 1 2 ROUTE COMB HYDRO TO COMP PT 12 OUTPUT CONTROL VARIABLES 11. 00 PROPOSED CONDITIONS -ZERO DETENTION ANALYSIS 13.00 Appendix B-2 IPRNT PRINT CONTRO L I PLOT PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 2 1 SAVE HYDROGRAPH ON THIS UNIT ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 500 LAST ORDINATE PUN CHED OR SAVED TIMINT 0.083 TIME INTERVAL IN HOURS 606 KK BEE2 610 KO OUTPUT CONTROL VARIABLES IPRNT PRINT CONTROL I PLOT PLOT CONTROL QSCAL 0 . HYDROGRAPH PLOT SCALE IP NCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 2 1 SAVE HYDROGRAPH ON THIS UNIT ISAVl FIRST ORDINAT E PUNCHED OR SAVED ISAV2 500 LAST ORDINATE PUNCHED OR SAVED TIM INT .083 TIME INTERVAL IN HOURS 611 KK BEE4 615 KO OUTPUT CONTROL VARIAB LE S IPRNT 5 PRINT CONTROL I PLOT PLOT CONTROL QSCAL 0 . HYOROGRAPH PLOT SCALE IPNCH PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 500 LAST ORDINATE PUNCHED OR SAVED TIMINT 0.083 TIME INTERVAL IN HOURS 689 KK RT23 69 4 KO OUTPUT CONTROL VARIABL ES IPRNT 5 PRINT CONTROL I PLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAVl 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 500 LAST ORDINATE PUNCHED OR SAVED TIMINT . 083 TIME INTERVAL IN HOURS *** WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 4?4 TO 300 INTERVALS *** WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVAL S *** WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS *** WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS *** WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS *** WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS *'* WARNING **' UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVA LS *** WARNING *** UNIT HYDROGRAPH TRUNCATED FROM 474 TO 300 INTERVALS PEAK FLOW AND STAGE (EN D-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN -RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS RATIOS APPLIED TO PRECIPITATION PROPOSED CONDITIONS -ZERO DETENTION ANALYSIS Appendix B-2 OPERATION STATION AREA PLAN HYDROGRAPH AT CARI l. 50 HYDROGRAPH AT CAR2 l. 49 2 COMBINED AT 10 3.00 ROUTED TO RT ll 3.00 HYDROGRAPH AT CAR3 1.25 2 COMBINED AT 11 4.24 ROUTED TO RT12 4.24 HYDROGRAPH AT CARV 3. 72 2 COMBINED AT 12 7.96 ROUTED TO RT13 7.96 HYDROGRAPH AT CAR4 1.34 2 COMBINED AT 13 9.30 ROUTED TO RT14 9.30 HYDROGRAPH AT CAR6 1 .51 HYDROGRAPH AT BRil 3.25 3 COMBINED AT 14 14.07 ROUTED TO RT14a 14.07 HYDROGRAPH AT CAR6a 0.12 2 COMBINED AT 14a 14.18 ROUTED TO RT15 14.18 RATIO l RATIO 2 RATIO 3 RATIO 4 RATIO 5 RATIO 6 RATIO 7 4.50 6.20 7.40 8 .40 9 .80 11.00 13.00 FLOW TIME FLOW TIME FLOW TIME FLOW TIME 451. 1 4 .67 324. 1 5.58 758 . 15. 00 753 . 15. 58 PEAK STAGES IN FEET STAGE 2 96. 88 TIME 15.58 FLOW TIME FLOW TIME FLOW TIME 267 . 15.25 1018. 15. 50 1016. 15.75 PEAK STAGES IN FEET STAGE 285.68 TIME 15.75 FLOW TIME FLOW TIME FLOW TIME 775. 16. 58 1766. 16.00 1759. 16.50 PEAK STAGES IN FEET STAGE 287. 04 TIME 1 6.50 FLOW TIME FLOW TIME FLOW TIME 268. 15.58 2011. 16.42 1 922. 18.08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 277.50 18.08 3 4 6. 15.58 944. 1 4.83 2663 . 17.33 2615. 18. 83 PEAK STAGES IN FEET STAGE 268. 28 TIME 18.83 FLOW TIME FLOW TIME FLOW TIME 61. 12.75 2620. 18.83 2609. 19 . 58 PEAK STAGES IN FEET 696. 14.58 527. 15.50 1199 . 15. 00 1191. 15.50 297.61 15.50 447 . 15.17 1633 . 15.42 1625 . 15 . 83 286.63 15.83 1208. 16.50 2810. 16.08 2804. 16 . 42 287.86 16. 42 448. 15.50 3222. 16. 33 3129. 17.50 278.50 17.50 551. 15.50 1461. 14.75 4367. 17.25 4206. 18.50 269.44 18.50 97. 12.67 4214. 18.42 4192. 18. 92 STAGE 278. 14 278. 86 TIME 19.58 18.92 873. 1 4.58 676 . 1 5.42 1520. 14. 92 1512. 15.42 298.02 1 5 . 42 579 . 1 5. 08 2086 . 15.33 2076. 15.75 287 .13 15. 75 1523. 16. 50 3566. 16.00 3558. 16.33 288.38 16. 33 581. 15.42 4 102. 16.25 4030. 17. 25 278.81 17. 25 701. 15.50 1834. 1 4.75 5755. 1 6.75 5577. 1 8.00 269.85 18 .00 123. 12.67 5588. 18.00 5564. 1 8.50 279. 33 18.50 1022. 14 .58 802. 15.42 1790. 14. 92 1781. 15.42 298.29 15.42 692. 15. 08 2466 . 15. 33 2459. 15.67 287. 42 15. 67 1788. 16. 42 4197. 15.92 4191. 16.17 288. 68 16.17 694. 15.42 4852. 16.08 4765. 17. 08 279 . 06 17.08 828. 15.50 2146. 14.75 6872. 16.58 6671. 17.83 270.18 17.83 145. 12. 67 6684. 17.83 6656. 18.33 279. 70 18. 33 1 231. 14.58 981. 15.42 2171. 14.92 2159. 15.42 2 98. 66 1 5.42 852. 1 5.00 3002. 15.33 2994 . 15.67 287.75 15. 67 2162. 16.42 5095. 1 5.83 5089. 16.17 289.09 16.17 854. 15.33 5901. 16.08 5802. 1 7. 08 279.41 1 7.08 1006. 15. 42 2586. 14.67 8394. 16.42 8180. 17.67 270. 64 17.6 7 176. 12.67 8196. 17.67 8180 . 18.08 280.16 18 .08 14 1 0. 14.58 1135. 15.33 2499. 14.92 2488. 15.33 298.98 15.33 989. 15.00 3469. 15.25 3458. 15.58 288 .03 15.58 2484. 16 .42 5869. 15.83 5860. 16.17 289.45 16.17 993. 15.33 6806. 16.00 6692. 17.00 279.71 17.00 1160. 15.42 2964. 14.67 9684. 16. 42 9513. 17.42 271. 0 1 17.42 202. 12 .67 9533. 17. 42 9505. 17.75 280.47 17.75 1708. 14 .58 1392. 15.33 304 7. 14. 83 3033. 15.33 299. 33 15.33 1 220. 15. 00 4244. 15.25 4237. 15. 50 288 .47 15.50 3021. 16.42 7151. 15. 75 7143. 16.00 289.93 16.00 1225. 15.33 8322. 15.92 8240. 16 .67 280 .18 16.67 1416. 15 .42 3594. 14.67 12095. 16. 33 11866. 17.17 271. 43 17.17 245. 12.67 11891. 17.17 11860. 17.50 281.01 17.50 PR OPOSED COND ITIO NS -ZER O DE TENTION ANALYSIS App endi x 8-2 HYDROGRAPH AT CAR6b 0.14 HYDROGRAPH AT BRTI l. 36 HYDROGRAPH AT BRT2 l. B3 2 COMBINED AT 30 3.19 ROUTED TO RT31 3.19 HYDROGRAPH AT BRT3 1.32 2 COMBINED AT 31 4.Sl HYDROGRAPH AT BTAI l. 40 2 COMBINED AT 32 S.91 ROUTED TO RT33 S.91 HYDROGRAPH AT BRT4 2.17 HYDROGRAPH AT BGW7 0. 0 4 HYDROGRAPH AT BGW6 0. 00 2 COMBINED AT 10 0 . OS ROUT ED TO RTlO 0. OS HYDROGRAPH AT BGW4 0.0 1 2 COMBINED AT 11 0. 06 ROUTED TO RTll 0.06 HYDROGRAPH AT BGW2 0.04 2 COMBINED AT 1 2 0.10 ROUTED TO RT12 0.10 HYDROGRAPH AT BGW5 0. 00 FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 65. 12.B3 706. 13.17 BlB. 13. 75 1475. 13 .42 14 74. 13.50 PEAK STAGES IN FEET STAGE TIME F LOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 276 .46 1 3 .50 924. 1 2. 75 2231. 13.0B Bl 7. 13. 00 3047. 13 .OB 303S. 13. 25 PEAK STAGES IN FEET STAGE 270. S3 TIME 13.2S FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 1099 . 13 .1 7 44 . 12.00 4. 12.00 47 . 12 .00 47. 12.00 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW T IME 2 .21 1 2 .00 11. 12.00 SB. 1 2.00 SB. 12.00 PEAK STAGES IN FEET STAGE TIME FLOW TIME F LOW TIME FLOW TIME 267. 44 12.00 31. 1 2.0B BB. 1 2.00 61. 12 .33 PEAK STAGES IN FEET STAGE 2S9 . 66 TIME 1 2 .33 FLOW TIME l. 12.00 l OS. 12.7S 104B . 13.0B 1197. 13. 67 2174. 13.33 2174. 13 .42 277. 64 13 .42 131B. 12.75 3260. 13.0B 11B6. 13. 00 4444. 13 .08 4432 . 13. 2S 272. S8 1 3 .2S 164S. 13 .17 64 . 12.00 s. 12.00 69. 12.00 69 . 12.00 2.56 12.00 16. 12.00 86. 12.00 85. 12.00 267. 73 12.00 so. 12 .08 13S. 12.00 79 . 12. 33 260.10 12.33 l. 12.00 PROPOSED CONDITIONS -ZERO DETENTION ANALYSIS 13S . 1 2 .7S 1 293 . 1 3.08 1 467. 13. 67 2673. 13.33 2673. 13.42 278.40 13 .42 1S96. 12.7S 3989. 13. 08 1446 . 13. 00 S434. 13.0B S421. 13.25 273.81 13 .2S 2034. 1 3 .1 7 78 . 1 2.00 7 . 12.00 8S. 1 2.00 8S . 12.00 .78 12.00 20. 12.00 lOS. 12.00 104. 12.0 0 267.88 12.00 64. 12.0B 16B . 12.00 B9 . 12.4 2 260.39 12.4 2 2 . 12 .00 160. 12.7S 1499. 13.08 1692. 13.67 3090 . 13. 33 3090. 13. 42 278.97 1 3. 42 1827. 12. 7S 4603. 13. OB 1664. 13.00 6263. 13.0B 6208. 13.33 274.70 13.33 23S9. 13.17 90. 12 .00 8 . 12.00 98 . 12.00 98 . 12 .00 .9S 12.00 22. 12.00 120. 12.00 120. 12.00 268.01 12.00 76. 12.0B 19S. 12.00 96. 12. 42 260.62 12.42 2. 12 .00 19S. 12.7S 178 6. 13.08 2006 . 13.67 3674. 13. 33 3673. 13 .42 279. 72 13.42 2149. 12.75 S464. 1 3.0B 1967. 13.00 7427. 13. OB 7270. 13. SB 27S . 62 13. S8 2813. 13.1 7 107. 1 2 .00 9 . 12.00 116. 12.00 116. 12.00 .17 12.00 26. 12.00 142. 12.00 14 2. 12 .00 26B.16 12.00 93. 12.08 234. 12 .00 lOS. 12. 42 260.91 12. 42 2. 12.00 224. 12.7S 2033. 1 3 .08 227S. 13. 67 4174 . 13.33 4173. 13.42 280.32 13.42 2425. 1 2 .7S 619S. 13.0B 2227. 1 3.00 8416. 1 3.0B 8082. 13.75 27S .99 13.75 3202. 13.08 121 . 12.00 10. 12 .00 131 . 12.00 131. 12.00 3. 34 12.00 30. 12.00 161. 1 2.00 160. 12.00 268 . 27 12.00 107. 12.00 267. 12 .00 111. 12.SO 261.lS 12.SO 3. 12.00 274. 12.7S 2444. 13. 08 2723. 13. 67 S006. 13. 33 S004. 13 .42 281.17 13.42 2884. 12.75 7406. 13 .0B 26S8. 13. 00 100S7. 13.08 9S98. 1 3.83 276.S7 13 . 83 38SO. 13 . 08 144. 12.00 12. 12.00 1S7. 12.00 1S7. 12.00 3.62 12.00 3S. 12 .00 192. 1 2.00 191. 12. 00 268.4S 12.00 131. 12.00 322. 12.00 120. 12 .SO 261.SO 1 2.SO 3. 12.00 Appendix B-2 ROUTED TO RTBGW5 HYDROGRAPH AT BGW3 ROUTED TO RT BG W3 HYDROGRAPH AT BGWl 3 COMBINED AT 20 ROUTED TO RT20 2 COMBINED AT 30 3 COMBINED AT 33 HYDROGRAPH AT HUDl ROUT ED TO DP 1 HYDROGRAPH AT HUD2 2 COMBINED AT PT 2 ROUTED TO 383+30 HYDROGRAPH AT HUD3 2 COMBINED AT 374+35 ROUTED TO 37 4 +35 HYDROGRAPH AT HUD5B 2 COMBINED AT 365+50 ROUTED TO 365+50 HYDROGRAPH AT HUD4 ROUTED TO 180+45 HYDROGRAPH AT HUD5A 2 COMBINED AT 175 +20 0. 00 0. 01 0.01 0. 01 0. 01 0 . 0 1 0 .12 8.19 0. 05 0. 05 0. 02 0.07 0.07 0.11 0 .18 0 .18 0. 03 0. 21 0.21 0.14 0.14 0.08 0. 22 FLOW TIME 1 . 12.00 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME 272. 04 12 .00 4. 1 2.00 4. 1 2.08 PEAK STAGES IN FEET STAGE 0 .65 TIME 12.08 FLOW TIME FLOW TIME FLOW TIME 5. 1 2.00 1 0. 12.00 9. 1 2.08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 272. 56 12 .08 70. 1 2.25 4168. 13 .25 43. 12 .08 43. 1 2.08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW 3 1 7 .93 1 2 .08 16. 12 .00 59. 12 .00 58. 1 2 .08 1 09. 1 2.00 1 66. 1 2.00 161. 1 2 .08 25. 1 2.00 1 86. 1 2.00 1 83 . 12.08 80. 12.50 79. 12.58 68. 1 2.17 136. 1. 12.00 272 . 06 12.00 7. 12 .00 7 . 12.00 0. 79 12.00 9. 12.00 17. 12.00 16. 12.08 272. 77 12.08 93. 12 .25 6135. 13. 25 67. 12.08 67. 12.08 318.46 12.08 24. 12.00 90. 12.00 89. 12.08 160. 12.00 248. 12.00 242 . 12.00 37. 12.00 279. 12 .00 275 . 12.08 127. 12 .50 123. 12.58 103. 12.17 207. PROPOSED CO NDITIO NS -ZERO DETENTIO N ANA L YS IS 2. 12 .00 272. 07 12.00 9 . 12 .00 9 . 1 2.00 0. 87 12 .00 11. 12.00 22. 12.00 21. 1 2.08 272. 90 12.08 107. 12.17 7529. 13 .17 83. 12.00 84. 12.08 318. 92 12.08 30. 12.00 113. 12.00 111. 12.08 197. 12.00 306. 12.00 303. 12.00 46. 12.00 349. 1 2 .00 344. 12.08 161. 12.50 149. 12.75 128. 1 2.17 255. 2 . 12.00 272. 09 12.00 11. 12.00 10. 12.00 0 . 94 12.00 13. 12.00 26. 12.00 25. 12.08 272. 98 12.08 117. 12.17 8643 . 13 .17 98. 12.00 98. 12 .08 319.42 12.08 35. 12.00 131. 12.00 129 . 12.0 8 227. 12.00 35 4 . 12.00 351. 12.00 53. 12.00 404 . 12 .00 398 . 12.08 189. 12.50 172. 12. 75 149. 12.17 288. 2. 12.00 272.10 12.00 13. 1 2 .00 13. 12 .00 1. 01 12.00 16. 12.00 31. 12.00 30 . 12.08 273.10 12.08 130. 12.17 10022. 13 .42 118 . 12.00 116. 12.08 320. 20 12.08 41. 12.00 155. 12.00 151. 1 2.08 270. 1 2.00 418. 12.00 415. 12.00 63. 12.00 478 . 12.00 471. 12 .08 229. 12.42 210. 12.75 178. 12.17 340. 2. 12.00 272 .11 12.00 15. 12.00 15 . 12.00 1. 07 12.00 19 . 12 .00 36. 12.00 35. 12.08 273.20 12.08 140. 12.17 11018. 13. 50 135. 12.00 131. 12.08 320.96 12.08 47. 12.00 176. 12.00 170. 12.08 306. 12.00 472. 12.00 469. 12.00 71. 12.00 541. 12.00 533 . 12.08 263. 12 .42 255. 12.58 203. 12.17 400. 3. 12.00 272 .14 12.00 18 . 12 .00 18. 12.00 1.15 12.00 23. 12.00 44. 12.00 43. 12.08 273.34 12.08 156. 12.17 13017. 13 .58 163. 12.00 154. 12.17 322.30 12.17 56. 12.00 207. 12.00 199. 12.17 366. 12.00 560. 12.00 557. 12 .00 86. 12.00 643. 12.00 630. 12.08 320. 12. 42 288 . 12 .75 244. 12.17 495. App endix B-2 ROUTED TO 1 75+20 2 COMBINED AT 15 4 +90 HYDROGRAPH AT HUD6 2 COMBINED AT 154+90 ROUTED TO 154+90 HYDROGRAPH AT HUD7 2 COMBINED AT 135+20 ROUTED TO 135+20 HYDROGRAPH AT HUD8A HYDROGRAPH AT HUD8B 2 COMBINED AT SO LAKE ROUTED TO SO LAKE HYDROGRAPH AT HUD8D HYDROGRAPH AT HUD8C HYDROGRAPH AT HUD8E 4 COMBINED AT CF9DP ROUT ED TO 255+58 ROUTED TO 248+00 HYDROGRAPH AT HUD9 2 COMBINED AT 233+Sl ROUTED TO 233+S l ROUTED TO 218+36 2 COMB !NED AT 10S+70 HYDROGRAPH AT HUDlO 2 COMBINED AT 10S+70 ROUTED TO 0.22 0. 43 0. 08 0 . so 0. so 0 .28 0.78 0.78 0.20 0.32 O.Sl O.Sl 0.19 0 .10 0 . 03 0. 84 0.84 0.84 0. 22 1. OS 1. OS 1. OS 1.84 0. lS 1.99 TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 12 .33 11 9 . 12.67 266 . 12.17 72. 12.00 328. 12.08 32S. 12.17 127. 12.92 399. 12.17 342. 1 2.S8 110. 12.S8 147. 12.92 249. 12.7S 227. 1 3 .08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 306.12 13. 08 116. 12. 42 S9. 12.SO 26. 12.00 36S. 12. 7S 307. 13.33 304. 13.SO 139. 12. 42 366. 13 .33 349. 13.67 336. 14.08 S87 . 13 .SO 97. 12.42 629. 13.33 12.33 181 . 12.67 416 . 12 .17 108 . 12.00 Sll . 12 .08 4SS. 12 .2S 204. 12.92 612. 12.42 S31. 12.83 177. 12.SO 236. 12.83 402. 12.67 373. 13 .00 306. 63 13.00 18S. 12.42 9S. 12 .42 40. 12 .00 603. 12.67 S08. 13.2S soo. 13 . 42 217 . 12 .42 60S. 13.17 S80. 13. S8 S43 . 14. 08 9S4 . 13.S8 1S3. 12. 42 1013. 13.42 PR OPOSED COND ITIONS -Z ERO DETENTIO N ANALYSIS 12.2S 217. 1 2 .67 Sl3 . 12 .08 133 . 12.00 639 . 12 .08 SS3 . 12.2S 261 . 12.92 7SS. 12.42 668. 13. 00 22S. 12. so 302. 12.83 Sl3. 12. 67 479. 13.00 306.97 13 .00 23S. 12.33 12 1 . 12.42 Sl. 12.00 77S. 12.67 673. 13 .17 6SS . 13.42 272. 12.42 789. 13.17 771 . 13 .42 71S. 13.92 12S7 . 13.SO 193. 12.42 1334. 1 3.2S 12.2S 249. 12 .7S S89. 12 .08 1S4. 12.00 73S . 12.08 671. 12.2S 308. 12.92 889. 12.2S 778. 12.92 266. 12.SO 3S6 . 12.83 60S. 12. 67 S67. 13.00 307. 22 13 .00 277. 12.33 143. 12.42 60. 12.00 919. 12.67 832. 13.08 813. 13.2S 319. 12.42 989. 13.08 96 1 . 13 .33 876. 13.7S 1S47. 13.42 226. 12. 33 1640. 13.33 12 .33 29S. 12.7S 693. 12.08 183. 1 2 .00 866. 12.08 813. 12 .17 374. 12 .92 1072. 12.2S 929. 12.83 323. 12.SO 433. 12.83 73S. 12. 67 691. 12. 92 307.S7 12.92 336. 12 . 33 174 . 12.42 72 . 12.00 1122 . 1 2 .67 1063. 12.92 1033. 1 3 .08 384. 12.42 1276. 13.00 1 249. 13.17 llOS. 13. 67 1933. 13 .42 274 . 12. 33 2049. 13 .33 12.SO 380. 12.S8 781 . 12.08 208. 1 2.00 978. 12.08 924 . 12.1 7 431 . 12.92 1223. 12.2S 108S . 12.83 372. 12 .SO 499. 12.83 847. 12.67 798. 12.92 307.8S 12 .92 386. 12.33 200. 12 .42 82. 12.00 1296. 12 .67 12S9. 12.83 1230. 13 .00 440. 12 .42 1S3S. 12.92 lSOS. 13.00 1343. 13 .42 2316. 13 .33 314. 12.33 24S6. 13.2S 12.2S 463. 12 .SO 9S7. 12 .2S 2SO . 12.00 11S7. 12.08 1110. 12.2S S2S. 12.83 1S04. 12.33 1334. 12.83 4S3 . 12.SO 608. 12.83 1032. 12.67 976 . 12.92 308. 28 12 .92 470 . 12. 33 243. 12 .42 99. 12.00 1S8S. 12.S8 1SS3. 12.7S 1S30. 12. 92 S33. 12.42 1932 . 12.83 1901. 12.92 1728 . 13.33 29S2 . 13.17 382 . 12 .33 3148. 13.08 A pp endi x 8 -2 105+70 HYDROGRAPH AT HUDll HYDROGRAPH AT HUD12 ROUTED TO DP1 2 3 COMBINED AT 98+15 ROUTED TO 98+15 HYDROGRAPH AT HUD13 HYDROGRAPH AT HUD 1 4A ROUTED TO PT14a HYDROGRAPH AT HUD14B 4 COMBINED AT 62+25 ROUT ED TO 62+25 HYDROGRAPH AT HUD15 2 COMBINED AT PT15 ROUTED TO 42+20 4 COMBINED AT 1 5 ROUTED TO RT16 HYDROGRAPH AT CCGI HYDROGRAPH AT CAR7 3 COMBINED AT 1 6 ROUTED TO RT17 HYDROGRAPH AT CARS 2 COMBINED AT 17 1.99 0.12 0 .09 0.09 2.21 2 .21 0. 06 0 . 2 1 0 . 21 0 . 30 2 .78 2 .7 8 0. 33 3 .11 3 .11 25 .63 25.63 0. 71 1.86 28 .20 28 .20 0. 79 28.99 FLOW TIME FLOW TIME FLOW TIME FLOW TIME 585 . 14.00 92. 12.17 87 . 12.00 63. 1 2. 25 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 275.53 12 .25 614. 13.83 607. 14 .17 50. 1 2.08 1 38. 1 2 .33 127. 1 2 .50 PEAK STAGES IN FEET STAGE 314 .14 TIME 12 .50 FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 130. 13.08 786 . 13.00 764 . 13 .50 138. 13 .17 897. 13.33 894. 13.50 5650 . 13.42 5420. 14.33 PEAK STAGES IN FEET STAGE 251. 93 TIME 14.33 FLOW T I ME FLOW TIME FLOW TIME FLOW TIME 351. 13 .1 7 556. 13 .92 6174. 14.25 5999. 15.08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME 243.1 0 15.08 202. 14.33 6185. 1 5. 08 882. 14.17 143 . 12.17 129. 12 .00 79. 12. 33 276. 63 12. 33 929. 13 .75 917. 14.33 78. 12.08 221. 12. 25 203. 12.50 314. 79 12.50 2 1 0. 13. 00 1175. 13. 08 1168. 13 . 33 222. 13.17 1387 . 13.25 1378. 13. 42 8566. 13.33 8004. 14 .42 252 .73 14 . 42 532 . 13.17 920. 13 .83 9178. 14. 33 9015. 14 . 92 243.87 14.92 338. 14 .25 9332. 14 .92 PROPOSED CONDITIONS -ZERO DETENTION ANALYSIS 1233 . 14.0 0 180. 12.17 160 . 12.0 0 109 . 12.33 277 .11 12.3 3 1311. 14.00 1224 . 14 .33 98. 12.08 281. 12.25 255. 12 .5 0 315 .11 12 .5 0 268. 13 . 00 1444 . 14 .17 1436. 14. 33 284. 13 . 08 1687. 13 .17 1676. 13 .42 1 0486 . 13. 25 9769. 14 .42 253.23 14 .42 661. 13 .08 1186. 13.83 11274. 14.25 11077. 14. 92 244.38 14.92 4 39. 14 .25 11485 . 14 .92 16 06 . 13. 58 210. 12.17 185 . 12.00 136. 12. 25 277.4 0 12. 25 1717. 1 3.5 8 1599. 14.00 115. 12.08 331. 12. 25 300. 12.50 3 15.39 12.50 317. 13. 00 1918. 13.83 1893. 14.00 335. 13. 08 2135. 13 . 92 2119. 14. 08 11990. 13.42 11345 . 14 .33 253.61 14 .3 3 770 . 13 .08 141 2 . 13.83 1 3 154. 14.25 12978. 14.75 244.74 14.75 524. 14.25 13478. 14 .75 2039. 1 3. 42 253. 12 .17 221. 12.00 171 . 12.25 277. 75 12.25 2171 . 13 .42 2091 . 13.75 138 . 12.00 401. 12.25 363. 12.5 0 315 .66 12.5 0 385. 13. 00 2550. 13. 58 2525 . 13. 75 408. 13. 08 2869 . 13. 67 2848 . 13 .83 14 4 93. 13. 58 13858 . 14 . 42 254.02 14 .42 922. 13 .08 1 731 . 13 .75 1597 8 . 14.33 15787 . 14 . 83 245.23 14.83 6 44. 14 .1 7 16392 . 14.75 2447 . 13.33 289. 12.17 251. 12.00 200. 12. 25 278.01 12.25 2597. 13 .33 2517. 13.58 159. 12.00 460. 12.25 418. 12.50 315 .89 12.50 444 . 13.00 3107. 13.42 3078. 13.58 470 . 13.08 35 0 1 . 13.50 3480. 13. 67 16456. 13 .67 15847 . 14.50 254.35 14.50 1 052 . 13. 08 2006. 13.75 18223. 14. 42 18043. 14. 83 245. 63 14. 83 7 48 . 14.17 18740. 14.83 3138. 13 .1 7 350. 12 .17 301. 12. 00 249. 12. 25 278. 39 12. 25 3341. 13.17 3253. 13 .42 192. 12.00 560 . 12 .25 509. 12 .50 316.23 12 .50 541. 13.0 0 4064. 13.25 4029 . 13 .42 574. 13 .08 458 2. 13.33 4550. 13 .50 19797. 13.58 18988 . 14.50 25 4 .86 14. 50 1269. 13. 08 2466. 13.75 21880. 14.42 21723. 14 .83 246.18 14.83 922. 14 .1 7 22589 . 14 . 75 Appendi x B-2 HYDROGRAPH AT WPNI 0. 42 HYDROGRAPH AT WPCI 0. 91 2 COMBINED AT 40 1.33 ROUTED TO RT41 1.33 HYDROGRAPH AT WPN2 0.11 2 COMBINED AT 41 1.44 HYDROGRAPH AT WPB I 0. 23 2 COMBINE D AT 42 1. 67 ROUTED TO RT43 1.67 HYDROGRAPH AT WPN3 0 .12 2 COMBINED AT 43 1 .79 HYDROGRAPH AT WPAI 0. so 2 COMBINED AT 44 2.29 ROUTED TO RT4S 2.29 HYDROGRAPH AT WPN4 0. 70 2 COMBINED AT 4S 2.99 ROUTED TO RT46 2.99 HYDROGRAPH AT WPNV 0 . S6 2 COMBINED AT +. 46 3.SS 2 COMBINED AT 18 32.S4 ROUTED TO RT19 32.S4 HYDROGRAPH AT CAR9 0. 99 FLOW TIME FLOW TIME FLOW TIME FLOW TIME 382 . 12.2S 690 . 1 2 .SO 1042. 12.33 1040. 12. 42 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 284.47 12. 42 126 . 1 2 .00 1104 . 12 .42 220. 12.17 1311. 12.33 1302. 12 .SO PEAK STAGES IN FEET STAGE 281. 07 TIME 1 2.SO FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 133. 1 2 .00 1 3S7. 1 2.SO 324. 12 .7S 1 666 . 1 2 .SO 1624. 12.92 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 266. Sl 12.92 72S . 12.17 2030. 12 .S 8 1886. 13 .42 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 24S.04 13 .42 330. 12. 92 2180. 13.33 7214 . 14.92 6779. 16.17 PEAK STAGES IN FEET STAGE TIME FLOW TIME 23S.18 16 .17 247. 14 . so S49. 12.2S 1001. 12 .SO 1S09. 12 .33 1S08 . 12.42 28S . 6S 12.42 176. 12.00 1S96. 12.42 313. 12.17 18 9 4. 12.33 1882. 12.SO 281 . 8S 12 .SO 186. 12.00 196S. 12. 42 477. 12 . 7S 241S. 12.SO 2363. 12.83 267.33 12.83 1006 . 12.17 2944. 12.S8 277S . 13. 33 24S . 8S 13. 33 483. 12.92 3227. 13.2S 107S2. 14. 7S 10292 . lS .92 23S.92 lS.92 414. 14.42 PR OPOSED CONDITIONS -ZERO DE TENTIO N ANALYSIS 667. 1 2.2S 1 221. 12 .SO 1839. 12.33 1838 . 12.42 286.36 12 .4 2 211. 12.00 1947. 12.33 378. 12 .17 2308. 12.3 3 2293. 12.SO 282.28 12.SO 223. 12.00 2392 . 12. 42 S8S . 12. 7S 294S. 12.SO 2883 . 12.83 267 .82 12.83 1 204. 12.17 3S9S . 12.S8 3416. 13.2S 246. 34 13.2S S92. 12. 92 3981. 13 .17 13 1 91 . 1 4.67 1 2646 . lS .83 236 . 41 lS.83 S36. 1 4.33 76S . 12.2S 1403 . 12 .SO 2114. 12.33 2113. 12.42 286. 88 12. 42 241 . 12.00 2237. 12.33 432. 12.17 2649. 12 .33 2640. 12.42 282.S7 12.42 2S4. 12.00 2770. 12.33 676. 12. 67 3390. 12 . 42 3314. 12. 7S 268 .20 12.7S 1369 . 12.17 41S2 . 12.S8 3938. 13.17 246. 73 13.17 683. 12.92 4S96. 13 .17 1SS74 . 14 .S8 14736. 1S .7S 2 36 .8 S lS. 7S 640. 14 .33 902 . 1 2.2S 16S9. 12 .SO 2498. 12.33 2497 . 1 2.42 287.S4 12.42 282. 12 .00 2648. 12.3 3 S 08. 12.17 3132. 12.33 3122. 12.42 282 .90 12 .42 297. 12.00 3270 . 1 2 .42 802. 12.67 401 2. 12. 42 3929. 12. 7S 268.69 l2.7S 1600. 12.17 494 7 . l2 .S8 4706. 13 .17 247.22 13 .17 809. 1 2.92 S492 . 13.08 18740. l4.S8 1 8291 . lS .33 237.33 lS.33 788. 14.33 1020. 1 2 .17 1877. 12 .SO 2826. 12.33 2826. 12 .42 288.03 12 .42 317. 12.00 299S. 12. 33 S73 . 12.17 3S40. 12.33 3S30. 12.42 283.1 8 12.42 334. 12.00 3700. 12 .33 911. 12.67 4S40. 12.42 44SS. 12.7S 269.08 12.7S 1798. 12.17 S61S . l2 .S8 S34S . 13. 08 247.62 13 .08 918 . 12.92 6247. 13.08 21273. 14.S8 20903. lS.33 237.64 lS .33 9 1 S. 14. 33 121S. 12.17 2240 . 12.SO 3372 . 12.33 3371. 12. 42 288.7S 12 .42 37S. 12 .00 3S70. 12 .33 681. 12.17 4217. 12.33 4209. 12. 42 283 .S8 12. 42 39S. 12 .00 4428. 12 .33 1091. 12.67 S418. 12.42 S318. 12 .7S 269. 66 12.7S 2127. 12.17 6727. l2.S8 6442. 13 .08 248 .22 13.08 1098. 12. 92 7S2l. 13 .08 2S6S2. 14.S8 2Sl81. lS. 33 238.14 lS.33 1127. l4 .2S A ppendi x B -2 HYDROGRAPH AT CARX 3 COMBINED AT 19 RO!ITED TO RT20 HYDROGRAPH AT BEEBSl HYDROGRAPH AT BEEBS2 2 COMBINED AT BEEBS RO!ITED TO 310 HYDROGRAPH AT BEEBS3 2 COMBINED AT BEE BS HYDROGRAPH AT BEEBNl 2 COMBINED AT RO!ITED TO RCH 7 RO!ITED TO RCH 6 HYDROGRAPH AT BEEBN2 2 COMBINED AT HYDROGRAPH AT BE El RO!ITED TO RCH 4 2 COMBINED AT RO!ITED TO RCH 3 RO!ITED TO RCH 2 HYDROGRAPH AT BE E2 HYDROGRAPH AT BEE4 3 COMBINED AT HYDROGRAPH AT BEEA l RO!ITED TO 180 0. 48 34.01 34.01 0. S8 0. 4 7 1. OS 1. OS O.S2 1. S7 1.03 2.60 2 .60 2.60 0. 81 3. 41 1. 00 1. 00 4.41 4.41 4 .41 1.21 0. 01 s. 63 0.66 0 . 66 FLOW TIME FLOW TIME FLOW TIME 219. 13.08 7006. 16.17 6S34. 17.7S PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 23S. 34 1 7 .7S 262. 12 .92 176. 13 .2S 431. 13. 08 431. 13. 08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW 288. 73 13.08 184 . 13. so 606. 13.17 403. 1 3.2S 1 007. 13 .17 978. 13.SO 973. 13.67 42S. 12 .83 1301. 13 .42 339. 1 3.83 309 . 14.SO 1S46. 13. S8 1S39. 13.7S 1 241. 1S .2S S27 . 13. 08 9. 12.08 1488. lS.00 300 . 13.00 300. 343 . 13. 08 1068S . lS. 92 10100 . 17 .33 236.20 17 .33 393. 12.92 266. 13 .2S 648 . 13. 00 648. 1 3.08 289.2S 13. 08 27 7 . 13 . 42 912 . 13 .17 S99. 13. 2S 1S09. 13 .17 14S6. 13. so 1449. 13 . 67 616. 12.83 1923. 13 .42 497. 13. 83 4S9. 14. 42 2294. 13. S8 2287. 13. 7S 19S6. lS .00 776 . 13.08 13. 12.08 2366. 14.7S 442. 13. 00 441. PROPOSED CO NDITIONS -ZERO DE TE N TIO N ANALYSIS 433 . 13. 08 1 31S8. lS.83 12S04. 17 .2S 236.78 17.2S 48S . 1 2. 92 329. 13.2S 801. 13 . 00 801. 1 3.00 289 .S4 13. 00 342. 13 . 4 2 1128. 13 .1 7 738. 13 .2S 1863. 13.17 1779. 13. S8 l 77S. 13.67 7S2. 12. 83 2363. 13.33 609. 13.83 S64. 14.42 281S. 13. S8 2810. 13.67 2448. 1 4 .92 9S2 . 13.08 lS. 12.08 2971. 14. 67 S42. 13. 00 S41 . S08. 13.08 1S363. lS.67 14838. 16.7S 237 .19 16.7S S61 . 12 . 92 381. 13. 2S 928. 13 . 00 927. 13. 00 289 .76 13. 00 397. 1 3.42 1307. 13 .17 8S3. 13 .2S 21S7. 13 .17 2041. 13. S8 2036. 13. 7S 864. 12 . 83 2694. 13 .42 702. 13. 83 6Sl. 14.42 3233. 13 .67 3214. 13.83 2868 . 14 . 92 1098 . 13. 08 17. 12 .08 3472. 14.67 624. 13 . 00 624 . 614. 13.00 1916S. lS .33 18341. 16. 33 237.67 16.33 667. 12 .92 4S4 . 13 . 2S llOS. 13.00 1104. 13 .00 290 . 02 13 .00 473. 13 .42 1SS6 . 1 3 .17 1 014. 13 .2S 2S68. 13 .17 2402. 13. 67 2397. 13. 7S 1020. 12.83 3166 . 13.42 832. 13.83 772. 14. 42 381S. 13.67 3793. 13. 83 3421. lS .00 1302 . 13 .08 20. 12 .08 413S . 14.67 740. 13. 00 739. 70S. 13. 00 21909. lS.33 21261 . 16 .2S 238. 06 16 .2S 7S8. 12.92 Sl7. 13. 2S 12S6 . 13. 00 12S6 . 13 . 00 290.22 13 . 00 S38. 13 .42 1770. 1 3 .1 7 11S2. 13 .2 S 2919. 13 .17 2712. 13.67 270S. 13. 7S 11S4. 12.83 3S60. 13. so 944. 13. 83 877 . 14. 42 4311 . 13. 67 4299. 13. 83 38Sl. lS.00 1476. 13. 08 23. 12.08 4661. 14 .67 839. 13. 00 838. 8S6 . 13. 00 26434. 1S.2S 2S787. 16.17 238 .68 16.17 909. 12.92 621. 13.2S 1S08 . 13.00 1S08 . 13.00 290.S2 13 .00 647. 13 .42 2126. 13 .17 1382. 13. 2S 3S04. 13.17 3177. 13.7S 3168. 13 .92 1378 . 12.7S 41SS. 13 .33 1130. 13.83 10S3 . 14.42 S070. 13.7S S026. 14. 00 4S91. lS .08 1767. 13 . 08 27. 12 .08 SS26. 14. 7S 1004 . 13. 00 1003. Appendi x B-2 HYDROGRAPH AT BEEA2 1.12 2 COMBINED AT l.7B ROUTED TO 190 1. 7B HYDROGRAPH AT BEEA3 0. 46 2 COMBINED AT 2.24 2 COMBINED AT 7.87 ROUTED TO RCH l 7 .87 HYDROGRAPH AT BEE3 0.84 2 COMBINED AT PTO . 00 B. 71 2 COMBINED AT 20 42. 72 ROUTED TO RT21 42.72 HYDROGRAPH AT CARXI 3 .32 HYDROGRAPH AT CAR12 1.12 3 COMBINED AT 21 47.16 ROUTED TO RT22 47 .16 HYDROGRAPH AT CAR13 0 . 63 2 COMBINED AT 22 47 .79 ROUTED TO RT23 47.79 ROUTED TO RT24 47.79 ROUTED TO RT2S 47 .79 TIME 13.08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 256.B5 13. 08 727. 12.50 971. 12.58 964. 12.83 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 24S .26 12.83 142. 13.92 1062. 12.83 1992. 14.17 1790. 16 .33 203. 14. 75 1948. 16.17 8285. 17. S8 8237. 18. 08 PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 23S. 66 18 .08 562 . 16. 83 368. 13.5B 8827. lB.08 B7B5. lB .SO PEAK STAGES IN FEET STAGE TIME FLOW TIME FLOW TIME FLOW TIME 226 .20 18 .50 173. 14 .00 BB2B . lB.SO B376. 20.17 PEAK STAGES IN FEET 13.08 2S7 .16 13 . 08 1050. 12.50 1412 . 12.58 1405 . 12.75 245 .96 12.7S 213. 13.92 15S2. 12.83 3175. 14.2S 2943. 15.75 308. 14 .75 3213. 15.67 12771. 17.08 12703 . 17.S8 236.69 17. S8 933 . 16.67 611. 13.SO 13727. 17.5B 13701. 17.B3 226.99 17.B3 292 . 13. 92 137B3 . 17.B3 130BB. 19 .42 STAGE 214.lB 215.34 TIME FLOW TIME 20 .1 7 B049. 21.92 PEAK STAGES IN FEET STAGE 204.94 TIME 21.92 FLOW TIME 7930. 23.0B PEAK STAGES IN FEET 19.42 12573. 20. 92 206 .17 20. 92 1233B . 22.0B PR OPOSED CONDITIONS -Z ERO DE TENTI ON ANALYSIS 13. OB 257.37 13.08 1277. 12.50 1723. 12.5B 1 717. 12. 75 246.39 12.75 263. 13. 92 1B97 . 12.B3 4 006 . 14 .17 3731. 1 5.5B 3B2 . 14.75 40BO . 15.50 1 5891. 17 .00 1S858 . 1 7.33 237.23 17.33 120B. 16.5B 790. 13.SO 17217. 17. 2S 17186. 17 .58 227 .49 1 7.58 3Bl. 13. B3 1 7298. 17.S8 16SlS. 19. 08 215.93 19 .0B 15939. 20 .50 206.93 20. so 15704. 21. 42 13 . OB 257.51 13. OB 1466. 12 .50 19Bl. 12 .5B 1974. 12.75 246 . 71 12.75 30S. 13 .92 21BS . 12.B3 4664 . 14 .17 4422. 15.42 444. 14.67 4B37. 15. 33 1B993. 16 .67 1B912 . 16 .92 237.63 16. 92 1441 . 16. SB 941. 13 . 42 20S8B. 16.92 20516. 17 .25 227 .97 17.25 456. 13. B3 20663 . 17.2S 194Sl. lB . 75 216. 42 lB.75 1B777. 20 .17 207. 44 20.17 1B511. 21.0B 13. OB 257.63 13. OB 1729 . 12 .50 2359. 12 .5B 234B . 12 .7S 247 .lS 12.7S 364 . 13. 92 2599. 12 .7S SSB5. 14. 00 5323 . 15.33 531. 14.67 5B27 . 15.25 23709. 16.25 23S97 . 16.SB 23B.23 16 .SO 1772 . 16.SO 115S. 13.42 2S714. 16 .SO 256S8. 16. 75 22B. 54 16.75 563. 13. B3 25B71 . 16.7S 2411B. lB .17 217.0B lB.17 22960 . 19.5B 20B.1B 19. SB 22572 . 20.5B 13. OB 257.73 13. OB 1954. 12.50 2665. 12.5B 2656. 12.75 24 7 . 4 6 12.75 414. 13 . 92 2944 . 12.7S 63S6 . 14. 00 6101. 15.17 606. 14.67 66B9 . 15.0B 273Bl. 16.0B 27299. 16.42 23B . 71 16 .42 20SB . 16.50 1339. 13 .42 29764. 16 .42 29710. 16 .67 22B.97 16.67 654. 13. B3 29962. 16.67 2B290. lB.00 217.59 lB.00 270B4. 19.25 20B.75 19 .25 267B4. 19.92 13.0B 257.90 13. OB 2329 . 12 .50 3181. 12.5B 3171. 12.75 247.97 12.75 497. 13. 92 3519. 12.75 7622 . 13. 67 7316. 15.00 730 . 14.67 B036. lS.00 33202. 16.00 33153. 16. 25 239 .35 16. 25 2537. 16. 42 1646 . 13.42 36211. 16.2S 36159. 16.SO 229.66 16.50 808. 13. 75 364B4 . 16.50 34925 . 17.7S 218.3S 17 . 7S 33600. 19. 00 209.63 19.00 33313 . 19.67 Appe ndi x B -2 STAGE 198.23 199.06 199.45 199 .76 200.22 200.55 201 .02 TIME 23.08 22. 08 21. 42 21.08 20. 58 19 . 92 19. 67 HYDROGRAPH AT CARXIV 10. 00 FLOW 1041. 1771 . 2317 . 2784 . 3450. 4030 . 5006. TIME 20.58 20.42 20.33 20.25 20 .17 20.1 7 20.08 2 COMBINED AT 25 57.79 FLOW 8868. 14012. 17958. 21247. 26008. 30809. 38297 . TIME 23.00 22.08 21.33 21.08 20.50 19. 92 19 .67 SUMMARY OF DAM OVERTOP PING/BREACH ANALYSIS FOR STATION RT12 (PEAKS SHOWN ARE FOR INTERNAL TIME STEP USED DURING BREACH FORMATION) PLAN 1 ............... INITIAL VALUE SPILLWAY CREST TOP OF DAM ELEVATION 259. 00 266. 00 267. 75 STORAGE 2. 142. 215. OUTFLOW 0. 200. 376. RAT IO MAXIMUM MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF TIME OF OF RESERVOIR DEPTH STORAGE OUTF LOW OVER TOP MAX OUTF LOW FAILURE PMF W.S.ELEV OVER DAM AC-FT CFS HOURS HOURS HOURS 4.50 259 .66 . 00 4 . 61. 0.00 12.33 0 . 00 6 .20 260.10 0. 00 7. 79. 0.00 12.33 0. 00 7 . 40 260.39 0 . 00 9. 89. 0 .00 12. 42 0 . 00 8. 40 260.62 0. 00 11. 96. 0.00 12. 42 0. 00 9. 80 260 . 91 0. 00 13. 105. 0. 00 12. 42 0 . 00 11 . 00 26 1.1 5 0 .00 16. 111 . 0. 00 12.50 0 . 00 13.00 261 .50 0 .00 20. 120. 0. 00 12.50 0. 00 '* • * NORMAL END OF HEC-1 '* •• PROPOSED CONDITIONS -ZERO DETENTION ANALYSIS Ap pendix B-2 PHASE B: BEE CREEK TRIBUTARY 'A' DRAINAGE ANALYSIS This section of the Cotten's Subdivision Drainage Analysis includes all required drainage analysis for those drainage areas contributing to Bee Creek Tributary 'A'. GENERAL LOCATION AND DESCRIPTION Kenny Cotten's Barbeque will be located on Lot 2, Block 1 of the Cotten Subdivision, Phase 1, adjacent to and on the east side of the proposed Dartmouth Drive Extension and south of FM 2818 (Harvey Mitchell Parkway) in College Stat ion, Texas . This proposed Dartmouth extension is approximately 2000 feet east of the intersection of FM 2818 and Texas Avenue . More information regarding Dartmouth Drive was presented in the August 2002 Dartmouth Drive Extension Drainage Analysis completed by Mitche ll & Morgan, LLP. The proposed detention facility will serve the Cotten barbeque restaurant as well as a future mixed-use development on Lot 4, Block 1 of the Cotten Subdivision, henceforth referred to as the Bertrand property . With the development of the barbeque restaurant, this facility will be designed and constructed as a detention pond. As the mixed-use development commences, this detention pond will be reconstructed to act as a retention facility that will be an amenity to the overall deve lopment . The project location is identified in Exhibit OV1 of the General Information section of this report . DRAINAGE BASIN DESCRIPTION As indicated in the introduction, this port ion of t he project is located within the Bee Creek Tributary 'A' watershed . This site lies within the lower portion of the basin northwest of Crystal Park Plaza . Much like the portion of Lot 2, Block 1 which drains to Bee Creek Main, the rema in der of the property which drains to Bee Creek Tributary 'A' is current ly undeveloped and covered by only grassland and scrub trees. A portion of Lot 4, Block 1, the Bertrand property, will be discussed in this report as it prov id es an area for the detention pond . The Bertrand property in its entirety will be discussed in future drainage analysis as part of the development of the mixed-use concept. Unlike the Bee Creek Main drainage area of the barbeque restaurant site, detention/retention will be prov ided for the Tributary 'A' portion of the development and any future mixed-use development that occurs on the Bertrand property (Lot 4, Block 1 ). As seen on Exhibit OV2, this property is located within the Bee Creek Tributary 'A' drainage basin . A portion of the Bertrand property is located within the regulatory 100-year floodplain per the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) panel 144C, effective date July 2, 1992 . Current ly , only a small portion of Block 1 of the Cotten Subdivision drains in a southeasterly direction toward Be e Creek Tributary 'A'. This information is demonstrated in Exhibit E1, the Existing Development Drainage Area Map. Exhibits E2 and E3 include updated drainage areas for the remainde r of the Dartmouth Drive Extension and the proposed Cotten's Barbeque Restaur ant, respectively . All of the Bertrand property dra ins to Bee Creek Tributary 'A' and is also included in the aforementioned drainage area maps . The se drainage pattern s will be d iscussed in more detail in the Drainage Facility Design sectio n of this report. While the most accurate floodp lain information ava ilable is provided on the maps, topographic survey of the property differs from the existing aerial topography used by the City of Co ll ege Station to delineate the floodplain on their GIS mapping as well as on the FEMA map panel. Future phases of the development may incorporate a Letter of Map Amendment (LOMA) to properly identify the floodplain lim its based upon field topography. Cotten Subdivision Drainage Analysis 7 DRAINAGE DESIGN CRITERIA All drainage design is in accordance with the City of College Station Drainage Policy and Design Standards (DPDS). As such: • Design rainstorm events consist of the 5-, 10-, 25-, 50-, and 100-year storm events . • Flow calculations are based on the Rational Method with a minimum time of concentration of 10 minutes . Lag time ca lculation is based on the Upland Method . • Pipe capacity calculations are based on Manning's Equation with Hydraulic Grade Line analysis performed to determine location and extent of storm sewer system surcharge. • Detention will be provided to reduce postdevelopment peak runoff discharges to those of the predeve lopment rate . DRAINAGE FACILITY DESIGN In contrast to the Bee Creek Main side of the development, little existing drainage infrastructure exists in the Bee Creek Tributary 'A' portion of this development. For the purposes of Phase B of this report, the ma in study confluence will be located at a small cut which appears to be the location of a small private driveway culvert identified on Exhibit E1 of this report . The culvert has since been removed and only a cut exists to drain the upper section of the property . Future development on the property will require the removal of the interior dr ive and new study points wil l have to be established. An 18" CMP culvert exists at the east end of the property that dra ins area EA-D 1. This cu lvert is also identified in Exhibit E 1. Predevelopment Drainage Analysis Exhibit E 1 demonstrates that a significant portion (7 .28 ac.) of the drainage area that includes Block 1 of the Cotten Subdivision and the Bertrand property which drains to Bee Creek Tributary 'A' is blocked by the raised nature of the interior drive and discharges as a point discharge at the cut or old culvert location . Approximate ly 1.05 acres of the 7 .28 acres comes from Lot 2, Block 1 of the Cotten Subdivision or the barbeque restaurant. The remaining acreage is from the undeve loped Bertrand property . Then draining to the 18" CMP cu lvert is approximate ly 2.17 acres of undeveloped property that will be part of the future mixed-use concept. Peak runoff values for each of the drainage basins are provided in Appendix C-1, Rational Formula Drainage Area Calculation . Dartmouth Drive Development As evidenced in Exhibit E2 of the report, approximately 1 50 feet of the Dartmouth Drive Extension discussed with the first phase of this project drains to Bee Creek Tributary 'A'. This portion of Dartmouth accounts for approximately 0 .33 acres of development at the top of the drainage area and was not included in the August 2002 Dartmouth Drive Extension Drainage Analysis completed by Mitche ll & Morga n, LLP . In looking at the Rational Method calculations and the summary tables provided be low it is apparent that this part of Dartmouth has little overall effect on the drainage patterns and results in a net peak discharge increase of 1.3 cfs for the 100-year storm . No drainage infrastructure was designed as part of this phase; rather its drainage design is to sheet flow at the present time across Lot 4, Block 1 of the Cotten Subdivision . This drainage design will change as Dartmouth Drive is extended and an outfall location for the drainage infrastructure con structed as part of the street is contemplated . The grading plan for Dartmouth Drive is Cotten Subdivision Drainage Analysis 8 included as Exhibit C and demonstrates what portions of Dartmouth drain toward Bee Creek Tributary 'A'. Postdevelopment Drainage Analysis The deve lopment of Kenny Cotten's Barbeque Restaurant on Lo t 2, Block 1 of the Cotten Subdivision results in a significant change in the drainage patterns on the property . The most significant change is the addition of 2.1 acres of contributing area to Bee Creek Tributary 'A' from the predevelopment condition . This diversion comes from drainage areas EA-B and EA- C on the Bee Creek Main side and was discussed in the prev iou sly in this report. Exhibit E3 shows the postdevelopment drainage areas for the Bee Creek Tributary 'A' side of the development. Drainage for the restaurant will be carried into the proposed detention pond through a series of storm sewer pipes. Drainage area PA-C2 will enter the system via a 5' inlet (C2) and flow to inlet C 1 in 200 LF of 18" RCP. The flow from PA-C 1 will enter into a 5' Inlet (C 1) and combine with the PA-C2 flow . The total runoff will drain via 202 LF of 24" RCP and enter on the upstream side of the proposed detention pond. Plan and profile drawings of the proposed drainage infrastructure have been provided as Exhibit F. In order to reduce postdevelopment peak discharge levels to predevelopment levels a detention pond was included in the design. The placement of the detention pond was la rgely dependant on the future mixed-use development on the Bertrand property. Concept ual plans for development on the property include a large, multi-level retention/detention pond that will serve as an aesthetic amenity as well as provide runoff storage for the completed development. The proposed detention pond for Kenny Cotte n's Barbeque Restaurant was designed to define the shape of this future retention pond and be easily modified to the final configuration . The outfall st ructure includes a 12" RC P with a sloped headwall at the south end of the detention pond as will as an overflow structure. Detention routing calculations have been provided for all of the studied rainfall events as Appendix C-3. Flow from the outfall and the emergency sp illway discharge into the study confluence shown on Exhibits E3 and F. A grading plan of the development has been provided as Exhibit G. Hydraulic Grade Line calculations have been provided as Exhibit H to ensure that the tailwater from the detention pond does not backup the storm sewer at Kenny Cotten's Barbequ e Restaurant site . As indicated by Table 5 below, the dra inage design reduces the overall postdevelopment flows to le ss than the predevelopme nt peak flowrates. When combined with drainage area PA -D1, Bee Creek Tributary 'A' sees an overall red ucti on in flows from the predevelopment conditions as a result of the drainage design . Runoff hydrographs for each of the confluence points have been provided on Exhibit OV3 in the General Information Section of this report. P k o· h f ea 1sc arges rom c ut at ntenor R d (DA 02) oa - 5-Year 10-Year 25 -Y ear 50-Year 100-Year Flow Condition s Flowrate Flow rate Flowrate Flowrate Flowrate ,_ System Outfall All flowrates in cubic feet per second (cfs) Predevelopment 22 .4 25 .1 28.7 32 .5 3 6 .5 Po stdeve lopment 33 .8 38 .0 43 .4 48 .0 55 .1 Po st-detention 22 .5 24 .8 27 .7 30.7 34 .0 Flow Reduction 0 .0 0.3 1.0 1.8 2.5 Table 5. Peak Discharge Summary for DA-D2 Cotten Subdivision Drainage Analysis 9 Peak Disch a rges from 18 " CMP Culvert (DA-0 1) 5-Yea r 10-Yea r 25-Yea r SO-Yea r 100-Yea r Flow Condi tions Fl owrate Flowra t e Fl owra t e Fl o wrate Flowrat e System Outfall All flowra t es in cubic fee t per secon d (cfs) Pr edevelopme nt 8 .3 9.4 10 .7 11 .5 13.6 Po stdeve lop ment 8 .2 9.2 105 11.3 13.4 Fl ow Reduction 0 .1 0 .2 0 .2 0 .2 0 .2 O ve rall Syst em Pea k 0.0 0.5 1.2 2.0 2.7 Flow Reduction Table 6. Peak Discharge Summa ry for DA -01 CONCLUSIONS Table 5 above demonstrates that, as a result of the Kenny Cotten 's Barbeque restaurant, there is an increase in the postdeveloped peak discharges at the Bertrand property interior road cut that serves as the Bee Creek Tributary 'A' study confluence . As illu strated in Tab le 5, it can also be seen that this flow is effectively attenuated to below predevelopment peak discharge rates through the use of a proposed detention pond. Table 6 provides a total of flow reduction that Bee Creek Tributary 'A ' will see as a result of the development of the barbeque restaurant project. The storm sewer system on the restaurant site provides ample capacity for all rainfall events and ensures that no significant flood ing will occur on the proposed site . Exhibit OV3, located in the General Information section shows predevelopment, Dartmouth development, and postdeve lopment hydrographs at the re levant study confluence points. Review of the stormwater analys is indicates that the drainage design pre sented in this repo rt will provide ample con veyance and detention to meet the drainage objectives of the City of College Stat ion DPDS. Cotten S u bdivision Drainage Analysis 10 EXHIBITS EXHIBITH KENNY COTTEN'S BARBEQUE & DARTMOUTH DRIVE EXTENSION Phase 8 -Bee Creek Tributary 'A' Hydraulic Grade Line Calcula tion s Sta. 4+01.91 to Sta. 2+12.20 (Per construction drawings in Exhibit G) Head/ass Equations (from Manning's) (1) Q = c ·:9 )A R ~S~ (2) HGL us = HGL DS + H 1 (3) H f =S1L =L( i~22v2 z) R 1.49 10-Year Event (Per const ruction drawings in Exhib it C) Head/ass Ca lculations Q10 = 15 .3c.fe (Per Appendi x A-3 ) S 1 10 = 0.0014 ft I ft Pipe slope is greater that frict ion slope. Using Mann ing's Equation (1 ), normal depth in the pipe is det ermin ed. Normal depth in a pipe may be determi ned usin g the rati o n of th e actual dischar ge to capacity discharge Q I Q1u11 = 15.3 /27 .9 = 0 .55 Per Figure 5.3 provided, t he ratio of normal depth t o pipe diamete r is prov ided below. Yn I D= 0.583 Yn =l.46/t Us ing Equa tion (2) and the normal depth, the downstream and upstream water surf ace elevat io ns are g iven be low WSED S = 263.96 WSE us = 264.82 Down st ream Upstream KENNY COTTEN'S BEE TRIBUTARY A DRAINAGE In put Data Pipe Size= 30" RCP Roughness (n) = 0.013 Pipe Length = 187 . 21 LF Downstream Invert = 262.50 ft Upstream In vert= 263.36 ft Pipe Slope= 0 .0046 ft/ft -(0.46%) Calculated Param eters Cross -sectiona l Area = L x W A= 4.91 sq. ft. Hydraulic Rad ius = A/P R = 0 .625 ft 1 GO-Year Event (Per const ru ction drawin gs in Exhibit C) Head/ass Calculations Q10 = 22.2cfa (Pe r Append ix A-3) S 1 10 = 0.0029 ft I ft Pipe slope is greater that friction slope. Using Manning's Equat ion (1 ), normal depth in the pipe is determi ned. Norma l depth in a pipe may be determi ned using the rati on of the actua l dis charge to capacity discharge Q /Q fu l/ = 22.2 /27.9 = 0 .8 0 Per Figure 5.3 provided , th e ratio of normal depth to p ipe diameter is provide d below. Y" I D= 0.817 Yn = 2.04ft Using Equation (2) and the norm al depth, the downstream and upstream water surf ace elevations are given below. WSEDS = 264.54 WSE us = 265.40 Downstream Upstream EXHIBITD KENNY COTTEN'S BARBEQUE & DARTMOUTH DRIVE EXTENSION Phase 8 -Bee Creek Tributary 'A' Hydrau lic Grade Line Calculat ion s Sta. 2+12.20 to Sta. 0+03.00 (Per constructi on drawings in Exhibit G) Head/ass Equations (from Manning's) (2) HGL us = HGL DS + H 1 (3) H =S L=L( n 2 V 2 ) f 1 R 1121.49 2 10-Year Eve nt (Per construction drawings in Exhibit C) Head/ass Ca lculations Q,0 = 4.70c/s (Per Appendi x A-3) s 1 ,0 = o.002oft1 ft Pipe slope is greater that friction slope. Using Manning's Equ ation (1 ), normal depth in the pipe is determined . Normal depth in a pipe may be determined using the ration of the actual discharge to capacity discharge QI Q1uu = 4.70 /9.50 = 0.49 Per Figure 5.3 prov ided , the ratio of norma l depth to pipe diameter is provided below. Yn I D= 0.550 Yn = 0 .83/t Us ing Equation (2 ) and the normal depth, the downstream and upstream water surface elevations are given below WSE DS = 265.19 WSE us = 266.88 Downstream Upstream KENNY COTTEN'S BEE TRIBUTARY A DRAINAGE In put Data Pipe Size= 18" RCP Roughness (n ) = 0.013 Pipe Length = 187 .21 LF Downstream Invert = 264 .36ft Upstream Invert= 266 .05 ft Pipe Slope= 0.0082 ft/ft -(0 .82%) Calculated Parameters Cross-sectional Area = L x W A = 1 . 77 sq . ft. Hydraulic Radius = NP R = 0 .375 ft 100-Year Event (Per const ru ction drawings in Exhibit C) Head/ass Ca lculations Q,0 = 6.80c.fe (Per Appendix A-3) s /I O = 0.00 42ft I ft Pipe slope is greater that fr iction slope . Using Manning's Equation (1 ), normal depth in the p ipe is determined . Normal depth in a pipe may be determined us ing the ration of the actual discharge to capacity discharge Q /Q ful/ = 6.8/9.5 = 0.72 Per Figure 5.3 provided, the ratio of normal depth to pipe diameter is provided below. Yn I D= 0.6 80 Yn = l.02ft Using Equation (2) and the normal depth, the downstream and upst ream water surface elevat ions are given below . WSE DS = 265.38 WSE u, = 267 .07 Downstream Upstream 2 APPENDIXC DRAINAGE CALCULATIONS <( w c a::: w c <( <( Q. w c w w 0 Q. w C> a::: ~ <( Q. <( <( w () 0 z ~ > (/) ~ <( w <( c <( w ~ I-cw zw > a::: 8 z a::: <( a::: w c ::> <( ~ <( c NO. I AC. 0.4 0.5 0.9 Existing Conditions EA-D1 2.17 2.17 0.00 0.00 EA-D2 7.28 7.28 0.00 0.00 Dartmouth Development DA-D1 2.17 2.17 0.00 0.00 DA-D2 7.14 6.81 0.00 0.33 Proposed Development PA-C1 1.68 0.00 0.33 1.35 PA-C2 0.51 0.00 0.06 0.45 PA-D1 2.16 2.16 0.00 0.00 PA-D2A 4.62 4.29 0.00 0.33 PA-D2B 1.20 1.20 0.00 0.00 PA-D2C 0.50 0.50 0.00 0.00 POND 0.00 0.00 0.00 0.00 APPENDIX C-1 RATIONAL METHOD RUNOFF CALCULATIONS COTIEN'S BEE TRIB 'A' DRAINAGE <( >-() I-() ~ 0 I-() <( 0 I-I-~ () w 8 ~ ns (/) N II) 0 () ::> £:! 0 !!? 0 !: ft/s min I min I In/Hr cfs In/Hr cfs I In/Hr I 0.87 1.2 6.9 10.0 6.3 5.5 7.7 6.7 8.6 2.91 1.5 9.7 10.0 6.3 18.4 7.7 22.4 8.6 0.87 1.2 6.9 10.0 6.3 5.5 7.7 6.7 8.6 3.02 1.5 9.7 10.0 6.3 19.1 7.7 23.2 8.6 1.38 1.9 5.0 10.0 6.3 8.7 7.7 10.6 8.6 0.44 1.7 1.4 10.0 6.3 2.8 7.7 3.4 8.6 0.86 1.2 6.1 10.0 6.3 5.5 7.7 6.6 8.6 2.01 1.5 9.7 10.0 6.3 12.7 7.7 15.5 8.6 0.48 1.1 5.1 10.0 6.3 3.0 7.7 3.7 8.6 0.20 1.1 5.1 10.0 6.3 1.3 7.7 1.5 8.6 0.00 10.4 0.0 10.0 6.3 0.0 7.7 0.0 8.6 Predevelopment Peak Flowrate 23.9 29.1 Dartmouth Peak Flowrate 24.6 29.9 Postdevelopment Peak Flowrate 34.0 41.3 Overall Flow Increase 10.1 12.3 0 II) ..... II) N 0 £:! 0 cfs I In/Hr I cfs 7.5 9.9 8.5 25.1 9.9 28.7 7.5 9.9 8.5 26.1 9.9 29.8 11.9 9.9 13.6 3.8 9.9 4.3 7.4 9.9 8.5 17.4 9.9 19.8 4.2 9.9 4.7 1.7 9.9 2.0 0.0 9.9 0.0 32.6 37.3 33.6 38.3 46.4 53.0 13.8 15.7 0 0 0 0 0 II) 0 ..... !!? 0 !: 0 I In/Hr I cfs In/Hr cfs 11.1 9.7 12.5 10.9 11.1 32.5 12.5 36.5 11.1 9.7 12.5 10.9 11.1 33.7 12.5 37.8 11.1 15.4 12.5 17.3 11.1 4.9 12.5 5.5 11.1 9.6 12.5 10.8 11.1 22.4 12.5 25.2 11.1 5.4 12.5 6.0 11.1 2.2 12.5 2.5 11.1 0.0 12.5 0.0 42.1 47.3 43.3 48.7 59.9 67.3 17.8 20.0 9/27/2004 0428-drainage-Bertrand-040923.xls Appendix C-1 co: co: .. QOI ~ .. QOI QOI < .. ... ~ . co: 0 <o ~ QOI QOI zZ bf) bf) c 0 co: co: .... < = = = .. ~~ .. co: .... ·; QOI co: u ... .. .. Q < OQ QO 0 cfs cfs Existing Conditions EA-Dl 6.7 0 .0 EA-D 2 22.4 0 .0 Dartmouth Development DA-D l 6 .7 0.0 DA-D2 23 .2 3 .0 P roposed Develop ment PA-Cl 10 .6 0.0 PA-C2 3.4 3.0 PA-Dl 6.6 3 .0 PA -D 2A 2 5 .2 0.0 PA-D2B 6.0 0 .0 PA -D 2C 2.5 0.0 APPENDIX C -2 INLET COMPUTATIONS COTTEN'S BEE TRIB 'A' DRAINAGE 5-Year Event -QOI -= .... -co: 0 -co: -0 DESCRIPTIO N E--- cfs 6.7 18" CMP Cu lve rt 22.4 6.7 18" CMP Cu lve rt 26 .2 10 .6 Recessed Low Po int Inl et 6.4 Recessed Low Po in t Inl et 9.6 18 " CMP Cu lve rt 2 5.2 6 .0 2 .5 ~ .. QOI ~ "'O ... QOI 0 .. "'O QOI "'° .... c ~ O" ... 0 .. ~ QOI .. co: ~ < ~ u ~ ~ u 0 Curb Inlet cfs ft ft cfs 0 .00 0 .00 0 .00 0.00 2.33 4 .55 5 0 .00 2.3 3 2.73 5 0.00 0.00 0.00 0 .00 0.00 9/2 7/2 004 0428-drai nag e-Bertra nd-040923.x ls Appen dix C-2 ~ ~ J.. QJ ~ J.. QJ QJ < J.. j> CJ • ~ 0 <o ~ QJ QJ zZ CD CD c 0 ~ ~ ~< = = = J.. J.. ~ ~~ ·; ... QJ ~ u j> J.. J.. ~< o~ ~o 0 cfs cfs Existing Conditions EA-Dl 7.5 0.0 EA-D2 25 .1 0.0 Dartmouth Developm ent DA-Dl 7 .5 0 .0 DA-D2 26 .1 3 .0 Propo sed Developm ent PA-Cl 11.9 0.0 PA-C2 3 .8 3 .0 PA-Dl 7.4 3.0 PA-D 2A 25 .2 0.0 PA-D2B 6 .0 0 .0 PA-D 2C 2.5 0.0 APP ENDIX C-2 INLET COMPUTATIONS COTTEN'S BEE T RIB 'A' DRAINAGE 10-Year Eve nt ..... QJ -= ~ ..... ~ 0 -~ ..... 0 DESCRIPTIO N E--< cfs 7.5 18" CMP Cu lvert 25.1 7 .5 18" CMP Cu lvert 29 .l 11.9 Recessed Low Point Inlet 6.8 Recessed Low Point Inlet 10.4 18" CMP Culvert 25.2 6 .0 2.5 ~ J.. QJ ~ '"O j> QJ 0 J.. '"O QJ '"O ... c i:i.. j> O"' 0 J.. ~ QJ J.. ~ i=i::: i:i.. u < ~ ~ u 0 C u rb Inlet cfs ft ft cfs 0 .00 0.00 0 .00 0.00 2 .33 5 .10 10 0 .00 2 .33 2 .90 5 0.00 0.00 0.00 0.00 0 .00 9/27/2004 0428-drainage-Bertrand-040923.xls Appendi x C-2 ~ ~ "" ~ ~ "" ~ ~ < "" ;;.. ~ . ~ 0 <o ~ ~ ~ zZ e1> e1> c 0 ~ ~ .... < = = = "" ~~ "" ~ .... .... ~ ~ ~ u ;;.. "" "" 0 ~ ~o 0 cfs cfs Existing Condition s EA -Dl 8.5 0.0 EA -D 2 28.7 0.0 Dartmouth Development DA-D l 8.5 0.0 DA-D2 29.8 3.0 P rop os ed D eve lopment PA-Cl 13.6 0.0 PA-C2 4 .3 3 .0 PA-Dl 8.5 3 .0 PA -D 2A 25 .2 0 .0 PA -D 2B 6.0 0 .0 PA-D 2C 2 .5 0 .0 APPENDIX C-2 INLET COMPUTATIONS COTTEN'S BEE TRIB 'A' DRAINAGE 25-Year Even t -~ -= .... -~ 0 -~ -0 D ESCRIPTI ON ~ cfs 8.5 18" CMP Cul ve rt 28 .7 8.5 18" CMP Cul ve rt 32 .8 13 .6 Recessed Low Po int Inl et 7 .3 Recessed Low Po int Inl et 11.5 18" CMP Cu lve rt 2 5.2 6 .0 2.5 ~ "" ~ J "O ;;.. ~ 0 "" "O ~ -d .... c ~ O"' ;;.. 0 "" ~ "" ~ ·~ ~ ~ u < J J u 0 Cu rb Inlet cfs ft ft cfs ·----- 0 .00 0 .00 0 .00 0 .00 2 .33 5 .83 10 0.00 2.33 3.13 5 0 .00 0 .00 0 .00 0.00 0.00 9/2 7/2 004 04 28-drainage-Bertrand-04092 3.x ls App endi x C-2 c= c= i.. ~ ~ i.. ~ ~ < i.. ... C-' . c= 0 <o ~ ~ ~ zz bl) bl) c 0 c= c= ~~ i;;:::: = = i.. i.. c= ·; ... ~ c= u > i.. i.. ~< o~ ~o 0 cfs cfs Existing Conditions EA-Dl 9 .7 0.0 EA-D 2 32 .5 0 .0 Dartmouth Develop men t DA-Dl 9 .7 0 .0 DA-D2 33 .7 3 .0 Propos ed D evelopm ent PA-Cl 15.4 0.0 PA-C2 4 .9 3 .0 PA-Dl 9 .6 3 .0 PA-D2A 25 .2 0 .0 PA-D2B 6.0 0 .0 PA-D2C 2.5 0.0 APPENDIX C-2 INLET COMPUTATIONS COTTEN'S BEE TRIB 'A' DRAINAGE 50-Year Event -~ -= --c= 0 -c= -0 DESCRIPTION E-- cfs 9.7 18" CMP C ulvert 32 .5 9 .7 18" CMP Culvert 36 .7 15.4 Recessed Low Point Inl et 7 .9 Recessed Low Point In let 12.6 18" CMP Culvert 25 .2 6 .0 2.5 ~ i.. ~ ..j "O > ~ 0 i.. "O ~ "O .> t ~ O"' 0 i.. ~ ~ i.. c= ~ < ~ u ..j ..j u 0 Curb Inlet cfs ft ft cfs 0.00 0 .00 0 .00 0 .00 2.33 6 .59 10 0 .00 2.33 3 .37 5 0.00 0 .00 0 .00 0 .00 0 .00 9/27/2004 0428-drainage-Bertrand -040923 .xls Append ix C-2 ~ ~ i.. Q,j ~ i.. Q,j Q,j < i.. .... C.!l • ~ 0 <o ~ Q,j Q,j zZ l:)J) l:)J) C> 0 ~ ~ ...... < c;:::: Ci .!3 i.. ~~ i.. ~ ... Q,j ~ ~ u .... i.. i.. ~< o ~ ~o 0 cfs cfs Existing Condition s EA -Dl 10.9 0 .0 EA -D 2 36.5 0.0 Dartmouth D eve lopment DA-Dl 10 .9 0 .0 DA-D 2 37.8 3 .0 P ropos ed D eve lop ment PA-Cl 17.3 0.0 PA-C2 5 .5 3.0 PA-Dl 10 .8 3 .0 PA-D 2A 25.2 0.0 PA-D 2B 6 .0 0 .0 PA -D 2C 2 .5 0 .0 APPENDIX C-2 INLET COMPUTATIONS COTTEN'S BEE TRIB 'A' DRAINAGE 100-Yea r Event .... Q,j -Ci ...... .... ~ 0 -~ .... 0 D ESCRIPTIO N E-- cfs 10.9 18" CMP Cul ve rt 36.5 10 .9 18" CMP Cul ve rt 40 .8 17 .3 Recesse d Low Point Inl et 8 .5 Recesse d Low Point In let 13 .8 18" CMP Cul ve rt 2 5 .2 6.0 2 .5 ~ i.. Q,j J "'O .... Q,j 0 i.. "'O Q,j "'O ... C> ~ .... C"' 0 i.. ~ Q,j i.. ~ ~ < ~ u J J u 0 Curb Inlet cfs ft ft cfs 0 .00 0.00 0 .00 0.00 2.33 7.4 1 10 0 .00 2 .33 3 .63 5 0.00 0 .00 0 .00 0 .00 0 .00 9/27/2 004 04 28-drainag e-Bertrand-040923.x ls Append ix C-2 # # Ac. min y r cfs Existing Conditions EA-D1 EOUT1 0 .9 10 .0 5 6 .7 EA-D2 EOUT2 2 .9 10.0 5 22.4 Dartmouth Development DA-D1 DOUT1 0 .9 10 .0 5 6 .7 DA-D2 DOUT2 3 .0 10.0 5 23 .2 Proposed Development PA-C1 POND 1.8 I 10.7 5 13 .6 PA-C2 PA-C1 0.4 10.0 5 3.4 PA-D1 POUT1 0 .9 10.0 5 6 .6 POND POUT2 1.8 11 .3 5 13 .3 •includes 25% Flow Increase for pipe sizes <27" d ia . •• See Plan & Profile for pipe slope used (Pipe slope >or= Friction slope) ••• The interior road cut is modeled as a 2' x2' Box, but is actually larger. APPENDIX C-3 PIPE SIZE CALCULATIONS COTTEN'S BEE TRIB 'A' DRAINAGE cfs 8 .3 22.4 8 .3 23 .2 13.6 4.2 8 .3 13.3 # "' Q,j Q., ~ ..... 0 0 z 5 Year Event cfs O/o O/o 8 .3 0.63 1.11 22.4 0 .60 2.43 8 .3 0 .63 1 .11 23.2 0 .65 2.43 13 .6 0 .11 0.42 4.2 0.16 0.80 8 .3 0 .62 1 .11 13.3 0.21 2.43 fp s cfs 18 6.3 11 .1 BOX 11 .2 45.0 18 6.3 11 .1 BOX 11 .2 45 .0 30 5 .5 26 .8 18 5 .3 9.4 18 6 .3 11 .1 BOX 11 .2 45 .0 min min ' ' 36 0 .10 10 .1 14 0 .02 10 .0 2 2 36 0.10 10 .1 14 0 .02 10 .0 2 2 203 0 .62 11 .3 210 0 .65 10 .7 36 0 .10 10 .1 14 0 .02 11 .3 2 9/27 /2 004 0428-drainage-Bertrand-040923 .xl s Appendi x C-3 2 # # Ac. min y r cfs Existing Conditions EA-D1 EOUT1 0.9 10.0 10 7 .5 EA-D2 EOUT2 2 .9 10 .0 10 25 .1 Dartmouth Development DA-D1 DOUT1 0 .9 10 .0 10 7 .5 DA-D2 DOUT2 3 .0 10 .0 10 26 .1 Proposed Developmen t PA-C1 POND 1 .8 10 .7 10 15 .3 PA-C2 PA-C1 0.4 10.0 10 3 .8 PA-D1 POUT1 0 .9 10 .0 10 7.4 POND POUT2 1.8 11 .3 10 14 .9 •includes 25% Flow Increase for pipe si zes <27" dia . •• See P lan & Profi le for pipe slo pe used (P ipe slope >or= Friction slope) ••• T he inte rior road cu t is mode led as a 2' x2' Box, but is actually larger. APPENDIX C-3 PIPE SIZE CAL CU LA T/ONS COTTEN'S BEE TRIB 'A' DRAINAGE cfs 9.4 25 .1 9.4 26 .1 15.3 4.7 9 .3 14 .9 # "' <I.I Q. ~ .... 0 0 z 10 Year Event cfs 9.4 25 .1 9.4 26 .1 15 .3 4 .7 9 .3 14 .9 = -1: .:= -1: .... <I.I c:J Q. "i:: 0 ~ 00 % 0 .79 0 .76 0 .79 0 .82 0 .14 0 .20 0 .78 0 .27 % " 1.11 2.43 1.11 2.43 0.42 0 .80 1.11 2.43 fp s cfs 18 6 .3 11 .1 BOX 11 .2 45 .0 18 6 .3 11.1 BOX 11 .2 45 .0 30 5 .5 26 .8 18 5 .3 9.4 18 6 .3 11 .1 BOX 11 .2 45 .0 min min ' ' 36 0 .10 10 .1 14 0 .02 10.0 2 2 36 0.10 10 .1 14 0 .02 10.0 2 2 203 0 .62 11 .3 210 0 .65 10.7 36 0 .10 10.1 14 0 .02 11 .3 2 2 912 712 00 4 0428-drainage-Bertrand-040923.xls Appendi x C-3 # # A c. min y r cfs Ex isting Conditions EA-D1 EOUT1 0 .9 10 .0 25 8 .5 EA-D2 EOUT2 2 .9 10 .0 25 28 .7 Dartm o uth Developm ent DA-D1 DOUT1 0 .9 10 .0 25 8 .5 DA-D2 DOUT2 3 .0 10.0 25 29 .8 Propos ed Developmen t PA-C 1 POND 1.8 10 .7 25 17 .5 PA-C2 PA-C1 0.4 10.0 25 4 .3 PA-D1 POUT1 0 .9 10 .0 25 8 .5 POND POUT2 1.8 11.3 25 17.0 *Includes 25% Fl o w Increase fo r pipe sizes <27" d ia . ** See Plan & Profile fo r pipe slope used (Pipe slope >or= Friction slope) ••• The interi or road cut is mod e led as a 2' x2' Box, but is actually larger. APPENDIX C-3 PIPE SIZE CAL CU LA TIONS COTTEN'S BEE TRIB 'A' DRAINAGE 25 Year Event cfs # cfs O/o % 10 .7 10 .7 1 .03 1 .11 28 .7 28.7 0 .99 2.43 10 .7 10.7 1 .03 1 .11 29 .8 29.8 1.06 2.43 17.5 17.5 0 .18 0 .4 2 5.4 5.4 0 .26 0 .80 10 .6 10 .6 1 .02 1 .11 17 .0 17 .0 0 .35 2.43 fp s cfs 18 6 .3 11 .1 BOX 11 .2 45 .0 18 6 .3 11 .1 BOX 11.2 45 .0 30 5 .5 26 .8 18 5 .3 9.4 18 6 .3 11 .1 BOX 11.2 45 .0 min m in ' ' 36 0 .10 10 .1 14 0 .02 10.0 2 2 36 0 .10 10 .1 14 0 .02 10.0 2 2 203 0 .62 11.3 210 0 .65 10 .7 36 0 .10 10 .1 14 0 .02 11.3 2 2 9/27/2 004 04 28-d rain age-Bertra nd-040923.x ls App e nd ix C-3 # # Ac. min yr cfs Existing Conditions EA-D1 EOUT1 0 .9 10 .0 50 9 .2 EA-D2 EOUT2 2 .9 10.0 50 30 .8 Dartmouth Development DA-D1 DOUT1 0 .9 10 .0 50 9.2 DA-D2 DOUT2 3.0 10.0 50 32 .0 Proposed Development PA-C1 POND 1 .8 10 .7 50 18 .7 PA-C2 PA-C1 0.4 10 .0 50 4 .6 PA-D1 POUT1 0 .9 10 .0 50 9 .1 POND POUT2 1.8 11 .3 50 18 .3 *Includes 25% Flow Increase for pipe sizes <27" dia. ••See P la n & Profile fo r pipe slope used (P ipe slope >or= Frictio n slope) ••• T he interio r road cut is modeled as a 2' x2' Box, but is actu ally la rger. APPENDIX C-3 PIPE SIZE CAL CU LA TIONS COTTEN'S BEE TRIB 'A' DRAINAGE cfs 11 .5 30 .8 11 .5 32 .0 18 .7 5 .8 11.4 18 .3 # "' ~ Q. ~ .... 0 0 :z: 50 Year Event .._ cfs O/o % " 11 .5 1 .18 1 .11 30 .8 1.14 2.43 11 .5 1 .18 1 .11 32 .0 1.22 2.43 18 .7 0.21 0.42 5 .8 0 .30 0 .80 11.4 1.17 1 .11 18.3 0.40 2.43 fp s cfs 18 6.3 11 .1 BOX 11 .2 45 .0 18 6 .3 11 .1 BOX 11 .2 45 .0 30 5.5 26 .8 18 5 .3 9.4 18 6 .3 11 .1 BOX 11 .2 45 .0 min min ' ' 36 0 .10 10 .1 14 0 .02 10.0 2 2 36 0 .10 10 .1 14 0 .02 10 .0 2 2 203 0 .62 11 .3 210 0 .65 10.7 36 0 .10 10 .1 14 0 .02 11 .3 2 2 9/27/2004 0428-dra inage-Be rtrand-040923 .xl s Appendi x C-3 # # Ac. min yr cfs Existing Conditions EA-D1 EOUT1 0 .9 10.0 100 10 .9 EA-D2 EOUT2 2 .9 10 .0 100 36 .5 Dartmouth Development DA-D1 DOUT1 0 .9 10.0 100 10 .9 DA-D2 DOUT2 3 .0 10 .0 100 37 .8 Proposed Development PA-C1 POND 1.8 10 .7 I 100 22 .2 PA-C2 PA-C1 0.4 10 .0 100 5.5 PA-D1 POUT1 0 .9 10.0 100 10.8 POND POUT2 1.8 11 .3 100 21 .7 •includes 25% Flow Increase for pipe sizes <27" dia . •• See Plan & Profile for pipe slope used (P ipe slope >or= Frictio n slope) ••• T he inte rior road cut is mode led as a 2' x2' Box, but is actually larger. APPENDIX C-3 PIPE SIZE CAL CU LA TIONS COTTEN'S BEE TRIB 'A' DRAINAGE cfs 13 .6 36.5 13 .6 37 .8 22 .2 6.8 13.5 21 .7 # "' Cl.I 0. A: ...... 0 0 z 100 Year Event cfs % % " 13 .6 1.66 1.11 36 .5 1.59 2.43 13 .6 1.66 1.11 37 .8 1.72 2.43 22 .2 0 .29 0.42 6 .8 0.42 0 .80 13.5 1.64 1.11 21 .7 0 .56 2.43 fps cfs 18 6 .3 11 .1 BOX 11 .2 45.0 18 6 .3 11 .1 BOX 11 .2 45 .0 30 5 .5 26 .8 18 5 .3 9.4 18 6 .3 11 .1 BOX 11 .2 45 .0 min min I I 36 0 .10 10 .1 14 0 .02 10 .0 2 2 36 0 .10 10.1 14 0 .02 10.0 2 2 203 0 .62 11 .3 210 0 .65 10 .7 36 0 .10 10 .1 14 0.02 11 .3 2 2 9/27 /2004 0428-dra inage-Bertrand-040923 .xl s Append ix C-3 APPENDIXD DETENTION CALCULATIONS APPENDIX D-2 Stage/Storage -Stage/Discharge -Storage Indication Curves COTTEN'S BEE TRIB 'A I DRAINAGE Elevation Area Area (ft.) (sf.) (acres) 260.65 0 .0 0 .000 261 .00 644.0 0 .015 261 .50 4504.0 0 .103 262 .00 9162 .0 0 .210 262 .50 14051 .0 0.323 263 .00 15314.0 0 .352 263 .50 16218.0 0 .372 264 .00 17148.0 0 .394 264.50 17149.0 0 .394 COTTEN'S BEE TRIB 'A' DRAINAGE Stage-Storage Curve 1 .200 1 .000 ~ 0.800 0 cu -;-0 .600 C"> E ~ 0.400 0.200 0 .000 --- /' / / jv / 260 .50 261 .50 262 .50 263 .50 264.50 Elevation (msl) Inc. Volm . Volume Outlet 1 (ac .-ft.) (ac .-ft.) Invert Elev . (ft.) 260 .65 Orifice Dia . (in .) or Weir Length (ft.) 12 Weir (cfs) 0 .000 0 .000 0.00 0 .002 0 .002 2 .98 0 .026 0 .028 4 .65 0.077 0 .105 5 .86 0 .132 0 .237 6 .86 0 .168 0.406 7.73 0 .181 0 .586 8 .51 0 .191 0 .778 9 .23 0 .197 0 .975 9 .89 COTTEN'S BEE TRIB 'A' DRAINAGE 60 .0 50.0 ~ 40.0 Q) ~ 30.0 cu .s::: 0 .!!! 20.0 c 10.0 -0 .0 260 .50 Stage-Discharge Curve • I I / _..A v ~ -_,,...,- 261 .50 262 .50 263 .50 264 .50 Elevation (msl) Outlet 2 Outlet 3 I Total 0 263 .25 Flow 0 10 Outfall Weir (cfs) We ir (cfs) (cfs) a +~ -(/) ~~ N 0 .00 0.00 0 .00 0 .00 0.00 2 .98 0 .00 0.00 4 .65 0 .00 0 .00 5 .86 0 .00 0 .00 6 .86 0.00 0 .00 7 .73 0 .00 3 .86 12 .37 0 .00 20 .05 29 .28 0.00 43.14 53 .04 COTTEN'S BEE TRIB 'A' DRAINAGE 1500 1200 900 600 300 0 ·~ 0 Storage Indication Curve ~ ~ ...... / v ll'" ./ T ~~ . . ' 10 20 30 40 50 60 Discharge ( cfs) 9/27/2004 0428-drainage-Bertrand-040923 .xls Appendix D-2 D.A. D.A. 'II: &. c c. w E Cl ID z ~ u N ai c :Ii! "'C cl: cl: >-8 :r ll. ll. Qp 13.6 3.7 Tc 11.3 10.0 inc 1.0 1.0 Time cfs cfs 0.0 0.0 0.0 0.0 1.0 1.2 0.4 1.6 2.0 2.4 0.7 3.2 3.0 3.6 1.1 4.7 4.0 4.8 1.5 6.3 5.0 6.0 1.9 7.9 6.0 7.2 2.2 9.5 7.0 8.4 2.6 11.0 8.0 9.7 3.0 12.6 9.0 10.9 3.3 14.2 10.0 12.1 3.7 15.8 11.0 13.3 3.5 16.8 12.0 13.2 3.3 16.5 13.0 12.6 3.1 15.7 14.0 12.0 3.0 14.9 15.0 11.4 2.8 14.1 16.0 10.8 2.6 13.3 17.0 10.1 2.4 12.6 18.0 9.5 2.2 11.8 19.0 8.9 2.0 11.0 20.0 8.3 1.9 10.2 21.0 7.7 1.7 9.4 22.0 7.1 1.5 8.6 23.0 6.5 1.3 7.8 24.0 5.9 1.1 7.0 25.0 5.3 0.9 6.2 26.0 4.7 0.7 5.5 27.0 4.1 0.6 4.7 28.0 3.5 0.4 3.9 29.0 2.9 0.2 3.1 30.0 2.3 0.0 2.3 31.0 1.7 0.0 1.7 32.0 1.1 0.0 1.1 33.0 0.5 0.0 0.5 34.0 0.0 0.0 0.0 35.0 0.0 0.0 0.0 36.0 0.0 0.0 0.0 37.0 0.0 0.0 0.0 38.0 0.0 0.0 0.0 39.0 0.0 0.0 0.0 40.0 0.0 0.0 0.0 165.0 0.0 0.0 0.0 166.0 0.0 0.0 0.0 167.0 0.0 0.0 0.0 168.0 0.0 0.0 0.0 169.0 0.0 0.0 0.0 170.0 0.0 0.0 0.0 PEAK FLOWS 13.3 3.7 16.8 0.00 indicates inital condition APPENDIX D-3 Proposed Detention Pond Routing COTTEN'S BEE TRIB 'A' DRAINAGE Pond Routing EVENT= 5 D.A. c: c: 0 0 :; t. > c: "' ..... 0 ~ w < + .!. i5 N c: + ..... "'C c + ~ c: + c: cl: cl: le le a 0 c: ll. ll. ll. 8.3 15.5 10.1 10.0 1.0 1.0 cfs cfs cfs cfs ft cfs 1.6 0.0 0.0 0.0 0.00 0.0 0.0 4.7 0.0 1.6 0.88 260.75 0.8 1.5 7.9 0.0 4.7 2.64 260.94 1.6 3.1 11.0 1.3 7.9 3.27 261.03 2.5 4.6 14.2 5.5 12.4 3.47 261.08 3.3 6.2 17.3 12.1 19.6 3.79 261.18 4.1 7.7 20.5 21.0 29.4 4.22 261.30 4.9 9.3 23.7 31.9 41.5 4.76 261.45 5.8 10.8 26.8 45.5 55.6 5.05 261.54 6.6 12.4 30.0 61.8 72.3 5.24 261.62 7.4 13.9 32.6 80.8 91.8 5.47 261.70 8.2 15.5 33.3 102.0 113.4 5.71 261.80 7.9 14.7 32.2 123.3 135.2 5.96 261.90 7.5 13.9 30.6 143.2 155.5 6.19 261.99 7.1 13.2 29.1 161.2 173.8 6.31 262.04 6.7 12.4 27.5 177.4 190.2 6.40 262.08 6.3 11.6 25.9 191.9 204.9 6.48 262.12 5.9 10.8 24.3 204.7 217.8 6.55 262.15 5.5 10.1 22.7 215.8 229.1 6.61 262.18 5.0 9.3 21.2 225.3 238.6 6.67 262.21 4.6 8.5 19.6 233.0 246.4 6.71 262.23 4.2 7.7 18.0 239.1 252.6 6.74 262.24 3.8 7.0 16.4 243.6 257.1 6.77 262.26 3.4 6.2 14.9 246.5 260.0 6.78 262.26 3.0 5.4 13.3 247.8 261.3 6.79 262.27 2.6 4.6 11.7 247.5 261.0 6.79 262.27 2.2 3.9 10.1 245.6 259.2 6.78 262.26 1.8 3.1 8.6 242.2 255.7 6.76 262.25 1.4 2.3 7.0 237.3 250.8 6.73 262.24 0.9 1.5 5.4 230.9 244.3 6.70 262.22 0.5 0.8 4.0 223.0 236.3 6.65 262.20 0.1 0.0 2.8 213.8 227.0 6.60 262.18 0.0 0.0 1.6 203.5 216.6 6.54 262.15 0.0 0.0 0.5 192.2 205.1 6.48 262.12 0.0 0.0 0.0 179.8 192.7 6.41 262.09 0.0 0.0 0.0 167.1 179.8 6.34 262.06 0.0 0.0 0.0 154.6 167.1 6.27 262.02 0.0 0.0 0.0 142.2 154.6 6.18 261.98 0.0 0.0 0.0 130.2 142.2 6.04 261.93 0.0 0.0 0.0 118.4 130.2 5.90 261.87 0.0 0.0 0.0 106.8 118.4 5.77 261.82 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 0.0 0.0 0.0 0.00 260.65 0.0 0.0 6.8 262.27 8.2 15.5 (.) N c cl: ll. 1.5 10.0 1.0 0.0 0.2 0.3 0.5 0.6 0.8 0.9 1.1 1.2 1.4 1.5 1.5 1.4 1.3 1.2 1.2 1.1 1.0 0.9 0.8 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 D.A. D.A. c w (.') en ...J 0 ...J ~ < ll. i5 N < I-c I-0 cl: cl: I-!!1 e~ 0 >< w w .... w 8.3 22.4 10.1 10.0 1.0 1.0 cfs cfs cfs cfs 0.0 0.0 0.0 0.0 3.4 0.8 2.2 3.1 7.7 1.7 4.5 6.1 10.8 2.5 6.7 9.2 13.6 3.3 9.0 12.3 16.4 4.1 11.2 15.3 19.4 5.0 13.4 18.4 22.4 5.8 15.7 21.5 25.2 6.6 17.9 24.5 28.0 7.4 20.2 27.6 30.7 8.3 22.4 30.6 29.8 8.0 21.3 29.2 28.8 7.5 20.2 27.7 27.8 7.1 19.0 26.2 26.6 6.7 17.9 24.6 25.4 6.3 16.8 23.1 24.3 5.9 15.7 21.6 23.1 5.5 14.6 20.0 21.9 5.1 13.4 18.5 20.7 4.7 12.3 17.0 19.4 4.2 11.2 15.4 18.2 3.8 10.1 13.9 17.0 3.4 9.0 12.4 15.7 3.0 7.8 10.8 14.5 2.6 6.7 9.3 13.2 2.2 5.6 7.8 11.9 1.8 4.5 6.2 10.7 1.4 3.4 4.7 9.4 0.9 2.2 3.2 8.1 0.5 1.1 1.7 6.8 0.1 0.0 0.1 6.6 0.0 0.0 0.0 6.5 0.0 0.0 0.0 6.5 0.0 0.0 0.0 6.4 0.0 0.0 0.0 6.3 0.0 0.0 0.0 6.3 0.0 0.0 0.0 6.2 0.0 0.0 0.0 6.0 0.0 0.0 0.0 5.9 0.0 0.0 0.0 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.7 8.3 22.4 30.7 10/7/2004 0428-drainage-Bertrand-040923.xls Appendix 0-3 D.A. D.A. Pond Routin!l 'II: .l:. 0 Q. w e z c Cl [IJ ai -0 0 u N + .!. -0 0 :::!! c "'O < < 8 + iii >-J: a. a. c "' Qp 15.3 4.2 Tc 11.3 10.0 inc 1.0 1.0 Time I cfs I cfs cfs cfs 0.0 0.0 0.0 0.0 1.8 0.0 1.0 1.4 0.4 1.8 5.3 0.0 2.0 2.7 0.8 3.5 8.9 0.0 3.0 4.1 1.2 5.3 12.4 2.2 4.0 5.4 1.7 7.1 15.9 7.5 5.0 6.8 2.1 8.9 19.5 15.5 6.0 8.1 2.5 10.6 23.0 26.1 7.0 9.5 2.9 12.4 26.6 39.1 8.0 10.8 3.3 14.2 30.1 55.3 9.0 12.2 3.7 15.9 33.6 74.7 10.0 13.5 4.2 17.7 36.6 97.0 11.0 14.9 4.0 18.9 37.4 121.7 12.0 14.8 3.7 18.5 36.2 146.6 13.0 14.1 3.5 17.6 34.4 170.1 14.0 13.4 3.3 16.8 32.6 191.5 15.0 12.8 3.1 15.9 30.9 211.0 16.0 12.1 2.9 15.0 29.1 228.5 17.0 11.4 2.7 14.1 27.3 244.0 18.0 10.7 2.5 13.2 25.5 257.6 19.0 10.0 2.3 12.3 23.8 269.4 20.0 9.4 2.1 11.4 22.0 279.2 21.0 8.7 1.9 10.6 20.2 287.2 22.0 8.0 1.7 9.7 18.5 293.3 23.0 7.3 1.5 8.8 16.7 297.7 24.0 6.7 1.2 7.9 14.9 300.2 25.0 6.0 1.0 7.0 13.2 300.9 26.0 5.3 0.8 6.1 11.4 299.9 27.0 4.6 0.6 5.2 9.6 297.2 28.0 3.9 0.4 4.4 7.8 292.7 29.0 3.3 0.2 3.5 6.1 286.5 30.0 2.6 0.0 2.6 4.5 278.7 31.0 1.9 0.0 1.9 3.2 269.4 32.0 1.2 0.0 1.2 1.8 258.8 33.0 0.6 0.0 0.6 0.6 247.0 34.0 0.0 0.0 0.0 0.0 234.2 35.0 0.0 0.0 0.0 0.0 220.9 36.0 0.0 0.0 0.0 0.0 207.8 37.0 0.0 0.0 0.0 0.0 194.8 38.0 0.0 0.0 0.0 0.0 181.9 39.0 0.0 0.0 0.0 0.0 169.2 40.0 0.0 0.0 0.0 0.0 156.6 165.0 0.0 0.0 0.0 0.0 0.0 166.0 0.0 0.0 0.0 0.0 0.0 167.0 0.0 0.0 0.0 0.0 0.0 168.0 0.0 0.0 0.0 0.0 0.0 169.0 0.0 0.0 0.0 0.0 0.0 170.0 0.0 0.0 0.0 0.0 0.0 PEAK FLOWS 14.9 4.2 18.9 0.00 indicates inital condition APPENDIX D-3 Proposed Detention Pond Routing COTTEN'S BEE TRIS 'A' DRAINAGE EVENT= 10 D.A. c c 0 0 ~ t. > ., ~ iii -+ -"'O 0 + c c < "' c 0 "' n a. a. 9.3 10.1 1.0 cfs cfs I ft cfs 0.0 0.0 0.00 0.0 1.8 0.99 260.76 0.9 5.3 2.96 260.98 1.8 8.9 3.31 261.04 2.8 14.6 3.57 261.11 3.7 23.4 3.96 261.22 4.6 35.0 4.47 261.37 5.5 49.1 4.98 261.52 6.5 65.7 5.17 261.59 7.4 85.4 5.39 261.68 8.3 108.3 5.65 261.78 9.2 133.6 5.94 261.89 8.9 159.1 6.23 262.00 8.4 182.8 6.36 262.06 8.0 204.5 6.48 262.12 7.5 224.1 6.59 262.17 7.1 241.8 6.68 262.22 6.6 257.5 6.77 262.26 6.1 271.3 6.85 262.29 5.7 283.2 6.91 262.32 5.2 293.1 6.97 262.35 4.7 301.2 7.01 262.37 4.3 307.4 7.04 262.39 3.8 311.8 7.07 262.40 3.4 314.4 7.08 262.40 2.9 315.1 7.09 262.41 2.4 314.1 7.08 262.40 2.0 311.3 7.07 262.40 1.5 306.8 7.04 262.38 1.1 300.6 7.01 262.37 0.6 292.6 6.96 262.35 0.1 283.2 6.91 262.32 0.0 272.5 6.85 262.30 0.0 260.6 6.79 262.26 0.0 247.6 6.72 262.23 0.0 234.2 6.64 262.20 0.0 220.9 6.57 262.16 0.0 207.8 6.50 262.13 0.0 194.8 6.42 262.09 0.0 181.9 6.35 262.06 0.0 169.2 6.28 262.03 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 < N 0 < a. 17.4 10.0 1.0 0.0 1.7 3.5 5.2 6.9 8.7 10.4 12.2 13.9 15.6 17.4 16.5 15.6 14.8 13.9 13.0 12.2 11.3 10.4 9.6 8.7 7.8 6.9 6.1 5.2 4.3 3.5 2.6 1.7 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0. 0.0 0.0 0.0 0.0 0.0 0.0 7.1 262.41 9.2 17.4 (.) N 0 < a. 1.7 10.0 1.0 0.0 0.2 0.3 0.5 0.7 0.9 1.0 1.2 1.4 1.6 1.7 1.6 1.6 1.5 1.4 1.3 1.2 1.1 1.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 D.A. D.A. 0 w "' (!) ...J 0 ...J ~ < a. c N < f-0 f-0 f-!!? < < 8~ 0 >< w w I-w 9.4 25.1 10.1 10.0 1.0 1.0 cfs cfs cfs cfs 0.0 0.0 0.0 0.0 3.8 0.9 2.5 3.4 8.6 1.9 5.0 6.9 11.8 2.8 7.5 10.3 14.9 3.7 10.1 13.8 18.1 4.6 12.6 17.2 21.5 5.6 15.1 20.6 24.8 6.5 17.6 24.1 27.8 7.4 20.1 27.5 30.9 8.3 22.6 31.0 34.0 9.3 25.1 34.4 33.0 8.9 23.9 32.8 31.9 8.5 22.6 31.1 30.6 8.0 21.4 29.4 29.3 7.5 20.1 27.7 28.0 7.1 18.9 25.9 26.6 6.6 17.6 24.2 25.3 6.2 16.3 22.5 24.0 5.7 15.1 20.8 22.6 5.2 13.8 19.1 21.3 4.8 12.6 17.3 19.9 4.3 11.3 15.6 18.5 3.8 10.1 13.9 17.1 3.4 8.8 12.2 15.7 2.9 7.5 10.5 14.3 2.4 6.3 8.7 12.9 2.0 5.0 7.0 11.4 1.5 3.8 5.3 10.0 1.1 2.5 3.6 8.6 0.6 1.3 1.9 7.1 0.1 0.0 0.1 6.9 0.0 0.0 0.0 6.9 0.0 0.0 0.0 6.8 0.0 0.0 0.0 6.7 0.0 0.0 0.0 6.6 0.0 0.0 0.0 6.6 0.0 0.0 0.0 6.5 0.0 0.0 0.0 6.4 0.0 0.0 0.0 6.4 0.0 0.0 0.0 6.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.0 9.4 25.1 34.5 10/7/2004 0428-drainage-Bertrand-040923.xls Appendix D-3 D.A. D.A. 'II: .c. 0 c. w E Cl ID z e u N ffi 0 ::i;; "O ci: ci: >-8 ::c 0.. 0.. Qp 17.5 4.7 Tc 11.3 10 .0 Inc 1.0 1.0 Time I cfs cfs 0 .0 0.0 0 .0 0 .0 1.0 1.5 0 .5 2.0 2 .0 3.1 0 .9 4.0 3.0 4 .6 1.4 6.1 4 .0 6 .2 1.9 8 .1 5.0 7 .7 2.4 10.1 6.0 9 .3 2.8 12 .1 7.0 10 .8 3 .3 14.2 8.0 12 .4 3 .8 16 .2 9.0 13.9 4 .3 18 .2 10 .0 15 .5 4 .7 20 .2 11 .0 17 .0 4 .5 21 .5 12 .0 16.9 4 .3 21 .2 13 .0 16.1 4 .0 20 .2 14 .0 15.3 3.8 19 .1 15 .0 14 .6 3.6 18 .1 16 .0 13 .8 3 .3 17 .1 17.0 13.0 3 .1 16 .1 18 .0 12.2 2 .8 15 .1 19 .0 11 .5 2.6 14.1 20.0 10 .7 2.4 13.1 21.0 9 .9 2.1 12 .1 22 .0 9 .2 1.9 11 .1 23 .0 8.4 1.7 10 .0 24 .0 7 .6 1.4 9 .0 25 .0 6 .8 1.2 8.0 26.0 6.1 0.9 7 .0 27.0 5 .3 0.7 6 .0 28.0 4.5 0 .5 5.0 29 .0 3.7 0 .2 4 .0 30.0 3.0 0.0 3.0 31 .0 2.2 0 .0 2 .2 32 .0 1.4 0 .0 1.4 33 .0 0 .6 0 .0 0 .6 34 .0 0 .0 0 .0 0 .0 35.0 0 .0 0 .0 0.0 36.0 0 .0 0.0 0 .0 37 .0 0.0 0.0 0 .0 38 .0 0.0 0 .0 0 .0 39 .0 0.0 0 .0 0 .0 40.0 0.0 0.0 0 .0 165 .0 0.0 0 .0 0 .0 166 .0 0.0 0 .0 0.0 167 .0 0.0 0 .0 0 .0 168 .0 0.0 0 .0 0 .0 169.0 0.0 0 .0 0 .0 170 .0 0.0 0.0 0.0 PEAK FLOWS 17.0 4.7 21 .5 0.00 indicates inital conditi on APPENDIX D-3 Proposed Detention Pond Routing COTTEN'S BEE TRIB ~'DRAINAGE Pond Routing EVEN T= 25 D.A. c c ~ 0 "' t. > c Cll .... 0 ~ w < + ~ Ci N c + .... "O 0 + c + c ci: ci: iC ~ a 0 c 0.. 0.. 0.. 10 .6 19 .8 10 .1 10 .0 1.0 1.0 cfs cfs cfs cfs ft cfs 2.0 0.0 0.0 0.0 0.00 0.0 0.0 6 .1 0.0 2.0 1.13 260.77 1.1 2 .0 10 .1 0.0 6.1 3.19 261 .00 2 .1 4 .0 14.2 3.4 10 .1 3.37 261 .06 3.2 6.0 18 .2 10 .2 17.5 3.70 261.15 4.2 7.9 22 .3 20 .0 28 .4 4 .18 261.28 5.3 9 .9 26.3 32 .7 42.3 4 .79 26 1.46 6.3 11 .9 30 .3 48 .8 59 .0 5.09 261.56 7.4 13 .9 34.4 68 .5 79.1 5.32 261 .65 8.4 15 .9 38 .4 91 .7 102 .9 5.59 26 1.75 9 .5 17 .9 41 .8 118 .3 130 .1 5.90 26 1.87 10.5 19.8 42 .7 147 .6 160 .1 6.23 262.00 10.2 18.8 41 .3 177 .5 190 .3 6.40 262 .08 9 .6 17 .9 39 .3 205 .7 218.9 6.56 262 .1 6 9.1 16.9 37 .3 231 .6 245 .0 6 .70 262 .22 8.6 15 .9 35 .3 255.2 268 .9 6 .83 262.29 8 .1 14 .9 33 .2 276 .6 290 .5 6 .95 262.34 7.5 13 .9 31.2 295 .7 309 .8 7.06 262 .39 7.0 12 .9 29.2 312 .6 326.9 7.15 262.44 6 .5 11 .9 27.2 327 .3 341.8 7.23 262.47 5.9 10 .9 25 .1 339.9 354.5 7.30 262 .51 5.4 9.9 23 .1 350 .4 365 .1 7.34 262.53 4 .9 8.9 21.1 358 .8 373 .5 7.37 262 .54 4.4 7 .9 19 .1 365 .1 379 .8 7.39 262.56 3 .8 6 .9 17 .0 369 .3 384.1 7.41 262 .57 3.3 6 .0 15 .0 371 .5 386.4 7.42 262.57 2.8 5 .0 13.0 371 .7 386 .6 7.42 262 .57 2 .3 4 .0 11 .0 369.9 384 .7 7.41 262.57 1.7 3.0 9.0 366.1 380 .9 7.40 262 .56 1.2 2.0 6 .9 360.3 375 .0 7.38 262.55 0.7 1.0 5.1 352 .5 367 .2 7.35 262 .53 0.2 0.0 3.6 343 .1 357.7 7.31 262 .51 0.0 0.0 2.1 332 .1 346.7 7.26 262.49 0.0 0 .0 0 .6 319 .8 334.2 7 .19 262.46 0.0 0.0 0 .0 306 .2 320.4 7.12 262.42 0 .0 0.0 0.0 292 .1 306 .2 7.04 262 .38 0 .0 0 .0 0.0 278 .2 292 .1 6.96 262.35 0 .0 0.0 0.0 264.4 278 .2 6 .88 262 .3 1 0 .0 0 .0 0 .0 250.8 264.4 6 .81 262 .27 0.0 0.0 0.0 237.4 250 .8 6.73 262 .24 0.0 0.0 0.0 224 .0 237 .4 6.66 262 .20 0 .0 0.0 0 .0 0.0 0.0 0 .00 260 .65 0 .0 0.0 0.0 0 .0 0 .0 0.00 260 .65 0 .0 0.0 0 .0 0.0 0 .0 0.00 260.65 0 .0 0.0 0 .0 0.0 0 .0 0.00 260 .6 5 0 .0 0.0 0 .0 0 .0 0.0 0 .00 26 0.6 5 0.0 0 .0 0 .0 0.0 0 .0 0 .00 260 .65 0 .0 0 .0 7.4 262 .57 10 .5 19.8 u N 0 ci: 0.. 2.0 10 .0 1.0 0.0 0 .2 0.4 0 .6 0 .8 1.0 1.2 1.4 1.6 1.8 2 .0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0 .8 0.7 0.6 0.5 0.4 0.3 0 .2 0 .1 0 .0 0.0 0 .0 0.0 0.0 0 .0 0.0 0 .0 0 .0 0 .0 0 .0 0.0 0.0 0.0 0 .0 0 .0 0.0 2.0 D.A. D.A. 0 w Cl (/) ...J 0 ...J ~ < 0.. Ci N < I-0 I-0 ci: ci: I-!!1 e~ 0 )( w w I-w 10 .7 28 .7 10 .1 10.0 1.0 1.0 cfs cfs cfs cfs 0 .0 0.0 0.0 0 .0 4 .4 1.1 2.9 3.9 9 .7 2 .1 5.7 7.9 13 .1 3.2 8.6 11 .8 16 .6 4 .2 11 .5 15.7 20 .4 5.3 14.4 19 .6 24 .2 6.3 17 .2 23 .6 27 .7 7.4 20 .1 27.5 31.2 8 .5 23 .0 31 .4 34 .7 9.5 25.8 35.4 38 .3 10 .6 28 .7 39 .3 37 .1 10 .2 27 .3 37.5 35 .7 9.7 25 .8 35.5 34 .2 9 .1 24 .4 33.5 32 .7 8.6 23 .0 31 .6 31 .2 8 .1 21.5 29.6 29 .7 7.6 20.1 27 .7 28 .2 7.0 18.7 25 .7 26.7 6 .5 17 .2 23.7 25 .2 6.0 15 .8 21.8 23 .6 5.4 14 .4 19 .8 22 .0 4 .9 12 .9 17 .8 20.5 4.4 11.5 15 .9 18 .9 3.9 10.0 13.9 17.3 3.3 8.6 11 .9 15.7 2.8 7.2 10 .0 14 .0 2.3 5.7 8.0 12 .4 1.7 4.3 6.0 10.8 1.2 2.9 4 .1 9 .1 0.7 1.4 2 .1 7 .5 0 .2 0.0 0.2 7.3 0.0 0.0 0 .0 7.3 0 .0 0.0 0 .0 7.2 0.0 0.0 0.0 7.1 0.0 0.0 0.0 7.0 0.0 0.0 0.0 7 .0 0.0 0.0 0.0 6 .9 0 .0 0.0 0.0 6 .8 0.0 0 .0 0 .0 6 .7 0 .0 0 .0 0 .0 6 .7 0 .0 0.0 0.0 0.0 0.0 0.0 0 .0 0 .0 0.0 0 .0 0 .0 0 .0 0.0 0 .0 0.0 0.0 0 .0 0 .0 0 .0 0 .0 0 .0 0.0 0 .0 0.0 0 .0 0.0 0 .0 38.3 10.7 28 .7 39 .4 10/7/2004 0428-drainage-Bertrand -040923 .xl s Append ix D-3 D.A. D.A. Pond Routing 'II: .s::. c c. w ~ z c Cl ID iii ~ 0 e u N + .!. c :E c ,, ,, < < 8 + ~ >-:I: Cl.. Cl.. .= Qp 18.7 5.4 Tc 11.3 10.0 inc 1.0 1.0 Time cfs I cfs I cfs cfs 0.0 0.0 0.0 0.0 2.2 0.0 1.0 1.7 0.5 2.2 6.6 0.0 2.0 3.3 1.1 4.4 11.0 0.2 3.0 5.0 1.6 6.6 15.4 4.3 4.0 6.6 2.1 8.8 19.8 12.1 5.0 8.3 2.7 11.0 24.2 23.2 6.0 10.0 3.2 13.2 28.6 37.5 7.0 11.6 3.8 15.4 33.0 55.7 8.0 13.3 4.3 17.6 37.3 77.8 9.0 14.9 4.8 19.8 41.7 103.7 10.0 16.6 5.4 22.0 45.3 133.2 11.0 18.3 5.1 23.4 46.3 165.9 12.0 18.1 4.8 22.9 44.8 199.2 13.0 17.3 4.6 21.8 42.6 230.6 14.0 16.5 4.3 20.7 40.4 259.4 15.0 15.6 4.0 19.7 38.2 285.8 16.0 14.8 3.8 18.6 36.0 309.8 17.0 14.0 3.5 17.5 33.8 331.3 18.0 13.1 3.2 16.4 31.6 350.4 19.0 12.3 3.0 15.3 29.4 367.2 20.0 11.5 2.7 14.2 27.2 381.7 21.0 10.6 2.4 13.1 25.0 393.9 22.0 9.8 2.1 12.0 22.8 403.9 23.0 9.0 1.9 10.9 20.6 411.5 24.0 8.2 1.6 9.8 18.4 417.0 25.0 7.3 1.3 8.7 16.2 420.2 26.0 6.5 1.1 7.6 14.0 421.2 27.0 5.7 0.8 6.5 11.8 420.1 28.0 4.8 0.5 5.4 9.6 416.7 29.0 4.0 0.3 4.3 7.4 411.2 30.0 3.2 0.0 3.2 5.5 403.6 31.0 2.3 0.0 . 2.3 3.9 394.1 32.0 1.5 0.0 1.5 2.2 383.1 33.0 0.7 0.0 0.7 0.7 370.4 34.0 0.0 0.0 0.0 0.0 356.4 35.0 0.0 0.0 0.0 0.0 341.8 36.0 0.0 0.0 0.0 0.0 327.3 37.0 0.0 0.0 0.0 0.0 313.0 38.0 0.0 0.0 0.0 0.0 298.9 39.0 0.0 0.0 0.0 0.0 284.9 40.0 0.0 0.0 0.0 0.0 271.0 165.0 0.0 0.0 0.0 0.0 0.0 166.0 0.0 0.0 0.0 0.0 0.0 167.0 0.0 0.0 0.0 0.0 0.0 168.0 0.0 0.0 0.0 0.0 0.0 169.0 0.0 0.0 0.0 0.0 0.0 170.0 0.0 0.0 0.0 0.0 0.0 PEAK FLOWS 18.3 5.4 23.4 0.00 indicates inital condition APPENDIX D-3 Proposed Detention Pond Routing COTTEN'S BEE TRIS 'A' DRAINAGE EVENT= 50 D.A. c c 0 :;::; 0 "' t. > 41 ~ Li:i Ci + ~ ,, + c c < IC a 0 Cl.. Cl.. 11.4 10.1 1.0 I cfs cfs I ft cfs 0.0 0.0 0.00 0.0 2.2 1.22 260.79 1.1 6.6 3.21 261.01 2.3 11.2 3.41 261.07 3.4 19.7 3.79 261.18 4.5 31.9 4.33 261.33 5.6 47.4 4.96 261.51 6.8 66.0 5.17 261.59 7.9 88.6 5.43 261.69 9.0 115.1 5.73 261.81 10.2 145.4 6.08 261.94 11.3 178.6 6.34 262.05 10.9 212.2 6.52 262.14 10.3 243.9 6.70 262.22 9.8 273.2 6.86 262.30 9.2 299.8 7.00 262.37 8.6 324.0 7.14 262.43 8.1 345.8 7.26 262.49 7.5 365.1 7.34 262.53 6.9 382.0 7.40 262.56 6.4 396.6 7.46 262.59 5.8 408.9 7.50 262.62 5.2 418.9 7.54 262.64 4.7 426.7 7.57 262.65 4.1 432.2 7.59 262.66 3.6 435.4 7.60 262.67 3.0 436.5 7.61 262.67 2.4 435.3 7.60 262.67 1.9 431.9 7.59 262.66 1.3 426.4 7.57 262.65 0.7 418.7 7.54 262.64 0.2 409.1 7.50 262.62 0.0 398.0 7.46 262.59 0.0 385.3 7.41 262.57 0.0 371.1 7.36 262.54 0.0 356.4 7.31 262.51 0.0 341.8 7.23 262.47 0.0 327.3 7.15 262.44 0.0 313.0 7.08 262.40 0.0 298.9 7.00 262.36 0.0 284.9 6.92 262.33 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 < N c < Cl.. 22.4 10.0 1.0 0.0 2.2 4.5 6.7 9.0 11.2 13.5 15.7 17.9 20.2 22.4 21.3 20.2 19.1 17.9 16.8 15.7 14.6 13.5 12.3 11.2 10.1 9.0 7.8 6.7 5.6 4.5 3.4 2.2 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.6 262.67 11.3 22.4 u N c < Cl.. 2.2 10.0 1.0 0.0 0.2 0.4 0.7 0.9 1.1 1.3 1.6 1.8 2.0 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 D.A. D.A. c w C> rn ...J 0 ...J :!!: <Cl.. Ci N <"'" c 1-0 .... ~ < < 0 0:: e~ I-Cl.. w w 11.5 32.5 10.1 10.0 1.0 1.0 cfs cfs cfs cfs 0.0 0.0 0.0 0.0 4.8 1.1 3.2 4.4 10.4 2.3 6.5 8.8 14.2 3.4 9.7 13.1 18.2 4.5 13.0 17.5 22.3 5.7 16.2 21.9 26.5 6.8 19.5 26.3 30.3 7.9 22.7 30.7 34.2 9.1 26.0 35.0 38.1 10.2 29.2 39.4 42.0 11.3 32.5 43.8 40.7 10.9 30.8 41.8 39.0 10.4 29.2 39.6 37.4 9.8 27.6 37.4 35.8 9.2 26.0 35.2 34.1 8.7 24.3 33.0 32.5 8.1 22.7 30.8 30.8 7.5 21.1 28.6 29.1 7.0 19.5 26.4 27.3 6.4 17.8 24.3 25.6 5.8 16.2 22.1 23.8 5.3 14.6 19.9 22.1 4.7 13.0 17.7 20.3 4.1 11.4 15.5 18.5 3.6 9.7 13.3 16.8 3.0 8.1 11.1 15.0 2.4 6.5 8.9 13.2 1.9 4.9 . 6.7 11.3 1.3 3.2 4.5 9.5 0.7 1.6 2.4 7.7 0.2 0.0 0.2 7.5 0.0 0.0 0.0 7.5 0.0 0.0 0.0 7.4 0.0 0.0 0.0 7.4 0.0 0.0 0.0 7.3 0.0 0.0 0.0 7.2 0.0 0.0 0.0 7.2 0.0 0.0 0.0 7.1 0.0 0.0 0.0 7.0 0.0 0.0 0.0 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.0 11.5 32.5 43.9 10/7/2004 0428-drainage-Bertrand-040923.xls Appendix D-3 D.A. D.A. Pond Routing 'II: .t: c c. w ~ z c Cl al iii ~ 0 ~ ~ N + ~ (.) c :IE c 'C cl: cl: 8 + iC >-J: [l. [l. -= Qp 22.2 6.0 Tc 11.3 10.0 inc 1.0 1.0 Time cfs cfs cfs cfs 0.0 0.0 0.0 0.0 2.6 0.0 1.0 2.0 0.6 2.6 7.7 0.0 2.0 3.9 1.2 5.1 12.9 1.2 3.0 5.9 1.8 7.7 18.0 7.0 4.0 7.9 2.4 10.3 23.1 16.9 5.0 9.8 3.0 12.9 28.3 30.7 6.0 11.8 3.6 15.4 33.4 48.8 7.0 13.8 4.2 18.0 38.6 71.5 8.0 15.7 4.8 20.6 43.7 98.7 9.0 17.7 5.4 23.1 48.8 130.3 10.0 19.7 6.0 25.7 53.1 166.5 11.0 21.6 5.7 27.4 54.3 206.4 12.0 21.5 5.4 26.9 52.5 247.1 13.0 20.5 5.1 25.6 50.0 285.7 14.0 19.5 4.8 24.3 47.4 321.2 15.0 18.5 4.5 23.0 44.8 353.9 16.0 17.5 4.2 21.8 42.2 383.8 17.0 16.6 3.9 20.5 39.7 410.9 18.0 15.6 3.6 19.2 37.1 435.2 19.0 14.6 3.3 17.9 34.5 456.8 20.0 13.6 3.0 16.6 32.0 475.7 21.0 12.6 2.7 15.3 29.4 491.9 22.0 11.6 2.4 14.0 26.8 505.5 23.0 10.7 2.1 12.8 24.2 516.3 24.0 9.7 1.8 11.5 21.7 524.6 25.0 8.7 1.5 10.2 19.1 530.2 26.0 7.7 1.2 8.9 16.5 533.2 27.0 6.7 0.9 7.6 14.0 533.7 28.0 5.7 0.6 6.3 11.4 531.6 29.0 4.7 0.3 5.0 8.8 527.0 30.0 3.8 0.0 3.8 6.5 519.8 31.0 2.8 0.0 2.8 4.6 510.5 32.0 1.8 0.0 1.8 2.6 499.2 33.0 0.8 0.0 0.8 0.8 486.1 34.0 0.0 0.0 0.0 0.0 471.3 35.0 0.0 0.0 0.0 0.0 455.9 36.0 0.0 0.0 0.0 0.0 440.5 37.0 0.0 0.0 0.0 0.0 425.3 38.0 0.0 0.0 0.0 0.0 410.1 39.0 0.0 0.0 0.0 0.0 395.1 40.0 0.0 0.0 0.0 0.0 380.2 165.0 0.0 0.0 0.0 0.0 0.0 166.0 0.0 0.0 0.0 0.0 0.0 167.0 0.0 0.0 0.0 0.0 0.0 168.0 0.0 0.0 0.0 0.0 0.0 169.0 0.0 0.0 0.0 0.0 0.0 170.0 0.0 0.0 0.0 0.0 0.0 PEAK FLOWS 21.6 6.0 27.4 0.00 indicates inital condition APPENDIX D-3 Proposed Detention Pond Routing COTTEN'S BEE TRIB J!I' DRAINAGE EVENT= 100 D.A. c c .2 0 o; t. > GI :E w ~ ~ 'C 0 + c + c cl: ~ a 0 [l. [l. 13.5 10.1 1.0 cfs cfs ft cfs 0.0 0.0 0.00 0.0 2.6 1.43 260.81 1.3 7.7 3.26 261.03 2.7 14.0 3.54 261.11 4.0 25.0 4.03 261.24 5.4 40.1 4.70 261.43 6.7 58.9 5.09 261.56 8.0 82.2 5.36 261.66 9.4 110.0 5.67 261.79 10.7 142.4 6.04 261.93 12.0 179.2 6.34 262.05 13.4 219.6 6.56 262.16 12.9 260.7 6.79 262.26 12.2 299.7 7.00 262.37 11.6 335.6 7.20 262.46 10.9 368.6 7.35 262.53 10.2 398.7 7.46 262.60 9.6 426.0 7.57 262.65 8.9 450.5 7.66 262.70 8.2 472.3 7.74 262.75 7.6 491.4 7.81 262.78 6.9 507.7 7.88 262.82 6.2 521.3 7.93 262.85 5.5 532.3 7.97 262.87 4.9 540.6 8.00 262.89 4.2 546.2 8.02 262.90 3.5 549.3 8.03 262.90 2.9 549.8 8.03 262.90 2.2 547.6 8.03 262.90 1.5 543.0 8.01 262.89 0.9 535.8 7.98 262.88 0.2 526.4 7.95 262.86 0.0 515.0 7.90 262.83 0.0 501.8 7.85 262.81 0.0 486.9 7.80 262.78 0.0 471.3 7.74 262.74 0.0 455.9 7.68 262.71 0.0 440.5 7.62 262.68 0.0 425.3 7.57 262.65 0.0 410.1 7.51 262.62 0.0 395.1 7.45 262.59 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 0.0 0.00 260.65 0.0 < N c cl: [l. 25.2 10.0 1.0 0.0 2.5 5.0 7.6 10.1 12.6 15.1 17.6 20.2 22.7 25.2 23.9 22.7 21.4 20.2 18.9 17.6 16.4 15.1 13.9 12.6 11.3 10.1 8.8 7.6 6.3 5.0 3.8 2.5 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 262.90 13.4 25.2 (.) N c cl: [l. 2.5 10.0 1.0 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5 2.4 2.3 2.1 2.0 1.9 1.8 1.6 1.5 1.4 1.3 1.1 1.0 0.9 0.8 0.6 0.5 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 D.A. D.A. c w (.!) tJ) .J 0 .J ~ < [l. 0 N < I-c I-0 cl: cl: I-!!l 0 et:: e~ I-[l. w w 13.6 36.5 10.1 10.0 1.0 1.0 cfs cfs cfs cfs 0.0 0.0 0.0 0.0 5.5 1.3 3.6 5.0 11.5 2.7 7.3 10.0 15.9 4.0 10.9 15.0 20.5 5.4 14.6 20.0 25.2 6.7 18.2 25.0 29.7 8.1 21.9 29.9 34.1 9.4 25.5 34.9 38.5 10.7 29.2 39.9 43.0 12.1 32.8 44.9 47.4 13.4 36.5 49.9 45.8 13.0 34.6 47.6 44.0 12.3 32.8 45.1 42.1 11.6 31.0 42.6 40.3 10.9 29.2 40.1 38.4 10.3 27.3 37.6 36.4 9.6 25.5 35.1 34.5 8.9 23.7 32.6 32.5 8.3 21.9 30.1 30.5 7.6 20.1 27.6 28.6 6.9 18.2 25.1 26.6 6.2 16.4 22.6 24.6 5.6 14.6 20.2 22.5 4.9 12.8 17.7 20.5 4.2 10.9 15.2 18.5 3.6 9.1 12.7 16.4 2.9 7.3 10.2 14.4 2.2 5.5 7.7 12.3 1.5 3.6 5.2 10.3 0.9 1.8 2.7 8.2 0.2 0.0 0.2 7.9 0.0 0.0 0.0 7.9 0.0 0.0 0.0 7.9 0.0 0.0 0.0 7.8 0.0 0.0 0.0 7.7 0.0 0.0 0.0 7.7 0.0 0.0 0.0 7.6 0.0 0.0 0.0 7.6 0.0 0.0 0.0 7.5 0.0 0.0 0.0 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.4 13.6 36.5 50.0 10/7/2004 0428-drainage-Bertrand-040923.xls Appendix D-3 SITE PLAN APPLICATION MINIMUM SUBMITTAL REQUIREMENTS _../_ Site plan application completed in full. _../_ $200.00 Application Fee . FOR OFFICE USE ONLY P&Z CASE NO .: gf-~i.{-"J- DATE SUBMITTED: _..J_ $200.00 Development Permit Application Fee . ..J $600.00 Public Infrastructure Inspection Fee if applicable . (This fee is payable if construction of a public --waterline , sewerline , sidewalk , street or drainage facilities is in volved .) _..J_ Eleven (11) folded copies of site plan _x_ One (1) folded copy of the landscape plan. (To be submitted later) N/A One (1) copy of building elevation required for bu il dings with a footprint of 20 ,00 0 sq. ft. or greater _..J_ A list of building materials for all facades that are visible from the public right-of-way. _..J_ A copy of th e attached site plan checklist with all items checked off or a brief explanation as to why they are not checked off. N/A Parkland Dedication requirement approved by the Parks & Recreation Board , please provide proof of approva l (if applicable). Date of Preapplication Conference: _______________________ _ NAME OF PROJECT Kenny Cotten's BBQ Restaurant ADDRESS~? 2360 Harvey Mitchell Parkway South ( \1.1~ Wo\l\_4 er.t.~ <>-~~ Drwe.. ~~S ~) LEGALDESCRIPTION_~L=o=~~B=~=c=k~1~C~o~tt=e=n~S~u=b~di~~=s~io~n ___________________ _ APPLICANT /PROJECT MANAGER 'S INFORMATION (Primary Contact for the Project): Name Veronica J .B. Morgan, P.E . Mitchell & Morgan , LLP Street Add ress 511 University Dr. E .. Ste . 204 City College Stat ion State TX Zip Code 77840 E-Mail Address _v~@~m"""'it=c"""he=l=la""'n=dm~o:...;:;rg=a.:..:.n=.c=om~--- Phone Number (979) 260-6963 Fax Number _....,(9::....:.7-=9..1....) =26=0"--=35=6"--4'----------- PROPERTY OWNER'S INFORMATION : Name Kenny Cotten's L.L .C. (Kenneth Cotten) Street Add ress 5541 Bear Lane Suite 111 City Corpus Christ i State _T~X ______ Zip Code -~7~8~40~5~---E-Mail Address kenneth@craveyrealestate .com Phone Number (361 ) 816-5222 Fa x Number (361) 289-5442 ARCHITECT OR ENGINEER 'S INFORMATION: Name Veroni ca J .B. Morgan, P.E. Mitchell & Morgan, LLP Street Address 511 University Dr . E., Ste . 204 City College Station State TX Zip Code 77840 E-Mail Address v@mitc hellandmorgan .com Phone Number (979) 260-6963 Fax Number _ _,_(9"'"'7~9""'")-=2-=-6-=-0--=3-=-5-=-64-'----------- 6/13/03 /1 _ tfn. l of 6 OTHER CONTACTS (Please specify type of contact , i.e . project manager, potential buyer, local contact , etc.) Name ---1.N~/~A--------------------------------- Street Add ress ------------------C ity ----------- State _____ Z ip Code _____ _ E-Ma il Address ------------- Phon e Numbe r Fa x Nu m ber _____________ _ CURRENTZONING__::C~-~1~w~/~O~-V:..._ ________________________ ~ PRESENTUSEOFPROPERTY_~U~n~d~e~ve=l=o=pe=d::..._ ___________________ _ PROPOSEDUSEOFPROPERTY -~R~e~s~ta~u~ra~n~t __________________ _ VARIANCE(S) REQUESTED AND REASON(S) _.:...:N=on..:..::e,__ ______________ _ #OF PARKING SPACES REQUIRED 200 #OF PARKING SPACES PROVIDED 22'2 MUL Tl-FAMILY RESIDENTIAL PARKLAND DEDICATION Total Acreage __ _.:...;N'"'"/A...;....__ # of Multi-Family Dwelling Units Floodp lain Acreage __ N_/A_ N/ A X $452 = $ _-..:Nc..:..:/_,_A=------ Housing Un its ---'N"""'/-'-A"----N/A #of acres in floodplain N/A #of 1 Bedroom Units N/A #of acres in detention N/A #of 2 Bedroom Units ----'-N=/A-'---#of acres in greenways N/A #of 3 Bedroom Units N/A date dedication approved by Parks Board NI A #of 4 Bedroom Units COMMERCIAL FOR 2 BEDROOM UNITS ONLY Total Acreage __ 3"'"'.'--'-4-"-8....;:;a....;:;c-'-re"'"'s'---- N/A #Bedrooms= 132 sq. ft. Building Square Feet 19,990 sq. feet N/A #Bedrooms < 132 sq. ft. Floodplain Acreage __ 0 ____ _ NOTE: Parkland Dedication fee is due prior to the issuance of a Building Permit. The ap 1 ant has prepared this application and certifies that the facts stated herein and exhibits attached hereto r true and correct . {0,IO--o4 Date 6 11 3103 /) '' SUPPLEMENTAL DEVELOPMENT PERMIT INFORMATION Application is hereby made for the following development specific site/waterway alterations: f]o!-iG The information and conclusions contained in the above plans and supporting documents comply with the current re ements of the City of College Station, Te xas City ~ .... ~~1:~r 13 and its associ~ted Drainage Policy and .Des!gn St n ards . As a condition of approval of this permit ~~!~ffJ . hq to construct the 1mprovem.ents proposed 1n this a · ation a in these documents and t~:"!;;~--~~~ 13 of the College Station City Code . Pro erty Own r ) ~ ..... , ............. 5 .. 8 9 Cr>n\:l'.~r 10 -l \ a\-1, -0 .... 77 _.: l.J.J:: ., ~ "· () : 41:: CERTIFICATIONS: (for proposea alterations withirt ~~tl'Q ard areas .) ~ 1 • n...i . L ,..vA ~ ... --. Na \f\\.O,"'"'~µs ......,~ '\i.,SIO N P..\... ----r ...__..... ~ r . . A .I, A certify t'ttal'el'lt=honresidenti~I structure on or proposed to ~eon this site as part of this applicalon is designated to prevent damage to the structure or its contents as a res4lt of flooji!1\i!-f~o_m _ t11_~ ~ 100yearstorm . ~~~ Eng ineer Date B . I, 'tM A certify that the finished flo or elevation of the lowest floor , including any basement, of any resie ik!Structure , proposed as part of th is applicat ion is at or above the base flood elevation established in the latest Federal Insurance Adm inistrat ion Flood Hazard Study and maps, as amended . Engineer Date C . I, ti\ A , certify that the alterations or development covered by this permit shall not diminish the flood-carrying capacity of the waterway adjoining or cross ing this permitted site and that such alterations or development are consistent with requirements of the City of College Station City Code , Chapter 13 concerning encroachments of floodways and of floodway fringes. Eng ineer Date D. I, N /A , do cert ify that the proposed alterations do not ra ise the level of the 100 year flood above elevation establis hed in the latest Federal Insurance Administration Flood Hazard Study . Eng ineer Date Cond it ions or comments as part of approval: --------------------------- In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to insure that debris from construction , erosion , and sedimentation shall not be deposited in city streets, or existing drainage facilities . All development shall be in accordance with the plans and specifications s ubmitted to and approved by the City Eng ineer for the above named project. All of the applicable codes and ordinances of the City of College Station shall apply . 6/13/03