HomeMy WebLinkAbout51 Development Permit 411 Shenandoah Phase IISHENANDOAH
PHASTS TWO THRU FIVE
FINAL DRAINAGE ANALYSIS
City of
COLLEGE STATION
BRAZOS COUNTY, TEXAS
APRIL, 1996
Prepared By:
McClure Engineering, Inc.
1722 Broadmoor Drive, Suite 210
Bryon, Texas 77802
OAH SHEN AND
PHASES TWO 73 7HRU FIVE
FINAL DRAINAGE ANALYSIS
City of
COLLEGE STA Tl
BRAZOS COUNTY,
ON
TEXAS
APRIL, 1996
Prepared By:
Inc.
uite 210
McClure Engineering,
1722 Broadmoor Drive, S
Bry:::m, Texas 7780 '2 .
,.._
CERTIFICATION
I , Michael R. McClure, Registered Professional Engineer No. 32740, State of Texas, certify
that this report for the drainage design of SHENANDOAH, PHASES TWO THRU FIVE, was
prepared by me in accordance with the provisions of the City of College Station Drainage Policy and
Design Standards for the owners thereof
...
TABLE OF CONTENTS
PAGE NO.
INTRODUCTION 1
PRIMARY DRAINAGE BASIN DESCRIPTION 1
GENERAL CONCEPT 2
TABLE A 4
TABLEB 4
SPECIAL ITEMS 4
CONCLUSION 5
INDEX OF EXHIBITS:
MASTER DRAINAGE MAP "A"
SCS TYPE II STORM ROUTING (HEC-1) "B-1"
RATIONAL/TRIANGULAR HYDROGRAPH
ROUTING (HEC-1) ''B-2"
RATIONAL FORMULA DRAINAGE AREA CALCULATIONS "C-1"
INLET & PIPE SIZE CALCULATIONS "C-2"
EXCERPT FROM FEMA MAP "D"
TRAPEZOIDAL CHANNEL ANALYSIS
( 100-Year Overflow @ Windfree culdesac)
TRAPEZOIDAL CHANNEL ANALYSIS
( 100-Year Overflow @ Tiffany Knuckle)
"E"
"F"
FINAL DRAINAGE ANALYSIS
FOR
SHENANDOAH PHASES TWO Thru FIVE
INTRODUCTION:
In keeping with the drainage plan submittal requirements of the City of College Station Storm
Water Management Plan, this drainage analysis is prepared to demonstrate that the proposed
subdivision is planned within the guidelines of the Storm Water Management Ordinance. The study
includes the drainage analysis for the storm water detention requirements of Phases Two through
Five of the SHENANDOAH development.
PRIMARY DRAINAGE BASIN DESCRIPTION:
The proposed site is located in the southern portion of College Station along the southeast
line of Barron Road and approximately 500 feet from State Highway Six. The site is contiguous to
the SHENANDOAH PHASE ONE subdivision to the southeast. To the northeast of the site are
several small parcels in various stages of development. Northwest of ~his site is an undeveloped tract .
. :.., ..
The site is sparsely wooded with 1 % to 5% slopes. Some grading has been conducted on the
site with development of the SHENANDOAH PHASE ONE subdivision in 1983. No offsite storm
water flo~ to or across this site. According to the Flood Insurance Rate Maps for Brazos County,
Texas and Incorporated Areas, Map Number 48041 C0205 C, effective July 2, 1992, the project site
is not located in a 100-year flood hazard area
The site drains into two major tributaries of Carter's Creek. The northern portion of the site
drains to the north into the Barron Road right-of-way through existing drainage structures and
subsequently into the South Fork of Lick Creek. The smaller southern portion of the site drains to
the south into Tiffany Trail, Windfree Drive, Hunter Creek Drive, Decatur Drive, and Stony Creek
Lane. This storm water runoff enters the existing storm drain system in SHENANDOAH PHASE
ONE. The increase in runoff coefficient of this area is offset by a minor alteration in the drainage
divides to force as much flow as possible to the north into the proposed detention ponds in Phases
Two and Four.
GENERAL CONCEPT:
The flows will be divided as shown on the attached Drainage Plan (See Exhibit "A", Master
Drainage Map). The areas flowing to the existing SHENANDOAH PHASE ONE subdivision are
altered to eliminate the impact of this new development on the existing system. The existing system
was built with the intent of providing drainage outlets for this area, but is inadequate for this purpose.
With the improvements of Phase One, no storm drains were left accessible and all flows entering the
existing SHENANDOAH PHASE ONE area must be overland sheet and gutter flows. Gutter
capacity in existing streets was designed to handle a five year storm and is substantially below our
current standards. These facts limit the amount of flow which can be allowed toward this direction.
Because of these conditions, the drainage divides are shifted to minimize the amount of storm water
which flows into the existing SHENANDOAH infrastructure.
Flows to the north will be intercepted by the proposed streets designed with grades adequate
to convey the flows to a storm drain system (see Exhibits "C-1" and "C-2"). The system is generally
designed to convey the ten year storm underground and the 100 year storm within the rights-of-way
and easements to the two proposed detention ponds. See Exhibits "E" and "F" for overflow
-2 -
calculations at low point inlets. The proposed ponds are sized to detain (post development flow </=
predevelopment flow) for the two , five, ten, twenty-five , fifty, and one hundred year storms. See
Table "A" for peak flow summary data at the study point A, the 18" RCP Culvert at the Wilson
Plumbing Driveway and see Table "B" for peak flow summary data at study point B, the existing
junction box at the intersection of Dove Trail and Barron Road.
Note that the peak discharges for each storm event has been reduced or matched at the stud y
points. The detention pond built with Phase Two greatly over-detains storm flows. This plan was
adopted in order to alleviate an existing restriction (the severely undersized 18" RCP culvert at
Wilson Plumbing driveway), which is the limiting factor in the design of this drainage system. This
culvert at the driveway crossing of the Barron Road ditch line accommodates less than the existing
two-year storm. As an indication of how undersized this culvert is, the culvert immediately
downstream of this one (with a nearly identical flow) is a 27" RCP (46% more area). The detention
pond designed with Phase Four outfalls into an adequately designed 30" RCP built with the
construction ofOakgrove Subdivision. Please note that the capacity of the outfall is 46.5 cfs flowing
full. The SCS type II storm Hydrograph indicates a post-development peak flow of 62 cfs for the
10 year storm and the rational/triangular Hydrograph analysis indicates a post-development peak flow
. : ... · ..
of 38 cfs. Theoretically, both techniques are conservative.
Both ponds will have excellent access from Barron Road and are designed with low
maintenance outlet structures, concrete pipe and a minimum 6' wide berm with 4: 1 side slopes. The
ponds as designed will have roughly .5' of free board for the 100 year storm.
The HEC-1 computer printout in Exhibit "B-1" updates the model for the entire subdivision
for the various SCS Type II storm events. Exhibit "B-2" has been prepared to document the
-3 -
functionality of the Phase Four pond using peak flows obtained from the Rational Method and a
Triangular Hydrograph routing of the pond .. The data is consistent with the "DRAINAGE REPORT
ADDENDUM FOR SHENANDOAH, PHASE THREE" dated January 2, 1996.
TABLE A
Peak Flow Data @ Study Point "A" (Wilson Plumbing Driveway)
STORM PRE-DEV. FLOW POST-DEV. FLOW
(YEAR) (CFS) (CFS)
2 27 18
5 46 24
10 61 27
25 78 31
50 90 34
100 105 50
TABLEB
Peak Flow Data @ Study Point "B"
(Proposed Junction Box @ Dove TraiUBarron Road Intersection
STORM SCS TYPE Il STORM (cfs) RATIONAL\TRIANGULAR (cfs)
(YEAR) POST-DEV. PRE-DEV.(cfs) POST-DEV.(cfs
2 33 31 24
5 44 38 27
10 50 43 29
25 86 49 31
50 108 56 33
100 127 63 35
SPECIAL ITEMS:
Please note the substantial difference in the function of the pond. The outlet (existing 30"
RCP built in Dove Trail) has a capacity of 46.5 cfs, which is halfway between the results of the
-4-
two routing techniques. Because the SCS method has substantially more volume in the computed
Hydrograph, we generally use this method in designing detention ponds. However, both methods
are acceptable under the current drainage ordinance. Based on the result of the Triangular
Hydrograph routing , we have shown that the outfall has adequate capacity and is in compliance
with the Drainage Ordinance. Based on the SCS Type II storm routing, the detention pond has
ample volume for this application.
CONCLUSION:
The drainage plan outlined above satisfies the requirements of the City of College Station
Storm Water Management Plan. The proposed infrastructure has been properly sized and the
peak discharge from the proposed development has been reduced or matched for the full range of
storm events thereby lessening the impact on downstream property and infrastructure .
. ·.
-5-
EXHIBIT B-1
SCS TYPE II STORM ROUTING
ENTIRE SUBDIVISION
1 * •••••••••••••••••••••••••••• ******* *** ••
FLOOD f!YDROGRAPH PACKAGE ( HEC-1 l
HAY 1991
VERSION 4. 0. lE
Lahey F77L-EM/32 version 5.01
Dodson ' A.3sociates , Inc.
RUN DATE 04/09/96 TIME 10:10:27
x x xxxxxxx
x x x
x x x
xxxxxxx xx xx
x x x
x x x
x x xxxxxxx
xxxxx x
x xx
x x
x xxxxx x
x x
x x x
xxxxx xxx
U.S . ARMY CORPS OF ENGINEERS
f!YDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 551-1748
THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73), HEClGS, HEClDB, AND HEClKW.
THE DEFINITIONS OF VARIABLES -RTIMP -AND -RT IOR-HAVE CHANG ED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.
THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN?? VERSION
NEW OPTIONS : DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY,
DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION
KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM
HEC-1 INPUT PAGE
LINE ID ....... 1. ...... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ...••.• 8 •. · .•... 9 ..•... 10
ID EXIST SHENANDOAH
IT 3 01AOG94 0000 480
IO 5 0 0
JP
5 JR PREC 11 9. 8 8.8 7.4 6. 2 4.5
6 KK LICK
7 KM Pl= EX P2•PROP .
8 BA .0305
9 PB
10 IN 30 01AUG94 0000
11 PC .0053 . 0108 . 0164 .0223 .028 4 . 0347 . 0414 • 0483 .0555 .0632
12 PC .0712 . 0797 . 0887 . 0984 .1089 .1203 .1328 .1467 .1625 .1808
13 PC .2042 .2351 .2833 . 6632 .7351 . 7724 .7989 • 8197 .8380 .8538
14 PC . 8676 .8801 .8914 • 9019 • 9115 . 9206 .9291 .9371 .9446 .951 9
15 PC . 9588 . 9653 . 9717 • 9777 .9836 .9892 . 9947 1.000
16 LS 0 75 0
17 UD .37
18 KP 2
19 LS 0
20 UD . .37 .
21 KK PROP
22 BA .02 47
23 LS 0
24 UD .27
25 KP 2
26 LS 0 84
~27 UD .27
28 KK COMB
29 HC 2
30 KK POND PROP DETENTION POND
31 RN
32 KP
33 RS FLOW -1
34 SA 0 . 248 • 681 1. 037 1.239 1. 327 1. 413
35 SE 283 284 2 85 286 2 87 288 289
36 SL 283 1. 227 • 7 . 5
37 SS 288 20 1. 5
38 KK BYPASS
39 BA .0061
40 LS 0
41 UD . 51
42 KP 2
43 LS 84 0
44 UD .39
LINE ID ....... L ...... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ...•... 9 ...... 10
45
46
47
48
49
50
51
52
53
KK
HC
KK
BA
LS
UD
KP
LS
UD
KK
RN
KP
RS
BARRON
2
Area
• 02609
0
.154
.11
DECATUR
DA's 1-11
75
83
DETENTION POND
FLOW -1
54
55
5 6
5 7
5 8
59
6 0
6 1
6 2
SA . 00 4 6 .1525 . 2579 . 29 75 . 3401
63
6 4
65
66
67
6 8
69
SE
S L
KM
S S
KK
BA
LS
UD
KP
LS
UD
2 9 0. 65
2 91.6
. 7
2 96 .5
Area34
. 00456
0
.154
2
.154
291 292 293
3 .1 4 1 5 .9 . 5
IS STD.
30 LS
DA 's 34 • 35
78
80
7 0
7 1
KK Dove COMBINE FLOW S AT PO ND
72
73
74
HC
KK
HC
zz
2
To tal
2
1••······································· .
FLOOD HYDROGRAPH PACKAGE (llEC-1)
MAY 1991
VERSION 4.0. lE
Lahey F77L-EM /32 version 5. 01
Dodson & Associates, Inc.
RUN DATE 04/09/96 TIME 10:10:27
EXIST SHENANDOAH
3 IO OUTPUT CONTROL VARIABLES
IPRNT 5 PRINT CONTROL
I PLOT 0 PLOT CONTROL
QSCAL 0. HYDROGRAPH PLOT SCALE
IT HYDROGRAPH TIME DATA
NMIN 3 MINUTES IN COMPUTATION
!DATE 1AUG94 START ING DATE
!TIME 0000 STARTING TIME
29 4 295
INTERVAL
NQ 480 NUMBER OF HYDROGRAPH ORDINATES
JP
JR
NDDATE 1AUG94 ENDING DATE
NDTIME 2357 ENDING TIME
I CENT 19 CENTURY MARK
COMPUTATION INTERVAL 0. 05 HOURS
TOTAL TIME BASE 23 . 95 HOURS
ENGLISH UNITS
DRAINAGE AREA
PRECIPITATION DEPTH
LENGTH, ELEVATION
FLOW
STORAGE VOLUME
SURFACE AREA
TEMPERATURE
MULTI-PLAN OPTION
NPLAN
MULTI-RATIO OPTION
SQUARE MILES
INCHES
FEET
CUBIC FEET PER SECOND
ACRE -FEET
ACRES
DEGREES FAHRENHEIT
NUMBER OF PLAN S
RATIOS OF PRECIPITATION
11 .00 9.80 8.80 7.40 6.2 0 4 .50
.3855 . 43 36
2 96 297
• 4 8 4 6
2 98
U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 551-1748
PEAK FLOW AND STAGE (END-OF-PERI OD ) SUMMARY FOR MULTIPLE PLAN -RATIO ECONOMI C COMPUTATION S
FLOW S IN CUBI C FEET PER SECOND, AREA IN SQUARE MILES
TIME TO PEAK IN HOURS
RATIOS APPLIED TO PRECIPI TATI ON
OPERATION STATION AREA PLAN RATIO l RATIO 2 RATIO 3 RATIO 4 RATIO 5 RATIO 6
11.00 9 .80 8.80 7.40 6.20 4. 50
HYDROGRAPH AT
LICK 0.03 FLOW 105. 90. 78. 61. 46. 27.
TIME 11. 70 11. 70 11 . 70 11 . 70 11.70 11. 70
FLOW 0. o. 0. 0. o . 0.
TIME 0. 05 0.05 0.05 0.05 0.05 0.05
HYDROGRAPH AT
+ PROP 0. 02 FLOW 0. o . 0. 0. 0 . 0.
TIME 0.05 0. 05 0.05 0 .05 0.05 0.05
FLOW 107. 94. 83. 67 . 54. 35.
TIME 11 .60 11. 60 11. 60 11. 60 11. 60 11. 60
2 COMBINED AT
COMB 0.06 FLOW 105. 90. 78. 61. 46. 27.
TIME 11. 70 11. 70 11. 70 11. 70 11. 70 11.70
FLOW 107 . 94. 83. 67. 54. 35.
TIME 11.60 11 . 60 11.60 11. 60 11. 60 11. 60
ROUTED TO
POND 0.06 FLOW 105 . 90. 78. 61. 46 . 27.
TIME 11. 70 11. 70 11. 70 11. 70 11 .70 11. 70
FLOW 35. 22 . 15. 14 . 13. 11.
TIME 12 .10 12. 25 1 2.35 1 2 .30 12.25 12 .10
PEAK STAGES IN FEET
STAGE 0.00 0. 00 0.00 0.00 o. 00 0.00
TIME 0.00 0.00 0.00 0.00 0. 00 0.00
STAGE 288.47 288 .21 287. 82. 287 .15 286.55 285. 65
TIME 12.10 12. 25 12.40 12.30 12.25 12 .15
HYDROGRAPH AT
BYPASS 0 . 01 FLOW o. 0. 0. 0. 0. 0.
TIME 0.05 0.05 0.05 0.05 0.05 0.05
FLOW 23. 20. 18. 14. 11. 7.
TIME 11. 70 11. 70 11. 70 11. 70 11 . 70 11. 70
2 COMBINED AT
BARRON 0.06 FLOW 105. 90. 78. 61. 46. 27.
TIME 11 . 70 11. 7 0 11. 70 11. 70 11. 70 11. 70
FLOW 50. 34. 31. 27. 24 . 18 .
TIME 12.00 11. 70 11. 75 11. 75 11 . 75 11. 75
HYDROGRAPH AT
Area 1 0.03 FLOW 115. 99 . 86 . 68 . 52. 31.
TIME 11. 50 11. 50 ll.S5 11 . 55 11. 55 ll.S5
FLOW 130. 114. 101. 82. 66. 43.
TIME 11. 50 11.50 11. 50 11.50 11.50 11. 50
ROUTED TO
+ DECATU 0. 03 FLOW 115. 99. 86. 68. 52. 31.
TIME 11. 50 11 .SO ll.5S 11. 55 11. 55 11.55
FLOW 127. 108. 86 . 50. 44 . 33.
TIME ll .5S 11. 55 11. 60 11. 65 11. 60 11. 60
PEAK STAGES IN FEET
STAGE o. 00 0.00 0.00 0.00 0.00 0.00
TIME 0 . 00 0.00 o.oo 0.00 0.00 0.00
STAGE 297. 36 297. 22 297.02 296.43 295.29 293. 69
TIME 11. 55 11. 55 11. 60 11. 65 11. 60 11. 60
HYDROGRAPH AT
+ Area34 c>. oo FLOW 21. 18. 16. 1 3. 10 . 6.
TIME 11. 50 11. so 11. so ll.S5 11.55 11 . 55
FLOW 2 1. 19. 16. 13. 10. 7.
TIME 11. 50 11. 50 11.SO 11 .so 11. 55 11. 55
COMBINED AT
+ Dove 0. 03 FLOW 136 . 117. 102 . 80. 62. 38.
TIME 11. 50 11. 50 11. 50 11.55 11 .55 11.55
FLOW 148. 127. 102. 62. 53. 39.
TIME 11. 55 11. 55 11.55 11. 60 11. 60 11. 60
2 COMBINED AT
Total 0 .09 FLOW 227. 196. 169. 1 33 . 102. 60.
TIME 11. 55 11. 55 11. 55 11 . 55 11. 55 11. 55
FLOW 181. 157. 130. 87. 75. 55.
TIME 11.55 11. 55 11 .60 11. 60 11. 60 11.60
*** NORMAL ENO OF HEC-1 ...
EXHIBITB-2
RA TIONALffRIANGULAR HYDROGRAPH ROUTING
(PHASE FOUR POND ONLY)
i·························***********•••••
*
FLOOD HYDROGRAPH PACKAGE (HEC-11
HAY 1991
VERSION 4. 0 . lE
Lahey F77L-EH/ 32 version 5. 01
Dodson & ~sociates, Inc.
RUN DATE 04/09/96 TIME 09:13:59
x x
x x
x x
xxxxxxx
x x
x x
x x
xxxxxxx xxxxx
x x x
x x
xxxx x
x x
x x x
xxxxxxx xxxxx
x
xx
x
xxxxx x
x
x
xxx
U.S . ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 551-1148
THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73), HEClGS, HEClDB, AND HEClKW.
THE DEFINITIONS OF VARIABLES -RTIMP-AND -RTIOR-HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.
THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81 . THIS IS THE FORTRAN77 VERSION
NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY,
DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION
KINEMAT IC WAVE: NEW FINITE DIFFERENCE ALGORITHM
HEC-1 INPUT PAGE
LINE ID ....... 1. ...... 2 ....... 3 ....... 4 ......• 5 ....... 6 .•....• 7 ....... 8 ..•.... 9 •..... 10
1
2
3
10
11
12
13
14
ID
IT
IO
JR
KK
IN
QI
KK
RS
SA
SE
SL
SS
zz
EXIST
1
5
FLOW
Area 1
9
0
DECATUR
0
290 . 65
291. 6
296.5
SHENANDOAH
01JAN96
0
101. 3
DA's
01JAN96
1
DETENTION
FLOW
.0046
291
3.1415
15
1·········································
FLOOD HYDROGRAPH PACKAGE (HEC-11
MAY 1991
VERSION 4 . 0. lE
Lahey F77L-EM/32 version 5.01
Dodson & ~soc ia tes, Inc.
RUN DATE 04/09/96 TIME 09:13:59
EX I ST SHENANDOAH
3 IO OUTPUT CONTROL VARIABLES
0000 100
0
90.1 79. 7
1-13
0000
. 5 .01
POND
-1
.1525 .2579
292 293
. 7 .5
1.5
IPRNT 5 PRINT CONTROL
I PLOT 0 PLOT CONTROL
69. 7 62 .1
.2975 .3401
294 295
QSCAL 0. HYDROGRAPH PLOT SCALE
IT HYDROGRAPH TIME DATA
NMIN MINUTES IN COMPUTATION INTERVAL
!DATE 1JAN96 STARTING DATE
I TIME 0000 STARTING TIME
NO lo·o NUMBER OF HYDROGRAPH ORDINATES
NDDATE 1JAN96 ENDING DATE
NDTIME 0139 ENDING TIME
51. 0
.3855 . 4336
296 297
. 4846
298
U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 551-1748
JP
JR
COMPUTATION INTE RVAL
TOTAL TIME BASE
0. 02 HOURS
l.65 HOURS
ENGLISH UNITS
DRA INAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LEN GTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT
MULTI-PLAN OPTION
NP LAN
MULTI-RATIO OPTION
RATIOS OF RUNOFF
NUMBER OF PLANS
101 .30 90.10 79.70 69.70 62 .1 0 51.00
PEAK FLOW AND STAGE (END-OF-PERIOD) SUMl1ARY FOR MULTIPLE PLAN -RATIO ECONOMIC COMPUTATIONS
FLOWS IN CUBIC FEET PER SECOND , AREA IN SQUARE MILES
TIME TO PEAK IN HOURS
RATIOS APPLIED TO FLOW S
OPERATION STATION AREA PLAN RATIO l RATIO 2 RATIO 3 RATIO 4 RATIO 5 RATIO 6
101. 30 90 .10 79 .70 69. 70 62 .10 51.00
HYDROGRAPH AT
Ar ea 1 0 .00 FLOW 101. 90. 60. 70. 62. 51.
TIME 0.15 0.15 0.15 0 .1 5 0 .15 0 .15
ROUTED TO
DECATU 0 .00 FLOW 35 . 33. 31. 2 9. 27. 2 4 .
TIME 0 .35 0. 33 0.33 0. 33 0 .32 0. 30
PEAK STAGES IN FEET
STAGE 295 .52 295 .11 294.69 29 4. 29 293.96 293. 52
TIME 0. 35 0. 33 0 . 33 0 . 33 0.32 0. 30
*** NORMAL END OF HEC -1 ***
·.
EXHIBIT C-1 Rational Formula Drainage Area Calculations Revised April, 1996 < UJ Cl :c ~ ~ a:: UJ ..J < < 0.. < < I-0 0 UJ UJ 0 i= UJ Cl (!) Cl ..J ..J ..J (!) a: ..J a: zZ z ..J LL LL < < UJ z < :5 ~ :5 ~ a: :c a: 0 ..J > UJ ..J UJ I-UJ I-0 z < UJ < ~~ ~ < a:: ~ a:: ~ ~ (!) ~ ..J I-~ 0 I-Cl UJ 0 I-UJ 0 UJ 0 0 UJ 0 LO 0 0 ::::> z ::::> ..J <U a: 0 z a:: UJ a: 0 > ..J > ..J (!) ~ (!) ~ r./) N l.O 0 ...... N l.O ...... Cl I-::::> < a:< a:: I-0 LL 0 LL u ::::> 0 0 !: 0 0 0 0 NO. AC. 0.4 0.5 0.87 CA . min mm cfs cf s In/Hr cfs cfs cfs cfs lA O.S9 0.00 O.S9 0.00 0.30 60 o.s 300 4.0 3.7 s.o 2.4 2.9 11. 0 3.2 3.7 4.2 4.7 lB 1. OS 0.00 1. OS 0.00 O.S3 llO 1. 3 300 4.0 4.6 s.o 4.3 S.2 11. 0 S.8 6.6 7. 4 8.3 2 0.94 0.00 0.94 o.oo 0.47 80 o.s 340 1. 8 6.3 6.3 3.6 4.3 10.2 4.8 s.s 6.2 6.9 3A 1. 77 0.00 1. 77 0.00 0.89 230 2.S 300 1.5 8.8 8.8 S.9 7.2 9.1 8.1 9.2 10.4 11. 7 3B 0.34 0.00 0.34 0.00 0.17 230 2.S 300 1. s 8.8 8.8 1.1 1. 4 9.1 l.S 1. 8 2.0 2.2 4 0.16 0.00 0.16 0.00 0.08 1 o.s 1 1. 0 o.o s.o 0.7 0.8 11. 0 0.9 1. 0 1. 1 1. 3 SA 1. OS 0.00 1. OS 0.00 O.S3 70 0.7 400 2.0 6.4 6.4 4.0 4.8 10.2 S.3 6.1 6.9 7.7 SB 0.70 0.00 0.70 0.00 0.3S 70 0.7 400 2.0 6.4 6.4 2.6 3.2 10.2 3.6 4.1 4.6 S.l 6A 1. 67 0.00 1. 67 0.00 0.84 4SO 8.0 1 1. 0 8.0 8.0 S.8 7.0 9.4 7.9 9.0 10.2 11. 4 6B 1. S6 0.00 1. S6 0.00 0.78 4SO 8.0 1 1. 0 8.0 8.0 S.4 6.6 9.4 7.4 8.4 9.S 10.6 7A 0.82 0.00 0.82 0.00 0.41 120 1. s 700 12.0 7.0 7.0 3.0 3.6 9.9 4.0 4.6 S.2 S.8 7B 1.70 0.00 1. 70 0.00 0.8S 120 1. s 700 12.0 7.0 7.0 6.2 7.S 9.9 8.4 9.6 10.8 12.1 8 0.6S 0.00 0.6S 0.00 0.33 80 1. 0 400 6.0 4.4 s.o 2.7 3.2 11. 0 3.6 4.1 4.6 S.l 9 o.so 0.00 o.so 0.00 0.2S 60 o.s 200 3.0 2.9 s.o 2.1 2.S 11. 0 2.7 3.1 3.S 3.9 10 2.08 0.00 2.08 0.00 1. 04 170 1. 7 600 13.0 7.4 7.4 7.4 9.0 9.7 10.1 11. s 13.0 14.S 11 0.4A 0.00 0.44 0.00 0.22 100 o.s 200 2.0 s.o s.o 1. 8 2.2 11. 0 2.4 2.7 3.1 3.S 14A 0.60 0.00 0.60 0.00 0.30 60 o.s 300 1. s S.l S.1 2.4 2.9 10.9 3.3 3.7 4.2 4.7 14B 2.2S 0.00 2.2S 0.00 1.13 2SO 2.0 430 3.0 10.9 10.9 6.8 8.3 8.3 9.4 10.7 12.1 13. 6 lS 2.88 0.00 2.88 0.00 1. 44 100 2.0 600 10.0 S.6 S.6 11. 4 13.7 10.6 lS.3 17.4 19.7 22.0 16 1. 98 0.00 1. 98 0.00 0.99 100 1. 0 sso 8.0 6.2 6.2 7.6 9.1 10.3 10.2 11. 6 13.1 14.7 17 1. 89 0.00 1. 89 0.00 0.9S 200 2.0 2SO s.o 6.2 6.2 7.2 8.7 10.3 9.7 11.1 12.S 14.0 18A 2.27 0.00 2.27 0.00 1.14 200 4.0 4SO s.o 6.9 6.9 8.3 10.1 9.9 11. 3 12.8 14.S 16.2 18B 1. 21 0.00 1. 21 0.00 0.61 200 4.0 260 4.0 S.1 S.l 4.9 S.9 10.9 6.6 7.S 8.S 9.S 19 1. 66 o.oo 1. 66 o.oo 0.83 100 1. 0 400 7.0 4.9 s.o 6.8 8.2 11. 0 9.1 10.4 11. 7 13.1 20 1. 91 0.00 1. 91 0.00 0.96 1 1. 0 1 1. 0 0,0 s.o 7.9 9. 4 11. 0 10.S 11. 9 13.S lS.l 21 2.49 0.00 2.49 0.00 1. 2S 1 1. 0 1 1. 0 o.o s.o 10.2 12.3 ll. 0 13.7 lS.6 17.6 19.6 22 O.S9 0.00 O.S9 o.oo 0.29 1 1. 0 1 1. 0 o.o s.o 2.4 2.9 11. 0 3.2 3.7 4.1 4.6 23 0.20 0.00 0.20 0.00 0.10 1 1.0 1 1. 0 0.0 s.o 0.8 1.0 ll. 0 1. 1 1. 2 1. 4 1. s 24 O.S3 0.00 O.S3 0.00 0.27 1 1. 0 1 1. 0 o.o s.o 2.2 2.6 11. 0 2.9 3.3 3.7 4.2 2S 0.16 0.00 0.16 0.00 0.08 1 1. 0 1 1. 0 O.Q s.o 0.7 0.8 11. 0 0.9 1. 0 1.1 1. 3 26· 0.20 0.00 0.20 0.00 0.10 1 1. 0 1 1. 0 0.0 s.o 0.8 1. 0 11. 0 1.1 1. 3 1. 4 1. 6 *E indicates Existing Drainage Condition All calculations performed using Microsoft Excel EXHIBIT C-1
EXHIBIT C-1 Rational Formula Drainage Area Calculations Revised April, 1996 < LU c :c ~ ~ a:: LU ..J < < c.. < ·< I-0 0 w w 0 ~ w c (!) 0 ..J ..J ..J (!) a:: ..J a:: zZ z ..J u.. u.. < w z ~~ ~~ a:: :c a:: < w < 0 z ..J > 9-:t ~ ..J w I-w I-(J ~ < W<t ~ a:: ~ a:: ~ ~ (!) ~ ..J d I-0 I-Cw (,/) w 0 Wo Wo ::> z ::> ..J cu w 0 LC) 0 0 a:: 0 z a:: w a:: CZ: 0 > ..J > ..J (!) ~ (!) ~ (,/) N LC) 0 ..... N LC) ..... c I-::> < a:: < 1-. 0 u.. 0 u.. u ::> 0 0 :!: 0 0 0 0 NO. AC. U.4 U.5 0.87 CA ' ' ' mm mm cfs cfs In/Hr cfs cfs cfs cfs 27 0.06 0.00 0.06 0.00 0.03 1 1. 0 1 1. 0 0.0 5.0 0.2 0.3 11.0 0.3 0.3 0.4 0.4 28 1.13 1.13 0.00 0.00 0.45 1 1. 0 1 1. 0 0.0 5.0 3.7 4 .5 11. 0 5.0 5.7 6.4 7.1 22-E 2.10 2.10 0.00 0.00 0.84 520 10.0 1 1. 0 s. e '8. 8 5.6 6.8 9.1 7.6 8.7 9.8 11. 0 23-E 0.45 0.45 o.oo 0.00 o. :rs 320 7.0 1 1. 0 5.1 5.1 1. 5 1. 8 10.9 2.0 2.2 2.5 2.8 24-E 0.84 0.84 0.00 0.00 0. 3-4 400 6.0 1 1. 0 7.7 7.7 2.4 2.9 9.6 3.2 3.7 4.1 4.6 25-E 0.16 0.16 0.00 0.00 0.06 1 1. 0 1 1. 0 0.0 5.0 0.5 0.6 11. 0 0.7 0.8 0.9 1. 0 26-E 0.04 0.04 0.00 0.00 0.02 1 1. 0 1 1. 0 0.0 5.0 0.1 0.2 11. 0 0.2 0.2 0.2 0.3 27-E 0.00 0.00 0.00 0.00 0.00 1 1. 0 1 1. 0 0.0 5.0 0.0 0.0 11.0 0.0 0.0 0.0 0.0 29 0.50 0.00 0.50 o.oo 0.25 75 1. 0 1 1. 0 1. 5 5.0 2.1 2.5 11. 0 2.7 3.1 3.5 3.9 30 0.67 0.00 0.67 0.00 0.34 75 1. 0 1 1. 0 1. 5 5.0 2.8 3.3 11. 0 3.7 4.2 4.7 5.3 31 0.16 0.00 0.16 0.00 0.08 50 1. 0 1 1. 0 0.8 5.0 0.7 0.8 11. 0 0.9 1. 0 1.1 1. 3 32 0.96 0.00 0.96 0.00 0.48 160 2.0 460 7.0 6.5 6.5 3.6 4.4 10.1 4.9 5.5 6.3 7.0 33 0.60 0.00 0.60 0.00 0.30 50 1. 0 1 1. 0 0.8 5.0 2.5 3.0 11. 0 3.3 3.8 4.2 4.7 34 2.15 0.00 2.15 0.00 1. 08 350 5.0 700 15.0 10.9 10.9 6.5 8.0 8.3 8.9 10.2 11. 6 13.0 35 0.50 0.00 0.50 0.00 0. 25 250 3.0 1 1. 0 5.4 5.4 2.0 2.4 10.7 2.7 3.1 3.5 3.9 29-E 1. 20 1. 20 0.00 0.00 0.48 480 7.0 1 1. 0 9.4 9.4 3.1 3.8 8.9 4.3 4.9 5.5 6.2 30-E 4.05 4.05 0.00 0.00 1. 62 650 7.0 1 1. 0 14.8 14.8 8.5 10.4 7.2 11.7 13.4 15.2 17.1 31-E 0.42 0.42 0.00 0.00 0.17 600 10.0 1 1. 0 11. 0 11. 0 1. 0 1. 2 8.3 1. 4 1. 6 1. 8 2.0 32-E 0.42 0.42 0.00 0.00 0.17 600 10.0 1 1. 0 11. 0 11. 0 1. 0 1. 2 8.3 1. 4 1. 6 1. 8 2.0 33-E 0.42 0.42 0.00 0.00 0.17 600 10.0 1 1. 0 11. 0 11. 0 1. 0 1. 2 8.3 1. 4 1. 6 1. 8 2.0 34-E 11. 00 11. 00 0.00 0.00 4.40 850 20.0 1 1. 0 13.1 13.1 24.5 30.0 7.7 33.8 38.6 43.7 49.2 35-E 2.75 2.75 0.00 0.00 1.10 620 18.0 1 1. 0 8.6 8.6 7.4 9.0 9.2 10.1 11. 5 13.0 14.6 36 0.57 0.57 0.00 0.00 0.23 1 1. 0 1 1. 0 o.o 5.0 1. 9 2.2 11. 0 2.5 2.9 3.2 3.6 Pt. B-E 15.15 15.15 0.00 0.00 6.06 326 2.1 800 11. 0 15.4 15.4 31. 0 38.1 7.1 43.0 49.3 55.8 62.9 *E indicates Existing Drainage Condition All calculations performed using Microsoft Excel EXHIBIT C-1
EXHIBIT C-2 INLET AND PIPE SIZE CALCULATIONS Revised April, 1996 -INLET SIZING PIPE SIZE COMPUTATIONS N= 0.014 :it: E 0 Cl) LI.. I-3 0. ...J ~ w :ii: ~ 0 _Q 0 0 I... ...J t1i ..., (/) "' z o.> :Q z (.) CJ') LI.. ~ "C c: I-0. O" > ...J ...J c c: 0 () w Cl) e :E z ~ Cl Cl :;:; UJ ro 0 0. er:: 0. 0 -., I-(/) (/) () c. ...J ~ z T" DESCRIPTION ~ er:: 0 0 () o.> o.> ·c ro 0 (.) ...J ...J LI.. I-I-I-0 0 LI.. CJ') (.) cfs cf s ft ft yr % " cf s lA 3.24 LOW POINT INLET 2 1. 62 s lA lB 0.30 s.oo 10 3.2 0.4S lS 4.0 lB S.77 LOW POINT INLET 2 2.88 s lB 4 0.82 S.16 10 8.9 1. 30 18 11.1 2 4.81 LOW POINT INLET 2 2.40 s 2 3B 0.47 6.32 100 6.9 0.78 18 8.7 3A 8.0S LOW POINT INLET 2 4.03 s 3A 3B 0.89 8.77 100 11. 7 0.97 21 14. 6 3B 1. SS LOW POINT INLET 2 0.77 s 3B 4 1. S3 8.77 100 20.1 0.48 27 20.1 4 0.88 RECESSED INLET ON GRADE 2 0.44 s 4 SB 2.43 9.01 100 31.6 0.69 30 31. 6 SA S.34 LOW POINT INLET 2 2.67 s SA SB O.S3 6.41 10 S.3 0.63 17 6.7 SB 3.S6 LOW POINT INLET 2 1. 78 s SB 7B 3.30 9.69 10 28.9 O.S7 30 28.8 6A 7.88 LOW POINT INLET 2 3.94 s 6A 6B 0.84 7.96 10 7.9 1. 38 17 9.8 68 7.36 LOW POINT INLET 2 3.68 s 68 7B 1. 62 7.96 10 lS.2 1. 67 21 19.0 7A 4.0S LOW POINT INLET 2 2.02 s 7A 7B 0.41 7.03 10 4.0 0.36 17 5.1 7B 8.39 LOW POINT INLET 2 4.19 s 7B HW 6.18 10.64 10 S2.0 1. 8S 30 Sl. 9 8 3.S7 RECESSED INLET ON GRADE 2 1. 78 s 8 9 0.33 S.00 10 3.6 o.ss lS 4.S 9 2.7S RECESSED INLET ON GRADE 2 1. 37 s 9 10 O.S8 S.32 10 6.2 0.63 18 7.7 10 10.06 RECESSED INLET ON GRADE 0.7 14.37 lS 10 11 1. 62 7.44 10 lS.6 1. 7 s 21 19.S 11 2.41 RECESSED INLET ON GRADE 0.7 3.4S s 11 HW 1. 84 7.S4 10 17.7 1. 10 24 22.1 14A 3.27 LOW POINT INLET 2 1. 64 s 14A 14B 0.30 S.12 10 3.3 0. 4 6 lS 4.1 148 9.36 LOW POINT INLET 2 4.68 s 14B lS 1. 43 10.93 10 11. 9 2.29 18 14.8 lS lS.31 LOW POINT INLET 2 7.66 10 lS 16 2.87 11. S8 10 23.2 1. 90 24 29.0 16 10.19 LOW POINT INLET 2 S.09 10 16 17 .3. 86 11. 72 10 31. 1 1. 16 27 31.1 17 9. 72 LOW POINT INLET 2 4.86 s 17 HW 4.80 12.44 10 37.7 0.59 33 37.7 18A 11. 26 LOW POINT INLET 2 S.63 10 18A 18 1. 14 6.93 10 11. 3 2.81 17 14.1 188 6.61 LOW POINT INLET 2 3.30 s 18B 19 0.61 S.10 10 6.6 0.31 21 8.3 19 9 .11 LOW POINT INLET 2 4.S6 s 19 HW 1. 44 S.46 10 lS.4 0.28 27 lS.3 34 8.94 Sloped Headwall 2 4.47 s 34 JB 1 1. 08 10.93 10 8.9 1. 30 18 11. 2 3S 2.69 Sloped Headwall 2 1. 34 s 3S JB 1 0.2S S.38 10 2.7 0.12 18 3.4 * Includes 2S% Flow increase for pipe sizes <27" dia. Exhibit C-2
ZONE X
, .
•
0
0
ZONE X
Brazos County
Unincorporated Areas
481195
EXHIBrr "E"
TRAPEZOIDAL CHANNEL ANALYSIS
NORMAL DEPTH COMPUTATION
Ml;l.y 8, 1995
SHENANDOAH PHASE TWO
OVERFLOW SECTION B-B
100 YEAR OVERFLOW AT WINDFREE CUL-DE-SAC
(IDts 14 & 15, Block 17)
~==============:::r::===================================z======c========
PROGRAM INPUT DATA:
DESCRIPTION
Flow Rate (cubic feet per second) ••••••••••••••••••••.••
Channel Bottom Slope (feet per foot) •••••••••.•••.••••••
Manning's Roughness Coefficient (n-value) •••••••••••••••
Channel Side Slope -Left Side (horizontal/vertical) ••••
Channel Side Slope -Right Side {horizontal/vertical) •••
Channel Bottom Width (feet) •••••••••••••••••••••••••••••
VALUE
18.1
0.0100
0.0300
4.00
4.00
10.0
============~=========================================-=-======--===
PROGRAM RESULTS:
DESCRIPTION VALUE
--------------------------------------~-----------------------------
Normal Depth (feet) •••••••••••••••••••••••••••••••••••••
Flow Velocity (feet per second) •••••••••••••••••••••••••
Froude Number (Flow is Sub-Critical) ••••••••••••••••••••
Velocity Head (feet) ••••••••••••••••••••••••••••••••••••
Energy Head (feet) ••••••••...•••••••••••••••••••••••••••
Cross-Sectional Area of Flow (square feet) ••••••••••••••
Top Width of Flow (feet) ••••.•••••••••••••••••••••••••••
0.52
2.87
0.759
0.13
0.65
6.30
14.17
===========================================================z========
TRAPEZOIDAL CHANNEL ANALYSIS COMPUTER PROGRAM, Version 1.3 (c) 1986
Dodson & Associates, Inc., 7015 W. Tidwell, fl07, Houston, TX 77092
(713) 895-8322. A manual with equations & flow chart is available.
100 Year FloW = 57.88 CFS
10 Year FlCM = 39.8 CFS
Overland FloW' = 18.1 CFS
EXHIBIT ''F''
TRAPEZOIDAL CHANNEL ANALYSIS
NORMAL DEPTH COMPUTATION
May 8, 1995
SHENANDOAH PHASE TWO
OVERFLOW SECTION B-B
100 YEAR OVERFLOW AT TIFFANY KNUCKLE
(Lots 8 & 9, Block 17)
==========================================================c=========
PROGRAM INPUT DATA:
DESCRIPTION
Flow Rate (cubic feet per second) ...........•....•..•...
Channel Bottom Slope (feet per foot) ............•...•...
Manning's Roughness Coefficient (n-value) .............. .
Channel Side Slope -Left Side (horizontal/vertical) •...
Channel Side Slope -Right Side (hori~ontal/vertical) •..
Channel Bottom Width (feet) •.••..••.•..........•....•...
VALUE
12.4
0. 0160
0.0300
4.00
4.00
6.0
====================================================================
PROGRAM RESULTS:
DESCRIPTION
Normal Depth (feet ) •••••••••••••••••••••••••••••••••••••
Flow Velocity (feet per second) ••••••••••••••••.••••••••
Froude Number (Flow is Sub-Critical) ••••••••.•••••••••••
Velocity Hea.d (feet) .•.•.•.••••••••••••••...•....•••••••
Energy Heaa ( feet ) ••••..•.•••••••••••••••••••••...••••••
Cross-Sectional Area of Flow (square feet) ••..•••.••••••
Top Width of Flow (feet) •.••••••..•••••••.•..•.•••••••••
VALUE
0.48
3.29
0.935
0.17
0.64
3.77
9.82
====================================================================
TRAPEZOIDAL CHANNEL ANALYSIS COMPUTER PROGRAM, Version 1.3 (c) 1986
Dodson & Associates, Inc., 7015 W. Tidwell, #107, Houston, TX 77092
(713) 895-8322. A·-.manual with equations & flow chart is available.
100 Year Flow = 40.19 CFS
10 Year Flow = 27.8 CFS
OVerlarrl Flow = 12.4 CFS
t . -·"
TO:.
FROM:
DATE:
RE:
·~~CITY OF COLLEGE STATION
~ ENGll'EERING DIVISION
Post O ffice Box 9960 1101 Texas Avenue
Co llege Station, Texas 77842-0960
(409) 764-35 70
MEMORANDUM
David Moore , Building Official
Kent Laza , City Engineer
Ed Hard , Transportation Planner
Vern W right, Engineering Technician
Steve Horr:ieyer, Project Manager
File(-cof') ~
Veronica Morgan, Assistant City Engineer ~-.__-J
October 2, 1995
Driveway Loc ations i
Attached is an approved drawing of driveway locations for Shenandoah II. As in Phase I, we are
approving these driveway locations with the infrastructure plans so that the aprons may be
constructed at the same time the curbing is poured . Please keep this in your file .
. ·
o:/devserv/v :/sheniidr.doc
DATE:
TO:
ATTN:
9 /2 2 /95
McCLURE ENGINEERING, INC.
1722 Broadmoor, Suite 210
Bryan, Texas 77802
(409) 776-6700
FAX 776-6699
TRANSMITTAL LETTER
Mrs . Veronica Morgan, P.E.
Assistant City Engineer
CITY OF CX)LLEGE STATION
ATTACHED PLEASE FIND:
Proposed driveway layouts for Shenandoah Phase Two construction plus
typical dirveway layout detail.
THESE ARE TRANSMITTED TO YOU FOR THE FOLLOWING REASON:
For Approval xx Your Use Revisions Made
As Requested For Review and Comment
Returned after Loan to Us
RECEIVED BY:
DATE:
SIGNED BY:
MICHAEL R. McCLURE, P.E., R.P.L.S.
8' ------20· -----!
5• Thick Class A
Cone. W/ /fJ 0 15•
O.C.E.W.
Provide Expansion
Joint Material
Leave (fJ Bars
Exposed 12•
·.·· · :: .. : · : ....... , :-..·~ :·.:·: ... ·. . . 5 ' r~;t~~tl~~fv!~a
-----.-... -r.-. -, --,.~. . ·.. :· ... 0 .· .. :. . . . . . . •. ·. . ..
:.· · · · ·· · · .. · ¢ . : . ffa~~ , ~, ::~···· .· .. Q : ' f· Sid~w~I< ·.·•·
Transition Curb Ht. _ .·· :. :·.".; : ...... "_:-.-:.·~t :< ... ·:: ...... ·· .. ·· .. ·::"-4'
.. .·. ·. .. . . . . ·. . -· . . . ·-. ..
·, .. ·.
t-------~30' ----------
TYPICAL DRIVEWAY LAYOUT DETAIL
SCALE : 1• = 10'
Note:
In the absence of
Sidewalk, The Drive-
way wttl be graded
06 .63~ from the
Gutter to the R.O. W .