Loading...
HomeMy WebLinkAbout102 Development Permit 455Edelweiss Phase 10B131 Drainage Report FOR \ I \.A I Edelweiss Estates Phases JOA, VICINITY MAP NTS September, 1997 Prepared By: McClure Engineering, Inc. 1722 Broadmoor Drive, Suite 210 Bryan, Texas 77802 ( 409) 776-6700 Drainage Report FOR Edelweiss Estates Phases JOA, JOB, JJ, J2, J3 & J5 VICINITY MAP NTS September, 1997 Prepared By: Mcaure Engineering, Inc. 1722 Broadmoor Drive, Suite 210 Bryan, Texas 77802 ( 409) 776-6700 CERTIFICATION I, Michael R. McClure, Registered Professional Engineer No. 32740, State of Texas, certify that this report for the drainage design of EDELWEISS ESTATES, PHASES lOA, 1 OB , 11, 12 , 13 & 15, was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners thereof. DRAINAGE STUDY EDEL WEISS ESTA TES , PHASES lOA, lOB, 11 , 12 , 13 & 15 TABLE OF CONTENTS EDELWEISS ESTATES, PHASES lOA, lOB, 11, 12, 13 & 15 Page No . INTRODUCTION GENERAL LOCATION AND DESCRIPTION 1 DRAINAGE DESIGN CRITERIA 2 FUTURE CONDITIONS 4 SUMMARY 4 CONCLUSION 5 TABLE OF EXHIBITS EXCERPT FROM FEMA MAP "A" DRAINAGE AREA MAP "B" DRAINAGE AREA CALCULATIONS "C-1" INLET COMPUTATIONS "C-2" PIPE SIZE CALCULATIONS "C-3" TYPICAL INLET CAPACITY CALCULATIONS "C-4" HEC-1 RUN "D" TRAPEZOIDAL CHANNEL ANALYSIS "E" LAG TIME CALCULATIONS "F" OVERALL DRAINAGE MAP "G" RATIONAL FORMULA DRAINAGE AREA CALCULATIONS "H-1" PEAK DISCHARGE DETENTION POND ROUTING "H-2" DRAINAGE STUDY ll EDELWEISS ESTATES, PHASES lOA, lOB , 11, 12 , 13 & 15 DRAINAGE STUDY FOR EDELWEISS ESTATES PHASES lOA, lOB, 11, 12, 13 &15 INTRODUCTION: This drainage report is intended to show the adequacy of the designed drainage improvements forthe proposed and future conditions of the EDELWEISS ESTATES DEVELOPMENT. The body of the report is general in nature, with specific computations shown as exhibits at the end of the report . GENERAL LOCATION AND DESCRIPTION: This Report is for Phases IOA, lOB , 11 , 12 , 13 and 15 . This section of Edelweiss Estates phases is located in southern College Station, west of the existing Welsh Avenue and adjacent to Elrncrest Subdivision. To the south are Rock Prairie Elementary School and a City of College Station Park. To the north are Southwood Valley Sections 24C and E . To the west is future development of Edelweiss Estates. All of the above mentioned subdivisions are single family residential . This phase of development is entirely within the Bee Creek Tributary "A" drainage shed as noted in the City of College Station Stormwater Management Plan and the Federal Emergency Management Agency, Flood Insurance Rate Maps for Brazos County, Texas and Incorporated Areas, Map No. 48041CO182 (See Exhibit "A"). The FEMA FIRM clearly shows that the site is not within a 100-year flood plain. Exhibit "B" shows the area of EDELWEISS ESTATES subdivision drainage to Bee Creek Tributary "A". DRAINAGE STUDY PAGEl EDELWEISS ESTATES, PHASES IOA, 108, 11 , 12 , 13 & 15 The development of these phases of EDELWEISS ESTATES entails grading, street, storm drain, and utility improvements . Full development of the existing detention pond was completed with the construction of Phase 1 OB. Note that with the development of Elm Crest Subdivision, the drainage of the entire area was studied in detail (Drainage Study for Elm Crest, May 1993 and Drainage Report Addendum for Elm Crest, September 03 , 1993). The Drainage Study for Elm Crest shows that the culvert under Deacon Drive (a tripl e 30" RC.P. culvert) has the capacity to pass flows less than the existing two-year storm event without water flowing over Deacon Drive. Note that this condition is severely inadequate by the current requirements of the City of College Station Drainage Ordinance . To improve the situation, "over-detention" of proposed flows is required in the EDELWEISS development. Hence the proposed flows are less than existing flows . This is desirable for several reasons : 1. With "over-detention", existing flooding problems downstream of the development should improve. Consequently, in no respect, can the downstream problems be attributed to development in EDELWEISS ESTATES . 2 . By lessening the peak runoff to the existing undersized facilities (at Deacon Drive and/or Welsh Avenue), the flow conditions at the structures will be improved . DRAINAGE DESIGN CRITERIA: The streets and storm drains are designed in accordance with the City of College Station Drainage Policy and Design Standards (DPDS). The storm drains and inlets are sized to DRAINAGE STUDY PAGE2 EDELWEISS ESTATES , PHASES lOA, lOB , 11 , 12 , 13 & 15 accommodate the ten-year storm (see Exhibit "C"). The rational method (Q=CIA) is used in the design of all storm drains and inlets . The time of concentration for each area is computed based on published Soil Conservation Service (SCS) Technical Release #55 (TR-55) data. Street capacity is computed using the manning equation for open channel flow with an "n" value of0.018 . Inlets are sized based on the guide lines of the DPDS . Storm drains <27" in diameter are sized to convey 1.25 times the actual flow (see Exhibit "C"). The over-flow section for Phases lOA and IOB are sized to convey runoff from the 100-year frequency storm within the limits of the proposed easements and right-of-way. Calculations have been made using the manning equation for open channel flow with an "n" value of0.030 (see Exhibit "E"). The storm drain design for Phases 11, 12 , 13 and 15 includes inlets and pipes to convey the 100-year frequency storm (see Exhibit "C"). The detention pond design is based on the SCS Type II Storm (for precipitation data) with input data from the D.P.D.S . SCS Unit Hydrograph (for spatial distribution), and SCS Curve Number loss rates as prescribed in the D.P .D .S. Lag times are generated using the SCS Lag Time Equation (see Exhibit "F"). Exhibit "B" shows the drainage areas referenced in Exhibits "D" and "F" This calculation method was utilized due to the large Drainage Areas and the complex routing to evaluate three different study points. This technique generates the highest flows of the available techniques. By sizing the detention facility and modeling the downstream facilities for the higher flows, a more conservative evaluation is obtained . For comparison, the detention pond has also been evaluated using the Rational Method Triangular Hydrograph. This data is provided as Exhibit "H". Table Two of the summary compares the results from both the SCS Method and the Peak Flow Method . DRAINAGE STUDY PAGE3 EDELWEISS ESTATES , PHASES lOA, lOB , 11 , 12 , 13 & 15 The intent of this drainage analysis and design is to clearly "point out" the precautions that have been taken to reduce the potential for downstream flooding with the design of the detention pond . I FUTURE CONDITIONS: Full development of the detention facility will be achieved with the development of Phase 10- B. No additional storage will be required for development of future phases that drain to the facility (see Drai nage Study for Elm Crest, May, 1993). SUMMARY: The peak flows at the STUDY points are given in Table One below. "ORIG." refers to the original flow before construction south of Southwood Valley Section 24 . "PROP ." refers to the flow after the development of all relevant phases of EDELWEISS ESTATES . This data is taken directly from Exhibit "D". Note that the "VEE" referenced is the combined flow at the outlet of the pond, the "culv " is the existing triple 30" R .C .P. culvert in Deacon Drive, and "Welsh" is the existing box culvert structure at Welsh Avenue . Note that at the final Study Point (Welsh), the proposed detention facility reduces the peak discharge for all storms . DRAINAGE STIJDY PAGE 4 EDELWEISS ESTATES, PHASES lOA, lOB , l l , 12 , 13 & 15 TABLE ONE STUDY STORM 100 50 25 10 5 2 PT EVENT VEE ORIG. 273 234 202 158 120 70 VEE PROP . 285 220 165 93 47 30 CULV ORIG. 377 325 282 222 171 102 CULV PROP . 389 297 222 149 123 85 WELSH ORIG. 717 623 545 436 344 2 15 WELSH PROP . 715 579 471 369 299 200 Table Tw o compares the flows at the pond outlet study point. TABLE TWO STUDY STUDY STORM 100 50 25 10 5 METHOD POINT EVENT scs Outlet Orig. 273 234 202 158 120 Triangular Outlet Orig. 178 158 139 121 106 Hydro graph scs Outlet Prop. 285 220 165 93 47 Triangular Outlet Prop. 75 54 35 33 31 Hydro graph CONCLUSION: The storm water management system design for this project improves the drainage situation by over-detaining the two, five, ten, twenty-five, and fifty year design storms. The peak flow rate of the one hundred year storm is insignificantly increased at two of the three study points, but this increase is not noticeable in the profile (depth of flow) of the storm. The design of the detention DRAINAGE STUDY PAGE S EDELWEISS E STATES, PHASES lOA, IOB , 11 , 12 , 13 & 15 outfall structure maximizes the over detention for the more frequent events, the two, five, and ten year event. The method of analysis is the most conservative of the available techniques. Other techniques would show a decease at every point. The drainage design for this subdivision goes beyond the requirements of the City of College Station Drainage Ordinance to minimizing an existing problem (the flooding of Deacon Drive) by over detaining the storm water released from this site . DRAINAGE STUDY PAGE6 EDELWEISS ESTATES, PHASES lOA, 108, 11 , 12 , 13 & 15 Approximately 4000' from FEMA Zone X of Bee Creek Trib . / / Scale : 1" 500' EXHIBIT A Flood Insurance Rate Mop Excerpt Brazos County. Texas ond Incorporated Areos Mop Numbers: 48041C0182C Effective Dote: July 2, 1992 81 ~I I t- :::> 0 I I (/) 1 \ \ "-" '> I I I I I I I I f / \ I \ I I I / I // !'. ) / ( I \ \ ,--) I I ' ) I / I / I I ' I " \ \ I ( " \ "-. ' '-' I\ ~-- \. I \ \ "-. \ \ \ I I "-I \ \ Edt:iw&iss Estat11s Phases JOA. JOB, JI, J2, JS, Jc J5 ') I I / I ( I Exhibit "B " Drainage Area .Map _ Drainage Area Limits w/ Area~lnlet 1.0 . Area Controlled by Detention Pond Existing Con tour Lines September, J997 1"=300' ~ 0 ~ 0::: w -I -I c( ~ 0.. ~ ~ u.. w 0 0 (!) 0::: -I .... 0::: < z < w z < (J 5 :l: < w -I ~~ -I z ~ 0 ~ ~ 0::: .... ~ Ci) w (!) 0 >z 0 z 0::: w 0 0 .... :::> < 0::: a! .... o~ NO. AC. 0.4 0.55 0.87 ft. 1 1.12 0.00 1.12 0.00 0.62 25.0 2 1.89 0.61 1.28 0.00 0.95 130.0 3 0.86 0.00 0.86 0.00 0.47 100.0 3 1.40 0.00 1.40 0.00 0.77 280.0 4 1.99 0.00 1.99 0.00 1.10 280.0 5 0.24 0.00 0.24 0.00 0.13 25.0 6 0.00 0.00 0.00 0.00 0.00 1.0 7A 1.18 0.00 1.18 0.00 0.65 400.0 78 1.57 0.00 1.57 0.00 0.86 200.0 8A 0.13 0.00 0.13 0.00 0.07 20.0 88 0.68 0.00 0.68 0.00 0.38 25.0 9 0.00 0.00 0.00 0.00 0.00 1.0 10A 1.29 1.29 0.00 0.00 0.52 380.0 108 1.47 1.47 0.00 0.00 0.59 370.0 11 0.59 0.00 0.59 0.00 0.33 150.0 12 0.91 0.00 0.91 0.00 0.50 150.0 13 0.00 0.00 0.00 0.00 0.00 1.0 14 1.82 0.00 1.82 0.00 1.00 300.0 15 1.74 0.00 1.74 0.00 0.96 400.0 16 0.54 0.00 0.54 0.00 0.30 100.0 17 1.55 0.00 1.55 0.00 0.85 600.0 18A 2.41 0.00 2.41 0.00 1.33 850.0 188 1.67 0.00 1.67 0.00 0.92 180.0 19A 0.57 0.00 0.57 0.00 0.31 25.0 198 1.63 0.00 1.63 0.00 0.90 100.0 20 8.36 8.00 0.00 0.36 3.51 720.0 21 0.42 0.00 0.42 0.00 0.23 50.0 22 2.53 0.00 2.53 0.00 1.39 230.0 23 2.40 0.00 2.40 0.00 1.32 140.0 24A 0.97 0.00 0.97 0.00 0.53 275.0 248 1.60 0.00 1.60 0.00 0.88 69.0 25A 0.54 0.00 0.54 0.00 0.30 38.0 258 2.28 0.00 2.28 0.00 1.26 1.0 EXHIBIT C-1 Rational Formula Drainage Area Calculations Edelweiss Estates Phases 10A, 108, 11, 12, 13 & 15 ~ ~ ~ -I u.. 0 -I -I z u.. u.. >-5 0::: :l: 0::: .... 8 (,) w .... w .... (,) 0::: -I I= (!) I= :j .... u w -I :::> z -I w ~~ :::> < w jij (/) a II) (!) ~ (!) u.. > (J :::> ~ !!? 0 0 :!:: ft. ft. ft. ft/s min min lnfHr cfs lnfHr cfs lnfHr 0.5 600.0 7.0 2.0 5.1 5.1 8.18 5.0 9.8 6.0 10.9 0.5 290.0 4.0 1.0 7.0 7.0 7.32 6.9 8.8 8.4 9.9 2.0 380.0 5.0 1.8 4.5 5.0 8.22 3.9 9.9 4.7 11.0 2.0 200.0 2.0 0.8 9.5 9.5 6.47 5.0 7.9 6.1 8.8 2.0 200.0 2.0 0.8 9.5 9.5 6.47 7.1 7.9 8.6 8.8 0.3 200.0 3.0 1.9 2.0 5.0 8.22 1.1 9.9 1.3 11.0 1.0 1.0 1.0 10.4 0.0 5.0 8.22 0.0 9.9 0.0 11.0 12.0 50.0 1.0 1.3 5.7 5.7 7.86 5.1 9.4 6.1 10.5 7.0 350.0 7.0 2.0 4.6 5.0 8.22 7.1 9.9 8.5 11.0 0.2 150.0 2.0 1.8 1.6 5.0 8.22 0.6 9.9 0.7 11.0 0.5 500.0 8.0 2.3 3.7 5.0 8.22 3.1 9.9 3.7 11.0 1.0 1.0 1.0 10.4 0.0 5.0 8.22 0.0 9.9 0.0 11.0 10.0 40.0 0.2 1.2 6.0 6.0 7.75 4.0 9.3 4.8 10.4 8.0 70.0 0.4 1.1 6.8 6.8 7.42 4.4 8.9 5.3 10.0 2.0 100.0 2.0 1.1 3.7 5.0 8.22 2.7 9.9 3.2 11.0 2.0 100.0 2.0 1.1 3.7 5.0 8.22 4.1 9.9 4.9 11.0 1.0 1.0 1.0 10.4 0.0 5.0 8.22 0.0 9.9 0.0 11.0 4.0 230.0 3.0 1.1 7.8 7.8 7.02 7.0 8.5 8.5 9.5 8.0 270.0 5.0 1.3 8.3 8.3 6.84 6.6 8.3 7.9 9.3 2.0 200.0 3.0 1.6 3.0 5.0 8.22 2.5 9.9 2.9 11.0 12.0 200.0 2.0 1.1 11.7 11.7 5.89 5.0 7.2 6.1 8.1 12.0 150.0 1.5 0.9 18.1 18.1 4.68 6.2 5.8 7.7 6.5 4.0 770.0 10.0 1.9 8.5 8.5 6.77 6.2 8.2 7.5 9.2 0.5 500.0 5.0 1.9 4.6 5.0 8.22 2.6 9.9 3.1 11.0 2.0 800.0 10.0 2.0 7.7 7.7 7.07 6.3 8.5 7.7 9.6 8.0 100.0 3.0 0.8 16.6 16.6 4.92 17.3 6.1 21.3 6.8 1.0 300.0 2.0 1.5 3.9 5.0 8.22 1.9 9.9 2.3 11.0 4.0 470.0 6.0 1.5 7.6 7.6 7.09 9.9 8.6 11.9 9.6 2.0 550.0 6.0 1.6 7.2 7.2 7.25 9.6 8.8 11.6 9.8 4.0 67.0 1.0 1.0 5.8 5.8 7.82 4.2 9.4 5.0 10.5 1.0 780.0 14.0 2.3 6.3 6.3 7.64 6.7 9.2 8.1 10.3 1.0 245.0 1.4 1.4 3.3 5.0 8.22 2.5 9.9 2.9 11.0 1.0 1055.0 15.7 2.4 7.3 7.3 7.22 9.1 8.7 10.9 9.7 0 II) ..... II) a 0 0 ~ !!? cfs lnfHr cfs Inf Hr 6.7 12.4 7.7 14.0 9.4 11.3 10.7 12.7 5.2 12.5 5.9 14.1 6.8 10.1 7.8 11.4 9.7 10.1 11.0 11.4 1.5 12.5 1.7 14.1 0.0 12.5 0.0 14.1 6.9 12.0 7.8 13.5 9.5 12.5 10.8 14.1 0.8 12.5 0.9 14.1 4.1 12.5 4.7 14.1 0.0 12.5 0.0 14.1 5.4 11.8 6.1 13.4 5.9 11.4 6.7 12.9 3.6 12.5 4.1 14.1 5.5 12.5 6.3 14.1 0.0 12.5 0.0 14.1 9.5 10.8 10.9 12.2 8.9 10.6 10.1 12.0 3.3 12.5 3.7 14.1 6.9 9.2 7.9 10.4 8.7 7.5 9.9 8.5 8.5 10.5 9.7 11.9 3.5 12.5 3.9 14.1 8.6 10.9 9.8 12.3 24.0 7.8 27.5 8.9 2.6 12.5 2.9 14.1 13.4 10.9 15.2 12.4 12.9 11.2 14.7 12.6 5.6 11.9 6.4 13.5 9.0 11.7 10.3 13.2 3.3 12.5 3.7 14.1 12.2 11.1 14.0 12.5 0 0 II) 0 0 :!:: cfs lnfHr 8.7 15.7 12.1 14.2 6.7 15.8 8.8 12.8 12.5 12.8 1.9 15.8 0.0 15.8 8.8 15.2 12.2 15.8 1.0 15.8 5.3 15.8 0.0 15.8 6.9 15.0 7.6 14.4 4.6 15.8 7.1 15.8 0.0 15.8 12.3 13.7 11.5 13.4 4.2 15.8 8.9 11.7 11.3 9.6 10.9 13.3 4.4 15.8 11.1 13.8 31.2 10.0 3.3 15.8 17.2 13.9 16.6 14.1 7.2 15.1 11.6 14.8 4.2 15.8 15.8 14.1 0 0 ..... 0 cfs 9.7 13.5 7.5 9.9 14.0 2.1 0.0 9.9 13.6 1.1 5.9 0.0 7.7 8.5 5.1 7.9 0.0 13.8 12.9 4.7 10.0 12.7 12.2 5.0 12.4 35.2 3.7 19.3 18.7 8.1 13.0 4.7 17.7 9/23197 9717-dra.XLS Exhibit C-1 EXHIBIT C-2 INLET COMPUTATIONS Edelweiss Estates Phases 1 OA, 1 OB, 11, 12, 13 & 15 -~ ~ ~ .c: i.. --~ . :E 00. <o -0 ~ as ~ 0 ~~ c ,__ z -·a ~ ~~ bl) ~ -·~ ~ C" 0. ~ ~ I. ~ 0 --c ~< ~ 00. ~ (;) ,.... cfs l 6.7 28 0.7% 1 2 9.4 28 1.3% 2 3 5.2 39 0.8% 3 3.1 6.8 39 1.4% 3.1 4 9.7 28 1.4% 4 5 1.5 28 0.0% 5 6 0.0 28 0.0% 6 7A 9.9 39 3.0% 7B 13.6 28 2.7% 7 8A 1.1 28 0.0% 8B 5.9 28 0.5% 8 9 0.0 28 0.0% 9 lOA 5.4 39 0.9°/o IOB 5.9 39 1.1% IO 11 3.6 28 0.2% 11 12 5.5 28 0.4% 12 13 0.0 28 0.0% 13 14 9.5 28 1.3% 14 15 8.9 28 1.2% 15 16 3.3 28 0.2% 16 17 6.9 28 0.7% 17 18A 12.7 28 2.4% 18B 12.2 28 2.2% 18 19A 5.0 28 0.4% 19B 12.4 28 2.3% 19 20 24.0 39 18.1% 20 21 2.6 28 0.1% 21 22 13.4 28 2.6% 22 23 12.9 28 2.5% 23 24A 5.6 28 0.5% 24B 9.0 28 1.2% 24 25A 3.3 28 0.2% 25B 12.2 28 2.2% 25 Inlets 7, 8, 18, and 19 have been designed to capture the 100 year event. ~ ~ "O ~ 0 i.. "O ~ "O ·s: c ~ C" 0 .~ ~ ~ I. "' ~ ~ ~ < DESCRIPTION ~ ~ ~ u Curb Inlet cfs ft ft 6.7 Recessed Inlet on Grade 0.79 8.52 IO 9.4 Recessed Inlet on Grade 0.79 11.84 IO 5.2 Recessed Inlet on Grade 0.79 6.58 10 6.8 Street Capacity 9.7 Recessed Inlet on Grade 0.79 12.21 10 1.5 Recessed Inlet on Grade 0.79 1.85 10 0.0 Junction Box 23.5 Recessed Low Point Inlet 2.33 I0.07 10 7.1 Recessed Low Point Inlet 2.33 3.03 IO 0.0 Junction Box 11.3 Recessed Low Point Inlet 2.33 4.83 IO 3.6 Recessed Inlet on Grade 0.79 4.52 5 5.5 Recessed Inlet on Grade 0.79 6.97 IO 0.0 Junction Box 9.5 Recessed Inlet on Grade 0.79 12.04 IO 8.9 Recessed Inlet on Grade 0.79 11.24 IO 3.3 Recessed Low Point Inlet 2.33 1.40 5 6.9 Recessed Low Point Inlet 2.33 2.95 10 25.0 Recessed Low Point Inlet 2.33 I0.69 15 17.4 Recessed Low Point Inlet 2.33 7.44 15 24.0 Recessed Low Point Inlet 2.33 I0.30 15 2.6 Recessed Inlet on Grade 0.79 3.22 5 13.4 Recessed Low Point Inlet 2.33 5.72 IO 12.9 Recessed Low Point Inlet 2.33 5.54 IO 14.7 Recessed Low Point Inlet 2.33 6.28 IO 15.5 Recessed Low Point Inlet 2.33 6.64 IO .c: -0. ~ ~ "O ~ "O c 0 ~ ft "O "O ~ ~ ~ v5 .:: "O ::::: ·;;: i.. C" 0 ~ ~ I. ~ ~ ~ ~ ci: ci: ~ ~ < I. I. u < < Grate Inlet cfs sq-ft sq-ft 9/23/97 9717-dra.XLS Exhibit C-2 EXHIBIT C-3 PIPE SIZE CALCULATIONS Edelweiss Estates Phases 1 OA, 1 OB, 11, 12, 13 & 15 = .~ "' CIJ ~ s 0 < ~ "" "O u 0 CIJ z ~ --00 "' ~ ~ = ~ ~ < = ...... ~ ~ bl) "O ~ ~ ·;; ~ ~ 0 0 c.; CIJ = 0 ~ ~ ~ ~ l::J fi: # # Ac. min yr cfs 1 2 0 .6 5.1 10 6.7 2 3 1 .6 7 .0 10 15.5 3 5 2 .0 7 .1 10 20.0 4 5 1.1 9.5 10 9.7 5 6 3 .3 10 .0 10 28.2 6 78 3 .3 10.1 10 28 .1 78 88 4 .8 10.3 100 59 .2 88 9 5 .2 10.4 100 64.5 9 12 5.2 10 .7 100 63.9 108 12 1 .1 6 .8 10 11 .1 11 12 0.3 5 .0 10 3 .6 12 13 7 .2 10.9 10 59.7 13 188 7.2 11.4 10 58.7 14 15 1.0 7.8 10 9.5 15 16 2 .0 8 .3 10 18.2 16 17 2 .3 9 .3 10 20 .1 17 18B 3.1 11 .7 10 25.1 188 198 12 .5 18 .1 100 120.1 198 HW1 13 .7 18 .3 100 131.3 20 21 3.5 16 .6 10 24.0 21 22 3.7 16 .7 10 25.5 22 23 5.1 18.2 10 33.6 23 HW2 6.5 18.4 10 41.9 24A 248 0.5 5 .8 10 5.6 248 258 1.4 6 .3 10 14 .5 25A 258 0 .3 5 .0 10 3 .3 258 HW3 3 .0 7.3 10 28.9 Pipe sizes from Inlet 7 to Inlet 12 and from Inlet 18 to the HW have been designed to convey the 100 year event. *Includes 25% Flow Increase for pipe sizes < 27" d ia . = .~ CIJ "' Q. CIJ "' ~ ~ CIJ .e-"" "O 4) i:i.. CIJ -i:i.. "' « '-.:.. ~ 0 ~ "O 0 0 0 < fi: z fi: cfs # cfs 8.4 1 8.4 19 .3 1 19 .3 25 .0 1 25 .0 12.1 1 12.1 28 .2 1 28 .2 28 .1 1 28 .1 59 .2 1 59.2 64 .5 1 64 .5 63 .9 1 63.9 13 .8 1 13 .8 4 .5 1 4 .5 59.7 1 59 .7 58.7 1 58.7 11 .9 1 11.9 18 .2 1 18 .2 20 .1 1 20 .1 25 .1 1 25 .1 120 .1 1 120 .1 131 .3 1 131 .3 30 .1 1 30 .1 25.5 1 25 .5 33 .6 1 33 .6 41 .9 1 41 .9 7 .0 1 7 .0 18 .2 1 18.2 4 .1 1 4 .1 28.9 1 28.9 • • See Plan & Profile for pipe slope used (Pipe slope >or = Friction slope) « « CIJ Q. 0 00 = .8 -~ .J c.; ~ ·c ~ r.. 00 % " fps 0 .74 18 4.8 0.84 24 6 .1 1.41 24 8 .0 1.52 18 6 .8 0.96 27 7 .1 0 .95 27 7.1 1.44 33 10 .0 1 .72 33 10 .9 1.68 33 10 .7 0 .88 21 5 .7 0 .55 15 3 .6 1.47 33 10 .1 1.42 33 9 .9 1.48 18 6 .7 0.40 27 4 .6 0 .49 27 5 .1 0 .76 27 6.3 0.37 Box 8 .0 0.45 Box 8.8 2.03 24 9 .6 0.78 27 6 .4 0 .77 30 6.8 0 .72 33 7.0 2 .91 13 7 .6 1.51 21 7 .5 0.99 13 4 .4 0.57 30 5 .9 ~ Co-' z ~ ~ ' 31 40 42 210 42 88 50 181 137 235 31 279 486 31 256 65 168 55 240 64 563 106 155 13 48 13 140 CIJ s "O ~ ~ = = ~ ES Qj ~ ;;i. @) s ~ lo-< "" (,J ~ ~ ~ ~ = min min ' ' 0 .11 5 .20 0 .11 7 .13 0.09 7.22 0 .51 10 .01 0.10 10 .11 0.21 10 .32 0.08 10 .40 0.28 10 .68 0.21 10 .89 0 .68 7 .45 0 .14 5 .14 0 .46 11 .35 0 .82 12 .17 0.08 7 .90 0 .93 9.27 0 .21 9 .49 0 .44 12 .13 0 .11 18 .26 5 3 0 .46 18 .72 5 3 0 .11 16.71 1 .46 18.17 0 .26 18 .43 0.37 18 .79 0 .03 5 .87 0 .11 6.36 0 .05 5 .05 0.40 7 .68 9/23/97 9717-dra.XLS Exhibit C-3 EXHIBITC-4 TYPICAL INLET CAPACITY CALCULATIONS Edelweiss Estates Phases 1 OA, 1 OB, 11, 12, 13 & 15 These values work for most inlets. Where the capacity of an inlet is approached, actual values are calculated . CAPACITY OF INLET IN A SAG Weir Formula Q=(3 .087)(L)(h)"(3/2) Q/L=(3.087)(h)"(3/2) Q= Discharge in cubic feet pe r second (cfs) L= Length of open ing in feet (ft) h= Head or depth of water at opening in feet (ft) Q/L= Discharge per length of opening (cfs/ft) For inlets in sag it is assumed that the t op of curb is the highest point the water will pond . Therefore the depth of water at opening is the height of the curb + the depression at the inlet (4"). Std. Inlet in a Sag He ight of Curb = Depression at lnle.t = Q/L= 1.69 cfs/ft CAPACITY OF INLET ON GRADE 0 .5 (ft) 0 .17 (ft) Recessed Inlet in a Sag Height of Curb = Depression at Inlet = Q/L= 2.33 cfs/ft From Texas Highway Department, Hydraulic Manual , Chapter VI -Storm Sewer Design , Figure 2 Q/L = 0 .7[1/(H1-H2)][(H1)"(5/2)-(H2)"(5/2)] 0 .5 (ft) 0 .33. (ft) Q/L= Discharge per length of opening (cfs/ft) H1 =a+ y (ft) H2 = a = Depression at Inlet (ft) = 0.33' y = Depth of flow in approach gutter (ft) It is assumed that the depth of flow in the approach gutter is 0 .5'. Therefore, the Q/L for an inlet on grade is : Std. Inlet in on Grade a= 0 .17 ft y= 0 .5 ft H1= 0 .67 ft H2= 0 .17 ft Q/L= 0.50 cfs/ft Recessed Inlet on Grade a= 0.33 ft y= 0 .5 ft H1= 0 .83 ft H2= 0.33 ft Q/L= 0.79 cfs/ft 2:41 PM 9717-dra .XLS Exhibit C-4 FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1991 VERSION 4. 0. lE Lahey F77L-EM/32 veroion 5.01 Dod~on ' As3ociate3, Inc . RUN DATE 02/17 /97 TIME 13: 42: 2 1 * ••• * * *** ** **** ** * * •• *** * * * •••• * ••• * ** * *. x x x x x x xxxxxxx x x x x x x EXHIBIT II D II xxxxxxx xxxxx x x x x xx x x x xx xx x xxxxx x x x x x x x x xxxxxxx xxxxx xxx U.S. ARMY CORPS OF ENGINEERS HYDROLOG IC ENGINEERING CENTER 609 SECOND STREET DAVIS , CALIFORNIA 95616 (916) 551-1748 THlS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73), HEClGS, HEClDB, AND HEClKW. THE DEFINITIONS OF VARIABLES -RTIMP-AND -RTIOR-HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE . THE DEFINITION OF -AMSKK-ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81 . THIS IS THE FORTRAN77 VERSI ON NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TlME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE : NEW FINITE DIFFERENCE ALGORITHM HEC -1 INPUT LINE ID ....... l. ...... 2 ....... 3 ....... 4 ....... 5 ....... 6 ..•.... 7 ....... 8 ....... 9 ...•.• 10 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 ID IT IO JP JR KK KP BA PB IN PC PC PC PC PC LS UD KP LS UD KK KP RN KP RS SA SE SL SS ST KK KP BA LS UD KP LS UD KK HC KK RD RC RX RY EDELWEISS ESTATES PHASE 108 2 OlFEB97 0000 720 5 o o 2 PREC 11 9.8 8 .8 7 .4 DA l ALL DEVELOPMENT 57.46 ACRES l .08977 l 30 OlFEB97 0000 .0053 .0108 . 0164 .0223 . 0284 .0712 .0797 . 0887 . 0984 .1089 .2042 .2351 .2833 .6632 . 7351 .867 6 .8801 .8914 .9019 . 9115 .9586 .9653 .9717 .9777 . 9836 75 o . 48 2 82 . l .18 NEW POND l FLOW -l o .3605 l. 745 2 .057 2.180 299 300 301 302 303 299.97 3 .1415 . 7 .5 304 20 l.5 305 l.5 DA 4 UNCONTROLLED FLOWS BYPASSING POND l . 00688 o 75 .22 2 o 84 . 08 OUTLET 2 VEE DITCH .02 .014 .02 700 . 0154 .001 10 23 25 25.1 300 296 294 293 ·. 5 2 93. 5 HEC -l INPUT 6.2 4 .5 .0347 .0414 .0483 .0555 .0632 .1203 .1328 .1467 .1625 .1608 . 7724 .7989 .8197 .8360 . 8538 .9206 .9291 .9371 .9446 .9519 .9892 .9947 l. 000 2.306 2.434 2.565 2.6 3 04 305 306 307 5.007 AC 27 40 50 294 296 300 1 PAGE PAGE Exhibit D LINE 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 ID ••••••• 1. •••••• 2 •...••• 3 ••••.•• 4 ••••••• 5 ••••••• 6 ••••••• 7 ••••••• 8 ••••••• 9 •••••• 10 KK DA 5 swv 24 BA .0302 LS 0 84 0 UD .15 KK CULV IN DEACON HC 2 KK DA 6 DEACON BA .0030 LS 0 84 0 UD .11 KK CHANN HC 2 KK DA CHURCH BA .0699 LS 84 0 UD .19 KK WELSH HC 2 zz i •••••••••• •••••••••••••••••••••••• ******* + FLOOD HYDROGRAPH PACKAGE ( HEC-1) MAY 1991 VERSION 4. 0. lE Lahey F77L-EM/32 version 5.01 Dodson ' Associates, Inc. RUN DATE 02/17/97 TIME 13:42:21 EDELWEISS ESTATES PHASE lOB 3 IO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT 0 PLOT CONTROL QSCAL o. HYDROGRAPH PLOT SCALE IT HYDROGRAPH TIME DATA NMIN 2 MINUTES IN Cet1PUTATION IDATE 1FEB97 STARTING DATE I TIME 0000 STARTING TIME INTERVAL NQ 720 NUMBER OF HYDROGRAPH ORDINATES JP JR NDDATE 1FEB97 ENDING DATE ND TI HE 2358 ENDING TIME I CENT 19 CENTURY MARK CCl1PUTATION INTERVAL 0.03 HOURS TOTAL TIME BASE 23.97 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE MULTI-PLAN OPTION NP LAN MULTI-RATIO OPTION SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE-FEET ACRES DEGREES FAHRENHEIT 2 NUMBER OF PLANS RATIOS OF PRECIPITATION 11.00 9.80 8.80 7 .40 6 .20 4.50 U.S. ARMY CORPS OF ENGINEERS HYDROLOG I C ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 551-17 48 PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONCl!IC CCl!PUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS RATIOS APPLIED TO PRECIPITATION OPERATION STATION AREA PLAN RATIO l RATIO 2 RATIO 3 RATIO 4 RATIO 5 RATIO 6 11.00 9.80 8.80 7.40 6 .20 4 .50 HYDROGRAPH AT DA l 0.09 FLOW 273. 234. 202. 158. 120. 70 . TIME 11.80 11 . BO 11.80 11.80 11. 80 11. 83 FLOW 425. 372. 327. 264 . 210. 135. TIME 11. 53 11.53 11 .53 11. 53 11. 53 11. 57 ROUTED TO 2 Exhibit D NEW PO 0 .09 HYDROGRAPH AT DA 4 0 .01 2 COMBINED AT OUTLET 0 .10 ROUTED TO VEE 0.10 HYDROGRAPH AT DA 5 0 . 03 2 COMBINED AT CULV 0.13 HYDROGRAPH AT DA 6 0.00 2 COMBINED AT CHANN 0 .13 HYDROGRAPH AT DA 7 0. 07 2 COMBINED AT WELSH 0.20 ISTAQ ELEMENT OT (HIN) FOR PLAN • 1 RATIO-0.00 VEE HANE l. 00 FLOW TIME FLOW TIME 273. 11. 80 285. 11. 70 PEAK STAGES IN FEET 234. 11. 80 220. 11.13 STAGE 0.00 0.00 TIME 0. 00 0. 00 STAGE 306. 21 305. 89 TIME l r:-fo-11 .'13 FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME 2 FLOW TIME 29. 11.51 35. 11. 50 290. ll.11 294. 11. 10 289. 11.11 293. 11. 10 149 . 11.50 149 . ll. 53 311. 11.60 389. 11.63 15. 11.50 15 . 11.50 389. 11.60 398. 11.63 334. 11.53 334. 11. 51 111. 11. 51 115. 11. 60 25. 11. 51 31. ll.50 2 49. 11. 77 221. l l.13 2 48. 11. 80 226. ll.13 131. ll.50 131. ll.53 325. 11. 60 29 1 . 11. 61 13. 11. 50 13. ll.50 335. 11. 60 304. 11. 63 2 93. 11. 53 293. 11. 57 623. 11. 51 519. 11. 60 202. 11.80 165 . 11.11 0.00 0.00 305.53 ll.11 21. 11. 51 21. 11.50 215. 11 .11 111. 11.11 214. 11. 80 110. 11.11 115. 11. 53 115. 11. 53 282 . 11. 60 222. 11. 10 12. 11. 50 12. 11. 50 291. 11. 60 226. 11. 61 259. 11. 53 259. 11. 51 545. 11. 51 411. 11. 51 158. 11. 80 93. ll.83 0.00 0.00 304. 93 11. 83 11 . 11. 51 22. 11.50 161 . 11.11 98 . 11. 83 161. 11.80 98. 11. 81 94. 11.53 94. 11. 53 222. 11. 60 149. ll.53 10. 11. 50 10. ll.50 229. 11.60 158. ll.53 210. 11 .53 210. ll.57 436. 11. 57 369. ll.53 120. 11.80 41 . 12 .10 0. 00 0 .00 304. 31 12.10 13. 11. 51 18 . 11. 50 1 28. 11.11 so. 12 .03 128 . 11 .80 50. 12 . 01 16. 11. 53 16. 11. 53 111. 11. 60 123. 11. 53 8. 11.50 8. 11. 50 111. 11. 60 131. 11. 53 169. 11. 53 169. 11.51 344. 11.51 299. 11.53 SUMMARY OF KINEMATIC WAVE -MUSKINGUM-CUNGE ROUTING (FLOW IS DIRECT RUNOFF WITHOUT BASE FLOW) INTERPOLATED TO 10 . 11. 83 30. 12 .13 o.oo 0.00 302.83 12.13 8. 11. 60 12. 11. 50 14. 11.80 36. 11. 53 14. 11.83 36. 11. 53 50 . 11.53 50. 11. 53 102 . 11. 60 85 . 11 .53 5 . 11.50 5 . ll.50 106. 11.60 90. 11.53 110. 11. 51 110. ll.51 215. 11.51 200. 11.53 COMPUTATION INTERVAL PEAK (CFS) 289.16 TIME TO PEAK (HIN) 106.45 VOLUME (IN) 1.19 OT PEAK T !HE TO VOLUME PEAK (HIN) (CFS) (HIN) (IN) 2.00 289.41 106.00 1.19 CONTINUITY SUMMARY (AC-FT) -INFLOW •O. 4016E+02 EXCESS •O. OOOOE+OO OUTFLOW=O. 4015E+02 BASIN STORAGE•0.1306E-Ol PERCENT ERROR• 0. 0 FOR PLAN • l RATIO-0. 00 VEE HANE l.03 248.66 106. 18 6. 61 2.00 248.39 108. 00 6 . 61 CONTINUITY SUMMARY (AC-FT) -INFLOW•0.3439E+02 EXCESS=O.OOOOE+OO OUTFLOW=0 .3438E+02 BASIN STORAGE•0.1210E-Ol PERCENT ERROR• 0.0 FOR PLAN• 1 RATIO-0 .00 VEE HANE l.06 214. 51 101.15 5.15 2 .00 214.41 108 .00 5.75 CONTINUITY SUMMARY (AC-FT) -INFLOW•O. 2965E+02 EX CESS=O . OOOOE+OO OUTFLOW=O .2964E+02 BASIN STORAGE•O. ll06E-Ol PERCENT ERROR• 0. 0 3 Exhibit D FOR PLAN • l RATIO-0. 00 VEE HANE 1. 11 167 .29 707. 58 4.49 2.00 167. 22 708. 00 4. 49 CONTINUITY SUMMllRY (AC-FTI -INFLOW•0.2314E+02 EXCESS•O.OOOOE+OO OUTFLOW•0.2314E+02 BASIN STORAGE •0.9797E-02 PERCENT ERROR• 0.0 FOR PLAN • l RATIO-0 . 00 VEE HANE 1. 17 127. 70 708. 43 3. 44 2 .00 127 . 66 708. 00 3 .44 CONTINUITY SUMMllRY (AC-FT) -INFLOW=O .1774E+02 EXCESS •O. OOOOE+OO OUTFLOW=O .1774E+02 BASIN STORAGE •O . 8567E-02 PERCENT ERROR= 0. 0 FOR PLAN • l RATIO-0. 00 VEE HANE 1. 28 74 .16 708. 91 2 .04 2 .00 74.01 710.00 2. 04 CONTINUITY SUMMllRY !AC-FT) -INFLOW•O .1053E+02 EXCESS •O. OOOOE+OO OUTFLOW •O .1053E+02 BASIN STORAGE•O. 62 76E-02 PERCENT ERROR• 0. 0 FOR PLAN • 2 RATIO-0. 00 VEE HANE o. 99 293.34 702.35 8. 79 2.00 292.87 702 . 00 8. 79 CONTINUITY SUMMllRY (AC-FT) -INFLOW•O. 4530E+02 EXCESS •O. OOOOE+OO OUTFLOW=O. 4530E+02 BASIN STORAGE•O. 5936E-02 PERCENT ERROR= 0. 0 FOR PLAN • 2 RATIO= 0. 00 VEE HANE 1. 05 226. 77 704.26 7.63 2 .00 226.45 704. 00 7 . 63 CONTINUITY SUMMllRY (AC-FT) -INFLOW •0.3932E+02 EXCESS •O.OOOOE+OO OUTFLOW=0.3932E+02 BASIN STORAGE•0.3718E-02 PERCENT ERROR • 0.0 FOR PLAN • 2 RATIO= 0. 00 VEE HANE 1.11 170. 63 706 .76 6.66 2.00 170. 33 706. 00 6 . 66 CONTINUITY SUMMllRY (AC-FT) -INFLOW •O. 3435E+02 EXCESS •O. OOOOE+OO OUTFLOW=O. 3435E+02 BASIN STORAGE =O .2686E-02 PERCENT ERROR • 0. 0 FOR PLAN • 2 RATIO= 0. 00 VEE HANE 1. 22 97 .56 711. 72 5.33 2.00 97.55 712.00 5.33 CONTINUITY SUMMllRY (AC-FT) -INFLOW •0.2750E+02 EXCESS•O.OOOOE+OO OUTFLOW•0.2750E+02 BASIN STORAGE•0 .2 405E-02 PERCENT ERROR• 0.0 FOR PLAN • 2 RATIO-0. 00 VEE HANE 1. 38 50 .20 723. 46 4 .21 2 .00 50 .17 724 . 00 4 . 21 CONTINUITY SUMMllRY (AC-FT) -INFLOW •O. 2169E+02 EXCESS•O . OOOOE+OO OUTFLOW=O. 2169E+02 BASIN STORAGE•O .1293E-02 PERCENT ERROR• 0. 0 FOR PLAN • 2 RATIO-0.00 VEE HANE 1. 45 35.88 693 . 09 2.66 2.00 35.66 692. 00 2.66 CONTINUITY SUMMllRY (AC-FT) -INFLOW=0.1372E+02 EXCESS•O .OOOOE+OO OUTFLOW•0.1372E+02 BASIN STORAGE•O. 8442E-03 PERCENT ERROR • 0 . 0 PLAN 2 ............... INITIAL VALUE SPILLWAY CREST TOP OF DAM ELEVATION 299.97 304. 00 305. 00 STORAGE 0 . 7 . 10. OUTFLOW 0. 35. 100. RATIO MAXIMUM MAX IMUM MAXI MUM MAXIMUM DURATION TIME OF TIME OF OF RESERVOIR DEPTH STORAGE OUTFLOW OVER TOP MAX OUTFLOW FAILURE PHF W.S .ELEV OVER DAM AC-FT CFS HOURS HOURS HOURS 11.00 306.27 1.27 13. 285. 0.83 11. 70 0.00 9.80 305.89 0.89 12. 220. 0. 73 11. 73 0 .00 8.80 305. 53 0 .53 11 . 165 . 0 .60 ll.77 0.00 7 . 40 304.93 o. 00 10. 93. 0.00 11. 83 0 .00 6 .20 304. 31 0.00 8. 47 . 0.00 12 .10 0.00 4. 50 302 . 83 0. 00 5 . 30. 0 .00 12 .13 0. 00 • • • NORMAL END OF HEC -1 * • • Exhibitf? TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION October 25, 1995 EXHIBIT E EDELWEISS ESTATES PHASE lOA ==================================================================== PROGRAM INPUT DATA: DESCRIPTION Flow Rate (cubic feet per second) ...................... . Chann el Bottom Slope (feet per foot) ................... . Manning's Roughness Coef f icie nt (n -value ).··········~··· Channel S~de Slope -Left Side (hor izontal/vertical) ... . Chann el Side Slope -Right Side (h orizontal/vertical) .. . Channel Bottom Width (feet ) ............................ . PROGRAM RESULTS: DESCRIPTION Normal Depth (feet) ............................•.•...... Flow Velocity (feet per s ·econd) ........................ . Froude Number (Flow i's Sub-Critic al) ...........•......... Velocity Head (feet) • ' .............................•..... Energy Head (feet) ....•...............••......•..•••.... Cross-Sectional Area of Flow (square feet) ............. . Top Width of Flow (feet) ........................••...... VALUE 17.0 0.0070 0.0300 4. 00 4 .00 6 .0 VALU E 0. 71 2.71 0.653 0.11 0.82 6.26 11. 67 ==================================================================== TRAPEZOIDAL CHANNEL ANALYSIS COMPUTER PROGRAM, Version L3 (c) 1986 Dodson & Associates, Inc., 7015 W. Tidwell, 1107, Houston, TX 77092 (713) 895-8322. A manual with equations & flow chart is available. EXHIBIT ''E" ; ' TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION September 1996 i Edelweiss Estates Phase 10-B PROGRAM INPUT DAT A : DESCRIPTION Flow Rate (cubic feet per second) .................... . Channel Bottom Slope (feet per foot) ................... . Manning's Roughness Coefficient (n-value) .............. . Channel Side Slope -Left Side (horizontal/vertical) ... . Channel Side Slope -Right Side (horizontal/vertical) .. . Channel Bottom Width (feet) ............................ . PROGRAM RESULTS : DESCRIPTION Normal Depth (feet) .................................... . Flow Velocity (feet per second) ........................ . Froude Number (Flow is Sub-Critical) ................... . Velocity Head (feet) ................................... . Energy Head (feet) ..................................... . Cross-Sectional Area of Flow (square feet) ............. . Top Width of Flow (feet) ............................... . VALUE 32.4** 0 .0100 0 .0300 4 .00 4 .00 6 .0 VALUE 0 .91 3 .71 0 .805 0 .21 1.12 8 .73 13.26 TRAPEZOIDAL CHANNEL ANALYSIS COMPUTER PROGRAM, Version 1.3 (c) 1986 Dodson & Associates, Inc., 7015 W . Tidwell, #107, Houston, TX 77092 (713) 895-8322. A manual with equations & flow chart is available. **The overflow channel will be designed for the 100 Year Storm. The overflow channel will convey the excess flow from structure 5 and 9 Q100 at Structure 5 = 61.4 cfs Q1 oo at Structure 9 = 41 . 7 cfs Q10at Structure 5 = 41.8 cfs Q10 at Structure 9 = 28 9 cfs Overflow Q = 19 .6 cfs Overflow Q = 12.8 cfs Total Overflow Q = 32.4 cfs Exhibit E Exhibit F Computation of Lag T i mes ::i:: --~ :it: .... .... ti') w -(ii C> u. 0::: u u -:J (3 > .... w w z -' :it: 0 u. 0 0::: C> ti') --' w -' i=-:J s u j::: ti') -' < w ::i:: 0 -' u ~ .... ~ .... z w :i! u. > -w 0 z 0 z u. 0::: u u. j::: 0::: C> w > c c w c w c 0 c-u d ::i -' u. :J s ~ u C> w we ~ 0::: w ~ 0::: w u w~ ~ ~ :J < -u ........ z ti') ti') w ti') • ti') u. ti') -~ u w 0 o -ti') 0 o> ti') 0 0 0 Ou ~ ~ ~ j:: a. i-: i-: i-: u j:: a.. a.. !:: :J .... a.. 0::: :J .... a. w w a. 0 c 0::: 0 ti') ti') ti') z ti') 0 oc ..., u 0W ..., u 0 :i! 0 -' 0::: 0::: 0::: >-w -' x x xo x 0::: 0::: 0 Cc{ 0::: a. Oct 0::: -:i! 0::: w :$ :$ :$ ::i:: ~ sa w w WU w a.. a..~ :$ u. a. ~ :$ u. a. .... j:: a. ~ All Devel. 57.5 0.0512 1900 32 0.017 75 0 .48 0.79 0. 67 84 75 0 .62 38 0 .81 0 .1 8 0 .30 1. 76 Uncontrol 5.0 0 .0047 620 8 0.013 75 0.22 0.37 0 .47 84 75 0.62 38 0.81 0.08 0 .14 1. 23 swv 24 19.3 0.0302 1100 11 0.010 75 0.40 0.66 0. 46 84 75 0 .6 2 38 0.81 0.15 0.25 1. 21 Deacon 1.9 0.0030 900 12 0.013 75 0.29 0.49 0.51 84 75 0 .62 38 0.81 0.11 0 .19 1. 35 Church 44.7 0 .0699 1500 15 0.010 75 0.51 0 .85 0 .49 84 75 0 .62 38 0.81 0.19 0.32 1. 29 Exhi b it F ci: w 0 0::: w _, ci: ~ c.. ci: ci: w 0 ;:::: w (.') 0::: _, 0::: ci: ci: w z ci: u ci: w _, > ~ _, z 0 ~ ci: ~~ Ci; ci: I-0 I- 0 z 0::: w 0 0 I-::::> ci: 0::: a:: I- NO. AC . 0.4 0.53 0 .95 1P 57.46 0 .00 57.46 0 .00 30.46 1E 57 .46 57.46 0 .00 0 .00 22 .99 EXHIBIT H-1 Rational Formula Drainage Area Calculations EDELWEISS ESTATES, PHASES 1 0A, 10B, 11 , 12 , 13 & 15 s: s: 0 0 3: 3: _, _, u. u. 0 0 0 0 _, _, z z u. u. ~ :5 ::c :5 0::: ::c 0::: u () w I-w I-() 0:: I-I-w (.') 0::: _, ~ (.') ~ :::l 0 u >z w _, ::::> z _, w > ci: ::::> ci: w c;; en N II) 0 o~ 0 u. (.') ~ (.') u. > u ::::> !::! 0 ~ 0 !: ft. ft. ft. ft. ftls min min In/Hr cfs In/Hr cf s In /Hr 300 .0 5 .0 1800 .0 15.0 1.6 22.1 22 .1 4 .H3 127 .4 5 .2 15 7 .9 5 .9 500 .0 5 .0 1600.0 15.0 1.4 25 .7 25 .7 3 .82 87 .7 4.7 109 .2 5 .4 0 II) ,.... II) N 0 0 !::! 0 II) cfs In/Hr cf s In /Hr 179 .2 6 .8 205 .6 7 .7 124 .2 6 .2 142.6 7 .1 0 II) 0 cf s 233 .5 162 .1 0 0 0 0 ,.... ,.... 0 In/Hr cfs 8 .7 263 .9 8 .0 183 .5 3/11/97 pea k .xis Exh ibit H-1 D.A. # 'It .r::. a. ~ Cl e "O >-(l_ ::i::: ~ Qp 157.9 Tc 22.1 inc 5.0 Time cfs 0.0 0.0 5.0 35.8 10.0 71.5 15.0 107.3 20.0 143.1 25.0 147.5 30.0 129.6 35.0 111.7 40.0 93.8 45.0 75.9 50.0 58.1 55.0 40.2 60.0 22.3 65.0 4.4 70.0 0.0 75.0 0.0 80.0 0.0 85.0 0.0 90.0 0.0 95.0 0.0 100.0 0.0 105.0 0.0 110.0 0.0 115.0 0.0 120.0 0.0 125.0 0.0 130.0 0.0 135.0 0.0 140.0 0.0 145.0 0.0 150.0 0.0 155.0 0.0 160.0 0.0 PEAK FLOWS 147 0.00 indicates inital condition EXHIBIT "H-2" "PEAK DISCHARGE" DETENTION POND ROUTING EDELWEISS ESTATES, PHASES 10A, 10B, 11, 12, 13 & 15 D.A. # Pond Routing EVENT= 5 c: 0 0 0 w w ::. c: Cf) z c: ~ .Q Cii ~ 2 ...J 0 + ~ ~ "O iii <I: (l_ ~ c: + + "O c: + c: > f-0 0 <n Cf) c: 0 ..!!! 0 0:: u c: N N 0 (l_ w f-(l_ I cfs cfs cfs cfs cfs ft cfs 0.0 35.76 0.00 0.00 0.00 299.0 0.00 35.8 107.29 30.00 35.76 2.88 299.9 2.88 71.5 178.81 121.19 137.29 8.05 300.3 8.05 107.3 250.34 267.54 300.00 16.23 300.9 16.23 143.1 290.52 477.28 517.88 20.30 301.3 20.30 147.5 277.05 720.72 767.80 23.54 301.8 23.54 129.6 241.29 945.59 997.78 26.09 302.2 26.09 111.7 205.53 1131.29 1186.88 27.79 302.5 27.79 93.8 169.76 1278.54 1336.82 29.14 302.7 29.14 75.9 134.00 1388.03 1448.31 30.14 302.9 30.14 58.1 98.24 1460.46 1522.03 30.79 303.0 30.79 40.2 62.48 1496.60 1558.70 31.05 303.1 31.05 22.3 26.71 1496.97 1559.07 31.05 303.1 31.05 4.4 4.42 1462.09 1523.68 30.80 303.0 30.80 0.0 0.00 1405.90 1466.50 30.30 302.9 30.30 0.0 0.00 1346.38 1405.90 29.76 302.8 29.76 0.0 0.00 1287.93 1346.38 29.22 302.7 29.22 0.0 0.00 1230.53 1287.93 28.70 302.6 28.70 0.0 0.00 1174.16 1230.53 28.18 302.5 28.18 0.0 0.00 1118.80 1174.16 27.68 302.5 27.68 0.0 0.00 1064.44 1118.80 27.18 302.4 27.18 0.0 0.00 1011.06 1064.44 26.69 302.3 26.69 0.0 0.00 958.63 1011.06 26.21 302.2 26.21 0.0 0.00 907.15 958.63 25.74 302.1 25.74 0.0 0.00 856.59 907.15 25.28 302.0 25.28 0.0 0.00 807.22 856.59 24.68 301.9 24.68 0.0 0.00 759.12 807.22 24.05 301.8 24.05 0.0 0.00 712.28 759.12 23.42 301.8 23.42 0.0 0.00 666.65 712.28 22.82 301.7 22.82 0.0 0.00 622.19 666.65 22.23 301.6 22.23 0.0 0.00 578.89 622.19 21.65 301.5 21.65 0.0 0.00 536.72 578.89 21.09 301.4 21.09 0.0 0.00 495.63 536.72 20.54 301.4 20.54 147 31 303.1 31 D.A. # <.? ...J ~ <I: f-f-~ w ox ~ f-w 109.2 25.7 cfs cfs 0.0 0.00 21.2 21.23 42.5 42.47 63.7 63.70 84.9 84.94 106.2 106.17 100.0 100.03 89.4 89.41 78.8 78.79 68.2 68.18 57.6 57.56 46.9 46.94 36.3 36.32 25.7 25.71 15.1 15.09 4.5 4.47 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 106 106 peak.xis Exhibit H-2 D.A. # :it .s:::: a. i'! Cl e "O >-a.. :i: ...-Qp 179.2 Tc 22.1 inc 5.0 Time cfs 0.0 0.0 5.0 40.6 100 81.2 15.0 121.8 20.0 162.3 25.0 167.4 30.0 147.1 35.0 126.8 40.0 106.5 45.0 86.2 50.0 65.9 55.0 45.6 60.0 25.3 65.0 5.0 70.0 0.0 75.0 0.0 80.0 0.0 85.0 0.0 90.0 0.0 95.0 0.0 100.0 0.0 105.0 0.0 110.0 0.0 115.0 0.0 120.0 0.0 125.0 0.0 130.0 0.0 135.0 0.0 140.0 0.0 145.0 0.0 150.0 0.0 155.0 0.0 160.0 0.0 PEAK FLOWS 167 0.00 indicates inital condition EXHIBIT "H-2" "PEAK DISCHARGE" DETENTION POND ROUTING EDELWEISS ESTATES, PHASES 1 OA, 1 OB, 11, 12, 13 & 15 D.A. # Pond Routing EVENT= 10 c 0 a 0 w ::. w c Cl) z c "O 0 iii ...-q ..J 0 + ...-"O iQ <( a.. ::E c ~ + ...-+ c + c > I-0 0 en Cl) c o2 0 a:: () c N N a a.. w I-a.. cfs cts cfs els cf s ft cfs 0.0 40.59 0.00 0.00 0.00 299.0 0.00 40.6 121.76 34.21 40.59 3.19 300.0 3.19 81.2 202.93 137.99 155.97 8.99 300.4 8.99 121.8 284.11 304.91 340.92 18.01 301.0 18.01 162.3 329.71 546.57 589.01 21.22 301.5 21.22 167.4 314.43 826.40 876.28 24.94 302.0 24.94 147.1 273.84 1086.07 1140.83 27.38 302.4 27.38 126.8 233.25 1301.21 1359.91 29.35 302.8 29.35 106.5 192.66 1472.71 1534.46 30.88 303.0 30.88 86.2 152.08 1601.75 1665.38 31.81 303.2 31.81 65.9 111.49 1688.93 1753.83 32.45 303.4 32.45 45.6 70.90 1734.85 1800.42 32.78 303.4 32.78 25.3 30.32 1740.11 1805.76 32.82 303.4 32.82 5.0 5.01 1705.29 1770.43 32.57 303.4 32.57 0.0 0.00 164B.03 1710.30 32.14 303.3 32.14 0.0 0.00 1582.68 1646.03 31.68 303.2 31.68 0.0 0.00 1520.23 1582.68 31.22 303.1 31.22 0.0 0.00 1458.69 1520.23 30.77 303.0 30.77 0.0 0.00 1398.22 1458.69 30.23 302.9 30.23 0.0 0.00 1338.84 1398.22 29.69 302.8 29.69 0.0 0.00 1280.52 1338.84 29.16 302.7 29.16 0.0 0.00 1223.26 1280.52 28.63 302.6 28.63 0.0 0.00 1167.02 1223.26 28.12 302.5 28.12 0.0 0.00 1111.79 1167.02 27.61 302.4 27.61 0.0 0.00 1057.56 1111.79 27.12 302.4 27.12 0.0 0.00 1004.29 1057.56 26.63 302.3 26.63 0.0 0.00 951.99 1004.29 26.15 302.2 26.15 0.0 0.00 900.62 951.99 25.68 302.1 25.68 0.0 0.00 850.18 900.62 25.22 302.0 25.22 0.0 0.00 800.98 850.18 24.60 301.9 24.60 0.0 0.00 753.05 800.98 23.96 301.8 23.96 0.0 0.00 706.36 753.05 23.34 301.8 23.34 0.0 0.00 660.88 706.36 22.74 301.7 22.74 167 33 303.4 33 D.A. # <.? ..J ~ <( I-I-!:'! w 0 >< ...-I-w 124.2 25.7 cfs cfs 0.0 0.00 24.2 24.16 48.3 48.32 72.5 72.47 96.6 96.63 120.8 120.79 113.8 113.80 101.7 101.72 89.6 89.64 77.6 77.56 65.5 65.48 53.4 53.40 41.3 41.33 29.2 29.25 17.2 17.17 5.1 5.09 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 121 121 peak.xis Exhibit H-2 D.A. # 'It .c a. ~ Cl ~ "O >-0.. :c ..... Qp 205.6 Tc 22.1 inc 5.0 Time cf s 0.0 0.0 5.0 46.6 10.0 93.1 15.0 139.7 20.0 186.3 25.0 192.0 30.0 168.7 35.0 145.4 40.0 122.2 45.0 98.9 50.0 75.6 55.0 52.3 60.0 29.0 65.0 5.8 70.0 0.0 75.0 0.0 80.0 0.0 85.0 0.0 90.0 0.0 95.0 0.0 100.0 0.0 105.0 0.0 110.0 0.0 115.0 0.0 120.0 0.0 125.0 0.0 130.0 0.0 135.0 0.0 140.0 0.0 145.0 0.0 150.0 0.0 155.0 0.0 160.0 0.0 PEAK FLOWS 192 0.00 indicates inital condition EXHIBIT "H-2" "PEAK DISCHARGE" DETENTION PONO ROUTING EDELWEISS ESTATES, PHASES 10A, 10B, 11, 12, 13 & 15 D.A. # Pond Routing EVENT= 25 c: 0 0 0 w w :!. c: Cl) z c: ~ .2 iii ..... q _J 0 + ..... "O cu <( 0.. :::!: c: ~ + ..... f-0 + c: + c: > 0 (i3 Cl) c: o~ 0 0:: u E N N 0 0.. w f-0.. cfs cfs cf s cfs cfs ft cfs 0.0 46.56 0.00 0.00 0.00 299.0 0.00 46.6 139.69 39.59 46.56 3.49 300.0 3.49 93.1 232.82 158.95 179.28 10.16 300.5 10.16 139.7 325.95 354.44 391.78 18.67 301.1 18.67 186.3 378.27 635.59 680.39 22.40 301.6 22.40 192.0 360.73 961.38 1013.85 26.24 302.2 26.24 168.7 314.17 1264.09 1322.11 29.01 302.7 29.01 145.4 267.60 1515.88 1578.26 31.19 303.1 31.19 122.2 221.04 1718.16 1783.49 32.66 303.4 32.66 98.9 174.48 1871.64 1939.20 33.78 303.7 33.78 75.6 127.91 1977.02 2046.12 34.55 303.8 34.55 52.3 81.35 2034.99 2104.93 34.97 303.9 34.97 29.0 34.78 2046.24 2116.34 35.05 303.9 35.05 5.8 5.75 2011.42 2081.02 34.80 303.9 34.80 0.0 0.00 1948.50 2017.17 34.34 303.8 34.34 0.0 0.00 1880.80 1948.50 33.85 303.7 33.85 0.0 0.00 1814.08 1880.80 33.36 303.6 33.36 0.0 0.00 1748.32 1814.08 32.88 303.5 32.88 0.0 0.00 1683.50 1748.32 32.41 303.4 32.41 0.0 0.00 1619.61 1683.50 31.94 303.3 31.94 0.0 0.00 1556.63 1619.61 31.49 303.2 31.49 0.0 0.00 1494.56 1556.63 31.03 303.1 31.03 0.0 0.00 1433.45 1494.56 30.56 303.0 30.56 0.0 0.00 1373.44 1433.45 30.01 302.9 30.01 0.0 0.00 1314.50 1373.44 29.47 302.8 29.47 0.0 0.00 1256.63 1314.50 28.94 302.7 28.94 0.0 0.00 1199.79 1256.63 28.42 302.6 28.42 0.0 0.00 11'43.97 1199.79 27.91 302.5 27.91 0.0 0.00 1089.16 1143.97 27.41 302.4 27.41 0.0 0.00 1035.33 1089.16 26.91 302.3 26.91 0.0 0.00 982.47 1035.33 26.43 302.2 26.43 0.0 0.00 930.55 982.47 25.96 302.1 25.96 0.0 0.00 879.57 930.55 25.49 302.1 25.49 192 35 303.9 35 D.A. # <..? _J ~ <( f-f-~ w ox ..... f-w 142.6 25.7 cfs cfs 0.0 0.00 27.7 27.74 55.5 55.49 83.2 83.23 111.0 110.98 138.7 138.72 130.7 130.69 116.8 116.82 102.9 102.95 89.1 8908 75.2 75.20 61.3 61.33 47.5 47.46 33.6 33.59 19.7 19.72 5.8 5.84 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 139 139 peak.xis Exhibit H-2 DA# :it: .c 0. ~ OI e "O >. a.. :x: .-Qp 233.5 Tc 22.1 inc 5.0 Time cfs 0.0 0.0 5.0 52.9 10.0 105.8 15.0 158.6 20.0 211.5 25.0 218.0 30.0 191.6 35.0 165.2 40.0 138.7 45.0 112.3 50.0 85.8 55.0 59.4 60.0 33.0 65.0 6.5 70.0 0.0 75.0 0.0 80.0 0.0 85.0 0.0 90.0 0.0 95.0 0.0 100.0 0.0 105.0 0.0 110.0 0.0 115.0 0.0 120.0 0.0 125.0 0.0 130.0 0.0 135.0 0.0 140.0 0.0 145.0 0.0 150.0 0.0 155.0 0.0 160.0 0.0 PEAK FLOWS 218 0.00 indicates inital condition EXHIBIT "H-2" "PEAK DISCHARGE" DETENTION POND ROUTING EDELWEISS ESTATES, PHASES 1 OA, 1 OB, 11, 12, 13 & 15 D.A.# Pond Routing EVENT= 50 c 0 0 0 w + w c z c ~ .Q (/) Ci) ..--2 ...J 0 + ..--"O ~ <l'. a.. :::;;: c + ..--I-0 + "O c + c > 0 Ci) (/) c o~ 0 a::: (.) E N N 0 a.. w I-a.. cfs cfs cfs cfs cfs ft cfs 0.0 52.88 0.00 0.00 0.00 299.0 0.00 52.9 158.63 45.26 52.88 3.81 300.1 3.81 105.8 264.38 181.09 203.89 11.40 300.6 11.40 158.6 370.13 406.75 445.47 19.36 301.2 19.36 211.5 429.54 729.57 776.88 23.65 301.8 23.65 218.0 409.63 1104.03 1159.11 27.54 302.4 27.54 191.6 356.75 1452.20 1513.65 30.73 303.0 30.73 165.2 303.88 1743.27 1808.96 32.85 303.5 32.85 138.7 251.00 1978.03 2047.14 34.55 303.8 34.55 112.3 198.12 2147.90 2229.03 40.57 304.1 40.57 85.8 145.25 2244.93 2346.02 50.54 304.2 50.54 59.4 92.37 2281.56 2390.18 54.31 304.3 54.31 33.0 39.50 2268.09 2373.94 52.92 304.3 52.92 6.5 6.53 2213.05 2307.58 . 47.27 304.2 47.27 0.0 0.00 2140.06 2219.58 39.76 304.1 39.76 0.0 0.00 2069.61 2140.06 35.22 304.0 35.22 0.0 0.00 2000.18 2069.61 34.72 303.8 34.72 0.0 0.00 1931.74 2000.18 34.22 303.7 34.22 0.0 0.00 1864.29 1931.74 33.73 303.6 33.73 0.0 0.00 1797.81 1864.29 33.24 303.5 33.24 0.0 0.00 1732.28 1797.81 32.77 303.4 32.77 0.0 0.00 1667.69 1732.28 32.29 303.3 32.29 0.0 0.00 1604.02 1667.69 31.83 303.2 31.83 0.0 0.00 1541.27 1604.02 31.37 303.1 31.37 0.0 0.00 1479.43 1541.27 30.92 303.0 30.92 0.0 0.00 1418.59 1479.43 30.42 302.9 30.42 0.0 0.00 1358.84 1418.59 29.87 302.8 29.87 0.0 0.00 1300.17 1358.84 29.34 302.8 29.34 0.0 0.00 1242.55 1300.17 28.81 302.7 28.81 0.0 0.00 1185.96 1242.55 28.29 302.6 28.29 0.0 0.00 1130.39 1185.96 27.78 302.5 27.78 0.0 0.00 1075.82 1130.39 27.28 302.4 27.28 0.0 0.00 1022.23 1075.82 26.79 302.3 26.79 218 54 304.3 54 D.A. # C) ...J ~ <l'. I-I-~ w ox ..--I-w 162.1 25.7 cfs cfs 0.0 0.00 31.5 31.54 63.1 63.07 94.6 94.61 126.1 126.15 157.7 157.68 148.6 148.56 132.8 132.79 117.0 117.02 101.3 101.25 85.5 85.48 69.7 69.72 53.9 53.95 38.2 38.18 22.4 22.41 6.6 6.64 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 158 158 peak.xis Exhibit H-2 DA# :it .i= a. ~ °' e "'C >. a. ::c ..-· Qp 263.9 Tc 22.1 inc 5.0 Time cfs 0.0 0.0 5.0 59.8 10.0 119.5 15.0 179.3 20.0 239.1 25.0 246.5 30.0 216.6 35.0 186.7 40.0 156.8 45.0 126.9 50.0 97.0 55.0 67.2 60.0 37.3 65.0 7.4 70.0 0.0 75.0 0.0 80.0 0.0 85.0 0.0 90.0 0.0 95.0 0.0 100.0 0.0 105.0 0.0 110.0 0.0 115.0 0.0 120.0 0.0 125.0 0.0 130.0 0.0 135.0 0.0 140.0 0.0 145.0 0.0 150.0 0.0 155.0 0.0 160.0 0.0 PEAK FLOWS 240 0.00 indicates inital condition EXHIBIT "H-2" "PEAK DISCHARGE" DETENTION POND ROUTING EDELWEISS ESTATES, PHASES 10A, 10B, 11, 12, 13 & 15 DA# Pond Routing EVENT= 100 c 0 a 0 w :!. w c Cl) z c ~ .Q ..J 0 ..-2 al + ..-"'C iii <:( a. ::E c + ..-t-0 "'C c + c > 0 + U; Cl) c o2 0 0::: u c N N a a. w t-a. I cfs cfs cf s cf s cfs I ft cfs 00 59.77 0.00 0.00 0.001 299.0 0.00 59.8 179.32 51.47 59.77 4.15 300.1 4.15 119.5 298.87 205.29 230.79 12.75 300.7 12.75 179.3 418.42 463.91 504.16 20.12· 301.3 20.12 239.1 485.57 832.29 882.33 25.02 .302.0 25.02 246.5 463.07 1259.93 1317.87 28.97 302.7 28.97 216.6 403.29 1658.54 1723.00 32.23 303.3 32.23 186.7 343.52 1992.52 2061.84 34.66 303.8 34.66 156.8 283.75 2236.65 2336.04 49.69 304.2 49.69 126.9 223.97 2389.57 2520.40 65.41 304.5 65.41 97.0 164.20 2466.83 2613.54 73.36 304.6 73.36 67.2 104.42 2481.33 2631.03 74.85 304.6 74.85 37.3 44.65 2443.78 2585.76 70.99 304.6 70.99 7.4 7.38 2363.06 2488.43 62.69 304.4 62.69 0.0 0.00 2265.19 2370.44 52.63 304.3 52.63 0.0 0.00 2177.88 2265.19 43.65 304.1 43.65 0.0 0.00 2105.47 2177.88 36.21 304.0 36.21 0.0 0.00 2035.52 2105.47 34.97 303.9 34.97 0.0 0.00 1966.58 2035.52 34.47 303.8 34.47 0.0 0.00 1898.63 1966.58 33.98 303.7 33.98 0.0 0.00 1831.65 1898.63 33.49 303.6 33.49 0.0 0.00 1765.63 1831.65 33.01 303.5 33.01 0.0 0.00 1700.56 1765.63 32.53 303.4 32.53 0.0 0.00 1636.43 1700.56 32.07 303.3 32.07 0.0 0.00 1573.21 1636.43 31.61 303.2 31.61 0.0 0.00 1510.91 1573.21 31.15 303.1 31.15 0.0 0.00 1449.50 1510.91 30.70 303.0 30.70 0.0 0.00 1389.20 1449.50 30.15 302.9 30.15 0.0 0.00 1329.98 1389.20 29.61 302.8 29.61 0.0 0.00 1271.83 1329.98 29.08 302.7 29.08 0.0 0.00 1214.72 1271.83 28.56 302.6 28.56 0.0 0.00 1158.63 1214.72 28.04 302.5 28.04 0.0 0.00 1103.55 1158.63 27.54 302.4 27.54 246 75 304.6 75 DA# Cl ..J ~ <:( t-t-!:2 w ox ..-t-w 183.5 25.7 cfs cfs 0.0 000 35.7 35.70 71.4 71.40 107.1 107.10 142.8 142.79 178.5 178.49 168.2 168.16 150.3 150.31 132.5 132.46 114.6 114.61 96.8 96.77 78.9 78.92 61.1 61.07 43.2 43.22 25.4 25.37 7.5 7.52 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 178 178 peak.xis Exhibit H-2 Dra1nage Study FOR Edelweiss Estates Phase 10-B '------LL-----J ~ VICINITY MAP NTS March, 1997 Prepared By: ~ ~ ffi z McClure Engineering, Inc. 1722 Broadmoor Drive, Suite 210 Bryan, Texas 77802 ( 409) 776-6700 Drajnage Study FOR Edelweiss Estates Phase 10-B APPROVED FOR VICINITY MA NTS March, 1997 Prepared By: McClure Engineering. Inc. 1722 Broadmoor Drive, Suite 210 Bryan, Texas 77802 ( 409) 776-6700 CERTIFICATION I, Michael R. McClure, Registered Professional Engineer No. 32740 , State of Texas, certify that this report for the drainage design of EDELWEISS ESTATES , PHASE 10-B , was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners thereof. Michael R. McClure, P .E . #32740 DRAINAGE STUDY EDELWEISS ESTATES , PHAS E 10-B __ .,,.:ooi.,,, --~€-OF rs-: \' ;,,,, ~ ··*··· .i-,, " , ~ ••• • •• l.V •• " . . ~ "* .. ·. * ~ '-*: •*r; ~···································~ ~ .. Mlfjjt-.~h.~U~.99hV.~LI ,~ ... ~ 32740 Q ... g, f·r~~f.9.1.~rr-.'f.~··~~ \ \81 0NAL ~t­,..,.,,.,.- INTRODUCTION TABLE OF CONTENTS EDELWEISS ESTATES, PHASE 10-B GENERAL LOCATION AND DESCRIPTION DRAINAGE DESIGN CRITERIA FUTURE CONDIDONS SUMMARY CONCLUSION TABLE OF EXHIBITS EXCERPT FROM FEMA MAP DRAINAGE AREA MAP DRAINAGE COMPUTATIONS HEC-1 RUN OVERFLOW CALCULATION LAG TIME CALCULATIONS OVERALL DRAINAGE MAP RATIONAL FORMULA DRAINAGE AREA CALCULATIONS PEAK DISCHARGE DETENTION POND ROUTING DRAINAGE STUDY EDELWEISS ESTATES , PHASE 10-B Page No . I 1 3 4 4 5 "A" "B" "C" "D" "E" "F" "G" "H-1" "H-2" u INTRODUCTION: DRAINAGE STUDY FOR EDELWEISS ESTATES PHASE 10-B This drainage report is intended to show the adequacy of the designed drainage improvements for the proposed and future conditions of the EDELWEISS ESTATES DEVELOPMENT. The body of the report is general in nature, with specific computations shown as exhibits at the end of the report . GENERAL LOCATION AND DESCRIPTION: The project is a proposed phase of the EDEL WEISS EST ATES development. This phase called Edelweiss Estates, Phase 10-B is located in southern College Station, west of the existing Welsh Avenue and adjacent to Edelweiss Estates Phase 10-A. To the south are Rock Prairie Elementary School and a City of College Station Park. To the north are Southwood Valley Sections 24C and E . To the west is future development of Edelweiss Estates . All of the above mentioned subdivisions are single family residential . This phase of development is entirely within the Bee Creek Tributary "A" drainage shed as noted in the City of College Station Stormwater Management Plan and the Federal Emergency Management Agency, Flood Insurance Rate Maps for Brazos County, Texas and Incorporated Areas, Map No . 48041C0182 (See Exhibit "A"). TheFEMAFIRM clearly shows that the site is not within a 100-year flood plain . Exhibit "B" shows the area of EDELWEISS ESTATES subdivision drainage DRAINAGE STUDY PAGE l EDELWEISS ESTATES, PHASE 10-B to Bee Creek Tributary "A". Drainage areas for future EDEL WEISS development are shown but no calculations are presented with this report . The development of this phase of EDELWEISS ESTATES entails grading, street, storm drain, and utility improvements . The improvements on the site will include full development of the existing detention pond built with the Elm Crest Subdivision. N ote that with the development of Elm Crest Subdivision, the drainage of the entire area was studied in detail (Drainage Study for Elm Crest, May 1993 and Drainage Report Addendum for Elm Crest, September 03, 1993). The Drainage Study for Elm Crest shows that the culvert under Deacon Drive (a triple 30" RC.P. culvert) has the capacity to pass flows less than the existing two-year storm event without water flowing over Deacon Drive . Note that this condition is severely inadequate by the current requirements of the City of College Station Drainage Ordinance. To improve the situation, "over-detention" of proposed flows is required in the EDELWEISS development. Hence the proposed flows are less than existing flows . This is desirable for several reasons : 1. With "over-detention", existing flooding problems downstream of the development should improve. Consequently, in no respect, can the downstream problems be attributed to development in EDELWEISS ESTATES . 2 . By lessening the peak runoff to the existing undersized facilities (at Deacon Drive and/or Welsh Avenue), the flow conditions at the structures will be improved . DRAINAGE STUDY PAGE 2 EDELWEISS E STATES , PHASE 10-B DRAINAGE DESIGN CRITERIA: The streets and storm drains are designed in accordance with the City of College Station Drainage Policy and Design Standards (DPDS). The storm drains and inlets are sized to accommodate the ten-year storm (see Exhibit "C"). The rational method (Q=CIA) is used in the design of all storm drains and inlets . The time of concentration for each area is computed based on published Soil Conservation Service (SCS) Technical Release #55 (TR-55) data . Street capacity is computed using the manning equation for open channel flow with an "n" value of0.018 . Inlets are sized based on the guide lines of the DPDS. Storm drains <27" in diameter are sized to convey 1.25 times the actual flow (see Exhibit "C"). The over-flow section (on Sheet 1 of the construction drawings) was sized to convey runoff from the 100-year frequency storm within the limits of the proposed easements and right-of-way. Calculations have been made using the manning equation for open channel flow with an "n" value of0.030 (see Exhibit "E"). The detention pond design is based on the SCS Type II Storm (for precipitation data) with input data from the D .P .D .S. SCS Unit Hydrograph (for spatial distribution), and SCS Curve Number loss rates as prescribed in the D .P .D .S. Lag times are generated using the SCS Lag Time Equation (see Exhibit "F"). Exhibit "B" shows the drainage areas referenced in Exhibits "D" and "F" This calculation method was utilized due to the large Drainage Areas and the complex routing to evaluate three different study points. This technique generates the highest flows of the available techniques . By sizing the detention facility and modeling the downstream facilities for the higher flows , a more conservative evaluation is obtained . For comparison, the detention pond has also been evaluated using the Rational Method Triangular Hydrograph. This data is provided as Exhibit "H". DRAINAGE STUDY PAGE3 EDEL WEISS EST A TES , PHAS E I 0-B Table Two of the summary compares the results from both the SCS Method and the Peak Flow Method. The intent of this drainage analysis and design is to clearly "point out" the precautions that have been taken to reduce the potential for downstream flooding with the design of the detention pond . FUTURE CONDffiONS: Full development of the detention facility will be achieved with the development of Phase 10- B. No additional storage will be required for development of future phases that drain to the facility (see Drainage Study for Elm Crest, May, 1993). SUMMARY: The peak flows at the STUDY points are given in Table One below. "ORIG." refers to the original flow before construction south of Southwood Valley Section 24 . "PROP ." refers to the flow after the development of all relevant phases of EDELWEISS ESTATES . This data is taken directly from Exhibit "D". Note that the "VEE" referenced is the combined flow at the outlet of the pond , the "culv" is the existing triple 30" R.C .P . culvert in Deacon Drive, and "Welsh" is the existing box culvert structure at Welsh Avenue . Note that at the final Study Point (Welsh), the proposed detention facility reduces the peak discharge for all storms . DRAINAGE STUDY PAGE4 EDELWEISS ESTATES , PHASE 10-B TABLE ONE I STUDY 1~~~1 100 I 50 I 25 I 10 I 5 I 2 I PT VEE ORIG. 273 234 202 158 120 70 VEE PROP. 285 220 165 93 47 30 CULV ORIG. 377 325 282 222 171 102 CULV PROP. 389 297 222 149 123 85 WELSH ORIG. 717 623 545 436 344 215 WELSH PROP. 715 579 471 369 299 200 Table Two compares the flows at the pond outlet study point . TABLE TWO STUDY STUDY STORM 100 50 25 10 5 METHOD POINT EVENT scs Outlet Orig. 273 234 202 158 120 Triangular Outlet Orig . 178 158 139 121 106 Hydrograph scs Outlet Prop. 285 220 165 93 47 Triangular Outlet Prop . 75 54 35 33 31 Hvdroirraph CONCLUSION: The storm water management system design for this project improves the drainage situation by over-detaining the two, five , ten, twenty-five , and fifty year design storms. The peak flow rate of the one hundred year storm is insignificantly increased at two of the three study points, but this DRAINAGE STUDY PAGES EDEL WEISS EST ATES, PHAS E 10-B increase is not noticeable in the profile (depth of flow) of the storm . The design of the detention outfall structure maximizes the over detention for the more frequent events, the two, five , and ten year event. The method of analysis is the most conservative of the available techniques . Other techniques would show a decease at every point . The drainage design for this subdivision goes beyond the requirements of the City of College Station Drainage Ordinance to minimizing an existing problem (the flooding of Deacon Drive) by over detaining the storm water released from this site . DRAINAGE STIJDY PAGE6 EDEL WEISS EST A TES , PHAS E 10-B Approximate! y 4000' from FEMA Zone X of Bee Creek Trib . Scale : 1" 500' EXHIBIT A Flood Insurance Rate Map Excerpt Brazos County, Texas and Incorporated Areas Map Numbers: 48041 C0 182C Effective Dote: July 2, 1992 Edelweiss Estates Phase JOB Exhibit "B" Drainage Area Jfap J LEGEND 0 --Drainage Area Limits w/ Area~lnlet l.D . - -Area Controlled by Detent ion Pond Project Limits Existing Con t our Lines February, 1997 1"=300' INLET SIZING z 0 u.: 0 c( i= ..J 1 (.) a. t :3Z z ii2 'ti ... ...J a. l > w ~ ~ 0.: l ...J 0 g .... w c( ~ a Q (.) .J .J cfs cfs ft ft BA 0 .53 5 .59 Curb Inlet 2 2 .80 5 B8 0 .88 9 .03 Curb Inlet 2 4 .52 5 9A 0 .30 3 .26 Curb Inlet 2 1.63 5 98 1 .25 12.22 Curb Inlet 2 6 .11 10 ~ Q D:: w ...J < ~ a.. < w 0 ~ (!) D:: ...J < w z < w z ...J ~~ e~ < ~ f3 D:: D:: ~ z D:: Q ::::> < D:: < NO. AC . 0 .4 0.66 SA 0.97 0.00 0.97 88 1.60 0 .00 1.60 9A 0 .54 0 .00 0.54 98 2 .28 0 .00 2.28 .:. *Capacity is Increased (Q *1.25) for Pipes <27" Exhibit C Drainage Computations PIPE SIZE COMPUTATIONS N• 'It I a !. t; :I: ...J 'It c( .2 .2 ~ t; (.) Cl) II. Cl) I ::E ...J ...J c c 0 ~ ~ !!P g llt llt a:: 0 g u c! &! 'C II. ... ... II. yr % BA B8 0 .53 5 .84 10 5 .6 0.51 88 9A 1.41 6.25 10 14.5 1 .51 9A 98 1.71 6 .36 10 17.5 0 .37 98 HW 2 .96 7 .28 10 28.9 0.57 ~ ~ ~ ~ ...J ...J ~ LL. LL. Q Q ...J ...J D:: z z LL. LL. < 5 i!= 5 D:: ~ D:: ~ ~ ...J ~ (!) ~ ::t ~ D:: (!) D:: ...J u 0 Wz w ...J ::::> z 0 ~~ >< 6 if ~ D:! .... 0 LL. (!) ~ 0.85 CA ft. ft. ft. ft. min 0.00 0 .53 275 4.0 67 1 .0 5 .8 0 .00 0.88 69 1.0 780 14.0 6.3 0 .00 0 .30 38 1.0 245 1 .4 3 .3 0.00 1.25 1E-06 0 .0 1055 15.7 7.3 0.014 ~ u w .J a ~ w .. Cl) > (.) I fps cfs 18 3 .95 7 .0 21 7 .53 18.1 27 4 .39 17.4 30 5 .88 28 .9 ~ w "' II) ::::> ~ a min In/Hr cfs 5 .8 9.4 5.0 6 .3 9 .2 8 .1 5 .0 9 .9 2 .9 7.3 8 .7 10 .9 ~ ::c i= t; 'ii z > f w ...J I- I MIN 1.00 0.00 48.23 0.11 1.00 0.00 140.17 0.40 Q Q ..... II) :!: a !::! In/Hr cf s In/Hr 10 .5 5 .6 11 .9 10.3 9 .0 11 .7 11 .0 3 .3 12 .5 9.7 12 .2 11 .1 BOX 'a c w ::c e> 15 u ;: ... 5 .84 6 .36 6 .36 7 .68 II) Q N Q a :!: cfs In/Hr 6.4 15.1 10 .3 14.8 3 .7 15 .8 13 .9 14.1 ... ::c ~ w ::c Q Q ..... a cf s 8.1 13 .0 4 .7 17 .6 9/25/96 9614DRA.xts EXHIBIT "D" ··································~······ .••....•••••••........•..........•..... FLOOD HYDROGRAPH PACKAGE (HEC-1) MAY 1991 VERSION 4 .0.lE Lahey F77L-EM/.32 version 5 . 01 Dodson ' Associates , Inc. RUN DATE 02/17/97 TIME 13 :42:21 .. ......................................... x x xxxxxxx x x x x x x xxxxxxx xxxx x x x x x x x x xxxxxxx xxxxx x x x x xxxxx x x x xxxxx x xx x x x x xxx U.S. ARMY CORPS OF ENGI NEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS , CALIFORNIA 95616 (916) 551-1748 ••••......•.•••••.............••....... THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HECl (JAN 73), HEClGS , HEClDB, AND HEClKW. THE DEFINITIONS OF VARIABLES -RTIMP-AND -RTIOR-HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK-ON RM -CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81 . THI S IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENC Y, DSS :READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND J\MPT INFILTRATION KINEMATIC WAVE: 'NEW FINITE DIFFERENCE ALGORITHM HEC-1 INPUT LINE ID ••••••• l. .•...• 2 ••.•••• 3 ••••••• 4 •.••••• 5 ••••••. 6 •••.••• 7 .....•• 8 .•.•.•• 9 ..••.• 10 l 2 3 4 5 6 1 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 ID IT IO JP JR KK KP BA PB IN PC PC PC PC PC LS UD KP LS UD KK KP RN KP RS SA SE SL SS ST KK KP BA LS UD KP LS UD KK HC KK RD RC RX RY EDELWEISS ESTATES PHASE lOB 2 01FEB97 0000 720 5 0 0 2 PREC 11 9.8 8.8 7.4 DA l ALL DEVELOPMENT 57.46 ACRES l .08977 l 30 01FEB97 0000 .0053 .0108 . 0164 .0223 . 0284 .0712 .0797 .0887 .0984 .1089 .2042 .2351 .2833 . 6632 .7351 .8676 .8801 . 8914 .9019 .9115 .9588 .9653 . 9717 .9777 .9836 0 75 .48 2 0 82.l .18 NEW POND 2 l FLOW -1 0 .3605 l. 745 2.057 2.180 299 300 301 302 303 299 .97 3.1415 .1 .5 304 20 l.5 305 8 l.5 DA 4 UNCONTROLLED FLOWS BYPASSING POND l .00688 0 75 .22 2 0 84 .08 OUTLET 2 VEE DITCH .02 .014 .02 700 .0154 . 001 10 23 25 25. l 300 296 29 4 2 93 .5 293.5 HEC-1 INPUT 6.2 4.5 .0347 . 0414 . 0483 .0555 .0632 .1203 .1328 .1467 .1625 .1808 . 7724 . 7989 .8197 .8380 .8538 .9206 .9291 .9371 .9446 .9519 .9892 .9947 l.000 2.306 2.434 2 .565 2.6 304 305 306 307 5.007 AC 27 40 50 294 296 300 1 PAGE PAGE 2 Exhi bit D LINE ID ••••••• 1. •••••• 2 ••••••• 3 ••••••• 4 ••••••• 5 ••••••• 6 ••••••• 7 ••••••• 8 ••••••• 9 •••••• 10 46 47 48 49 KK DA 5 swv 24 BA .0302 LS 0 84 0 UD .15 so 51 KK CULV IN DEACON HC 2 52 53 54 55 KK DA 6 DEACON 56 57 BA LS UD KK HC .0030 0 84 .11 CllANN 2 58 59 60 61 KK DA 7 CHURCH 62 63 64 BA LS UD KK HC zz .0699 0 .19 WELSH 2 1········································· FLOOD HYDROGRAPH PACKAGE (HEC-11 HAY 1991 VERSION 4. 0 . l E Lahey F77L-EM/32 version 5 .01 Dodson ' As!Sociates, Inc. RUN DATE 02/17/97 TIME 13:42:21 ......................................... 84 0 EDELWEISS ESTATES PHASE lOB 3 IO OUTPUT CONTROL VARIABLES IPRNT 5 I PLOT 0 QSCAL 0. IT HYDROGRAPH TIME DATA NMIN 2 IDATE 1FEB97 ITIME 0000 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE MINUTES IN CCMPUTATION STARTING DATE STARTING TIME INTERVAL NO 720 NUMBER OF HYDROGRAPH ORDINATES JP JR NDDATE 1FEB97 ENDING DATE NDTIME 2358 ENDING TIME I CENT 19 CENTURY HARK CCMPUTATION INTERVAL 0.03 HOURS TOTAL TIME BASE 23. 97 HOURS ENGLISH UNITS DRAI NAGE AREA PRECI PITATION DEPTH LENGTH, ELEVAT ION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE MULTI-PLAN OPTION NP LAN MULTI-RATIO OPTION SQUARE MILES INCHE S FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT 2 NUMBER OF PLANS RATIOS OF PRECIPITATION 11 .00 9.80 8 .80 7 .40 6.20 4 .50 ....................................... U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916 ) 551-1748 PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN -RAT IO ECONaiIC CaiPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS RATIOS APPLIED TO PRECIPITATION OPERATION STATION AREA PLAN RATIO 1 RATIO 2 RATIO 3 RATIO 4 RAT IO 5 RATIO 6 11.00 9. 80 8.80 7 .40 6.20 4.50 HYDROGRAPH AT DA 1 0 .09 FLOW 273 . 234. 202. 158 . 1 20. 70 . TIME 11.80 11.80 11. 80 11.80 11.80 11.83 2 FLOW 425. 372. 327 . 26 4 . 210. 135 . TIME 11. 53 11. 53 11. 53 11.53 11.53 11. 57 ROUTED TO 2 Exhi bit D + NEii PO 0.09 FLOW 273. 234. 202. 158. 120. 70 . TIME 11.80 11.80 11.80 11.80 11.80 11.83 2 FLOW 285. 220. 165. 93. 47. 30. TIME 11. 70 11. 73 11. 77 11.83 12.10 · 12.13 PEAK STAGES IN FEET STAGE 0.00 0 .00 0.00 0.00 0.00 0.00 TIME 0.00 0.00 0.00 0.00 0.00 o.oo 2 STAGE 306.27 305. 89 305.53 304. 93 304. 31 302. 83 TIME ~ 11."73 11.77 11.83 12.10 12.13 HYDROGRAPH AT + DA 4 0.01 FLOW 29. 25. 21. 17. 13. 8 . TIME 11.57 11.57 11.57 11.57 11.57 11.60 2 FLOW 35. 31. 27 . 22. 18. 12. TIME 11.50 11.50 11.50 11.50 11. 50 11.50 2 CCl!BINED AT + OUTLET 0.10 FLOW 290. 249. 215. 167. 1 28. 74. TIME 11. 77 11. 77 11. 77 11. 77 ll. 77 11.80 FLOW 294. 227. 171. 98. so . 36. TIME 11. 70 11. 73 11. 77 11.83 12 .03 ll.S3 ROUTED TO + VEE 0.10 FLOW 289 . 248. 214. 167. 128 . 74. TIME 11. 77 11.80 11.80 11.80 11.80 11.83 2 FLOW 293. 226. 170. 98. so . 36. TIME 11. 70 11.73 11. 77 11.87 12.07 ll.S3 HYDROGRAPH AT + DA S 0.03 FLOW 149 . 131. llS. 94. 76 . so. TIME 11.50 11.50 11.53 11..53 11.S3 ll.S3 2 FLOW 149. 131. 115. 94 . 76. 50. TIME 11.53 11.53 ll.S3 ll.S3 11.53 11.53 2 CCl!BINED Ar + CULV 0.13 FLOW 377. 32S. 282. 222. 171. 102. TIME 11.60 11.60 11.60 11.60 11.60 11.60 2 FLOW 389. 297. 222 . 149 . 123. 8S. TIME 11.63 11.67 11. 70 11.53 11.53 11.S3 HYDROGRAPH Ar + DA 6 0.00 FLOW 15. 13. 12. 10. 8. 5. TIME 11.50 11.50 11.50 11.50 11.50 11.50 2 FLOW 15. 13 . 12. 10 . 8. 5. TIME 11.50 11.50 11.SO 11:50 11.50 11.50 2 CCl!BINED AT + CHANN 0.13 FLOW 389. 335. 291. 229. 177 . 106. TIME 11.60 11.60 11.60 11.60 11.60 11. 60 2 FLOW 398 . 304 . 226. 158. 131. 90. TIME 11.63 11.63 11. 67 ll.S3 ll.53 ll.S3 HYDROGRAPH AT + DA 7 0.07 FLOW 334. 293 . 2S9 . 210. 169. 110. TIME ll.S3 ll.S3 ll.S3 ll.S3 ll.S3 ll.S7 FLOW 334 . 293. 2S9. 210. 169. 110. TIME 11 .S7 ll.S7 ll.S7 ll.S7 ll.S7 ll.S7 2 CCl!BINED AT WELSH 0 .20 FLOW 717 . 623. S4S. 436 . 344. 21S. TIME ll.S7 ll.S7 ll.S7 ll.S7 ll.S7 ll.S7 FLOW 71S. S79. 471. 369. 299. 200. TIME 11. 60 11.60 ll.S7 11.53 ll.S3 ll.S3 SUMMARY OF KINEMATIC WAVE -MUSKINGUM-CONGE ROUTING (FLOW IS DIRECT RUNOFF WITHOUT BASE FLOW) INTERPOLATED TO CCMPUTATION INTERVAL ISTAQ ELEMENT OT PEAK TIME TO VOLUME OT PEAK TIME TO VOLUME PEAK PEAK (HIN) (CFS) (HIN) (IN) (HIN) (CFS) (HIN) (IN) FOR PLAN • 1 RATIO-0.00 VEE HANE 1.00 289 . 76 706.4S 7. 79 2.00 289 .41 706 .00 7.79 CONTINUITY SUHHARY (AC-FT) -INFLOW•O. 4016E+02 EXCESS •O. OOOOE+OO OOTFLOW•O. 4015E+02 BASIN STORAGE•O .1306E-01 PERCENT ERROR• o.o FOR PLAN • 1 RATIO-0.00 VEE HANE l.03 248. 66 706.78 6. 67 2 .00 248.39 708 . 00 6 .67 CONTINUITY SUHHARY (AC -FT) -INFLOW•0.3439E+02 EXCESS •O.OOOOE+O O OUTFLOW-0 .3438E+02 BASIN STORAGE•0.1210E-01 PERCENT ERROR• 0.0 FOR PLAN • 1 RATIO-0.00 VEE HANE 1.06 214 .S7 707 . lS S.7S 2 .00 214. 47 708 .00 5. 7S CONTINUITY SUHHARY (AC-FT) -INFLOW•O. 296SE+02 EXCESS •O. OOOOE+OO OUTFLOW •O. 296 4E +02 BASIN STORAGE-0 .11 06E-0 1 PERCENT ERROR• 0.0 3 Exhibit D FOR PLl\N • 1 RATIO-0.00 VEE HANE 1. 11 167.29 707. 58 4 .49 2.00 167 .22 708. 00 4.49 CONTINUITY SUMMARY (AC-FT) -INFLOW•0.2314E+02 EXCESS•O.OOOOE+OO OUTn..OW•0.2314E+02 BASIN STORAGE•0.9797E-02 PERCENT ERROR• 0.0 FOR PLl\N • 1 RATIO-0. 00 VEE HANE 1. 1 7 127. 70 708. 43 3.44 2.00 127. 66 708.00 3.44 CONTINUITY SUMMARY (AC -FT) -INFLOW•O. l 774E+02 EXCESS •O. OOOOE+OO OUTFLOW•O .1774E+02 BASIN STORAGE-0. 8567E-02 PERCENT ERROR• 0. 0 FOR PLl\N • 1 RATIO-0.00 VEE HANE 1.28 74.16 708. 9 1 2 .04 2 .00 74 . 01 710. 00 2.0 4 CONTINUITY SUMMARY (AC-FT) -INFLOW •O .1053E+02 EXCESS •O. OOOOE+OO OUTFLOW •O .1053E+02 BASIN STORAGE•O. 627 6E-02 PERCENT ERROR• 0 . 0 FOR PLl\N • 2 RATIO-0. 00 VEE HANE 0. 99 293.34 702 . 35 8 .79 2.00 292. 8 7 702. 00 8. 79 CONTINUITY SUMMARY (AC-FT) -INFLOW•O. 4530E+02 EXCESS•O . OOOOE+OO OUTFLOW•O. 4530E+02 BASIN STORAGE•O. 5936E-02 PERCENT ERROR• 0. 0 FOR PLl\N • 2 RATIO-0. 00 VEE HANE 1. 0 5 226.77 .704 .26 7 .63 2 .00 226 .45 704 .00 7.63 CONTINUITY SUMMARY (AC-FT) -INn..ow-0 .3932E+02 EXCESS •O.OOOOE+OO OUTn..ow-0 .3932E+02 BASIN STORAGE-0.3718E-02 PERCENT ERROR• 0.0 FOR PLl\N • 2 RATIO-0. 00 VEE HANE 1.11 170. 63 706 .76 6. 66 2.00 170. 33 706.00 6 .66 CONTINUITY Stl!HARY (AC-FT) -INFLOW•0 .3435E+02 EXCESS •O.OOOOE+OO OUTn..OW•0.3435E+02 BASIN STORAGE-0.2686E-02 PERCENT ERROR• 0.0 FOR PLl\N • 2 RATIO-0.00 VEE HANE 1. 22 97.56 711. 72 5.33 2.00 97 .55 712.00 5.33 CONTINUITY SUHMARY (AC-FT) -INFLOW•0.2750E+02 EXCESS •O.OOOOE+OO OUTn..ow-0.2750E+02 BASIN STORAGE-0.2405E-02 PERCENT ERROR-0.0 FOR PLl\N • 2 RATIO-0.00 VEE HANE 1. 38 50 .20 723 . 46 4.21 2.00 50.17 724.00 4 .21 CONT INUITY SUl1MARY (AC-FT) -INFLOW-0.2169E+02 EXCESS •O. OOOOE+OO OUTn..ow-o . 2169E+02 BASIN STORAGE•O .1293E-02 PERCENT ERROR• 0 . 0 FOR PLl\N • 2 RATI O-0 . 00 VEE HANE 1. 4 5 35.88 693. 09 2.66 2.00 35. 66 692. 00 2.66 CONTINUITY SUMMARY (AC-FT) -INFLOW•O .1372E+02 EXCESS•O. OOOOE+OO OUTn..ow-o .1372E+02 BASIN STORAGE •O. 8442E-03 PERCENT ERROR-o. 0 PLl\N 2 ............... INITIAL VALUE SPILLWAY CREST TOP OF DAM ELEVATION 2 99.97 304.00 305.00 STORAGE 0. 7 . 10. ouTn..ow 0 . 35 . 100. RATIO MAXIMUM MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF TIHE OF OF RESERVOIR DEPTH STORAGE OUTFLOW OVER TOP MAX OUTFLOW FAIJ,URE PMF W.S.ELEV OVER DAM AC -FT CFS HOURS HOURS HOURS 11.00 306.2 7 1.27 13. 285. 0 .83 11. 70 0.00 9.80 305.89 0.89 12 . 220 . 0 . 73 11. 73 0 .00 8 .80 305.53 0 .53 11. 165. 0.60 11. 77 0.00 7. 40 304. 93 0.00 10 . 93. 0 .00 11.83 0.00 6 .20 304. 31 0.00 8 . 47 . 0 .00 12 .10 0.00 4 .50 302. 83 0 .00 5. 30. 0.00 12 .13 0. 00 * • * NORMAL END OF HEC-1 * * * ExhibitQ TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEP'IH COMPUTATION September 1996 Edelweiss Estates Phase to-B PROGRAM INPUT DATA: DESCRIPTION Flow Rate (cubic feet per second) .................... . Channel Bottom Slope (feet per foot) ................... . Manning's Roughness Coefficient (n-value) .............. . Channel Side Slope -Left Side (horizontal/vertical) ... . Channel Side Slope -Right Side (horizontal/vertical) .. . Channel Bottom Width (feet) ... , ........................ . PROGRAM RESULTS: DESCRIPTION Normal Depth (feet) .................................... . Flow Velocity (feet per second) ........................ . Froude Number (Flow is Sub-Critical) ................... . Velocity Head (feet) ................................... . Energy Head (feet) ..................................... . Cross-Sectional Area of Flow (square feet) ............. . Top Width of Flow (feet) ............................... . VALUE 32.4** 0 .0100 0 .0300 4 .00 4 .00 6 .0 VALUE 0 .91 3 .71 0 .805 0 .21 1.12 8 .73 13 .26 TRAPEZOIDAL CHANNEL ANALYSIS COMPUTER PROGRAM, Version 1.3 (c) 1986 Dodson & Associates, Inc., 7015 W . Tidwell, #107, Houston, TX 77092 (713) 895-8322. A manual with equations & flow chart is available. ••The overflow channel will be designed for the 100 Year Storm. The overflow channel will convey the excess flow from structure 5 and 9 Q1 00 at Structure 5 = 61.4 cfs Q1 00 at Structure 9 = 41.7 cfs Q1 oa t Structure 5 = 41.8 cfs Q 10 at Structure 9 = 28 9 cfs Overflow Q = 19 .6 cfs Overflow Q = 12 .8 cfs Total Overfiow Q = 32.4 cfs Exhibit E Exhibit F Computation of Lag Times i!: J:' -~ :et "' w --(!) u. 0::: u 0 "' -:J (j ~ .... w w z ...J :it 0 u. 0 (!) 0 "' -...J w ...J J:' :J 5 j::::: "' i ...J < w :::c 0 ...J 0 ';ft .... ';ft .... z w u. 6:: -w z z u. 0::: 0 u. j::::: (!) w > c c w c w c 0 c- 0 d :J ...J :J 5 :e . w we ~o::: w :e 0::: w 0 w~ u. I= ~ (!) ~ "' :J < -0 "' "' w "' . "' u. 0 z o> t; 0 "' --~ w 0 o- "' 0 0 0 Oo ~ ~ ~ I= ll.. ...: ...: ...: 0 I= ll.. ll.. !::!::: :J .... ll.. 0::: :J .... ll.. w w ll.. 0 c 0::: 0 "' "' "' z "' 0 oc .., 0 0W .., 0 0 :e 0 ...J 0::: 0::: 0::: > w ...J >< ~ >< 0 ~ 0::: 0::: 0 C< 0::: ll.. C< 0::: -:e 0::: w s; s; s; :::c i?: sa w wy ll.. ll.. :e s; u. ll.. :e s; u. ll.. .... E ll.. i?: All Devel. 57 .5 0.0512 1900 32 0 .017 75 0.48 0.79 0.67 8 4 75 0 .62 38 0.81 0.18 0 .30 1. 76 Uncontrol 5.0 0.0047 620 8 0.013 75 0.22 0.37 0.47 84 75 0.62 38 0.81 0.08 0.14 1. 23 swv 24 19 .3 0.0302 llOO ll 0.010 75 0.40 0.66 0.46 8 4 75 0.62 38 0.81 0.1 5 0 .25 1.21 Deacon 1. 9 0.0030 900 12 0.013 75 0.29 0.49 0.51 84 75 0.62 38 0.81 O. ll 0.19 1. 35 Church 44 .7 0.0699 1500 15 0.010 75 0.51 0.85 0.49 84 75 0 .62 38 0 .81 0.19 0.32 1. 29 Exhibit F ~ Q ~ ~ a: w ...I c ~ a. ~ ; u. u. w g Q Q <.? a: ~ z z c c w z c ~ %: ~ ...I ~~ w ~ ...I z i! Q i! a: t; a: ...I ~ us 0 ~z w ...I g ~~ w g >c Q a: a! o~ 0 u. NO. AC. 0.4 0.53 0.95 ft. ft. 1P 57.46 0 .00 57.46 0 .00 30.46 300.0 5 .0 1E 57.46 57.46 0 .00 0 .00 22.99 500.0 5 .0 EXHIBIT H-1 Rat i onal Formula Drainage Area Calculations Edelweiss Estates Phase 1 OB ~ ~ 0 ...I u. u. ~ a: %: a: ~ w .... w ~ ~ ~ <.? ~...I :::> z :::>...I u w w ii Cl) a It) <.? ~ <.? :f > (J :::> !::! !!! a ft. ft. ft/s min min In/Hr cfs In/Hr cfs 1800.0 15 .0 1.6 22.1 22.1 4 .18 127.4 5.2 157.9 1600.0 15.0 1.4 25.7 25 .7 3 .82 87.7 4 .7 109.2 0 It) 0 ... It) a :!: a !::! In/H r cfs In/Hr cfs 5.9 179 .2 6 .8 205 .6 5.4 124.2 6 .2 142 .6 ~ 0 !!! a In/Hr cfs 7 .7 233 .5 7 .1 162 .1 8 8 ... :!: a In/Hr cfs 8 .7 263.9 8 .0 183.5 3111197 peak .xis Exhibit H-1 D.A.# D.A.# • s:. c a. w CV ... z Cl m E :: -g, a. 0 ::i::: .... 0 Qp 157.9 Tc 22.1 inc 5.0 Time cfs cfs 0.0 0.0 0.0 5.0 35.8 35.8 10.0 71.5 71.5 15.0 107.3 107.3 20.0 143.1 143.1 25.0 147.5 147.5 30.0 129.6 129.6 35.0 111.7 111.7 40.0 93.8 93.8 45.0 75.9 75.9 50.0 58.1 58.1 55.0 402 40.2 60.0 22.3 22.3 65.0 4.4 4.4 70.0 0.0 0.0 75.0 0.0 0.0 80.0 0.0 0.0 85.0 0.0 0.0 90.0 0.0 0.0 95.0 0.0 0.0 100.0 0.0 0.0 105.0 0.0 0.0 110.0 0.0 0.0 115.0 0.0 0.0 120.0 0.0 0.0 125.0 0.0 0.0 130.0 0.0 0.0 135.0 0.0 0.0 140.0 0.0 0.0 145.0 0.0 0.0 150.0 0.0 0.0 155.0 0.0 0.0 160.0 0.0 0.0 PEAK FLOWS 147 147 0.00 indicates inital condition EXHIBIT "H-2" "PEAK DISCHARGE" DETENTION POND ROUTING Edelweiss Estates Phase 108 Pond Routina EVENT= 5 c a c t. w c en c :E .Q .... ~ ..J 0 + .... .... ,, -; <( a. .E + :E c + c > I-0 + en en c 0 ..!!! 0 0:: c N N a a. w I-a. cfs cfs cfs cfs ft cfs 35.76 0.00 0.00 0.00 299.0 0.00 107.29 30.00 35.76 2.88 299.9 2.88 178.81 121.19 137.29 8.05 300.3 8.05 250.34 267.54 300.00 16.23 300.9 16.23 290.52 477.28 517.88 20.30 301.3 20.30 277.05 720.72 767.80 23.54 301.8 23.54 241.29 945.59 997.78 26.09 302.2 26.09 205.53 1131.29 1186.88 27.79 302.5 27.79 169.76 1278.54 1336.82 29.14 302.7 29.14 134.00 1388.03 1448.31 30.14 302.9 30.14 98.24 1460.46 1522.03 30.79 303.0 30.79 62.48 1496.60 1558.70 31.05 303.1 31.05 26.71 1496.97 1559.07 31.05 303.1 31.05 4.42 1462.09 1523.68 30.80 303.0 30.80 0.00 1405.90 1466.50 30.30 302.9 30.30 0.00 1346.38 1405.90 29.76 302.8 29.76 0.00 1287.93 1346.38 29.22 302.7 29.22 0.00 1230.53 1287.93 28.70 302.6 28.70 0.00 1174.16 1230.53 28.18 302.5 28.18 0.00 1118.80 1174.16 27.68 302.5 27.68 0.00 1064.44 1118.80 27.18 302.4 27.18 0.00 1011.06 1064.44 26.69 302.3 26.69 0.00 958.63 1011.06 26.21 302.2 26.21 0.00 907.15 958.63 25.74 302.1 25.74 0.00 856.59 907.15 25.28 302.0 25.28 0.00 807.22 856.59 24.68 301.9 24.68 0.00 759.12 807.22 24.05 301.8 24.05 0.00 712.28 759.12 23.42 301.8 23.42 0.00 666.65 712.28 22.82 301.7 22.82 0.00 622.19 666.65 22.23 301.6 22.23 0.00 578.89 622.19 21.65 301.5 21.65 0.00 536.72 578.89 21.09 301.4 21.09 0.00 495.63 536.72 20.54 301.4 20.54 31 303.1 31 D.A.# (!) ..J ~ <( I-I-~ w 0 >< ..... I-w 109.2 25.7 cfs cfs 0.0 0.00 21.2 21.23 42.5 42.47 63.7 63.70 84.9 84.94 106.2 106.17 100.0 100.03 89.4 89.41 78.8 78.79 68.2 68.18 . 57.6 57.56 46.9 46.94 36.3 36.32 25.7 25.71 15.1 15.09 4.5 4.47 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 106 106 peak.xis Exhibit H-2 DA# DA# • .&; 0 Q. w I! z CD m e :f! 'g. a. 8 ::c ..... Qp 179.2 Tc 22.1 Inc 5.0 Time cfs cfs 0.0 0.0 0.0 5.0 40.6 40.6 10.0 81.2 812 15.0 121.8 121.8 20.0 162.3 162.3 25.0 167.4 167.4 30.0 147.1 147.1 35.0 126.8 126.8 40.0 106.5 106.5 45.0 86.2 86.2 50.0 65.9 65.9 55.0 45.6 45.6 60.0 25.3 25.3 65.0 5.0 5.0 70.0 0.0 0.0 75.0 0.0 0.0 80.0 0.0 0.0 85.0 0.0 0.0 90.0 0.0 0.0 95.0 0.0 0.0 100.0 0.0 0.0 105.0 0.0 0.0 110.0 0.0 0.0 115.0 0.0 0.0 120.0 0.0 0.0 125.0 0.0 0.0 130.0 0.0 0.0 135.0 0.0 0.0 140.0 0.0 0.0 145.0 0.0 0.0 150.0 0.0 0.0 155.0 0.0 0.0 160.0 0.0 0.0 PEAK FLOWS 167 167 0.00 indicates inital condition EXHIBIT "H-2" "PEAK DISCHARGE" DETENTION POND ROUTING Edelweiss Estates Phase 108 Pond Routing EVENT'"' 10 B 0 :. w c "' c :5! .2 .... ~ ...J~ + ..... 'O 1ii .E + ..... ~o :5! c + c > + "' "' c 0 .!! 0 0::: c .... .... a Q. w I-Q. cfs cfs cfs cfs ft cfs 40.59 0.00 0.00 0.00 299.0 0.00 121.76 3421 40.59 3.19 300.0 3.19 202.93 137.99 155.97 8.99 300.4 8.99 284.11 304.91 340.92 18.01 301.0 18.01 329.71 546.57 589.01 21.22 . 301.5 21.22 314.43 826.40 876.28 24.94 302.0 24.94 273.84 1086.07 1140.83 27.38 302.4 27.38 23325 130121 1359.91 ·29_35 302.8 29.35 192.66 1472.71 1534.46 30.88 303.0 30.88 15208 1601.75 1665.38 31.81 303.2 31.81 111.49 1688.93 1753.83 3245 303.4 32.45 70.90 1734.85 1800.42 3278 303.4 32.78 30.32 1740.11 1805.76 3282 303.4 3282 5.01 1705.29 1no.43 3257 . 303.4 32.57 0.00 1646.03 1710.30 3214 303.3 32.14 0.00 1582.68 1646.03 31.68 303.2 31.68 0.00 1520.23 1582.68 3122 303.1 31.22 0.00 1458.69 1520.23 30.n 303.0 30.n 0.00 139822 1458.69 30.23 302.9 30.23 0.00 1338.84 1398.22 29.69 302.8 29.69 0.00 1280.52 1338.84 29.16 302.7 29.16 0.00 1223.26 1280.52 28.63 302.6 28.63 0.00 1167.02 1223.26 28.12 302.5 28.12 0.00 1111.79 1167.02 27.61 302.4 27.61 0.00 1057.56 1111.79 27.12 302.4 27.12 0.00 1004.29 1057.56 26.63 302.3 26.63 0.00 951.99 1004.29 26.15 302.2 26.15 0.00 900.62 951.99 25.68 302.1 25.68 0.00 850.18 900.62 25.22 302.0 25.22 0.00 800.98 850.18 24.60 301.9 24.60 0.00 753.05 800.98 23.96 301.8 23.96 0.00 706.36 753.05 23.34 301.8 23.34 0.00 660.88 706.36 22.74 301.7 22.74 33 303.4 33 ~ DA# C> ..... ~ c( I-I-~ w 0 )( ..... I-w 124.2 25.7 cfs cfs 0.0 0.00 24.2 24.16 48.3 48.32 72.5 72.47 96.6 96.63 120.8 120.79 113.8 113.80 101.7 101.72 89.6 89.64 n.6 n.56 65.5 65.48 53.4 53.40 41.3 41.33 29.2 29.25 17.2 17.17 5.1 5.09 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 .0.0 0.00 121 121 peak.xis Exhibit H-2 DA# DA# :a: .s::. c a. w IV .. z Cl iii ~ ~ -g, a.. 0 :i: .... 0 Qp 205.6 Tc 22.1 Inc 5.0 Time cfs cfs 0.0 0.0 0.0 5.0 46.6 46.6 10.0 93.1 93.1 15.0 139.7 139.7 20.0 186.3 186.3 25.0 192.0 192.0 30.0 168.7 168.7 35.0 145.4 145.4 40.0 122.2 122.2 45.0 98.9 98.9 50.0 75.6 75.6 55.0 52.3 52.3 60.0 29.0 29.0 65.0 5.8 5.8 70.0 0.0 0.0 75.0 0.0 0.0 80.0 0.0 0.0 85.0 0.0 0.0 90.0 0.0 0.0 95.0 0.0 0.0 100.0 0.0 0.0 105.0 0.0 0.0 110.0 0.0 0.0 115.0 0.0 0.0 120.0 0.0 0.0 125.0 0.0 0.0 130.0 0.0 0.0 135.0 0.0 0.0 140.0 0.0 0.0 145.0 0.0 0.0 150.0 0.0 0.0 155.0 0.0 0.0 160.0 0.0 0.0 PEAK FLOWS 192 192 0.00 indiCates inital condition EXHIBIT "H-2" "PEAK DISCHARGE" DETENTION POND ROUTING Edelweiss Estates Phase 108 Pond Routina EVENT= 25 c a c t. w c Cl) c :!2 .2 .... ~ ..J 0 + .... .... 'O '7V c( a.. c + + :!2 c + c > I-0 Cl) Cl) c 0 .!! 0 0: c N N a a.. w I-a.. cfs cfs cfs cfs ft cfs 46.56 0.00 0.00 0.00 299.0 0.00 139.69 39.59 46.56 3.49 300.0 3.49 232.82 158.95 179.28 10.16 300.5 10.16 325.95 354.44 391.78 18.67 301.1 18.67 378.27 635.59 . 680.39 22.40 301.6 22.40 360.73 961.38 1013.85 26.24 302.2 26.24 314.17 1264.09 1322.11 29.01 302.7 29.01 267.60 1515.88 1578.26 31.19 303.1 31.19 221.04 1718.16 1783.49 32.66 303.4 32.66 174.48 1871.64 1939.20 33.78 303.7 33.78 127.91 1977.02 2046.12 34.55 303.8 34.55 81.35 2034.99 2104.93 34.97 303.9 34.97 34.78 2046.24 2116.34 35.05 303.9 35.05 5.75 2011.42 2081.02 34.80 303.9 34.80 0.00 1948.50 2017.17 34.34 303.8 34.34 0.00 1880.80 1948.50 33.85 303.7 33.85 0.00 1814.08 1880.80 33.36 303.6 33.36 0.00 1748.32 1814.08 32.88 303.5 32.88 0.00 1683.50 1748.32 32.41 303.4 32.41 0.00 1619.61 1683.50 31.94 303.3 31.94 0.00 1556.63 1619.61 31.49 303.2 31.49 0.00 1494.56 1556.63 31.03 303.1 31.03 0.00 1433.45 1494.56 30.56 303.0 30.56 0.00 1373.44 1433.45 30.01 302.9 30.01 0.00 1314.50 1373.44 29.47 302.8 29.47 0.00 1256.63 1314.50 28.94 302.7 28.94 0.00 1199.79 1256.63 28.42 302.6 28.42 0.00 1143.97 1199.79 27.91 302.5 27.91 0.00 1089.16 1143.97 27.41 302.4 27.41 0.00 1035.33 1089.16 26.91 302.3 26.91 0.00 982.47 1035.33 26.43 302.2 26.43 0.00 930.55 982.47 25.96 302.1 25.96 0.00 879.57 930.55 25.49 302.1 25.49 35 303.9 35 DA# (!) ..J ~ c( I-I-~ w 0 >< .... I-w 142.6 25.7 cfs cfs 0.0 0.00 27.7 27.74 55.5 55.49 83.2 83.23 111.0 110.98 138.7 138.72 130.7 130.69 116.8 116.82 102.9 102.95 89.1 89.08 75.2 75.20 61.3 61.33 47.5 47.46 33.6 33.59 19.7 19.72 5.8 5.84 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 139 139 peak.xis Exhibit H-2 DA# DA# 'It s:: c a. w I! z ICll m e ::!: ~ 0. 0 :I: .... 0 Qp 233.5 Tc 22.1 Inc 5.0 Time cfs cfs 0.0 0.0 0.0 5.0 52.9 52.9 10.0 105.8 105.8 15.0 158.6 158.6 20.0 211.5 211.5 25.0 218.0 218.0 30.0 191.6 191.6 35.0 165.2 165.2 40.0 138.7 138.7 45.0 112.3 112.3 50.0 85.8 85.8 55.0 59.4 59.4 60.0 33.0 33.0 65.0 6.5 6.5 70.0 0.0 0.0 75.0 0.0 0.0 80.0 0.0 0.0 85.0 0.0 0.0 90.0 0.0 0.0 95.0 0.0 0.0 100.0 0.0 0.0 105.0 0.0 0.0 110.0 0.0 0.0 115.0 0.0 0.0 120.0 0.0 0.0 125.0 0.0 0.0 130.0 0.0 0.0 135.0 0.0 0.0 140.0 0.0 0.0 145.0 0.0 0.0 150.0 0.0 0.0 155.0 0.0 0.0 160.0 0.0 0.0 PEAK FLOWS 218 218 0.00 indicates inital condition EXHIBIT "H-2" "PEAK DISCHARGE" DETENTION POND ROUTING Edelweiss Estates Phase 108 Pond Routlna EVENT= 50 c a c :t. w c Cl) c l! .2 .... ~ ..JO + .... .... ,, 1ii < 0. c + + l! c + c > 1-0 Cl) Cl) c 0 .!! 0 0:: c N N a 0. w I-0. cfs cfs cfs cfs ft cfs 52.88 0.00 0.00 0.00 299.0 0.00 158.63 45.26 52.88 3.81 300.1 3.81 264.38 181.09 203.89 11.40 300.6 11.40 370.13 406.75 445.47 19.36 301.2 19.36 429.54 729.57 776.88 23.65 301.8 23.65 409.63 1104.03 1159.11 27.54 302.4 27.54 356.75 1452.20 1513.65 30.73 303.0 30.73 303.88 1743.27 1808.96 32.85 303.5 32.85 251.-00 1978.03 2047.14 34.55 303.8 34.55 198.12 2147.90 2229.03 40.57 304.1 40.57 145.25 2244.93 2346.02 50.54 304.2 50.54 92.37 2281.56 2390.18 54.31 304.3 54.31 39.50 2268.09 2373.94 52.92 304.3 52.92 6.53 2213.05 2307.58 47.27 304.2 47.27 0.00 2140.06 2219.58 39.76 304.1 39.76 0.00 2069.61 2140.06 35.22 304.0 35.22 0.00 2000.18 2069.61 34.72 303.8 34.72 0.00 1931.74 2000.18 34.22 303.7 34.22 0.00 1864.29 1931.74 33.73 303.6 33.73 0.00 1797.81 1864.29 33.24 303.5 33.24 0.00 1732.28 1797.81 32.77 303.4 32.77 0.00 1667.69 1732.28 32.29 303.3 32.29 0.00 1604.02 1667.69 31.83 303.2 31.83 0.00 1541.27 1604.02 31.37 303.1 31.37 0.00 1479.43 1541.27 30.92 303.0 30.92 0.00 1418.59 1479.43 30.42 302.9 30.42 0.00 1358.84 1418.59 29.87 302.8. 29.87 0.00 1300.17 1358.84 29.34 302.8 29.34 0.00 1242.55 1300.17 28.81 302.7 28.81 0.00 1185.96 1242.55 28.29 302.6 28.29 0.00 1130.39 1185.96 27.78 302.5 27.78 0.00 1075.82 1130.39 27.28 302.4 27.28 0.00 1022.23 1075.82 26.79 302.3 26.79 54 304.3 54 DA# C> ...J !!!: <I-I-~ w 0 )( .... I-w 162.1 25.7 cfs cfs 0.0 0.00 31.5 31.54 63.1 63.07 94.6 94.61 126.1 126.15 157.7 157.68 148.6 148.56 132.8• 132.79 117.0 117.02 101.3 101.25 85.5 85.48 69.7 69.72 53.9 53.95 382 38.18 22.4 22.41 6.6 6.64 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 158 158 peak.xis Exhibit H-2 DA# DA# • ~ 0 c.. w !! z Cl m e ::iE "'C >-a. 0 :I: ..... () Qp 263.9 Tc 22.1 inc 5.0 Time cfs cfs 0.0 0.0 0.0 5.0 59.8 59.8 10.0 119.5 119.5 15.0 179.3 179.3 20.0 239.1 239.1 25.0 246.5 246.5 30.0 216.6 216.6 35.0 186.7 186.7 40.0 156.8 156.8 45.0 126.9 126.9 50.0 97.0 97.0 55.0 67.2 672 60.0 37.3 37.3 65.0 7.4 7.4 70.0 0.0 0.0 75.0 0.0 0.0 80.0 0.0 0.0 85.0 0.0 0.0 90.0 0.0 0.0 95.0 0.0 0.0 100.0 0.0 0.0 105.0 0.0 0.0 110.0 0.0 0.0 115.0 0.0 0.0 120.0 0.0 0.0 125.0 0.0 0.0 130.0 0.0 0.0 135.0 0.0 0.0 140.0 0.0 0.0 145.0 0.0 0.0 150.0 0.0 0.0 155.0 0.0 0.0 160.0 0.0 0.0 PEAK FLOWS 246 246 0.00 indicates inital condition EXHIBIT "H-2" "PEAK DISCHARGE" DETENTION POND ROUTING Edelweiss Estates Phase 108 Pond Routing EVENT= 100 c a 0 t. w c Cl) c :!;? .2 ..... ~ ..J 0 + ..... "'C 1V < a. c + ..... + :!;! c + c > I-0 Cl) Cl) c 0 .!! 0 a:: c N N a a. w I-a. cfs cfs cfs cfs ft cfs 59.77 0.00 0.00 0.00 299.0 0.00 179.32 51.47 59.77 4.15 300.1 4.15 298.87 205.29 230.79 12.75 300.7 12.75 418.42 463.91 504.16 20.12 301.3 20.12 485.57 832.29 882.33 25.02 302.0 25.02 463.07 1259.93 1317.87 28.97 302.7 28.97 403.29 1658.54 1723.00 32.23 303.3 32.23 343.52 1992.52 2061.84 34.66 303.8 34.66 283.75 2236.65 2336.04 49.69 304.2 49.69 223.97 2389.57 2520.40 65.41 304.5 65.41 164.20 2466.83 2613.54 73.36 304.6 73.36 104.42 2481.33 2631.03 74.85 304.6 74.85 44.65 2443.78 2585.76 70.99 304.6 70.99 7.38 2363.06 2488.43 62.69 304.4 62.69 0.00 2265.19 2370.44 52.63 304.3 52.63 0.00 2177.88 2265.19 43.65 304.1 43.65 0.00 2105.47 2177.88 36.21 304.0 36.21 0.00 2035.52 2105.47 34.97 303.9 34.97 0.00 1966.58 2035.52 34.47 303.8 34.47 0.00 1898.63 1966.58 33.98 303.7 33.98 0.00 1831.65 1898.63 33.49 303.6 33.49 0.00 1765.63 1831.65 33.01 303.5 33.01 0.00 1700.56 1765.63 32.53 303.4 32.53 0.00 1636.43 1700.56 32.07 303.3 32.07 0.00 1573.21 1636.43 31.61 303.2 31.61 0.00 1510.91 1573.21 31.15 303.1 31.15 0.00 1449.50 1510.91 30.70 303.0 30.70 0.00 1389.20 1449.50 30.15 302.9 30.15 0.00 1329.98 1389.20 29.61 302.8 29.61 0.00 1271.83 1329.98 29.08 302.7 29.08 0.00 1214.72 1271.83 28.56 302.6 28.56 0.00 1158.63 1214.72 28.04 302.5 28.04 0.00 1103.55 1158.63 27.54 302.4 27.54 75 304.6 75 DA# Cl ..J ~ < I-I-~ w ox .... I-w 183.5 25.7 cfs cfs 0.0 0.00 35.7 35.70 71.4 71.40 107.1 107.10 142.8 142.79 178.5 178.49 168.2 168.16 150.3 150.31 132.5 132.46 114.6 114.61 96.8 96.77 78.9 78.92 61.1 61.07 43.2 43.22 25.4 25.37 7.5 7.52 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 178 178 peak.xis Exhibit H-2 ENGINEER'SCONSTRUCTION COST ESTIMATE EDELWEISS ESTATES, PHASE 10-8 April 9, 1997 ITEM DESCRIPTION UNIT QUANTITY UNIT AMOUNT NO. COST STREET CONSTRUCTION 1 Erosion & Sedimentation Control LS. 1 $8 ,000 .00 $8,000 .00 2 Clearing & Grubbing R.O.W.'s & Easements Ac. 4.5 1,500.00 6 ,750 .00 3 Roadway Excavation C.Y. 3,699 2 .50 9,247 .50 4 Detention Pond Excavation C.Y . 6 ,987 4 .50 31,441 .50 5 Re-Vegetation S.Y. 12,100.00 0.60 7,260.00 6 6" Lime Stab. Subgrade (6% Lime) S.Y. 5 ,590 2.25 12,577.50 7 Extra Lime Ton 38 72 .57 2 ,757 .66 8 6" Flexible Base Crushed Stone S.Y. 3,313 4 .95 16,399 .35 9 7" Flexible Base Crushed Stone S.Y. 1,295 5.78 7,485 .10 10 1 Yz" Hot Mix Asphaltic Concrete (Type D) S.Y. 4,608 3.30 15,206.40 11 Reinforced Concrete Curb (Type A) LF. 2 ,189 7.00 15,323.00 12 Standard Reinforced Concrete Curb LF. 557 7.00 3,899 .00 13 Reinf. Concrete Sidewalk S.F. 8 ,145 2.00 16 ,290 .00 14 Remove Ex . Asph. Pvm't & Base Material S.Y. 174 3.00 522.00 STREET CONSTRUCTION SUBTOTAL $153 , 159.01 DRAINAGE CONSTRUCTION 15 21" RCP (C76 , Cl. Ill) LF. 48 $27 .50 $1 ,320.00 16 30" RCP (C76 , Cl. Ill) LF. 129 36 .00 4 ,644.00 17 1 O' Standard Recessed Cone . Inlet Each 2 2 ,050.00 4 ,100.00 18 Sloped Concrete Headwall (4 :1 Slope) Each 1 850 .00 850 .00 19 Reinforced Concrete Flume (4" thick) S.F. 2,316 2 .50 5,790.00 20 Reinforced Concrete Spillway (4" thick) S .F . 1f120 3.00 3,360.00 21 Grouted Rock Rubble Riprap S.F. 2,850 3.50 9,975.00 22 Remove Ex. 12" RCP LS. 1 400 .00 400 .00 23 Trench Safety (Stonn Drain) LS. 1 200 .00 200 .00 DRAINAGE CONSTRUCTION SUBTOTAL $30,639.00 SEWER LINE CONSTRUCTION 24 6" PVC (SDR-26, 03034)(7 .5' to 9' depth) LF. 931 $13.00 $12,103.00 25 Standard 4' Diameter Ma11hole (6.9' to 8 .1' depth) Each 4 1,300.00 . 5,200.00 26 4" Dbl. Ser\t. Line (Type 1)(28 .7' Avg. Length) Each 7 400.00 2,800 .00 27 4" Dbl. Serv. Line (Type 11)(50' Avg. Length) Each 575 .00 2,300.00 28 4" Single Serv. Line (Type 11)(7' Avg . Length) Each 400.00 400 .00 29 Remove Cap & Connect to Ex. 6" Line LS. 100.00 100.00 30 Trench Safety (Sewer Lines) 1,000.00 SEWER LINE CONSTRUCTION SUBTOTAL .$23,903 .00 Page 1. LO NSTRUCTIO N ITEM NO. ENGINEER'SCONSTRUCTION COST ESTIMATE EDELWEISS ESTATES, PHASE 10-8 April 9, 1997 DESCRIPTION UNIT QUANTITY UNIT COST WATER LINE CONSTRUCTION 31 8" PVC (C900, Cl. 200) L.F. 311 $13 .00 32 6" PVC (C900, Cl. 200) L.F. 1,168 12.00 33 Fire Hydrant Assembly (Type I with 6' bbl.) Each 1 1,700.00 34 Fire Hydrant Assembly (Type I with 4' bbl.) Each 1 1,600 .00 35 Remove Ex. Blow-off & Connect to 8" PVC Line L.S. 1 100.00 36 Remove Ex. Blow-off & Connect to 6" PVC Line L.S. 1 100.00 37 2" Blow-Off Assembly w/8" Cap Each 1 375.00 38 8" M.J. Gate Valve Each 1 525.00 39 6" M.J. Gate Valve Each 2 360.00 40 8" X 6" M.J. Tee Each 1 185.00 41 6" X 11%0 M.J. Bend Each 1 125.00 42 6" X 22Yz 0 M.J. Bend Each 1 125.00 43 6" X 45° M.J . Bend Each 2 125.00 44 1" Type K Service (Avg . Length= 281 Each 1 400.00 45 1 Yz" Type K Water Service (Avg. Length = 391) Each 6 600.00 46 Trench Safety (Water Line) L.S . 1 1,000.00 WATER LINE CONSTRUCTION SUBTOTAL TOTAL ESTIMATED COST OF CONSTRUCTION Page2 AMOUNT $4,043.00 14,016.00 1 ,700.00 1,600 .00 100.00 100.00 375 .00 525.00 720.00 185.00 125.00 125.00 250.00 400.00 3,600 .00 1,000.00 $28,864.00 $236,565.01 DEVELOPMENT PERMIT PERMIT NO. 455 EDELWEISS ESTATES, PHASE 10-B FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE SITE LEGAL DESCRIPTION: SITE ADDRESS: EDELWEISS ESTATES, PHASE 10-B Not Addressed OWNER: Begonia Corporation James 0 . Crowell, Pres. 1901 San Jacinto Houston, Texas 77002 (713) 654-0060 DRAINAGE BASIN: Bee Creek Tributary "A", Segment II TYPE OF DEVELOPMENT: This permit is valid for site construction as shown on the approved plans. The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design Criteria. The Owner and/or Contractor shall assure that all disturbed areas are sodden and establishment of vegetation occurs prior to removal of any silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor shall also insure that any disturbed vegetation be returned to its original condition, placement and state. The Owner and/or Contractor shall be responsible for any damage to adjacent properties, city streets or infrastructure due to heavy machinery and/or equipment as well as erosion, siltation or sedimentation resulting from the permitted work. Any trees required to be protected by ordinance or as part of the landscape plan must be completely fenced before any operations of this permit can begin. In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to insure that debris from construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage facilities . I hereby grant this permit for development of an area outside the special flood haz.ard area. All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer in the development permit application for the above named project and all of the codes and ordinances of the City of College Station that apply. Contractor Date 05 /16 /97 16 :56 FAX 903 626 4 156 A. L. HELMCAM P ~0 02 41230 Federal Register I Vol. 57 . No. 175 I Wednesday. September 9, 1992 I Notices Appendix C -NOi Form lnstrueUons SM "-"•rae for lnatru~lona FGm ~-Clli9 .. ~ ............ :t.11• ft EPA ....... ~._.. .. ~--..OES · Wl8flif'Vlri, DC 20e FORM '8', Notice of Intent (NOi) tor Stonn Water Discharges Associated whh lndu.trllll Activity Under the NPDES Glmral Permit Sulmlillan ol r1i1 Nob Of lnlllnl CICll'll•~ nClllm llal ... PIS'7 lllllnllr.d In Sedler\ I ol ltlll Imm lnllndl ti t. a.il'aiDd ti, a NPDES I*"* i111.-1 b alelnn -.... ~ ..,...._,,, wl9I ~~II\ l'IB Slillil ldelll6lld In Sec:llar1 II of tllm lann. ~~ otillg-. IUdl dlldmrJilr D CD11111J 111111 w."""' ...s CD"ldiD• d r. Jl8llTlit. AU. CESSARV INFORMATION MUST 8! PROVIDED ON FOAM. • 1. FIDlllJ ()psatir ~ilcmWlb1 . NmN: 1A1L.• .t:Le.l ,r.,,c.1a•""•e•:i1 ,-r.a 1t.1 I I I I I I I I I I I I I I Ptvle: ff. It) 1J 141l 1' !i,'i I I J I 1P.o, · .8lJ1't• 11./-15,4;,, I StaU ot [£] Add .... : I I I I I I I I I I I I I I I I I I I I I O...W.<lpara~ Cily: ~11.1..f 1£ 1C21l 1 o, I I I I I I I I I I I I I L I Slalll : lL1J ZIP Cede : 1'21S.S'131 l1 ., I I I I 11. Fdiy/Slm U:ab'i lntarrnaliol 1f'1d 1e 1 I 1w ,e. 1 i 1 s ,.s, 1P1h,a 1.s 1e 1 11 10 16, b . ' . i. .-. Fadllf1 lamlad 1:11 [ill Niln9: .S,LL, ,t.lil ,V,1 r§1l ,Olfl nslan l..arm? (Y t1t N) MOreu: I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Clly; c.,o,1 11 1e 1gLe, ..S 1+,a.1f I; 10 J1, I I I I I 1 I I $i.; tL1J 21P Codie : I I I -I I I I I I I I lal!LClll: w,~11.a1J1ql ~= ~ 1a ,ij-10.~ 121 I Oi.aNr: ~ ~= Li..J Tawnsh lp; I I I I I Aarvt : I I I I I n1. s. ~ Wtlmlallrl h6.t Opm at:r Nim9: I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ReceH1ng Wallll Bady: 18.e.e . . c1r 1e..1e1 1<. .r;c ,; ,b,u ,+.a,r ·Y• ,A.. I I I If YCl.I .,. F"!ling u a tbpennia•, I I Ala Thlltt EU~ ~ IS l"le faciJlrJa Flaq!J"rf!ld D Submll m Eri19r Sam W818r ~ P.rmil Nll'nl:!Br: I I I I I I I I ~MaM Dall (Y 01 N) MarilClrlng ra 1 I 1 , Z. er 3 ) SICorO-plld ~cao.: PmwJ: 1C .o. I I 2nd: I I I I I ltd: I I I I I <llh: I I I I I II nus Flldll~s 1 Mlrnba' of a Groo ~ Appllcab\ • ~ Applic;ilia'I t.r: I I I ,J II YISI H...a ~ Ells•no NPDES I ' I I I I · I Pvnni•. Eruar Pwmlf Numtat: I I I I I I I I I I I I I I I I I I I I I I I IV . AddltClnal ~bmlllan A9Qund liar Ccnt\don A.:tvlles On1J Profae;I ~lcl'I StanO.; Dal: Js 119 Slrlrm Wa11r Pl:iluDi Prwwibt Plan 10.s1s1'°l!l,7J IL 10li1ll!q121 Esdmallid Ala D t11 I bj . ii CGnplanc:e wlll'I Sl:8 a-dlclr ~ [tJ Cl&aRad (In Aaal): I I I I 1-Sadirnlrlt rd &Clllan Plarm? (Y ar N) V. CM111\:allu11! I C8lfly \Rlar parally ol IM l'lal d'lb da:unllnt rd all ~ Mn1 SJ~ ln5er my dlrs:lm tit IU~ In ~ wftl a 1}$181'!1 dlllgrad ., .... flal qUllified pa"IQN'GI ~ --.., ~--.... lnlcmiallon IUt:lrialBd. Based ;n mt ~ °' "' P9'ICft tit ~ ....., rnanaga ':.:: tit .... palSal1I dir9dly ~ lcr ~ Wl:lnnam. ha if*lrmallcn sulmtlad is, ., .. 1:111110 "" ~ ancl balal, n., m:ua•. a:mple•. I a11 ~ 1111 llar9 •• lignitl::llnt psiaa b IUtrrilllng taBe Hormabl, lld~ ,_ pmalbillt of h ~ !tr lllDMnO~ Pllti1Nmm : C.: IR .. · .c:..IC .~.e.I .~c..a.,/\,P, I I I I I • I I I I I I . I I 10~1' .1o1q .11 Sl;na&n: /~~ El!IA FO'Tll 251M 1•111 u 05 /16 /97 16:56 FAX 903 626 4 156 A. L. HELMCAMP ~001 , A.L. HELMCAMP, INC. Fax to number: I Attention: I I 4oq_ 2~4-.349~l __ _ :Slli:V£ t/oAle;__erc:-.~----- OntlTime:I L-~~~l~Jb+-!~9-LJ ________ _ From: !.......i __:e=~::.....:J:!:::,.:____, __:~==-~:..__~=--------­ Number at pages: 1.-I _"2-=------------------- I Additional comments: ! I _ L Helmoomp, '"' ~eneral Contractor ~.o . Box 456 . uffalc , Tawas 75831 hone 9031626-5911 L'--Z:~~---&-F--. -e,-~-21---/J-O_L __ _ I 1 .. --~-~~-~-~~----~-- ! ~fb<d-~ Ebez. tue/~ i lJ~ !OB ~?!>o fkiHr:b_J_ - I I L.-------------------- L_.--~----~--------- 1 i DATE: TO: FROM: TRANSMITTAL LETTER May 13, 1997 MCCLURE ENGINEERING, INC. I 722 BROADMOOR, SUITE 2 I 0 BRYAN , TEXAS 77802 <409) 776-6700 FAX : (409) 776-6699 Mr. Steve Homeyer Graduate Engineer CITY OF COLLEGE STATION Michael R. McClure, P.E., R.P .L.S. PROJECT NAME: EDELWEISS ESTATES, PHASE 10-B COMMENTS: Attached please find a completed and signed Development Permit Application along with a check in the amount of$100.00 for the Development Permit and a check in the amount of$300.00 for subdivision inspection fee for EDELWEISS ESTATES, PHASE 10-B . Please let me know when the approved construction plans can be obtained . J, ~I as h __ _ BEGONIA CORPORATION 1901 SAN JACINTO HOUSTON , TX 77002 p A y () :P-. . C~J f :LU 0 _J_ J. ' b~ciir~ OF ~ '1~& £rX~ 383152 S--16 ·~-- -=-fl-.F!r4~· _3_:-__ 19 .11_ I $ /oo 13 89 35 -1558 /1130 0 Or v . 4-ve-/ ~()~~:...:....::=-----'~'....:::'.....:__::_-=--=-=·....,._:_:_:.J_c:<--.d._=-=--'-..:__-___..L/f_I_"'_• __ ..-------------________ ·-:::.._-:_-:_==-0 0 LL A RS FOR HOUSTON NATIONAL BANK P.O . Box 1225 •Houston. Texas 7725 1-1225 r k ... ";)~ i a -e o <:.. v ... \, ........ ~ r '2. ........ ; ~ f ..... BEGONIA CORPORATION 1901 SAN J ACINTO HOUSTON , TX 77002 TO THE '' ,..,../ -'~JJ 1J, - 19_!? 139 0 35 -1558/ 1130 0 ORDER OF f ~b "YV PAY ~ G ~ --~L::...:.--=-.':'~-_:_~_:_-~_-_<__::_~ ___ 4~~---1"°_0 _______________ 00LLARS HOUSTON NATIONAL BANK P .O . Box 1225 •Ho uston. Tex as 772 5 1-12 25 FOR .. :-·· ..... · . ·• • !!. ~. . ~ . ' Figure :X°Ji :·.- Development Permit City of College Station, Texas · EDELWEISS ESTATES, PHASE 1 0-B Site Legal Description:-------------------------- Site Owner: BEGONIA ffiRPORATION ~ Michael R. McClure, P.E. Engineer: _M_cCL_· _URE __ EN_G_INEER ___ IN_G_,_rn_c_. __ Contractor: A r. HEJMCAMP, INC. Date Application Filed: ________ _ 1901 San Jacinto Address:Houston, TX 77002 Telephone: ( 713) 654-0060 1722 Broadmoor, Suite 210 Address :Bryan, TX 77802 Telephone No : __ 7_7..:..6-_6_7_0_0 _____ _ P.O. Box 456 Address : Buffalo, TX 75831 Telephone No : 903 626-4156 Approved:------------ Application is hereby made for the following development specific waterway alterations: Subdivision construction along Bee Creek Tributary "A" 31 Application Fee 131 Signed Certifications 0 Drainage and erosion control plan, with supporting Drainage Report two (2) copies each_ 0 Site and Construction Plans, with supporting Drainage Report two (2) copies each. 0 Other: ------------------------------ ACKNOWLEDGMENTS: r,·JCl!Jles o. Crowell, Pres. ~wner, hereby acknowledge or affirm that: . . . . The information and conclusions contained in the above plans and supporting documents comply with the current requirements of the City of College Station, Texas City Code. Chapter 13 and its associated Drainage Policy and Design Standards. As a condition of approval of this permit application, I agree to construct the improvements proposed in this application acCording to these documents and the requirements ofChipter 13 of the College Station City Code. (J .~f~ BEGONIA ffiRPORATION Figure Xfl Continued CERTIFICATIONS: (for proposed alterations within designated flood hazard areas.) A I, certify that any nonresidential structure on or proposed to be on this site as part of this application is designated to prevent damage to the structure or its contents as a result of flooding from the 100 year storm. Engineer Date B. I, certify that the finished fl oor elevation of the lowest floor, including any basement, of any residenti al structure, proposed as part of this application is at or above the base flood elevation established in the latest Federal Insurance Administration Flood Hazard S tudy and maps, as amended . Engineer Date Engineer Date Conditions or comments as part of approval : ------------------- In accordance with Chapter 13 of the Code of Ordinances of the City of College Station. measures shall be taken to insure that debris from construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage facilities . I hereby grant this iJennit for development. All development shall be in -accordance with the plans and specifications submitted to and approved by the City Engineer for the above named project. All of the applicable codes and ordinances of the City of College Station shall apply. ' ............. , .• McCLURE ENGINEERING, INC.------- April 2 8, 1997 Steve H om eyer Graduate Engineer City of Co llege Stati on P .O. Box 9960 College Station, TX 77842-9960 RE: Edelweiss Estates Phase lOB Fire Flow Dear Steve: Per your request we have modeled the fire flow for the above referenced de velopment. Attached please find the a copy of the Ky Pipes model demonstrating the required capacity and a Water Distribution Map showing the node locations. For planning purposes we used a domestic demand of 3 gpm for all the residences and 750 gpm for the fire flow at the hydrant located at the knuckle of Innsbruck Circle. All mains were modeled with a Hazen Williams roughness coefficient of 150 and minor losses are computed from the table in the user manual for the program. Please note that the hydrant test used for the analysis was flowed on April 25 , 1997 and had a static pressure of 83 psi and a residual pressure of 75 psi (1300 gpm flow per 2.5" orifice) per the City of College Station Flow Test Report. The test hydrant was at the knuckle in Sunflower Trail (N-73) and the pressure hydrant was at the intersection of Mint Avenue and Sunflower Trail (N-74). Per the model, the hydrant in question at the knuckle of Innbruck Circle had a residual pressure of 68 psi (2 0 psi required). Should you have any questions, please contact me. Sincerely, A-~: 5/7/?7 ~p~~ 1722 Broadmoor, Suite 210 • Bryan, Texas 77802 • (409) 776-6700 • FAX (409) 776-6699 -_ .___...-. -. ---~-' -. '--1Hiff. ~~S!';AA:HM~. u~d'.-. -. --L. -.-. _-.:.J_. ~~l~1~2 "::w;7i""LL_1J _il _ _JIL_j Q) ·--·-·-·-·-·-·-·- ·-·-·-.J'."'"~~~~-·-·-·-·-·-·-·==\\ ' ' LL~_i.__J_L-~L-t--t--t--t-Tlll1 Detention -·--·-·-·~ ! ., I ::s ~.---4---+---+-+---+---+--t----1!t tO~ t;6 . ·-·-·-·-·-/.:~"W(~·-· Scale : 1" = 200' Rock Prairie Elementary Schoo l © Lots 1&2 Bl ock One Westchester Park Phase Two * * * * * * * * * * * * * * K Y P I P E * * * * * * * * * * * * * * * * for the * University of Kentucky Hydraulic Analysis Program Distribution of Pressure and Flows in Pipe Network Systems FORTRAN VERSION -3.40 (01/02/91) * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * BATE: 4/28/1997 TIME: 8:25:30 INPUT DATA FILENAME --------------vrlOb.txt TABULATED OUTPUT FILENAME --------vrlOb.out S U M M A R Y 0 F 0 R I G I N A L D A T A ************************************************ U N I T S S P E C I F I E D FLOWRATE IS EXPRESSED IN GPM AND PRESSURE IN PSIG p I p E L I N E AN D p u M p D A T A PIPE NO. NODE NOS. LENGTH DIAJ.'.1ETER ROUGHNESS MINOR LOSS (FEET) (INCHES) 1 0 1 1. 0 12.0 140.0 .01 LINE 1 PUMP DATA (HEAD-FLOW) : 191. 6 .0 173.1 1300.0 2 1 2 800.0 8.0 140. 0 2.40 3 2 3 950.0 6.0 140. 0 2.60 4 3 4 800.0 6.0 140.0 2.60 5 4 2 300.0 8.0 140.0 .50 J u N c T I 0 N N 0 D E D A T A JUNCTION NUMBER DEHAND ELEVATION CONNECTING PIPES 1 (\('I .00 1 "') ... .vu ... .. 2 66 .00 318.00 2 3 5 3 876 .00 307.00 3 4 4 .00 .00 4 5 0 U T P U T 0 P T I 0 N D A T A OUTPUT SELECTION: ALL RESULTS ARE OUTPUT EACH PERIOD S Y S T E M C 0 N F I G U R A T I 0 N K FIXED GRADE 306.00 50.0 2794.0 THIS SYSTEM HAS 5 PIPES WITH 4 JUNCTIONS I 1 LOOPS AND 1 FGNS S I M U L A T I 0 N R E S U L T S ************************************* THE RESULTS ARE OBTAINED AFTER 3 TRIALS WITH AN ACCURACY .00003 S I M U L A T I 0 N D E S C R I P T I 0 N (L A B E L) EDELWEISS PHASE lOB WATER DISTRIBUTION ANALYSIS FIRE AND DOMESTIC DEMANDS APL , 1997 McCLURE ENGINEERING p I p E L I N E R E S U L T s PIPE NO. NODE NOS . FLOWRATE HEAD LOSS PUMP HEAD 1 0 1 942 .00 .00 183.75 2 1 2 942.00 11. 41 .00 3 2 3 429.43 12.83 .00 4 3 4 -446.57 -11. 62 .00 5 4 2 -446.57 -1. 07 .00 J u N c T I 0 N N 0 D E R E s u L T s MINOR LOSS .00 1.35 .96 -1. 04 -.06 VELOCITY 2. 67 6.01 4.87 -5 .07 -2 .85 JUNCTION NUNBER DEMAND GRADE LINE ELEVATION PRESSURE ' .00 4S9.74 ..L 2 66.00 47 6 . 99 3 876:00 463 :20 4 .00 475 .85 S U M M A R Y 0 F I N F L 0 W S A N D (+i INFLOWS INTO THE SYSTEM FROM FIXED (-) OUTFLOWS FROM THE SYSTEM INTO FIXED PIPE NUMBER FLOWRATE 1 942 .00 NET SYSTEM INFLOW 942 .00 NET SYSTEM OUTFLOW .00 NET SY S TEM DEMAND 942.00 **** KYPIPE SIMULATION COMPLETED **** DATE: 4/28/1997 TIME: 8:25:30 GRADE GRADE 318 .00 69.90 307 :00 67 :69 0 U T F L 0 W S NODES NODES HL/1000 1. 98 14.26 13 .51 -14.53 -3.58 04/25/97 13:25 ~409 764 3452 COLL STA PUB UTL ~002 • Flow Test Report Date i-;!<;;-9 7 Time / /: )~ @P.M. Test made by : 6-e. f'_ A-/d · /{u)u ~ ... 11 · Location: _$ L);yf/oCJ e.£ ir=· ,!Yl (111 f Purpose of test : Representative : Witness: Flow hydrant number: 1,/-0 Z :3 Nozzle size : J, t. ( b D Is 1 /, G.P.M .: \ f .--:S OV , --l__...--" Pitot reading : II-07cr Static hydrant number : · . ,/ ~-----""----~- Static : (_ 'b .~ . P .S.f. ---· ·-· . .J 7 S--P.S.I) --- /