HomeMy WebLinkAboutDrainage ReportDrainage Report
for
Castle Rock Subdivision
Phase 6
Castle Rock Parkway Extension
College Station, Texas
March, 2010
Engineer:
Schultz Engineering, LLC
TBPE Firm No. 12327
P.O. Box 11995
College Station, TX 77842
2730 Longmire Drive, Suite A
College Station, Texas 77845
(979) 764 -3900
Developer
Greens Prairie Investors, Ltd.
4490 Castlegate Drive
College Station, Texas 77845
(979) 690 -7250
ENGINEER
SCHULTZ ENGINEERING, LLC
P.O. Box 11995
College Station, Texas 77842
Phone/Fax: (979) 764 -3900
OWNER/DEVELOPER
Greens Prairie Investors, LLC
4490 Castlegate Drive
College Station, Texas 77845
Phone: (979) 690 -7250
GENERAL DESCRIPTION AND LOCATION
Location: Castle Rock Subdivision, Phase 6, is located on the north side of SH 40,
William D. Fitch Parkway, near its intersection with Castle Rock
Parkway.
Description:
• Area:
• Proposed Land Use:
• # of Lots:
• Existing Land Use:
grazing
• Land Description:
Adjoining Land Use:
Primary Drainage Facility:
Flood Hazard Information:
FEMA FIRM:
Floodplain:
Castle Rock Subdivision, Phase 6
Castle Rock Parkway Extension
Drainage Report — Executive Summary
9.019 acres
PDD- Single Family Residential
33 lots
Agricultural — consisting primarily of a wooded pasture used for cattle
Rolling terrain that falls north toward Spring Creek. The site was
heavily wooded.
The site is bounded on the south, west and east by Phase 5 and 6 of the
Castle Rock Subdivision and on the north. Phase 6 also includes the
stream crossing of the Spring Creek tributary by an extension of Castle
Rock Parkway. This street extension will start at the end of the street in
Phase 2B and extend to a 19.74 acre tract located to the west of the
Castle Rock Subdivision. Adjoining the street extension on the north and
south are riparian buffer areas which are owned by the City of College
Station.
Spring Creek
# 48041CO205 D (February 9, 2000)
A portion of this Phase lies within the floodplain of Spring Creek or its
tributaries.
HYDROLOGIC CHARACTERISTICS
The existing site was predominately wooded. The elevations range from 271 to 281, sloping
generally in a northly direction where the runoff enters tributaries of Spring Creek, which
ultimately flow into Spring Creek on the adjacent tracts.
Page 1 of 6
The Castle Rock Parkway extension portion of the project crosses a tributary of Spring Creek in a
location previously approved by the individual COE Permit No. 199700476 which was acquired
for the Crowley tract. The tributary drains to the north and the ground elevations in this area
varying from 273 to 282.
GENERAL STORMWATER PLAN
The drainage plan for the residential portion of the development will involve the installation of
inlets, junction boxes, storm sewer pipes and drainage channels for 3 separate systems, 2 of which
will discharge into existing ditches and 1 which will discharge as sheet flow at the Subdivision
boundary of Phase 6 of Castle Rock. These ditches are tributaries of Spring Creek. The system
on the northwest portion of Phase 6 will connect to existing storm sewer pipes which are being
constructed with Phase 4 which also collects the runoff from existing storm sewer systems
constructed with Phases 1A, 2A, 2B and 3. The proposed storm sewer system on the east end of
the Phase will connect to a storm sewer pipe constructed with Phase 5. The drainage system for
the center portion, Rocky Oak Court, will consist of a proposed channel from the street cul -de -sac
to the Phase 6 boundary.
There will be 2 storm sewer systems for the extension of Castle Rock Parkway. One system will
connect to the existing storm sewer pipe constructed with Phase 2B and extend the storm sewer
piping through 2 inlets on the street and then discharge into an existing drainage ditch. The
second storm sewer system will collect runoff from a low point in Castle Rock Parkway on the
west side of the stream crossing. The runoff will be conveyed by storm sewer pipe to the box
culvert structure at the stream crossing. The pipe will also be extended past the end of the road to
serve the future development of the land to the west of the stream crossing. The service area for
this pipe is not known, but it is estimated that a 48' diameter pipe will serve the adjacent property.
The detention pond for this proposed development is located downstream of this development, on
Spring Creek, adjacent to SH 6, on the Crowley Tract, which is being developed as the Tower
Pointe development.
COORDINATION & STORMWATER PERMITTING
This project is under a Department of the Army, COE, permit number 199700476 for which the
completion date has been extended to December 31, 2011. The project will require that a Notice
of Intent be submitted to the Texas Commission for Environmental Quality. No other permits are
anticipated for this project.
DRAINAGE DESIGN
General Information:
Stormwater runoff from the residential portion of Phase 6 of the
subdivision will be collected by 2 separate systems which discharge into
existing ditches and 1 system which will discharge sheet flow at the
Subdivision boundary. The system on the northwest portion of Phase 6
primarily carries the runoff from previous Phases including some of
Phase 4 while the system on the east end collects runoff from the east
end of Phase 2A and Phase 5 and from future development areas of the
Subdivision. The location of the drainage areas for evaluation of the
gutter depth check, inlet sizing and pipe evaluation are shown on Exhibit
Page 2 of 6
Street Design:
71 Methodology:
T� Minimum
Design Storm Event:
Pipe Materials:
Manning's n Value:
Runoff Coefficients:
Design Constraints:
Design Results
A. Also shown are the location of the inlets, junction boxes, storm sewer
pipes and channels.
The drainage system for Rocky Oak Court is a drainage channel which
will convey the runoff from the street through an open area of the curb
and then discharge it as sheet flow at the Subdivision boundary.
Standard cross - section (3.33% cross - slope, 27' B - residential)
Laydown curb & gutter on residential streets
Standard cross - section (3.15% cross - slope, 38' B - B Collector)
Standard curb & gutter on Castle Rock Parkway
Asphalt pavement
Standard recessed curb inlets (5' and 10' in length)
TR 55
10 minutes
10 -year - residential street & storm sewer
Corrugated HDPE w /smooth interior, RCP, Profile Gasket in
accordance with ASTM C443, ASTM C78, Class III
0.013
0.60 for developed lots
Max. water depth in curb = 4.0 in. or 0.33 ft. - Residential Streets
Max. water depth in curb = 4.5 in. or 0.375 ft. - Castle Rock Parkway
Min. flow velocity = 2.5 fps
Max. flow velocity = 15 fps
100 -yr storm runoff maintained within the ROW (4 inches above curb)
Design Software: Excel spreadsheets, DODSON HydraCalc Hydraulics
This software was used to compute pipe capacity, flowrate and velocity
through each pipe, and determine hydraulic grade line elevations at each
inlet or junction box. All of this information is shown in the summary
tables in Appendix E.
The College Station requirement for a 25% reduction in cross - sectional
area of pipes less than 27" diameter is achieved by using internal pipe
diameters that are less than the standard diameter. The 24" diameter pipe
areas were reduced by 25% and a 20.6" diameter pipe used in the
analysis and the 18' diameter pipe areas were reduced by 25% and a
15.6" diameter pipe was in the analysis.
The data presented in the Appendices indicates the gutter depth, inlet
sizing and pipe sizes are in accordance with the requirements of the
design guidelines.
Page 3 of 6
The design analysis using Manning's Equation of the proposedchannels
is as follows:
Channel 1 — Rock rip rap lined channel 8' BW, 2H:1V side slopes,
0.5% slope, n =.024
Q10 = 73.05 cfs depth of flow, d = 1.45', Velocity, V = 4.62 fps
Q100 = 100.57 cfs depth of flow, d = 1.73', Velocity, V = 5.07 fps
Existing Channel Downstream of Channel 1— Grass and Brush lined
natural Channel 6' BW, 3H:1V side slopes, 1.0% slope, n =.040
Q10 = 73.05 cfs depth of flow, d = 1.67', Velocity, V = 3.97 fps
Q100 = 100.57 cfs depth of flow, d = 1.96', Velocity, V = 4.32 fps
Velocity in rip rap lined channel does not exceed the allowable velocity
of 10 fps for rip rap and the velocity in the existing channel does not
exceed the maximum velocity of 4.5 fps for grass.
Channel 2 — Section 1 - Concrete lined channel 8' BW, 4H:1V side
slopes, 1.0% slope, n =.014
Q10 = 6.99 cfs depth of flow, d = 0.22', Velocity, V = 3.58 fps
Q100 = 9.43 cfs depth of flow, d = 0.27', Velocity, V = 3.85 fps
Channel 2 — Section 2 - Grass lined channel 8' BW, 4H:1V side slopes,
1.0% slope, n =.030
Q10 = 6.99 cfs depth of flow, d = 0.35', Velocity, V = 2.12 fps
Q100 = 9.43 cfs depth of flow, d = 0.41', Velocity, V = 2.39 fps
Velocity in concrete lined channel does not exceed the allowable velocity
of 15 fps for concrete and the velocity in the grass lined channel does not
exceed the maximum velocity of 4.5 fps for grass.
Existing Channel Downstream of Pipe 611 — Grass and Brush lined
natural Channel "V" Bottom, 2.5H:1 V side slopes, 1.0% slope, n =.040
Q10 = 54.21 cfs depth of flow, d = 2.35', Velocity, V = 3.93 fps
Q100 = 73.91 cfs depth of flow, d = 2.64', Velocity, V = 4.20 fps
Velocity in the existing channel does not exceed the maximum velocity
of 4.5 fps for grass.
The design parameters and evaluation of the box culvert structure are
provided in a subsequent section.
Page 4 of 6
Applicable Exhibits:
BOX CULVERT DESIGN — CASTLE ROCK PARKWAY
Structure
Exhibit A — Drainage Area Map
Appendix A — Technical Design Summary
Appendix B — Drainage Area Calculations
Appendix C — Depth of Flow in Gutter Summary
Appendix D — Inlet Design Summary
Appendix E - Pipe Design Summary
Appendix F - Channel Design Summary
Appendix G - Box Culvert Design — HEC -RAS Summary
The Castle Rock Parkway crossing of the tributary of Spring Creek,
referred to as Reach A2 Lower in the LOMR, requires a multiple section
box culvert. The proposed structure consists of 6 concrete box culverts
each with a 10' span and 5' rise. The design analysis of this structure
consisted of adding the structure into the existing HEC -RAS hydraulic
computer model and determining the headwater on the culvert structure
as well as any change in the water surface elevation of the stream for the
100 -year storm event. A LOMR for Spring Creek and its tributaries has
been submitted to FEMA. This LOMR was prepared by Walter P.
Moore and Associates. The hydrologic and hydraulic data and analysis
used for this project is the same as the LOMR with the addition of the
culvert structure and some field survey data cross sections near the
structure which were also added into the HEC -RAS model.
This section of stream was determined in the LOMR to have a 100 year
storm peak runoff of 638.8 cfs for the existing conditions and 676.4 cfs
for the ultimate development condition. These are the flows used in the
HEC -RAS model.
Stream A2 Lower HEC -RAS Analysis of Proposed Box Culvert
Max Water Surface Elevations
Stream Existing Existing Ultimate Ultimate
Sta. Condition Condition Condition Condition
w /Culvert w /Culvert
488 278.40 278.40 278.75 278.75
944 280.21 280.29 280.26 280.33
The box culvert structure increases the 100 year water surface elevation
approximately 0.08 feet in the stream channel for both the existing and
ultimate development conditions for the nearest upstream cross section
evaluated in the LOMR No change was determined for the nearest
downstream cross section.
The upstream flowline of the box structure is 273.68 and the top of the
street is approximately 282. The maximum water surface elevation at the
Page 5 of 6
DETENTION DESIGN
General:
CONCLUSION
CERTIFICATION
I, Joseph P. Schultz, Licensed Professional Engineer No. 65889, State of Texas, certify that this report for
the drainage design for Castle Rock Subdivision, Phase 6, was prepared by me in accordance with
the provisions of the Unified Stormwater Design Guidelines.
upstream end of the culvert for the 100 year storm is elevation 278.66.
The water surface is more than 1 foot below the street surface. The
outlet velocity for the box culvert structure is 2.15 fps for the 100 -year
storm event.
Stormwater runoff from Phase 6 and all previous and subsequent phases
of the Castle Rock Subdivision flow into Spring Creek upstream of the
regional detention facility constructed in 2001. This facility was
designed to control stormwater releases from the Castle Rock
Subdivision and other adjoining properties. No additional detention
facilities are provided with the development of this project.
Based on the concurrence with the previous design calculations from
Phases 1A, 2A, 2B, 3, 4 and 5, the drainage system in Phase 6 of the
Castle Rock Subdivision will function within the requirements and
restrictions of the College Station Drainage Policy and Design Standards.
Josep /' Sc ltz, P.E.
Page 6 of 6
n
EXHIBIT A
Drainage Area Map
APPENDIX A
Technical Design Summary
Part 2 - Project Administration
Start (Page 2.1)
Engineering and Design Professionals Information
Engineering Firm Name and Address:
SallAtt r (te2in9
f u • pvx \\has
Co \ e (t 1-Y 11'a 41
Jurisdiction
City: Bryan
✓ College Station
Date of Submittal:
/Vla rcki 20
Lead Engineer's Name and Contact Info.(phone e-mail, fax):
)oc,{ On 4 ScM t-tt , j ot5tvI ti1t-T s4 i lYi - tov..nt.1 -
Pkovtt u4 Fax:1t.ek 1a
Other:
Supporting Engineering / Consulting Firm(s):
Lo-v- - aiiP O0 prep 10 -1
1. p. ilf\o or e f f foe. F-+c .i
Other contacts:
Developer / Owner / Applicant Information
Developer / Applicant Name and Address:
br -G✓ts pga,ktit In > L1-
11-410 castm cast k i t , D'K 1 J t- , Col RI C 51 -tt11m TTC 1 /6
Phone and e-mail:
Lea b •'136
N a t i a u p 1, v 11; i 5 e,
ytr itn.Yu+
Property Owner(s) if not Developer / Applicant (& address):
S tt - vi 81,6 pCY1, to pti✓
Phone and e-mail:
Project Identification
Development Name: CGlS -Vit V.2o G)- S109d11 jS'\ coin pytat S-e. Le
Is subject property a site project, a single -phase subdivision, or part of a multi -phase subdivision?
r(4 - \-) Vlaca?. If multi - phase, subject property is phase 1 of q .
Legal description of subject property (phase) or Project Area:
(see Section II, Paragraph B -3a)
' J ACIS 0w\ - VOVe -i S1t,Ytvtso S0.)/4)", -54
1,011
If subject property (phase) is second or later phase of a project, describe general status of all
earlier phases. For most recent earlier phase Include submittal and review dates.
?VLw4c5 1 A - , W,, 1 c, 1 2A- , l- i3 4 ow c pttc,
V h w4,(h I S ,vots..12 cnn St-f-u.Lb o-rs-
General Location of Project Area, or subject property (phase):
11C , t \ i a m D • v-illAn Pa o k v , ) a,1i , N& o e o F Ca Si lie
In City Limits?
Bryan: acres.
Extraterritorial Jurisdiction (acreage):
Bryan: College Station:
Acreage Outside ETJ:
College Station: Sa' 'S" a' 1 acres.
SECTION IX
STORMWATER DESIGN GUIDELINES Page 3 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
APPENDIX D — TECHNICAL DESIGN SUMMARY
Effective February 2007
Part 2 — Proiect Administration
Continued (page 2.2)
Project Identification (continued)
Roadways abutting or within Project Area or
subject property:
v\i ,‘w cum h • F h Pk-WI
Cacpii- $, +pcy_ pWrv1
Abutting tracts, platted land, or built
developments:
Phu.4e s 4 a-s
Pha)es I A 4 ZS
Named Regulatory Watercourse(s) & Watershed(s):
P zr Law4-- - Az Lnw Tr: 6.,� -ti.7
Tributary Basin(s):
S p 0 , rk C u-lt-
Plat Information For Project or Subject Property (or Phase)
Preliminary Plat File #: 1 b" 00 0 0 le
Final Plat File #: — Date: —
Status and Vol /Pg: Sikh vyti Alm Vs 1114 10
Name: 6otetlt I Svn. Ol i 5; en"
If two plats, second name: File #:
Status: Date:
Zoning Information For Project or Subject Property (or Phase)
Zoning Type: ?OD xisting 'r Proposed? Case Code:
Case Date Status:
Zoning Type: Existing or Proposed? Case Code:
Case Date Status:
Stormwater Management Planning For Project or Subject Property (or Phase)
Planning Conference(s) & Date(s):
N /lI
Participants:
Preliminary Report Required? NIA Submittal Date Review Date
Review Comments Addressed? Yes pl f /� No In Writing? When?
Compliance With Preliminary Drainage Report. Briefly describe (or attach documentation
explaining) any deviation(s) from provisions of Preliminary Drainage Report, if any.
Nit
SECTION IX
STORMWATER DESIGN GUIDELINES Page 4 of 26 APPENDIX. 0: TECH. DESIGN SUMMARY
As Revised February 2009
APPENDIX D — TECHNICAL DESIGN SUMMARY
Effective February 2007
Part 2 — Project Administration
Continued (page 2.3)
Coordination For Project or Subject Property (or Phase)
Note: For any Coordination of stormwater matters indicated below, attach documentation
describing and substantiating any agreements, understandings, contracts, or approvals.
Coordination
With Other
Departments of
Jurisdiction
City (Bryan or
College Station)
Dept.
Contact:
Date:
Subject:
(�
//
Coordination With
Non jurisdiction
City Needed?
Yes No
Summarize need(s) & actions taken (include contacts & dates):
Coordination with
Brazos County
Needed? v Yes No
Summarize need(s) & actions taken (include contacts & dates):
Coordination with
TxDOT Needed?
Yes No ✓
Summarize need(s) & actions taken (include contacts & dates):
Coordination with
TAMUS Needed?
Yes No
Summarize need(s) & actions taken (include contacts & dates):
Permits For Project or Subject Property (or Phase)
As to stormwater management, are permits required for the proposed work from any of the entities
listed below? If so, summarize status of efforts toward that objective in spaces below.
Entity
Permitted or
a
Approved .
Status of Actions (include dates)
US Army Crops of
Engineers
No Yes ✓
`lpPV+
1
ND fuatta. kli ern - Pr? -ol ct Corr►pii?s v-,
F-L1 -am.; i N o - 1 - 10 1 4 -1 La
US Environmental
Protection Agency
No Yes
Texas Commission on
Environmental Quality
No Yes V
ufw.17-A j
R., . 4`
IS b oo0
M b T tizefott �; 1-LA b,) Cvn+�-.. e.
�ri fa_ Q 1n a SC lt i' -wf wne pvI a
Brazos River
Authority
No Yes
SECTION IX
STORMWATER DESIGN GUIDELINES Page 5 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
APPENDIX D — TECHNICAL DESIGN SUMMARY
Effective February 2007
Part 3 — Property Characteristics
Start (Page 3.1)
Nature and Scope of Proposed Work
Existing: Land proposed for development currently used, including extent of impervious cover?
g crest — v kcar'.'
Site
Development
Project
(select all
applicable)
Redevelopment of one platted lot, or two or more adjoining platted Tots.
Building on a single platted lot of undeveloped land.
Building on two or more platted adjoining lots of undeveloped land.
Building on a single lot, or adjoining Tots, where proposed plat will not form
a new street (but may include ROW dedication to existing streets).
Other (explain):
Subdivision
Development
Project
Construction of streets and utilities to serve one or more platted lots.
✓ Construction of streets and utilities to serve one or more proposed Tots on
lands represented by pending plats.
Describe
Nature and
Size of
Pro •o
Site projects: building use(s), approximate floor space, impervious cover ratio.
Subdivisions: number of lots by general type of use, linear feet of streets and
drainage easements or ROW.
3 1.0 1 1 6 1 n' no r -e�,
Project
Is any work planned on land that is not platted
If yes, explain: , — f C .s„Fje ick
t= ,iterir :r o
Oic,,,7 Ov,'Srt Ai)3Fc` - 7c -
or on land for which platting is not pending?
No t✓ Yes
FEMA Floodplains
Is any part of subject property abutting a Named Regulatory Watercourse
(Section II, Paragraph B1) or a tributary thereof?
No Yes tr
is any part of subject property in floodplain
area of a FEMA - regulated watercourse?
No Yes ✓ Rate Map 46o4l Go2o5p
Encroachment(s)
into Floodplain
areas planned?
No
Encroachment purpose(s): Building site(s) ✓ Road crossing(s)
Utility crossing(s) ✓ Other (explain):
FN,b1c `pY&in. 6
Yes
If floodplain areas not shown on Rate Maps, has work been done toward amending the FEMA-
approved Flood Study to define allowable encroachments in proposed areas? Explain.
N /l"
SECTION IX
STORMWATER DESIGN GUIDELINES Page 6 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
APPENDIX D — TECHNICAL DESIGN SUMMARY
Effective February 2007
Part 3 - Property Characteristics
Continued (Page 3.2)
Hydrologic Attributes of Subject Property (or Phase)
Has an earlier hydrologic analysis been done for larger area including subject property?
Yes,
Reference the study (& date) here, and attach copy if not already in City files.
r Dmm — L A erruts in {tr iY..OJ -2-00v
Ldrn (2 — Woktkuz, '9 - Ma o It/ a" kSSoLi At{S - 2pbo\
Is the stormwater
earlier study?
management plan for the property in substantial
Yes ✓ No If not, explain how
conformance with the
it differs.
No
If subject property
plan for the property
is not part of multi -phase project, describe
stormwater management
in Part 4.
If property is part of multi -phase project, provide overview of stormwater management plan
for Project Area here. In Part 4 describe how plan for subject property will comply
therewith.
NI ) A
Do existing topographic features on subject property store or detain
Describe them (include approximate size, volume, outfall, model, etc).
runoff? ✓ No Yes
Any known drainage or flooding problems in areas near subject property?
Identify:
✓ No Yes
Based
(see Table
on location of
B -1 in Appendix
Detention is required.
study property in a watershed, is Type 1 Detention (flood control) needed?
B) Al r -Gad1 pRavi
Need must be evaluated. V Detention not required.
If the need for
Type 1 Detention
must be evaluated:
What decision has been reached? By whom?
How was determination made?
SECTION IX
STORMWATER DESIGN GUIDELINES Page 7 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
APPENDIX D — TECHNICAL DESIGN SUMMARY
Effective February 2007
Part 3 — Property Characteristics
Continued (Page 3.3)
Hydrologic Attributes of Subject Property (or Phase) (continued)
Does subject property straddle a Watershed or Basin divide?
describe splits below. In Part 4 describe design concept
No Yes If yes,
for handling this.
Watershed or Basin
Larger acreage
Lesser acreage
Above - Project Areas(Section II, Paragraph B3 -a)
Does Project Area (project or phase) receive runoff from upland areas?
Size(s) of area(s) in acres: 1) 2) 3)
✓ No Yes
4)
Flow Characteristics (each instance) (overland sheet, shallow
concentrated, recognizable
Watercourse or tributary);
P VIPtC0 4, 5 4 26 AA
concentrated section(s), small creek (non - regulatory), regulatory
tX SO Y\9 S-i 4tv■►tl, 1 01St.emS - oi _
1, ►fi v\ vt.(.d fi1n Ito vlg I^ * i 6 vtiaCf- •
Flow determination: Outline hydrologic methods and assumptions:
vi ? 1 /1 - Ks1s 4 £1 - f ttb ; r,A-
0"i ev,A- , u 01,6 o'^ titc64 ; v, t) AV i 0
Does storm runoff drain from public easements or ROW
✓ No Yes If yes, describe facilities in easement
onto or across subject property?
or ROW:
Are changes in runoff characteristics subject to change in future? Explain
N °
Conveyance Pathways (Section II, Paragraph C2)
Must runoff from study property drain across lower properties before reaching a Regulatory
Watercourse or tributary? No ✓ Yes
Describe length and characteristics of each conveyance pathway(s). Include ownership of
property(ies). o (1 Di")
0 02,60.c. bwvw2AK se -k otpi or^-- /
CD 111-1. 6 0 4-A4-i
SECTION IX
STORMWATER DESIGN GUIDELINES Page 8 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
APPENDIX D — TECHNICAL DESIGN SUMMARY
Effective February 2007
c' -1 wi4 in,.
H,;s skbdivivo'
Part 3 — Property Characteristics
Continued (Page 3.4)
Hydrologic Attributes of Subject Property (or Phase) (continued)
Conveyance Pathways (continued)
Do drainage
easements
exist for
part of
pathway(s)?
No
any
If yes, for what part of length? 0 % Created by? a/ plat, or
instrument. If instrument(s), describe their
provisions.
✓ Yes
Pathway
Areas
Where runoff must cross lower properties, describe characteristics of abutting lower
property(ies). (Existing watercourses? Easement or Consent aquired ?)
Ci o w 11.6 0 P4A0 i 1 In t {L u rt o a fi�,�c ;+
e d,iktineS w i1 1
iv s fi D 'am
i
CPA- k- DR '!zi1�w +nRieS
Nearby
Drainage
Facilities
Describe any built or improved drainage facilities existing near the property (culverts,
bridges, lined channels, buried conduit, swales, detention ponds, etc).
exist; Si Stbv Zyy}.Gvr i rn p g.e v i o t4. S P tnA S-a
Do any of
design?
i b
these have hydrologic or hydraulic influence on
No ✓ Yes If yes, explain:
proposed stormwater
Zxk .0
v■.t SAD ?Ann cAw ty_ �'� i vt w i 1 i
SECTION IX
STORMWATER DESIGN GUIDELINES Page 9 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
APPENDIX D — TECHNICAL DESIGN SUMMARY
Effective February 2007
Part 4 — Drainage Concept and Design Parameters
Start (Page 4.1)
Stormwater Management Concept
Discharge(s) From Upland Area(s)
If runoff is to be received from upland areas, what design drainage features will be used to
accommodate it and insure it is not blocked by future development? Describe for each area,
flow section, or discharge point.
Si) YYU aF -. N .toAI =vm kAll trw.dy r 5 a l/21-441 1 ° fit" in 4
te, 51 t . . p P-q o va( Sio i2im 54' 1'Di
taco:} mitzt a-f' -jam iS c; Rk,51, te0 & Imo. p 4- "44 iS 1-t4;eA c al
1 utit Vint% 1. - \1 Skt.lrn CAWS - 11A1 -No) - - n.CCh t of lit +O5 2aw.
0k ?Vac( -k a— MA SC -
Discharge(s) To Lower Property(ies) (Section II, Paragraph El)
Does project include drains a features (existing or future) proposed to become public via
platting? ✓ No Yes Separate Instrument? No Yes
Per Guidelines reference above, how will
runoff be discharged to neighboring
property(ies)?
Establishing Easements
(Scenario 1)
Release (Scenario 2)
of the two Scenarios
Pre - development
Combination
Scenario 1: If easements are proposed, describe
where needed, and provide status of actions
( i 0 IN RS ? '�-
on each. (Attached Exhibit # ))
‘ i ( nk6 1104" YI,t',lcL -- C
Scenario 2: Provide general description of how
release(s) will be managed
etc.). (Attached
to pre - development
Exhibit # )
conditions (detention, sheet flow, partially concentrated,
Combination: If combination is proposed, explain
how discharge will differ from pre -
each area (or point) of release.
development conditions at the property line for
If Scenario 2, or Combination are to be used,
has proposed design
No Yes Explain
been coordinated with
and provide
owner(s) of receiving property(ies)?
documentation. .
SECTION IX
STORMWATER DESIGN GUIDELINES Page 10 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
APPENDIX D - TECHNICAL DESIGN SUMMARY
Effective February 2007
Part 4 — Drainage Concept and Design Parameters
Continued (Page 4.2)
Stormwater Management Concept (continued)
Within Project Area Of Multi -Phase Project
Will project result
in shifting runoff
between Basins or
between
Watersheds?
'� No
Identify gaining Basins or Watersheds and acres shifting:
What design and mitigation is used to compensate for increased runoff
from gaining basin or watershed?
Yes
How will runoff from Project
Area be mitigated to pre-
development conditions?
Select any or all of 1, 2,
and /or 3, and explain below.
1. With facility(ies) involving other development projects.
2. Establishing features to serve overall Project Area.
3. On phase (or site) project basis within Project Area.
1. Shared facility (type & location of facility; design drainage area served; relationship to size of
Project Area): (Attached Exhibit # )
V a t / : H e r r ' Paul i5 to c a F , o t ero Cif 6vJ1 - 0 - 1 " F rtti c 4" 01 ' PP at
Gip WVISt Ylayr~ * -t%iiS projtct AUAjacl.11.'t kt c {(-Le
2. For Overall Project Area (type & location of facilities): (Attached Exhibit # )
G( DWk1 TYbtd' LID IN/ t v i?0lvv . c - f ' M . t i n " ' " 1 ) 0 , - 4 (
3. By phase (or site) project: Describe planned mitigation measures for phases (or sites) in
subsequent questions of this Part.
Are aquatic echosystems proposed? ✓ No Yes In which phase(s) or
project(s)?
Are other Best Management Practices for reducing stormwater pollutants proposed?
No ✓ Yes Summarize type of BMP and extent of use:
S1 1t c - i u,. C714 5 1 kn Ex i I , Sea yl1
If design of any runoff - handling facilities deviate from provisions of B -CS Technical
Specifications, check type facility(ies) and explain in later questions.
Detention elements Conduit elements Channel features
Swales Ditches Inlets Valley gutters Outfalls
Culvert features Bridges Other
SECTION IX
STORMWATER DESIGN GUIDELINES
Effective February 2007
APPENDIX D — TECHNICAL DESIGN SUMMARY
Page 11 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
Part 4 — Drainage Concept and Design Parameters
Continued (Page 4.3)
Stormwater Management Concept (continued)
Within Project Area Of Multi -Phase Project (continued)
Will Project Area include bridge(s) or culvert(s)? No ✓ Yes Identify type and
general size and In which phase(s).
)D4 CA/Lt val — 4 — V It'XS ` ecce LF
If detention /retention serves (will serve) overall Project Area, describe how it relates to subject
phase or site project (physical location, conveyance pathway(s), construction sequence):
1141 Y IA,Vt D4 FY byvl AI/lt Ctt(I eo ck- p(,CVt.LopY L-4 is co ll-tc14
19q Sto tZvvn VAN 4i\i6 t t S 0 &A Ctrs CtAtAlr� a t;Kit. '�-Y l b i .j--v i C S
o . 'spYivti Cr-u. c a &D4 -11Am" ''-1' - Plovus -1-0 ctiA 2tAh m r1 -Foci l; tti
Within Or Serving Subject Property (Phase, or Site)
If property part of larger Project Area, is design in substantial conformance with earlier analysis
and report for larger area? ✓Yes No, then summarize the difference(s):
Identify whether each of the types of drainage features listed below are included, extent of use,
and general characteristics.
Typical shape?
Surfaces?
ditches use
Yes
Steepest side slopes:
Usual front s opes:
Usual back slopes:
Flow line slopes: least
Typica distance from travelway:
(Attached Exhibit # )
typical greatest
Are longitudinal culvert ends in compliance with B -CS Standard Specifications?
Yes No, then explain:
At intersections or otherwise, do valley gutters cross arterial or collector streets?
✓ No Yes If yes explain:
Are streets with cu
and gutter used;
No V
Are valley gutters proposed to cross any street away from an intersection?
V No Yes Explain: (number of locations ?)
SECTION IX
STORMWATER DESIGN GUIDELINES
Effective February 2007
APPENDIX D — TECHNICAL DESIGN SUMMARY
Page 12 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
Part 4 — Drainage Concept and Design Parameters
Continued (Page 4.4)
Stormwater Management Concept (continued)
Within Or Serving Subject Property (Phase, or Site) (continued)
Are streets with curb and gutter used?
(continued)
Gutter Tine slopes: Least 0. °)„ Usual ' 2./
Are inlets recessed on arterial and collector streets? Yes No If "no ",
identify where and why.
Will inlets capture 10 -year design stormflow to prevent flooding of intersections (arterial
with arterial or collector)? ,/ Yes No If no, explain where and why not.
Will inlet size and placement prevent exceeding allowable water spread for 10 -year
design storm throughout site (or phase)? J Yes No If no, explain.
set A p p vvd,i x G
Saq curves: Are inlets placed at low points? Yes No Are inlets and
conduit sized to prevent 100 -year stormflow from ponding at greater than 24 inches?
✓ Yes No Explain "no" answers.
S .Q,L AT pt i X t
Will 100 -yr stormflow be contained in combination of ROW and buried conduit on
whole length of all streets? ✓ Yes No If no, describe where and why.
Do designs for curb, gutter, and inlets comply with B -CS Technical Specifications?
✓ Yes No If not, describe difference(s) and attach justification.
Is storm drain system used?
No ✓ Yes
Are any 12 -inch laterals used? ✓ No Yes Identify length(s) and where
used.
Pipe runs between system
access points (feet):
Typical ,r0 ' Longest 1.'1 1
Are junction boxes used at each bend? ✓ Yes No If not, explain where
and why.
Are downstream soffits at or below upstream soffits?
Yes ✓ No If not, explain where and why:
Least amount that hydraulic
grade line is below gutter line
(system- wide):
o,81
SECTION IX
STORMWATER DESIGN GUIDELINES
Effective February 2007
APPENDIX D - TECHNICAL DESIGN SUMMARY
Page 13 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
Part 4 — Drainage Concept and Design Parameters
Continued (Page 4.5)
Stormwater Management Concept (continued)
Within Or Serving Subject Property (Phase, or Site) (continued)
Storm drain system (continued)
(on separate sheet provide same info. for more instances)
Outfall(s)
Describe watercourse(s), or system(s) receiving system discharge(s) below
(include design discharge velocity, and angle between converging flow lines).
1) Watercourse (or system), velocity, and angle?
ON( t into 4 Xi S him c h fi n ; vc n t t
><<< ->k-i oft CA&wv tfuL V to = ;.11.-4 , V = it .37. Fps Amitt =oo
2) Watercourse (or system), velocity, and angle?
C in YI.Lt 2. 0vrto - (XI`c, I,' b1,6) oiAzot.v.f
V lD z`..l Z.'�5 VIDD 22 i.fp5 m,Q,L .r O1
3) Watercourse (or system), velocity, and angle?
p t pt, L e t t adw a U o + "WA Mil) t X li nr7 CIAAAVAd
X(G li AP) CVlRMYUI, V 10 = 1 M ipS VIvo -At •7w�pN A4,{, 0°
For each outfall above, what measures are taken
receiving and all facilities at juncture?
1) E ck �t = ".�- - - - �..,
0tt 0 lAt,a w I .
2) Goa tII/ud Crki -Ifl; Li
3) �OC1— p 4 0 ladwate Dui
to prevent erosion or scour of
l; '0 cl utvl,Ad --
Are swales.used to drain streets?
i/ No Yes
Are swale(s) situated along property lines between properties? No Yes
Number of instances: For each instance answer the following questions.
Surface treatments (including low -flow flumes if any):
Flow line slopes (minimum and maximum):
Outfall characteristics for each (velocity, convergent angle, & end treatment).
Will 100 -year design storm runoff be contained within easement(s) or platted drainage
ROW in all instances? Yes No If "no" explain:
SECTION IX
STORMWATER DESIGN GUIDELINES
Effective February 2007
APPENDIX D — TECHNICAL DESIGN SUMMARY
Page 14 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
Part 4 — Drainage Concept and Design Parameters
Continued (Page 4.6)
Stormwater Management Concept (continued)
Within Or Serving Subject Property (Phase, or Site) (continued)
Roadside Ditches
Are roadside ditches used? ✓ No Yes If so, provide
the following:
? Yes No
Is 25 -year flow contained with 6 inches of freeboard throughout
Are top of banks separated from road shoulders 2 feet or more?
Are all ditch sections trapezoidal and at least 1.5 feet deep?
Yes No
Yes No
For any "no" answers provide location(s) and explain:
(on separate sheet provide same information for any additional instances)
If conduit is beneath a swale, provide the following information (each instance).
Instance 1 Describe general location,
approximate length:
Is 100 -year design flow contained in conduit/swale combination?
If "no" explain:
Yes No
Space for 100 -year storm flow? ROW Easement Width
Swale Surface type, minimum
Conduit Type and size, minimum
and maximum
and maximum slopes:
slopes, design storm:
Inlets Describe how conduit is loaded
(from streets /storm drains, inlets by type):
Access Describe how maintenance
access is provided (to swale, into conduit):
Instance 2 Describe general location,
approximate length:
Is 100 -year design flow contained in conduit/swale combination?
If "no" explain:
Yes No
Space for 100 -year storm flow? ROW Easement Width
Swale Surface type, minimum
Conduit Type and size, minimum
and maximum
and maximum slopes:
slopes, design storm:
Inlets Describe how conduit is loaded
(from streets /storm drains, inlets by type):
Access Describe how maintenance
access is provided (to swale, into conduit):
SECTION IX
STORMWATER DESIGN GUIDELINES
Effective February 2007
APPENDIX D — TECHNICAL DESIGN SUMMARY
Page 15 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
Part 4 - Drainage Concept and Design Parameters
Continued (Page 4.7)
Stormwater Management Concept (continued)
Within Or Serving Subject Property (Phase, or Site) (continued)
Will swales without buried conduit receive runoff from
public ROW or easements? ✓ No Yes. Explain
If "yes" provide the following information for each instance:
Instance 1 Describe general location, approximate length, surfacing:
Is 100 -year design flow contained in swale? Yes No Is swale wholly
within drainage ROW? Yes No Explain "no" answers:
Access Describe how maintenance access is provide:
Instance 2 Describe general location, approximate length, surfacing:
Is 100 -year design flow contained in swale? Yes No Is swale wholly
within drainage ROW? Yes No Explain "no" answers:
Access Describe how maintenance access is provided:
Instance 3, 4, etc. If swales are used in more than two instances, attach sheet
providing all above information for each instance.
Channel improvements proposed?
No ✓ Yes Explain
"New" channels: Will any area(s) of concentrated flow be channelized (deepened,
widened, or straightened) or otherwise altered? No Yes If only slightly
shaped, see "Swales" in this Part. If creating side banks, provide information below.
Will design replicate natural channel? Yes ✓ No If "no ", for each instance
describe section shape & area, flow line slope (min. & max.), surfaces, and 100 -year
design flow, and amount of freeboard:
Instance 1: CirkAn al l- - 6' 1011 wi4 -1A, 2:1 Sidt.51opt,5 tivad wig
Lci- iii? • 610 % a -s°j On = 100.'S` c-FS 1.•,1' - P./19ourii
Instance 2: C.i 2 - g` 19T w 01 4: i Sid.4. SIO J kiwi
1,0 ltd- s(opl - i -0 Qtoo = 1.43 cfs O.Sol' - bDGLot
Instance 3:
SECTION IX
STORMWATER DESIGN GUIDELINES
Effective February 2007
APPENDIX D — TECHNICAL DESIGN SUMMARY
Page 16 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
Part 4 — Drainage Concept and Design Parameters
Continued (Page 4.8)
Stormwater Management Concept (continued)
Within Or Serving Subject Property (Phase, or Site) (continued)
Channel Improvements (continued)
Existing channels (small creeks): Are these used? No V Yes
If "yes" provide the information below.
Will small creeks and their floodplains remain undisturbed? ✓ Yes No How
many disturbance instances? Identify each planned
location:
For each location, describe length and general type of proposed improvement
(including floodplain changes):
For each location, describe section shape & area, flow line slope (min. & max.),
surfaces, and 100 -year design flow.
Watercourses (and tributaries): Aside from fringe changes,
are Regulatory
Explain below.
Watercourses proposed to be altered? ✓ No Yes
Submit full report describing proposed changes to Regulatory
existing and proposed section size and shape, surfaces, alignment,
length affected, and capacity, and provide full documentation
and data. Is full report submitted? Yes No
Watercourses. Address
flow line changes,
of analysis procedures
If "no" explain:
All Proposed Channel Work: For all proposed channel work,
provide information
requested in next three boxes.
If design is to replicate natural channel, identify location and length here, and describe
design in Special Design section of this Part of Report.
Will 100 -year flow be contained with one foot of freeboard? Yes ✓ No If
not, identify location and explain:
1.40' aF crzetb0ai24 ih OARnIAA 1
Are,ROW / easements sized to contain channel and required
v Yes No If not, identify location(s) and explain:
maintenance space?
SECTION IX
STORMWATER DESIGN GUIDELINES
Effective February 2007
APPENDIX D - TECHNICAL DESIGN SUMMARY
Page 17 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
Part 4 — Drainage Concept and Design Parameters
Continued (Page 4.9)
Stormwater Management Concept (continued) r oU' - �
Cr
e-x� .A-i 1
Within Or Serving Subject Property (Phase, or Site) (continued) p ,�.�,{-i ' Pond
i
How many facilities for subject property project? For each provide info. below.
For each dry-type facilitiy:
Faci
ity 1
Faci
ity 2
Acres served & design volume + 10%
100 -yr volume: free flow & plugged
Design discharge (10 yr & 25 yr)
Spillway crest at 100 -yr WSE?
yes no
yes no
Berms 6 inches above plugged WSE?
yes no
yes no
Explain any "no" answers:
For each facility what is 25 -yr design Q, and design of outlet structure?
Facility 1:
Facility 2:
Do outlets and spillways discharge into
Facility 1: Yes No
a public facility
Facility 2:
in easement
Yes
or ROW?
No
If "no" explain:
For each, what is velocity of 25 -yr design discharge
Facility 1: & Facility
at outlet?
&
at spillway?
2:
&
Are energy dissipation measures used?
location:
No Yes
Describe type and
For each, is spillway surface treatment other than concrete? Yes or no, and describe:
Facility 1:
Facility 2:
For each, what measures are taken to prevent erosion or scour at receiving facility?
Facility 1:
Facility 2:
If berms are used give heights, slopes and surface treatments of sides.
Facility 1:
Facility 2:
SECTION IX
STORMWATER DESIGN GUIDELINES
Effective February 2007
APPENDIX D — TECHNICAL DESIGN SUMMARY
Page 18 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
Part 4 — Drainage Concept and Design Parameters
Continued (Page 4.10)
Stormwater Management Concept (continued)
Within Or Serving Subject Property (Phase, or Site) (continued)
Detention Facilities
(continued)
Do structures comply with B -CS Specifications? Yes or no, and explain if "no ":
Facility 1; ' I I n
Facility 2:
For additional facilities provide all same information on a separate sheet.
Are parking areas to be used for detention? No Yes What is
maximum depth due to required design storm?
Are culverts used at private crossings?
No Yes
Roadside Ditches: Will culverts serve access driveways at roadside ditches?
✓ No Yes If "yes ", provide information in next two boxes.
Will 25 -yr. flow pass without flowing over driveway in all cases? Yes No
Without causing flowing or standing water on public roadway? Yes No
Designs & materials comply with B -CS Technical Specifications? Yes No
Explain any "no" answers:
Are culverts parallel to public roadway alignment? Yes No Explain:
Creeks at Private Drives: Do private driveways, drives, or streets cross drainage
ways that serve Above - Project areas or are in public easements/ ROW?
No Yes If "yes" provide information below.
How many instances? Describe location and provide information below.
Location 1:
Location 2:
Location 3:
For each location enter value for:
1
2
3
Design year passing without toping travelway?
Water depth on travelway at 25 -year flow?
Water depth on travelway at 100 -year flow?
For more instances describe location and same information on separate sheet.
SECTION IX
STORMWATER DESIGN GUIDELINES
Effective February 2007
APPENDIX D - TECHNICAL DESIGN SUMMARY
Page 19 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
Part 4 — Drainage Concept and Design Parameters
Continued (Page 4.11)
Stormwater Management Concept (continued)
Within Or Serving Subject Property (Phase, or Site) (continued)
(for more instances of any type describe location and same information on separate sheet)
Named Regulatory Watercourses (& Tributaries):
Are culverts proposed on these
documenting assumptions,
that support proposed
If "no ", explain:
facilities? No ✓ Yes, then provide full report
criteria, analysis, computer programs, and study findings
design(s). Is report provided? ✓ Yes No
Arterial or Major Collector Streets: Will culverts
serve these
types of roadways?
For each identify the
V No Yes How many instances?
location and provide the information below.
Instance 1:
Instance 2:
Instance 3:
Yes or No for the 100 -year design flow:
1
2
3
Headwater WSE 1 foot below lowest curb top?
Spread of headwater within ROW or easement?
Is velocity limited per conditions (Table C -11)?
Explain any "no" answer(s):
Minor Collector or Local Streets: Will culverts serve
these types
� for
of streets?
each identify the
No V Yes How many instances?
location and provide the information below:
Instance 1: Cith1" v. c:o GI- Qcl,_kANGit. "hi e
Instance 2:
Instance 3:
For each instance enter value, or "yes" / "no" for:
1
2
3
Design yr. headwater WSE 1 ft. below curb top?
100 -yr. max. depth at street crown 2 feet or Tess?
Product of velocity (fps) & depth at crown (ft) _ ?
Is velocity limited per conditions (Table C -11)?
Limit of down stream analysis (feet)?
Explain any "no" answers:
SECTION IX
STORMWATER DESIGN GUIDELINES Page 20 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
APPENDIX D — TECHNICAL DESIGN SUMMARY
Effective February 2007
Part 4 — Drainage Concept and Design Parameters
Continued (Page 4.12)
Stormwater Management Concept (continued)
Within Or Serving Subject Property (Phase, or Site) (continued)
m
c
0
U
u)
t
�j
All Proposed Culverts: For all proposed culvert facilities (except
driveway /roadside
boxes.
ditch intersects) provide information requested in next eight
Do culverts and travelways intersect at 90 degrees? ✓ Yes No If not,
identify location(s) and intersect angle(s), and justify the design(s):
Does drainage way alignment change within or near limits of
approaches thereto? V No Yes If "yes" identify Iocation(s),
culvert and surfaced
describe
change(s), and justification:
Are flumes or conduit to discharge into culvert barrel(s)? No ✓ Yes If yes,
identify location(s) and provide justification: A
4" pi () e, P td, 0 h o(a; S C1nt lc i Yt,, '0 ' OK G,�.l. Vt-e -k c
Are flumes or conduit to discharge into or near surfaced approaches
✓ No Yes If "yes" identify Iocation(s), describe
to culvert ends?
outfall design treatment(s):
Is scour /erosion protection provided to ensure long term stability of culvert structural
components, and surfacing at culvert ends? ✓ Yes No If "no" Identify
locations and provide justification(s):
Will 100 -yr flow and spread of backwater be fully contained
drainage easements/ ROW? ✓ Yes No if not, why
in street ROW, and /or
not?
Do appreciable hydraulic effects of any culvert extend downstream
neighboring land(s) not encompassed in subject property?
"yes" describe Iocation(s) and mitigation measures:
or upstream to
✓ No Yes If
Are all culvert designs and materials in compliance with B -CS
✓ Yes No If not, explain in Special Design Section
Tech. Specifications?
of this Part.
SECTION IX
STORMWATER DESIGN GUIDELINES
Effective February 2007
APPENDIX D — TECHNICAL DESIGN SUMMARY
Page 21 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
Part 4 - Drainage Concept and Design Parameters
Continued (Page 4.13)
Stormwater Management Concept (continued)
Within Or Serving Subject Property (Phase, or Site) (continued)
(s)a6pps
Is a bridge included in plans
If "yes" provide the following
for subject property project? ✓ No Yes
information.
Name(s) and functional classification of the roadway(s)?
What drainage way(s) is to be crossed?
A full report supporting all aspects of the proposed bridge(s)
hydrologic, and hydraulic factors) must accompany this summary
provided? Yes No If "no" explain:
(structural, geotechnical,
report. Is the report
Water Quality
Is a Stormwater
Pollution Prevention
Plan (SW3P)
established for
project construction?
No " Yes
Provide a general description of planned techniques:
`1� RJAU J CP-A Si vc4 1'cr'n `+
1 w1.1) Pro + cf-i v-'-- , es Nlk' 1 iSu v iJ J
p,F l Yotg S
Special Designs — Non - Traditional Methods
Are any non - traditional methods
replic ion, BMPs for water quality,
No Yes If "yes" list
(aquatic echosystems, wetland -type detention, natural stream
etc.) proposed for any aspect of subject property project?
general type and location below.
Provide full report about the proposed
expected benefits. Report must
be compromised, and that maintenance
solution(s). Is report provided?
special design(s) including rationale
substantiate that stomiwater management
cost will not exceed those
Yes No If "no" explain:
for use and
objectives will not
of traditional design
SECTION IX
STORMWATER DESIGN GUIDELINES Page 22 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
APPENDIX D — TECHNICAL DESIGN SUMMARY
Effective February 2007
Part 4 - Drainage Concept and Design Parameters
Continued (Page 4.14)
Stormwater Management Concept (continued)
Within Or Serving Subject Property (Phase, or Site) (continued)
Special Designs – Deviation From B -CS Technical Specifications
If any design(s) or material(s) of traditional runoff - handling facilities deviate from provisions of
B -CS Technical Specifications, check type facility(ies) and explain by specific detail element.
Detention elements Drain system elements Channel features
Culvert features Swales Ditches Inlets Outfalls
Valley gutters Bridges (explain in bridge report)
In table below briefly identify specific element, justification for deviation(s).
Specific Detail Element
Justification for Deviation (attach additional sheets if needed)
1)
2)
3)
4)
5)
Have elements been coordinated with the City Engineer or her /his designee? For each item
above provide "yes" or "no ", action date, and staff name:
1)
2)
3)
4)
5)
Design Parameters
Hydrology
Is a map(s) showing all Design Drainage Areas provided? ✓ Yes No
Briefly summarize the range of applications made of the Rational Formula:
.uY%. o,F-F bt-4— / wl vl 60 o 12_ { -ye- dip 1 cUtck , t IA PIS
AMA. � f 40N 12 i e At< i .
What is the size and location of largest
has been applied? 1.2 acres
Design Drainage Area to which the Rational Formula
Location (or identifier): Pk 10 (
SECTION IX
STORMWATER DESIGN GUIDELINES Page 23 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
APPENDIX D — TECHNICAL DESIGN SUMMARY
Effective February 2007
GU>rwA,\a iL Acv► - Pi 4b Li .At-
Part 4 — Drainage Concept and Design Parameters
Continued (Page 4.15)
Design Parameters (continued)
Hydrology (continued)
In making determinations for time of concentration, was segment analysis used?
No ✓ Yes In approximately what percent of Design Drainage Areas? %
As to intensity- duration - frequency and rain depth criteria for
criteria other than those provided in these Guidelines used?
identify type of data, source(s), and where applied:
determining
✓
No
runoff flows,
Yes
were any
If "yes"
For each of the stormwater management features listed below identify the storm return
frequencies (year) analyzed (or checked), and that used as the basis for design.
Feature
Analysis Year(s)
Design Year
Storm drain system for arterial and collector streets
ICJ /Pr
NIA-
Storm drain system for local streets
10 J
i p
Open channels
0 i o
' 0 0
Swale/buried conduit combination in lieu of channel
AI /A
OM
Swales
NI 1k
N/ A-
Roadside ditches and culverts serving them
t•Jik
OM-
Detention facilities: spillway crest and its outfall
0/14-
NM
Detention facilities: outlet and conveyance structure(s)
Ni k
Mitt
Detention facilities: volume when outlet plugged
SPA.
NM
Culverts serving private drives or streets
1\i/A'
Nip
Culverts serving public roadways
V0
i 00
Bridges: provide in bridge report.
NM
kg
Hydraulics
What is the range of design flow velocities as outlined below?
Design flow velocities;
Gutters
Conduit
Culverts
Swales
Channels
Highest (feet per second)
) 21
S .o 1
'•'c
N/A
4. ie2
Lowest (feet per second)
I •e(t
I— Le&
t i_. )'
w f A-
1-'17,
Streets and Storm Drain Systems Provide the summary information outlined below:
Roughness coefficients used: For street gutters:
For conduit type(s) 1 DP€ KG
t)• DI 6
0,121 ti 0 . 013
1 Coefficients:
SECTION IX
STORMWATER DESIGN GUIDELINES Page 24 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
APPENDIX D — TECHNICAL DESIGN SUMMARY
Effective February 2007
As Revised February 2009
Part 4 — Drainage Concept and Design Parameters
Continued (Page 4.16)
Design Parameters (continued)
Hydraulics (continued)
O \V
Street and Storm Drain Systems (continued)
For the following, are assumptions other than allowable per Guidelines?
Inlet coefficients? ✓ No Yes Head and friction losses No Yes
Explain any "yes" answer:
In conduit is velocity generally increased in the downstream direction?
Are elevation drops provided at inlets, manholes, and junction boxes?
Explain any "no" answers:
i/ Yes
No
✓ Yes
No
Are hydraulic grade lines calculated and shown for design storm? ✓ Yes No
For 100 -year flow conditions? ✓ Yes No Explain any
"no" answers:
What tailwater conditions were assumed at outfall point(s) of the storm drain system?
each location and explain:
_ �q3 �
' U,i1 w @ L i Siw �_ rrti
Identify
Open Channels If a HEC analysis is utilized, does it follow Sec VI.F.5.a?
Yes
No
Outside of straight sections, is flow regime within limits of sub - critical
If "no" list locations and explain:
NIA
flow? Yes
No
Culverts If plan sheets do not provide the following for each culvert, describe it here.
For each design discharge, will operation be outlet (barrel) control or inlet control?
.& x Ci .V Q eiCklurt( ttCt.r. ►1,(ti4' Cteh- -
Entrance, friction and exit losses:
Bridges Provide all in bridge report
SECTION IX
STORMWATER DESIGN GUIDELINES Page 25 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
APPENDIX D — TECHNICAL DESIGN SUMMARY
Effective February 2007
Part 4 — Drainage Concept and Design Parameters
Continued (Page 4.17)
Design Parameters (continued)
Computer Software
What computer software has been used in the analysis and assessment of stormwater
management needs and /or the development of facility designs proposed for subject property
project? List them below, being sure to identify the software name and version, the date of the
version, any applicable patches and the publisher
cpPeAdSlud
pd Arr. 1.1 dretC c- So- t-t- hvcir -e.
c N t ) l id.v.o -F9mv p'P S
Part 5 — Plans and Specifications
Requirements for submittal of construction drawings and specifications do not differ due to use of a
Technical Design Summary Report. See Section III, Paragraph C3.
Part 6 — Conclusions and Attestation
Conclusions
Add any concluding information here:
Ve C W, WeS J 1' ? V-011 1)14
GI.LSi r‘,s $Ci D.es ovx GuudtlioA
Attestation
Provide attestation to the accuracy and completeness of the foregoing 6 Parts of this Technical
Design Summary Drainage Report by signing and sealing below.
This report (plan) for the drainage
by me (or under my supervision)
Unified Drainage Design Guidelines
required by any and all state
improvements have bee ssued
111 ,IV ��
design of the development named in
in accordance with provisions of the
for the owners of the property. All
and federal regulatory agencies, for the
or fall under applicable general permits.
. (Affix Seal) �40.c,P.
*
Part B was prepared
Bryan/College Station
licenses and permits
proposed drainage
i " fro .
s1, 'I �t � i
« , i ,
SC
** pa s
, ;: = ' ;���
/j ;a _ T ��.°,.° 4/ 'I
9t
n... , . . mw..... . ....
License Professional Engineer , ,����
i geaaN***
bC SYr 0 '1 ' ' s
State of Texas PE No. � �,t .
SECTION IX
STORMWATER DESIGN GUIDELINES
Effective February 2007
APPENDIX D - TECHNICAL DESIGN SUMMARY
3 -.70-n 4,1 1 2727
Page 26 of 26 APPENDIX. D: TECH. DESIGN SUMMARY
As Revised February 2009
APPENDIX B
Drainage Area Calculations
Area #
Area, A
(acres)
C
(min)
10 year storm
100 year storm
1 10
(in /hr)
Q10
(cfs)
1 100
(in /hr)
Q1oo
(cfs)
501A
0.590
0.60
10.0
8.635
3.06
11.639
4.12
501B
0.320
0.60
10.0
8.635
1.66
11.639
2.23
502
0.960
0.60
26.0
5.367
3.09
7.316
4.21
502A
0.520
0.60
10.0
8.635
2.69
11.639
3.63
503
0.350
0.60
10.0
8.635
1.81
11.639
2.44
503A
0.340
0.60
10.0
8.635
1.76
11.639
2.37
504
0.520
0.60
11.5
8.136
2.54
10.979
3.43
505
0.160
0.60
10.0
8.635
0.83
11.639
1.12
505A
0.140
0.60
10.0
8.635
0.73
11.639
0.98
506
0.410
0.60
10.0
8.635
2.12
11.639
2.86
507
1.100
0.60
27.8
5.163
3.41
7.046
4.65
508
1.760
0.60
33.3
4.636
4.90
6.348
6.70
509
0.240
0.60
10.0
8.635
1.24
11.639
1.68
510
0.800
0.60
10.0
8.635
4.14
11.639
5.59
511
0.100
0.60
10.0
8.635
0.52
11.639
0.70
601
0.050
0.60
10.0
8.635
0.26
11.639
0.35
602
0.610
0.60
10.0
8.635
3.16
11.639
4.26
602B
0.330
0.60
10.0
8.635
1.71
11.639
2.30
603
0.610
0.60
10.0
8.635
3.16
11.639
4.26
604
0.740
0.60
10.0
8.635
3.83
11.639
5.17
605
0.860
0.60
10.0
8.635
4.46
11.639
6.01
606
1.670
0.60
29.2
5.016
5.03
6.851
6.87
607
0.680
0.60
10.0
8.635
3.52
11.639
4.75
608
0.300
0.60
10.0
8.635
1.55
11.639
2.10
609
1.290
0.60
23.4
5.698
4.41
7.754
6.00
610
0.290
0.60
10.0
8.635
1.50
11.639
2.03
611
0.150
0.60
10.0
8.635
0.78
11.639
1.05
612
0.140
0.60
10.0
8.635
0.73
11.639
0.98
613
1.790
0.60
22.2
5.867
6.30
7.977
8.57
701
2.290
0.60
10.0
8.635
11.86
11.639
15.99
702
0.930
0.60
10.0
8.635
4.82
11.639
6.49
703
0.990
0.60
10.0
8.635
5.13
11.639
6.91
704
0.520
0.60
10.0
8.635
2.69
11.639
3.63
801
1.880
0.60
10.0
8.635
9.74
11.639
13.13
802A
0.310
0.60
23.1
5.739
1.07
7.808
1.45
802B
1.570
0.60
23.1
5.739
5.41
7.808
7.36
803
1.860
0.60
10.0
8.635
9.64
11.639
12.99
Castle Rock Subdivision - Phase 6
Drainage Area Summary
The Rational Method:
Q = CIA
Q = Flow (cfs)
A = Area (acres)
C = Runoff Coeff.
I = Rainfall Intensity (in /hr)
Brazos County:
I= b /(t +d)
t = Time of concentration (min)
10 year storm
b = 80
d = 8.5
e = 0.763
100 year storm
b = 96
d = 8.0
e = 0.730
t = L /(V *60)
L = Length (ft
V = Velocity (ft/sec)
APPENDIX C
Depth of Flow in Gutter Calculations
100 -year storm
Freeboard I
ft.
1 49'0
I 99'0
49
1 9E0
o
I 6t0
££'0
I Z4'0
N
O
I 6£0
■
'A
MOM
282.00 I
00'Z8Z
00'Z9z
280.38
0
N
�
69'9LZ
69'9LZ
69'9LZ
0 0
N
■
1
277.82
277.82
Gutter
Runoff, El.
I 9E'L9Z
I 69'1.9Z
Z4'•9Z
9E' L 9
280.03
4 6LZ
04'9LZ
9E'9LZ
LZ'9LZ
O
0
277.46
277.43
7d
Ja11nO
LL'L9Z
281.17 I
281.17 I
281.17
279.72
ZL'6LZ
£0'9LZ
EO'9LZ
E0'9LZ
276.03
9L 'LLZ
9L 'LLZ
1 4°'
jo cloy
1 281.67 I
IL9'19Z I
1L919Z
L9' L9Z
1 280.05
90
1 276.36
276.36
9E 9LZ
9£'9LZ
277.49
277.49
c
0
8
O
J
N B 7
.> I . o
• V
7 C Q
Y • O r
o li x
CD 0 0
o
• Cfi 07)
R
.0 0 N
• ao
8 a
O
C
0
e p
Q ia
`P E
ff O
• —
U
0
O • 0
J
N
W
O
O
O)
N
r
O
N
0
O
co
0
co
0
O
0
O
O
VI
0
O
t0
33 .
CO
CO
0
O
N
0
0
m
0
0
N
N
0
0
0
0)
O
co
O)
f0
O
fV
0
0
0
0
0
O
0
d
O
)0
n
O
O
N
0
O
N
N
0
N
co
0
0
o
O
co
0
O
0
0
CO
0)
0
O
CO
N
O
N
0
0)
CO
0
0
0
co
o
0
0
CO
O
0
0f
N
N
0
0
l
0
0)
O
0
CD
0
O
O
0
0
0
O
M
0
m
0
co
M
CO
N
0
O
n
O)
(00
N
N
0
N
co
0
0
O
0
co
m
O
(00
0)
W
of
O
m
0)
0
O
0)
0
co
O
ID
CO
CO
N
0
<V
0
O
N
0-
(‚4
0
0
0
O
0
0
(00
co
N
n
O
0
n
N
0)
N
0)
0
co
0
0
0 0
CO
O
to
0
O
m
0
co
0
O
0)
n
N
0,
0)
n
of
0)
oo
0
co
0
0
8
0
0
0
0
(00
O
of
N
O
0
01
N
of
CO
N
0
N
0
0
0I
M
co
0
0
0
0
co
0
O
0
m
ID
m
1—
N
•
•
CNI
0 0)
ht Crown Flow
depth of flow In
100 storm
ed to find actu
10-year storm
APPENDIX D
Storm Sewer Inlet Design Summary
Castle Rock Subdivision - Phase 6
Storm Sewer Inlets in Sump - Design Analysis
Inlet Length Q10 D10 D10 Q100 D100 D100
No. ft. cfs ft. in. cfs ft. in.
601* 10 6.29 0.378 4.54 9.20 0.488 5.85
602 5 2.23 0.301 3.61 3.00 0.367 4.41
605 10 4.87 0.319 3.83 6.56 0.390 4.67
606 10 8.55 0.465 5.57 11.61 0.570 6.84
607 10 6.01 0.367 4.41 8.10 0.448 5.38
* Includes bypass flow from upstream inlets on grade
Assume 10% clogging for design
APPENDIX E
Storm Sewer Pipe Design Summary
I 01.141 Well
I (u!w)
IEEO
I 4Z0
I 900
I (aas)
IOZI
191 I
al
(sd3)
A
00'9
04'9
OZ'9
O _
O N
99'01
L'OL
06'£L
(n
0011
E8E'
0EE'
Z6Z'L
(u!w)
of
89'9Z
L6'9Z
91'9Z
U
090
090 l
09'0
Contributing Pipes
P508, P507, P506, P505, P503,
P504, P2 -6, P2 -7, P2 -8
P609, P508, P507, P506, P505,
P503, P504, P2-6, P2 -7, P2 -8
P610, P609, P508, P507, P506,
P505, P503, P504, P2 -6, P2 -7, P2
8
Contributing
Area
(Acres)
I 096'91
096'91
069'91
Contributing
Drainage Areas
501, 601, 507, 506, 505A,
503A, Future Phases, 505,
504, 503, 502A, 502
501, 601, 507, 506, 505A,
503A, Future Phases, 505,
504, 503, 502A, 502
602, 501, 601, 507, 506,
505A, 503A, Future Phases,
505, 504, 503, 502A, 502
m
0
fN
I 09'0
1 09'0
09'0
.
O) E.
d
J
10Z'66
I OL'9L
00'91
a N c
F. in ".
I Zb
I Z4
Z4
0 o
E
I 609
I 019
149
I GUI!! IaneJU
I (u!w)
I EE '0
4Z 0
90'0
I (aas)
I oz
IS11
co
V
(fps)
009
I 04'9
OZ '9
(n3)
01D
I 48 'LS
1 94'19 I
LZ'49
( J4N!)
011
I LL4'9
1 9LE'9
64E'9
(u!w)
of
89'9Z
L6'SZ
91.'9Z
090
090
09'0
Contributing Pipes
P508, P507, P506, P505, P503,
P504, P2 -6, P2 -7, P2 -8
P609, P508, P507, P506, P505,
P503, P504, P2 -6, P2 -7, P2 -8
P610, P609, P508, P507, P506,
P505, P503, P504, P2 -6, P2 -7, P2
8
Contributing
Area
(Acres)
15.950
I 096'91
06891
Contributing
Drainage Areas
501B, 501A, 601, 507, 506,
505A, 503A, Future Phases,
505, 504, 503, 502A, 502
5018, 501A, 601, 507, 506,
505A, 503A, Future Phases,
505, 504, 503, 502A, 502
602, 501B, 501A, 601, 507,
506, 505A, 503A, Future
Phases, 505, 504, 503, 502A,
502
0
O
co
090I
09'0
09'0
0
1
J
OZ'66 I
0C9L
00'91
SA c
Z4
Zb
Z4
aZ
E
609
019
149 I
E
L
O
a-.
u)
L
O
O
C �
G
E
cc nz
d N
R a
a EE
� L
0
Cl) o
E
V L
w
U co
Storm Sewer Pipe Summary (10-yr Storm)
Castle Rock-Phase 6
The Rational Method:
Brazos County:
100 year storm
10 year storm
{
0
0
)
0
we 0.
(f¢
o ,c
S UM
!
u
|
!¥
1
1
!�
§
|
k
2
|
z
)g
ƒi
are"
ƒ|1
!)
8.
2
■
{
8.
nla
(0
0 .
!&
1
|
|
§l
!I
\
z
§ !
® !
tl
ƒ
}k
o. \
!a
com
tt
g!
GG
Jƒ
NN
MM
[§t
. 1 §.
00•
kkkk
o ois
nlf
(4 |kk
;§ ;!k
{
O 000\
_kL
50 50
` igiI
\ ki\/
) \ \jj\
Travel Time I
I (ulw)
1 1.90 I
I 800
1 E4'0 1
I 90'0
(sec) 1
I 64 1
to
1 9Z 1
o
(sd ;)
A
1 mg 1
I 099 I
096 1
90'8
(s ►o)
001
I E4-OZ 1
1 64'E£ 1
1 £9'19 1
I LS 001.
U 4/ ul )
0
I eo£9 I
1 61Z'9 1
I 966 9 I
ZW9
(ulw)
01
1 99'££
L4'4£
1 S6'Z4 1
8£'£4
U
640
090
1 090 1
09'0
Contributing Pipes
Existing 30" 1
I _- „OE 6u4s1x3 'Z14d _
„0£ 604slx3
P401, P402, P403, P404, P501,
P502, P405
P401, P402, P403, P404, P501,
P502, P405
!Existing 30 ", Existing 42 ", p612
Contributing
Area
(Acres)
Contributing
Area
(Acres)
1 01.9'9
1 019'9
1 096'8
1 096'8
069'OZ
1 09L'0Z
1 0L6'0£
30.970
Contributing
Drainage Areas
Contributing
Drainage Areas
1 Previous Phases 1
I Previous Phases 1
Previous Phases, 603 1
1 Previous Phases, 606,607 1
411A, 411B, 413, 414A, 414B,
508, 509, 510, 511
411A,4118,412,413,414A,1
414B, 415
Previous Phases, 605, 606,
607, 608
0 Z.L
at
0 0
N
10£01
10£01
04'0
04'0
08'0
09'0
04'0
04'0
L
L
C1 E
0
J
268.00 I
00 1
248.76 1
00'04
01 .ti_'
w
J
O. N C
O. in
0'892 I
0£ 1
)0'1.£ I
9£
248.7
1 „Z4 1
)0'04 1
94
S. N C
m .
o. Z
E
1
Z14
1 91
1 Z1.9 I
1 904 I
£19
Y. co
Travel Time
I (uiw)
1 980 I
I900I
£4 0 I
I 900 I
1 (sec) 1
1 £9 1
to
1 9Z 1
o
(sd ;)
A
1 O1. S I
1 91.9 I
09'6 1
Z0.9 1
Q10
(cfs)
1 Z6'41 1
I L£'4Z I
1 4Z'64 1
I 90'£1 I
110
(in /hr)
I 909'4
1 4£9
I 996
11£6'£
(al ai)
01
1 99'£E I
49
9674
8£'£4
64'0
090
09'0
_9'0 - I
Contributing Pipes
Existing 30"
I _- „OE 6u4s1x3 'Z14d _
P401, P402, P403, P404, P501,
P502, P405
1 Existing 30 ", Existing 42 ", P612 1
Contributing
Area
(Acres)
1 01.9'9
1 096'8
069'OZ
1 0L6'0£
Contributing
Drainage Areas
1 Previous Phases 1
Previous Phases, 603 1
411A, 411B, 413, 414A, 414B,
508, 509, 510, 511
I Previous Phases, 603, 604 1
0 Z.L
10£01
04'0
08'0
04'0
L
01 .ti_'
w
J
0'892 I
)0'1.£ I
248.7
)0'04 1
S. N C
1
1 91
Y. co
m .
o. Z
1 Zl4 1
Z1.9 I
1 904
1 £1.9 1
0
CI
10
0 '0 n
co 00 0
11 11 11
.0 C 0
Storm Sewer Pipe Summary (100-yr Storm)
Storm Sewer Pipe Summary (10-yr Storm)
Castle Rock-Phase 6
Castle Rock-Phase 6
The Rational Method:
Brazos County:
100 year storrn
10 year storm
gg
ss
st
tt
vm
E E
ee
NN
tt
gUa
; §e
00
#f!$
.9
)kt {
385 -
E - 2!k
{ }�}
\\ /�
22 %
$kk §|
2 !!;\
\k /\
§})0U}
) 0m |k
!)
!a
gg
ss
st
tt
vm
E E
ee
NN
tt
gUa
; §e
00
#f!$
.9
)kt {
385 -
E - 2!k
{ }�}
\\ /�
22 %
$kk §|
2 !!;\
\k /\
§})0U}
) 0m |k
!a
gg
ss
st
tt
vm
E E
ee
NN
tt
gUa
; §e
00
#f!$
.9
)kt {
385 -
E - 2!k
{ }�}
\\ /�
22 %
$kk §|
2 !!;\
\k /\
§})0U}
) 0m |k
Travel Time
(u!w)
I 0£'0
I 980
I Ol0
I Ol0
I (oes)
I 91 ' I
I
0
0
v
(fps)
oZL 1
I L6 E I
I 469 I
69'9 I
(slo)
OLD
I 009 I
I SZ9 I
1 ZL'll 1
9L'EL I
U4/u!)
OLI
I L98'S
1 cars
1 £OL
689'9
(uiw)
of
OZ'ZZ
09'ZZ
9£'£Z
94'£Z
0
09'0
090
090
090
Contributing Pipes
1
Existing 24"
Existing 24 ", P601
Existing 24 ", P601, P602
i Contributing
Area
(Acres)
I 06LL
I 06L l
I 9Z4'£
998'£
Contributing
Drainage Areas
Previous Phases
Previous Phases
1 Previous Phases, 609, 611
Previous Phases, 609, 611,
610, 612
0
a .. o it
OS' l
I OCT
I 09'0
09'0
N
1 00'001
108' 10Z I
0 0
N
•
0 0
N
rn
LE
109' 1
100'
00'9£ I
0
m
cv
o
((0
(
J
d N C
F. in
.-
N
N
N
G
m
O
o
0
_ .
d z
N
(0
(0
(0
Travel Time I
I (u n
I SZO
I 080
1 ll0
1 Ol0
I (oes)
I L
1
n
o
(nil)
A
ZL'
£Z4
1 lE9 1
£l'9
0
o 0
LS'8
1
1.9 '9 1
L0'SL
£0'LL
o t
O
LL6'L
4Z61
9LL'L
9SL'L
V c
1.' E
OZ'ZZ
1 84'ZZ 1
SZ'£Z
6£'£Z
0
09'0
1
09'0
09'0
09'0
Contributing Pipes
1
Existing 24"
Existing 24 ", P601
Existing 24 ", P601, P602
Contributing
Area
(Acres)
06LL
I 06LL
0£Z'E
099'£ I
Contributing
Drainage Areas
Previous Phases
Previous Phases
Previous Phases, 609, 611
Previous Phases, 609, 611,
610, 612
0
a o
o
co
I 091
I OEOI
09'0
09'0
r
en
c =
w
1 00'001
108' 10Z I
0 0
N
•
0 0
N
S. N C
0. CO ".-
co
c'
N
N
d Co
m
cv
o
((0
(
E
L
0
a+
N
L
O
O
c6
G
E
CO
y N
co O.
as
� 3
o y
• Cl)
y E
N
U V)
0
rl
0
• 0 t-
op (0 0
11 11 II
.0 v d
Storm Sewer Pipe Summary (10-yr Storm)
Castle Rock-Phase 6
The Rational Method:
Brazos County:
100 year storm
10 year storm
§m
d 8lJf
{
k
/ k
«§
$E
k
20
0 CL
§ ca
0 a.
o 3�
. Ea
v 0
0 /
OM
aa
SS
EE
NN
00
E
k
\k
«
«
22
GM
#
■
co §�
.
§ 0 )
W3■
« @a
02
EE
LO LO
04 N
RIM
)
]
SI
�)
§m
d 8lJf
{
k
/ k
«§
$E
k
20
0 CL
§ ca
0 a.
o 3�
. Ea
v 0
0 /
OM
aa
SS
EE
NN
00
E
k
\k
«
«
22
GM
#
■
co §�
.
§ 0 )
W3■
« @a
02
EE
LO LO
04 N
RIM
)
]
�)
k
§m
d 8lJf
{
k
/ k
«§
$E
k
20
0 CL
§ ca
0 a.
o 3�
. Ea
v 0
0 /
OM
aa
SS
EE
NN
00
E
k
\k
«
«
22
GM
#
■
co §�
.
§ 0 )
W3■
« @a
02
EE
LO LO
04 N
RIM
]
§m
d 8lJf
{
k
/ k
«§
$E
k
20
0 CL
§ ca
0 a.
o 3�
. Ea
v 0
0 /
OM
aa
SS
EE
NN
00
E
k
\k
«
«
22
GM
#
■
co §�
.
§ 0 )
W3■
« @a
02
EE
LO LO
04 N
RIM
{
k
/ k
«§
$E
k
20
0 CL
§ ca
0 a.
o 3�
. Ea
v 0
0 /
OM
aa
SS
EE
NN
00
E
k
\k
«
«
22
GM
#
■
co §�
.
§ 0 )
W3■
« @a
02
EE
LO LO
04 N
RIM
APPENDIX F
Drainage Channel Design Summary
Channel
No
Length
(ft)
Slope
,
(/o)
Contributing
Drainage Areas
Contributing
Area
(Acres)
Contributing Pipes
C
Tc
(min)
110
(in /hr)
Q10
(cfs)
Existing
91.50
0.50
602, 501B, 501A, 601, 507, 506,
505A, 503A, Future Phases, 505,
504, 503, 502A, 502
16.890
Pipe 611
0.60
26.15
5.349
54.21
Channel
No
Length
(ft)
Slope
( %)
Contributing
Drainage Areas
Contributing
Area
(Acres)
Contributing Pipes
C
Tc
(min)
110
(in /hr)
Q10
(cfs)
Existing
91.50
0.50
602, 501B, 501A, 601, 507, 506,
505A, 503A, Future Phases, 505,
504, 503, 502A, 502
16.890
Pipe 611
0.60
26.15
7.293
73.91
Channel
No
Length
(ft)
Slope
( %)
Contributing
Drainage Areas
Contributing
Area
(Acres)
Contributing Pipes
C
Tc
(min)
110
(in /hr)
Q10
(cfs)
1
91.50
0.50
Previous Phases, 605, 606, 607,
608
30.970
Pipe 613
0.60
43.38
5.412
100.57
Channel
No
Length
(ft)
Slope
( %)
Contributing
Drainage Areas
Contributing
Area
(Acres)
Contributing Pipes
C
Tc
(min)
110
(in /hr)
010
(cfs)
1
91.50
0.50
Previous Phases, 605, 606, 607,
608
30.970
Pipe 613
0.60
43.38
3.931
73.05
Channel
No
Length
(ft)
Slope
( %)
Contributing
Drainage Areas
Contributing
Area
(Acres)
Contributing Pipes
C
Tc
(min)
110
(in /hr)
Q10
(cfs)
2
111.71
1.00
603 & 604
1.350
0.60
10.00
11.639
9.43
Channel
No
Length
(ft)
Slope
( %)
Contributing
Drainage Areas
Contributing
Area
(Acres)
Contributing Pipes
C
Tc
(min)
110
(in /hr)
010
(cfs)
2
111.71
1.00
603 & 604
1.350
0.60
10.00
8.635
6.99
Castle Rock -Phase 6
Storm Sewer Channel Summary (10 -yr Storm)
Castle Rock -Phase 6
Storm Sewer Channel Summary (100 -yr Storm)
The Rational Method:
0 = CIA
Q = Flow (cfs) t = Time of concentration (min)
A = Area (acres)
C = Runoff Coeff.
I = Rainfall Intensity (in /hr)
Brazos County:
1= b / (t +d)'
10 vearstorm
b = 80
d = 8.5
e = 0.763
100 year storm
b = 96
d = 8.0
e = 0.730
t = U(V
L = Length (ft
V = Velocity (ft/sec)
APPENDIX G
Castle Rock Parkway Extension
Box Culvert Design Summary — HEC -RAS Analysis
EXISTING CONDITIONS Qs W/O CASTLE ROCK PKWY BOX CULVERTS
5
c.
ccr
a
- e•
2 :4-
la)
•.> •
Te•
0
:
to
7'd
0)
0
00
N
CC,
0 •
01
c O.
CD 00
0
.4 0.
vs 5 g:
co
0)
(0
N .
CV
04
I 8.
ci
tf) 0
cl•
0
0)
co 0
0
cr)
co
N:
Cs1
N q
• (0 (0
N.
CN CV N
0 0
q
N N
0. N..
01
0 0
N
00
o
4
✓ .
CO
0
CO
I, 0
(0 (3
c") 00
r
1)
0)
1.0
(.0
ir t:
- .01:
N N
'4 (0
co 0
o co
o o
• o
CO
••.*
0)
0)
N.
0,7
• 16.
co
01 al
N.
a co
a (0
CI)
1'-
04
CV
'et
0
•>-
. • a
• •
r
0
CO
CO
N. 0
0 0
0 7
0. (0
N rc.
N. 00
cd
Csl
N
o
o co
4 a
0 0
• q
• N
CO
1.0
(0
(0
0
CO
0)
N.
-a
co
0
01 r-
0 • CO
(0 (3
00 0
04
CO
co
0)
1`.
03
•to
• 01 a 641
• Ni csi C
a CD (0 ('1 • n 0) (1)
8 ," oc
o
0 000
cri
7-- co
cy
8 .:::
co co
MI CV
o
q
0 co
'0 ao
1.0
0 0
7 a
0
`c7.7
!
7 I 0
(0 4
0 0
O
10 .
co ai
O
N N
11)
cs,
Cs7
ci 6
(0 (0
cY
04
(0
cra
c0
N (‚41 (0 a
0) 0) 0)
N.N. 0- a
cy cy
ca
co o
cci Ni
aa
(0 0)
0
u)
' 0
<13
0)
c7o
(0
O
CO
04
co
0
Cr) CV
4 1 14 .
(0 (0
CV CV
0)
0)
CO
04
03
0
N. 0
(0 (0
N N
co
co
(r)
-J
CO
o'71 8
ci 4
r-
071 c13
CV CV
O 0
0
6 o
co co
CV CV
...0 0
C3 0 - :0- 0 0
AO 7
co
0
q
CV
ca
01
N.7
0)
co
(0
-I •
•>
0
s
00
cn
0.1
aa
el
0
0
O CD
• co
cri
N
0- (0 (0
tN • CO 0)
cri 04 6
01 co
N
0 N
al 0
CO ci"
• G
O 0
2 2
CV N
)1.
0
(0
co
a
co to
' 0
•:,
>c
:•
:3 3
0
N.
CO
0 '1
t
0)
CV CO
• ur)
Cl ri
01 0
(N !
00
g
N
CV
V)
CO
CV
o 0 0 o
q
N N
co co co co
CV CV CV CV
•
0 0
g
L7:3
0
•
I co ri
,
0 0 ' 0 0
a 7
CV 01
04 CO
CV 04. ::::: •
;7: :Zit; I N.
(NI
0
0
co
C
eca
0
0
0
'
r-
0 ...-
a d
0
c7 0) 04
In
co ‘r.
co x> (0 a co
m ca
CV CN CV
• CD
C•t
ui co
• 03
03 CO 03 CO
N N CV
04 N N
t•-• 0 I 0 cn.
a • 1.0 2 c
co co co
N No N4
0 0 co 0
o o
Ni 04 co i
co co co co
N CV CV NI
0
00 00
sr 'V
0- - N-
7
a:7
O
0. I c0
•••
ci d
00
0.0 0
-et 0 N
N• N. 0) 0
03 Y:
0 01 cl• 00
•c*
(0 CO CO 01
10. CO C•J 01
0e) Ni 4
o N (0 01
•cl t•-•
0
0
0 7
V. NI
cD
0
co
co di N
CO a (0 N.
co cc co . co
• N N • N
cv
0 0
03 CO CV
CO el 03
0 0 co
...6
-• ••
• • •14) L.:(n
• ••
N N
.N1 N C
• o •0)
'0:70
-I
0"a
0
r • 0
3.1-
0. 0
clec:ZO 01. M Jen
l l
r
T I N.
-I
FT. Co
Top Width },
.1i:::ituv.ro .1 1940
2.91
ado%
; "P„13 'S - AA : 13. 1 12 Unk 1e10.1.
CO
n
Nfl
co
N
co
-- CO
-V
u>
CO
oo
N
v
N-
N
3
r
co
a
CO
CV
co
co
N`
co
co
co
CO
co
N co
co
r
Q
co
N
co
O
ai
co
co
N
m
co
eo
CO
ai
co
r
a;
co
N
a+
N
ai
N
S
ai
N
0
O
O
N'
Q
co
N
d1
ti
Ci
N
'Cr
CO
ai
N
n
N
O
N
o
N
O
N
0
S.
O
N
0
N
0
rV
N
o
tr)
O
N
m
O
N
0)
N
N
0
c
CO
n•
0
CO
0
c
CO
0
to
CD
0
:
00
00 0
co
00
o f
co
00
O
m
CO
o
cc;
CO
o.
c
m
CO
0
No
CO
o
CO
N
0 1
c o .
CO a
N
0
CO
N
O
O
d
CO
N
a
tri
N
ui
00
N
c CV s
C
ui
CO
N
d
O)
u•i
CO
N
- --.
O
co
CO
N
ao
CO
N
o
QS
00
N
S
oS
CO
N
o
ao
CO
N
0 1
. co
CO
N
o
0 0
4
N
>
i
r
C
).
3
t
ry
(
CO
0
CO 0
C
¢
O
O
v
'4'
N �p
r7
I)
co co
CO
CD
O ,
CO
01
O
O
v
(
a0
tt)
CO 0
CO 0
CO
I ' JA0os
I.
iixos
II:
1:141009
1 _ YiA
o i-z e
•
I • •
; LAOS
iAOOI
IA009
°
!)•• • ..-:".
• • JAot. I
JAool.1
FIS!AOrqd
• I
; :499Z
- L99
• - zegz
.'!
• /.170£
L ox
1: • 91 tC__I
77. ... ..
: •
mg!
-7
ZI-
'
JamoW,
:i,:EFA091
., Opril
I LOWe, L r L.
I .
JetA0.11
ii
1Lowor:. ••••
Lower •-
11.1;;;,i7
[Lowe i •
.'" JaAnO 11
JOm?il
-- 1!•
L�wer
gd
d8£ ZO o . 0£ Jew
•
Froude: # Ghl_._
-
...
.._
,:.
..
-:- 1
r
1 two
N
6
N
6
N
6
o
,
6
6
m
0
m
6i
£yo
7 °" —
a
6
a
. --7
a'
0
1- "r -
i
N
0
N
N
0
1.4.1
•N
66,
MIM
VIM
016
hid'
M
616
0
IV
N
6
y1piM dol
(u)
2
m
I-
A
m
N
0
0
m
N
=
—
N
M
138.031
F...
0
I.--
f...
0
r
0
.d..
0
r
0
m
M
N
I
(0
00
n
C
r
Lt)
.1..
m
V
N
0
0
N
0
N
.
m
4
M
N
0
-1.
N.
NNNM
m
N
o
.—
•e-
n
CO
M
N .
N
<--
0
al
n
0
q
m
N
h
N:o
M
N
()
0
q
, -
M
,-.
a
'
•
Flow'Area; yl
(4' bs)
TV
6
0
0
6
, :r
M
M
8
V
.-
—
N
0
CO
6
N
0
0
q
co c
0
r
0)
V ".
<-
M
N
l's
M
cci
V
N
0
N
ei
NS
M
CO
r 1 9
..N:
r
o
0
r
(0
V9
. -
N
r
0
cq
(0
N
CO
0r
. -
0
r
rs
cti
N
N
Ni
V
6
(0
N
N
CO
'
071
0
0 :
Is
esi
C.
M
V)
0
4
r
V
If?
CO
6
V
CO
.4
"1 :
4
0
r
",r
is.
a
N.
N
I n
C
a
0
M
0
(r)
Is:
M
V
o
0
CO
N
M
a
r
0
r
4.,
7;
0
6
itkpleA
(sni)
CO
N
<-
000
A —
<-
N
<--
N
.,-
VI
0
<-
.
Ts
r
csi
In
V
N
r's
0
N
•d
0
0
0
r....6
CO
M
V
0)
R
N
0
a
0
h
<-
n
0
m
6
N
m
<-
(0
a
<-
V
m
<-
0
1.-
.-
0
6
c.,
ts.
o
cm
0
<-,c1
N,N
V
(14.1uf._,...
0
0
g
o
0
N
V
0
0
0
0000
0
W
M
0
0
o
GO
V
M
0
Q
6
h
V
N
0
0
o
0
r...
0
6
o
o
h
.
r
'6
o
o
N
N
r
0
o
o
0
r
E
a
6
0(0M0)
00001
V:
0
0
aaaa
0000
0
0
N
0
0
N
CO
0
0
V
M
0
0
0
o
o
0
N.N
'
V
0
0
O
N
V
0
a
o
0
r
GO
M
0
o
o
N
nmom
NN0M
CS
9
o
0
CS
a
o
r
'-'
a
o
0
".
a
o
N
WON-0
0
'S
aaqa
o
0
In
8
o
N
, -
8
o
0
N -
2
0
E.G.;E,I.ev I
m
csi
6
N
<-
cc
0
6
N
m
.
< -
6
N
m
.
.-
m
N
6
o
_.
c ,
6
N
0
N
o
00)
N
,
a
<-
N
o
6
<-
0)
N
N
0)
NI
<-
0N010)
<-
M
N
N
cs,
M
N
6
(NI
M
cv
csi
0
a
s-
NINNM
0
N
m
a
0
NI
6
m
0
N
m
o
M
N
m
<-
6
0
N
r--
a
m
0
N
6
R
n
0
N
m
0
a
0
N
o
n
M
M
m
a
=
NI
N
a
0
N
o
a
0
N
m
6
0
Cs./
'S'•N1' 1!J9
0)
.
0
6
N
,
—
ul
2
NNNN
M
NI
2
.r.-
°I
2
M
''''
2
'A—
0
6
00
NINNN
I.--
N
6
6
00
M
0
co
V
coo
6
co
N
'
.<-
6
N
V
1.. ';
<--
0)
(NJ
0
p l
.r.-
m
N
0
..V I
..,
0)
N
(0
V/.
•<-
M
NNNN
.-
q
<-
0
N
h
<-
0)
N
N
cg
M
N.
(00)'0
%-.
0
NNNN
0!V
<-
0
(NJ
0)
0)
71;
cs4
0)
'M
n
oi
0
N
(0
m
O
0
N
r
m
el
0)
N
0
co
o
0
N
V
N
a
M
.•
in
a)
N
I
r
:
:N:
0
vN
0
,
fu
0000)
NNNN
V
•-.
A -
0
M.
A -
*
n
N
N
,
.
0
0000
NNNN
N
m
.
A -
. .
A -
N
0
.
N
N
.,:
.
0
N
V
N
1. -
M
N
CO
cq
....
0
0.1
0
,..,_
,
M
N
N
0
NI
0
NI
V
m
Csi
0
N
0
,
C
0
N
r
0
N
0
N
co
—
M
0)00)0
NNNN
V
,
0)
0
0
0)
r
0
4
8
eS
0
N
V
.
n
0
N
r
—
a
0
N
r
N
4
0
N
N
0
4
0
N
.
;
I 13 4J ulW
a
0
103
=-
,......
.
2
h
0
2
h
0
8
h
0
m
w •
h
00
0000
0
0
0000
o
0
N
o a
co M
N N
8
6
0
NN
8
0
0
0
o
6
CO
NN
0
o
0
00
0000
o
co
0300000
N
0
6
N
0
6
N
0
4
N
8
O
0
N
8
0
0
NI
8
ci
0
N
0
0000
esi
RI
0 0
N N
4 4
0
M
4
'
0
0
N
0
cs,
•
!
!
'`Q Toia1 V ,�
--
.
....:(10
1
ca
.
6
0000
a
0
0
c \I
0
, (0
m
cq
W
VI
m
a
N
an
6
t
o
>
=
0
ONWO
6
ocnco
a
0
6
m
0 0
6 csi
m o
0000
0
6
o
a
6
m
m
6
o
6
csi
co
m
0000
0N100
6
o
a
6
m
m
6
n
m
N
m
m
Q
0
6
o
a
0
N
6
m
m
0
W
6
o
6
0
0
c.i
co
6
8
0
omom
a
9.g
(9:1
m
m
8
CV
M
0
CI
0
0
.1
1
i
:
I.
i . . .
..
..•
..
.• . •
jA01
J1L00.6
iX"oos
. .. .
.. .
... .
.. .
.._ _ .
., .
. . .
.
':
• .
.. .
.._
•
JAoL
I 309;
•
JAOS
J' aoJ
.. ' 1100s
T JAo5l
JkOIj
JAoo�l
1500Yr.
I
Z19E
091£
09 4.E
o9E
, •
11
sus£
956£
956
E.
666£1
666£1
666 .£.,
•• •.:• 666£
6lOt
sLO1s]
siobi
-
•
PLbpa
•
PLD 'l
•
6916'
-.
:
!
met
E; Re ch- 1
4IMoI
Lower :.
1711
JeMO-
JB7AOT�
..
..
. ,..:
( tower ►
3aMOl.l
(Lower -1
1 Jarrio1l
-
iarnd-1
Jemo-
J8^"01
J6Mo1
.0
JaMQI
'Lower
l
.. JaN10
r.n "i0M011
.
. .,.
.
391401:
• .. Jamd�a
_... -. . JOMO1
1
d6£:ZO OL 0£ JelAl
E
0
-o
- a)
0.
0
u.;
uJ
Sr.
I co
I •
0
01
•
'Tr
0
0
evi
C)
0
6 a
I 0
0 1;
07 0
DI 0
r
>-:
• ::
(0
CV
'CP
0)
0 0
q "
0 CO
0 CO
1.0
CD CO
CO CV
CO CO
o CO
DI
0 0
ci
0 DI
el CD
Di Di
CD 01
N
c0
cl?
1)
aa
0
0)
01
a)
CV
0-1
0)
rv,
O)
0
co
0)
co
CO
CO
CV We CC) 0
r": q CC/
. CV
0 0 0 0) 0)
N CV CV CV
Di
0
(00
Cr) es
" 0
N N
CCI
a)
.4 0
N
CD el
§
0
0000 o o
Q
2 2 2 2
03 co
CV DI CV N N
8 8
0
0
al en:: ' • • 'Cm
?'•
0
cu
tra
u
0 0
to..
0)
0
V 0
CV N
01 0)
CV CV
0
co
0
CR
0)
DJ
00
co c
co co
CV CV
0 IQ 0
CV OD 0
OCi
CO
0 ID CI)
01 0
C tO
cv
0) V 0)
0 OD e• •
0) 0) V' 10
CV CO
0)
co sr
a) [a)
('4 ('4
00
00
0 0
0 0)
CV CV
o
•r0
0
: 0) Oa: ;
Vr • 1'
0
0
cca
al . :. 01 CD • ;
0
01
("!
0
CO 0 CO CD Is CA to
V. 0 LC) 0
CV Di Di co • cr;
o co a) a) a) 0) al
N N N CV ('l('1 CV
N rs el V' )
c -C! cl 10O)
cq r Di Di
0000 0 0) 0
D4 DI DI N N N
La
0)
0 0
0 0
n
CD CO
DI CV
o •
co
(6
01
7cr
a!
CO
03
ci
0
C•4
(0
a)
a
0)
Lf) N
I es 0
05 Is: 0 '-
CD 0 r
CV CO CI el
cv
0)
Lr)
0
0
0
0)
CO
CV
0) ca
tei
0) 0)
. N
a
0)
0,
csi
0
el. LC)
es 0
CV 0)
r•-•
co
0
.cr
0
CO Is
N
CD 01
N N
C•4
0)
CO
0)
0)
CV
>••• L..L-L • ;••"' 3 • ,LL
>!: • > 0. .0 ), 0 0 VIL L .) .- 0
0 0 . - .0 • 0 0 : 0 0 0 0 0 0
C) . 141 " ' ( 4)
CV
Ca
0)
CV
0 0 0 0
q q q
CV N CV
0) 0) 01 CD
CV DI
0 0
CO 0
0 • N
CV OD
CO 0)
• - .
"C" CD 1'- 0
Csi
0 !Cr OD
r Ca 0)
4 Lri
s•-• C4 N
CV CV CV
cr)
cv,
u
0) O.
r•-• CJD
(sic"
N
cu
0)
a) o a,
00 =
0)
0 0
0 CI
0 CO
0 CO
st
c.)
co rip .
r—
ye. .341
•
7:1
0
CO
Lri
CV
Cri
;
g C‘i
CO N
0-0
00
ci
0)
U
C)
CV CV
.01
111
CV - ('4
r . U1
0 0
q
CV CSJ
0) CO
DI CV •
0 0
0 0
00 C.1
01 c0
(0 0)
41'
N
u"
CO 43
r 01
CV CV
00
0)
0)
CO CO
0, 1
a)
(NJ
1.0
Lei
CV
0
0)
0
0
ao
0)
06 0 0
10 sr- 10 .0-
....a.: 0
r•-•
ci o
DJ IL
r
CO CO es
N N
03
C•1
0)
CV
1
1 -
1■-•
01
0 0
00
00
0) CV
C R
0 0
0) 0
DI DI
O 0
00
N
0) 0)
N
0
CV
05
4:3
14)
0
CV
0)
CV
co
‹;
N CV
'2 2 2
B
csi
va co
co 0.3
m
0 • 0
..J ..1
0
co -ct.
01 ca en co)
c; ci ci
03 CD
.
CNI
el 0
i n V: V:
DI CV
cri
0)
CV
CO
0)
C'4
0
0
0)
cs:
0)
cv
N
, DI
0 CD
0 0)
r
4"4
In 05
0 01
'V CD
8 8
a a
N
ca
to
0
(.1
CO
0:
-J;
CO
CV
4-)
(-4
0
0
r V' 0) r-
cs, : ca
O
0) 0) 0) UI
04 CV CV
0
CV 1
0 CO
DI
8
3 - 3:
.)"
S 0 0
L11
na
CV N
0 CD
•
vci c49:ZO 01. 0 JeN
O
r M1M
M N ' !
=
co
N
O
n ' O
NI M
O
O
rm
N
o
d
NN
O
r...
o
«
O
()
O
Mr
O
M I
O .
f 'a! .
O
Cb A
0
t O '.
C
CO�
<O
0
Ir
010 (O
O '
N
O
Ta
N
C
N
0
N.N
O
O)
o
O
rf
C)
C
�1
Q
O
O
•
O
O
a..
O
`.
CO
N N
cV N
P-
6
N
0
c
r
Nr
s
C1
N
'
C 1
N
N4
t
M
6
m
4
M
4
M
awoCO
M
N
N
C 1
N
0
0
N
V
y C) N.
C"f
N
-
CO N
M
4 t-0
c
N
CO
CJ
N
4
co
M
4
0N
C
N
N
(
N
4.
N
(O
l0
p t 0 o�rnu "))
u)
m
r
O
Q
r
N
in
a ti D
: '!�
4
^
X
CD O
N 4
M M
M
M
'
N
N
d in
O
M
N
N-
N
M
N
M
CC')
d
O
M
c0
N
C D
r
r
V
t0
r
�
Cn
N
r
C)
CO
0
h
Zi
r
M
r
O)
r
0
W
N
0
V
M
M
r
4
N
M
N
M
O)
M
Q
O
d
M
N'
0
M
N
O
01
O
N
c
)A
N
M
n
M
M
Tt
M
00
CO d
N
h
0
m
0
M
N .
0
r
v
C V
N
o
M
o
M
C 7
.gi
CV
GI
en
.n
rn l
co
0)
I
s
dOb :ZO 01. Mien
0,
LLJ
u.
• >
a .
uJ
gd
a
0
§;
csl
cO
.‘r
• 1.*
N
N N
(13
W
0 0
N r1 o
.cr ts.
M M N
LC Lo
000
o o 0
o o
0
a:cc.
eo
m o
N.N M
r)
CO CD C4
• oi
R @
m m m
m 6
6 6 6
6 m a
N N N
0
N N
dZi7:ZO 01. OE len
ULTIMATE DEVELOPMENT Qs W/O CASTLE ROCK PKWY BOX CULVERTS
0
N'
a
.O
��{
0
uw
A
0
W
0
L'd
0
y r
N
e O
8
n
N
N-�
4-
N
0
a
4
CO
T
O
(0
v ( p
N
0)
O '7
0
O
O
0
( N
1.4 a
N N
m
N N
(•)
(V
40
N
8
N
N
,()) (0
r T
•
(O (O
40 IA
40 O
N
C tD
t
M
n
0
O
O
0
0
co co co
0
((' N
O) N
N CT)
tl1 to
Is n
N N
N
Co
n
N
8
(V
N
(
CO
8
O
O
O
0
n
N
O
ti
N
V 0 1 0
•
a. 4
Q1 O) O) 0)
_
a),
�3: • .3.: .
O _ O
J :..I -J J
M
(A
40
N
n
M
N
M
(
O
O
CO
4-
n
N
0
0
O
0)
M
CO
CO
O
co n 0
Ill CO CO
00
O
N N
co
ea
N
a
0
1-
N
0
CO
O
11)
N
0)
N n
0 0
0 0
CO Of
ca
N N
co
(C
4..-
('4
N
40
O
0
s
en
O
c0
0)
N
•N ((4)
(0
N
CO
O
(h
r-
0
0
4
O
CO
N
n
n
N
n
O)
0)
n
N
° , o
Q
N N
co 0 m
co 7
C O CO n 0 •
T
O ._..
co : :;.
-3
J
CO
O
0 ti
T N
n 0)
N' Cb
N 0
T N
00 O)
N CV
co
N
O
O
0
40 T
430 O
N N CO
O 0
0
cci
N N
O
Q
( O n
Q
0.
0
0
0
0
0
J
CO
O
N CO
Oi
O CO
N N
N
(')
0
N
O
n
O
0
G
M V? N N
N co co co N N N
N n O_ co -f N
N N N ( CV ( N
L 0 — .1 O
0
0
O
n
N
0 V
N (0
CO
CO n
4)
O
n
N
0
0
at
co
N
8
m
N
0
.
(1)
O
cci
O
()
40 Q1
T
0
0 0
O C
O
Q
m
N
0
0
m
N
0=
e 8 rz
O 0 0
3 . N
n CO
N N
CD 40
N N
0
400
ci
N
O 0
0 Ili
v CO
01
co
0
O
0
O :.4 (D
M. M CO
r- T .'
0
O
m
N
v -�.
O
N
a
O)
N
O
Q
N
O
0
N
O
N
N
N
0
O
O
N
O 0
(7
CO 42
rD
::.
:
g
O I O
0) N
O CO
COO M
T N
N Of
0)
000
N
CO
O
M
O
co
N
O
Cn
CD
N
0
CO
N
CO
co
0
0
0 N
CO m
N N
co
M
co
T O
( O
N
0 O
V 0
0
m
C
N
N Q'
CO
(()
Ni
111
0 CO
c5 M
Q
CO
O
0
O
(D
CO
ttkt
q rw3a. m
A j J'
N
CO
0
M
0)
O
40
8
CO [NO
CV NI
0 0 88
N N CO
0 -
O: :CO.
.4. 0:.
.m
J ..
O
(O CO
0
0 O
0 0
m
m
N
0)
O
N
CO
N
n
n
O
N
0
0
eNi
CO
Q
O
8
O
N
O
co
N
O Q O
CO V r
0 0 .. o
N .a CO
Q0
CV CV
N CV
0
J
0 I-
0)
ti 14)
0 (t
co
N
n
M
O Q
co CO
O O
O
O o
CV
N
O
0)
N
CO d
ca co
N co
0
N
CO
CD M
CO 7
CD O
T
}
0
O CO
Q .V'
ti n
J
4.-
cc
CO
O
N
O
O
8
V)
O
m
O O
8
O 4:
m
d'
0
m
N
(v)
M
N
O
N
(n
4.-
(0
O
N
CO h CO N
40 (0 N
cotr
1
0 005
A 40 8
N N N N
0
Q.
O)
v
-J
O
0
( . 3
0 0
0 O
J
m
O
2
N
n
(0
co
O
CO v
C O
N N
O
36
co
M
co
n
O
0
M
0)
0
O
0
O
:N
N
4)
J
dZti :ZO 01, 0£ JeW
I
M
it
- 3
O
tL
01
O
O I
M'
m
o
m
O
01
N
O.
N
mr
O
v
<
O
0
v
G
0-I
v? ,
6
V
N
O
:D
:V
O
0-
N
O
O
M
G
1O
.�
O`_O
II V 1
O 1 o
V
O'
O
M
O
N1r
r'
C7 .
N
0
ml.-
N
O'
el
o
1t�7IM
03
O ..
e7
O
M i
M I
O
m
c?
O
4]Irl
N'
C
N
O,
1
N '
O
,D
SS
O.
F _
i.
�
;.
ap
2()
t0
M
r
Z
n
to
e-
r-
CH
N
r
i
DD
N
■C)
CO
N
N
c0
N
c0
C)
M
m
to
0
V
to N
N O
c 0
CC
V `S
00
to
c0
m
n
CO
O
V
CT
CO
O)
V
v
0
T-
440
V
tD
N
M
co
N
O
0
V
0
O
e�!
N
V
N
CO
O
N
0
t`
N
N.:
r
r
<
N
O
00
M
N
u9
V
r
!�
u)
T
N
O
CA
0
co
03
r
.
.
_ 0
M CD
v
N
r
•
N
c0
0-
co
O
r
co
N
N
� _
Q
.0
LL
C
Qf
.:
Q
le
M
m
N
h
N
v
•
F — •
4-
N
N
N
CO
N
v
N
M
NO
r
M
N
M
M
1
N
(O
N
to
O
d
a
co
(D
N
0
W)
()
a�0p
cN)
:
M
N
CA
co
Of
c0
0
CI
CO
-
O
V
0
M
COO
c0
CO
0:
co
f0
I()
c0
N
0
CO
N
co
0
�—
V
N
0
co
0
4-
vt
C'7
4-
44
e0
N
0
M
co
10 D
of
.
0-
ei
N
CI
co
M
a)
o
C
e0
V
V
e+t
10
7
D
In
V
e l
CO
V
0
c•i
to
C')
(0
Cry
(O
r4
0
r
Cl
m
M
N
e0
m
N
0
N
(V
03
m
01
N
01
01
O
N
07
(
r
O
Q
N
U
N
N
M
N
. ( co
03 M
m
0
0
N
Q.
u>,�
-,..
.
a
�
0
.-
N'-
N
0
0
O
N
0
0
O)
M
Ln
0
0
V
N
r
0
0:
m
M
0
O
0
O)
0
O
O
0
(�
(0
0
O
0;
[O
(0
0
O
0
ti N
0 r
r
0
0000
0 0
m
N_
0
0
(h
V
0
0
N
N ^
C')
0
0
O.
m
M
0
0
0
co
C)
0
0
0
(`
O
N
0
O
O
10
g
0
0
O
03
O
0
0
Co
0
O
0
0
0
co
M
0
O
0
00
00
0
0.O
C
N`-
V:
O
N
v
N
0
C
0 )
O
r-
N N
I
r
h
0
0
C
m
(1)
0
0
6
O
N
—
0
O
C7
co
0
.
0)
cO
0
O
C
N
)-
N
0)
Q)
N O
0
O
6
0
>
a
41
yew
'
Min th El r W S Elev Grit W S E G EIev
• -
..• •
0
r
(-
co
v
a0
= 0
m
E N
M
7
N
e0
N
Cr)
(o
m
N
N
ICI
co
N
0
O
m
m
N
on
P
co
m
N
tef
O
a0
co
N
O
6
e0
N
0
d.
O
m
N
v
r
6
m
N
M
m
N
0
a
co
m
N
1 e0
V'
0)
CO
N
ems)
0)
0)
m
N
a 0 0
ad
00
N
o0
0)
N
0
V
0)
°o
N
00
oo
m.
N
co
CO
0)
co
N
n
ti
O
m
N
M
N
0
N
N
N
N
Of
to
N
O
O
C)
ao
N
O
' O
O
Of
N
0)
an
O
0f
N
D
(7
e-
N
en
(V
N
N
O
n
a0
N
v
r
m
N
c
co
00(00
N
v
co
N
10
o:::
N
Co
a0
96
N
_..
CV
oo
ao
N
V.
co
m
N
0
ad
0)
N
CO
0i
CO
0
0)
0o
N
C
co
m
N
01
01
N
N
N
oi o
N
00
a ai
N
d-I
o0
N
m
N
40
N
c .
N
M
N
op
N
. 0
0
c
N
00
e0
_.^ co
4 -
N-
co
0
n
N
C07
N
CO
R el
m
N
O M)
e0
CO
0
co
CO
N
0)
CO
O
Of
CO
c9
6
N
N
0
N
eD
N
N O
Of
N
C0
O
N
•
_
f
,
_
v
—
co
co
0
c0
cci
uo
co
0000
a
N
a
N
0
01
co
00
01
LC
co
04
in
co
N
0)
tri
m
N
0)
1..4
CO
N
1 288.001
1 288.00
Os
0
14)
tr0
439.401
1091.301
676.401
439.401
0
V
M
V
OrS1.9 I JAOS! LES£t
M
m
0
' O
V
C+)
V
O
o
1 - t
0
44
d
ON
0
uitoev River Az meacn:
RiVer,Sta 1 : ■' •Profile
I JA0
lAgg
I ; , • itsz
. :4AoL I t • .•603
. _
I , i Li trO
1 4A64
• • ,
.
J ,ko o i
1;
JAtm
JAdot 1 u9e I
• L61.4
gag
LirOt
• . zc 1
:
•
I
94s1
Lcscd
Lc§ti
io ni011
L '"°
1. Jomo
!!•••
kower •
1 I
Lower 1
1 Ja M?: 1 1
Lower
1
J!45011
.! • Jannol
r LoWer
joI
• Jemoll
JeMoll
11,614ei
9
dsb :zo o L os J ew
U
U
0 .
0 :.
0
0
�tl
0
O
6d
ti
M C .N
001 Ca d : C to
0 O N m
0 lO 0)
r N N c)
P r l r T
O
N
C
O
N
N
0)
N
O "
0.
lA
0
p N )n
O C
N N
ch
0
0
O
01
LC)
00
00
N
m
co
N
• :! 0 ,
C
C7
O) A
O 0
0 0 0
o o
M 8
0)
N
O
0
0
4 L
0 0)
O O
O
N
m
N. CO
N
o_
0)
0)
) M
CO
N
0
8
0
C
N
0)
N
r- co • co
0) 010
CO co 0
N N N
CO
CO
N
N
co
a)
N
0
eh 0
✓ 0)
O O
O Q 0 0
:co CO
• :^
::R)- :co : co .M:
c:" .
d m_ Co
: #
O
U
O
O
P
CO
N
N m
O N V
N N
C
CV
C
co
0
0
0
0
O) C[)
o
C 0)
N
O
O
0)
C
N
O
M
O
N
N
CC
P
N
8
0
0
tin
C
m
O Cn
N CO
N
e-
a-
8
0
0)
N
CO
M
m
O
8
0
O
0
N
•
O O) 0)
co co co
O m 0)
0) O) 0) 0
N N N N
O ▪ 0 - 0 0
O o 0
8888
N N N N
O O v O,
. co 0)
CO CO O
}.
0 - -0
�.
M
O 0 0
r 0•o
N
(D
ti
81,
0 0
CD N
co 0
0 0
O 0
O co
N N N
N N N
C Cp
O) O)
N N
0 • O
CO CO
CO N
O
C
M
O
O
O
J
CD
0)
C
a
O)
N
O
00
N
O
co
co
0
0
CO
0
r 0)
g' C0 C
1 0 O c0
7 7 N
co
O
C0
0)
ID
N
M
oI
0 0
0 0
5
C)
N
M .
N
N
to - 6f 0 1
N N N N
O'
0
N
O
['I
0)
O
O :C
C..
CI) :co
C7 M:
0
0
o
co
C
N
CO
et CA
V*- N
N C1 M
O
csr
0 0
0 0
C7
N
(
O
0)
N
0
0
2
O
0
Q
O
0
Cn
N
u ) 0
N N
N N
N v 0 CO
0 0) 0)
N N N
N
0)
N
0 0
M -
CO
cl):
7
0 0
H O
co I-
N CO
N
7
1
N
N
O
0
0
O
CD
t-
ea
8
l J
0
0)
0
0
8
C1
0)
N
M
N
O 1
0 r
N N
0 0 0
0 0 0
CO 175 CO
CIO CO
N N N
0
0)
O
0
0
J
N
0
CO
0)
N
CO 0
10
N et
M et
M 1C1
0
0
0
N
1-)
O)
N
8
O
CD
N
O
et
C
M
R
O
M
N
0
0
0
0 C
0p' N
N CO
0
N
N
CO
CO
N O
O CO
N N
O 0
0 0
0 0
N N
co 0
M CO
00 0
0 0
S N
0) d'
N N
0 0
ka
h
CO CO
m
• 0)
• O:
N N
N N
L
0)
0)
N
O
0
0
C
N
L
0 0
4 77 et:
r-
- et :1 v.
•
• '
=0 ='b o 0
J J J J
a
0
N CO
CO 0)
0
N 00
0
CO
L
N
4')
0 0 0
N
N
N
B1
cD
C
M
M
0) N 1 00
O O r N
CV N N
0
N
A
N
N
N
)
t0O 0)) o 0 tt. 0
11) CV 0 , S u)
0 0 0 0 0 0 O
o 0 o 0 0
CO 0 N CI CO N
vi v 0
N N CO N N N
CO CD O N
et
0 M C) €f of
N N N' N
C
0)
N
O
CV
0)
N
0
C
v
h
O
N
O O
O O
N CV
N N
0 0
In CD
P t•
O CO
0
0
00 00
v r
1[) N
N h
g 04
0)
CO
v
O
O
CV
0)
N
O 0
•
0, 0- 0 0
J:J' J
C
co
N
O
N
0)
N
0)
M
0
dgti:ZO OL 0£ Jen
r
11 • •
r172
Itz
tL
IEE
16E0
0
O
07
M
cv
DI
CV
0
J
)
CV
C•)
O
t
O
Ill
Oj
Ics'o
- --
'
90 . c
L9 '9ZZ
LZ
! 66 La
larssz
3
1M-09C
l ■ LL'VtiZ
0
N
N
N
CO
CO
O
N
0
ID
N
1
C
01
07
OL'OLZ
VOZ
emy,n;w1A i1A10 laA
I (11 OS) • L (sn) .
I :O
M jtp
r..:
M' to
0
00
V�
C7
ti
V
O
0
V'
0
0
N
O
N
CD
CO
.-
CI
0
r
-
0
7
O
V
In
r)
i
CO
O
r
7
m
CO
M
0
O
CV
M
O
1•
CD
V•
CO
Cl
r
07
to
e-
'
d
V
00
(`
CO
V
N
O
N
CO
CO
1
N
tO
.'
'V
CO
V
O
N
Cr)
C?
N
N
O
0
M
V'
O
N
N.-
V'
cry
LC)
O
.-
V
CO
O
M
co
V
0
N
0
L)
0
1
CO
1
CV
07
n
D
'I
CI
.-
N
Cb
CD
V
O
V'
C.
r
O
N
O
N
CO
ID
h
.
N
111
IA
O
N
CO
99' £91
h.
V2
N
1~
I
N
N
V
N
O
0
N
N
V
N
O
10
tO
CO
r
CO
CO
N
CO
CO
Ch
U)
fD
N
—
CO
-
CO
0
111
O
N
CO
A
r
CO
I
CO
7
V
If)
In
N.
1A
CO
N
CO
O
O
.....
r-
C7
-
CO
O
0
(
M
0
6E-e
1
!'9$
N
CO
—
Os
C)
0
CA
O
O
0
0
C
C
C
Cs
M
N
0')
O
O
C]
CO
CO
R)
O
O
0
M
O
)L)
r
O
O
0
M
O
M
0
0
O
1
el
CO
N
O
O
o
0
CO
C's
N
0
O
0
0
V
01
N
O
O
0
M
t0
O
V
O
O
0
0
to
O
O
O)
0
0
CO
O
O
It'
O
CO
CO
O
O
O
`?
LO
01
0
O
O
M
0
O
O
O
CO
r
0
a-
O
O
O
N
I`
1`')
e-
O
O
O
Of
N
r
N
O
O
O
V
M
N
N
O
O
O
N
N
O
0
0
0
1
C)
O
O
0
CO
O
0
O
O
0
01
N
CO
O
O
CO
O
tC)
0
O
O
1 0.005305
A013
01
.•
N
)
O
A
.V
190
co
6
0)
6
ID
0)
N
CO
0)
N
O
N
n
0)
N
8916Z
N
M
n
0)
N
C•
Of
N
O
A
0)
N
M
0
6
01
N
"
N
O
CO
Of
N
O
M
CD
0)
N
CO
01
c0
0)
04
r
m
CO
)
0
N
CC)
0)
CV
Cr)
10
Czj
0)
0
N
CO
to
0)
N
0
1-
C7i
0)
N
.
(O
t`
10
0)
N
V
0
O
0)
N
N 0
e-
O)
0)
N
CD
O
0)
N
N.
M
CV
1 Lt7'176Z
294.221
1 LE' 96Z
1 963 Z9'
A
L)
CO
If)
CO
h
0)
C7
e-
C;
N
1 E I.'96Z CO' 26Z I
CO
M
CG
N
10
V
co
N
10
co
6
N CO
1
ti
00
N
I API]
I (4)
295.511
- 64
CO
0))
N
h
m
N
,-
0
N
N
0
N
N
92'/.6Z
6516Z
GL'96Z
r 298.47
0066
1 q0:o
.04)
292.001
Iona
OCIZ6Z
O
O
N
O
O
01
O
O.O
O
CO
g
g
818
V'
Ol ;
g
O
a)
0000
A�
R
0
Fl
0
R
0
01
0
N
O
N
0
0
.-
.-
CO
Co
N
V
ti
Co
L 10101., D.
I (sP)
676.40_1
5
?
+
1
`
C
0
.' � 7
er
0 o
`
C
6
0000
C
h
S
e
`
0
.
_
'J
V'
°
:D
0__
c•)
0)
O
-- 000
V
M
V
1091,30
I:. elifo'J;
A nA
'A00
fl
_ Linog
,iAog
,J)
• ,)A091
JA
•
• • • • • : •
100yr- •
Ji00(
Sta 1
I i; : • £5491
. £9Z9
zcz0
1:
H
,1.99Z_9A
L 6s991
6E99
£699
sts91
1. 140
WAJ 011
J9/010;11
•,JamOl
. 4amel 1
Jar4
JaMi3)1
am, 1
JDN'1
1 1
J MO
Jemo
1: !, l
'tower I
ILci` I
' ' ;:ja
—
_....
'tower r: .
tower
tower
Jem0-11
CC
01:d
d517:Z0 OL 0£ JBL
N to
L . •
000
U `
V
0
O
Q '
:11:
G/
�F
l l'd
• y
to
M
N
ti
yr
O) • W N
O Y
N N
V' m •
<0 1�
0) O
O O
O) O
N N M
8
rn
N N
O
..2
O) 1-
M tb
ri
L0 <0
N Cr)
O
O
0)
Q�
CN
N
0
c o
0
ri
0))
S
N
0)
N
O
8
N
d9ti:Z0 Ol 0£ Jen
EXISTING CONDITIONS Qs W/ CASTLE ROCK PKWY BOX CULVERTS (6 -10X5)
1•91.cle &Chi '; 1
.
cn
N
6
r...
•I...
0
co
,.
0
to
.1."'
6
1-..
et
a
e-
et
d
c7)
Cc)
d
cr)
01
0
1
I
c=7
..-.
d
.-
0..
6
.-
.e-
6
N
e-
6
V)
v-
a
et
,-.
6
0
e- I
6
a--
' 6
:
ce)
,-•
6
et
e-
a
et
c-
6
0
,-.
6
C
c
,
-
4
O.1
u•)
rs.
Csj
1. 1 -PPAA d°I
:.
• -
-,...
,....
-..
N
CO
0
',.
er
In
N
',.
I
to
CO
r
, t-
0
CD
CO
Ir
cn
C:
to
0
cq
h:
co
CO
N.
O
al
I
0
0
,-
VD
1
71 :
to
0
rC
co
0
r
0
co
0
r
0
cc!
cst
N
•,..
C)
co
o
0
N
tc?
to
0
,•
1
co
ai
0
..r.
0
co
r:
.-
•-•
1-
en
t-- .
an
.."-•
.
0
.
co
..1.
• CP
.
co
•■••••
,
r
1
Feely rit old
-c\;
.
tt
to
co
I N cc)
0
0
4
in
CD
Lo
0
,--
0
,-
.....
V:
o../
,-
03
N -
0
c
CO
N..
s
co
0
a-
6
er
4
c0
0
cr;
I,
4
CV
N
csi
e-
co
LO
NI
cc-
cst
TP
N
CI
FQ
0
6
N.
.
.4
"at
CO
Cs.i
OJ
-c-
VI
CM
•.t.
co
0
EN
•
0 •
N.:
0
0
co
r,
Cs1
o
al
-
4
N.
..-
N
csi
e-
N
e.-
('1
juto len
,......
CV
R
CV
( c!
1 -
0 C%1
-1 : '''
.-
co
c`i
s-
0
N.
N..
0
a
6
TS
c )
,-
[
co
'9
,-.
2
,-
P..).
,-
2
,-
'A-
CV
0
(
t
a•-•
0
t'l
.-
1
cc!
.-
N
i cl
CV
0
O
R
1-: i
co
4
co
0
N-
to
in
, r
CV
.01
cc!
N
f-
et , r) O4
ec) 0) er
CO er V-
8 8 8
°goo
0000
Cc)
er
0
0
0
CO
03
et
0000
(pogo
6
C , 1
c
0
0')
6
CO
LO
CO
cv
o
1 .
0
0
N.I
o
a-
in
.....
0
00 00
o
6
0
N.
a -
0
o
6
0
0
CV
0
o
6
0
rt)
N
0
c
9
o
e-
00
01
9
0
c!
o
C2')
0
N
n
0
0
o
et
cc)
n
0
0
•
o
c0 CO
•er 1
CV CV
a co
a co
0000
0000
lor
Ps
Cs4
a
a
NC
N
VI
a
CD
.
N.
CO
0 .1
CV
N
c.'
0
01
N -
GO
CO
a-
9
0
0
CNJ
MO
CsJ
N- -
cz!
o -
0
r.-
, 41
0
0 :
6
N
.1.
2 -
00
co
r
vr
(1/4
0
0
-ol
S . . -
6 .
9
ap.
N
CI)
cO
N
CO
cv
CV
CO
"I-
a;
N
et
mr
N
c -4
et
csi
co
N
Of
U1
co
N
CO
I
o
N
.--
cC)
rs:
rs.
N
•<-
CO
cd
r-
N
C O
C
cc;
1
Cv
04
0
(0
I
cv
Cc)
0
N.
N.
N
el
cl
co
N.
NI
00
0
cci
t,
Ne
0
CO
(0
I
CV
0
tn
r:
N.
N
0
CI
co
N.
N
Ce)
1
4
r--
'C'
CV
NI
co
I
cv
CO
cri
0)
N.
cv
cl
co
1
NI
T..
(0o
co
N.
cv
CO
o
I
N
Ps
cl
o
CO
cv
LC)
0c
do
CO
N
CO
03
N
01
I
6
Is-
01
NCO:71
CV
0
CO
N
l-
4
to
CO
N
CO
I
oi
r.-
CV
CV
0
0
N
-"-"
•
Crit W.S.
1 1' 1. (10 •
et
N.
N
a)
0
N.
N
CI
0
I,
N
I
0
N.
CV
0
c0
I
4O1N
C4
NI
0
N.
I
0
0
N.
0
'41.
N.
I
0 t
q cv
er er
r- t.-
C4 CV
I`
ce)
4
r-
cl
O4
c0
4.
N.
N
0 et et
et r, co
4 4. 4
r- 1.- N-
NNNN
N
e)
0
t--
et
et:
4
I.-
N
21
co
4
r.-
N
01
tri
P-
N
1
et
ts..
t....
NNNN
..
r
•Cr
N:
r-
N
N
0)
r.:
Is-
. _.
Q
VUD
cci
r-
CV
0
e-
cc;
Is.
et
'cr
co
r-
N
N:-
to
rs-
_
CO
NI
at
1,-
N
CV
0
cti
r
N
A3
o
01
CO
N.
NNNN
cr)
CO
is:
1
er er
N et:
CO cr)
Ps tr
01
N
is:
N.
N
.1.
0
cd
t, U
N
N.
CV
0 CO
et CV
r: cO
Ps N
NNNN
CD
cd
Ps
cri
1
8
• N:
N-
CV
ca cci
N. I
N 01
I's
r.-
oi
I
CV
N
0
r:
I
N
.-
el
O
t,
CV
9
0
ct5
r-
N
co
O
I ,
N
CO
CI)
C7)
t-
N
Li.;10 El - 1
0
NI
N.
'.•
0
Cal
N-
C■11
0
CV
r,
csi
CD
CV
V
N
4
I
O4
4
N.
N
0014Z I OZ
4
f
N
100 . ;08 . 8e9
4
r
NI
0
C.1
co
co
c\i
ts.
N
O.
a
o
-cr
csi
rs.
N
0
CI
oo
co
VI
csi
N.
<V
0
0
oO
0
C0
N.i
t-
N
■
6
N.
• NI
Cc) 03
N. r.-
N C4
Cc)
I
N
0tf ELZ 00296
01
1
N
ei
N.
cv
ri Cc)
I, 1
CV N
N
Is
01
CV
N
CV
CV
ts
CV
01
1--
CV
838
0
P -
CV
0
P -
N
cd
?-
CV
! 01011;01
0Z1199
00Z86
0
(.4
oo
56E3.201
I vaAln°
400.001
;owns
; .
[00 •0011
low n o
loo
I0V809
' •
.
" •:,
.,
•
* jAOLI
", •1:„1
. 4009
• -
,,,,
72 . - z•
- •
JAOS
. ,
JAK*
1
. JA0
r
.-
fekat:
1 "tt
•
•
1„ i. I 4,1, as
- -1)410s
_: .
•
[ lAo
-
1, •
AOOt
elS'- 1
iii
t6V.
2 •
[, 9917
e0t
.
:::•.,
.
• _
1 szyi
1".• 1:." 6491
I . ;st . • .$1,5
•._. ,
1 • tLgj
...
„.
:.
.•
1 11 01i10'
.. .
.,.
• •
.
[ ;14
[ tta
• . 1 ' 1.f!9
[
1. • 11.•
I
.
:.,
17
I: y6
tpee
Jamo9 I
:Jam
1 rahy411
J emoi
.1.0mo - 1 [
1 • "
1
. I
Lower :1
;
I • ..0moi]
.rai■o91_I
1 • iw..
L_
I 4am9ti
lemo-11
L • •
F' .191A021
I rb M0 - 11
1 ,
JP"ril
1Lolkeir I
• I
Low0t
[Lower
Z d
dtvZ0 01. OC Jen
1 Fr Oikle #
9E'D
d
d
ci
190
ZWO
1 crwo
Imo
Fivo
L4'0
1 oz po
0
d
0
d
do
Isz'o
1
90*L9Z
r ...
245.69
258.81
Isgvec 1
461.41
lovvst
"
11f601
18t
14
.6666
411.671
,eaotmou :"
(11
90'80Z
E8'89 L
141.44
99'61Z
1
PS' IZE
499 IS
98'60P
Z4*ZZ9
6Z '499
PE
/TOP I.
acasz
I89c
341.62i
• "1[ '"
,
LL'l
66E
E9•E
1 80'S
LLT
EZ 'E
179•E
£67
ETE
L L'E
tat
OP '4
, 13417
0517
S'917
8E4
Jcve
1
£0•17
0.0011911 2.321
*clop '2
1
L 0.010197
1 0.012890
6L9040•0
409600
E65L000
lt
34J
6E9E00'0
1/63000'0
- 0.0006551
0.0007561
11.L6PZOT
0.015979
lezoz vyo
0.0032481
.
_
0 0035681
0.003641
0.0038401
0.000976.
A013'9'3
...
« 1
86•08Z
Z4'48Z
E9'413Z
281.72
r 282.04
wen
ZZ•49Z
49•48Z
285.80
40'98Z
1C 1,.98z
286.45
44'98Z
286.681
286.781
91•L
287.36
287.47
68'L8Z
288.68r
288.89
L6'88Z
1 LE•69Z
n 1-'88 z
I ciit w.s.
• .
280.06
6' 08
94'19Z 1
zz t.ez
ZS'48Z 1
9 VE9Z
179
; ca n
E0'1 ""
166
179•99Z
1 285.631
1.698Z 1
9Z*S9Z
LS'99Z
8458Z
Z9•99Z
LE96Z
o
1969E4Z
287.341
Isroez
Z9
AOp
(11) _
L8
6Z•48Z
94•49Z
Z9'19Z 1
VL*48Z
48•E8Z
0 L'POZ 1
LL"P8Z
49•179Z
6959Z_ 1
zs
40'99Z
ZE'982
6E'99Z
1 286.661
286.75
1Z1•113Z
286.781
287.141
149'2.9Z
288.78
288.86
2139.18
1E0
jez
rifizez
13 4 1.
()ova 1
1 280.00
0009Z
1 280.00
00'08Z
00
00Z8Z
00Z9Z
oozez
1 282.00
00Z9Z 1
00'Z2Z
00'Zsz
001
0O , 9
1
loo
100913Z
100•99Z
100'99Z
286.001
286,001
1_00
286.001
[1 :0 :rotor! •
•
(so)'
00Z96
00004
Or 99S
099E9
00Z96
1 400.00
OZ139S
1 638.80
oozes
loo
1_002136
400.001
109'9E9
looms
Ion%
999
1 onts
1 oozes
400.00
loz
oo
09'8E9
4r004
568.201
1E189E9
. .
•imp% 1
. _
41.4
409,1
4 1■ 0 1 411
. 44(0,1
-
thI
4,0439
=
ri
JAo9
.1Abg
L. •
409
JA009
iA00I
:),(ot
; JA0Oti
eiS JOAIN
. .
,
.
9s I Li
i•
, 14
Z141.
.•
Z1.41.1
-
.;(117z1.1
i
:
'.99ZZ1
•
, L 89 ;
909?
. 909Z
. 908Z
itkic
LVOE
: •
ypeol
7 :
_ .
.
„
.
.
.
'.'
L
--i;40#unl
181601
..
1 Jamoil
'
: „ j wi i 6- 1 1
L
JaM011
1
.
Jem°1
: 1
'
Lower
Lowei
::.
1Lower i 4
KoWer • 11
Mar 30 10 02:50p
p.14
Froude # ChI 1
10
16E0
:61'0 IZECICZ
262.781 0.20
; 90T/Z
6t0
:(!in
r
r n
VI
ad
C )
CO
CO
O
CV
st:
SVO
„..
Inta
IS0
• 433.75 296.96
242.58 212.91
336.44 : 299.73
801V MOO
0E101.
1E1.'161
16212
isv
393.27
V6'61.17
06' £Z9
1 . (sx) ;•
.t
to
0
cd
r
cci
CO
rri
1941
•
•
r ':
Cr3.
ITVZ
•r-
0
ci
CO
0
co
CO
CV
ri
V'
CO
c‘i
ID
10
c‘i
£9•Z
967
1: edolt
0.0144731
1C09910'0
0.0103t
0.0010221
160C100•0
176£Z000
0.002346
0.008209
0.008049
0.005332
0.005275
Ao13 0'3
(1))
19t/.6Z
297.571
, t76"L6Z
cc>
CV
ai
co)
N
cc>
CO
oci
co
N
..-
co
0
NI
co
od
RI
<13
co
&
LO
ca
2
169'96Z
60'66Z 1
1 299.581
1orooc 1
I' • (4),
CO
� - i
to;
Q0)0
CV
0
t-:
CY
LO
r
N. .
CD
CV
CV
r-:
CV
CO
10
t-:
o
CV
1
CO
r■
co
o)
CV
CV
CO
co
or
CV
Is.
03
to
ch
CV
V.
N
r•.:
C:72
CV
0
N
1.....
CO
CV
CO
1
I
CD
CV
,c,
1 0
1
CO
CV
co
CO
I
Or
CV
il
.101..
co:
Cc,
CV
to)
PI
co
cn
ell
..--
. sr
cci
co
CV 1
to
Is
od
0)
CY
to
t.0
cc;
0)
CV
to
00
(0
al
CV
ol
0
o:i
cb
CV
in
N
ci
C)
<V
CO
CA
co
CO
CV
CV
C4
n
01
CV
N.
0
N:
0)
CV
CV
Ort
r-.
2
CA
r
cc;
2
al
CV
co
0)
CV
to
CC)
co
0)
CNI
N
T..•
cci
0,
CV
0
.0.
co
0)
CV
0
ul
c0
0)
CV
CO
co
cti
0) 1
CV
n
1.n
co
0)
CV I
e,
co
CO
0)
CV
csl
co
03
0)
CV
el
el
01
0)
CV
- ��o
ci
CA
0
CV
CO
0
CV
ul
GA
CO
CV
C
G1
M .
0
CV
rs.
CO
CV
13'140•1
0000
oorzq
4
0)
CV
.cl
0 03
N N
-1*
Ca
N
0
9
c0
03
N
0
9
tC3
0
cN
0
'
CO
0
CV
0
9
CO
CO
CV
Q.•
co
cd.
ar
C4
0
000
ro
co
CV
CO
co;
o)
CV
0
cd
a
CV
CO
o
(Id
C73
CV
0
oco
co
0)
CV
0
uo
03
CV
0
co
0
CV
N...
CO
CV
n
0
ts. A
n
0
CV
1
1
I te10.1_ jr
M,--
0
0
0
-,4-
0 0
CV CO
92 03
in
10Z
00 Z96
I _ 568,20
0Z1399
09'13£9 1
400.00
00796
L
• 4
I : ,JA004.1
r.
!:409
Al1/4009!
JAot.1
• .)■;,1*
JA01.
mot
JA066
1
:19sz0
r .
9S
LIH 6C9
6c
1"'" • .6009.
1 .. 1 6991
tog
I
—
!F.:91991
9 L 9 *
. 91139
'1.091
• 7:.;!;1
11,691
.
,
tpe0d I
Jeripi I
[ • mmaii
4G*0
'
' LL1
larfilj11
I . J4m0
Jangri
IL0 • .1
1
, iam°
MHO!
1 Lowei
9vd
dg: ZO W. 0£ _IBA
ULTIMATE DEVELOPMENT Qs W/ CASTLE ROCK PKWY BOX CULVERTS (6 -10X5)
9
V
C
�.N
X
W
0
cn
0
W
O
U
0
W
0
C
•
• •
J •
co 0
c
• tC .
.a.
0
0
Cc-
m"
0
0
L L'd
3 N
▪ cd
N N
r
O
O
N
0
. .
N .
(O IA
T
O O
0p N
cn to
N N
00
0
0)
0
1
0
N
0
0)
0)
0 t
10 0
a`)
M
O
O
0
0 0
N N
in al
m CO
N N
o o
'-
a f0
9
N N
L
0
0
v
O I O
co
(0
esi
(00
O
8
O
0
10
0
N
O
0
CD
O
t
8
M
((7
CO
ti
Q
0
N
O
0
0
ti
1�
1'-
('4
(0
ti
CO
O
O
CO
O
CO
0 N
M CO
N
N
O
O
O
(O
O
00
N
J
N. O
ti m h 0.
N N N� N
O
M
O
co 0
0 co
n
r-
04 N
. __.'�: ti
.0:
01
( n.
.0.::0
W.:1.
V'.
a
r
M
d
N
1'-
N
O
O
O
co
O
N
O
CO
0
M
M
O
0
10
CO
10
(0
M
ti
0
0
O
✓ M
O pp r
• N N
N
n
N
O
O
.4:
N
0
crl
O
T
0
o..:
O' _00
m 00
_CL1 42
3 g
J J
O
r
O
0)
f`
N
1.
n
A
N
N
6 O
O 0
tV
O r
T r
I
co 0
n n
N
CC
m
0
ti
N
0
(0
O)_ .A)
N =:N
U)_ (O
co 40
J
(0
U)
O
O
(0 0)
N'
N
N-
01
0
N
0)
N
I0
N
O
.O,
O
N
0
m
O
00
N
10
Q
n
N
O) M
O 03
N N co
(
A
N
Y
t i
0 :
n
M
O
10
0
n
N
10 C
N
d
O
0 O
0 0 0
O O O
CO 0
ti 6
N N
N
d
n
N
00
N
r-
N
O
a
M
N
0)
O
O O
6 6
O T
r r
N g
)� 0)
( 1'))
J
CO
CO
N
N
O
N
O
0')
ti
N
.4.
O
): °>,
O • .
LO •
ti '
1!)
O
csr
T- • ;
CO 10
N
(0
N
N
• • 4
N N
0
00
N
O
a
n
N
(0
8
40
')
O
O
O
O
�1
N '
O
M
N
O
0
r
0-
' V
J J.'
(
✓ r
O O
0 CO el
O ▪ 0 T
00
N
00
N
CO
M
O
O
10
0
n
N
O
v
0)
M
d
0)
M
M
a 0
O
co
N
O
N
O
0)
R
N
CO • 0 N
N N N)
O O O
O 0
a0 0 O Q
n N co C O
N N N
0
N
0. ti
N N N
• 9
c0 c0
N N
0 . 0 0
O O
(0 l
co
d
6
1-
N
(+)
O
O
N
0 0 0 0
CO CO CO CO
n 0- r- r•
N N N N
10 O)
co .1
u, ,
ti N a0 N
(O 0� T ►�
0 --
O 0) - N
• N
A N N O
CO O 0 0
(0 0) 0) 0
N n 00
N N N N
co
N
N
u1
N
N
O
CV
N
N
° o
0
�
8
6
f\
N
co
N
O
N
N
N
co 0)
6 6
n ti
N N
N
Cq
CO
04
N
O
O
N
o O
r
N N
O
v ,
CD
(0
0
3
J
O 1
O)
0
0 0
N
a
(- O
m
I` N
N • N
(0
M
0
0
0
0
N
cm
N
0
O
m
4-
N
a
0)
(')
d
: 0
• 0
0)
a
O )
0
0
O
ti
07
O
O
N
-1
n
O
O
V
O
CO
N
co 0.4
• r-
0* a) ai
ti ti ti
N N N
O N
8
0 O
N
CO N
O o
ICY CO
(D 0
o,
r
0
dZ9 :Z0 o . OE Jen
'U
t
O '
il:
ar
lh I
O
N
t0
O
�
� (O
G
C9
O
O
00
C
to.
0
NAM
4:?
O
CD
O
O
CD
C I
'
6006
N I
'P
c.1
d
V "
I
1
f+
co
r
O
61
. — I
C -O
N
.0000
co G
6+
M
cO
CO
M
1.
N
to
co
N
I
N '
V
O
V '
d
O
uoII—
v •
t J
.4-
Id
N
O
COI
N
O
N.
N
O
CO
o)
d
0)
N
d
—
' O
a
I—
..
-
.. __
—
..
d
Ni
C"1
N
U)
N
N
0
OD
C7
CD
c1
CO
to
N
in
r
4
O
N
N(
U)
CO
N
I`
O
M
C
n
01
r
N
CD
d'
N
O
N
m
N
d
M
RI
C O
el
co
CV
,
V'
0
C)7
h
d
O
p
0)
'7
0 co
h
C )
N
n
I-
r
d
r
to
d
V'
O
tCyy
tD
''
M
C)
O
d
.
O
M
r
go
N
CC)
.-
el
N
h
r
cO
CV
co
CO
0)
U)
O
d
N
M
r
4'
op
co
d
N
u7
(00r
Ch
d
co
d
N
O
CO.O
v
:
0
Q
LL
..:
m
h
O
M
Nr
M
CO
P
N
r—
0
t D
co
N
0
Cn
(
CA
CD
-
N
4'
O
O
co
N
••
r
a i
N
c7
M
Ca
st
d
N
M
h
co
r)
ri
co
M
CV
N
co
u)
O
a0
co
d
,.
co
co
U)
O
0)
(0
0
d
P
h
00
h
CO
4 '
00
O1
CO
h
Ili
oo
14'
h
CL
T
)C1
N
d'
In
. N
h
h
N
N
IA
U)
el
CV
;3
M
CO3)
ri
d
CC)
C
d
(O
el
I _ Imo loft:
(S1
c0
CO
Cl
O
C)
e1
0
O
P)
N.
O
d
M
M
N
CO
h-
e'1
eb
�-'
Ch
N
)
e7
U)
h'
Cl
8
e)
co
N
C'7
I-
N
CO
d
N
r)
co c0
CAF e]
r r
d
d
C)
-
r
CO
d
V
`,13
4
O8
d
c
V'
U5
e7
C!)
C7
CO
cc;
CD
r
V
O0
01.
N
cV
00
C"
(`!
(uiul ,
co
N
N
8
O
C+7
CO
CO
0
0
O
N
CO
o
0
0
o
CO
O
O
r
0
0
N
O
CO el
.-
0
6
N
N
O
.-
0
6
h
0 01
0
0
6
N
0011
0
0
6
CO
N
O
C
o
0
6
0)
C))
M
c
0
0
CD
O a
M
o
0
0
CC)
O
O
0
0
N
0
to
o
o
0
0
CD
O
Co
O
0
O
CA
7
CO
O
0
0
CO
000
O
0
0
)
0
O
o
0
00
N
N
N
0
h
r
0
h
d
N el
r
0
CO
to
r
r
0
O
LO
el
el
0
O
m
CO
el
0
0
O
h
CO
M
0
0
O
U)
O)
M
O
0
O
h
0
o
0
. O
N
I,
0
0
O
co
N
O
0
O
^91)'0
N
r
co
01
.
N
e30
N
C
co
NI
co
CV
co
CV
cos
N
oo
CV
co
CV
co
N
W
6
co
N
Or
m
c0
N
CG
co
N
CC
a0
N
co
..
co
..
co
..
CO
..
CO
..
CO
CO
co
e7
h
C V
co
01
(0
co
O
N
4
N
CO
N
N
S`M 1!J5
(4)
281.191
Q
C0
N
CD
c0
N
h
OD
N
O
(0
N
Co
m
N
(00
m
N
109'99Z
C
O ui
N
co
C
N
c0
N
CO
01
Z£'99Z
1 288.55
r 288.43
1 S'M:,
1 (4)
19z
M
M
co
cr
to
co
to .
U)
r
�
O
cO
r
co
O)
OD
CO
N
1 Yl'1+9Z
to
0
m
co
0
d'
(D
co
(0
d
co
co
N
h
CO
co
c
C
C
i co
co
co
co
co
co
M
0
03
N
P)
03
C')
CO
O
0
(O
N
N
N
Di
N
6£'692 1
1MId El f
CV
CV
CV
cv
CV
cv
N
N
282.00
co
O
03
N
o O
c0
Cs
o
CV
o
c0
N
o
04
N
00'99?
00'99Z
00'99Z
1091.301
101'519
1091.301
439.40
676.401
10b'6£b
r0£' 4601
Ob'919
01'51 1
I 676.40
01.'$19
M
O
O
0
M .
4'
Or
r
cD
7
m
CO
All ;OJdi
xA01,
J) 0OI•
r'. • ; . JA0o5
Ak0(..
1
:JJl00
1 • ?J1005
�Aao%1
1, 1A005
JAot
JAa 1
JAG S1
' JAOQ�I
J,ioogl
•JA0I1
J,'0s1
J.AOOlj
1 31 1 s JBA1U
:ia , ' 9£11
2441
ttitb
B6Gl`"
9 t14 1 '-'
SSZd
•SSRj
ssul
, ,: • L:99� I
LBSZ"1
1952
f:
s'oaa
9beaj
- 9�BZ
L;to£ I
dVQE1
1 49890 ' it .1
..
JaAdoy l
"J�M
•6AA01
JaMd -j
jaMO,J
Jemoll
ILOwet ......-
I
J8M0 � I
12MO L
flower
_.
Jowl
JaMw1
J9M01.1
.J2nno i
JeMoI
JaMoil
!Lower
• JBMQ'i 1
ianno�
1
gvd
d£9:Z0 o 0£ Jen
1.43 6rpno,A.
10E11
0V0
1/4'0
1 LE '0
EE•0
sc . ()
IS 4 '0
toolM,dp,t„.
1' •
1P01.94
I 96'LEE
400.17 1
160'En
ILE 141.
Icz•ort.
1.
11046
18996
4 4' 40 1.
124.30
L9'96 L
VZ17'91-
,E0•17gZ
99'ZSZ
VZ'OOZ
I ai V ma id
199'999
19V5SIZ
420.761
19E' L99
190-az
199'99Z
91.1r6Z
09*Z9Z
109'1,9 L
--
11
oircez
0.000749 1.76 396.98
E.G..S1ppe j Vel Chnl
swz
Ist
1 zoz
10Z1
199
lovz
risz
Ira
ire z 999100
0.001711 3.281
0.001443 ;
1 Lzz
o.00nisi
0.0028711
0.000453
£9L0000
09E1.00'0
1£6'69Z
; 017'69Z
P.-
I
a
Ltr'06Z
601.6Z
9906Z
. l6
1 29074
8926Z
290.94
LS' L 6Z
1 293.10
_ _00
sgiusz
288.81 1
1
289.371
I co.Lez
ov.Laz
1
_ .
290.04
09'69Z
RE88Z
96 ; 176'Z6Z
1
W.S. Ele4T1
10L'69Z
LS'613Z
0669Z
290.38
Isc
1to ouz
£1.16Z
4906Z
LZ'16Z
1.1716Z
6Z' L6Z 1
Min Ch El 1
- t
676.40 286 001
. ,
439.40; 285.921
286.00
oo-eaz
288.00
00
0099Z
99" /.13Z
99'Ln
99
1 288.00
288.00
00'99Z 1
II
1 • •
(s1
Ote9L9
10E' L60 1
439.40
615.10
01.7'9L9
0E
439.40
676.40
1091.30
pant no 1
615.10
0£'1-601. 1
el 9 jaAl.H.
JA00g! kir , : , Apoz•
1 • • •
JL.09 = 0I ZE
. .
. 1m;
JA09 9LEU;
:4489!
•
• ...rApoL LESE.1
- •
• .1,911. • • , -ass
‘ , ; .JM.I.S I :•:CLVU I
t. • , ;7!Ac i0 . 1 ''1 1.. r. • Z49E-
• - .
JA01.1: ; 09LE
!I■091; 09L£
A009!' 09Lt;
ES8E:
1
JAo „ p6c
• JA09 , „ , 99
55
• 996£
• • • • • •••LE9E
.„ .
1
•-•• • e I _•••• "7
1 •
.1194$M1U
tower
JUPAU
I ; MU 1
1 • :J9.?v
j
1 . Jegell
. •
Lower
.L
Fii0;F
Lower
-MAW II
• ..•
•
!Lower • TT
JS.i I
1Lo1.46r
6 l'd
db9:Z0 0 l OE MA
LU
a)
CD
0
ca
ad
co
co ea
a) DI
0) .-
04 DI
0 CI
o 0
0
0
a
CV
L O.
0)
L0 .
ao
co
CJ') •
:
6 o
N
rs-
0)
an
CV
.
0)10
4 ID
7 3 t )
0) c•
CI as
(4 (4 N
Nt (0
ea CI) 03
Co 0) 0
CV , N
,c0.
0
rs.
(0
a
1.;
01
a)
Lf
8
a a
O 1 ▪ ' CO)
01 -.C.1
(NI
0
co
0
0
v-
Di
co
c.)
7 r.
01
01
14)
1.0
CV
(6) 4)
N LO
CV CV
01
N
('4
73; )
N N
0)
CV
0,
0,
0 0
v
0 0
4 CD
CO
DI ('4
N. V
6 ai
v. co
04 Di
g scr N
0.) co co
Q.
LO
ID
0)
7:7)
cci
co
0)
6 ,
CO 0)
N
• ca
.0
"e)
0
CE
•.11 _.I - 7 s;
0
cq
b
LO
Di 01
01
CV CV
co
co
es)
0 0
ts-
0 0
0
I cy
N . N
6 ' 6
8
8
01
CT)
CV
0,0 0
; o q 0
O o
cv
CI
V>
cso
6.4
(‚9
O.1
0)
(V3
V> -ty
(‚14 (4
6 6
‘11
LO
03
CV
14)
CV
( 6)
•■••
cm CV
L
o ooOY
E
co
0)
LC)
0
0)
(9 (9
0 0
N N
a)
8
0 0
6.1
ns.
0 0
• •
•
a, • r. . t
N
Cs.
0 an
ns
• tri
a) 0
CV 01
(0
e••
8
cv
ao
cr)
03
CV
v-
01
( 6 )
co
a)
cv
ri
(4 (9
‚1 (4
N
a
CV Cv
CD (0
CO CO
Cr) 0)
N CV
('1 0,
N
C GN
04 IN
0 0
C
'Tr CO
8 8
6 6
1.11
0)
0,
(9 (4
• 0,
CV RI
CO
0)
CV
0)
0)
CV
V> .•••
CO
N
N N
60
In 01
• •
DI
P-
4) co)
04 01
N.
04
a)
co cv
s- 4 0
O 0 0
0) 0) at
N N N
00
0
01
• OV
0
N
cc! 0 r`l
03
0
co
10
0)
N D.
4 4
a) C)
DI DI
0-
N
0
U")
(6)
to
0)
an'
CD
CV
8
6 o
(0 (6,
it? q
a
CV CV
CO
01
CV
0 o
q
(4 CV
GI 0)
N
0'
.4-
(0 s-
r, an
o
4 0
60
—
60
N
14
(0,
CO
(0
tr1
cv
E. E.
• 9
0 o
v
Lil
CO
Lr;
01
8
0)
60 60
0 --
0 (0
co)
0)
0)
(0
o)
o
LO
('4 Lf)
CV CV
a- CO
cc; • cc;
a I a)
(4 (4
t7 (6) - co %CI CO
CV T r-
tO
• scr`
(so co
cv
u,
8
r-.
(0
0)
cv
CV
0)
8
0)
V
W
0) o un
C C I N
• u,
VI V) V) VI
ul u . 1 0 c.0 0; „I N
cv .04 04 cv
0 •
N
(0
C4
CV
CO
CO
0)
CV
• P- I'-,
N. N CO
6
a) a) a) 0)
N N
00
0 . 0
4 4
0) 0)
NI N
0 n
V. (6)
CD T
r 0
(0 0
di7g:ZO Ol o Jen
I4_#
*T3
L"
16 1:0
1
I sto
167:0 -
r&Y) 1
£TO
ZS•0
1cc
rivo
' Topt VVidth 1
L (u)
• 1
1 . £P - 964
£01
ISZ'ZI7Z
04'91Z
is rsgu
isc
I-V
Q .
U.
ao
N
In
r
4-
*O ■
I.7 :
v
O -
N
v5
co
CCV�
N
O
Cn
CO
Q
O)
N
N
CO
K) co
CO CO
r M
Cl.
'a' V'
O
N
1.0
In
N
CO
00 .
`S'r'
N
to
C
cfl
C•) :
CD
a
co
CO
C'e7
N
CO
CD
C
O
If)
O :
N :
0
CV 1
CO LO
ID rn
ti CO
v•• N
CV CO
N
CO
M
03
r•
CA
CD CO
CD vi
CO N
N N
1.-. I
CD
N
CO
CO
" -
C
.0
V _
0)
In
CO
CC
Cp
N
co
00
C'7
LO
CO
04
e-
r
, In
)
co
4-
IA
o
N
0D
n
r
o
N
CO
o
CV
LC)
In
N
lf)
co
N
CO
o
co
N
.-
vi
C'7
CO
vi
CO
C')
N
n
CO 0.
N
a...
ri
- -
. ..._
[1.;
O ._
uJ
C.)
CO
0)
'Cr R_
0
O
O
CO
0
ci
O)
O
0
CO O
0
o
t.
0
CO
0
CD
o
a
N
D
S
0
0'
CO
V
O
o
• 0
o
CO N
t` I\
O CO
0 0
0 0
O o
Q)
N
M
0
O
ci
"or
CO
N
0
O
0
N
N
N
N
0
O
o
CO
h
CO
N
0
O
0.
CO
CA
r
CO
S
O
C0
V)
N
CO
0
O
r
f-
CO
0
o
CO
O)
In
ti
0
C7
,
O
O
C)
Lo
O
O
N-
CO
ai
N
M
M
CO
In
O
O
IA
CO
ai
CO
r
h
CO
to
O
O
CO
Q�
N
Cn
O
O
-
d .
CD
lL '
N
CO
t;
N
.e4
Cn
r.
N
CO
r.
CO
M
D
m
N
O
co
O
CO
003
03
CO
(0
CO
co
'r.
N
co
01
cO
In
03
CD
N
CD
cd
m
O
r
c)
CH
CO
I
co
CT
d'
O
w
N
N 0
r: CO
Oi ' ai
N CO
'?
r
o)
0)
O)
r
o
0
CO
7 . V .
C
C.)
O
I.
CO
N
N
n
O)
N
C
>`
CT
CV
N
N
•v
N
CO
N
Q
0)
CO
I-
N
03
N
0)
N
CC)
N
1 oo
N
f`
n
n
)
1./.1796Z
r0
298.891
66 _j
col= 1
I
C�
o
J
296.00
0096Z
Q
ti
O
N
C
ti
O
N
-.1.
ti
O
N
n
0)
N
'
CO
1
1
1
101;91,0
0V9L9
1091.301
615.10!
I_ _I
104319
0E16%
1315.10
o:•i.00i
ver: AZ rceaci
":ProfitrEI
-
JA004:
1
.51.AOL
Axog]
• - -iAoogl
JA00;-1
-r)l0091
1 i; .r.:99Z9
1 ' 'Lqi:99Z9
'
600:
Li;
;• • •• 6e99.•
M
0)
P :• �9gl
" • E699:
; •
• 699
: i;.• •
: 44.991
*1419
0 :k
1
Lfl
'
1469
:6$3
. 1369
I
HEC-RAS
I:. JOIN)] I
LL
L Je
Y9
[.; • • .• •
J°!'s
JOiJ
Jpm0
: Jaivoi
Lower 1 1,
Lower : *
Lower
' • n0011
1 Lower
1 7'd
dGG:zn nl ns. Jew