Loading...
HomeMy WebLinkAboutDrainage ReportDrainage Report for Castle Rock Subdivision Phase 6 Castle Rock Parkway Extension College Station, Texas March, 2010 Engineer: Schultz Engineering, LLC TBPE Firm No. 12327 P.O. Box 11995 College Station, TX 77842 2730 Longmire Drive, Suite A College Station, Texas 77845 (979) 764 -3900 Developer Greens Prairie Investors, Ltd. 4490 Castlegate Drive College Station, Texas 77845 (979) 690 -7250 ENGINEER SCHULTZ ENGINEERING, LLC P.O. Box 11995 College Station, Texas 77842 Phone/Fax: (979) 764 -3900 OWNER/DEVELOPER Greens Prairie Investors, LLC 4490 Castlegate Drive College Station, Texas 77845 Phone: (979) 690 -7250 GENERAL DESCRIPTION AND LOCATION Location: Castle Rock Subdivision, Phase 6, is located on the north side of SH 40, William D. Fitch Parkway, near its intersection with Castle Rock Parkway. Description: • Area: • Proposed Land Use: • # of Lots: • Existing Land Use: grazing • Land Description: Adjoining Land Use: Primary Drainage Facility: Flood Hazard Information: FEMA FIRM: Floodplain: Castle Rock Subdivision, Phase 6 Castle Rock Parkway Extension Drainage Report — Executive Summary 9.019 acres PDD- Single Family Residential 33 lots Agricultural — consisting primarily of a wooded pasture used for cattle Rolling terrain that falls north toward Spring Creek. The site was heavily wooded. The site is bounded on the south, west and east by Phase 5 and 6 of the Castle Rock Subdivision and on the north. Phase 6 also includes the stream crossing of the Spring Creek tributary by an extension of Castle Rock Parkway. This street extension will start at the end of the street in Phase 2B and extend to a 19.74 acre tract located to the west of the Castle Rock Subdivision. Adjoining the street extension on the north and south are riparian buffer areas which are owned by the City of College Station. Spring Creek # 48041CO205 D (February 9, 2000) A portion of this Phase lies within the floodplain of Spring Creek or its tributaries. HYDROLOGIC CHARACTERISTICS The existing site was predominately wooded. The elevations range from 271 to 281, sloping generally in a northly direction where the runoff enters tributaries of Spring Creek, which ultimately flow into Spring Creek on the adjacent tracts. Page 1 of 6 The Castle Rock Parkway extension portion of the project crosses a tributary of Spring Creek in a location previously approved by the individual COE Permit No. 199700476 which was acquired for the Crowley tract. The tributary drains to the north and the ground elevations in this area varying from 273 to 282. GENERAL STORMWATER PLAN The drainage plan for the residential portion of the development will involve the installation of inlets, junction boxes, storm sewer pipes and drainage channels for 3 separate systems, 2 of which will discharge into existing ditches and 1 which will discharge as sheet flow at the Subdivision boundary of Phase 6 of Castle Rock. These ditches are tributaries of Spring Creek. The system on the northwest portion of Phase 6 will connect to existing storm sewer pipes which are being constructed with Phase 4 which also collects the runoff from existing storm sewer systems constructed with Phases 1A, 2A, 2B and 3. The proposed storm sewer system on the east end of the Phase will connect to a storm sewer pipe constructed with Phase 5. The drainage system for the center portion, Rocky Oak Court, will consist of a proposed channel from the street cul -de -sac to the Phase 6 boundary. There will be 2 storm sewer systems for the extension of Castle Rock Parkway. One system will connect to the existing storm sewer pipe constructed with Phase 2B and extend the storm sewer piping through 2 inlets on the street and then discharge into an existing drainage ditch. The second storm sewer system will collect runoff from a low point in Castle Rock Parkway on the west side of the stream crossing. The runoff will be conveyed by storm sewer pipe to the box culvert structure at the stream crossing. The pipe will also be extended past the end of the road to serve the future development of the land to the west of the stream crossing. The service area for this pipe is not known, but it is estimated that a 48' diameter pipe will serve the adjacent property. The detention pond for this proposed development is located downstream of this development, on Spring Creek, adjacent to SH 6, on the Crowley Tract, which is being developed as the Tower Pointe development. COORDINATION & STORMWATER PERMITTING This project is under a Department of the Army, COE, permit number 199700476 for which the completion date has been extended to December 31, 2011. The project will require that a Notice of Intent be submitted to the Texas Commission for Environmental Quality. No other permits are anticipated for this project. DRAINAGE DESIGN General Information: Stormwater runoff from the residential portion of Phase 6 of the subdivision will be collected by 2 separate systems which discharge into existing ditches and 1 system which will discharge sheet flow at the Subdivision boundary. The system on the northwest portion of Phase 6 primarily carries the runoff from previous Phases including some of Phase 4 while the system on the east end collects runoff from the east end of Phase 2A and Phase 5 and from future development areas of the Subdivision. The location of the drainage areas for evaluation of the gutter depth check, inlet sizing and pipe evaluation are shown on Exhibit Page 2 of 6 Street Design: 71 Methodology: T� Minimum Design Storm Event: Pipe Materials: Manning's n Value: Runoff Coefficients: Design Constraints: Design Results A. Also shown are the location of the inlets, junction boxes, storm sewer pipes and channels. The drainage system for Rocky Oak Court is a drainage channel which will convey the runoff from the street through an open area of the curb and then discharge it as sheet flow at the Subdivision boundary. Standard cross - section (3.33% cross - slope, 27' B - residential) Laydown curb & gutter on residential streets Standard cross - section (3.15% cross - slope, 38' B - B Collector) Standard curb & gutter on Castle Rock Parkway Asphalt pavement Standard recessed curb inlets (5' and 10' in length) TR 55 10 minutes 10 -year - residential street & storm sewer Corrugated HDPE w /smooth interior, RCP, Profile Gasket in accordance with ASTM C443, ASTM C78, Class III 0.013 0.60 for developed lots Max. water depth in curb = 4.0 in. or 0.33 ft. - Residential Streets Max. water depth in curb = 4.5 in. or 0.375 ft. - Castle Rock Parkway Min. flow velocity = 2.5 fps Max. flow velocity = 15 fps 100 -yr storm runoff maintained within the ROW (4 inches above curb) Design Software: Excel spreadsheets, DODSON HydraCalc Hydraulics This software was used to compute pipe capacity, flowrate and velocity through each pipe, and determine hydraulic grade line elevations at each inlet or junction box. All of this information is shown in the summary tables in Appendix E. The College Station requirement for a 25% reduction in cross - sectional area of pipes less than 27" diameter is achieved by using internal pipe diameters that are less than the standard diameter. The 24" diameter pipe areas were reduced by 25% and a 20.6" diameter pipe used in the analysis and the 18' diameter pipe areas were reduced by 25% and a 15.6" diameter pipe was in the analysis. The data presented in the Appendices indicates the gutter depth, inlet sizing and pipe sizes are in accordance with the requirements of the design guidelines. Page 3 of 6 The design analysis using Manning's Equation of the proposedchannels is as follows: Channel 1 — Rock rip rap lined channel 8' BW, 2H:1V side slopes, 0.5% slope, n =.024 Q10 = 73.05 cfs depth of flow, d = 1.45', Velocity, V = 4.62 fps Q100 = 100.57 cfs depth of flow, d = 1.73', Velocity, V = 5.07 fps Existing Channel Downstream of Channel 1— Grass and Brush lined natural Channel 6' BW, 3H:1V side slopes, 1.0% slope, n =.040 Q10 = 73.05 cfs depth of flow, d = 1.67', Velocity, V = 3.97 fps Q100 = 100.57 cfs depth of flow, d = 1.96', Velocity, V = 4.32 fps Velocity in rip rap lined channel does not exceed the allowable velocity of 10 fps for rip rap and the velocity in the existing channel does not exceed the maximum velocity of 4.5 fps for grass. Channel 2 — Section 1 - Concrete lined channel 8' BW, 4H:1V side slopes, 1.0% slope, n =.014 Q10 = 6.99 cfs depth of flow, d = 0.22', Velocity, V = 3.58 fps Q100 = 9.43 cfs depth of flow, d = 0.27', Velocity, V = 3.85 fps Channel 2 — Section 2 - Grass lined channel 8' BW, 4H:1V side slopes, 1.0% slope, n =.030 Q10 = 6.99 cfs depth of flow, d = 0.35', Velocity, V = 2.12 fps Q100 = 9.43 cfs depth of flow, d = 0.41', Velocity, V = 2.39 fps Velocity in concrete lined channel does not exceed the allowable velocity of 15 fps for concrete and the velocity in the grass lined channel does not exceed the maximum velocity of 4.5 fps for grass. Existing Channel Downstream of Pipe 611 — Grass and Brush lined natural Channel "V" Bottom, 2.5H:1 V side slopes, 1.0% slope, n =.040 Q10 = 54.21 cfs depth of flow, d = 2.35', Velocity, V = 3.93 fps Q100 = 73.91 cfs depth of flow, d = 2.64', Velocity, V = 4.20 fps Velocity in the existing channel does not exceed the maximum velocity of 4.5 fps for grass. The design parameters and evaluation of the box culvert structure are provided in a subsequent section. Page 4 of 6 Applicable Exhibits: BOX CULVERT DESIGN — CASTLE ROCK PARKWAY Structure Exhibit A — Drainage Area Map Appendix A — Technical Design Summary Appendix B — Drainage Area Calculations Appendix C — Depth of Flow in Gutter Summary Appendix D — Inlet Design Summary Appendix E - Pipe Design Summary Appendix F - Channel Design Summary Appendix G - Box Culvert Design — HEC -RAS Summary The Castle Rock Parkway crossing of the tributary of Spring Creek, referred to as Reach A2 Lower in the LOMR, requires a multiple section box culvert. The proposed structure consists of 6 concrete box culverts each with a 10' span and 5' rise. The design analysis of this structure consisted of adding the structure into the existing HEC -RAS hydraulic computer model and determining the headwater on the culvert structure as well as any change in the water surface elevation of the stream for the 100 -year storm event. A LOMR for Spring Creek and its tributaries has been submitted to FEMA. This LOMR was prepared by Walter P. Moore and Associates. The hydrologic and hydraulic data and analysis used for this project is the same as the LOMR with the addition of the culvert structure and some field survey data cross sections near the structure which were also added into the HEC -RAS model. This section of stream was determined in the LOMR to have a 100 year storm peak runoff of 638.8 cfs for the existing conditions and 676.4 cfs for the ultimate development condition. These are the flows used in the HEC -RAS model. Stream A2 Lower HEC -RAS Analysis of Proposed Box Culvert Max Water Surface Elevations Stream Existing Existing Ultimate Ultimate Sta. Condition Condition Condition Condition w /Culvert w /Culvert 488 278.40 278.40 278.75 278.75 944 280.21 280.29 280.26 280.33 The box culvert structure increases the 100 year water surface elevation approximately 0.08 feet in the stream channel for both the existing and ultimate development conditions for the nearest upstream cross section evaluated in the LOMR No change was determined for the nearest downstream cross section. The upstream flowline of the box structure is 273.68 and the top of the street is approximately 282. The maximum water surface elevation at the Page 5 of 6 DETENTION DESIGN General: CONCLUSION CERTIFICATION I, Joseph P. Schultz, Licensed Professional Engineer No. 65889, State of Texas, certify that this report for the drainage design for Castle Rock Subdivision, Phase 6, was prepared by me in accordance with the provisions of the Unified Stormwater Design Guidelines. upstream end of the culvert for the 100 year storm is elevation 278.66. The water surface is more than 1 foot below the street surface. The outlet velocity for the box culvert structure is 2.15 fps for the 100 -year storm event. Stormwater runoff from Phase 6 and all previous and subsequent phases of the Castle Rock Subdivision flow into Spring Creek upstream of the regional detention facility constructed in 2001. This facility was designed to control stormwater releases from the Castle Rock Subdivision and other adjoining properties. No additional detention facilities are provided with the development of this project. Based on the concurrence with the previous design calculations from Phases 1A, 2A, 2B, 3, 4 and 5, the drainage system in Phase 6 of the Castle Rock Subdivision will function within the requirements and restrictions of the College Station Drainage Policy and Design Standards. Josep /' Sc ltz, P.E. Page 6 of 6 n EXHIBIT A Drainage Area Map APPENDIX A Technical Design Summary Part 2 - Project Administration Start (Page 2.1) Engineering and Design Professionals Information Engineering Firm Name and Address: SallAtt r (te2in9 f u • pvx \\has Co \ e (t 1-Y 11'a 41 Jurisdiction City: Bryan ✓ College Station Date of Submittal: /Vla rcki 20 Lead Engineer's Name and Contact Info.(phone e-mail, fax): )oc,{ On 4 ScM t-tt , j ot5tvI ti1t-T s4 i lYi - tov..nt.1 - Pkovtt u4 Fax:1t.ek 1a Other: Supporting Engineering / Consulting Firm(s): Lo-v- - aiiP O0 prep 10 -1 1. p. ilf\o or e f f foe. F-+c .i Other contacts: Developer / Owner / Applicant Information Developer / Applicant Name and Address: br -G✓ts pga,ktit In > L1- 11-410 castm cast k i t , D'K 1 J t- , Col RI C 51 -tt11m TTC 1 /6 Phone and e-mail: Lea b •'136 N a t i a u p 1, v 11; i 5 e, ytr itn.Yu+ Property Owner(s) if not Developer / Applicant (& address): S tt - vi 81,6 pCY1, to pti✓ Phone and e-mail: Project Identification Development Name: CGlS -Vit V.2o G)- S109d11 jS'\ coin pytat S-e. Le Is subject property a site project, a single -phase subdivision, or part of a multi -phase subdivision? r(4 - \-) Vlaca?. If multi - phase, subject property is phase 1 of q . Legal description of subject property (phase) or Project Area: (see Section II, Paragraph B -3a) ' J ACIS 0w\ - VOVe -i S1t,Ytvtso S0.)/4)", -54 1,011 If subject property (phase) is second or later phase of a project, describe general status of all earlier phases. For most recent earlier phase Include submittal and review dates. ?VLw4c5 1 A - , W,, 1 c, 1 2A- , l- i3 4 ow c pttc, V h w4,(h I S ,vots..12 cnn St-f-u.Lb o-rs- General Location of Project Area, or subject property (phase): 11C , t \ i a m D • v-illAn Pa o k v , ) a,1i , N& o e o F Ca Si lie In City Limits? Bryan: acres. Extraterritorial Jurisdiction (acreage): Bryan: College Station: Acreage Outside ETJ: College Station: Sa' 'S" a' 1 acres. SECTION IX STORMWATER DESIGN GUIDELINES Page 3 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 APPENDIX D — TECHNICAL DESIGN SUMMARY Effective February 2007 Part 2 — Proiect Administration Continued (page 2.2) Project Identification (continued) Roadways abutting or within Project Area or subject property: v\i ,‘w cum h • F h Pk-WI Cacpii- $, +pcy_ pWrv1 Abutting tracts, platted land, or built developments: Phu.4e s 4 a-s Pha)es I A 4 ZS Named Regulatory Watercourse(s) & Watershed(s): P zr Law4-- - Az Lnw Tr: 6.,� -ti.7 Tributary Basin(s): S p 0 , rk C u-lt- Plat Information For Project or Subject Property (or Phase) Preliminary Plat File #: 1 b" 00 0 0 le Final Plat File #: — Date: — Status and Vol /Pg: Sikh vyti Alm Vs 1114 10 Name: 6otetlt I Svn. Ol i 5; en" If two plats, second name: File #: Status: Date: Zoning Information For Project or Subject Property (or Phase) Zoning Type: ?OD xisting 'r Proposed? Case Code: Case Date Status: Zoning Type: Existing or Proposed? Case Code: Case Date Status: Stormwater Management Planning For Project or Subject Property (or Phase) Planning Conference(s) & Date(s): N /lI Participants: Preliminary Report Required? NIA Submittal Date Review Date Review Comments Addressed? Yes pl f /� No In Writing? When? Compliance With Preliminary Drainage Report. Briefly describe (or attach documentation explaining) any deviation(s) from provisions of Preliminary Drainage Report, if any. Nit SECTION IX STORMWATER DESIGN GUIDELINES Page 4 of 26 APPENDIX. 0: TECH. DESIGN SUMMARY As Revised February 2009 APPENDIX D — TECHNICAL DESIGN SUMMARY Effective February 2007 Part 2 — Project Administration Continued (page 2.3) Coordination For Project or Subject Property (or Phase) Note: For any Coordination of stormwater matters indicated below, attach documentation describing and substantiating any agreements, understandings, contracts, or approvals. Coordination With Other Departments of Jurisdiction City (Bryan or College Station) Dept. Contact: Date: Subject: (� // Coordination With Non jurisdiction City Needed? Yes No Summarize need(s) & actions taken (include contacts & dates): Coordination with Brazos County Needed? v Yes No Summarize need(s) & actions taken (include contacts & dates): Coordination with TxDOT Needed? Yes No ✓ Summarize need(s) & actions taken (include contacts & dates): Coordination with TAMUS Needed? Yes No Summarize need(s) & actions taken (include contacts & dates): Permits For Project or Subject Property (or Phase) As to stormwater management, are permits required for the proposed work from any of the entities listed below? If so, summarize status of efforts toward that objective in spaces below. Entity Permitted or a Approved . Status of Actions (include dates) US Army Crops of Engineers No Yes ✓ `lpPV+ 1 ND fuatta. kli ern - Pr? -ol ct Corr►pii?s v-, F-L1 -am.; i N o - 1 - 10 1 4 -1 La US Environmental Protection Agency No Yes Texas Commission on Environmental Quality No Yes V ufw.17-A j R., . 4` IS b oo0 M b T tizefott �; 1-LA b,) Cvn+�-.. e. �ri fa_ Q 1n a SC lt i' -wf wne pvI a Brazos River Authority No Yes SECTION IX STORMWATER DESIGN GUIDELINES Page 5 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 APPENDIX D — TECHNICAL DESIGN SUMMARY Effective February 2007 Part 3 — Property Characteristics Start (Page 3.1) Nature and Scope of Proposed Work Existing: Land proposed for development currently used, including extent of impervious cover? g crest — v kcar'.' Site Development Project (select all applicable) Redevelopment of one platted lot, or two or more adjoining platted Tots. Building on a single platted lot of undeveloped land. Building on two or more platted adjoining lots of undeveloped land. Building on a single lot, or adjoining Tots, where proposed plat will not form a new street (but may include ROW dedication to existing streets). Other (explain): Subdivision Development Project Construction of streets and utilities to serve one or more platted lots. ✓ Construction of streets and utilities to serve one or more proposed Tots on lands represented by pending plats. Describe Nature and Size of Pro •o Site projects: building use(s), approximate floor space, impervious cover ratio. Subdivisions: number of lots by general type of use, linear feet of streets and drainage easements or ROW. 3 1.0 1 1 6 1 n' no r -e�, Project Is any work planned on land that is not platted If yes, explain: , — f C .s„Fje ick t= ,iterir :r o Oic,,,7 Ov,'Srt Ai)3Fc` - 7c - or on land for which platting is not pending? No t✓ Yes FEMA Floodplains Is any part of subject property abutting a Named Regulatory Watercourse (Section II, Paragraph B1) or a tributary thereof? No Yes tr is any part of subject property in floodplain area of a FEMA - regulated watercourse? No Yes ✓ Rate Map 46o4l Go2o5p Encroachment(s) into Floodplain areas planned? No Encroachment purpose(s): Building site(s) ✓ Road crossing(s) Utility crossing(s) ✓ Other (explain): FN,b1c `pY&in. 6 Yes If floodplain areas not shown on Rate Maps, has work been done toward amending the FEMA- approved Flood Study to define allowable encroachments in proposed areas? Explain. N /l" SECTION IX STORMWATER DESIGN GUIDELINES Page 6 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 APPENDIX D — TECHNICAL DESIGN SUMMARY Effective February 2007 Part 3 - Property Characteristics Continued (Page 3.2) Hydrologic Attributes of Subject Property (or Phase) Has an earlier hydrologic analysis been done for larger area including subject property? Yes, Reference the study (& date) here, and attach copy if not already in City files. r Dmm — L A erruts in {tr iY..OJ -2-00v Ldrn (2 — Woktkuz, '9 - Ma o It/ a" kSSoLi At{S - 2pbo\ Is the stormwater earlier study? management plan for the property in substantial Yes ✓ No If not, explain how conformance with the it differs. No If subject property plan for the property is not part of multi -phase project, describe stormwater management in Part 4. If property is part of multi -phase project, provide overview of stormwater management plan for Project Area here. In Part 4 describe how plan for subject property will comply therewith. NI ) A Do existing topographic features on subject property store or detain Describe them (include approximate size, volume, outfall, model, etc). runoff? ✓ No Yes Any known drainage or flooding problems in areas near subject property? Identify: ✓ No Yes Based (see Table on location of B -1 in Appendix Detention is required. study property in a watershed, is Type 1 Detention (flood control) needed? B) Al r -Gad1 pRavi Need must be evaluated. V Detention not required. If the need for Type 1 Detention must be evaluated: What decision has been reached? By whom? How was determination made? SECTION IX STORMWATER DESIGN GUIDELINES Page 7 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 APPENDIX D — TECHNICAL DESIGN SUMMARY Effective February 2007 Part 3 — Property Characteristics Continued (Page 3.3) Hydrologic Attributes of Subject Property (or Phase) (continued) Does subject property straddle a Watershed or Basin divide? describe splits below. In Part 4 describe design concept No Yes If yes, for handling this. Watershed or Basin Larger acreage Lesser acreage Above - Project Areas(Section II, Paragraph B3 -a) Does Project Area (project or phase) receive runoff from upland areas? Size(s) of area(s) in acres: 1) 2) 3) ✓ No Yes 4) Flow Characteristics (each instance) (overland sheet, shallow concentrated, recognizable Watercourse or tributary); P VIPtC0 4, 5 4 26 AA concentrated section(s), small creek (non - regulatory), regulatory tX SO Y\9 S-i 4tv■►tl, 1 01St.emS - oi _ 1, ►fi v\ vt.(.d fi1n Ito vlg I^ * i 6 vtiaCf- • Flow determination: Outline hydrologic methods and assumptions: vi ? 1 /1 - Ks1s 4 £1 - f ttb ; r,A- 0"i ev,A- , u 01,6 o'^ titc64 ; v, t) AV i 0 Does storm runoff drain from public easements or ROW ✓ No Yes If yes, describe facilities in easement onto or across subject property? or ROW: Are changes in runoff characteristics subject to change in future? Explain N ° Conveyance Pathways (Section II, Paragraph C2) Must runoff from study property drain across lower properties before reaching a Regulatory Watercourse or tributary? No ✓ Yes Describe length and characteristics of each conveyance pathway(s). Include ownership of property(ies). o (1 Di") 0 02,60.c. bwvw2AK se -k otpi or^-- / CD 111-1. 6 0 4-A4-i SECTION IX STORMWATER DESIGN GUIDELINES Page 8 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 APPENDIX D — TECHNICAL DESIGN SUMMARY Effective February 2007 c' -1 wi4 in,. H,;s skbdivivo' Part 3 — Property Characteristics Continued (Page 3.4) Hydrologic Attributes of Subject Property (or Phase) (continued) Conveyance Pathways (continued) Do drainage easements exist for part of pathway(s)? No any If yes, for what part of length? 0 % Created by? a/ plat, or instrument. If instrument(s), describe their provisions. ✓ Yes Pathway Areas Where runoff must cross lower properties, describe characteristics of abutting lower property(ies). (Existing watercourses? Easement or Consent aquired ?) Ci o w 11.6 0 P4A0 i 1 In t {L u rt o a fi�,�c ;+ e d,iktineS w i1 1 iv s fi D 'am i CPA- k- DR '!zi1�w +nRieS Nearby Drainage Facilities Describe any built or improved drainage facilities existing near the property (culverts, bridges, lined channels, buried conduit, swales, detention ponds, etc). exist; Si Stbv Zyy}.Gvr i rn p g.e v i o t4. S P tnA S-a Do any of design? i b these have hydrologic or hydraulic influence on No ✓ Yes If yes, explain: proposed stormwater Zxk .0 v■.t SAD ?Ann cAw ty_ �'� i vt w i 1 i SECTION IX STORMWATER DESIGN GUIDELINES Page 9 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 APPENDIX D — TECHNICAL DESIGN SUMMARY Effective February 2007 Part 4 — Drainage Concept and Design Parameters Start (Page 4.1) Stormwater Management Concept Discharge(s) From Upland Area(s) If runoff is to be received from upland areas, what design drainage features will be used to accommodate it and insure it is not blocked by future development? Describe for each area, flow section, or discharge point. Si) YYU aF -. N .toAI =vm kAll trw.dy r 5 a l/21-441 1 ° fit" in 4 te, 51 t . . p P-q o va( Sio i2im 54' 1'Di taco:} mitzt a-f' -jam iS c; Rk,51, te0 & Imo. p 4- "44 iS 1-t4;eA c al 1 utit Vint% 1. - \1 Skt.lrn CAWS - 11A1 -No) - - n.CCh t of lit +O5 2aw. 0k ?Vac( -k a— MA SC - Discharge(s) To Lower Property(ies) (Section II, Paragraph El) Does project include drains a features (existing or future) proposed to become public via platting? ✓ No Yes Separate Instrument? No Yes Per Guidelines reference above, how will runoff be discharged to neighboring property(ies)? Establishing Easements (Scenario 1) Release (Scenario 2) of the two Scenarios Pre - development Combination Scenario 1: If easements are proposed, describe where needed, and provide status of actions ( i 0 IN RS ? '�- on each. (Attached Exhibit # )) ‘ i ( nk6 1104" YI,t',lcL -- C Scenario 2: Provide general description of how release(s) will be managed etc.). (Attached to pre - development Exhibit # ) conditions (detention, sheet flow, partially concentrated, Combination: If combination is proposed, explain how discharge will differ from pre - each area (or point) of release. development conditions at the property line for If Scenario 2, or Combination are to be used, has proposed design No Yes Explain been coordinated with and provide owner(s) of receiving property(ies)? documentation. . SECTION IX STORMWATER DESIGN GUIDELINES Page 10 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 APPENDIX D - TECHNICAL DESIGN SUMMARY Effective February 2007 Part 4 — Drainage Concept and Design Parameters Continued (Page 4.2) Stormwater Management Concept (continued) Within Project Area Of Multi -Phase Project Will project result in shifting runoff between Basins or between Watersheds? '� No Identify gaining Basins or Watersheds and acres shifting: What design and mitigation is used to compensate for increased runoff from gaining basin or watershed? Yes How will runoff from Project Area be mitigated to pre- development conditions? Select any or all of 1, 2, and /or 3, and explain below. 1. With facility(ies) involving other development projects. 2. Establishing features to serve overall Project Area. 3. On phase (or site) project basis within Project Area. 1. Shared facility (type & location of facility; design drainage area served; relationship to size of Project Area): (Attached Exhibit # ) V a t / : H e r r ' Paul i5 to c a F , o t ero Cif 6vJ1 - 0 - 1 " F rtti c 4" 01 ' PP at Gip WVISt Ylayr~ * -t%iiS projtct AUAjacl.11.'t kt c {(-Le 2. For Overall Project Area (type & location of facilities): (Attached Exhibit # ) G( DWk1 TYbtd' LID IN/ t v i?0lvv . c - f ' M . t i n " ' " 1 ) 0 , - 4 ( 3. By phase (or site) project: Describe planned mitigation measures for phases (or sites) in subsequent questions of this Part. Are aquatic echosystems proposed? ✓ No Yes In which phase(s) or project(s)? Are other Best Management Practices for reducing stormwater pollutants proposed? No ✓ Yes Summarize type of BMP and extent of use: S1 1t c - i u,. C714 5 1 kn Ex i I , Sea yl1 If design of any runoff - handling facilities deviate from provisions of B -CS Technical Specifications, check type facility(ies) and explain in later questions. Detention elements Conduit elements Channel features Swales Ditches Inlets Valley gutters Outfalls Culvert features Bridges Other SECTION IX STORMWATER DESIGN GUIDELINES Effective February 2007 APPENDIX D — TECHNICAL DESIGN SUMMARY Page 11 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 Part 4 — Drainage Concept and Design Parameters Continued (Page 4.3) Stormwater Management Concept (continued) Within Project Area Of Multi -Phase Project (continued) Will Project Area include bridge(s) or culvert(s)? No ✓ Yes Identify type and general size and In which phase(s). )D4 CA/Lt val — 4 — V It'XS ` ecce LF If detention /retention serves (will serve) overall Project Area, describe how it relates to subject phase or site project (physical location, conveyance pathway(s), construction sequence): 1141 Y IA,Vt D4 FY byvl AI/lt Ctt(I eo ck- p(,CVt.LopY L-4 is co ll-tc14 19q Sto tZvvn VAN 4i\i6 t t S 0 &A Ctrs CtAtAlr� a t;Kit. '�-Y l b i .j--v i C S o . 'spYivti Cr-u. c a &D4 -11Am" ''-1' - Plovus -1-0 ctiA 2tAh m r1 -Foci l; tti Within Or Serving Subject Property (Phase, or Site) If property part of larger Project Area, is design in substantial conformance with earlier analysis and report for larger area? ✓Yes No, then summarize the difference(s): Identify whether each of the types of drainage features listed below are included, extent of use, and general characteristics. Typical shape? Surfaces? ditches use Yes Steepest side slopes: Usual front s opes: Usual back slopes: Flow line slopes: least Typica distance from travelway: (Attached Exhibit # ) typical greatest Are longitudinal culvert ends in compliance with B -CS Standard Specifications? Yes No, then explain: At intersections or otherwise, do valley gutters cross arterial or collector streets? ✓ No Yes If yes explain: Are streets with cu and gutter used; No V Are valley gutters proposed to cross any street away from an intersection? V No Yes Explain: (number of locations ?) SECTION IX STORMWATER DESIGN GUIDELINES Effective February 2007 APPENDIX D — TECHNICAL DESIGN SUMMARY Page 12 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 Part 4 — Drainage Concept and Design Parameters Continued (Page 4.4) Stormwater Management Concept (continued) Within Or Serving Subject Property (Phase, or Site) (continued) Are streets with curb and gutter used? (continued) Gutter Tine slopes: Least 0. °)„ Usual ' 2./ Are inlets recessed on arterial and collector streets? Yes No If "no ", identify where and why. Will inlets capture 10 -year design stormflow to prevent flooding of intersections (arterial with arterial or collector)? ,/ Yes No If no, explain where and why not. Will inlet size and placement prevent exceeding allowable water spread for 10 -year design storm throughout site (or phase)? J Yes No If no, explain. set A p p vvd,i x G Saq curves: Are inlets placed at low points? Yes No Are inlets and conduit sized to prevent 100 -year stormflow from ponding at greater than 24 inches? ✓ Yes No Explain "no" answers. S .Q,L AT pt i X t Will 100 -yr stormflow be contained in combination of ROW and buried conduit on whole length of all streets? ✓ Yes No If no, describe where and why. Do designs for curb, gutter, and inlets comply with B -CS Technical Specifications? ✓ Yes No If not, describe difference(s) and attach justification. Is storm drain system used? No ✓ Yes Are any 12 -inch laterals used? ✓ No Yes Identify length(s) and where used. Pipe runs between system access points (feet): Typical ,r0 ' Longest 1.'1 1 Are junction boxes used at each bend? ✓ Yes No If not, explain where and why. Are downstream soffits at or below upstream soffits? Yes ✓ No If not, explain where and why: Least amount that hydraulic grade line is below gutter line (system- wide): o,81 SECTION IX STORMWATER DESIGN GUIDELINES Effective February 2007 APPENDIX D - TECHNICAL DESIGN SUMMARY Page 13 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 Part 4 — Drainage Concept and Design Parameters Continued (Page 4.5) Stormwater Management Concept (continued) Within Or Serving Subject Property (Phase, or Site) (continued) Storm drain system (continued) (on separate sheet provide same info. for more instances) Outfall(s) Describe watercourse(s), or system(s) receiving system discharge(s) below (include design discharge velocity, and angle between converging flow lines). 1) Watercourse (or system), velocity, and angle? ON( t into 4 Xi S him c h fi n ; vc n t t ><<< ->k-i oft CA&wv tfuL V to = ;.11.-4 , V = it .37. Fps Amitt =oo 2) Watercourse (or system), velocity, and angle? C in YI.Lt 2. 0vrto - (XI`c, I,' b1,6) oiAzot.v.f V lD z`..l Z.'�5 VIDD 22 i.fp5 m,Q,L .r O1 3) Watercourse (or system), velocity, and angle? p t pt, L e t t adw a U o + "WA Mil) t X li nr7 CIAAAVAd X(G li AP) CVlRMYUI, V 10 = 1 M ipS VIvo -At •7w�pN A4,{, 0° For each outfall above, what measures are taken receiving and all facilities at juncture? 1) E ck �t = ".�- - - - �.., 0tt 0 lAt,a w I . 2) Goa tII/ud Crki -Ifl; Li 3) �OC1— p 4 0 ladwate Dui to prevent erosion or scour of l; '0 cl utvl,Ad -- Are swales.used to drain streets? i/ No Yes Are swale(s) situated along property lines between properties? No Yes Number of instances: For each instance answer the following questions. Surface treatments (including low -flow flumes if any): Flow line slopes (minimum and maximum): Outfall characteristics for each (velocity, convergent angle, & end treatment). Will 100 -year design storm runoff be contained within easement(s) or platted drainage ROW in all instances? Yes No If "no" explain: SECTION IX STORMWATER DESIGN GUIDELINES Effective February 2007 APPENDIX D — TECHNICAL DESIGN SUMMARY Page 14 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 Part 4 — Drainage Concept and Design Parameters Continued (Page 4.6) Stormwater Management Concept (continued) Within Or Serving Subject Property (Phase, or Site) (continued) Roadside Ditches Are roadside ditches used? ✓ No Yes If so, provide the following: ? Yes No Is 25 -year flow contained with 6 inches of freeboard throughout Are top of banks separated from road shoulders 2 feet or more? Are all ditch sections trapezoidal and at least 1.5 feet deep? Yes No Yes No For any "no" answers provide location(s) and explain: (on separate sheet provide same information for any additional instances) If conduit is beneath a swale, provide the following information (each instance). Instance 1 Describe general location, approximate length: Is 100 -year design flow contained in conduit/swale combination? If "no" explain: Yes No Space for 100 -year storm flow? ROW Easement Width Swale Surface type, minimum Conduit Type and size, minimum and maximum and maximum slopes: slopes, design storm: Inlets Describe how conduit is loaded (from streets /storm drains, inlets by type): Access Describe how maintenance access is provided (to swale, into conduit): Instance 2 Describe general location, approximate length: Is 100 -year design flow contained in conduit/swale combination? If "no" explain: Yes No Space for 100 -year storm flow? ROW Easement Width Swale Surface type, minimum Conduit Type and size, minimum and maximum and maximum slopes: slopes, design storm: Inlets Describe how conduit is loaded (from streets /storm drains, inlets by type): Access Describe how maintenance access is provided (to swale, into conduit): SECTION IX STORMWATER DESIGN GUIDELINES Effective February 2007 APPENDIX D — TECHNICAL DESIGN SUMMARY Page 15 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 Part 4 - Drainage Concept and Design Parameters Continued (Page 4.7) Stormwater Management Concept (continued) Within Or Serving Subject Property (Phase, or Site) (continued) Will swales without buried conduit receive runoff from public ROW or easements? ✓ No Yes. Explain If "yes" provide the following information for each instance: Instance 1 Describe general location, approximate length, surfacing: Is 100 -year design flow contained in swale? Yes No Is swale wholly within drainage ROW? Yes No Explain "no" answers: Access Describe how maintenance access is provide: Instance 2 Describe general location, approximate length, surfacing: Is 100 -year design flow contained in swale? Yes No Is swale wholly within drainage ROW? Yes No Explain "no" answers: Access Describe how maintenance access is provided: Instance 3, 4, etc. If swales are used in more than two instances, attach sheet providing all above information for each instance. Channel improvements proposed? No ✓ Yes Explain "New" channels: Will any area(s) of concentrated flow be channelized (deepened, widened, or straightened) or otherwise altered? No Yes If only slightly shaped, see "Swales" in this Part. If creating side banks, provide information below. Will design replicate natural channel? Yes ✓ No If "no ", for each instance describe section shape & area, flow line slope (min. & max.), surfaces, and 100 -year design flow, and amount of freeboard: Instance 1: CirkAn al l- - 6' 1011 wi4 -1A, 2:1 Sidt.51opt,5 tivad wig Lci- iii? • 610 % a -s°j On = 100.'S` c-FS 1.•,1' - P./19ourii Instance 2: C.i 2 - g` 19T w 01 4: i Sid.4. SIO J kiwi 1,0 ltd- s(opl - i -0 Qtoo = 1.43 cfs O.Sol' - bDGLot Instance 3: SECTION IX STORMWATER DESIGN GUIDELINES Effective February 2007 APPENDIX D — TECHNICAL DESIGN SUMMARY Page 16 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 Part 4 — Drainage Concept and Design Parameters Continued (Page 4.8) Stormwater Management Concept (continued) Within Or Serving Subject Property (Phase, or Site) (continued) Channel Improvements (continued) Existing channels (small creeks): Are these used? No V Yes If "yes" provide the information below. Will small creeks and their floodplains remain undisturbed? ✓ Yes No How many disturbance instances? Identify each planned location: For each location, describe length and general type of proposed improvement (including floodplain changes): For each location, describe section shape & area, flow line slope (min. & max.), surfaces, and 100 -year design flow. Watercourses (and tributaries): Aside from fringe changes, are Regulatory Explain below. Watercourses proposed to be altered? ✓ No Yes Submit full report describing proposed changes to Regulatory existing and proposed section size and shape, surfaces, alignment, length affected, and capacity, and provide full documentation and data. Is full report submitted? Yes No Watercourses. Address flow line changes, of analysis procedures If "no" explain: All Proposed Channel Work: For all proposed channel work, provide information requested in next three boxes. If design is to replicate natural channel, identify location and length here, and describe design in Special Design section of this Part of Report. Will 100 -year flow be contained with one foot of freeboard? Yes ✓ No If not, identify location and explain: 1.40' aF crzetb0ai24 ih OARnIAA 1 Are,ROW / easements sized to contain channel and required v Yes No If not, identify location(s) and explain: maintenance space? SECTION IX STORMWATER DESIGN GUIDELINES Effective February 2007 APPENDIX D - TECHNICAL DESIGN SUMMARY Page 17 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 Part 4 — Drainage Concept and Design Parameters Continued (Page 4.9) Stormwater Management Concept (continued) r oU' - � Cr e-x� .A-i 1 Within Or Serving Subject Property (Phase, or Site) (continued) p ,�.�,{-i ' Pond i How many facilities for subject property project? For each provide info. below. For each dry-type facilitiy: Faci ity 1 Faci ity 2 Acres served & design volume + 10% 100 -yr volume: free flow & plugged Design discharge (10 yr & 25 yr) Spillway crest at 100 -yr WSE? yes no yes no Berms 6 inches above plugged WSE? yes no yes no Explain any "no" answers: For each facility what is 25 -yr design Q, and design of outlet structure? Facility 1: Facility 2: Do outlets and spillways discharge into Facility 1: Yes No a public facility Facility 2: in easement Yes or ROW? No If "no" explain: For each, what is velocity of 25 -yr design discharge Facility 1: & Facility at outlet? & at spillway? 2: & Are energy dissipation measures used? location: No Yes Describe type and For each, is spillway surface treatment other than concrete? Yes or no, and describe: Facility 1: Facility 2: For each, what measures are taken to prevent erosion or scour at receiving facility? Facility 1: Facility 2: If berms are used give heights, slopes and surface treatments of sides. Facility 1: Facility 2: SECTION IX STORMWATER DESIGN GUIDELINES Effective February 2007 APPENDIX D — TECHNICAL DESIGN SUMMARY Page 18 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 Part 4 — Drainage Concept and Design Parameters Continued (Page 4.10) Stormwater Management Concept (continued) Within Or Serving Subject Property (Phase, or Site) (continued) Detention Facilities (continued) Do structures comply with B -CS Specifications? Yes or no, and explain if "no ": Facility 1; ' I I n Facility 2: For additional facilities provide all same information on a separate sheet. Are parking areas to be used for detention? No Yes What is maximum depth due to required design storm? Are culverts used at private crossings? No Yes Roadside Ditches: Will culverts serve access driveways at roadside ditches? ✓ No Yes If "yes ", provide information in next two boxes. Will 25 -yr. flow pass without flowing over driveway in all cases? Yes No Without causing flowing or standing water on public roadway? Yes No Designs & materials comply with B -CS Technical Specifications? Yes No Explain any "no" answers: Are culverts parallel to public roadway alignment? Yes No Explain: Creeks at Private Drives: Do private driveways, drives, or streets cross drainage ways that serve Above - Project areas or are in public easements/ ROW? No Yes If "yes" provide information below. How many instances? Describe location and provide information below. Location 1: Location 2: Location 3: For each location enter value for: 1 2 3 Design year passing without toping travelway? Water depth on travelway at 25 -year flow? Water depth on travelway at 100 -year flow? For more instances describe location and same information on separate sheet. SECTION IX STORMWATER DESIGN GUIDELINES Effective February 2007 APPENDIX D - TECHNICAL DESIGN SUMMARY Page 19 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 Part 4 — Drainage Concept and Design Parameters Continued (Page 4.11) Stormwater Management Concept (continued) Within Or Serving Subject Property (Phase, or Site) (continued) (for more instances of any type describe location and same information on separate sheet) Named Regulatory Watercourses (& Tributaries): Are culverts proposed on these documenting assumptions, that support proposed If "no ", explain: facilities? No ✓ Yes, then provide full report criteria, analysis, computer programs, and study findings design(s). Is report provided? ✓ Yes No Arterial or Major Collector Streets: Will culverts serve these types of roadways? For each identify the V No Yes How many instances? location and provide the information below. Instance 1: Instance 2: Instance 3: Yes or No for the 100 -year design flow: 1 2 3 Headwater WSE 1 foot below lowest curb top? Spread of headwater within ROW or easement? Is velocity limited per conditions (Table C -11)? Explain any "no" answer(s): Minor Collector or Local Streets: Will culverts serve these types � for of streets? each identify the No V Yes How many instances? location and provide the information below: Instance 1: Cith1" v. c:o GI- Qcl,_kANGit. "hi e Instance 2: Instance 3: For each instance enter value, or "yes" / "no" for: 1 2 3 Design yr. headwater WSE 1 ft. below curb top? 100 -yr. max. depth at street crown 2 feet or Tess? Product of velocity (fps) & depth at crown (ft) _ ? Is velocity limited per conditions (Table C -11)? Limit of down stream analysis (feet)? Explain any "no" answers: SECTION IX STORMWATER DESIGN GUIDELINES Page 20 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 APPENDIX D — TECHNICAL DESIGN SUMMARY Effective February 2007 Part 4 — Drainage Concept and Design Parameters Continued (Page 4.12) Stormwater Management Concept (continued) Within Or Serving Subject Property (Phase, or Site) (continued) m c 0 U u) t �j All Proposed Culverts: For all proposed culvert facilities (except driveway /roadside boxes. ditch intersects) provide information requested in next eight Do culverts and travelways intersect at 90 degrees? ✓ Yes No If not, identify location(s) and intersect angle(s), and justify the design(s): Does drainage way alignment change within or near limits of approaches thereto? V No Yes If "yes" identify Iocation(s), culvert and surfaced describe change(s), and justification: Are flumes or conduit to discharge into culvert barrel(s)? No ✓ Yes If yes, identify location(s) and provide justification: A 4" pi () e, P td, 0 h o(a; S C1nt lc i Yt,, '0 ' OK G,�.l. Vt-e -k c Are flumes or conduit to discharge into or near surfaced approaches ✓ No Yes If "yes" identify Iocation(s), describe to culvert ends? outfall design treatment(s): Is scour /erosion protection provided to ensure long term stability of culvert structural components, and surfacing at culvert ends? ✓ Yes No If "no" Identify locations and provide justification(s): Will 100 -yr flow and spread of backwater be fully contained drainage easements/ ROW? ✓ Yes No if not, why in street ROW, and /or not? Do appreciable hydraulic effects of any culvert extend downstream neighboring land(s) not encompassed in subject property? "yes" describe Iocation(s) and mitigation measures: or upstream to ✓ No Yes If Are all culvert designs and materials in compliance with B -CS ✓ Yes No If not, explain in Special Design Section Tech. Specifications? of this Part. SECTION IX STORMWATER DESIGN GUIDELINES Effective February 2007 APPENDIX D — TECHNICAL DESIGN SUMMARY Page 21 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 Part 4 - Drainage Concept and Design Parameters Continued (Page 4.13) Stormwater Management Concept (continued) Within Or Serving Subject Property (Phase, or Site) (continued) (s)a6pps Is a bridge included in plans If "yes" provide the following for subject property project? ✓ No Yes information. Name(s) and functional classification of the roadway(s)? What drainage way(s) is to be crossed? A full report supporting all aspects of the proposed bridge(s) hydrologic, and hydraulic factors) must accompany this summary provided? Yes No If "no" explain: (structural, geotechnical, report. Is the report Water Quality Is a Stormwater Pollution Prevention Plan (SW3P) established for project construction? No " Yes Provide a general description of planned techniques: `1� RJAU J CP-A Si vc4 1'cr'n `+ 1 w1.1) Pro + cf-i v-'-- , es Nlk' 1 iSu v iJ J p,F l Yotg S Special Designs — Non - Traditional Methods Are any non - traditional methods replic ion, BMPs for water quality, No Yes If "yes" list (aquatic echosystems, wetland -type detention, natural stream etc.) proposed for any aspect of subject property project? general type and location below. Provide full report about the proposed expected benefits. Report must be compromised, and that maintenance solution(s). Is report provided? special design(s) including rationale substantiate that stomiwater management cost will not exceed those Yes No If "no" explain: for use and objectives will not of traditional design SECTION IX STORMWATER DESIGN GUIDELINES Page 22 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 APPENDIX D — TECHNICAL DESIGN SUMMARY Effective February 2007 Part 4 - Drainage Concept and Design Parameters Continued (Page 4.14) Stormwater Management Concept (continued) Within Or Serving Subject Property (Phase, or Site) (continued) Special Designs – Deviation From B -CS Technical Specifications If any design(s) or material(s) of traditional runoff - handling facilities deviate from provisions of B -CS Technical Specifications, check type facility(ies) and explain by specific detail element. Detention elements Drain system elements Channel features Culvert features Swales Ditches Inlets Outfalls Valley gutters Bridges (explain in bridge report) In table below briefly identify specific element, justification for deviation(s). Specific Detail Element Justification for Deviation (attach additional sheets if needed) 1) 2) 3) 4) 5) Have elements been coordinated with the City Engineer or her /his designee? For each item above provide "yes" or "no ", action date, and staff name: 1) 2) 3) 4) 5) Design Parameters Hydrology Is a map(s) showing all Design Drainage Areas provided? ✓ Yes No Briefly summarize the range of applications made of the Rational Formula: .uY%. o,F-F bt-4— / wl vl 60 o 12_ { -ye- dip 1 cUtck , t IA PIS AMA. � f 40N 12 i e At< i . What is the size and location of largest has been applied? 1.2 acres Design Drainage Area to which the Rational Formula Location (or identifier): Pk 10 ( SECTION IX STORMWATER DESIGN GUIDELINES Page 23 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 APPENDIX D — TECHNICAL DESIGN SUMMARY Effective February 2007 GU>rwA,\a iL Acv► - Pi 4b Li .At- Part 4 — Drainage Concept and Design Parameters Continued (Page 4.15) Design Parameters (continued) Hydrology (continued) In making determinations for time of concentration, was segment analysis used? No ✓ Yes In approximately what percent of Design Drainage Areas? % As to intensity- duration - frequency and rain depth criteria for criteria other than those provided in these Guidelines used? identify type of data, source(s), and where applied: determining ✓ No runoff flows, Yes were any If "yes" For each of the stormwater management features listed below identify the storm return frequencies (year) analyzed (or checked), and that used as the basis for design. Feature Analysis Year(s) Design Year Storm drain system for arterial and collector streets ICJ /Pr NIA- Storm drain system for local streets 10 J i p Open channels 0 i o ' 0 0 Swale/buried conduit combination in lieu of channel AI /A OM Swales NI 1k N/ A- Roadside ditches and culverts serving them t•Jik OM- Detention facilities: spillway crest and its outfall 0/14- NM Detention facilities: outlet and conveyance structure(s) Ni k Mitt Detention facilities: volume when outlet plugged SPA. NM Culverts serving private drives or streets 1\i/A' Nip Culverts serving public roadways V0 i 00 Bridges: provide in bridge report. NM kg Hydraulics What is the range of design flow velocities as outlined below? Design flow velocities; Gutters Conduit Culverts Swales Channels Highest (feet per second) ) 21 S .o 1 '•'c N/A 4. ie2 Lowest (feet per second) I •e(t I— Le& t i_. )' w f A- 1-'17, Streets and Storm Drain Systems Provide the summary information outlined below: Roughness coefficients used: For street gutters: For conduit type(s) 1 DP€ KG t)• DI 6 0,121 ti 0 . 013 1 Coefficients: SECTION IX STORMWATER DESIGN GUIDELINES Page 24 of 26 APPENDIX. D: TECH. DESIGN SUMMARY APPENDIX D — TECHNICAL DESIGN SUMMARY Effective February 2007 As Revised February 2009 Part 4 — Drainage Concept and Design Parameters Continued (Page 4.16) Design Parameters (continued) Hydraulics (continued) O \V Street and Storm Drain Systems (continued) For the following, are assumptions other than allowable per Guidelines? Inlet coefficients? ✓ No Yes Head and friction losses No Yes Explain any "yes" answer: In conduit is velocity generally increased in the downstream direction? Are elevation drops provided at inlets, manholes, and junction boxes? Explain any "no" answers: i/ Yes No ✓ Yes No Are hydraulic grade lines calculated and shown for design storm? ✓ Yes No For 100 -year flow conditions? ✓ Yes No Explain any "no" answers: What tailwater conditions were assumed at outfall point(s) of the storm drain system? each location and explain: _ �q3 � ' U,i1 w @ L i Siw �_ rrti Identify Open Channels If a HEC analysis is utilized, does it follow Sec VI.F.5.a? Yes No Outside of straight sections, is flow regime within limits of sub - critical If "no" list locations and explain: NIA flow? Yes No Culverts If plan sheets do not provide the following for each culvert, describe it here. For each design discharge, will operation be outlet (barrel) control or inlet control? .& x Ci .V Q eiCklurt( ttCt.r. ►1,(ti4' Cteh- - Entrance, friction and exit losses: Bridges Provide all in bridge report SECTION IX STORMWATER DESIGN GUIDELINES Page 25 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 APPENDIX D — TECHNICAL DESIGN SUMMARY Effective February 2007 Part 4 — Drainage Concept and Design Parameters Continued (Page 4.17) Design Parameters (continued) Computer Software What computer software has been used in the analysis and assessment of stormwater management needs and /or the development of facility designs proposed for subject property project? List them below, being sure to identify the software name and version, the date of the version, any applicable patches and the publisher cpPeAdSlud pd Arr. 1.1 dretC c- So- t-t- hvcir -e. c N t ) l id.v.o -F9mv p'P S Part 5 — Plans and Specifications Requirements for submittal of construction drawings and specifications do not differ due to use of a Technical Design Summary Report. See Section III, Paragraph C3. Part 6 — Conclusions and Attestation Conclusions Add any concluding information here: Ve C W, WeS J 1' ? V-011 1)14 GI.LSi r‘,s $Ci D.es ovx GuudtlioA Attestation Provide attestation to the accuracy and completeness of the foregoing 6 Parts of this Technical Design Summary Drainage Report by signing and sealing below. This report (plan) for the drainage by me (or under my supervision) Unified Drainage Design Guidelines required by any and all state improvements have bee ssued 111 ,IV �� design of the development named in in accordance with provisions of the for the owners of the property. All and federal regulatory agencies, for the or fall under applicable general permits. . (Affix Seal) �40.c,P. * Part B was prepared Bryan/College Station licenses and permits proposed drainage i " fro . s1, 'I �t � i « , i , SC ** pa s , ;: = ' ;��� /j ;a _ T ��.°,.° 4/ 'I 9t n... , . . mw..... . .... License Professional Engineer , ,���� i geaaN*** bC SYr 0 '1 ' ' s State of Texas PE No. � �,t . SECTION IX STORMWATER DESIGN GUIDELINES Effective February 2007 APPENDIX D - TECHNICAL DESIGN SUMMARY 3 -.70-n 4,1 1 2727 Page 26 of 26 APPENDIX. D: TECH. DESIGN SUMMARY As Revised February 2009 APPENDIX B Drainage Area Calculations Area # Area, A (acres) C (min) 10 year storm 100 year storm 1 10 (in /hr) Q10 (cfs) 1 100 (in /hr) Q1oo (cfs) 501A 0.590 0.60 10.0 8.635 3.06 11.639 4.12 501B 0.320 0.60 10.0 8.635 1.66 11.639 2.23 502 0.960 0.60 26.0 5.367 3.09 7.316 4.21 502A 0.520 0.60 10.0 8.635 2.69 11.639 3.63 503 0.350 0.60 10.0 8.635 1.81 11.639 2.44 503A 0.340 0.60 10.0 8.635 1.76 11.639 2.37 504 0.520 0.60 11.5 8.136 2.54 10.979 3.43 505 0.160 0.60 10.0 8.635 0.83 11.639 1.12 505A 0.140 0.60 10.0 8.635 0.73 11.639 0.98 506 0.410 0.60 10.0 8.635 2.12 11.639 2.86 507 1.100 0.60 27.8 5.163 3.41 7.046 4.65 508 1.760 0.60 33.3 4.636 4.90 6.348 6.70 509 0.240 0.60 10.0 8.635 1.24 11.639 1.68 510 0.800 0.60 10.0 8.635 4.14 11.639 5.59 511 0.100 0.60 10.0 8.635 0.52 11.639 0.70 601 0.050 0.60 10.0 8.635 0.26 11.639 0.35 602 0.610 0.60 10.0 8.635 3.16 11.639 4.26 602B 0.330 0.60 10.0 8.635 1.71 11.639 2.30 603 0.610 0.60 10.0 8.635 3.16 11.639 4.26 604 0.740 0.60 10.0 8.635 3.83 11.639 5.17 605 0.860 0.60 10.0 8.635 4.46 11.639 6.01 606 1.670 0.60 29.2 5.016 5.03 6.851 6.87 607 0.680 0.60 10.0 8.635 3.52 11.639 4.75 608 0.300 0.60 10.0 8.635 1.55 11.639 2.10 609 1.290 0.60 23.4 5.698 4.41 7.754 6.00 610 0.290 0.60 10.0 8.635 1.50 11.639 2.03 611 0.150 0.60 10.0 8.635 0.78 11.639 1.05 612 0.140 0.60 10.0 8.635 0.73 11.639 0.98 613 1.790 0.60 22.2 5.867 6.30 7.977 8.57 701 2.290 0.60 10.0 8.635 11.86 11.639 15.99 702 0.930 0.60 10.0 8.635 4.82 11.639 6.49 703 0.990 0.60 10.0 8.635 5.13 11.639 6.91 704 0.520 0.60 10.0 8.635 2.69 11.639 3.63 801 1.880 0.60 10.0 8.635 9.74 11.639 13.13 802A 0.310 0.60 23.1 5.739 1.07 7.808 1.45 802B 1.570 0.60 23.1 5.739 5.41 7.808 7.36 803 1.860 0.60 10.0 8.635 9.64 11.639 12.99 Castle Rock Subdivision - Phase 6 Drainage Area Summary The Rational Method: Q = CIA Q = Flow (cfs) A = Area (acres) C = Runoff Coeff. I = Rainfall Intensity (in /hr) Brazos County: I= b /(t +d) t = Time of concentration (min) 10 year storm b = 80 d = 8.5 e = 0.763 100 year storm b = 96 d = 8.0 e = 0.730 t = L /(V *60) L = Length (ft V = Velocity (ft/sec) APPENDIX C Depth of Flow in Gutter Calculations 100 -year storm Freeboard I ft. 1 49'0 I 99'0 49 1 9E0 o I 6t0 ££'0 I Z4'0 N O I 6£0 ■ 'A MOM 282.00 I 00'Z8Z 00'Z9z 280.38 0 N � 69'9LZ 69'9LZ 69'9LZ 0 0 N ■ 1 277.82 277.82 Gutter Runoff, El. I 9E'L9Z I 69'1.9Z Z4'•9Z 9E' L 9 280.03 4 6LZ 04'9LZ 9E'9LZ LZ'9LZ O 0 277.46 277.43 7d Ja11nO LL'L9Z 281.17 I 281.17 I 281.17 279.72 ZL'6LZ £0'9LZ EO'9LZ E0'9LZ 276.03 9L 'LLZ 9L 'LLZ 1 4°' jo cloy 1 281.67 I IL9'19Z I 1L919Z L9' L9Z 1 280.05 90 1 276.36 276.36 9E 9LZ 9£'9LZ 277.49 277.49 c 0 8 O J N B 7 .> I . o • V 7 C Q Y • O r o li x CD 0 0 o • Cfi 07) R .0 0 N • ao 8 a O C 0 e p Q ia `P E ff O • — U 0 O • 0 J N W O O O) N r O N 0 O co 0 co 0 O 0 O O VI 0 O t0 33 . CO CO 0 O N 0 0 m 0 0 N N 0 0 0 0) O co O) f0 O fV 0 0 0 0 0 O 0 d O )0 n O O N 0 O N N 0 N co 0 0 o O co 0 O 0 0 CO 0) 0 O CO N O N 0 0) CO 0 0 0 co o 0 0 CO O 0 0f N N 0 0 l 0 0) O 0 CD 0 O O 0 0 0 O M 0 m 0 co M CO N 0 O n O) (00 N N 0 N co 0 0 O 0 co m O (00 0) W of O m 0) 0 O 0) 0 co O ID CO CO N 0 <V 0 O N 0- (‚4 0 0 0 O 0 0 (00 co N n O 0 n N 0) N 0) 0 co 0 0 0 0 CO O to 0 O m 0 co 0 O 0) n N 0, 0) n of 0) oo 0 co 0 0 8 0 0 0 0 (00 O of N O 0 01 N of CO N 0 N 0 0 0I M co 0 0 0 0 co 0 O 0 m ID m 1— N • • CNI 0 0) ht Crown Flow depth of flow In 100 storm ed to find actu 10-year storm APPENDIX D Storm Sewer Inlet Design Summary Castle Rock Subdivision - Phase 6 Storm Sewer Inlets in Sump - Design Analysis Inlet Length Q10 D10 D10 Q100 D100 D100 No. ft. cfs ft. in. cfs ft. in. 601* 10 6.29 0.378 4.54 9.20 0.488 5.85 602 5 2.23 0.301 3.61 3.00 0.367 4.41 605 10 4.87 0.319 3.83 6.56 0.390 4.67 606 10 8.55 0.465 5.57 11.61 0.570 6.84 607 10 6.01 0.367 4.41 8.10 0.448 5.38 * Includes bypass flow from upstream inlets on grade Assume 10% clogging for design APPENDIX E Storm Sewer Pipe Design Summary I 01.141 Well I (u!w) IEEO I 4Z0 I 900 I (aas) IOZI 191 I al (sd3) A 00'9 04'9 OZ'9 O _ O N 99'01 L'OL 06'£L (n 0011 E8E' 0EE' Z6Z'L (u!w) of 89'9Z L6'9Z 91'9Z U 090 090 l 09'0 Contributing Pipes P508, P507, P506, P505, P503, P504, P2 -6, P2 -7, P2 -8 P609, P508, P507, P506, P505, P503, P504, P2-6, P2 -7, P2 -8 P610, P609, P508, P507, P506, P505, P503, P504, P2 -6, P2 -7, P2 8 Contributing Area (Acres) I 096'91 096'91 069'91 Contributing Drainage Areas 501, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A, 502 501, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A, 502 602, 501, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A, 502 m 0 fN I 09'0 1 09'0 09'0 . O) E. d J 10Z'66 I OL'9L 00'91 a N c F. in ". I Zb I Z4 Z4 0 o E I 609 I 019 149 I GUI!! IaneJU I (u!w) I EE '0 4Z 0 90'0 I (aas) I oz IS11 co V (fps) 009 I 04'9 OZ '9 (n3) 01D I 48 'LS 1 94'19 I LZ'49 ( J4N!) 011 I LL4'9 1 9LE'9 64E'9 (u!w) of 89'9Z L6'SZ 91.'9Z 090 090 09'0 Contributing Pipes P508, P507, P506, P505, P503, P504, P2 -6, P2 -7, P2 -8 P609, P508, P507, P506, P505, P503, P504, P2 -6, P2 -7, P2 -8 P610, P609, P508, P507, P506, P505, P503, P504, P2 -6, P2 -7, P2 8 Contributing Area (Acres) 15.950 I 096'91 06891 Contributing Drainage Areas 501B, 501A, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A, 502 5018, 501A, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A, 502 602, 501B, 501A, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A, 502 0 O co 090I 09'0 09'0 0 1 J OZ'66 I 0C9L 00'91 SA c Z4 Zb Z4 aZ E 609 019 149 I E L O a-. u) L O O C � G E cc nz d N R a a EE � L 0 Cl) o E V L w U co Storm Sewer Pipe Summary (10-yr Storm) Castle Rock-Phase 6 The Rational Method: Brazos County: 100 year storm 10 year storm { 0 0 ) 0 we 0. (f¢ o ,c S UM ! u | !¥ 1 1 !� § | k 2 | z )g ƒi are" ƒ|1 !) 8. 2 ■ { 8. nla (0 0 . !& 1 | | §l !I \ z § ! ® ! tl ƒ }k o. \ !a com tt g! GG Jƒ NN MM [§t . 1 §. 00• kkkk o ois nlf (4 |kk ;§ ;!k { O 000\ _kL 50 50 ` igiI \ ki\/ ) \ \jj\ Travel Time I I (ulw) 1 1.90 I I 800 1 E4'0 1 I 90'0 (sec) 1 I 64 1 to 1 9Z 1 o (sd ;) A 1 mg 1 I 099 I 096 1 90'8 (s ►o) 001 I E4-OZ 1 1 64'E£ 1 1 £9'19 1 I LS 001. U 4/ ul ) 0 I eo£9 I 1 61Z'9 1 I 966 9 I ZW9 (ulw) 01 1 99'££ L4'4£ 1 S6'Z4 1 8£'£4 U 640 090 1 090 1 09'0 Contributing Pipes Existing 30" 1 I _- „OE 6u4s1x3 'Z14d _ „0£ 604slx3 P401, P402, P403, P404, P501, P502, P405 P401, P402, P403, P404, P501, P502, P405 !Existing 30 ", Existing 42 ", p612 Contributing Area (Acres) Contributing Area (Acres) 1 01.9'9 1 019'9 1 096'8 1 096'8 069'OZ 1 09L'0Z 1 0L6'0£ 30.970 Contributing Drainage Areas Contributing Drainage Areas 1 Previous Phases 1 I Previous Phases 1 Previous Phases, 603 1 1 Previous Phases, 606,607 1 411A, 411B, 413, 414A, 414B, 508, 509, 510, 511 411A,4118,412,413,414A,1 414B, 415 Previous Phases, 605, 606, 607, 608 0 Z.L at 0 0 N 10£01 10£01 04'0 04'0 08'0 09'0 04'0 04'0 L L C1 E 0 J 268.00 I 00 1 248.76 1 00'04 01 .ti_' w J O. N C O. in 0'892 I 0£ 1 )0'1.£ I 9£ 248.7 1 „Z4 1 )0'04 1 94 S. N C m . o. Z E 1 Z14 1 91 1 Z1.9 I 1 904 I £19 Y. co Travel Time I (uiw) 1 980 I I900I £4 0 I I 900 I 1 (sec) 1 1 £9 1 to 1 9Z 1 o (sd ;) A 1 O1. S I 1 91.9 I 09'6 1 Z0.9 1 Q10 (cfs) 1 Z6'41 1 I L£'4Z I 1 4Z'64 1 I 90'£1 I 110 (in /hr) I 909'4 1 4£9 I 996 11£6'£ (al ai) 01 1 99'£E I 49 9674 8£'£4 64'0 090 09'0 _9'0 - I Contributing Pipes Existing 30" I _- „OE 6u4s1x3 'Z14d _ P401, P402, P403, P404, P501, P502, P405 1 Existing 30 ", Existing 42 ", P612 1 Contributing Area (Acres) 1 01.9'9 1 096'8 069'OZ 1 0L6'0£ Contributing Drainage Areas 1 Previous Phases 1 Previous Phases, 603 1 411A, 411B, 413, 414A, 414B, 508, 509, 510, 511 I Previous Phases, 603, 604 1 0 Z.L 10£01 04'0 08'0 04'0 L 01 .ti_' w J 0'892 I )0'1.£ I 248.7 )0'04 1 S. N C 1 1 91 Y. co m . o. Z 1 Zl4 1 Z1.9 I 1 904 1 £1.9 1 0 CI 10 0 '0 n co 00 0 11 11 11 .0 C 0 Storm Sewer Pipe Summary (100-yr Storm) Storm Sewer Pipe Summary (10-yr Storm) Castle Rock-Phase 6 Castle Rock-Phase 6 The Rational Method: Brazos County: 100 year storrn 10 year storm gg ss st tt vm E E ee NN tt gUa ; §e 00 #f!$ .9 )kt { 385 - E - 2!k { }�} \\ /� 22 % $kk §| 2 !!;\ \k /\ §})0U} ) 0m |k !) !a gg ss st tt vm E E ee NN tt gUa ; §e 00 #f!$ .9 )kt { 385 - E - 2!k { }�} \\ /� 22 % $kk §| 2 !!;\ \k /\ §})0U} ) 0m |k !a gg ss st tt vm E E ee NN tt gUa ; §e 00 #f!$ .9 )kt { 385 - E - 2!k { }�} \\ /� 22 % $kk §| 2 !!;\ \k /\ §})0U} ) 0m |k Travel Time (u!w) I 0£'0 I 980 I Ol0 I Ol0 I (oes) I 91 ' I I 0 0 v (fps) oZL 1 I L6 E I I 469 I 69'9 I (slo) OLD I 009 I I SZ9 I 1 ZL'll 1 9L'EL I U4/u!) OLI I L98'S 1 cars 1 £OL 689'9 (uiw) of OZ'ZZ 09'ZZ 9£'£Z 94'£Z 0 09'0 090 090 090 Contributing Pipes 1 Existing 24" Existing 24 ", P601 Existing 24 ", P601, P602 i Contributing Area (Acres) I 06LL I 06L l I 9Z4'£ 998'£ Contributing Drainage Areas Previous Phases Previous Phases 1 Previous Phases, 609, 611 Previous Phases, 609, 611, 610, 612 0 a .. o it OS' l I OCT I 09'0 09'0 N 1 00'001 108' 10Z I 0 0 N • 0 0 N rn LE 109' 1 100' 00'9£ I 0 m cv o ((0 ( J d N C F. in .- N N N G m O o 0 _ . d z N (0 (0 (0 Travel Time I I (u n I SZO I 080 1 ll0 1 Ol0 I (oes) I L 1 n o (nil) A ZL' £Z4 1 lE9 1 £l'9 0 o 0 LS'8 1 1.9 '9 1 L0'SL £0'LL o t O LL6'L 4Z61 9LL'L 9SL'L V c 1.' E OZ'ZZ 1 84'ZZ 1 SZ'£Z 6£'£Z 0 09'0 1 09'0 09'0 09'0 Contributing Pipes 1 Existing 24" Existing 24 ", P601 Existing 24 ", P601, P602 Contributing Area (Acres) 06LL I 06LL 0£Z'E 099'£ I Contributing Drainage Areas Previous Phases Previous Phases Previous Phases, 609, 611 Previous Phases, 609, 611, 610, 612 0 a o o co I 091 I OEOI 09'0 09'0 r en c = w 1 00'001 108' 10Z I 0 0 N • 0 0 N S. N C 0. CO ".- co c' N N d Co m cv o ((0 ( E L 0 a+ N L O O c6 G E CO y N co O. as � 3 o y • Cl) y E N U V) 0 rl 0 • 0 t- op (0 0 11 11 II .0 v d Storm Sewer Pipe Summary (10-yr Storm) Castle Rock-Phase 6 The Rational Method: Brazos County: 100 year storm 10 year storm §m d 8lJf { k / k «§ $E k 20 0 CL § ca 0 a. o 3� . Ea v 0 0 / OM aa SS EE NN 00 E k \k « « 22 GM # ■ co §� . § 0 ) W3■ « @a 02 EE LO LO 04 N RIM ) ] SI �) §m d 8lJf { k / k «§ $E k 20 0 CL § ca 0 a. o 3� . Ea v 0 0 / OM aa SS EE NN 00 E k \k « « 22 GM # ■ co §� . § 0 ) W3■ « @a 02 EE LO LO 04 N RIM ) ] �) k §m d 8lJf { k / k «§ $E k 20 0 CL § ca 0 a. o 3� . Ea v 0 0 / OM aa SS EE NN 00 E k \k « « 22 GM # ■ co §� . § 0 ) W3■ « @a 02 EE LO LO 04 N RIM ] §m d 8lJf { k / k «§ $E k 20 0 CL § ca 0 a. o 3� . Ea v 0 0 / OM aa SS EE NN 00 E k \k « « 22 GM # ■ co §� . § 0 ) W3■ « @a 02 EE LO LO 04 N RIM { k / k «§ $E k 20 0 CL § ca 0 a. o 3� . Ea v 0 0 / OM aa SS EE NN 00 E k \k « « 22 GM # ■ co §� . § 0 ) W3■ « @a 02 EE LO LO 04 N RIM APPENDIX F Drainage Channel Design Summary Channel No Length (ft) Slope , (/o) Contributing Drainage Areas Contributing Area (Acres) Contributing Pipes C Tc (min) 110 (in /hr) Q10 (cfs) Existing 91.50 0.50 602, 501B, 501A, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A, 502 16.890 Pipe 611 0.60 26.15 5.349 54.21 Channel No Length (ft) Slope ( %) Contributing Drainage Areas Contributing Area (Acres) Contributing Pipes C Tc (min) 110 (in /hr) Q10 (cfs) Existing 91.50 0.50 602, 501B, 501A, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A, 502 16.890 Pipe 611 0.60 26.15 7.293 73.91 Channel No Length (ft) Slope ( %) Contributing Drainage Areas Contributing Area (Acres) Contributing Pipes C Tc (min) 110 (in /hr) Q10 (cfs) 1 91.50 0.50 Previous Phases, 605, 606, 607, 608 30.970 Pipe 613 0.60 43.38 5.412 100.57 Channel No Length (ft) Slope ( %) Contributing Drainage Areas Contributing Area (Acres) Contributing Pipes C Tc (min) 110 (in /hr) 010 (cfs) 1 91.50 0.50 Previous Phases, 605, 606, 607, 608 30.970 Pipe 613 0.60 43.38 3.931 73.05 Channel No Length (ft) Slope ( %) Contributing Drainage Areas Contributing Area (Acres) Contributing Pipes C Tc (min) 110 (in /hr) Q10 (cfs) 2 111.71 1.00 603 & 604 1.350 0.60 10.00 11.639 9.43 Channel No Length (ft) Slope ( %) Contributing Drainage Areas Contributing Area (Acres) Contributing Pipes C Tc (min) 110 (in /hr) 010 (cfs) 2 111.71 1.00 603 & 604 1.350 0.60 10.00 8.635 6.99 Castle Rock -Phase 6 Storm Sewer Channel Summary (10 -yr Storm) Castle Rock -Phase 6 Storm Sewer Channel Summary (100 -yr Storm) The Rational Method: 0 = CIA Q = Flow (cfs) t = Time of concentration (min) A = Area (acres) C = Runoff Coeff. I = Rainfall Intensity (in /hr) Brazos County: 1= b / (t +d)' 10 vearstorm b = 80 d = 8.5 e = 0.763 100 year storm b = 96 d = 8.0 e = 0.730 t = U(V L = Length (ft V = Velocity (ft/sec) APPENDIX G Castle Rock Parkway Extension Box Culvert Design Summary — HEC -RAS Analysis EXISTING CONDITIONS Qs W/O CASTLE ROCK PKWY BOX CULVERTS 5 c. ccr a - e• 2 :4- la) •.> • Te• 0 : to 7'd 0) 0 00 N CC, 0 • 01 c O. CD 00 0 .4 0. vs 5 g: co 0) (0 N . CV 04 I 8. ci tf) 0 cl• 0 0) co 0 0 cr) co N: Cs1 N q • (0 (0 N. CN CV N 0 0 q N N 0. N.. 01 0 0 N 00 o 4 ✓ . CO 0 CO I, 0 (0 (3 c") 00 r 1) 0) 1.0 (.0 ir t: - .01: N N '4 (0 co 0 o co o o • o CO ••.* 0) 0) N. 0,7 • 16. co 01 al N. a co a (0 CI) 1'- 04 CV 'et 0 •>- . • a • • r 0 CO CO N. 0 0 0 0 7 0. (0 N rc. N. 00 cd Csl N o o co 4 a 0 0 • q • N CO 1.0 (0 (0 0 CO 0) N. -a co 0 01 r- 0 • CO (0 (3 00 0 04 CO co 0) 1`. 03 •to • 01 a 641 • Ni csi C a CD (0 ('1 • n 0) (1) 8 ," oc o 0 000 cri 7-- co cy 8 .::: co co MI CV o q 0 co '0 ao 1.0 0 0 7 a 0 `c7.7 ! 7 I 0 (0 4 0 0 O 10 . co ai O N N 11) cs, Cs7 ci 6 (0 (0 cY 04 (0 cra c0 N (‚41 (0 a 0) 0) 0) N.N. 0- a cy cy ca co o cci Ni aa (0 0) 0 u) ' 0 <13 0) c7o (0 O CO 04 co 0 Cr) CV 4 1 14 . (0 (0 CV CV 0) 0) CO 04 03 0 N. 0 (0 (0 N N co co (r) -J CO o'71 8 ci 4 r- 071 c13 CV CV O 0 0 6 o co co CV CV ...0 0 C3 0 - :0- 0 0 AO 7 co 0 q CV ca 01 N.7 0) co (0 -I • •> 0 s 00 cn 0.1 aa el 0 0 O CD • co cri N 0- (0 (0 tN • CO 0) cri 04 6 01 co N 0 N al 0 CO ci" • G O 0 2 2 CV N )1. 0 (0 co a co to ' 0 •:, >c :• :3 3 0 N. CO 0 '1 t 0) CV CO • ur) Cl ri 01 0 (N ! 00 g N CV V) CO CV o 0 0 o q N N co co co co CV CV CV CV • 0 0 g L7:3 0 • I co ri , 0 0 ' 0 0 a 7 CV 01 04 CO CV 04. ::::: • ;7: :Zit; I N. (NI 0 0 co C eca 0 0 0 ' r- 0 ...- a d 0 c7 0) 04 In co ‘r. co x> (0 a co m ca CV CN CV • CD C•t ui co • 03 03 CO 03 CO N N CV 04 N N t•-• 0 I 0 cn. a • 1.0 2 c co co co N No N4 0 0 co 0 o o Ni 04 co i co co co co N CV CV NI 0 00 00 sr 'V 0- - N- 7 a:7 O 0. I c0 ••• ci d 00 0.0 0 -et 0 N N• N. 0) 0 03 Y: 0 01 cl• 00 •c* (0 CO CO 01 10. CO C•J 01 0e) Ni 4 o N (0 01 •cl t•-• 0 0 0 7 V. NI cD 0 co co di N CO a (0 N. co cc co . co • N N • N cv 0 0 03 CO CV CO el 03 0 0 co ...6 -• •• • • •14) L.:(n • •• N N .N1 N C • o •0) '0:70 -I 0"a 0 r • 0 3.1- 0. 0 clec:ZO 01. M Jen l l r T I N. -I FT. Co Top Width }, .1i:::ituv.ro .1 1940 2.91 ado% ; "P„13 'S - AA : 13. 1 12 Unk 1e10.1. CO n Nfl co N co -- CO -V u> CO oo N v N- N 3 r co a CO CV co co N` co co co CO co N co co r Q co N co O ai co co N m co eo CO ai co r a; co N a+ N ai N S ai N 0 O O N' Q co N d1 ti Ci N 'Cr CO ai N n N O N o N O N 0 S. O N 0 N 0 rV N o tr) O N m O N 0) N N 0 c CO n• 0 CO 0 c CO 0 to CD 0 : 00 00 0 co 00 o f co 00 O m CO o cc; CO o. c m CO 0 No CO o CO N 0 1 c o . CO a N 0 CO N O O d CO N a tri N ui 00 N c CV s C ui CO N d O) u•i CO N - --. O co CO N ao CO N o QS 00 N S oS CO N o ao CO N 0 1 . co CO N o 0 0 4 N > i r C ). 3 t ry ( CO 0 CO 0 C ¢ O O v '4' N �p r7 I) co co CO CD O , CO 01 O O v ( a0 tt) CO 0 CO 0 CO I ' JA0os I. iixos II: 1:141009 1 _ YiA o i-z e • I • • ; LAOS iAOOI IA009 ° !)•• • ..-:". • • JAot. I JAool.1 FIS!AOrqd • I ; :499Z - L99 • - zegz .'! • /.170£ L ox 1: • 91 tC__I 77. ... .. : • mg! -7 ZI- ' JamoW, :i,:EFA091 ., Opril I LOWe, L r L. I . JetA0.11 ii 1Lowor:. •••• Lower •- 11.1;;;,i7 [Lowe i • .'" JaAnO 11 JOm?il -- 1!• L�wer gd d8£ ZO o . 0£ Jew • Froude: # Ghl_._ - ... .._ ,:. .. -:- 1 r 1 two N 6 N 6 N 6 o , 6 6 m 0 m 6i £yo 7 °" — a 6 a . --7 a' 0 1- "r - i N 0 N N 0 1.4.1 •N 66, MIM VIM 016 hid' M 616 0 IV N 6 y1piM dol (u) 2 m I- A m N 0 0 m N = — N M 138.031 F... 0 I.-- f... 0 r 0 .d.. 0 r 0 m M N I (0 00 n C r Lt) .1.. m V N 0 0 N 0 N . m 4 M N 0 -1. N. NNNM m N o .— •e- n CO M N . N <-- 0 al n 0 q m N h N:o M N () 0 q , - M ,-. a ' • Flow'Area; yl (4' bs) TV 6 0 0 6 , :r M M 8 V .- — N 0 CO 6 N 0 0 q co c 0 r 0) V ". <- M N l's M cci V N 0 N ei NS M CO r 1 9 ..N: r o 0 r (0 V9 . - N r 0 cq (0 N CO 0r . - 0 r rs cti N N Ni V 6 (0 N N CO ' 071 0 0 : Is esi C. M V) 0 4 r V If? CO 6 V CO .4 "1 : 4 0 r ",r is. a N. N I n C a 0 M 0 (r) Is: M V o 0 CO N M a r 0 r 4., 7; 0 6 itkpleA (sni) CO N <- 000 A — <- N <-- N .,- VI 0 <- . Ts r csi In V N r's 0 N •d 0 0 0 r....6 CO M V 0) R N 0 a 0 h <- n 0 m 6 N m <- (0 a <- V m <- 0 1.- .- 0 6 c., ts. o cm 0 <-,c1 N,N V (14.1uf._,... 0 0 g o 0 N V 0 0 0 0000 0 W M 0 0 o GO V M 0 Q 6 h V N 0 0 o 0 r... 0 6 o o h . r '6 o o N N r 0 o o 0 r E a 6 0(0M0) 00001 V: 0 0 aaaa 0000 0 0 N 0 0 N CO 0 0 V M 0 0 0 o o 0 N.N ' V 0 0 O N V 0 a o 0 r GO M 0 o o N nmom NN0M CS 9 o 0 CS a o r '-' a o 0 ". a o N WON-0 0 'S aaqa o 0 In 8 o N , - 8 o 0 N - 2 0 E.G.;E,I.ev I m csi 6 N <- cc 0 6 N m . < - 6 N m . .- m N 6 o _. c , 6 N 0 N o 00) N , a <- N o 6 <- 0) N N 0) NI <- 0N010) <- M N N cs, M N 6 (NI M cv csi 0 a s- NINNM 0 N m a 0 NI 6 m 0 N m o M N m <- 6 0 N r-- a m 0 N 6 R n 0 N m 0 a 0 N o n M M m a = NI N a 0 N o a 0 N m 6 0 Cs./ 'S'•N1' 1!J9 0) . 0 6 N , — ul 2 NNNN M NI 2 .r.- °I 2 M '''' 2 'A— 0 6 00 NINNN I.-- N 6 6 00 M 0 co V coo 6 co N ' .<- 6 N V 1.. '; <-- 0) (NJ 0 p l .r.- m N 0 ..V I .., 0) N (0 V/. •<- M NNNN .- q <- 0 N h <- 0) N N cg M N. (00)'0 %-. 0 NNNN 0!V <- 0 (NJ 0) 0) 71; cs4 0) 'M n oi 0 N (0 m O 0 N r m el 0) N 0 co o 0 N V N a M .• in a) N I r : :N: 0 vN 0 , fu 0000) NNNN V •-. A - 0 M. A - * n N N , . 0 0000 NNNN N m . A - . . A - N 0 . N N .,: . 0 N V N 1. - M N CO cq .... 0 0.1 0 ,..,_ , M N N 0 NI 0 NI V m Csi 0 N 0 , C 0 N r 0 N 0 N co — M 0)00)0 NNNN V , 0) 0 0 0) r 0 4 8 eS 0 N V . n 0 N r — a 0 N r N 4 0 N N 0 4 0 N . ; I 13 4J ulW a 0 103 =- ,...... . 2 h 0 2 h 0 8 h 0 m w • h 00 0000 0 0 0000 o 0 N o a co M N N 8 6 0 NN 8 0 0 0 o 6 CO NN 0 o 0 00 0000 o co 0300000 N 0 6 N 0 6 N 0 4 N 8 O 0 N 8 0 0 NI 8 ci 0 N 0 0000 esi RI 0 0 N N 4 4 0 M 4 ' 0 0 N 0 cs, • ! ! '`Q Toia1 V ,� -- . ....:(10 1 ca . 6 0000 a 0 0 c \I 0 , (0 m cq W VI m a N an 6 t o > = 0 ONWO 6 ocnco a 0 6 m 0 0 6 csi m o 0000 0 6 o a 6 m m 6 o 6 csi co m 0000 0N100 6 o a 6 m m 6 n m N m m Q 0 6 o a 0 N 6 m m 0 W 6 o 6 0 0 c.i co 6 8 0 omom a 9.g (9:1 m m 8 CV M 0 CI 0 0 .1 1 i : I. i . . . .. ..• .. .• . • jA01 J1L00.6 iX"oos . .. . .. . ... . .. . .._ _ . ., . . . . . ': • . .. . .._ • JAoL I 309; • JAOS J' aoJ .. ' 1100s T JAo5l JkOIj JAoo�l 1500Yr. I Z19E 091£ 09 4.E o9E , • 11 sus£ 956£ 956 E. 666£1 666£1 666 .£., •• •.:• 666£ 6lOt sLO1s] siobi - • PLbpa • PLD 'l • 6916' -. : ! met E; Re ch- 1 4IMoI Lower :. 1711 JeMO- JB7AOT� .. .. . ,..: ( tower ► 3aMOl.l (Lower -1 1 Jarrio1l - iarnd-1 Jemo- J8^"01 J6Mo1 .0 JaMQI 'Lower l .. JaN10 r.n "i0M011 . . .,. . 391401: • .. Jamd�a _... -. . JOMO1 1 d6£:ZO OL 0£ JelAl E 0 -o - a) 0. 0 u.; uJ Sr. I co I • 0 01 • 'Tr 0 0 evi C) 0 6 a I 0 0 1; 07 0 DI 0 r >-: • :: (0 CV 'CP 0) 0 0 q " 0 CO 0 CO 1.0 CD CO CO CV CO CO o CO DI 0 0 ci 0 DI el CD Di Di CD 01 N c0 cl? 1) aa 0 0) 01 a) CV 0-1 0) rv, O) 0 co 0) co CO CO CV We CC) 0 r": q CC/ . CV 0 0 0 0) 0) N CV CV CV Di 0 (00 Cr) es " 0 N N CCI a) .4 0 N CD el § 0 0000 o o Q 2 2 2 2 03 co CV DI CV N N 8 8 0 0 al en:: ' • • 'Cm ?'• 0 cu tra u 0 0 to.. 0) 0 V 0 CV N 01 0) CV CV 0 co 0 CR 0) DJ 00 co c co co CV CV 0 IQ 0 CV OD 0 OCi CO 0 ID CI) 01 0 C tO cv 0) V 0) 0 OD e• • 0) 0) V' 10 CV CO 0) co sr a) [a) ('4 ('4 00 00 0 0 0 0) CV CV o •r0 0 : 0) Oa: ; Vr • 1' 0 0 cca al . :. 01 CD • ; 0 01 ("! 0 CO 0 CO CD Is CA to V. 0 LC) 0 CV Di Di co • cr; o co a) a) a) 0) al N N N CV ('l('1 CV N rs el V' ) c -C! cl 10O) cq r Di Di 0000 0 0) 0 D4 DI DI N N N La 0) 0 0 0 0 n CD CO DI CV o • co (6 01 7cr a! CO 03 ci 0 C•4 (0 a) a 0) Lf) N I es 0 05 Is: 0 '- CD 0 r CV CO CI el cv 0) Lr) 0 0 0 0) CO CV 0) ca tei 0) 0) . N a 0) 0, csi 0 el. LC) es 0 CV 0) r•-• co 0 .cr 0 CO Is N CD 01 N N C•4 0) CO 0) 0) CV >••• L..L-L • ;••"' 3 • ,LL >!: • > 0. .0 ), 0 0 VIL L .) .- 0 0 0 . - .0 • 0 0 : 0 0 0 0 0 0 C) . 141 " ' ( 4) CV Ca 0) CV 0 0 0 0 q q q CV N CV 0) 0) 01 CD CV DI 0 0 CO 0 0 • N CV OD CO 0) • - . "C" CD 1'- 0 Csi 0 !Cr OD r Ca 0) 4 Lri s•-• C4 N CV CV CV cr) cv, u 0) O. r•-• CJD (sic" N cu 0) a) o a, 00 = 0) 0 0 0 CI 0 CO 0 CO st c.) co rip . r— ye. .341 • 7:1 0 CO Lri CV Cri ; g C‘i CO N 0-0 00 ci 0) U C) CV CV .01 111 CV - ('4 r . U1 0 0 q CV CSJ 0) CO DI CV • 0 0 0 0 00 C.1 01 c0 (0 0) 41' N u" CO 43 r 01 CV CV 00 0) 0) CO CO 0, 1 a) (NJ 1.0 Lei CV 0 0) 0 0 ao 0) 06 0 0 10 sr- 10 .0- ....a.: 0 r•-• ci o DJ IL r CO CO es N N 03 C•1 0) CV 1 1 - 1■-• 01 0 0 00 00 0) CV C R 0 0 0) 0 DI DI O 0 00 N 0) 0) N 0 CV 05 4:3 14) 0 CV 0) CV co ‹; N CV '2 2 2 B csi va co co 0.3 m 0 • 0 ..J ..1 0 co -ct. 01 ca en co) c; ci ci 03 CD . CNI el 0 i n V: V: DI CV cri 0) CV CO 0) C'4 0 0 0) cs: 0) cv N , DI 0 CD 0 0) r 4"4 In 05 0 01 'V CD 8 8 a a N ca to 0 (.1 CO 0: -J; CO CV 4-) (-4 0 0 r V' 0) r- cs, : ca O 0) 0) 0) UI 04 CV CV 0 CV 1 0 CO DI 8 3 - 3: .)" S 0 0 L11 na CV N 0 CD • vci c49:ZO 01. 0 JeN O r M1M M N ' ! = co N O n ' O NI M O O rm N o d NN O r... o « O () O Mr O M I O . f 'a! . O Cb A 0 t O '. C CO� <O 0 Ir 010 (O O ' N O Ta N C N 0 N.N O O) o O rf C) C �1 Q O O • O O a.. O `. CO N N cV N P- 6 N 0 c r Nr s C1 N ' C 1 N N4 t M 6 m 4 M 4 M awoCO M N N C 1 N 0 0 N V y C) N. C"f N - CO N M 4 t-0 c N CO CJ N 4 co M 4 0N C N N ( N 4. N (O l0 p t 0 o�rnu ")) u) m r O Q r N in a ti D : '!� 4 ^ X CD O N 4 M M M M ' N N d in O M N N- N M N M CC') d O M c0 N C D r r V t0 r � Cn N r C) CO 0 h Zi r M r O) r 0 W N 0 V M M r 4 N M N M O) M Q O d M N' 0 M N O 01 O N c )A N M n M M Tt M 00 CO d N h 0 m 0 M N . 0 r v C V N o M o M C 7 .gi CV GI en .n rn l co 0) I s dOb :ZO 01. Mien 0, LLJ u. • > a . uJ gd a 0 §; csl cO .‘r • 1.* N N N (13 W 0 0 N r1 o .cr ts. M M N LC Lo 000 o o 0 o o 0 a:cc. eo m o N.N M r) CO CD C4 • oi R @ m m m m 6 6 6 6 6 m a N N N 0 N N dZi7:ZO 01. OE len ULTIMATE DEVELOPMENT Qs W/O CASTLE ROCK PKWY BOX CULVERTS 0 N' a .O ��{ 0 uw A 0 W 0 L'd 0 y r N e O 8 n N N-� 4- N 0 a 4 CO T O (0 v ( p N 0) O '7 0 O O 0 ( N 1.4 a N N m N N (•) (V 40 N 8 N N ,()) (0 r T • (O (O 40 IA 40 O N C tD t M n 0 O O 0 0 co co co 0 ((' N O) N N CT) tl1 to Is n N N N Co n N 8 (V N ( CO 8 O O O 0 n N O ti N V 0 1 0 • a. 4 Q1 O) O) 0) _ a), �3: • .3.: . O _ O J :..I -J J M (A 40 N n M N M ( O O CO 4- n N 0 0 O 0) M CO CO O co n 0 Ill CO CO 00 O N N co ea N a 0 1- N 0 CO O 11) N 0) N n 0 0 0 0 CO Of ca N N co (C 4..- ('4 N 40 O 0 s en O c0 0) N •N ((4) (0 N CO O (h r- 0 0 4 O CO N n n N n O) 0) n N ° , o Q N N co 0 m co 7 C O CO n 0 • T O ._.. co : :;. -3 J CO O 0 ti T N n 0) N' Cb N 0 T N 00 O) N CV co N O O 0 40 T 430 O N N CO O 0 0 cci N N O Q ( O n Q 0. 0 0 0 0 0 J CO O N CO Oi O CO N N N (') 0 N O n O 0 G M V? N N N co co co N N N N n O_ co -f N N N N ( CV ( N L 0 — .1 O 0 0 O n N 0 V N (0 CO CO n 4) O n N 0 0 at co N 8 m N 0 . (1) O cci O () 40 Q1 T 0 0 0 O C O Q m N 0 0 m N 0= e 8 rz O 0 0 3 . N n CO N N CD 40 N N 0 400 ci N O 0 0 Ili v CO 01 co 0 O 0 O :.4 (D M. M CO r- T .' 0 O m N v -�. O N a O) N O Q N O 0 N O N N N 0 O O N O 0 (7 CO 42 rD ::. : g O I O 0) N O CO COO M T N N Of 0) 000 N CO O M O co N O Cn CD N 0 CO N CO co 0 0 0 N CO m N N co M co T O ( O N 0 O V 0 0 m C N N Q' CO (() Ni 111 0 CO c5 M Q CO O 0 O (D CO ttkt q rw3a. m A j J' N CO 0 M 0) O 40 8 CO [NO CV NI 0 0 88 N N CO 0 - O: :CO. .4. 0:. .m J .. O (O CO 0 0 O 0 0 m m N 0) O N CO N n n O N 0 0 eNi CO Q O 8 O N O co N O Q O CO V r 0 0 .. o N .a CO Q0 CV CV N CV 0 J 0 I- 0) ti 14) 0 (t co N n M O Q co CO O O O O o CV N O 0) N CO d ca co N co 0 N CO CD M CO 7 CD O T } 0 O CO Q .V' ti n J 4.- cc CO O N O O 8 V) O m O O 8 O 4: m d' 0 m N (v) M N O N (n 4.- (0 O N CO h CO N 40 (0 N cotr 1 0 005 A 40 8 N N N N 0 Q. O) v -J O 0 ( . 3 0 0 0 O J m O 2 N n (0 co O CO v C O N N O 36 co M co n O 0 M 0) 0 O 0 O :N N 4) J dZti :ZO 01, 0£ JeW I M it - 3 O tL 01 O O I M' m o m O 01 N O. N mr O v < O 0 v G 0-I v? , 6 V N O :D :V O 0- N O O M G 1O .� O`_O II V 1 O 1 o V O' O M O N1r r' C7 . N 0 ml.- N O' el o 1t�7IM 03 O .. e7 O M i M I O m c? O 4]Irl N' C N O, 1 N ' O ,D SS O. F _ i. � ;. ap 2() t0 M r Z n to e- r- CH N r i DD N ■C) CO N N c0 N c0 C) M m to 0 V to N N O c 0 CC V `S 00 to c0 m n CO O V CT CO O) V v 0 T- 440 V tD N M co N O 0 V 0 O e�! N V N CO O N 0 t` N N.: r r < N O 00 M N u9 V r !� u) T N O CA 0 co 03 r . . _ 0 M CD v N r • N c0 0- co O r co N N � _ Q .0 LL C Qf .: Q le M m N h N v • F — • 4- N N N CO N v N M NO r M N M M 1 N (O N to O d a co (D N 0 W) () a�0p cN) : M N CA co Of c0 0 CI CO - O V 0 M COO c0 CO 0: co f0 I() c0 N 0 CO N co 0 �— V N 0 co 0 4- vt C'7 4- 44 e0 N 0 M co 10 D of . 0- ei N CI co M a) o C e0 V V e+t 10 7 D In V e l CO V 0 c•i to C') (0 Cry (O r4 0 r Cl m M N e0 m N 0 N (V 03 m 01 N 01 01 O N 07 ( r O Q N U N N M N . ( co 03 M m 0 0 N Q. u>,� -,.. . a � 0 .- N'- N 0 0 O N 0 0 O) M Ln 0 0 V N r 0 0: m M 0 O 0 O) 0 O O 0 (� (0 0 O 0; [O (0 0 O 0 ti N 0 r r 0 0000 0 0 m N_ 0 0 (h V 0 0 N N ^ C') 0 0 O. m M 0 0 0 co C) 0 0 0 (` O N 0 O O 10 g 0 0 O 03 O 0 0 Co 0 O 0 0 0 co M 0 O 0 00 00 0 0.O C N`- V: O N v N 0 C 0 ) O r- N N I r h 0 0 C m (1) 0 0 6 O N — 0 O C7 co 0 . 0) cO 0 O C N )- N 0) Q) N O 0 O 6 0 > a 41 yew ' Min th El r W S Elev Grit W S E G EIev • - ..• • 0 r (- co v a0 = 0 m E N M 7 N e0 N Cr) (o m N N ICI co N 0 O m m N on P co m N tef O a0 co N O 6 e0 N 0 d. O m N v r 6 m N M m N 0 a co m N 1 e0 V' 0) CO N ems) 0) 0) m N a 0 0 ad 00 N o0 0) N 0 V 0) °o N 00 oo m. N co CO 0) co N n ti O m N M N 0 N N N N Of to N O O C) ao N O ' O O Of N 0) an O 0f N D (7 e- N en (V N N O n a0 N v r m N c co 00(00 N v co N 10 o::: N Co a0 96 N _.. CV oo ao N V. co m N 0 ad 0) N CO 0i CO 0 0) 0o N C co m N 01 01 N N N oi o N 00 a ai N d-I o0 N m N 40 N c . N M N op N . 0 0 c N 00 e0 _.^ co 4 - N- co 0 n N C07 N CO R el m N O M) e0 CO 0 co CO N 0) CO O Of CO c9 6 N N 0 N eD N N O Of N C0 O N • _ f , _ v — co co 0 c0 cci uo co 0000 a N a N 0 01 co 00 01 LC co 04 in co N 0) tri m N 0) 1..4 CO N 1 288.001 1 288.00 Os 0 14) tr0 439.401 1091.301 676.401 439.401 0 V M V OrS1.9 I JAOS! LES£t M m 0 ' O V C+) V O o 1 - t 0 44 d ON 0 uitoev River Az meacn: RiVer,Sta 1 : ■' •Profile I JA0 lAgg I ; , • itsz . :4AoL I t • .•603 . _ I , i Li trO 1 4A64 • • , . J ,ko o i 1; JAtm JAdot 1 u9e I • L61.4 gag LirOt • . zc 1 : • I 94s1 Lcscd Lc§ti io ni011 L '"° 1. Jomo !!••• kower • 1 I Lower 1 1 Ja M?: 1 1 Lower 1 J!45011 .! • Jannol r LoWer joI • Jemoll JeMoll 11,614ei 9 dsb :zo o L os J ew U U 0 . 0 :. 0 0 �tl 0 O 6d ti M C .N 001 Ca d : C to 0 O N m 0 lO 0) r N N c) P r l r T O N C O N N 0) N O " 0. lA 0 p N )n O C N N ch 0 0 O 01 LC) 00 00 N m co N • :! 0 , C C7 O) A O 0 0 0 0 o o M 8 0) N O 0 0 4 L 0 0) O O O N m N. CO N o_ 0) 0) ) M CO N 0 8 0 C N 0) N r- co • co 0) 010 CO co 0 N N N CO CO N N co a) N 0 eh 0 ✓ 0) O O O Q 0 0 :co CO • :^ ::R)- :co : co .M: c:" . d m_ Co : # O U O O P CO N N m O N V N N C CV C co 0 0 0 0 O) C[) o C 0) N O O 0) C N O M O N N CC P N 8 0 0 tin C m O Cn N CO N e- a- 8 0 0) N CO M m O 8 0 O 0 N • O O) 0) co co co O m 0) 0) O) 0) 0 N N N N O ▪ 0 - 0 0 O o 0 8888 N N N N O O v O, . co 0) CO CO O }. 0 - -0 �. M O 0 0 r 0•o N (D ti 81, 0 0 CD N co 0 0 0 O 0 O co N N N N N N C Cp O) O) N N 0 • O CO CO CO N O C M O O O J CD 0) C a O) N O 00 N O co co 0 0 CO 0 r 0) g' C0 C 1 0 O c0 7 7 N co O C0 0) ID N M oI 0 0 0 0 5 C) N M . N N to - 6f 0 1 N N N N O' 0 N O ['I 0) O O :C C.. CI) :co C7 M: 0 0 o co C N CO et CA V*- N N C1 M O csr 0 0 0 0 C7 N ( O 0) N 0 0 2 O 0 Q O 0 Cn N u ) 0 N N N N N v 0 CO 0 0) 0) N N N N 0) N 0 0 M - CO cl): 7 0 0 H O co I- N CO N 7 1 N N O 0 0 O CD t- ea 8 l J 0 0) 0 0 8 C1 0) N M N O 1 0 r N N 0 0 0 0 0 0 CO 175 CO CIO CO N N N 0 0) O 0 0 J N 0 CO 0) N CO 0 10 N et M et M 1C1 0 0 0 N 1-) O) N 8 O CD N O et C M R O M N 0 0 0 0 C 0p' N N CO 0 N N CO CO N O O CO N N O 0 0 0 0 0 N N co 0 M CO 00 0 0 0 S N 0) d' N N 0 0 ka h CO CO m • 0) • O: N N N N L 0) 0) N O 0 0 C N L 0 0 4 77 et: r- - et :1 v. • • ' =0 ='b o 0 J J J J a 0 N CO CO 0) 0 N 00 0 CO L N 4') 0 0 0 N N N B1 cD C M M 0) N 1 00 O O r N CV N N 0 N A N N N ) t0O 0)) o 0 tt. 0 11) CV 0 , S u) 0 0 0 0 0 0 O o 0 o 0 0 CO 0 N CI CO N vi v 0 N N CO N N N CO CD O N et 0 M C) €f of N N N' N C 0) N O CV 0) N 0 C v h O N O O O O N CV N N 0 0 In CD P t• O CO 0 0 00 00 v r 1[) N N h g 04 0) CO v O O CV 0) N O 0 • 0, 0- 0 0 J:J' J C co N O N 0) N 0) M 0 dgti:ZO OL 0£ Jen r 11 • • r172 Itz tL IEE 16E0 0 O 07 M cv DI CV 0 J ) CV C•) O t O Ill Oj Ics'o - -- ' 90 . c L9 '9ZZ LZ ! 66 La larssz 3 1M-09C l ■ LL'VtiZ 0 N N N CO CO O N 0 ID N 1 C 01 07 OL'OLZ VOZ emy,n;w1A i1A10 laA I (11 OS) • L (sn) . I :O M jtp r..: M' to 0 00 V� C7 ti V O 0 V' 0 0 N O N CD CO .- CI 0 r - 0 7 O V In r) i CO O r 7 m CO M 0 O CV M O 1• CD V• CO Cl r 07 to e- ' d V 00 (` CO V N O N CO CO 1 N tO .' 'V CO V O N Cr) C? N N O 0 M V' O N N.- V' cry LC) O .- V CO O M co V 0 N 0 L) 0 1 CO 1 CV 07 n D 'I CI .- N Cb CD V O V' C. r O N O N CO ID h . N 111 IA O N CO 99' £91 h. V2 N 1~ I N N V N O 0 N N V N O 10 tO CO r CO CO N CO CO Ch U) fD N — CO - CO 0 111 O N CO A r CO I CO 7 V If) In N. 1A CO N CO O O ..... r- C7 - CO O 0 ( M 0 6E-e 1 !'9$ N CO — Os C) 0 CA O O 0 0 C C C Cs M N 0') O O C] CO CO R) O O 0 M O )L) r O O 0 M O M 0 0 O 1 el CO N O O o 0 CO C's N 0 O 0 0 V 01 N O O 0 M t0 O V O O 0 0 to O O O) 0 0 CO O O It' O CO CO O O O `? LO 01 0 O O M 0 O O O CO r 0 a- O O O N I` 1`') e- O O O Of N r N O O O V M N N O O O N N O 0 0 0 1 C) O O 0 CO O 0 O O 0 01 N CO O O CO O tC) 0 O O 1 0.005305 A013 01 .• N ) O A .V 190 co 6 0) 6 ID 0) N CO 0) N O N n 0) N 8916Z N M n 0) N C• Of N O A 0) N M 0 6 01 N " N O CO Of N O M CD 0) N CO 01 c0 0) 04 r m CO ) 0 N CC) 0) CV Cr) 10 Czj 0) 0 N CO to 0) N 0 1- C7i 0) N . (O t` 10 0) N V 0 O 0) N N 0 e- O) 0) N CD O 0) N N. M CV 1 Lt7'176Z 294.221 1 LE' 96Z 1 963 Z9' A L) CO If) CO h 0) C7 e- C; N 1 E I.'96Z CO' 26Z I CO M CG N 10 V co N 10 co 6 N CO 1 ti 00 N I API] I (4) 295.511 - 64 CO 0)) N h m N ,- 0 N N 0 N N 92'/.6Z 6516Z GL'96Z r 298.47 0066 1 q0:o .04) 292.001 Iona OCIZ6Z O O N O O 01 O O.O O CO g g 818 V' Ol ; g O a) 0000 A� R 0 Fl 0 R 0 01 0 N O N 0 0 .- .- CO Co N V ti Co L 10101., D. I (sP) 676.40_1 5 ? + 1 ` C 0 .' � 7 er 0 o ` C 6 0000 C h S e ` 0 . _ 'J V' ° :D 0__ c•) 0) O -- 000 V M V 1091,30 I:. elifo'J; A nA 'A00 fl _ Linog ,iAog ,J) • ,)A091 JA • • • • • • : • 100yr- • Ji00( Sta 1 I i; : • £5491 . £9Z9 zcz0 1: H ,1.99Z_9A L 6s991 6E99 £699 sts91 1. 140 WAJ 011 J9/010;11 •,JamOl . 4amel 1 Jar4 JaMi3)1 am, 1 JDN'1 1 1 J MO Jemo 1: !, l 'tower I ILci` I ' ' ;:ja — _.... 'tower r: . tower tower Jem0-11 CC 01:d d517:Z0 OL 0£ JBL N to L . • 000 U ` V 0 O Q ' :11: G/ �F l l'd • y to M N ti yr O) • W N O Y N N V' m • <0 1� 0) O O O O) O N N M 8 rn N N O ..2 O) 1- M tb ri L0 <0 N Cr) O O 0) Q� CN N 0 c o 0 ri 0)) S N 0) N O 8 N d9ti:Z0 Ol 0£ Jen EXISTING CONDITIONS Qs W/ CASTLE ROCK PKWY BOX CULVERTS (6 -10X5) 1•91.cle &Chi '; 1 . cn N 6 r... •I... 0 co ,. 0 to .1."' 6 1-.. et a e- et d c7) Cc) d cr) 01 0 1 I c=7 ..-. d .- 0.. 6 .- .e- 6 N e- 6 V) v- a et ,-. 6 0 e- I 6 a-- ' 6 : ce) ,-• 6 et e- a et c- 6 0 ,-. 6 C c , - 4 O.1 u•) rs. Csj 1. 1 -PPAA d°I :. • - -,... ,.... -.. N CO 0 ',. er In N ',. I to CO r , t- 0 CD CO Ir cn C: to 0 cq h: co CO N. O al I 0 0 ,- VD 1 71 : to 0 rC co 0 r 0 co 0 r 0 cc! cst N •,.. C) co o 0 N tc? to 0 ,• 1 co ai 0 ..r. 0 co r: .- •-• 1- en t-- . an .."-• . 0 . co ..1. • CP . co •■•••• , r 1 Feely rit old -c\; . tt to co I N cc) 0 0 4 in CD Lo 0 ,-- 0 ,- ..... V: o../ ,- 03 N - 0 c CO N.. s co 0 a- 6 er 4 c0 0 cr; I, 4 CV N csi e- co LO NI cc- cst TP N CI FQ 0 6 N. . .4 "at CO Cs.i OJ -c- VI CM •.t. co 0 EN • 0 • N.: 0 0 co r, Cs1 o al - 4 N. ..- N csi e- N e.- ('1 juto len ,...... CV R CV ( c! 1 - 0 C%1 -1 : ''' .- co c`i s- 0 N. N.. 0 a 6 TS c ) ,- [ co '9 ,-. 2 ,- P..). ,- 2 ,- 'A- CV 0 ( t a•-• 0 t'l .- 1 cc! .- N i cl CV 0 O R 1-: i co 4 co 0 N- to in , r CV .01 cc! N f- et , r) O4 ec) 0) er CO er V- 8 8 8 °goo 0000 Cc) er 0 0 0 CO 03 et 0000 (pogo 6 C , 1 c 0 0') 6 CO LO CO cv o 1 . 0 0 N.I o a- in ..... 0 00 00 o 6 0 N. a - 0 o 6 0 0 CV 0 o 6 0 rt) N 0 c 9 o e- 00 01 9 0 c! o C2') 0 N n 0 0 o et cc) n 0 0 • o c0 CO •er 1 CV CV a co a co 0000 0000 lor Ps Cs4 a a NC N VI a CD . N. CO 0 .1 CV N c.' 0 01 N - GO CO a- 9 0 0 CNJ MO CsJ N- - cz! o - 0 r.- , 41 0 0 : 6 N .1. 2 - 00 co r vr (1/4 0 0 -ol S . . - 6 . 9 ap. N CI) cO N CO cv CV CO "I- a; N et mr N c -4 et csi co N Of U1 co N CO I o N .-- cC) rs: rs. N •<- CO cd r- N C O C cc; 1 Cv 04 0 (0 I cv Cc) 0 N. N. N el cl co N. NI 00 0 cci t, Ne 0 CO (0 I CV 0 tn r: N. N 0 CI co N. N Ce) 1 4 r-- 'C' CV NI co I cv CO cri 0) N. cv cl co 1 NI T.. (0o co N. cv CO o I N Ps cl o CO cv LC) 0c do CO N CO 03 N 01 I 6 Is- 01 NCO:71 CV 0 CO N l- 4 to CO N CO I oi r.- CV CV 0 0 N -"-" • Crit W.S. 1 1' 1. (10 • et N. N a) 0 N. N CI 0 I, N I 0 N. CV 0 c0 I 4O1N C4 NI 0 N. I 0 0 N. 0 '41. N. I 0 t q cv er er r- t.- C4 CV I` ce) 4 r- cl O4 c0 4. N. N 0 et et et r, co 4 4. 4 r- 1.- N- NNNN N e) 0 t-- et et: 4 I.- N 21 co 4 r.- N 01 tri P- N 1 et ts.. t.... NNNN .. r •Cr N: r- N N 0) r.: Is- . _. Q VUD cci r- CV 0 e- cc; Is. et 'cr co r- N N:- to rs- _ CO NI at 1,- N CV 0 cti r N A3 o 01 CO N. NNNN cr) CO is: 1 er er N et: CO cr) Ps tr 01 N is: N. N .1. 0 cd t, U N N. CV 0 CO et CV r: cO Ps N NNNN CD cd Ps cri 1 8 • N: N- CV ca cci N. I N 01 I's r.- oi I CV N 0 r: I N .- el O t, CV 9 0 ct5 r- N co O I , N CO CI) C7) t- N Li.;10 El - 1 0 NI N. '.• 0 Cal N- C■11 0 CV r, csi CD CV V N 4 I O4 4 N. N 0014Z I OZ 4 f N 100 . ;08 . 8e9 4 r NI 0 C.1 co co c\i ts. N O. a o -cr csi rs. N 0 CI oo co VI csi N. <V 0 0 oO 0 C0 N.i t- N ■ 6 N. • NI Cc) 03 N. r.- N C4 Cc) I N 0tf ELZ 00296 01 1 N ei N. cv ri Cc) I, 1 CV N N Is 01 CV N CV CV ts CV 01 1-- CV 838 0 P - CV 0 P - N cd ?- CV ! 01011;01 0Z1199 00Z86 0 (.4 oo 56E3.201 I vaAln° 400.001 ;owns ; . [00 •0011 low n o loo I0V809 ' • . " •:, ., • * jAOLI ", •1:„1 . 4009 • - ,,,, 72 . - z• - • JAOS . , JAK* 1 . JA0 r .- fekat: 1 "tt • • 1„ i. I 4,1, as - -1)410s _: . • [ lAo - 1, • AOOt elS'- 1 iii t6V. 2 • [, 9917 e0t . :::•., . • _ 1 szyi 1".• 1:." 6491 I . ;st . • .$1,5 •._. , 1 • tLgj ... „. :. .• 1 11 01i10' .. . .,. • • . [ ;14 [ tta • . 1 ' 1.f!9 [ 1. • 11.• I . :., 17 I: y6 tpee Jamo9 I :Jam 1 rahy411 J emoi .1.0mo - 1 [ 1 • " 1 . I Lower :1 ; I • ..0moi] .rai■o91_I 1 • iw.. L_ I 4am9ti lemo-11 L • • F' .191A021 I rb M0 - 11 1 , JP"ril 1Lolkeir I • I Low0t [Lower Z d dtvZ0 01. OC Jen 1 Fr Oikle # 9E'D d d ci 190 ZWO 1 crwo Imo Fivo L4'0 1 oz po 0 d 0 d do Isz'o 1 90*L9Z r ... 245.69 258.81 Isgvec 1 461.41 lovvst " 11f601 18t 14 .6666 411.671 ,eaotmou :" (11 90'80Z E8'89 L 141.44 99'61Z 1 PS' IZE 499 IS 98'60P Z4*ZZ9 6Z '499 PE /TOP I. acasz I89c 341.62i • "1[ '" , LL'l 66E E9•E 1 80'S LLT EZ 'E 179•E £67 ETE L L'E tat OP '4 , 13417 0517 S'917 8E4 Jcve 1 £0•17 0.0011911 2.321 *clop '2 1 L 0.010197 1 0.012890 6L9040•0 409600 E65L000 lt 34J 6E9E00'0 1/63000'0 - 0.0006551 0.0007561 11.L6PZOT 0.015979 lezoz vyo 0.0032481 . _ 0 0035681 0.003641 0.0038401 0.000976. A013'9'3 ... « 1 86•08Z Z4'48Z E9'413Z 281.72 r 282.04 wen ZZ•49Z 49•48Z 285.80 40'98Z 1C 1,.98z 286.45 44'98Z 286.681 286.781 91•L 287.36 287.47 68'L8Z 288.68r 288.89 L6'88Z 1 LE•69Z n 1-'88 z I ciit w.s. • . 280.06 6' 08 94'19Z 1 zz t.ez ZS'48Z 1 9 VE9Z 179 ; ca n E0'1 "" 166 179•99Z 1 285.631 1.698Z 1 9Z*S9Z LS'99Z 8458Z Z9•99Z LE96Z o 1969E4Z 287.341 Isroez Z9 AOp (11) _ L8 6Z•48Z 94•49Z Z9'19Z 1 VL*48Z 48•E8Z 0 L'POZ 1 LL"P8Z 49•179Z 6959Z_ 1 zs 40'99Z ZE'982 6E'99Z 1 286.661 286.75 1Z1•113Z 286.781 287.141 149'2.9Z 288.78 288.86 2139.18 1E0 jez rifizez 13 4 1. ()ova 1 1 280.00 0009Z 1 280.00 00'08Z 00 00Z8Z 00Z9Z oozez 1 282.00 00Z9Z 1 00'Z2Z 00'Zsz 001 0O , 9 1 loo 100913Z 100•99Z 100'99Z 286.001 286,001 1_00 286.001 [1 :0 :rotor! • • (so)' 00Z96 00004 Or 99S 099E9 00Z96 1 400.00 OZ139S 1 638.80 oozes loo 1_002136 400.001 109'9E9 looms Ion% 999 1 onts 1 oozes 400.00 loz oo 09'8E9 4r004 568.201 1E189E9 . . •imp% 1 . _ 41.4 409,1 4 1■ 0 1 411 . 44(0,1 - thI 4,0439 = ri JAo9 .1Abg L. • 409 JA009 iA00I :),(ot ; JA0Oti eiS JOAIN . . , . 9s I Li i• , 14 Z141. .• Z1.41.1 - .;(117z1.1 i : '.99ZZ1 • , L 89 ; 909? . 909Z . 908Z itkic LVOE : • ypeol 7 : _ . . „ . . . '.' L --i;40#unl 181601 .. 1 Jamoil ' : „ j wi i 6- 1 1 L JaM011 1 . Jem°1 : 1 ' Lower Lowei ::. 1Lower i 4 KoWer • 11 Mar 30 10 02:50p p.14 Froude # ChI 1 10 16E0 :61'0 IZECICZ 262.781 0.20 ; 90T/Z 6t0 :(!in r r n VI ad C ) CO CO O CV st: SVO „.. Inta IS0 • 433.75 296.96 242.58 212.91 336.44 : 299.73 801V MOO 0E101. 1E1.'161 16212 isv 393.27 V6'61.17 06' £Z9 1 . (sx) ;• .t to 0 cd r cci CO rri 1941 • • r ': Cr3. ITVZ •r- 0 ci CO 0 co CO CV ri V' CO c‘i ID 10 c‘i £9•Z 967 1: edolt 0.0144731 1C09910'0 0.0103t 0.0010221 160C100•0 176£Z000 0.002346 0.008209 0.008049 0.005332 0.005275 Ao13 0'3 (1)) 19t/.6Z 297.571 , t76"L6Z cc> CV ai co) N cc> CO oci co N ..- co 0 NI co od RI <13 co & LO ca 2 169'96Z 60'66Z 1 1 299.581 1orooc 1 I' • (4), CO � - i to; Q0)0 CV 0 t-: CY LO r N. . CD CV CV r-: CV CO 10 t-: o CV 1 CO r■ co o) CV CV CO co or CV Is. 03 to ch CV V. N r•.: C:72 CV 0 N 1..... CO CV CO 1 I CD CV ,c, 1 0 1 CO CV co CO I Or CV il .101.. co: Cc, CV to) PI co cn ell ..-- . sr cci co CV 1 to Is od 0) CY to t.0 cc; 0) CV to 00 (0 al CV ol 0 o:i cb CV in N ci C) <V CO CA co CO CV CV C4 n 01 CV N. 0 N: 0) CV CV Ort r-. 2 CA r cc; 2 al CV co 0) CV to CC) co 0) CNI N T..• cci 0, CV 0 .0. co 0) CV 0 ul c0 0) CV CO co cti 0) 1 CV n 1.n co 0) CV I e, co CO 0) CV csl co 03 0) CV el el 01 0) CV - ��o ci CA 0 CV CO 0 CV ul GA CO CV C G1 M . 0 CV rs. CO CV 13'140•1 0000 oorzq 4 0) CV .cl 0 03 N N -1* Ca N 0 9 c0 03 N 0 9 tC3 0 cN 0 ' CO 0 CV 0 9 CO CO CV Q.• co cd. ar C4 0 000 ro co CV CO co; o) CV 0 cd a CV CO o (Id C73 CV 0 oco co 0) CV 0 uo 03 CV 0 co 0 CV N... CO CV n 0 ts. A n 0 CV 1 1 I te10.1_ jr M,-- 0 0 0 -,4- 0 0 CV CO 92 03 in 10Z 00 Z96 I _ 568,20 0Z1399 09'13£9 1 400.00 00796 L • 4 I : ,JA004.1 r. !:409 Al1/4009! JAot.1 • .)■;,1* JA01. mot JA066 1 :19sz0 r . 9S LIH 6C9 6c 1"'" • .6009. 1 .. 1 6991 tog I — !F.:91991 9 L 9 * . 91139 '1.091 • 7:.;!;1 11,691 . , tpe0d I Jeripi I [ • mmaii 4G*0 ' ' LL1 larfilj11 I . J4m0 Jangri IL0 • .1 1 , iam° MHO! 1 Lowei 9vd dg: ZO W. 0£ _IBA ULTIMATE DEVELOPMENT Qs W/ CASTLE ROCK PKWY BOX CULVERTS (6 -10X5) 9 V C �.N X W 0 cn 0 W O U 0 W 0 C • • • J • co 0 c • tC . .a. 0 0 Cc- m" 0 0 L L'd 3 N ▪ cd N N r O O N 0 . . N . (O IA T O O 0p N cn to N N 00 0 0) 0 1 0 N 0 0) 0) 0 t 10 0 a`) M O O 0 0 0 N N in al m CO N N o o '- a f0 9 N N L 0 0 v O I O co (0 esi (00 O 8 O 0 10 0 N O 0 CD O t 8 M ((7 CO ti Q 0 N O 0 0 ti 1� 1'- ('4 (0 ti CO O O CO O CO 0 N M CO N N O O O (O O 00 N J N. O ti m h 0. N N N� N O M O co 0 0 co n r- 04 N . __.'�: ti .0: 01 ( n. .0.::0 W.:1. V'. a r M d N 1'- N O O O co O N O CO 0 M M O 0 10 CO 10 (0 M ti 0 0 O ✓ M O pp r • N N N n N O O .4: N 0 crl O T 0 o..: O' _00 m 00 _CL1 42 3 g J J O r O 0) f` N 1. n A N N 6 O O 0 tV O r T r I co 0 n n N CC m 0 ti N 0 (0 O)_ .A) N =:N U)_ (O co 40 J (0 U) O O (0 0) N' N N- 01 0 N 0) N I0 N O .O, O N 0 m O 00 N 10 Q n N O) M O 03 N N co ( A N Y t i 0 : n M O 10 0 n N 10 C N d O 0 O 0 0 0 O O O CO 0 ti 6 N N N d n N 00 N r- N O a M N 0) O O O 6 6 O T r r N g )� 0) ( 1')) J CO CO N N O N O 0') ti N .4. O ): °>, O • . LO • ti ' 1!) O csr T- • ; CO 10 N (0 N N • • 4 N N 0 00 N O a n N (0 8 40 ') O O O O �1 N ' O M N O 0 r 0- ' V J J.' ( ✓ r O O 0 CO el O ▪ 0 T 00 N 00 N CO M O O 10 0 n N O v 0) M d 0) M M a 0 O co N O N O 0) R N CO • 0 N N N N) O O O O 0 a0 0 O Q n N co C O N N N 0 N 0. ti N N N • 9 c0 c0 N N 0 . 0 0 O O (0 l co d 6 1- N (+) O O N 0 0 0 0 CO CO CO CO n 0- r- r• N N N N 10 O) co .1 u, , ti N a0 N (O 0� T ►� 0 -- O 0) - N • N A N N O CO O 0 0 (0 0) 0) 0 N n 00 N N N N co N N u1 N N O CV N N ° o 0 � 8 6 f\ N co N O N N N co 0) 6 6 n ti N N N Cq CO 04 N O O N o O r N N O v , CD (0 0 3 J O 1 O) 0 0 0 N a (- O m I` N N • N (0 M 0 0 0 0 N cm N 0 O m 4- N a 0) (') d : 0 • 0 0) a O ) 0 0 O ti 07 O O N -1 n O O V O CO N co 0.4 • r- 0* a) ai ti ti ti N N N O N 8 0 O N CO N O o ICY CO (D 0 o, r 0 dZ9 :Z0 o . OE Jen 'U t O ' il: ar lh I O N t0 O � � (O G C9 O O 00 C to. 0 NAM 4:? O CD O O CD C I ' 6006 N I 'P c.1 d V " I 1 f+ co r O 61 . — I C -O N .0000 co G 6+ M cO CO M 1. N to co N I N ' V O V ' d O uoII— v • t J .4- Id N O COI N O N. N O CO o) d 0) N d — ' O a I— .. - .. __ — .. d Ni C"1 N U) N N 0 OD C7 CD c1 CO to N in r 4 O N N( U) CO N I` O M C n 01 r N CD d' N O N m N d M RI C O el co CV , V' 0 C)7 h d O p 0) '7 0 co h C ) N n I- r d r to d V' O tCyy tD '' M C) O d . O M r go N CC) .- el N h r cO CV co CO 0) U) O d N M r 4' op co d N u7 (00r Ch d co d N O CO.O v : 0 Q LL ..: m h O M Nr M CO P N r— 0 t D co N 0 Cn ( CA CD - N 4' O O co N •• r a i N c7 M Ca st d N M h co r) ri co M CV N co u) O a0 co d ,. co co U) O 0) (0 0 d P h 00 h CO 4 ' 00 O1 CO h Ili oo 14' h CL T )C1 N d' In . N h h N N IA U) el CV ;3 M CO3) ri d CC) C d (O el I _ Imo loft: (S1 c0 CO Cl O C) e1 0 O P) N. O d M M N CO h- e'1 eb �-' Ch N ) e7 U) h' Cl 8 e) co N C'7 I- N CO d N r) co c0 CAF e] r r d d C) - r CO d V `,13 4 O8 d c V' U5 e7 C!) C7 CO cc; CD r V O0 01. N cV 00 C" (`! (uiul , co N N 8 O C+7 CO CO 0 0 O N CO o 0 0 o CO O O r 0 0 N O CO el .- 0 6 N N O .- 0 6 h 0 01 0 0 6 N 0011 0 0 6 CO N O C o 0 6 0) C)) M c 0 0 CD O a M o 0 0 CC) O O 0 0 N 0 to o o 0 0 CD O Co O 0 O CA 7 CO O 0 0 CO 000 O 0 0 ) 0 O o 0 00 N N N 0 h r 0 h d N el r 0 CO to r r 0 O LO el el 0 O m CO el 0 0 O h CO M 0 0 O U) O) M O 0 O h 0 o 0 . O N I, 0 0 O co N O 0 O ^91)'0 N r co 01 . N e30 N C co NI co CV co CV cos N oo CV co CV co N W 6 co N Or m c0 N CG co N CC a0 N co .. co .. co .. CO .. CO .. CO CO co e7 h C V co 01 (0 co O N 4 N CO N N S`M 1!J5 (4) 281.191 Q C0 N CD c0 N h OD N O (0 N Co m N (00 m N 109'99Z C O ui N co C N c0 N CO 01 Z£'99Z 1 288.55 r 288.43 1 S'M:, 1 (4) 19z M M co cr to co to . U) r � O cO r co O) OD CO N 1 Yl'1+9Z to 0 m co 0 d' (D co (0 d co co N h CO co c C C i co co co co co co M 0 03 N P) 03 C') CO O 0 (O N N N Di N 6£'692 1 1MId El f CV CV CV cv CV cv N N 282.00 co O 03 N o O c0 Cs o CV o c0 N o 04 N 00'99? 00'99Z 00'99Z 1091.301 101'519 1091.301 439.40 676.401 10b'6£b r0£' 4601 Ob'919 01'51 1 I 676.40 01.'$19 M O O 0 M . 4' Or r cD 7 m CO All ;OJdi xA01, J) 0OI• r'. • ; . JA0o5 Ak0(.. 1 :JJl00 1 • ?J1005 �Aao%1 1, 1A005 JAot JAa 1 JAG S1 ' JAOQ�I J,ioogl •JA0I1 J,'0s1 J.AOOlj 1 31 1 s JBA1U :ia , ' 9£11 2441 ttitb B6Gl`" 9 t14 1 '-' SSZd •SSRj ssul , ,: • L:99� I LBSZ"1 1952 f: s'oaa 9beaj - 9�BZ L;to£ I dVQE1 1 49890 ' it .1 .. JaAdoy l "J�M •6AA01 JaMd -j jaMO,J Jemoll ILOwet ......- I J8M0 � I 12MO L flower _. Jowl JaMw1 J9M01.1 .J2nno i JeMoI JaMoil !Lower • JBMQ'i 1 ianno� 1 gvd d£9:Z0 o 0£ Jen 1.43 6rpno,A. 10E11 0V0 1/4'0 1 LE '0 EE•0 sc . () IS 4 '0 toolM,dp,t„. 1' • 1P01.94 I 96'LEE 400.17 1 160'En ILE 141. Icz•ort. 1. 11046 18996 4 4' 40 1. 124.30 L9'96 L VZ17'91- ,E0•17gZ 99'ZSZ VZ'OOZ I ai V ma id 199'999 19V5SIZ 420.761 19E' L99 190-az 199'99Z 91.1r6Z 09*Z9Z 109'1,9 L -- 11 oircez 0.000749 1.76 396.98 E.G..S1ppe j Vel Chnl swz Ist 1 zoz 10Z1 199 lovz risz Ira ire z 999100 0.001711 3.281 0.001443 ; 1 Lzz o.00nisi 0.0028711 0.000453 £9L0000 09E1.00'0 1£6'69Z ; 017'69Z P.- I a Ltr'06Z 601.6Z 9906Z . l6 1 29074 8926Z 290.94 LS' L 6Z 1 293.10 _ _00 sgiusz 288.81 1 1 289.371 I co.Lez ov.Laz 1 _ . 290.04 09'69Z RE88Z 96 ; 176'Z6Z 1 W.S. Ele4T1 10L'69Z LS'613Z 0669Z 290.38 Isc 1to ouz £1.16Z 4906Z LZ'16Z 1.1716Z 6Z' L6Z 1 Min Ch El 1 - t 676.40 286 001 . , 439.40; 285.921 286.00 oo-eaz 288.00 00 0099Z 99" /.13Z 99'Ln 99 1 288.00 288.00 00'99Z 1 II 1 • • (s1 Ote9L9 10E' L60 1 439.40 615.10 01.7'9L9 0E 439.40 676.40 1091.30 pant no 1 615.10 0£'1-601. 1 el 9 jaAl.H. JA00g! kir , : , Apoz• 1 • • • JL.09 = 0I ZE . . . 1m; JA09 9LEU; :4489! • • ...rApoL LESE.1 - • • .1,911. • • , -ass ‘ , ; .JM.I.S I :•:CLVU I t. • , ;7!Ac i0 . 1 ''1 1.. r. • Z49E- • - . JA01.1: ; 09LE !I■091; 09L£ A009!' 09Lt; ES8E: 1 JAo „ p6c • JA09 , „ , 99 55 • 996£ • • • • • •••LE9E .„ . 1 •-•• • e I _•••• "7 1 • .1194$M1U tower JUPAU I ; MU 1 1 • :J9.?v j 1 . Jegell . • Lower .L Fii0;F Lower -MAW II • ..• • !Lower • TT JS.i I 1Lo1.46r 6 l'd db9:Z0 0 l OE MA LU a) CD 0 ca ad co co ea a) DI 0) .- 04 DI 0 CI o 0 0 0 a CV L O. 0) L0 . ao co CJ') • : 6 o N rs- 0) an CV . 0)10 4 ID 7 3 t ) 0) c• CI as (4 (4 N Nt (0 ea CI) 03 Co 0) 0 CV , N ,c0. 0 rs. (0 a 1.; 01 a) Lf 8 a a O 1 ▪ ' CO) 01 -.C.1 (NI 0 co 0 0 v- Di co c.) 7 r. 01 01 14) 1.0 CV (6) 4) N LO CV CV 01 N ('4 73; ) N N 0) CV 0, 0, 0 0 v 0 0 4 CD CO DI ('4 N. V 6 ai v. co 04 Di g scr N 0.) co co Q. LO ID 0) 7:7) cci co 0) 6 , CO 0) N • ca .0 "e) 0 CE •.11 _.I - 7 s; 0 cq b LO Di 01 01 CV CV co co es) 0 0 ts- 0 0 0 I cy N . N 6 ' 6 8 8 01 CT) CV 0,0 0 ; o q 0 O o cv CI V> cso 6.4 (‚9 O.1 0) (V3 V> -ty (‚14 (4 6 6 ‘11 LO 03 CV 14) CV ( 6) •■•• cm CV L o ooOY E co 0) LC) 0 0) (9 (9 0 0 N N a) 8 0 0 6.1 ns. 0 0 • • • a, • r. . t N Cs. 0 an ns • tri a) 0 CV 01 (0 e•• 8 cv ao cr) 03 CV v- 01 ( 6 ) co a) cv ri (4 (9 ‚1 (4 N a CV Cv CD (0 CO CO Cr) 0) N CV ('1 0, N C GN 04 IN 0 0 C 'Tr CO 8 8 6 6 1.11 0) 0, (9 (4 • 0, CV RI CO 0) CV 0) 0) CV V> .••• CO N N N 60 In 01 • • DI P- 4) co) 04 01 N. 04 a) co cv s- 4 0 O 0 0 0) 0) at N N N 00 0 01 • OV 0 N cc! 0 r`l 03 0 co 10 0) N D. 4 4 a) C) DI DI 0- N 0 U") (6) to 0) an' CD CV 8 6 o (0 (6, it? q a CV CV CO 01 CV 0 o q (4 CV GI 0) N 0' .4- (0 s- r, an o 4 0 60 — 60 N 14 (0, CO (0 tr1 cv E. E. • 9 0 o v Lil CO Lr; 01 8 0) 60 60 0 -- 0 (0 co) 0) 0) (0 o) o LO ('4 Lf) CV CV a- CO cc; • cc; a I a) (4 (4 t7 (6) - co %CI CO CV T r- tO • scr` (so co cv u, 8 r-. (0 0) cv CV 0) 8 0) V W 0) o un C C I N • u, VI V) V) VI ul u . 1 0 c.0 0; „I N cv .04 04 cv 0 • N (0 C4 CV CO CO 0) CV • P- I'-, N. N CO 6 a) a) a) 0) N N 00 0 . 0 4 4 0) 0) NI N 0 n V. (6) CD T r 0 (0 0 di7g:ZO Ol o Jen I4_# *T3 L" 16 1:0 1 I sto 167:0 - r&Y) 1 £TO ZS•0 1cc rivo ' Topt VVidth 1 L (u) • 1 1 . £P - 964 £01 ISZ'ZI7Z 04'91Z is rsgu isc I-V Q . U. ao N In r 4- *O ■ I.7 : v O - N v5 co CCV� N O Cn CO Q O) N N CO K) co CO CO r M Cl. 'a' V' O N 1.0 In N CO 00 . `S'r' N to C cfl C•) : CD a co CO C'e7 N CO CD C O If) O : N : 0 CV 1 CO LO ID rn ti CO v•• N CV CO N CO M 03 r• CA CD CO CD vi CO N N N 1.-. I CD N CO CO " - C .0 V _ 0) In CO CC Cp N co 00 C'7 LO CO 04 e- r , In ) co 4- IA o N 0D n r o N CO o CV LC) In N lf) co N CO o co N .- vi C'7 CO vi CO C') N n CO 0. N a... ri - - . ..._ [1.; O ._ uJ C.) CO 0) 'Cr R_ 0 O O CO 0 ci O) O 0 CO O 0 o t. 0 CO 0 CD o a N D S 0 0' CO V O o • 0 o CO N t` I\ O CO 0 0 0 0 O o Q) N M 0 O ci "or CO N 0 O 0 N N N N 0 O o CO h CO N 0 O 0. CO CA r CO S O C0 V) N CO 0 O r f- CO 0 o CO O) In ti 0 C7 , O O C) Lo O O N- CO ai N M M CO In O O IA CO ai CO r h CO to O O CO Q� N Cn O O - d . CD lL ' N CO t; N .e4 Cn r. N CO r. CO M D m N O co O CO 003 03 CO (0 CO co 'r. N co 01 cO In 03 CD N CD cd m O r c) CH CO I co CT d' O w N N 0 r: CO Oi ' ai N CO '? r o) 0) O) r o 0 CO 7 . V . C C.) O I. CO N N n O) N C >` CT CV N N •v N CO N Q 0) CO I- N 03 N 0) N CC) N 1 oo N f` n n ) 1./.1796Z r0 298.891 66 _j col= 1 I C� o J 296.00 0096Z Q ti O N C ti O N -.1. ti O N n 0) N ' CO 1 1 1 101;91,0 0V9L9 1091.301 615.10! I_ _I 104319 0E16% 1315.10 o:•i.00i ver: AZ rceaci ":ProfitrEI - JA004: 1 .51.AOL Axog] • - -iAoogl JA00;-1 -r)l0091 1 i; .r.:99Z9 1 ' 'Lqi:99Z9 ' 600: Li; ;• • •• 6e99.• M 0) P :• �9gl " • E699: ; • • 699 : i;.• • : 44.991 *1419 0 :k 1 Lfl ' 1469 :6$3 . 1369 I HEC-RAS I:. JOIN)] I LL L Je Y9 [.; • • .• • J°!'s JOiJ Jpm0 : Jaivoi Lower 1 1, Lower : * Lower ' • n0011 1 Lower 1 7'd dGG:zn nl ns. Jew