Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Addendum to Drainage Report 5/2011
May 20, 2011 Erika Bridges Graduate Civil Engineer City of College Station 1101 Texas Avenue College Station, TX 77840 Re: Castle Rock Phase 6 — Addendum to Drainage Report Dear Ms. Bridges: Attached are 2 copies of the Addendum do the Drainage Report for the Castle Rock Parkway Extension Box Culvert Design which was revised due to the as -built grading of the culvert inlet and outlet channels.. If you have any questions, please do not hesitate to call. Very truly yours, Schultz Engineering, LLC 1 JAL *.a.r1 Joe Sc (tz, P.E. Civil Engineer P.O. Box 11995 • College Station, Texas 77842 schultzengineeringllc.com Sch ultz Engineering, LLC Office: 979.764.3900 Fax: 979.764.3910 Addendum to Drainage Report for Castle Rock Subdivision Phase 6 Castle Rock Parkway Extension College Station, Texas May, 2011 Engineer: Schultz Engineering, LLC TBPE Firm No. 12327 P.O. Box 11995 College Station, TX 77842 2730 Longmire Drive, Suite A College Station, Texas 77845 (979) 764 -3900 Developer: Greens Prairie Investors, Ltd. 4490 Castlegate Drive College Station, Texas 77845 (979) 690 -7250 N'i„' ='sue i IZE *? ': * .� at X u JOSEPH P. SCHULTZ { 65889 / $‘..,‘, 1 , 1 " - Ac.,i' / F -12327 SCHULTZ ENGINEERING, LLC. f ' i Addendum to Drainage Report — Castle Rock Subdivision — Phase 6 Please note that Sheet 10 of 14, (Grading Plan — Castle Rock Parkway Extension), of the Record Drawings for the above referenced project show the revised grading for the entrance and exit channels to the box culvert structures. The grading was revised to keep some of the stream bank which has significant existing vegetation in its natural condition. This change in the grading does not affect the capacity of the box culvert structure and it will perform as designed. Attached are the revised HEC -RAS models which have a cross - section added in the stream channel upstream and downstream of the box culvert structure. There were no cross sections in the design model at the locations where the grading plan was revised. Therefore, a section was added at River Station 568 and at Station 690 to be able to compare the design grading plan with the as -built grading plan. The attached data shows not change in the 100 -year water surface at the box culvert structure and no increased water surface elevations immediately upstream or downstream of the box culvert structure. HEC -RAS MODEL WITH AS- DESIGNED CONTOURS CO 04 0 6 6 CO P 3 n O') 'Cr rl CI 10 04 111 n ••• 6 6 3 •••• tD 0 0 tO n ..cf. 6 6 6 ID 3 8 N ID et) o r") r, cc? to ID N ‘"? •tr CO 1 • 0) 0) 8 0 p2 10 a: 0 U . • v : 7 s LL 0 W . c � Z a � O 1 ( 1 01 N x 0 m. W ao • LL U U 0 CC V 0 N N O 0 f` N N �. 41 1 0 0 1 0 O • t7 n N 8 co 8 M N N co 0) A 0 O 0 ti O N O 0) Ca CO N N 00 CV iv 0 0 :0 vi 50 e o N C n 4 4 O n O O N N N. 0 M in 0 CO N N N (( O C O 0 co n' 0) N N N 05 N 01 M • el 0) N 0) N 03 N 8 N 8 N. N m - V 0 0 0 0 w CO tD 03 m ts N N M I's 01 03 N V O 0) 8 CV M M O 0 03 N ,o- 030 O C 0 C•5 00 Q O - S CV M q h c N -• N } �o $. 113 M "03 S 8I (0 2 O O O p 0 1 0 I G N ° 030 0 rn LL m M Is • CA V 0 CO O M O CV N O cm 0 • Cr 0) es CO O h O N 0 �r) t0 cn 03 cc' Y co 8 M 0 0 N 03 CO O ° o n .n N (NI .4 . - , ,T 03 N N 0.1 N N N O 0i C) v O co 01 ✓ w a V' in N � N p N O () co .0 CO T . r: n M 2 0 O o 8 c v v 0 0 O 1 N 7 O 0 N 0 (5, N. ID 0 • '4Y h a O O O O (0 (V N 0 a 0) O) I N O t7 M 7 '•' �t CO c N :/V J VVJ�Y.NJ ( (0 e N N MI N N ' 7 0) CV 0 Q O 03 0 O O 0 03 0 t0 N 0 3 • N N 888 N N O c • v, in (0 (D ▪ b 0 .0 8 I Y�n 3- r O 0 O N (0 N N: 0) 0, ti pp A pp N tN J a V r ti 0 8 0 o t0 I� N 03 W CO 03 CO N 03 (O N CV 0 v, 0) M 7 O) C 2 N M 10 Q�p 0 N t') 010 try b 10 O u) t2. l 0 o O 30 N ;7 in CO 3 03 O N N 0 N 8 8 N 0 O n N t tD D 03 N 8 Ln M ( co N CU N M 03 O 0 0 0 0 70V a) tri Y in (0 p.o Q O 4() 5' O 0) 8 O M O, O O 0 0 O. O RI R 8 O L 0 =_ti . l I n s W . . U Itl 0) 0) O N a 0i CO (0 c M 0) O) co w N N 0 0 ii M 0 H N N tp m N K. N 0) O •• 0 0 0 O O N 0) N N M co CO O N 0 O N N n (V CO N 0 0 rn 0) N N M 0h0 O v (0 O N 0 7 co CO N 8 O) 0i O N (0 co O co CO N O CO N 8 (O CO O V 0i 0 0 Cc C C ▪ V 0 O CO 00 • : l • 0,T 0 'ef c NI: M' O O O ' O CO O) M M N . 0 0 D Lc; oi N CO N CV 07 CI 0)) 8 8 01 .0 m N 1 M 0) 8 001 N N ( � ! O m m n O N co as co co (V c0 O 01 O O O 0 O 0 to N N N 0: 0 0 : . `b 0 O - O N - N M 0 'M O I.V ( 0 m O M O O co O 01 07 M (f) ✓ 8 0 N. 1.11 CO CO 0 N N ID N - o to 0) M 25 M CO N (0 0 W 0)) O N N co 0) w O • O r M (D 0) O o O N M n M CO • N N CO O (D • O) N N O 0) N co tri co co co m O CO N O) N ([) 0 (4) N O O 00 N O v 0) M v 0 9.N 3 $ 01 0) O N M : „t r .) M M 0 I 0 0 o Oo � . CO 0 0 O 0 0 O ti O o c O N N co m co 0 00 a vi ((0 (0 CO 0 O n c 0 CO CO 01 0 N N M 0 N O ( M 07 0) O O N O O 01 CO Csi N M O 0) M CD 8 O O 0 0) N 8 1 N o O N M 01 N 01 N O 0 CV m 0) co O O U) 0) N O CO M J rn (e) N 147 N O O O N V (0 ' 01 o m N N N 01 n 01 0i O N 0 N N CO N O 0 O 8 co co o co N. N N N O ui CO 0 a 0) 00 0c O O C V co :.J • vJ 7 IJV0 01 irt 0) O O V N r N ' e ~ - 0 0 N O 3 • N 0 CO M (0 '. O O (0 (V N O n CO ( . N N CO O O b ..} S o CO CO to r r r 0 0 0 0 N p 0 0 O N N M 0) 8 0 0 0 0 CO n 0D CO M 8 0 0 0 Q CO o n (v N N 0) N CV 137 0) N CV CV N N N 0) M c Y O O 0) r 0 o • )o N 0 0 8 oo O:. (O 0..:0 I ('q- M (7 O 07 0) N 0 O O 0 co T N n O) co N p 8 O O 0 0 O N m O 0 N O O O 00 0 0) O p.a H7 0) N M (" Q 0 co N co N O) N O (0 N O 0 O O 00 07 00 O N N O (ti. m (0 00 } ` CO 0 0) ' a 01 M t0 N (D n 0) N; 0 . 0 co Ce 0 .; 37) To 0 0 1, • o. 9 0 cc Uj 0 10 0 a g N 8 ai 01 04 Of NI 8 g 8 nr8 8 40 •■•• a; Cel CO cn 8 0 I, 01 0.) 0 0) cr) (‚4 01 N CV Cel It ! R co eo 0) 00 N CV 0 1'. 0 03 0) 01 8 co 5■- . CI: . 3- CO CO c 4r ) 7; 00 N; 0 0 V . i n CO e- n. OD 0 0 0 a) 40 0) 0)0) 0) cao 04.) 0 0. 4- A 8 .0: 0/ r) CD 0) 03 N. In " 8 o od o CV 1 1 CV 01 8 0) 0) 0 3; 8 0) 0 04 Cv N CD 01 CV N 0 ID 1 1 ! oc O co yr. ri Col 411 0 0 0 ID 40 a 1-• Ir, 0) 4.4 N-1 N. 0 6 o ..- r) 0) r) in tri 4 10 CO cn 0 6; .tn co- 0) 1- 4r- 0 n ' O. a . Cif 411 N O 0 0 0 0 47) ri CV 0) 04 CV CV 0 CO 40 lin 0 01 0 0 0) CV c`! 0 .9 3 R .`"' 0% 4.4' N N (0 0) CV • 0 C0 h. CV r) ri a) al CI CV N o eu Ni a) co a) 0 cel Cv CV NI 0 0 0 0 cel a) tri 0. 0 f 2 o 0 0 0) in ID (0 0) CO 0401 CV CV 01 IN ID c71 0 a 0 0 q 0 0 • CO 0) 0) 4r• 0 0 01 0 CO 2 .7. 2, (7. 0) 0 e- CV • cn ID ("? 40 0 a) 0.1 CV 40 en en N C 4 c l O? e l r a a co 0 CI 0) co NI cv cv 0.1 0 CO C.1 0 CR O Cn 01 ri 0) 0) ('14.1 04 8 IN CD • a " c l 0 00 0 en 0 0 0 (4) ID 0) 0 0 01 8 O 0 (0 ID 40 '7 01 Oi N fe- r) cr) 8 0 1 0 0) 10 02 IN ID fp 0 co (v Ce 0 0 0 Q 0 00 0 000 0 cej 0 0) a 1 (1, I 0 . , 4 4 0 0 • 6 0. en N. N CO n ( M CO 01 CV 0 0 00 01 eV 0) a) IV CV 0 ID 2 ce, CO c0 • > ..o 0 0,0 0 ca cl? -ep 0101 V V., •■■••••./ r) e- n a 4.) 8: ID 0) 4D 0) 0 01. 0 0 C 0) 8 T.; LI) 4.0 CV CV 0 0 "Cr. 0) CV • CV 6 6 0 47) CV S cc " 0 0) v• •4 - 0) CO (N1 10 .> 0 C) 0 0 t rZi od CV 0) CO C./ 0 0 en CV IN 0 0) en • VI 8 8.8 0 0 )c) 4:0 40 to N' 8 8 N 04 0 C. 0 0 ('4 4.1 01 0'. CV CV 0 0 0 e- 0 CO I- 00 CO 0 • • 0 ..0 co )0 I0 0 CD 0 - en ID - CO (.7 '0 '0 40 .7441 8 8 0 0 04 0 ( IN 0) en 10 .44: d 0 o o - o go ri en re- .4- el 6. o 02 CO n • er cc; ts 0) CV CV - 01 ri N Pe: 0) O C.) 8 0 a) CD 40 N c41 , „ El I „a a -J ' • ",j 03 8 0 0 0 0 2 8 CV co 0 8 4 4 0) CA NI • C 0 -J 'V 0 0 01 0 5 0 0 0. d 0 2 7 i � v 0 n 8 g e. itf N � N N N O O 0 co O OV' td (0 t0 0 0 0 0 O a0 0) M 0] If] 8.0 NIN to ai t *0 O o) 0 CV CV (0 01 0 N NI N CV N N N tV eAi (A NN 03 CV O 8 O O O . CA O 40 *0. T T o o; U) ti (V O C N 0) 10 CO tO Ps CO O) ' O N Co3 :1 N O O O O 0 7 O . . O 1.0 v CO O 0) O: :40 O) 0) co ..W W O1 O1. - O) O) 0) 0) *0 (9 (4(9 N N N N t9 W N a{ m cc! q I to) cn N N N en N N N N N 0 �(pp n 01 0 N Y N UJ- . co co) • ' O) W 01 01 0 N N N N N N N 0 � 010 0) • M (O 0 to to m • 1 8 Of MI (0 t0 O 3 P) N IQ O O CO CO N N O r (?? CV *0 en CG (0 N n V in a CO 0 O rl N rq 8 O ("! 0) N N h *0 • pp r O O O 0 N CO n 0) N N � 0 CO - tO 0) 0) N al ((0 0) N N N N 0 m N 0 v, co m 0) r- 4.11 O (0 fV (0 O CV O O O CV 8=8. (h co N >- O: (NI Ico N to (p Mi U) V (�7 O 0 o in q r ✓ (O M O 0 n N O o; O 10 O (0 0. O) : N �- 0 C l 4.) N N m O) N O r0 W 40 0) M M 1.) M) 00 ('7 O O) co CO O 0) N O 4 (0 ID Cr O) CO N a) N M t0 0) 171 0) N.N N O 0p �0(pp W. N N 0 0 0 > o =C0 C0 *0 CO CO (0 0 O tO t0 * 0 o (D m M p 0) 0 N N N A N O N N CD (0 N CO CO O 0 ) N CO 01 N r0 T CO ss�� 0 O N O 0 O 0 0 O o O 0 ( N M n m, n N 4) N 0, m O 0 0 0) O N N N M Y 0) 0) 0) O N N N N 0 0 O - *0 0 c .- n 0) v (o (0 O n (O p. 11 HEC -RAS MODELS WITH AS -BUILT CONTOURS 0 8 2 ( > 4. 1 rs -•.• 0 ID 0 0 C'4 is P.- N cr 4 41 to 0 02 u. es P.- 01 0 0 0 0 sr r Di in la rl sr CO CD 0 Nr cr) N N CO e0 co (0 0) N N N Ps N Ps -J CO 1 03 8 01 CO es 01 In 01 • rs. 00 tO • g • r. r-- CV 04 OZ; N N 0 0 V. .- 0) 0 v.) sr 0 0 co ev le Os CV 88 0 0 0 8 o o — v. 4 . r-. csi N Ps O. CV CV N N 04 o 0 1.. 8 •-• •-• :!>- > 5- 5- co 0 070 .: 0 ser co a io t ` V 51 Is. 8 0 0 0 o CV Ps LO ef• 03p. a) CO N 0) 0 0 CO 0) cr; st 0) 03 . N CV , 10 0 . 0 CV Ps CD , es es. § § 0 CV Ps CO co 40 0) 4 rs. cc; ai 6 IS IS s CO 0.1 04 04 CO 0) • * N LC) CO cc; cci Iss 00 N 01 s s 3 oi oi cNi N. N. CV CV N N 0 r1 0 0 02 0). N N- CO UV 0 0 (32 t e; 0 C CV 0) VI -, 0) 0) 0 •- s- • NI cl ID Ft ID V IS r) C sh ('403 § 0 C! o o o. 0 • CO 8.8 4 -4 sr • N N 0 co CV . 40 04 00 0 rs. 0.0.. GO 01 CV c•1 (1 Cl CO CO r. fs. res CV N N N 000 is 03 Cyr CO CV CV 4 1 . c, eh r o o � 6 r 40 Zci co 0° ▪ § O 0 00 CV CO 0 CO CD Cr) 40 ICI co cq 4 0 0. I ,. N N N CO C Is 4e) U.) 0 0 8 CV CV co 3. 0 CO CD • rs N N O 0 0 0 0) 0; Ps Ps 0.. 0. 01 N cV 04 O 0 (D O ui co 1, 1 1 CC) c.7 s- 6 6 • o CO 0'- '.4 cO 4 oc 7 : co . 0) 40 co o el 0 .- 00'. CV 40 0. 8 0 4,0) V> 4 > • ' 4 re' N 4 4 1 0 .- 8 O 0 0 co ez;ps ID 10 0 •,- 1 4 CO T". 10 P• rs Ni oS co CV O 0 0 ° ° o 3 co O O V „... A N bn w 10 0 0 O 'Vv p. ✓ N N n•r 10 i.3 N co co O co V i A CO N O CO -r. oY m N O N N O S N CO CD N 1 0. 10 W •N co W O 0 c1- 6 N N 03 CO 0f 8 OD 10 V v m o V N N j A p o p 0003 ■ .6. J. N O ( 01 7 9 o 0 o O- a f0 10 N 0) 8 N O W m CO 1`•` { • O CO O t0 o, A co Co 0 V V N V CO th b 0) V N N N N N Al N Co ., O. (O O CO CO Co 74 d CO CO l V at 0I 0 O (O ▪ 2 •4 A W N N V O w N V '. CO 0 r p7 c,o 0 W O Ol 8 N W 10 N O N O CO N a a N 10 w m O 9 N r• 03 NV c co . O © N N N N 8 0 o 0) N A 0) A N • (O 0 A m _ J N (0 O N O N O (0 0 { W a 0)) W V 0 co 0 - 110 o' a I9 0 0 0 O G I COJ Co ICJ 03 0 r CO V V V r o ' O p O 8 1 4.3 N CO 47 A m • (0 (0 A ” a N O N d t(C 1 o 0 yo - - - 0 O O O O C 0 . ,wQ; Q co a cn W (.� ( ' N CA • Of (7f . v CD v ,( 4) O W �1 bo O i0 O 0) 0) a a U1 0 0 0 O A CO O N X71 N W CO 9' iv O1 r O 0) 0 o o 10 0 0 CO CO CO N v1 - 0 0 w a O 0 1 9 O O _ O O _ oc 6 (O 0 V � 0: w O 0 p .h) (71 _ Ir CO IV O N N N A N V (0 01 0) i7 e- Q . 0 8 0 0 70 no w tat N N O 'V N H Cti C ' V CD •c,1I w N O V N 00 O N O O 0 ( m N v ia 0) V 8 co O O O O O. V. 00 V OQ O { N 00 N 00 .00 W CO N i0 v x N V 0 0 (t a rn O GJ 10 O O ((11� fA .S (0 j ♦ � O 0 a (0 N 5 A O) 0 H O O O 0 N N 0 O) t'd r r: } I (0 a a s r 0 8 a (.n a 0 Q7 N (O N N� co 0, N O� 0 1< 7) 0O CO Ca) -4 V C O • W O .0 V 0 O IV 11.1 0) A NNNN N — co to 10 O N v 0 V CO 4, O O 8 0 W CO 0 CO V 10 v( A W CO W A P 0 C7 t L_ °`) N Co 0 0 p N V V 8 0 A d O 0 0 W O 0 • 0, 0 q' N O j CO p C)( N 0 0 0 • . ' 44 V as N CO CN V N N N N N ( 0 � .� '0 a • O V ▪ • A 0 Ork",4,_1 r: 0 -`. W ( 0, l 0) N V.• W CO CO N .. V CO O' 0 J' 0 A (7' W O N W 0 j N (pp 0 A . w S oo ▪ m W r i N ± CO N IV a 0 O O O' .173° (O 0 0 • C ' CO w 0 0 • 0 o 0 IV N V • N a A C p O I 8 0 0 Cs l V ▪ 01 ((,�� 0) 0) O 0 N O N N 0 (0 0 (0 N.J p W (7) V V N 10 0 N N J CD N CO O t W • N N N a Co CO Co (0O0 ((0 O . A Ln V N O O O O 0) 0) O O m 0) o;0 0 0 w aW W A W r O 0 O 0) W N 0 W IN 00 CO W W A O 0 c N CA 0 • O (0 O N 0) N I� 0 W Co N N • N (��7 0 0 0 ( o O CA m 0 O CO A 0 Cn CO W A 0 O 0 70 CO N p O 0 O) m 0 0) d N 0 CO Co d V V V O - W O'O O•QQp G O 0 . O o 0 0) ) C W O rn 0, 0 C7 W ( i N W W N trO j to co 4J V (A co m: co V O p p g (4 CO NJ O I co co N _a (D I W OD N CO k.4 v O IJ O O W O 0 N 0 N 0 10 0 0 0) O O O 8 N Cv V 0 • 0 Cri S O + 500 I ( 0 7) (v V co N 0' V 0 0) 10 0 co (O Co W Ja 0 0 0 0 O 0 NJ IN) CD 010 N ((7) O ( to O p 8 N W N W (0 Co (0 U W . c0. U 0 O O 0 O • (WO N N O N CO 0 0 co O O O W NJ N .. N co Jo N 0 CO 0) CO 0, NJ NJ _( CO (7( V N co co 0 0 0 NJ N.) N N ( O ID co ( W 0 A CO CO W N N 0) O V ' V 2' 0 0 CO 0 N N N p O 8 8 co N Co !X' 7 A. (0 V O 0 N (7) O 0 0 0 1 0 V 01 0) N 0 N . 2 N V N 0 0 0 N N -+ (0 � CO 0) 0 ( 0 V A W CD A 0 8 (0 0 (0 b � I'O O) O CO w O A I� O N i0 N O rn 0 O O m 0 O N N N N V V V;8 2 : w V CO N N V (0 O 0 C)- .0 10: =N N . µ 0) 0) 0 0) om (,.�) N (p O O N W 10 V N co 0) N N N 04 N O CO a O W .N N ( N O O 0 1V N N O m N v 0) N O) N V CO 0 W oo 0 w V N CO IV CO CO O �Np A 2 t0 N m V 0 w r- pp 0l 0 -a 0 O O is O 0 N O O) ( P 0 0 O 8 (71 w CO m 8 N to w N 8 O O A w 0 O N w r.I. r r 0) co, U1 CO ( N N N co co 9 0 O O m O N O 0) CO A 03 01 t 0 0 0 0 0 O 0 N 0 O O is N co oft CA 4.3 0 ., 8 tJ O N 8 N N - N d 8�' V 0 0 O 0) GO V W 0 N V N N .O CO W' W TO I • ((0 N 0 0 0 N r , -r V 0) ) W W j 2 0 0 0 N CD 01 CO 10 co N N a jJ CO N 0 0 C G O O CO 0) V 4j N V 0) UI (, O� N W 0 A N N 0 co S W ( 8 0 A ( W Co bP 0 O O w O I0 C O O 0) 0 0) D O 0) 0 V IV 01 r (00 W O r GI La 11 O to 2 O O p O 0) co '(31 - �: 0) 01 0 N N N N N N N 8 8,8 0 N G3 W: 0) A o w 0 0 8 N N m a O 0 N O (D A. Co O W V A O CO N O O 0 A N CD 8 O O 0 0) r r` 0- t ' A A N o : N O 8 0 N N A W al co 0 O N w O CD w N � O 0 w W O N.) N A A. A .0. V- V. a A a 0 O V — c) to O O 0 LL N N N O O O 0 0 0 C. 0 0 N CO W (0 0) O w U) O 0 N A t0 O W N l0 W m W O p O p . O0 O CO A O N CO 0 CO Li W C i O O O CO m 0 0 N W V to NJ To N GO 40 OI tO W 0 w O O w 0 0 O CA CO tO N 0) O O CD O N a N N CO N V 0 ) 0 0 (O O m w c O O O. o -� 0000 W A A 'A. V V 0 0) A a Co tj1 (0 ▪ a O : O 8 • 03 m ° 0 0 CO NO N N N N ? p 2;0 O O 0 0 A '4 °,4 ( O 0D r r' Y.1 ( CO a (0 0 W (0 ,r . W .o. o. ' -: 1 V' CO w A 0 OD NJ CO 0 N 03 t0 N 0) N W 8 CO N m CO 0) a co A 0) co Oa O 0 N 0 CO 0 O 01 (7 03 CO m 0 0 r N Al N (0 O O A O) N ((0 0 N N v 8 N 0 � 0 oi A , t w o A O N CO 0 0 N N 0 O N co G1 0 0 v 0) W 1 co o' 0 N N CD N O O O. O ` O O O CO ST N 0 8 O N j v 9 0 a a 0 3. 0 O tD 0 O•: � L-t N CO CO W P4 w O 0 co O A3 N Co N O CD m tO O 7J W. N N A 0 9) a CO O) N m (0 V 0) 0) 0 N co N O ( (3' • N 0 W . N Co O C 0 tD P4 Co O r r N O 0 0) V m 0 O N (h 0 O) ? 01 0 0 0 O O 0 Cr 0 9 ( co 9) O A N N N CO co N co (0 N O V O N 0 CD 0 o) V m 9) 0 C1 pp 0, N 0 (0 A CO 0 N CO 0) N CO ( N 502 N N tO ( ( 0):CO . 0 O O O O o CA V C)) W W Pa 9 C 0 tD 0) 0 0) W O O W ' co O . U 0 O O O O O O V Co 0 - Co N VI Ca 0) ▪ O N CO W N 0) W CO 0 c0 w C0 t0 0 0 N N (pp V b t NJ N (0 t •j O w O 0 0 IO Pa M I w no N OI 0) O O N 9) 8 O O to w N N' Co CO 0 .w 0) O O CJ) 0 0 0 ; N V N P. 0 J V Co W 41 CO 0 a 9) W A Co) (0 0 O tNp 0) 2a O O 0 Ws 0 O 0) CO 4) 0 R CO • 0 1 2' a)- • N N. W .... t0 t0 : . - X O N O O O O 0 0 W N N w N N SA O W CO O r 17. I : is O co I(0 0 0) ) 0 0 01 O C (00 CO 0 N 0) N (0 V W NJ N 03'90 to m C ; d )0, (71 0) 0) N V 01 (O Q O O N (O "Al O O O O O 0 O 70 CA Fa N t0. 0 co 0 N P co A ( (0 0 IV AO 0 0 ) CO 0 O 07 9, N O O 88 N 0 O O m N CO w N CD A u Ca 50 O N O O ; 8 0 9' (0 — 0 u 0 0 _ (O V O) CA Co a 0 0 0 fsi 2 O O co • 400 co co W U1 O 0) N N N CO V -4 W CO -. CVn N (0 V 0 0 N 0 P 0 0 ) m O v N ✓ r ( iv CO Co p 9) O p A 0 3i 1 b 1 oli 0 G) N m Alignment Data: STRM_CULVERTS Start Station End Station Length Line /Chord Direction Start Northing Start Easting End Northing End Easting 0 +00 1 +34 134.00 N14' 14' 00.05 "W 10189149.3002 3573858.3859 10189279.1867 3573825.4391 PROFILE SCALE 1 " =40' HORZ. 1"=4' VERT. 288 288 284 _DESIGN GRADE 284 280 CONCRETE WINGWALL WATERLINE W CONCRETE WINGWALL 280 276 EXISTING GROUND ...... 6,�LL,g 276 frQW'ffata?~�^ ,---_ j CULVERT STRUCTURE 272 J 6 56 LF 0 0.5% 272 'x'' :. ./. i .4LSr.'- riniNgraik,. 6 }. !iii: to Ki N II O d M U) N II W 1+34 Issisa woo I - 5" CONCRETE RIPRAP (TYP.) CULVERT STRUCTURE 6- 10'X5' BOXES 56 LF Id General Contracto hereby attest that I am familiar with the approved drainage plan and associated onstruction drawings and furthermore, attest that the drainage facilities have been onstructed within dimensional tolerances prescribed by the Bryan & College Station Unified orriwater Design Guidelines and In accordance with - the approved construction plans or endments thereto approved by the City of College Station.' (affix seal) License d 'rofessiongl ngineer State of Texas No b5' " 71111MINMEM: sae. 0%0oo'1, ooppo e ° p ° p p p o , 0 ff°o 4- .W-8 �o ° °o ° °pO °pOO° °o 40 /20 0 SCALE IN FEET Greens Prairie Investors, Ltd., General Contractor for Castle Rock Phase 6 development, certify at the improvements shown on this sheet were actually built, and that said improvements are own substantially hereon. I hereby certify that to the best of my knowledge, that the materials if construction and sizes of manufactured items, if any are stated correctly hereon.' _. PROFILE SCALE 1"=40' HORZ. 1"=4' VERT. 288 284 280 7 Start Station 0 +00.00 0 +06.00 0 +48.00 Start Station 0 +00.00 0 +99.80 1+09.80 EXISTING GROUND CUL' 6 -1 X 5 6 SE CI End 0 +01 0 +41 0 +5' End 0 +5. 1 +c 1 +4 STR BP 1. ala ,. ivvu.;:iItLLSNO0 3H1 'L I G' 03LVN10d000 38 TIVHS NO110f1211SNOO 11V 0 ONV S1332i1S '2:I3M3S `d31VM d03 SIIV130 ONV SNOLLV3IJIO3dS QZIVQNVIS NOLLVIS 3 O31iO3 /Nt1A88 JO A1I0 600Z 3HI HJIM 3ONd021000y NI 38 T1VHS NOILOf1211SNOO liv '9 'Sd321d 03821f11S10 lib ONI033S ONV ONIH01f1010210AH A8 3131dW00 SI NOI10f)d1SNO0 2i3JJV SV321V 0382Il1S10 3H1 NO O3HSI18VIS3 38 11IM NOIIV13O3A IN3NVW213d 'S N / \ / / (AS 9L9) � SlDNV / 10a1N00 NOISOei3 0 0 00 EIE36310 6ZZZ -0172 (6L6) :SNOIld0INf1WW00O)IN11 'INQOf1S LL£8 —t 7£ (00$) 5009 —g (002) :A0213N3 SOWjv LL£2 —t t1£ (008) :3531 OIO SI NO113f1d1SNOO JO 3ONt1A0y NI S2:1f10H 2tt, S3INVdWO3 .1111!1(1 3HI JO NOILVOIJLLON 53111111(1 QNf1021O2130Nf1 ONIISIX3 lib JO NOILV301 IOVX3 3HI ONIAdId3A 2104 31 8ISNOdS321 38 ilvHS 21010VJINO3 3HI • I. 'S310N NO110f ISNO0 f 0000 © �� o I� UI SNOLL VA g7g CIO07f TSVIT 3 NI_A Ills 4/ - d ]NI M0e 4 / ° p oi 0 Addendum to Drainage Report for Castle Rock Subdivision Phase 6 Castle Rock Parkway Extension College Station, Texas May, 2010 En4__J eer. Schultz Engineering, LLC TBPE Firm No. P.O. Box 11995 College Station, TX 77842 2730 Longmire Drive, Suite A College Station, Texas 77845 (979) 764 -3900 Develop Greens Prairie Investors, Ltd. 4490 Castlega e College Station, Texas 77845 (979) 690 -7250 OF X 04 \ } 1 * JOSEPH .. ., SCH TZ. 4 ,�' 658$9 .`� ' The design analysis using Manning's Equation of the proposedchannels is as follows: Channel 1 — Rock rip rap lined channel 8' BW, 4H:1 V side slopes, 0.5% slope, n =.024 depth of flow, d = L33', Velocity, V = 4.12 fps Q10 = 73.05 cfs, = Q25 = 84.21 cfs, depth of flow, d 1.42', critical depth, do =1.23' Velocity, V = 4.34 fps Q100 = 100.57 cfs, depth of flow, d = 1.56', Velocity, V = 4.56 fps Existing Channel Downstream off Channel 1 1— s opes and rush lined side natural Channel 6' BW, 3H:1V slopes Q10 = 73.05 cfs, depth of flow, d = 1.67', Velocity, V = 3.97 fps Q25 = 84.21 cfs, depth of flow, d = 1.80', critical depth, do =1.44' Velocity, V = 4.10 fps fps Q100 = 100.57 cfs, depth of flow, d = 1.96', Velocity, V = 4.32 f Velocity in rip rap lined cthenvelocty nn the existing channel does of 10 fps for rip rap and not exceed the maximum velocity of 4.5 fps for grass. Channel 2 — Section 1 - Concrete lined channel 8' BW, 4H:1V side slopes, 0.45% slope, n =.014 Velocity, Q10 = 6.99 cfs depth of flow, d = 0.28', h', V = 2.74 fps Q25 = 7.99 cfs depth of flow, d = 0.30', critical depth, do =0.30' Velocity, V = 2.89 fps Velocity, V = 3.07 fps Q100 = 9.43 cfs depth of flow, d = 0.33', ty� Channel 2 — Section 2 - Grass lined channel 8' BW, 414:1 V side slopes, 1.09% slope, n =.030 Q10 = 6.99 cfs depth of flow, d = 0.34', Velocity, i cal .220p fps do =0.30' Q25 = 7.99 cfs depth of flow, d = 0.36', Velocity, V = 2.35 fps Velocity, V = 2.46 fps Q100 = 9.43 cfs depth of flow, d = 0.40', ty, Velocity in concrete lined channel does not exceed the allowable velocity of 15 fps for concrete and h velocity 4 5 fps foreggrass lined channel does not exceed the maximum velocity Page 4 of 6 Applicable Exhibits: Existing Channel Downstream of Pipe 611 — Grass and Brush lined natural Channel "V" Bottom, 2.5H:1V side slopes, 1.0% slope, n =.040 Q10 = 54.21 cfs depth of flow, d = 2.35',2 loCity,tical 3.93 psdc =2.08' Q25 = 62.26 cfs depth of flow, d Velocity, V = 4.05fps Q100 = 73.91 cfs depth of flow, d = 2.64', Velocity, V = 4.20 fps Velocity in the existing channel does not exceed the maximum velocity of 4.5 fps for grass. The design parameters and evaluation of the box culvert structure are provided in a subsequent section. Exhibit A — Drainage Area Map Appendix A — Technical Design Summary Appendix B — Drainage Area Calculations Appendix C — Depth of Flow in Gutter Summary Appendix D — Inlet Design Summary Appendix E - Pipe Design Summary Appendix F - Channel Design Summary Appendix G - Box Culvert Design — HEC -RAS Summary BOX CULVERT DESIGN — CASTLE ROCK PARKWAY The Castle Rock Parkway crossing of the tributary of Spring Creek, referred to as Reach A2 Lower in the LOMR, requires a multiple section box culvert. The proposed structure consists of 6 concrete box culverts each with a 10' span and 5' rise. The design analysis of this structure consisted of adding the structure into the existing HEC -RAS hydraulic computer model and determining the headwater on the culvert structure as well as any change in the water surface elevation of the stream for the 100 -year storm event. A LOMR for Spring Creek and its tributaries has been submitted to FEMA. This LOMR was prepared by Walter P. Moore and Associates. The hydrologic and hydraulic data and analysis used for this project is the same as the LOMR with the addition of the culvert structure Wwere so added into the HECtRAS modeltions near the structure which section of stream was determined in the LOMR to have a 100 year for peak runoff the ultimate development on. These are the flows used in the foe p HEC -RAS model. Page 5 of 6 DETENTION DESIGN General: CONCLUSION CERTIFICATION I, Joseph P. Schultz, Licensed th d ainage design for Castle /* . )\ • JOSE H P . P . ULTZ „d Stream A2 Lower HEC -RAS Analysis of Proposed Box Culvert Structure Max Water Surface Elevations Ultimate Ultimate Condition Condition w /Culvert 278.75 Stream Existing Existing Sta. Condition Condition w /C ulvert 488 278.40 278.40 278.75 944 280.21 280.29 280.26 280.33 The box culvert structure increases the 100 year water surface elevation approximately 0.08 feet in the stream channel for both the existing and ultimate development conditions for the nearest upstream cross section evaluated in the LOMR No change was determined for the nearest downstream cross section. The upstream flowline of the box structure is 273.68 and the top of the street is approximately 282. The maximum water surface elevation at the upstream end of the culvert for the 100 year storm is elevation 278.66. The water surface surface. The outlet t velocity ocity ity for the box culvert structure s 2.15 fps for the 100 -year storm event. it "0.4 • . ......................... • .65889 0�1 �e te ®TONAL - k Stormwater runoff from Phase 6 and all previous a subsequent phases of the Castle Rock Subdivision flow into Spring Creek upstream of the regional detention facility constructed in 2001. This facility was designed to control stormwater releases from the Castle Rock Subdivision and other adjoining properties. No additional detention facilities are provided with the development of this project. Based on the concurrence with the previous design calculations from Phases 1A, 2A, 2B, 3, 4 and 5, the drainage system in Phase 6 of the Castle Rock Subdivision will function within the requirements and restrictions of the College Station Drainage Policy and Design Standards. Professional Engineer No. 65889, State of Texas, certify that this report for Rock Subdivision, Phase 6, was prepared by me in accordance with e r the provisions of thooMckflormwater Design Guidelines. Page 6 of 6 Josep't'• Sc'ultz, P.E. APPENDIX B Drainage Area Calculations Castle Rock Subdivision - Phase 6 Drainage Area Summary 501A 501B 502 502A 503 503A 504 505 505A 506 507 508 509 510 511 601 602 602B 603 604 605 606 607 608 609 610 611 612 613 701 702 703 704 801 Area, A 1 10 (acres) (min) (in/hr) 0.590 0.60 10.0 8.635 3 -06 0.320 0.60 10.0 8.635 1.66 0.960 0.60 26.0 5.367 3.09 0.520 0.60 10.0 8.635 2.69 0.350 0.60 10.0 8.635 1.81 0.340 0.60 10.0 1.76 0.520 0.60 11.5 8.136 2.54 0.160 0.60 10.0 8.635 0.140 0.60 10.0 0.410 0.60 10.0 1.100 0.60 27.8 1.760 0.60 33.3 4.636 4.90 0.240 0.60 10.0 8.635 1.24 0.800 0 10.0 8.635 4.14 0.100 0.60 10.0 8.635 0.52 0.050 0.60 10.0 8.635 026 0.610 0.60 10.0 8.635 3.16 0.330 0.60 10.0 8.635 1.71 0.610 0.60 10.0 8.635 3.16 0.740 0.60 10.0 8.635 0.860 0.60 10.0 8.635 1.670 0.60 29.2 5.016 0.680 0.60 10.0 0.300 0.60 10.0 1.290 0.60 23.4 0290 0.60 10.0 0.150 0.60 10.0 0.140 0.60 10.0 1.790 0.60 22.2 2.290 0.60 10.0 0.930 0.60 10.0 0.990 0 10.0 0.520 0.60 10.0 1.880 0.60 10.0 8.635 10 year storm 25 year storm 8.635 8.635 5.163 8.635 8.635 8.635 5.867 5.739 5.739 8.635 100 year storm 802A 802B 803 0.310 0.60 23.1 1.570 0.60 23_1 1.860 0.60 10.0 Q10 (cfs) 1 Qu (in/hr) (cfs) 1 100 Qtoo (in/hr) (cfs) 9.861 3.49 11.639 4.12 9.861 1.89 11.639 2.23 6.164 3.55 7.316 4.21 9.861 3.08 11.639 3.63 9.861 2.07 11.639 2.44 9.861 2.01 11.639 2.37 9 2.90 10.979 3.43 0.83 9.861 0.95 11.639 1.12 0.73 9.861 0.83 11.639 0.98 2.12 9.861 2.43 11.639 2.86 3.41 5.932 3.92 7.046 4.65 5.334 5.63 6.348 6.70 9.861 1.42 11.639 1.68 9.861 4.73 11.639 5.59 9.861 0.59 11.639 - 0.70 9.861 0.30 11.639 0.35 9.861 3.61 11.639 4.26 _ 9.861 1.95 11.639 2.30 9.861 3.61 11.639 4.26 3.83 9.861 11.639 5.17 4.46 9.861 5.09 11.639 6.01 _ 5.03 5.765 5.78 6.851 6.87 - 3.52 9.861 4.02 1.1.639 4.75 1 9.861 1.78 11.639 2.10 4.41 6.539 5.06 7.754 6.00 - 1.50 9.861 1.72 11.639 2.03 - - - - - -- --..-----.....--- - - - --- 0.78 9.861 0.89 11.639 1.05 0.73 9.861 0.83 11.639 0.98 -- 6 6.731 7.23 7.977 8.57 11.86 9.861 13 -55 11.639 15.99 _ 8.635 4.82 9.861 5.50 11.639 6.49 8.635 5.13 9.861 5.86 11.639 6.91 8.635 2.69 9.861 3.08 11.639 3.63 9.74 _ 9.861 11.12 11.639 13.13 1.07 6.586 1.23 7.808 1.45 ---- - - - - -- 5.41 6.586 6.20 7.808 7.36 9.64 9.861 11.01 11.639 12.99 The Rational Method: Q = CIA Q = Flow (cfs) A = Area (acres) C = Runoff Coeff. I = Rainfall Intensity (in /hr) Brazos County: I = b / (t t = Time of concentration (min) 10 year storm b = 80 d = 8.5 e = 0.763 100 year storm b = 96 d = 8.0 e = 0.730 t� = LJ(V *60) L = Length (ft V = Velocity (ft/sec) 25 year storm b = 89 d = 8.5 e = 0.754 APPENDIX E Storm Sewer Pipe Design Summary 1 Time I luwl I ££0 0 I I ►ZO 1 I 1 90'0 1 1 O (aes) (ass) M p 8 Y I s , l L )'S N (sdy) A 1693) 0010 I 1 1 OYS 1 00 9 OZ'S 1 (nkul) 9611 5 11 VI Z g 8 I I ll'60 1,Z' ►S 9Z'Z9 ti i N 9Lt'9 6►£'S ril'9 Q N f C P506, P507, P506, P505, P503, P504, P2-6, P2-7, P2 -8 P609, P508, P507, P506, P505. P503, P504, P2-8, P2-7, P21 P610, P609, P508, P507. P506. P505. P503, P504, P2 -6, P2-7, P2 6 I t6SZ Sl'9Z S 9 06991 V L sassy •0etqup ewngpwoa 501, 601, 507, 506, 505A, 503A, Future Phases, 505. 504, 503, 502A, 502 501, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A, 502 602, 501, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A, 502 b o up d 09'0 OFLOH tedld ouinglAUO0 Contributing Pipes P508, P507, P506, P505, P503, P504, P2-6, P2 -7, P24 P506, P507, P506, P505, P503, P504, P2-6, P2-7, P2 -8 P609, P508, P507, P506, P505, P503, P504, P2-6, P2-7, P24 P610, P609, P508. P507, P506, P505, P503, P504, P2.6, P2 -7, P2- 8 (sway) eery 6ulYrgtAUO3 (saay) eery oupngtiluoa [ 00601 r oS6Sl [ 0 9 6 0 1 1 058'01 069'91 r ose 9l 1 I sesry s6eutu0 O&Mnq 4UO3 50113, 501A, 601, 507, 506, 505A, 503A, Future Phases, 505. 504, 503, 502A, 502 5016, 501A, 601. 507, 506, 505A, 503A, Future Phases, 505. 504. 503, 502A, 502 5016, 501A, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A. 502 602, 501B, 501A, 801, 507, 506, 505A, 503A, Future Phases, 505. 504, 503, 502A, 502 1 %1 bat 1 090 I I a I OZ66 I OL VG 1 009' 1 I (4) OAS bid I Z► I " I L► 1 8 1 u a I. I I etMl NA I tutu) I ££0 0 8 1 I (ass) 1 O (aes) M p 1 Y I I L )'S N N 1693) 0010 9901 I 1 00 9 (nkul) 9611 5 11 8 C 1,Z' ►S � N 0 6►£'S m o Q N I sedld 6 UINtgNWOO P506, P507, P506, P505, P503, P504, P2-6, P2-7, P2 -8 P609, P508, P507, P506, P505. P503, P504, P2-8, P2-7, P21 P610, P609, P508, P507. P506. P505. P503, P504, P2 -6, P2-7, P2 6 jauayi tiny Wna+>uoa Sl'9Z 056'5 06991 L sassy •0etqup ewngpwoa 501, 601, 507, 506, 505A, 503A, Future Phases, 505. 504, 503, 502A, 502 501, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A, 502 602, 501, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A, 502 — up d OFLOH tedld ouinglAUO0 P508, P507, P506, P505, P503, P504, P2-6, P2 -7, P24 P609, P508. P507, P506, P505. P503, P504, P24, P2-7, P24 P610, P609, P508, P507, P506, P505, P503, P504, P2-6, P2-7, P2- 8 0 (sway) eery 6ulYrgtAUO3 [ 00601 (1 sxlg •did [ 0 9 6 0 1 1 069'91 I 50113, 501A, 601, 507, 506, 505A, 503A, Future Phases, 505. 504, 503, 502A, 502 501B, 501A, 601, 507, 506, 505A, 503A. Future Phases, 505, 504, 503, 502A, 502 I 602, 5018. 501A, 601, 507, 1 506, 505A, 503A, Future 1 %1 bat I I 8 I OL eL 8 I " I Y pp I U 1.17 I m I SUM. utu> I ££0 0 8 (ass) 1 O eu M p Y IN L )'S N N 1693) 0010 9901 O (nkul) 9611 I £9£ L 8 C OI � N 0 I 09 0 m o Q N I sedld 6 UINtgNWOO P506, P507, P506, P505, P503, P504, P2-6, P2-7, P2 -8 P609, P508, P507, P506, P505. P503, P504, P2-8, P2-7, P21 P610, P609, P508, P507. P506. P505. P503, P504, P2 -6, P2-7, P2 6 jauayi tiny Wna+>uoa [00609 056'5 06991 L sassy •0etqup ewngpwoa 501, 601, 507, 506, 505A, 503A, Future Phases, 505. 504, 503, 502A, 502 501, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A, 502 602, 501, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A, 502 — i I �� OFLOH IOZ66 0 (1 sxlg •did I 09 I r . «9 E E as W in a 0- W a s Y � f A E 6. o O to E 0 rn 8 to V H a s Y re N E o O I swill , I (ulw) 0 8 0 el 0 1 90 I 1 to 1 (Jes) 1 Zt0 1 (xe) (oss) I 1 I I 0) 8 r- 8 (adl) A (sd1) A I 100.57 I 1 91'9 096 1 r 09'6 1 ZO'9 009 I (uiw) of usT r I 1 I I 9082 I 4''64 4264 90'£L tz'49 oi r= U O I I 912'9 996 £ 099'4 1£6'E 1 1£9'4 1 P401,P402,P403,P404,P501, P502, P405 u I 1 1 49'4C 1 49' 96Z4 1 96' I9E'E4 Bf' 411A, 41113, 412, 413, 414A, 414B, 415 E S. o x m 09'0 a c 1 090 I L Contributing Pipes U .0E 6MMsi 1 P412, Existing 30" I 1 I 09 O I I Existing 30", Existing 47, P612 09 O I (sassy) easy 6ulinglJ1uo3 090 I I 019'9 I Contributing Pipes 096'9 „OE bu9spc3 1 AE61-10.sP13'Z14d m P401, P402, P403, P404, P501, P502, P405 I Existing 30", Existing 47, P612 Contributing Drainage Areas Contributing Ares (Acres' Previous Phases I 019'9 1 Previous Phases, 603 1 I 096 9 I411A, 41113, 413, 414A, 41413, 508, 509, 510, 511 r 069 OZ I 1 904 1 OL6'0E Contributing Drainage Areas Previous Phases 1 I Previous Phases, 603 119'019'609'909 '9414'V414'C1418119'VI14 I Previous Phases, 605, 606, I 607,608 0 X 0 a 0I c o c a L S W 88�pp o 919 0 E aA . J L r e‘ 1 00 99Z 8 248.76 1 8 a N . a ao � ut 2 8 2 I 217 I 1 I V V a z G I�1 4, N 904 1 I 909 m N 6 z 19 co t0 swllIOAasl - I (ul 0 8 0 el 0 1 90'0 1 E4o 1 (Jes) 1 Z10 (xe) I 1 09'9 09'9 0) 8 r- 8 (adl) A C9'19 I 100.57 I 911 I 8 096 1 91 ZO'9 (uiw) of n r I 1 L£4Z I 4''64 O 90'£L i CG oi U O 1 4E9'4 I 996 £ 1£6'E 1 „0£ • 99Pt3 ,.0£ •U05(13 P401,P402,P403,P404,P501, P502, P405 Existing 30', Existing 47, p612 I 1 1 49'4C 1 091'0Z 96Z4 1 I9E'E4 Previous Phases Previous Phases, 606,607 411A, 41113, 412, 413, 414A, 414B, 415 I Previous Phases, 605, 606, 607,608 S. o x m 09'0 a c 1 090 I L Contributing Pipes 8 .0E 6MMsi 1 P412, Existing 30" I P401, P402, P403. P404. P501, P502, P405 I Existing 30", Existing 47, P612 (sassy) easy 6ulinglJ1uo3 N I 019'9 I a�2 096'9 - - -- 069'02 I m 0L6 'OE a a = Contributing Drainage Areas Previous Phases 1 Previous Phases, 603 1 'oN wild I411A, 41113, 413, 414A, 41413, 508, 509, 510, 511 I Previous Phases, 605, 606, 607,608 1 904 1 0 a 0 X 0 0I c c L S 88�pp 919 E aA . J S. Al C a in � ut 8 I 217 I V a z G I�1 4, 904 1 m ew llp (ulw) 0 8 0 el 0 1 Z1O 1 (Jes) en 8 (adl) A 09'9 09'9 0) 90 9 I I ( ale) 00ID 8 C9'19 I 100.57 _ ( JuIui) 0011 8 °' 91 (uiw) of n r 68 ZY 9E 'E4 I O p � i CG 09 U O G Contributing Pipes „0£ • 99Pt3 ,.0£ •U05(13 P401,P402,P403,P404,P501, P502, P405 Existing 30', Existing 47, p612 Contributing Area (Acres) 096'9 019'9 091'0Z 016'0£ I Contributing Drainage Areas Previous Phases Previous Phases, 606,607 411A, 41113, 412, 413, 414A, 414B, 415 I Previous Phases, 605, 606, 607,608 S. o x m a c 09'0 L 8 8 8 :1 S J 8 248 N a�2 8 26 m a a = 'oN wild 1 904 1 E 0 a to E E aO q v N 4 a O: N °—' E 0 es U V) E O H i. 0 O N E E m E 0 g a■ t' Y rr E `O O W 4) a • a %aoo .cg J 1 ■ u 11 •oY J > 8 w o Castle Rock-Phase 6 Btazo3 County: APPENDIX F Drainage Channel Design Summary Castle Rock -Phase 6 Storm Sewer Channel Summary (10 -yr Storm) Channel Length No (11) 1 91.50 Slope ( %1 0.50 Contributing Drab lge Areas Previous Phases, 605, 606, 607, 608 Contributing Pipes C Tc 110 010 Indn) (ithr) (cfs) Pipe 613 0.60 ) 43.38 ( _ 3931 _ _j 73.05 Channel Length No (R) 2 111.71 Contributing Drainage Areas 603 & 604 Channel No Existing Length ( Slope 1 %1 Contributing Drainage Areas 602, 5018, 501A, 601, 507, 506, 505A, 503A, Future Phases, 505, 504, 503, 502A,502 Contributing Area (Acres) 16.890 Contributing Pipes Pipe 611 C Tc (min) 110 010 (Inthr) (cts) Castle Rock -Phase 6 Storm Sewer Channel Summary (25 -yr Storm) Channel Length Slope No (6) 1 %1 Contributing Drainage Areas Contributing Area (Acres) 0.50 Previous Phases, 605, 606, 607. 608 30.970 Contributing Pipes ) C Tc 110 010 1110111 (inlhr) (cis) 43.38 4.532 84.21 Channel No Length Slope real l %) Contributing Drainage Areas Contributing Area Contributing Pipes (Acres) C Tc (min) 110 010 (inthr) (cis) .00 603 & 604 1.350 9.861 Channel No Existing Length (It) Slope 1 %1 Contributing Drainage Areas 602, 5018, 501A, 601.507, 506, 505A, 503A, Future Phases, 505, 501, 503, 502A, 502 _ Contributing Area (Acres) 16.890 Contributing Pipes Pipe 611 C 0.60 Tc (min) 110 010 Ifmntr) (cis) 62.26 Castle Rock -Phase 6 Storm Sewer Channel Summary (100 -yr Storm) ContriWain9 Drainage Areas Tc 1100 0100 (min) (Wiwi (C.) Previous Phases, 605, 606, 607, 608 30.970 Pipe 613 _... _ Channel 1 Length No (R) 1 91 Contributing Area Contributing Pipes C (Acres) 0.60 43.38 Channel Length Slope No (01) 1%1 7 111.71 1.00 Contributing Drainage Areas 603 8 604 Channel No Existing Length (n) Slope 1 %1 Contributing Drainage Areas Contributing Ana Contributing Pipes (Acres) 602.5018. 501A. 601, 507. 506, 505A, 503A, Future Phases, 505, 504, 503, 502A. 502 _ .. 16.890 Tc 110 (min) (WW1 010 ( 73.91 The Rational Method: p = CIA I = b I (iced)' 0 = Flow (cts) b = Time of concentration (min) A = Area (acres) C = Runoff C000. I = Rainfall Intensity (inl Brazos County: Contributing Area (Acres) 1.350 10 Year storm b = 80 d = 8.5 e = 0.763 Contributing Area (Acres) 1.350 Contributing Pipes Contributing Pipes C 0.60 C 0.60 Tc (min) 100 veer storm b= 96 d = 8.0 e = 0.730 .00 Tc (min) 10.0D 110 prIhrl 8.635 110 (iNhr) 11.639 010 6.99 010 (cfs) 9 . 43 _ t - U(V'60) L = Length (ft V = Velocity (ft/sec) 25 Year storri b = 89 d = 85 e = 0.754 EXHIBIT A Drainage Area Map