HomeMy WebLinkAboutWater System Analysis ED I= 1 and Associa Inc.
•
Technical Memorandum suite 1800
12700 Park Central Drive
Dallas, Texas
75251 -1516
To: City of College Station �E o F . T F �� �
a j
From: John R. Atkins, P.E. f ' * • •, *
Date: August 19, 2011 i JOHN R. ATKINS
•, ,...�
Subject: Campus Village — Phase 1B I ' b .. 85376 • •' ` •
Water System Analysis `;. 'l
KHA Project No. 064422500
$
Purpose
Campus Village is a student housing development located near 1725 Harvey
Mitchell Parkway in College Station, Texas. The proposed development consists
of multi -unit buildings on approximately 44 acres, with 7.1 acres being
developed in Phase 1 B. This technical memorandum presents results of the
water system analysis for the entire development.
This memorandum is divided into the following sections:
• References and Design Criteria
• Results
• Conclusion
References and Design Criteria
References
Water distribution mains throughout the development were sized by creating a
hydraulic model of the system, using WaterCAD version 8i by Bentley Systems.
The following data and references were used for creation of the model:
• Fire flow tests performed from College Station Utilities dated February
22, 2010. See Appendix A for printouts of the resulting fire flow tests.
• Normal Flow Calculations. See Appendix B for Normal Flow Table
and Demand Layout Map.
•
TEL 972 770 1300
FAX 972 239 3820
Campus Village
r ,„- F1 Kimley -Horn Water System Analysis Phase 1B
and Associates, Inc. August 19, 2011
Page 2
• Water Line Layout Map. See Appendix C for the water line layout in
the water model.
Design Criteria
Water distribution mains were sized based on design criteria listed in the 2009
Bryan / College Station Unified Design Guidelines for Domestic Water. Design
criteria used for this analysis includes:
• Normal Flow Conditions
o Provide minimum pressure of 35 pounds per square inch (psi)
• Fire Flow Conditions
o Provide the required fire flow at the most hydraulically remote
pairings of 2 adjacent fire hydrants in the system improvement
in addition to the peak hourly flow.
o A residual pressure of 20 psi is required
o Velocity shall not exceed 12 feet per second (fps)
Flow Calculations
Normal Flow:
The Unified Design Guidelines allow for multiple methods for calculation of
flow for a development. For this analysis, Method 1 — Fixture Count
Determination was used. A summary of the demand calculation is included as
Appendix B of this memorandum.
Fire Flow.
As required by the Unified Design Guidelines, the greater flow of either the
City's required 2,500 gpm for multi - family or flow as determined by the
International Fire Code (IFC) was used for the fire flow analysis. Utilizing Table
B105.1 of the IFC the largest apartment building fire flow is calculated as
follows:
• Building Type = V -A
• Total size = 34,794 square feet
• Building is Sprinkled
• Fire Flow = 3,250 *50% reduction for sprinkled = 1,625 gpm
The City's 2,500 gpm is the greater value, therefore this analysis analyzed the
fire flow at 2,500 gpm *120% = 3,000 gpm
Note: 120% is an additional factor of safety.
Campus Village
Kimley -Horn Water System Analysis Phase 1B
and Associates, Inc. August 19, 2011
Page 3
Results
Normal Flow Condition
Normal flow conditions are considered to be municipal demand as determined
from fixture counts show in Appendix B. During normal flow conditions,
system pressures throughout the development are greater than the required 35 psi.
Resulting pressures range from 90 psi to 98 psi. WaterCAD results of the normal
flow scenario are included as Appendix C of this memorandum.
Fire Flow Conditions
Based on the analysis performed for the development, it is assumed that the
required fire flow for the development is 3,000 gallons per minute (gpm). The
fire flow demand added to normal flow and distributed at the most hydraulically
remote and highest elevation building, represented by Junctions FH -28, 30, and
32. A building fire flow of 500 gpm was placed at junction FH -32, and 1,250
gpm was placed at two adjacent fire hydrants along the front of the building at
junctions FH -28 and FH -30.
Results of the fire flow scenario show that residual pressures range from 82 psi to
92 psi. Pipe velocities are all less than the maximum 12 fps, with the exception
of the two fire hydrant leads where the 1,250 gpm fire flow is placed, where
velocities are approximately 14 fps. We consider this velocity to be acceptable in
this case given that the residual pressures are all higher than 80 psi, which
comfortably exceeds the minimum 20 psi requirement.
Conclusion
In conclusion, the water distribution mains proposed for the development exceed
the minimum requirements as described memorandum.
Appendix A
Fire Flow Tests
College Station Utilities
Reliable, Affordable, Community Owned
Date Monday February 22, 2010
Time 1:00 P.M.
Test
completed by Justin Tamplin
Witness Mike Garcia
Location 1725 Harvey Mitchell B
Nozzle size 2.5
Flow hydrant L -094
Pitot reading 80
G.P.M. 1500
Static hydrant L -096
Static PSI 98
Residual PSI 96
Comments
f Conege station Utilities
Reliable, Affordable, Community Owned
Date Monday February 22, 2010
Time 12:45 P.M.
Test
completed by Justin Tamplin
Witness Mike Garcia
Location 1725 Harvey Mitchell
Nozzle size 2.5
Flow hydrant L -110
Pitot reading 82.5
G.P.M. 1525
Static hydrant L -108
Static PSI 98
Residual PSI 96
Comments
Appendix B
Normal Flow Calculations
Campus Village
Normal Flow Calculation
based on Fixture Counts
Location Building Fixture Unit Flow
(gpm)
Phase IA
1 190 63
2 190 63
3 230 69
4 190 63
5 230 69
6 190 63
7 190 63
8 190 63
9 190 63
10 190 63
11 190 63
12 190 63
13 190 63
14 240 71
15 375 97
16 375 97
Community Center 50 28
Maintance Building 15 12
Phase IB
17 544 132
18 444 112
19 444 112
20 444 112
21 207 67
22 207 67
Phase II
1 550 130
2 200 64
Total 1,932
,-7.- N N
N M O
0 N O 7
7 46)
Umd
w
0
a
a)
d
as
U1
C
N
Co
4,
. d
2
.g. n
o
?ngi
pail
IA
:Ati 101L
:L cv y�Oi GC���� y `i
E v'JGOQ^"'J'�
a *1� 4_41
P ED a 101 m r C' � v
.11 11 IA
f' it 44 Ali i 4 v
r .,-, c! U O a 1 4 ti m
1 .1 t O�O O V A CO 11
■® O c4 O y 101_,, p LL yo >_ � O cs r7
� 4 d ° °i i 4 V y �t��QOi�i o
�� n V O . V ° N
••11101 Al El vs o o o n o sc
Q of :a KM u V sr,' ci u V v O E7 " n o [7 n El O E7 mo O
`` `s (�•7 O O v 1 G� v
L n n E7 N
0 , @ O E7 n LL y KM
Z v� ``` ��� `b , 11 n O V rd iS U •
... a _ N
V C
CO) a
m
U
' o
a
a N
ugO is N
P -33
M
a
om
4 m o E
2 " Si ry a
LL
ery
m
a1
°a a In ^CS
ii = N
1=i Of O b
t.
N
,O u<a O LF,
a a.
v 4"
�a °xo a
v * 3 a a ‘g si,a
0
to,
� 4, E v . E
a E. a - :, 2 , LL g, o
3 , Q 8 11; ¢ 5
a O
iiiry it m
E v v
r�pp es.,. U f
� 0 d
IOW � U
LL Q
Q a a �E
.10. n
a 4 ° a N <, W
O N
H E
ei ° 61 Pi
m N 1
Q € N a E
CO
X
0I
I
N
0
E I N
0)
O s-
N
0
< 5' z - •
\ \ X ° o
Y 6 ....
'\\ \
\ \ \ \ 2
011 r....
ti C 0 f •
Ill .-•
\ ‘ : i? ''
Z • .•■•
.,/, \ \ __ 4: '
r's
< \ 9 2
\--------- ,1 /
, e
a. R
TS- i It . .
s s
Aa 3 -,..\‘::\ ..S
...0
/ 1 . \
• \
,
, <
\ ..---- .
#00 14 , .‘ \
.0 1..-1, ,
--....„, ,.. \ ,..5 ;....„ 1,1t.
\ N --- - % 0
N \ ' ,-
___---------
— —
- - -
a' • __.
5 ' \ , -------:::--
, . - ____-----
--,.
. \
\ __,
7
-- ----_
■ - ____.- - .---
--j
..- ,
\ -
ar• .-- E
--------- ,
---- .\
-- ...-3
_
, „ • .,„--- ,,, -.., . ,, „,„ 7
--- •
. CD
0 -1 /) ..''''
CT
cno
-M • - --," A ,,,i--4-1,0- ,
..../
, \ ...
r.,
, . . 0.,
-, - 0
( 1 1
„.1 ,........\ ,
7 1 , +
r ..... a. , . .
4 • ig . ' : .
„ V. a . : 6£`4 ■■•• .
- • C0
. _ E
. \ ' • :c7"''' i . 4, „.---..--,_ (.7
Z •-• • 1-
\ 0
) - • 1 t, - -- ,
';' [ ; -22 o
0 ( i''''' '', .> — 1 g 1. w
N `,)
--,.
' , 8 • • / s, ......•
43
E ..
CD
0 \ \ • •?:. ii n . ' : -- i 9 ,4. //l-g at 1 : 0
Z _. 1 , •
, .
• • ••••••• • fai a a i . =
0 A - 1 C -.
:1' • , 0
....
r.
C .1. . . .
_ v / --,,, :* '. . , • . .C
C.)
(i) ,, " ..., ,, i i :._.2.1.
1 5
.--._.
ID
s ...%,, ,,,,,•••■ r, : - - • -•-•
0
, ..,
/ , ■ al r k :
4 E i ei
/ 4% • - A ., r E
e
el
>••
'`, / / ,../ ,,,, / ti• k ,.. co
>,
k7 -.• ' )
, l''''' - - 7 7 , ,
/ ., ---,
/ ... /. • .'"/"•,' ..,.'N..,. t '
1 / / / /-- (---,
- -- - -J . `4.1 ' • - '—‘ //2 7 / *
4- -It 7
/
if , ,<
// , ti , .--, 4/* --\ i q : . , \ *4',
/ ,>' ' 7 01, .0.' ',' ''- t. .: ' .- . °!: ' /:4 i . ,
/ , X 6, Arip ,,
/
4 • 4' /* zz = 0 ,
/ 1 4*. 0 r 4,1 `"' '- 4 'a fi •,,.-/ 4
.., k
// ,,,+ .4 ,.: NIP , ." `"-,,,, /77
t p SVg 4 7/_> „t"--
/ 4 f.
/ /7 4t: 44
_, g--..
aro "----
/ / ,,' .1,,,,* q' - 7, , 4/ \ ,' • , 6 - 8 ,/-.,.
/ 7 ‘ \ ' - -4 -. -‘g - .4 ,''', / -'/,,.' ( / . • 2 - /7//' /'
---"' . ' , A* , '747 = '
/ ' / • A?, • /..,;..) ,.7_ !;,/,,,,,
// ' ''/ ' ' '
---,.
.41 44.* * , - ,/- '
/
/ , ' /\1 AV / /`-' ' 4 7 : .*') '.1 % ,?, ? „i ed ni
, S / r --- ' • '
/• .
".--\-- - ' ' ..' ` * . ,i'f/ , / ,/, '1 ,, "+. I,
1 III
ik .47.• 4 , 4/ Ar
..- ///7/,--, * / 7 F-A Ill
-.At° , /4 , •
... • A..1- P '. , 4
- f • • rtiP • N • -,_--./
/ , , „. ,........51( ) 10, -- ' -1 ‘ .--- 4.•-•-.4, OA / a / //, .ii '`,. i e.
. !'• ' , / 04,
... ' `•• '-'-' _- -1- s ., ,,,.,_ .. 7 5' - ' '' ' O.
-,... -
-; ,•%./ \: ,..,
m ty
.,,,/ • . __,- • -1--,....„,„. ,, „/y
.0-4
/ / 7 ` , .,./ \ / . - --. ..‘" • / ,
. • i'• •
17 -K
• ,/•■•7 / •.•t' ,i-'
/ .
.• '' ,'
'-‘, .--- . . s , . . . c /
/-
, , , - - , i /
-----,,
, /, ,/ k
ai
efl
0 2
o , et.
co 5
a i to
— o C.
5 m a;
0,.."
''' E ••
/ = r ,
,. -.--,--„,, • ...1 c:i. ,9 0
E ...,
03 al 0
. .. 0 g I ...—
.. ...
6 : c:)
F . , ....J to
1-- :i 0
Appendix C
Water CAD Results
„, -1 '"f
Normal Flow Results
N N V
N M O •<'
N0,— kJ
F .- N ^ ..J
Uoa._. •
CO
d
E.
N
m
Q ¢
',T. §. N °
E
n •. • a
rni
a
n
,,ng
"to°Q°p0 • �p
s G"� t . 4
VI otp4Qa�� o
i ' 5 L ; Q :
-,wo E
Irs
- a ILA IA
E. ° 7 eir 1 11 ) . Iv -0
. ` d O 0
i- 1 q .. n o •
�� v vs
4 4 , r c� ii,„,, a $ Q • co n I s J p p i W • � 0 0
WI lia i p � ,o r
t U j
3J D [7 V Ell
O 0
_ p Q n O ' a N
75 CO
O
LI. xi Q El ILI r-I c. % 1 0 U
el 44, vs Ka KZ 11:1 ICE 2 .t
4'44w N
Of l0
ij1 e °v � R
O 4 �*�► O Q M w � �� =
Z ,., E C7 LL rn �ed c
V n .-. C N
vi 2
M
n
�L C(1 A m C/)
' £_d u rn o T
C c p
/A a^ N m E
,/� 'a g U
• va1 c
0
E
d
LL q. N
P -33
€ 4 vo
o at LLwo
r £a
a
4'
1. &
°K a y,mi�
40 el 1a, 13
.EE 4
„o LL b+' o [
o �
a =m1
` I 0 4,
0
.0
. R.... `� 1.0 OL
of 4' 2
o
LL k 20 6.,
�
o C' d
fpd 07 g }I E
Q a ' B
Tn 4
1& $- 4 w g
IPA
n E O I I I I
�E U a
Q 9 a �E 1E
--'. gio 'iris g2tl
a d 0 .� N . $ 6 wo ' o �
., � s = d a
y E
a qm ^ , E N co
a
•
•
>
a
c
c
E
`c
Normal Flow
Junction Report
Label Elevation (ft) Demand (gpm) Hydraulic Grade (ft) Pressure (psi)
J4 290 0 513.17 96.6
J -2 291 0 512.53 95.8
J -3 292 0 512.48 95.4
1 -4 293 0 512.36 94.9
J -5 295 0 512.17 94
1 -6 296 0 512.15 93.5
J -7 292 0 512.25 95.3
J -8 294 0 512.17 94.4
J -9 296 0 512.13 93.5
1 -10 298 0 512.03 92.6
J -11 299 0 512.01 92.2
J -12 298 0 511.99 92.6
J -13 288 130 512.4 97.1
J -14 292 0 512.17 95.3
J -15 292 112 512.06 95.2
J -16 294 0 512.03 94.3
J -17 295 0 512.01 93.9
J -18 296 0 512.01 93.5
J -19 298 0 511.99 92.6
J -20 296 69 511.88 93.4
FH -21 291 0 513.17 96.1
FH -22 293 0 512.48 95
FH -23 293 0 512.36 94.9
FH -24 295 0 512.17 94
FH -25 295 0 512.17 94
FH -26 296 0 512.13 93.5
FH -27 299 0 512.03 92.2
FH -28 299 0 512.01 92.2
J -29 298 0 511.99 92.6
FH -30 299 0 511.99 92.2
FH -31 297 0 511.99 93
FH -32 299 0 511.88 92.1
FH -33 297 0 512.01 93
FH -34 295 0 512.01 93.9
FH -36 293 0 512.17 94.8
FH -37 292 0 512.25 95.3
J -38 290 0 512.78 96.4
1 -39 291 63 513.3 96.2
J -40 290 63 513.03 96.5
J -41 292 28 512.46 95.4
J -42 292 69 512.27 95.3
J -43 292 63 512.24 95.3
J -44 294 252 512.23 94.4
J -45 297 252 512.05 93
J -46 292 12 512.19 95.3
J -47 298 168 511.99 92.6
J -48 298 0 512 92.6
J -49 295 112 512.02 93.9
J -50 296 132 511.86 93.4
J -51 294 0 511.86 94.3
J -52 293 67 511.86 94.7
J -53 293 67 511.87 94.7
J -54 292 112 511.92 95.1
J -55 291 97 512.2 95.7
J -56 286 64 512.77 98.1
c .22. II .
Normal Flow
Pipe Report
Label Diameter (in) Length (User Defined) (ft) Hazen - Williams C Flow (gpm) Velocity (ft /s) Headloss Gradient (ft /ft)
P -1 12 5 130 1,036 2.94 0.003
P -4 12 38 130 677 1.92 0.001
P -7 12 40 130 397 1.13 0
P -10 8 83 130 89 0.57 0
P -11 12 39 130 486 1.38 0.001
P -13 12 111 130 234 0.66 0
P -15 12 5 130 896 2.54 0.002
P -18 12 97 130 605 1.72 0.001
P -19 12 170 130 253 0.72 0
P -21 12 90 130 141 0.4 0
P -23 12 40 130 141 0.4 0
P -24 8 116 130 207 1.32 0.001
P -26 6 38 130 0 0 0
P -27 6 70 130 0 0 0
P -28 6 19 130 0 0 0
P -29 6 19 130 0 0 0
P -30 6 18 130 0 0 0
P -31 6 18 130 0 0 0
P -32 6 20 130 0 0 0
P -33 6 18 130 0 0 0
P -35 12 40 130 66 0.19 0
P -36 6 19 130 0 0 0
P -37 6 18 130 0 0 0
P -38 6 41 130 0 0 0
P -39 6 21 130 0 0 0
P -40 6 20 130 0 0 0
P -42 6 15 130 0 0 0
P -43 6 16 130 0 0 0
P -45 12 121 130 910 2.58 0.002
P -46 12 44 130 1,036 2.94 0.003
P -47 12 52 130 973 2.76 0.002
P -48 12 61 130 973 2.76 0.002
P -49 12 114 130 910 2.58 0.002
P -50 12 19 130 677 1.92 0.001
P -51 12 89 130 649 1.84 0.001
P -52 8 211 130 233 1.49 0.001
P -53 8 27 130 164 1.05 0.001
P -54 8 23 130 164 1.05 0.001
P -56 12 107 130 649 1.84 0.001
P -57 12 135 130 397 1.13 0
P -58 12 120 130 486 1.38 0.001
P -59 12 121 130 234 0.66 0
P -60 8 174 130 101 0.64 0
P -61 8 92 130 89 0.57 0
P -62 12 78 130 234 0.66 0
P -63 12 80 130 66 0.19 0
P -64 12 97 130 141 0.4 0
P -65 12 99 130 141 0.4 0
P -66 12 68 130 253 0.72 0
P -67 12 80 130 141 0.4 0
P -68 8 108 130 138 0.88 0
P -69 8 103 130 6 0.04 0
P -70 8 104 130 6 0.04 0
P -71 8 101 130 -61 0.39 0
P -72 8 80 130 -128 0.82 0
P -73 8 201 130 -240 1.53 0.001
P -74 12 149 130 702 1.99 0.001
P -75 12 31 130 605 1.72 0.001
P -76 12 150 130 896 2.54 0.002
P -77 12 206 130 832 2.36 0.002
11
g- 22.1X
Fire Flow Results
Fire Flow
Junction Report
Label Elevation (ft) Demand (gpm) Hydraulic Grade (ft) Pressure (psi)
J -1 290 0 502.09 91.8
J -2 291 0 498.37 89.7
J -3 292 0 498.08 89.2
J -4 293 0 497.29 88.4
J -5 295 0 495.76 86.9
J -6 296 0 495.54 86.3
J -7 292 0 496.93 88.7
J -8 294 0 495.83 87.3
J -9 296 0 495.2 86.2
J -10 298 0 493.36 84.5
J -11 299 0 492.62 83.8
1 -12 298 0 492.65 84.2
1 -13 288 130 498.59 91.1
J -14 292 0 496.57 88.5
J -15 292 112 495.44 88
J -16 294 0 494.67 86.8
J -17 295 0 494.01 86.1
J -18 296 0 493.63 85.5
J -19 298 0 492.82 84.3
1 -20 296 69 492.39 85
FH -21 291 0 502.09 91.3
FH -22 293 0 498.08 88.7
FH -23 293 0 497.29 88.4
FH -24 295 0 495.76 86.9
FH -25 295 0 495.83 86.9
FH -26 296 0 495.2 86.2
FH -27 299 0 493.36 84.1
FH -28 299 1,250 490.6 82.9
1 -29 298 0 492.56 84.2
FH -30 299 1,250 490.43 82.8
FH -31 297 0 492.82 84.7
FH -32 299 500 491.55 83.3
FH -33 297 0 493.63 85.1
FH -34 295 0 494.01 86.1
FH -36 293 0 496.57 88.1
FH -37 292 0 496.93 88.7
J -38 290 0 499.88 90.8
J -39 291 63 502.77 91.6
J -40 290 63 501.3 91.4
J -41 292 28 497.94 89.1
1 -42 292 69 497.06 88.7
1 -43 292 63 496.82 88.6
1 -44 294 252 496.5 87.6
J -45 297 252 494.16 85.3
J -46 292 12 496.16 88.3
J -47 298 168 492.57 84.2
J -48 298 0 493.23 84.5
J -49 295 112 494.34 86.2
J -50 296 132 492.45 85
1 -51 294 0 492.75 86
J -52 293 67 493.41 86.7
J -53 293 67 493.92 86.9
J -54 292 112 494.6 87.7
J -55 291 97 496.89 89.1
J -56 286 64 501.19 93.1
,2, II
Fire Flow
Pipe Report
Label Diameter (in) Length (User Defined) (ft) Hazen - Williams C Flow (gpm) Velocity (ft /s) Headloss Gradient (ft/ft)
P -1 12 5 130 2,488 7.06 0.014
P -4 12 38 130 1,803 5.12 0.008
P -7 12 40 130 1,523 4.32 0.006
P -10 8 83 130 415 2.65 0.004
P -11 12 39 130 1,938 5.5 0.009
P -13 12 111 130 1,686 4.78 0.007
P -15 12 5 130 2,444 6.93 0.013
P -18 12 97 130 2,153 6.11 0.01
P -19 12 170 130 1,417 4.02 0.005
P -21 12 90 130 1,305 3.7 0.004
P -23 12 40 130 1,305 3.7 0.004
P -24 8 116 130 323 2.06 0.002
P -26 6 38 130 0 0 0
P -27 6 70 130 0 0 0
P -28 6 19 130 0 0 0
P -29 6 19 130 0 0 0
P -30 6 18 130 0 0 0
P -31 6 18 130 0 0 0
P -32 6 20 130 0 0 0
P -33 6 18 130 1,250 14.18 0.112
P -35 12 40 130 -982 2.79 0.002
P -36 6 19 130 1,250 14.18 0.112
P -37 6 18 130 0 0 0
P -38 6 41 130 500 5.67 0.021
P -39 6 21 130 0 0 0
P -40 6 20 130 0 0 0
P -42 6 15 130 0 0 0
P -43 6 16 130 0 0 0
P -45 12 121 130 2,362 6.7 0.012
P -46 12 44 130 2,488 7.06 0.014
P -47 12 52 130 2,425 6.88 0.013
P -48 12 61 130 2,425 6.88 0.013
P -49 12 114 130 2,362 6.7 0.012
P -50 12 19 130 1,803 5.12 0.008
P -51 12 89 130 1,775 5.04 0.007
P -52 8 211 130 559 3.57 0.006
P -53 8 27 130 490 3.12 0.005
P -54 8 23 130 490 3.12 0.005
P -56 12 107 130 1,775 5.04 0.007
P -57 12 135 130 1,523 4.32 0.006
P -58 12 120 130 1,938 5.5 0.009
P -59 12 121 130 1,686 4.78 0.007
P -60 8 174 130 427 2.72 0.004
P -61 8 92 130 415 2.65 0.004
P -62 12 78 130 436 1.24 0.001
P -63 12 80 130 268 0.76 0
P -64 12 97 130 1,305 3.7 0.004
P -65 12 99 130 1,305 3.7 0.004
P -66 12 68 130 1,417 4.02 0.005
P -67 12 80 130 1,305 3.7 0.004
P -68 8 108 130 -246 1.57 0.001
P -69 8 103 130 -378 2.42 0.003
P -70 8 104 130 -378 2.42 0.003
P -71 8 101 130 -445 2.84 0.004
P -72 8 80 130 -512 3.27 0.005
P -73 8 201 130 -624 3.99 0.008
P -74 12 149 130 2,250 6.38 0.011
P -75 12 31 130 2,153 6.11 0.01
P -76 12 150 130 2,444 6.93 0.013
P -77 12 206 130 2,380 6.75 0.013
W ikcp
S -Z2• I%
q7 (0
_ N
N M O
• O
w N
N r CO Mt
U °d
J O
• ^D
U ▪ =0
`m
m
a>
c
m
a • a'
E c.
a
4 2I
a
It
ataaaaa[
le
n
w O. t 113. O
r
VI 41:0:0110 ICI
o s ° t4aap ° aa fl los
_ ..11- two. o cli
4 ° M -' 1[i p ci
�� ill gyp VI II
o E Hear -• vs
t+
ttra It 0,
go
# m H t7 Lii
O
IA
Ai . ' Re
kr ► [ [s 1 p [O
O
a )
Ca O VI d O 90 n
_ 1 e EGA�G V '
N.
0
`V
n IN O U
27 O L
C
O ��I 0 0 Q CI CI 3 0
hi 7
al o O G7 1 p d-'.7
1 73
f
VII o D O cI 171 EN ICI 1[11 IMI rTh / lJ t3 I[! o -N O U
22 22 22 0 o ; O' 2 r
CIE -p n m 'O Gl
Um t
O C4 E O Q • n . O M
■■ ;,0J. a O • p .E N
O �':� t � E C7 Z fed 43 13
lom 1 % g 1 �
6.
ps m � I <v O O
M
1 d � E C N
C
`
a a E d E d N
H & ; �
m $ CO ' c
LL 43o £ . d ° Q
m
— c
d W C 0.
1g m E
Yi' 2 0
c
0
.1 ° g E
N
uSt im o N
P -33
I
0,1
:ia tii KE
LLo
2£b
a
4
v
umo a
g a E 4
yo t g o 4 ... o
Q c
m
�m 4^
u n n
n 4S 2 1 Q ,. na
Q a
Ad h h 1 E N E
v E 4 , 7i o ^ LL
E
V V
Imo C. S o p
E 3 8
r 'a. E •
'� S o.w LL�a 4 o
no $E
CT. E ,-I I m o
'2 8 2
° n
H
v E
S v i c 0
G 4 N � —�mN
`�-s00 Iti,m
0)
S '
S'
0 r
Eo
IN
T
O 7_