Loading...
HomeMy WebLinkAboutDrainage ReportDrainage R eport · for Williams Creek Subdivision -Phase 1 College Station, Texas July 2004 Revised August 20,04 Developer: Joe and Janet Johnson Land and Investments, LP 1400 South Commercial Street Coleman, Texas 76834 (325) 625-2124 Prepared By: TEXCON General Contractors 1 707 Graham Road Col1 ege Station, Texas 77845 (979) 764-7743 CERTIFICATION I certify that this revised report for the drainage design for the Williams Creek Subdivision - Phase I , was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners hereof, with the exception that storm water runoff detention is not being proposed for this project since the site discharges directly into an existing drainage which flows into the 100-year floodplain limits. TABLE OF CONTENTS DRAINAGE REPORT -Revised WILLIAMS CREEK SUBDIVISION -PHASE 1 CERTIFICATION .................................................................................................................................................................. 1 TABLE OF CONTENTS ........................................................................................................................................................ 2 LIST OF TABLES .................................................................................................................................................................. 2 INTRODUCTION ................................................................................................................................................................... 3 GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 3 FLOOD HAZARD INFORMATION .................................................................................................................................... 3 DEVELOPMENT DRAINAGE PA TTERNS ........................................................................................................................ 3 DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 3 STORM WATER RUNOFF DETERMINATION .............................................................................................................. .4 DETENTION FACILITY DESIGN ...................................................................................................................................... 6 STORM CULVERT & DRAINAGE CHANNEL DESIGN ................................................................................................ 6 CONCLUSIONS ..................................................................................................................................................................... 8 APPENDIX A .......................................................................................................................................................................... 9 Time of Concentration Equations & Calcuations APPENDIX B ........................................................................................................................................................................ 20 Storm Sewer Culvert Data & Design Calc11latio11s APPENDIX C ........................................................................................................................................................................ 35 Drai11age Cha1111el Design Data & Calculatio11 s APPENDIX D ........................................................................................................................................................................ 40 Drainage Ditch Data & Lining Material EXHIBIT A ............................................................................................................................................................................ 43 Post-Development Drainage Area Map EXHIBIT B ............................................................................................................................................................................ 45 Drai11age Area Map -Ditch Design LIST OF TABLES TABLE 1 -Rainfall Intensity Calculations .......................................................................................... 4 TABLE 2 -Time of Concentration (tc) Equations .............................................................................. 4 TABLE 3A -Post-Development Runoff Information (Exhibits A & B) ........................................... 5 TABLE 3B -Drainage Structure Flow Summary ............................................................................... 6 DRAINAGE REPORT -Revised WILLIAMS CREEK SUBDIVISION -PHASE 1 INTRODUCTION The purpose of this revised repoti is to provide the hydrological effects of the construction of the Williams Creek Subdivision -Phase I , and to verify that the proposed stom1 drainage system meets the requirements set forth by the City of College Station Drainage Policy and Design Standards. GENERAL LOCATION AND DESCRIPTION The project is located on a portion of a 213.91 acre tract located east of Rock Prairie Road and south of Greens Prairie Road in College Station, Texas. This report addresses Phase I of this subdivision, which is made up of 38.67 acres. This report also addresses the drainage structures for Williams Creek Drive which provides access to Phase 1 from Greens Prairie Road. The site is predominantly wooded. The existing ground elevations range from elevation 200 to elevation 284. Portions of the existing ground are steep, with slopes approaching I 0%. The general location of the project site is shown on the vicinity map in Exhibit A. FLOOD HAZARD INFORMATION The project site is located in the Carters Creek Drainage Basin. Most of the proposed developed area of the site is located in a Zone X Area according to the Flood Insurance Rate Map prepared by the Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated areas, Community No. 481195 and 480083, Panel No. 205D, Map No. 48041C0205D, effective dated Febrnary 9, 2000. A portion of this development is in the 100- year floodplain. This area is shown on Exhibit A as the l 00-year floodplain limit. Lots with floodplain are required to have a minimum finished floor elevation (FF), which is a minimum of one foot above the Base Flood Elevation (BFE). The BFE information is also shown on Exhibit A. DEVELOPMENT DRAINAGE PATTERNS Prior to development, the storm water runoff for Phase l flows in an easterly and northeasterly direction into existing tributaries which discharge into Carters Creek. DRAINAGE DESIGN CRITERIA The design parameters for the stotm drainage analysis are as follows: • The Rational Method is utilized to detem1ine peak stonn water runoff rates for the storm drainage design. • Design Stotm Frequency Stonn culverts • Runoff Coeffici ents Und eveloped Land I 0 and 100-year stonn events Po st-development (minimum l acre lots) c = 0.35 c = 0.50 • Rainfall Int ensity equations and valu es fo r Brazos County can be found in Table I. • Time of Concentration, le -Calculati ons are based on the meth od found in the TR-55 publication. Refer to Table 2 for the equations and Appendix A for calculations. The runoff flow path used for calculating the post-development times of concentration for the larger drainage areas are shown in Exhibit A. Smaller drainage areas use a minimum le of I 0 minutes to determine the rainfall intensity values. Exhibit B has the runoff flow paths used for the drainage areas for the roadside ditch design. STORM WATER RUNOFF DETERMINATION The peak runoff values were detennined in accordance with the criteria presented in the previous section for the 10, 25, 50, and 100-year stom1 events. The drainage areas for the post- development condition are shown on Exhibit A. Post-development runoff conditions for the storm culvert design are summarized in Table 3. TABLE 1 -Rainfall Intensity Calculations Rainfall Intensity Values (in/hr) Storm Event 110 '2s lso 1100 le= 10 min 8.635 9.861 11.148 11 .639 I = b I (tc+d)e I = Rainfall Intensity (in/hr) tc = U(V*60) tc =Time of concentration (min) L = Length (ft) V = Velocity (ft/sec) Brazos County: 10 'i.ear storm 25 'f.ear storm 50 'i.ear storm 100 'i.ear storm b= 80 b = 89 b= 98 b= 96 d= 8.5 d= 8.5 d= 8.5 d= 8.0 e= 0.763 e= 0.754 e= 0.745 e= 0.730 (Data taken from State Department of Hiqhwa'i.S and Public Transportation H'i.draulic Manual, page 2-16) TABLE 2 -Time of Concentration (tc) Equations The time of concentration was determined using methods found in TR-55, "Urban Hydrology for Small Watersheds. " The equations are as follows : Time of Concentration: For Sheet Flow: For Shallow Concentrated I-low: Tc = Tt(s heet flow)+ Tt(concentrated sheet flow) where: T1 =Travel Time, minutes where: T1 =travel time, hours n =Manning's roughness coefficient L = flow length, feet P2 = 2-year, 24-hour rainfall = 4 .5" s = land slope, ft/ft T1 =L I (60*V) where: T1 =trave l time, minutes V =Velocity, fps (See Fig 3-1 , App. E) I. = ll ow length, feet Refer to Appendi x A fo r calcul ati ons. -I TABLE 3A -Post-Development Runoff Information (Ex hibits A & B) Area 5 year s torm c le Area # (acres) I, a, A (min) (in/hr) (els) 1 5.68 0.5 10.0 7 .693 2 1 .85 2 6 32 .04 0 .35 42 .6 3 .465 38 .86 2A 3.19 0.35 22 .4 5 .14 3 5 .7 4 3 43.16 0 .35 61 .8 2 .697 4 0 .7 5 3A 0.51 0 .35 10.0 7 .693 1.37 4 0.41 0 .5 10.0 7 .693 1 .58 5 0.6 1 0 .5 10.0 7 .693 2 .35 6 6.18 0 .5 10.0 7 .693 23.77 7 7 .46 0 .5 10.0 7 .693 28 .69 8 1.16 0 .5 10.0 7 .693 4 .46 9 0.61 0 .5 10.0 7 .693 2 .35 11 0.5 0 .5 10.0 7 .693 1.92 12 0.52 0 .5 10.0 7 .693 2 .00 13A 0.09 0 .5 10.0 7 .693 0 .35 14 0.17 0 .5 10.0 7 .693 0 .65 15 0.85 0 .5 10.0 7 .693 3 .27 25 0.51 0 .5 10.0 7 .693 1.96 26 0.98 0 .5 10.0 7 .693 3 .7 7 101 5.68 0 .35 35.2 3.9 18 7 .7 9 102 0.13 0 .35 10.0 7 .693 0 .35 103 3.19 0 .35 20.1 5.465 6 .10 104 0.13 0 .35 10.0 7 .693 0 .35 105 3.90 0 .35 20.2 5.4 50 7 .4 4 106 0.37 0.35 10.0 7 .693 1.00 107 2.32 0 .35 23.9 4.955 4 .02 108 0.20 0 .35 10.0 7 .693 0 .54 109 3.21 0 .35 19.1 5.620 6 .3 1 110 0.13 0 .35 10.0 7 .693 0 .35 111 0.17 0 .35 10.0 7 .693 0.46 11 2 0.33 0 .35 10.0 7 .693 0 .89 113 0.09 0 .35 10.0 7 .693 0 .24 114 0.50 0 .35 10.0 7 .693 1.35 115 0.25 0 .35 10.0 7 .693 0 .67 116 0.35 0 .35 11 .0 7 .381 0 .90 11 7 0.44 0 .50 10.0 7 .693 1.69 118 0.44 0.50 10.0 7 .693 1.69 119 1.69 0 .50 11 .4 7 .265 6.14 120 0.37 0.50 10.0 7 .693 1.4 2 121 1.34 0.50 14 .9 6.397 4 .29 122 0.29 0.50 10.0 7 .693 1.12 123 1.60 0 .50 15.4 6.292 5.03 124 3.26 0 .50 11 .0 7 .381 12 .03 125 0.99 0.35 10 .0 7 .693 2 .67 126 4 .49 0 .35 1 3.7 6.667 10.48 127 1.26 0.50 10.0 7 .693 4 .85 128 1.28 0 .50 13.9 6.620 4 .24 129 0. 76 0.50 10.0 7 .693 2 .92 130 0.24 0.50 10.0 7 .693 0.92 131 0.37 0.50 10.0 7 .693 1.42 132 0.21 0.50 10.0 7 .693 0.81 133 0.19 0.50 10.0 7 .693 0.7 3 134 0.11 0.50 10.0 7 .693 0.4 2 135 0.16 0.50 10.0 7 .693 0.62 The Rational Method : Q=CIA l=bl(tc+d)• Q = Flow (cfs) A= Area (acres) le = Time of concentratio n (min) C =Runoff Coeff. I = Rainfall Intensity (in/h r) Brazos County: 5 year storm 10 year storm 25 year storm b 7 6 b 80 b 89 d 8 5 d 8 .5 d 8 5 e = o 79 e = o 763 e = o 7 5 10 year storm 25 year storm 50 year storm 1,. (in/hr) 8 .6345 3.9771 5.8 378 3.1179 8.6345 8.6345 8 .6 34 5 8 .6 34 5 8 .6 34 5 8.6345 8.6345 8.6345 8.6345 8.6345 8.6345 8.6345 8.6345 8 .6345 4 .481 8 .635 6 .193 8 .635 6 .176 8 .635 5 .630 8 .635 6 .363 8 .635 8 .635 8 .635 8 .635 8 .635 8 .635 8 .295 8 .635 8 .635 8 .167 8 .635 7 .217 8 .635 7 .102 8 .295 8 .635 7 .513 8 .635 7 .462 8 .635 8 .635 8 .635 8 .635 8 .635 8 .635 8 .635 a" 1,, (c rs) (in/hr) 24 .52 9.8615 44 .60 4 .584 6 .52 6.6982 4 7. 1 0 3 .6 04 1 .54 9.8615 1.77 9.8615 2 .63 9.8615 26.68 9.8615 32 .21 9.8615 5.01 9.8615 2.63 9 .8615 2.16 . 9.8615 2.24 9.8615 0 .39 9 .8615 0.7 3 9 .8615 3.67 9.8615 2.20 9 .8615 4 .2 3 9 .8615 8 .91 5 .158 0 .39 9 .861 6.91 7 .101 0 .39 9 .861 8 .4 3 7 .082 1.12 9 .861 4.57 6 .463 0.60 9 .861 7 .15 7 .294 0.39 9 .861 0.51 9 .861 1.00 9 .861 0.27 9 .861 1 .51 9 .861 0 .7 6 9 .861 1 .02 9 .4 7 8 1.90 9 .861 1.90 9.86 1 6.90 9 .334 1.60 9 .861 4 .84 8 .260 1 .25 9 .861 5.68 8 .130 13.52 9 .478 2.99 9 .861 11 .81 8 .595 5.44 9 .861 4 .7 8 8 .53 7 3.28 9 .861 1 .04 9 .86 1 1.60 9 .861 0 .91 9 .861 0 .82 9 .861 0 .4 7 9 .861 0 .69 9 .86 1 le = L/(V.60) L = Le n gth (ft a ,, 1,. a ,. (c fs) (in/hr) (c fs) 28 .0 1 11 . 14 8 31 .66 51 .40 5.2294 58.64 7 .48 7 .6069 8 .4 9 54 .44 4 .1233 62 .29 1 .76 11 .148 1.99 2 .02 11 148 2 .29 3 .01 11 148 3 .40 30.4 7 11 .148 34 .4 5 36.7 8 11 .148 4 1 .58 5 .7 2 11 .148 6 .4 7 3 .01 11 .14 8 3 .40 2 .4 7 1 1 .14 8 2 .79 2 .56 11 .14 8 2 .90 0 .44 11 .14 8 0 .50 0 .84 11 .148 0 .95 4 .19 11 .148 4 .7 4 2 .51 11 . 148 2 .84 4 .83 11 .148 5 .46 10.25 5 .876 11 .68 0 .4 5 11 .148 0 .51 7 .93 8.058 9 .00 0 .45 11 .148 0 .51 9 .67 8 .037 10.97 1.28 11 .148 1 .44 5 .25 7 .343 5 .96 0 .69 11 .148 0.7 8 8 .19 8.275 9 .30 0 .45 11 .148 0 .5 1 0 .59 11 .148 0 .66 1.14 11 .148 1.29 0 .31 11 .148 0 .35 1 .73 11 .148 1.95 0 .86 11 .148 0 .98 1.16 10.719 1 .3 1 2 .17 11.148 2 .4 5 2 .17 11 .148 2 .4 5 7 .89 10.558 8 .92 1.82 11 .148 2 .06 5 .53 9 .358 6 .27 1 .43 11 .148 1 .62 6.50 9 .21 1 7 .3 7 15.45 10.719 1 7 .4 7 3 .42 11 .148 3 .86 13.51 9 .732 15.29 6 .21 11 .148 7 .02 5 .46 9 .667 6 .19 3 .75 11 .148 4 .24 1 .18 11 .148 1.34 1 .82 11 .148 2 .06 1.04 11 148 1 .1 7 0 .94 11 . 148 1.06 0 .54 11 .148 0 .6 1 0.79 11 .148 0 .89 V =Velocity (ft/sec) 50 year storm 100 year storm b 98 b 96 d 8 5 d 8 0 e = O 7 4 5 e = 0 .7 30 100 year storm I 1oe 0 100 (in/hr) (c rs ) 11 .639 33 .06 5.4732 6 I .38 7 .9391 8 .86 4.3277 6 5 3 7 11 .639 2 .08 11 .639 2 .39 11 .639 3.55 11 .639 35.97 11 .639 4 3 .4 I 11 .639 6.7 5 11 .639 3.55 11 .639 2.91 11 .639 3.03 11 .639 0.52 11 .639 0.99 11 .639 4 .95 11 .639 2.97 11 .639 5. 70 6 .143 12 .2 1 11 .639 0.53 8 .408 9.39 11 .639 0.53 8.387 11.45 11 .639 1.51 7.665 6.22 11 .639 0.81 8.634 9.70 11 .639 0.53 11 .639 0.69 11 .639 1.34 11 .639 0.37 11 .639 2.04 11 .639 1.02 11 .189 1.37 11 .639 2.56 11 .639 2.56 11 .020 9.3 1 11 .639 2.15 9 .763 6.54 11 .639 1.69 9.610 7 .69 11 .189 18 .24 11 .639 4 .0 3 10.154 15 .96 11 .639 7 .33 10 .08 7 6.46 11 .639 4 .4 2 11 .639 1.40 11 .639 2 .15 11 .639 1.22 11 .63 9 1.11 11 .639 0 64 11 .639 0 93 TABLE JB -Drainage Structure Flow Summary Culvert c le Contributing Contributing 110 010 l2s 0 2s lso Oso 1100 0 100 # (min) Area Nos. Area Acreage (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) 1 0.50 10.0 1 5.68 8.635 24.52 9.861 2801 11.148 31.66 11.639 3306 ------------------------- 28 0.35 42.6 28 3204 3.977 44.60 4.584 51.40 5.229 58.64 5.473 61.38 ---------· ----~-------- 2A 0.35 22.4 2A 3.19 5.838 6.52 6.698 7.48 7.607 8.49 7.939 886 ----------------------- 3 0.42 61 .8 3,4,5,6,7,26 58.84 3.118 77.05 3.604 8907 4.123 101.90 4.328 106.95 -------- 3A 0.50 10.0 13A 0.09 8635 0.39 9.861 0.44 11.148 0.50 11.639 0.52 ---·----- 38 0.50 10.0 3A 0.51 8.635 1.54 9.861 1.76 11.148 1.99 11.639 2.08 ---------- 4 0.50 10.0 7,26 8.44 8.635 36.44 9.861 41.62 11.148 47.04 11.639 49.12 ----- 5 0.50 10.0 8,25 1.67 8.635 7.21 9.861 8.23 11 .148 9.31 11.639 9.72 6 0.50 10.0 9,11 1.11 8.635 4.79 9.861 5.47 11 .148 6.19 11.639 6.46 --- 7 0.50 10.0 6 6.18 8635 26.68 9.861 30.47 11 .148 34.45 11.639 35.97 8 0.35 10.0 112 0.33 8.635 1.00 9.861 1.14 11 .148 1.29 11.639 1.34 9 0.50 10.0 127, 129, 135 2.18 8.635 9.41 9.861 10.75 11 .148 12.15 11.639 12.68 117, 118, 119, 10 0.42 13.7 125 126 128 9.33 7.513 30.28 8.595 34.62 9.732 39.16 10.154 40.88 Channel# 1 0.50 10.0 5,6 6.79 8.635 29.31 9.861 33.48 11 .148 37.85 11.639 39.52 2 0.50 10.0 9, 11 1.11 8.635 4.79 9.861 5.47 11.148 6.19 11.639 6.46 DETENTION FACILITY DESIGN The runoff from the development of Phase 1 is discharged directly into tributari es of Carters Creek and then almost immediately into the 100-year floodplain. The existing drainages will not be improved except for culve11s at roadway crossings. A private drainage easement is proposed to prevent development in or adjacent to the existing drainage channels where the channel is located in residential lots. Since runoff is discharged into the floodplain, it has been proposed that detention will not be required for the construction of this phase. For future phases, additional analysis will need to be performed to determine any detention requirements. STORM CUL VERT & DRAINAGE CHANNEL DESIGN The storm culverts for this project have been selected to be Reinforced Concrete Pipe (RCP) meeting the requirements of ASTM C-76, Class III pipe meeting the requirements of ASTM C- 789. There will be sloped safety end treatment or headwall s at the end of each culvert. Runoff from the proposed streets wi ll be coll ected by the roadside ditches and conveyed to the culvert structures. Due to the open-ditch design, no inl ets wi ll be used for this development except to intercept the ditch flow into Cul ve11No.l0. The proposed grate inlet was analyzed using the orifice equation, solving for the depth of water on the inlet for the I 0-and I 00-year storm events. Desi gn calculations and data for the grate inl et are as follows: Q = 4.82 *Ag* y 112 ¢ y =(QI (4.82 * Ag))2 Where: Q = flow at inlet, cfs Ag =open area of 1-3'x3' grate, ft 2 = 9.0 ft2 x 2 grates = 18.0 ft2 y = depth at inlet, ft Actual Design Ag 10-Year Storm 100-Year Storm Inlet Ag 50% Size clogging 0 10 Depth, y 0 100 Depth, y (ft2) (ft2) (cfs) (ft) I (in) (cfs) (ft) I (in) 2-3'x3' grates 18.0 9.0 30.28 o.49 I 5.8 40.88 o .89 I 10.7 (• As shown by these calculations, the maximum depth of water for the 100-year storm for the proposed and existing grate inlets is 5.8" and l 0. 7", respecti vely. The ditch between the ri ght- of-way and the edge of pavement will be graded as necessary to ensure that the runoff from the 100-year storm event will remain w ithin the street right-of-way. Appendix B presents a summary of the stom1 culvert design parameters and calculations. All pipes are 18" in diameter or larger. The culverts were designed based on the 10-year storm event, and data is also given for the 100-year storm event. As shown in the summary, all of the culverts have a headwater elevation that is at least one foot below the roadway elevation for the 10-year storm event. Also, all of the culverts pass the 100-year stonn event without overtopping the roadway. As required by College Station, the velocity of flow in the pipes is not lower than 2.5 feet per second, and it does not exceed 15 feet per second. As the data shows, even during low flow conditions, the velocity in the pipes will exceed 2.5 feet per second and prevent sediment build-up in the culverts. The maximum flow in the storm culverts will occur in Culvert No. 3. The maximum velocity for the culverts in this development will be 8.5 feet per second and will occur in Culvert No. 3. Appendix B contains a summary of th e culvert calculator data for the l 0 and 100-year storm events. Concrete riprap will be placed at the end of the culverts when the velocity exceeds 4.5 fps for the l 0-year sto1m event. The storm water runoff in the roadside ditches of Joseph Creek Court and Moses Creek Court will discharge into improved drainage channels to convey the water from the street right-of- way to the existing drainage channel. The concrete lined channels will be constructed with profiles that follow the existing ground profile. Appendix C contains a summary of the channel design parameters and calculations. The velocity for the design storm event, the 25-year stom1 , is 11.4 fps for Channel No. 1 and 8. 7 fps for Channel No. 2. Concrete channel lining can adequately handle these velocities. The channels are designed so that the water depth does not exceed the limits of the concrete channel lining to prevent erosion. Rock riprap will be placed at the end of the channels to dissipate the energy in the flow, control erosion, and transition the flow into the existing drainage channel. Appendix C contains the channel calculator data for the 25-and 100-year storn1 events. The velocity of the flow in the roadside ditches was evaluated for the 10-year and 100-year storm events. The drainages are shown on Exhibit B. The city requirements for ditch lining material are as follows: Maxi mum Design Velocities of Various Surface Treatments1 Surface Treatment Exposed Earth* Grass -Seeded Grass -Sodded Impermeable (Concrete, Gunite. Etc.) *Temporary Channe ls Only Maximum Design Velocity, (ft/sec) 3.0 4.5 6.0 10.0 1From .. Erosion and Sed iment Control Guidelines for Developing Areas in Texas" by the Soil Conscn·ati on Service In Appendi x D the ditch ve lociti es are summarized including comments stating the ditch linin g material used. The cl itch lin ing 111al cri <.il is al so shown in the constru ction dr<1" in ss CONCLUSlONS The construction of this project will increase the storm water runoff from this site. However, a majority of the runoff will be carried through a stom1 drainage system to existing drainage channels and then directly to Carters Creek and into the 100-year floodplain. Due to the location of this project and its proximity to Carters Creek's confluence with the Navasota River, the peak runoff from this development will occur much sooner than the peak runoff in Carters Creek, therefore, the increase in runoff has no affect on the water surface elevation in Carters Creek. The increased flow directly into Carters Creek wi ll not have a significant impact on the surrounding property. No flood damage to downstream or adjacent landowners is expected as a result of this development. APPENDIX A Time of Concentration Equations & Calculations <) Sheet Flow: Time of Concentration Calculations Drainage Area #2A Flow length = 200' = L Slope = 3.0% n = 0.24, dense grass P2 = 4.5" T1 = 0.007 (0.24 * 200)08 (4.5)05 (0.03)04 = 0.297 hours= 17.8 minutes Shallow Concentrated Flow: Flow length= 765' = L Slope= 2.9% For unpaved surface at 2.9%, Velocity (V) = 2.75 fps (see Fig. 3-1) = 765 ' I (60*2.75) = 4.6 minutes Tc= 17.8+4.6 = 22.4 minutes Sh eet Flow: Time of Concentration Calculations Drainage Area #2B Flow length = 300' = L Slope= 1.7% n = 0.24, dense grass P2 = 4.5" T1 = 0.007 (0.24 * 300)08 (4.5)0 5 (0 .017)04 = 0.519 hours= 31 .1 minutes Shallow Concentrated Flow: Flow length = 345 ' = L Slope = 1.2% For unpaved surface at 1.2%, Velocity (V) = 1.8 fps (see Fig. 3-1) = 345 ' I (60*1.8) = 3.2 minutes Shallow Concentrated Flow: Flow length= 360' = L Slope= 2.2% For unpaved surface at 2.2%, Velocity (V) = 2.4 fps (see Fig. 3-1) -7 = 360' I (60*2.4) = 2.5 minutes Shallow Concentrated Flow: Flow length = 480' = L Slope= 2.7% For unpaved surface at 2.7%, Velocity (V) = 2.75 fps (see Fig. 3-1) = 480' I (60*2.75) = 2.9 minutes Flow through stream Flow length= 855' = L Slope= 1.4% From Manning's Calculator data, Velocity (V) = 5 fps = 855 ' I (60*5) = 2.9 minutes Tc= 31. l + 3.2 + 2.5 + 2.9 + 2.9 = 42.6 minutes Sheet Flow: Time of Concentration Calculations Drainage Area #3 Flow length = 300' = L Slope = 1.4% n = 0.24, dense grass P2 = 4.5" T1 = 0.007 (0.24 * 300)08 (4.5)05 (0.014)0.4 = 0.557 hours = 33.4 minutes Shallow Concentrated Flo w: Flow length= 555' = L Slope= 1.1 % For unpaved surface at 1.1%, Velocity (V) = 1.7 fps (see Fig. 3-1) ~ = 555' I (60*1.7) = 5.4 minutes Shallow Concentrated Flow: Flow length = 1030' = L Slope = 0.87% For unpaved surface at 0.87%, Velocity (V) = 1.45 fps (see Fig. 3-1) ~ = 1030 ' I (60*1.45) = 11.8 minutes Shallow Concentrated Flow: Flow length =235 = L Slope= 3.4% For unpaved surface at 3.4%, Velocity (V) = 3.0 fps (see Fig. 3-1) ~ = 235' I (60*3) = 1.3 minutes I Shallow Concentrated Flow: Flow length =287 = L Slope = 3.3% For unpaved surface at 3.3%, Velocity (V) = 3.0 fps (see Fig. 3-1) = 287' I (60*3) = 1.6 minutes Flow through stream Flow length = 723 ' = L Slope= 0.71% From Manning's Calculator data, Velocity (V) = 2.5 fps = 723' I (60*2.5) = 4.8 minutes Flow through stream Flow length = 517' = L Slope= 0.53% From Manning's Calculator data, Velocity (V) = 2.5 fps = 517' I (60*2.5) = 3.5 minutes Tc = 33.4 + 5.4 + 11.8 + 1.3 + 1.6 + 4.8 + 3.5 = 61.8 minutes Sheet Flow: Time of Concentration Calculations Drainage Area #101 Flow length = 120' = L Slope= 1.0% n = 0.24, dense grass P2 = 4.5" Ti= 0.007 (0.24 * 120)°-8 (4.5)05 (0.01)04 = 0.306 hours = 18.4 minutes Shallow Concentrated Flow: Flow length = 1610' = L Slope= 1.0% Sheet Flow: For unpaved surface at 1.0%, Velocity (V) = 1.6 fps (see Fig. 3-1) = 1610 ' I (60*1.6) = 16.8 minutes Tc= 18.4 + 16.8 = 35.2 minutes Time of Concentration Calculations Drainage Area #103 Flow length = 200' = L Slope = 3.2% n = 0.24, dense grass P2 = 4.5" Ti= 0.007 (0.24 * 200)°-8 (4.5)°5 (0.032)04 = 0.289 hours = 17.3 minutes Shallow Concentrated Flow: Flow length= 525' = L Slope= 3.8% For unpaved surface at 3.8%, Velocity (V) = 3.1 fp s (see Fig. 3-1) = 525 ' I (60*3.l) = 2.8 minutes Tc= 17.3 + 2.8 = 20.l minutes Sheet Flow: Time of Concentration Calculations Drainage Area #105 Flow length = 200 ' = L Slope = 3.2% n = 0.24, dense grass P2 = 4.5" T1 = 0.007 (0.24 * 200)°8 (4.5)05 (0.032)04 = 0.289 hours= 17 .3 minutes Shallow Concentrated Flow #1: Flow length = 565 ' = L Slope= 4.2% Sheet Flow: For unpaved surface at 4.2%, Velocity (V) = 3 .3 fps (see Fig. 3-1) = 565 ' I (60*3 .3) = 2.9 minutes Tc= 17.3 + 2.9 = 20.2 minutes Time of Concentration Calculations Drainage Area #107 Flow length = 200' = L Slope = 2.0% n = 0.24, dense grass P2 = 4.5" T, = 0.007 (0.24 * 200)°8 (4.5)05 (0.020)04 = 0.349 hours = 20.9 minutes Shallow Concentrated Flow: Flow length = 625' = L Slope = 4.8% For unpaved surface at 4.8%, Velocity (V) = 3.5 fps (see Fig. 3-1) = 625 ' I (60*3.5) = 3.0 minutes Tc= 20.9 + 3.0 = 23.9 minutes Sh eet Flow: Time of Concentration Calculations Drainage Area #109 Flow length= 200' = L Slope= 4.0% n = 0.24, dense grass P2 = 4.5" T1 = 0.007 (0.24 * 200)0 8 ( 4.5)0 5 (0.040)04 = 0.265 hours = 15.9 minutes Shallow Concentrated Flo w: Flow length= 85' = L Slope= l l.0% For unpaved surface at l l.0%, Velocity (V) = 5.1 fps (see Fig. 3-1) = 85' I (60*5. l) = 0.3 minutes Shallow Concentrated Flow: Flow length= 255' = L Slope= l.6% For unpaved surface at l.6%, Velocity (V) = 2.0 fps (see Fig. 3-1) ~ = 255' I (60*2.0) = 2.1 minutes Shallow Concentrated Flow: Flow length = 17 5' = L Slope= 5.7% For unpaved surface at 5.7%, Velocity (V) = 3.8 fps (see Fig. 3-1) ~ = 175 ' I (60*3 .8) = 0.8 minutes Tc= 15 .9 + 0.3 + 2.1+0.8 = 19.1 minutes Sheet Flow: Time of Concentration Calculations Drainage Area #119 Flow length = 200' = L Slope = 11 .0% n = 0.24, dense grass P2 = 4.5" Tt = 0.007 (0.24 * 200)08 (4.5)05 (0.11)04 = 0.177 hours = 10.6 minutes Shallow Concentrated Flow: Flow length= 235' = L Slope= 8.5% Sheet Flow: For unpaved surface at 8.5%, Velocity (V) = 4.7 fps (see Fig. 3-l) = 235' I (60*4.7) = 0.8 minutes Tc= 10.6 + 0.8 = 11.4 minutes Time of Concentration Calculations Drainage Area #121 Flow length= 200' = L Slope= 6.0% n = 0.24, dense grass P2 = 4.5" T1 = 0.007 (0.24 * 200)°8 (4.5)05 (0.06)04 = 0.225 hours= 13.5 minutes Shallow Concentrated Flow: Flow length= 360' = L Slope= 6.7% For unpaved surface at 6. 7%, Velocity (V) = 4.2 fps (see Fig. 3-l) = 360' I (60*4.2) = 1.4 minutes Tc= 13.5 + 1.4 = 14.9 minutes Sheet Flow: Time of Concentration Calculations Drainage Area #123 Flow length = 200' = L Slope = 5.7% n = 0.24, dense grass P2 = 4.5 " T1 = 0.007 (0.24 * 200)08 (4.5)05 (0.057)04 = 0.230 hours = 13.8 minutes Shallow Concentrated Flow: Flow length = 400' = L Slope = 5.8% Sheet Flow: For unpaved surface at 5.8%, Velocity (V) = 4.2 fps (see Fig. 3-1) = 400' I (60*4.2) = 1.6 minutes Tc= 13.8 + l.6 = 15.4 minutes Time of Concentration Calculations Drainage Area #124 Flow length = 200 ' = L Slope= 12.0% n = 0.24, dense grass P2 = 4.5" T1 = 0.007 (0.24 * 200)08 (4.5)05 (0 .12)04 = 0.171 hours= l 0.3 minutes Shallow Concentrated Flow: Flow length = 200 ' = L Slope= 8.0% For unpaved surface at 8.0%, Velocity (V) = 4.6 fps (see Fig. 3-1) = 200' I (60*4.6) = 0.7 minutes Tc= 10 .3 + 0.7 = 11.0 minutes Sheet Flow: Time of Concentration Calculations Drainage Area #126 Flow length = 200' = L Slope = 9.0% n = 0.24, dense grass P2 = 4.5" Ti= 0.007 (0 .24 * 200)08 (4.5)05 (0 .090)04 = 0.191 hours = 11 .5 minutes Shallow Concentrated Flow: Flow length = 480' = L Slope = 5.2% Sheet Flow: For unpaved surface at 5.2%, Velocity (V) = 3.7 fps (see Fig. 3-1) = 480' I (60*3 .7) = 2.2 minutes Tc= 11.5 + 2.2 = 13.7 minutes Time of Concentration Calculations Drainage Area #128 Flow length = 200' = L Slope= 8.0% n = 0.24, dense grass P2 = 4.5" Ti= 0.007 (0 .24 * 200)°8 ( 4.5)0.5 (0.080)04 =0.201hours=12.1 minutes Shallow Concentrated Flow: Flow length = 440' = L Slope= 7.0% For unpaved surface at 7.0%, Velocity (V) = 4.2 fps (see Fig. 3-1) = 440' I (60*4.2) = 1.8 minutes Tc= 12.1 + 1.8 = 13.9 minutes .... <+--.... <+- QJ a. 0 ..-en QJ en L. ::s 0 u L. QJ ...., Id 3 3-2 .so .20 - .10 .06 .04 . 02 - .01 - .005 I 1 ' I -~ I ' I J j J . b q, ,-b .:.. q, ~ .:..I ~<:::1. Q..'t7 I J I . . iJ I ' j I 2 r ' IJ . . I 4 'J ' i IJ I I I 6 J ' i ~ J ' J Average velocity, ft/sec . . · I j I I I r I I 10 I . I I Fiicu~ '.1-1.-.\vrraicr vrlocitirs for cslimatinic lmvd tim• for shallow conc•nlralrd Oow. (2 !0-Vl-TR-55. Second Ed .. J une 198Gl I 20 APPENDIXB Storm Sewer Culvert Data & Design Calculations 20 Williams Creek Subdivision, Phase 1 Culvert Summary Inlet Outlet Culvert Size Length Slope # Invert Elev Invert Elev (in) (ft) (%) (ft) (ft) 1 2x24 40.0 1.00 240.15 239.75 --------------2A 18 32.0 1.00 237.38 237.06 ------------------· 28 48 40.0 0.40 222.10 221.94 1~·---------------------· 3 48 42.0 0.50 217.60 217.39 -----3A 18 24.0 5.37 228.31 227.02 38 18 24-.0 5.37 228.31 227.02 4 2x24 40.0 1.42 230.22 229.65 5 18 44.0 1.30 230.03 229.46 6 18 36.0 1.00 229.13 228.77 7 30 36.0 1.00 241.27 240.91 8 18 42.0 4.00 226.28 224.60 9 24 90.0 3.46 222.61 219.50 --- 10 30 59.0 0.90 219.64 219.11 Top of Road (ft) 243.78 241.16 228.37 224.69 230.60 230.60 233.70 233.70 232.39 245.43 228.85 225.05 224.89 10 year storm 100 year storm Design Flow V10 HW Design Flow V100 HW (cfs) (fps) (ft) (cfs) (fps) (ft) 24.52 3.9 242.2 33.06 5.3 242.6 ---------------6.52 3.7 239.0 8.86 5.0 239.4 -----44.60 3.5 226.3 61 .38 4.9 226.6 -------------------77.05 6.1 222.4 106.95 8.5 223.3 --------------- 0.39 4.8 228.6 0.52 5.3 228.6 --1.54 7.3 228.9 2.08 8.0 229.0 ---· ----. 36.44 7.0 232.7 49.12 8.0 233.5 7.21 6.7 231.6 9.72 5.5 232.1 - - 4.79 2.7 230.5 6.46 3.7 230.7 ·--- 26.68 5.4 244.3 35.97 7.3 245.0 1.00 5.8 226.8 1.34 6.3 226.8 9.41 10.2 224.2 12.68 11 .1 224.6 ------30.28 8.2 222.9 40.90 8.3 224.1 Culvert 1 -10 Year Storm Culvert Calculator Entered Data: Shape ........ . Number of Barrels Solving for ................. . Chart Number ................ . Scale Number ................... . Chart Description .............. : Scale Descript ion .. . Overtopping ........ . Flowrate ........... . Manning's n .................. . Roadway Elevation ............ . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Los s .................. . Tailwater ...................... . Computed Results: Headwater ...................... . Slope .......................... . Velocity ....................... . Circular 2 Headwa t er 1 3 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE , PIPE PROJECTING FROM FILL Off 2 4.5200 cfs 0. 0140 243 .7800 ft 240.1500 ft 239.7500 ft 24 .0000 in 40.0000 ft 0.5000 2 .0000 ft 242 .2406 ft Outlet Control 0.0100 ft/ft 3.9025 fps Culvert 1 -100 Year Storm Culvert Calculator Entered Data : Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning' s n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diame ter ....................... . Length ......................... . Entrance Loss ... . Tailwater .... . Computed Results : Headwater Slope .... Velo city . Wil li a ms Creek Subd i v i sion -Phase 1 Cnl l r:-:ge Sta ti on , Te;-:.,1:·: Circular 2 Headwater 1 3 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE , PIPE PROJECTING FROM FILL Off 33 .0600 cfs 0 .0140 243.7800 ft 240.1500 ft 239.7500 ft 24.0000 in 40.0000 ft 0.5000 2.0000 ft 242.6418 ft Outlet Control 0.0100 ft /ft 5.2617 fp s Culvert 2A -10 Year Storm Culv ert Calculator Entered Data: Shape .... Number of Barrels . Solving for . . . . . . . . ...... . Chart Number .................. . Scale Number ................... . Chart Description .............. . Scale Description ............. . Overtopping .................. . Flowrate ..................... . Manning' s n .................. . Roadway Elevation .............. . Inlet Elev ation ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ................... . Computed Results: Headwater ...................... . Slope .......................... . Velocity ....................... . Circular 1 Headwater 1 3 CONCRETE PIPE CULVERT ; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL Off 6.5200 cfs 0. 0140 241.1600 ft 237.3800 ft 237.0600 ft 18.0000 in 32 .0000 ft 0.5000 1.5000 ft 239.0196 ft Outlet Control 0.0100 ft/ft 3.6896 fps Culvert 2A -100 Year Storm Culvert Calculator Entered Data: Shape ..... Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning ' s n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ... Computed Results: Headwater Slope ... Velocity . Wi ·11 i a.ms Cree k Subd i v isi on Col.:. qF· ~~l<'ll ir>11, Te:·'..'I~'; Pha se 1 Circular 1 Headwater 1 3 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL Off 8.8600 cfs 0. 0140 241.1600 ft 237.3800 ft 237 .0600 ft 18.0000 in 32.0000 ft 0.5000 1.5000 ft 239 .4087 ft Outle t Control 0.0100 ft/ft 5.0137 fps Culvert 2B -10 Year Storm Culvert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solvi ng for .................... . Chart Number ................... . Scale Number ................... . Chart Description ........... , .. . Scale Description .............. . Overt opping .................... . Flowrate ....................... . Manning ' s n .................... . Roadway Elev ation .............. . Inlet Elev ati on ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results : Headwater ...................... . Slope .......................... . Velocity ....................... . Circular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE SQUARE EDGE ENTRANCE WITH HEADWALL Off 44.6000 cfs 0 . 0140 228.3700 ft 222 .1000 ft 221. 9400 ft 48.0000 in 40.0000 ft 0.5000 4.0000 ft 226.2781 ft Outlet Control 0.0040 ft/ft 3 .5492 fps Culvert 2B -100 Year Storm Culvert Calculator Entered Data : Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning's n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results: Headwater ...................... . Slope .......................... . Veloci t y ....................... . Williams Creek Subdj v isj on -Ph ase 1 Co l J ege '.:;t ;H i •.11 , Te;-:,•~; Circular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE SQUARE EDGE ENTRANCE WITH HEADWALL Off 61.3800 cfs 0. 0140 228.3700 ft 222 .1000 ft 221.9400 ft 48 .0000 in 40 .0000 ft 0.5000 4.0000 ft 226 .5804 ft Outlet Control 0 .0040 ft/ft 4.8845 fps Culvert 3 -10 Year Storm Culvert Calculator Entered Da ta : Shape .......................... . Numbe r of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Numbe r ................... . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning's n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results: Headwater ...................... . Slope .......................... . Velocity : ...................... . Circular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE SQUARE EDGE ENTRANCE WITH HEADWALL Off 77.0500 cfs 0 .0140 224 .6900 ft 2i7.6000 ft 217.3900 ft 48.0000 in 42.0000 ft 0 .5000 4.0000 ft 222.4058 ft Outlet Control 0.0050 ft/ft 6 .1314 fps Culvert 3 -100 Year Storm Culvert Calculator Entered Data : Shape .......................... . Number of Barrels .............. . Solv ing for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning's n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diam.eter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results: Headwater ...................... . Slope .......................... . Velocity ....................... . \·Ji 1 l i a ms Creek Subdi v i.sj o n -PhasE' ·1 I ! f'••c-:·1 .11 •:·n, Te;-:;;f: Circular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE SQUARE EDGE ENTRANCE WITH HEADWALL Off 106 .9500 cfs 0. 0140 224.6900 ft 217.6000 ft 217.3900 ft 48.0000 in 42.0000 ft Q.5000 4.0000 ft 223.3472 ft Outlet Control 0.0050 ft/ft 8.5108 fps Culvert 3A -10 Year Sto rm Culvert Calculator Entered Data: Shape .... Number of Barrels ...... . Solving for ............ . Chart Number ............ . Scale Number ............ . Chart Description ....... . Scale Description ....... . Ov ertopping ............. . Flowrate .................... . Manning's n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results: Headwater ...................... . Slope .......................... . Velocity ....................... . Circular 1 Headwater 1 3 CONCRETE PIPE CULVERT ; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE, PIPE PROJ ECTING FROM FILL Off 0.3900 cfs 0 .0140 230.6000 ft 228.3100 ft 227.0200 ft 18.0000 in 24.0000 ft 0 .5000 1.5000 ft 228 .5802 ft Inlet Control 0.0537 ft/ft 4.8466 fps Culvert 3A -100 Year Storm Culvert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number .............. . Scale Number ................... . Chart Description .............. . Scale Description .............. . Overtopping ............... . Flowrate .................. . Manning 's n ............... . Roadway Elevation ......... . Inlet Elevation ............ . Outlet Elevation ........... . Diam.eter . . . . . . . . . ....... . Length ................... . Entrance Loss ............ . Tail water ............ . Computed Results: Headwa ter Slope .... Ve locity . ~il l iams Creek Subd ivisi on ('-:.:i I I ~.!CJr~ ·· 1_ ,-1 L i ('11, Tc'.·: ~:t ~~; Phase 1 Circular 1 Headwater 1 3 CONCRETE PIPE CULVERT ; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL Off 0.52 00 cfs 0 . 0140 230.6000 ft 228.3100 ft 227.0200 ft 18.0000 in 24.0000 ft 0 .5000 1.5000 ft 22 8 .62 99 ft Inlet 0 .0537 ft /ft 5 .28 58 fps Co ntrol Culvert 3B -10 Year Storm Cu lvert Cal culator Entered Data: Shape . . . . . . . . ............. . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .. Scale Description .. Overtopping ....... . Flowrate .......... . Manning's n ....... . Roadway Elevation .. Inlet Elev ation .... Outlet Elevation ............... . Diameter ................ . Length ....................... . Entrance Loss ................ . Tailwater .................... . Computed Results : Headwater ...................... . Slope .......................... . Velocity ....................... . Circular 1 Headwater 1 3 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE , PIPE PROJECTING FROM FILL Off 1.5400 cfs 0. 0140 230.6000 ft 228.3100 ft 227.0200 ft 18.0000 in 24.0000 ft 0.5000 1.5000 ft 228.9074 ft Inlet Control 0.0537 ft/ft 7.3099 fps Culvert 3B -100 Year Storm Culvert Calculator Enter ed Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ......... . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning 's n .................. . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diam.eter ....................... . Le ngth ......................... . Entrance Loss .... . Tailwater ....... . Computed Results : Headwater . Slope .......... . Velocity ......... . 1'/i1 ·1 icirns Ci-eek Subdi ,.1 i s i o n r·ol l··q· SI i 1t i c:11, I "···>•~.; Phase 1 Circular 1 Headwater 1 3 CONCRETE PIPE CULVERT ; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE , PIPE PROJECTING FROM FILL Off 2.0800 cfs 0.0140 230 .6000 ft 22 8.3100 ft 227.0200 ft 18 .0000 in 24.0000 ft 0.5000 1.5000 ft 229.0209 ft Inlet Control 0.0537 Et/ft 7 .9861 fps Culvert 4 -10 Year Storm Culvert Calculator Entered Data : Shape ........... . Number of Barrels Solving for .................. . Chart Number ................. . Scale Number ................. . Chart Description ............ . Scale Description ............ . Overtopping .................. . Flowrate ..................... . Manning's n .................. . Roadway Elevation ............ . Inlet Elevation .............. . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ..................... . Computed Results: Headwater ...................... . Slope .......................... . Velocity ....................... . Circular 2 Headwater 1 3 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL Off 36.4400 cfs 0. 0140 233.7000 ft 2:3 0.2200 ft 229 .6500 ft 24.0000 in 40.0000 ft 0.5000 1.5000 ft 232.6804 ft Outlet Control 0.0142 ft/ft 7.0309 fps Culvert 4 -100 Year Storm Culvert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning' s n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ........... . Length ............. . Entrance Loss ......... . Tailwater .......... . Computed Results: Headwater .. Slope ..... . Ve l ocity .. . Wi l liams Cr eek Subdi vi s i on PhasP 1 c~c) 1 I :::·SI€ ~-;1 cl t: i on, 'l'E·}:.:=ts Circular 2 Headwater 1 3 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL Off 49.1200 cfs 0 . 0140 233.7000 ft 230.2200 ft 229 .6500 ft 24 .0000 in 40.0000 ft 0.5000 1.5000 ft 233.5473 ft Outlet Control 0.0142 ft/ft 8.4239 fps Culvert 5 -10 Year Storm Culvert Ca l c u lator Entered Data: Shape ................... . Number of Barrels ....... . Solving for .............. . Chart Number ............ . Scale Number ........... . Chart Description ...... . Scale Description ...... . Overtopping ............ . Flowrate ............... . Manning's n . . . . . . . . . . . . . ...... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation Diameter ....................... . Length ......................... . Entrance Loss ......... . Tailwater ............. . Computed Results: Headwater .................... . Slope ........................ . Velocity ..................... . Circular 1 Headwater 1 3 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL Off 7.2100 cfs 0 . 0140 233.7000 ft 230.0300 ft 229.4600 ft 18.0000 in 44.0000 ft 0 .5000 1.5000 ft 231.6077 ft Inlet Control 0.0130 ft/ft 6.6994 fps Culvert 5 -100 Ye ar Storm Culvert Calculator Entered Data : Shape .......................... . Number of Barrels .............. . Solving for ................. . Chart Number ................ . Scale Number ................ . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning' s n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter .................. . Length ......................... . Entrance Los s .................. . Tailwater ....... . Compu ted Results: Headwater ... Slope ... Velocity ........ . Wil l iams Cr eek Subd i v ision Cu I I er_!,,. c:'t:,1 1 i c--1·. l"•:·;-:.-1 ~:; Circular 1 Headwater 1 3 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL Off 9.7200 cfs 0. 0140 233.7000 ft 230.0300 ft 229.4600 ft 18 .0000 in 44.0000 ft 0 .5000 1.5000 ft 232 .1001 ft Ou tlet Control 0 . 0130 ft/ft 5.5004 fps Cu lver t 6 -10 Year Storm Culve r t Cal culator Entered Dat a: Shape .......................... . Number of Barrels .............. . So l ving for .. . Chart Number ...... . Scal e Number ................... . Chart Descr i p t ion .............. . Sc ale Descriptio n .............. . Overtopping .................... . Fl owrate ....................... . Manni ng's n .................... . Roadway Elevation .............. . Inlet Elev ation ................ . Outlet Elevation . Diameter ....................... . Length ......................... . Entrance Loss ........ . Ta i lwater ............ . Computed Results : Headwater ...................... . Slope .......................... . Velocity ....................... . Ci rcular 1 Headwater 1 3 CONCRETE PIPE CULVERT ; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE, PIPE PROJECT ING FROM FILL Of f 4 .79 0 0 cfs 0 . 0140 232 .3900 ft 229 .1300 ft 228.7700 ft 18 .0000 i n 36 .0000 ft 0.5000 1 .5000 f t 230.5277 ft Outlet Control 0.0100 ft/ft 2.7106 fps Culvert 6 -100 Year Storm Culve rt Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . .scale Number ................... . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning ' s n .................... . Roadway Elevation .............. . I n l et Elevati on ................ . Outlet Elevation ............... . Di ameter ....................... . Length ......................... . Entr ance Loss .................. . Tailwater .......... . Computed Results: Headwater .... . Slo pe ......... . Velocity ...... . 1,-J i.l l iams Creek Subdi.v jsi.c n Col l •··<Jt' ~;t at::i c11, T e;-:i"\:•; Pha s e 1 Cir cular 1 Headwater 1 3 CONCRETE PI PE CULVERT ; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE, PI PE PROJ ECTING FROM FILL Off 6.4600 cfs 0 .0140 232 .3900 ft 229.1300 f t 228.7700 ft 18.0000 in 36 .0000 ft 0 .5000 1.5000 ft 230 .7387 ft Outle t Contro l 0 .0100 ft/ft 3 .6556 fps Culv ert 7 -10 Year Storm Culv ert Calculato r Entered Data: Shape ........... . Number of Barrels Solving for .......... . Chart Number ......... . Scale Number .................. . Chart Description . . . . ...... . Scale Description .............. . Overtopping ................. . Flowrate ............... . Manning's n .......... . Roadway Elevation ...... . Inlet Elevation .......... . Outlet Elevation .... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results: Headwater ...................... . Slope .......................... . Velocity ....................... . Circular 1 Headwater 1 3 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL Off 26.6800 cfs 0.0140 245.4300 ft 24.1. 2700 ft 240. 9100 ft 30.0000 in 36.0000 ft 0.5000 2.5000 ft 244.2744 ft Outlet Control 0.0100 ft/ft 5.4352 fps Culvert 7 -100 Year Storm Culvert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . Scale pescription .............. . Overtopping ............. . Flowrate ................ . Manning's n ............. . Roadway Elevation ....... . Inlet Elevation ....... . Outlet Elevation .... . Diameter ............ . Length .............. . Entrance Loss .. Tailwater ... Computed Results: Headwater Slope ... Veloci t y ..... . Wi l l iams Cr eek Subdi v isi on (\.tl ·1 !:'."(!1 :·_;1 ::·t1 i r"•:l, TC·)-:~·1~; PIF1se 1 Circular 1 Headwater 1 3 CONCRETE PIPE CULVERT ; NO BEVELED RING ENTRANCE GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL Off 35.9700 cfs 0. 0140 245.4300 ft 241.2700 ft 240.9100 ft 30.0000 in 36.0000 ft 0.5000 2 .5000 ft 244 .981 2 ft Outle t Control 0 .0100 ft /ft 7 .3277 fp s Culvert 8 -10 Year Storm Culve r t Calculator Entered Da t a : Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description ENTRANCE Scale Decsription .............. . Flowrate ....................... . Manning's n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results: Headwater ...................... . Slope .......................... . Velocity ....................... . Ci rcular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING SQUARE EDGE ENTRANCE WI TH HEADWALL 1 .0000 cfs 0 . 0140 228.8500 ft 226.2800 ft 224 .6000 ft 18.0000 in 42.0000 ft 0.0000 1 .5000 ft 226.7583 ft From Inlet 0.0400 ft/ft 5.7986 fps Culvert 8 -100 Year Storm Culvert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . ENTRANCE Scale Decsription .............. . Flowrate ....................... . Manning' s n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outl~t Elevation ............... . Diameter ....................... . Length ....... · .................. . Entrance Loss .................. . Tailwater ...................... . Computed Results: Headwa t er ...................... . Sl ope .......................... . Veloci t y ....................... . \vi 11 i,1m s C r ee k Subdiv i s 1on ·· Phas e 1 c~:·: I I (•1.:~:. :·1 (··1 1 ; i".111, TE:·;·:~i~:; Circular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING SQUARE EDGE ENTRANCE WITH HEADWALL 1.3400 cfs 0. 0140 228.8500 ft 226 .2800 ft 224 .6000 ft 18.0000 in 42.0000 ft 0.0000 1.5000 ft 226.8449 ft Fr om Inlet 0 .0400 ft/f t 6 .324 2 fps Culvert 9 -10 Ye ar Storm Culvert Cal cu l ator Entered Data: Shape .......................... . Number of Barrels .............. . Solv ing for .................... . Chart Number ................... . Scale Number ................... . Char t Descr ipti on .............. . ENTRANCE Scale Decsri ption .............. . Flowrate ....................... . Manning's n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outl et Elevation ............... . Di ameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results : Headwater ...................... . Slope .......................... . Velocity ....................... . Circu lar 1 Headwa t er 1 1 CONCRETE PIPE CULVERT ; NO BEVE LED RING SQUARE EDGE ENTRANCE WITH HEADWALL 9 .4 100 cfs 0 .0140 225 .0500 ft 222 .610 0 ft 219 .5000 ft 24.0000 i n 90.0000 f t 0 .0000 2 .0000 f t 224.202 3 ft From Inlet 0.0346 ft/ft 10 .2366 fps Culvert 9 -100 Year Storm Culvert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solv ing for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . ENTRANCE Scale Decsription .............. . Flowrate ....................... . Manning' s n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ~ .............. . Diame ter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Compute d Results : Headwater ...................... . Slope .......................... . Veloc i ty ....................... . \-J.i] I iarns C 1~eek Subdivi s i o n Co l l•·cy; S t «1I: i o n, Tezas Phase 1 Circular 1 Headwa ter 1 1 CONCRETE PIPE CULVERT; NO BEVELED RI NG SQUARE EDGE ENTRANCE WITH HEADWALL 12.6800 cfs 0. 0140 225 .0 500 ft 222 .6100 ft 2 19 .5000 ft 2 4 .00 00 in 90.0000 ft 0 .0000 2.0 0 0 0 f t 224 .5692 ft Fr om Inlet 0.034 6 ft /ft 11 .1126 fps Culvert 10 -10 Year Storm Culvert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Numbe r ................... . Chart Description .............. . ENTRANCE Scale Decsription .............. . Flowrate ....................... . Manning' s n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results : Headwater ................. _ .... . Slope .......................... . Velocity ....................... . Circular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING SQUARE EDGE ENTRANCE WITH HEADWALL 30.2800 cfs 0. 0140 224.8900 ft 219.6400 ft 219. llOO ft 30.0000 in 59.0000 ft 0.0000 2.5000 ft 222 .8606 ft From Inlet 0.0090 ft/ft 8.2485 fps Culvert 10 -100 Year Storm Culvert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . ENTRANCE Scale Decsription .............. . Flowrate ....................... . Manning 's n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results: Headwater ...................... . Slope .......................... . Velocity ....................... . 'ih J:l iarns C1·eek Subcli,1 i !::in11 Cu I I ecy; ~:I ;1 l. i c 1'. I,...·.·,;'.; Phase l Circular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING SQUARE EDGE ENTRANCE WITH HEADWALL 40.8800 cfs 0.0140 224.8900 ft 219.6400 ft 219.llOO ft 30.0000 in 59.0000 ft 0.0000 2.5000 ft 224.0641 ft From Inlet 0.0090 ft/ft 8.3280 fps APPENDIXC Drainage Channel Design Data & Calculations .'~ Williams Creek Subdivision -Phase 1 Channel Summary Channel Bottom Width Side Slopes Slope # (in) H:V (%) 1 48 2:1 3.40 -----· -·----------------·-•· ------ 2-Segment 1 12 2:1 4.50 ------··--------------·-----2-Segment 2 12 2:1 2.50 25 year storm Design Flow Depth v,. Design Flow (cfs) (in) (fps) (cfs) 33.48 6.8 11.4 39.52 ----·-----------5.47 4.4 8.7 6.46 --------------·-5.47 5.1 7.0 6.46 The concrete channel lining is 15" in depth for Channel No. 1 and 12" in depth for Channel No . 2. 100 year storm Depth V,oo (in) (fps) 7.5 12.0 4.8 9.1 5.5 7.3 Channel 1 -25 Year Storm Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . He i g h t ......................... . Bottom width ................... . Left s lope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Flow area ...................... . Flow perime ter ................. . Hy draulic radi us ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trapezo idal Depth o f Flow 3 3 .4800 cfs 0.0340 ft /ft 0 .0140 1 5.0000 i n 48.0000 i n 0 .5000 ft /ft 0.5000 ft/ft 6.8330 in 11 .4416 fps 2.9262 ft2 78 .5583 in 5.3637 in 75 .3321 in 8.1250 ft2 115.0820 in 45.5536 % Channel 1 -100 Year Storm Channel Calculator Given Input Data: Shape .......................... . Solv ing for .................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Wil Iiams Cree k Subd i v ision Phi1 se 1 ::.'i:::· I ',_;(_J!:' :; : ~~1 1: ion, TE-:·:t·1 :·: Trapezoidal Depth of Flow 39.5200 cfs 0 .0340 ft/ft 0. 0140 15.0000 in 48.0000 i n 0.5000 ft/ft 0.5000 ft/ft 7.4992 in 12 .0458 fps 3.2808 ft 2 81 . 5'375 in 5 .7941 in 77.9968 in 8 .1250 ft2 115.0820 in 49.9947 % Channel 2 -25 Year Storm Channel Calculator Giv en Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trapezoidal Depth of Flow 5 .4700 cfs 0.0450 ft/ft 0 . 0140 12.0000 in 12.0000 in 0.5000 ft /ft 0.5000 ft/ft 4.3722 in 8.6846 fps 0.6299 ft2 31.5531 in 2.8745 in 29.4888 in 3.0000 ft2 65.6656 in 36.4350 % Channel 2 -25 Year Storm Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results : Depth .......................... . Velocity ....................... . Flow_ area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perime ter ...................... . Percent f ul l ................... . \·l i l .liams Cceek Subdiv j sion --Phase l c ·:·' I I ,,. < 1' ;·; t cl t i '.: 11 • 1 · f.:: :·: a ~: Trapezoidal Depth of Flow 5.4700 cfs 0.0250 ft/ft 0. 0140 12.0000 in 12.0000 in 0.5000 ft/ft 0.5000 ft/ft 5.0737 in 7.0097 fps 0.7803 ft2 34.6903 in 3.2392 in 32.2949 in 3 .0000 ft2 65 .6656 i n 42.2810 % Channel 2 -100 Year Storm Channel Calculator Given I nput Data : Shape .......................... . Solv ing for .................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trapezoidal Depth of Flow 6.4600 cfs 0.0450 ft /ft 0. 0140 12 .0000 i n 12.0000 in 0.5000 ft/ft 0.5000 ft/ft 4 .7581 in 9.0865 fps 0 .7109 ft2 33.2789 in 3.0763 in 31. 0324 in 3.0000 ft2 65.6656 in 39.6508 % Channel 2 -100 Year Storm Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Height ......................... . Bot torn width ................... . Left slope ..................... . Right slope .................... . Computed Results : Depth .......................... . Velocity ....................... . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Wi 1] i arn s Creek Subd i v is i on Col I !""·-1· .-· l .-1 Li O il ' T e;-:«1 ~; Trapezoidal Depth of Flow 6.4600 cfs 0.0250 ft/ft 0 . 0140 12.0000 in 12 .0000 in 0.5000 ft/ft 0.5000 ft/ft 5.5126 in 7.3289 fps 0. 8814 ft2 36.6530 in 3.4630 in 34.0503 in 3.0000 ft2 65 .6656 in 45.9381 % APPENDIXD Drainage Ditch Data & Lining Material Williams Creek Drive Left Ditch From To Slope Station Station 0+85.11 1 +73.20 3.05% 1+73.20 3+21 .90 -3 .56% 3+21 .90 3+65.00 1.85% 3+65.00 7+50.00 2.15% 7+50.00 11+63.78 -0.80% -·-11+63.78 12+53.78 - 12+53.78 14+00.00 1.90% -14+00.00 14+50.00 0.72% -----14+50.00 15+44.00 -2.30% -------15+44.00 15+80.00 -3.50% -----·· 15+80.00 16+50.00 -1.33% -----16+50.00 17+19.42 -2.90% ----17+19.42 17+91 .95 - 17+91.95 18+82.40 --· -18+82.40 19+50.00 3.99% -------19+50.00 21 +25.38 2.14% ----------21 +25.38 21 +85.00 ----- 21 +92.92 24+00.00 3.08% ------------ 24+00.00 24+90.03 4.87% Joseph Creek Court Left Ditch From To Slope Station Station 0+25.00 1+00.00 1.07% 1 +00.00 2+50.00 0.51% --2+50.00 3+70.00 -2.13% ---3+70.00 6+00.00 1.37% ---6+00.00 6+70.11 1.74% Moses Creek Court Left Ditch From To Slope Station Station 0+27.50 1+50.00 5.67% 1+55.oo 4+50.00 3.36% 4+50.00 5+00.00 1.98% 5+00.00 5+75.00 -0.40% 5+75.00 7+60.00 -1 .33% 7+60.00 9+4 1.45 -0.81 % 9+41.45 9+53.45 - 9+53.45 10+87.90 0.40% Drainage Area# 2 4 6 6 8 - 11 ---11 -13 15 15 --· -15 --- ---27 ---27 - 27 --·- 27 Drainage Area# 35 35 ---34 32,33 32 Drainage Area# 19 19 --19 24 24 24 - 23 0 10 V10 0 100 V100 Ditch Lining Material 0.39 1.75 0.53 1.88 Grass-Seeded 0.39 1.85 0.53 2.00 Grass-Seeded 1.12 1.89 1.51 2.03 Grass-Seeded 1.12 2.00 1.51 2.15 Grass-Seeded 0.60 1.18 0.81 1.27 Grass-Seeded ---- ---Conc-Rip!ap -0.51 1.57 0.69 1.69 Grass-Seeded -·--0.51 1.09 0.69 1.17 Grass-Seeded -----0.27 1.43 0.37 1 .5_~ Grass-Seeded 0.76 2.17 1.02 2.34 Grass-Seeded --------0.76 1.51 1.02 1.63 Grass-Seeded --0.76 2.03 1.02 2.18 Grass-Seeded --. --------- -Con~Riprap - ---RCP -----5.44 3.74 7.33 4.03 Grass-Seeded -----5.44 2.96 7.33 3.19 Grass-Seeded ----------·--·------ ---RCP/Conc-Rie_t:__aE_ ------- 5.44 3.39 7.33 3.65 Grass-Seeded ----·---- 5.44 4.03 7.33 4.34 Grass-Seeded 010 V10 0100 V100 Ditch Lining Material 0.69 1.36 0.93 1.47 Grass-Seeded ----0.69 1.03 0.93 1.11 Grass-Seeded ,_ -----1.73 -Grass -Seede-d 0.47 1.60 0.64 -----------1.73 1.88 2.33 2.02 Grass-Seeded -----0.91 1.75 1.22 1.88 Grass-Seeded 010 V10 0100 V100 Ditch Lining Material 6.90 4.52 9.31 4.88 Grass-Sodded 6.90 3.72 9:3f 4]1 Grass-Seeded 6.90 3.05 9.31 3.29 Grass-Seeded 13.52 1.98 18.24 2.13 Grass-Seeded 13.52 3.11 18.24 3.35 Grass-Seeded 13.52 2.58 18.24 2.78 Grass-Seeded - ---Conc-Riprap 5.68 1.59 7.69 1.72 Grass-Seeded Williams Creek Dri ve Right Ditch From To Slope Station Station 0+85.11 1 +73.20 2.26% 1 +73.20 3+08.76 -3 .56% 3+08.76 3+65.00 0.56% 3+65.00 7+50.00 2.15% 7+50.00 10+50.00 -0.80% -10+50.00 11 +63.78 -2.92% 11+63.78 12+38.97 - 12+38.97 12+80.28 - 12+80.28 13+32.34 4.00% 13+32.34 14+00.00 2.00% --14+00.00 14+50.00 0.72% 14+50.00 15+44.00 -2.30% 15+44.00 15+80.00 --15+80.00 16+50.00 -1.33% --16+50.00 17+34.01 -3.30% ---17+34.01 18+04.84 --18+04.84 18+59.84 ----- 18+59.84 19+50.00 2.54% --·------- 19+50.00 21 +25.38 2.23% ----21+25.38 21+86.68 ---- 21 +92.92 24+00.00 3.08% ---24+00.00 24+90.03 4.87% Joseph Cre ek Court Right Ditch From To Station Station 0+25.00 1 +00.00 ------·----1 +00.00 2+50.00 --- --2+50.00 3+70.00 3+70.00 6+70.11 Moses Creek Court Right Ditch From To Station Station 0+27.50 1 +50.00 1 +50.00 4+50.00 4+50.00 5+00.00 5+00.00 5+75.00 5+75.00 7+60.00 7+60.00 9+42.95 9+42.95 9+51 .95 9+51.95 10+87.90 Slope 0.40% 0.51% ----1 .62% 0.50% Slope 6.07% 3.36% 1.98% -0.40% -1.33% -1.05% - 0.40% Drainage Area # 1 3 3 5 7 9 - - 12 12 12 14 - 16 16 - - 17,18,19,2 5,26,28 17,18,19,2 5,26,28 - 25,26,28 25,26 Drainage Area# 29 29 30 31 Drainage Area# 18 18 18 20 20 20 - 22 0 10 V10 0100 V100 Ditch Lining Material 8.91 3.41 12.21 3.70 Grass-Seeded 6.91 3.80 9.39 4.10 Grass-Seeded 6.91 1.90 9.39 2.05 Grass-Seeded 8.43 3.33 11 .45 3.57 Grass-Seeded -4.57 1.96 6.22 2.12 Grass-Seeded 7.15 3.56 9.70 3.84 Grass-Seeded - ---Conc-Riprap - -- -RCP 1.00 2.45 1.34 2.64 Grass-Seeded 1.00 1.89 1.34 2.03 Grass-Seeded ---·-1.00 1.29 1.34 1.38 Grass-Seeded --1.51 2.21 2.04 2.38 Grass-Seeded - - --RCP 1.02 1.63 1.37 1.75 Grass-Seeded --1.02 2.29 1.37 2.47 Grass-Seeded -------Conc-Riprap -- --- -R9_P!CQ._nc-Rjprap -- 30.28 4.85 40.88 5.22 Grass-Sodded -- 30.28 4.62 40.88 4.98 Grass-Sodded --~· ---· ---- ---RCPIG_onc-R_iprap 19.58 4.67 26.45 5.04 Grass-Sodded ---·-Grass-sodded -14.80 5.17 19.99 5.58 010 V10 0100 V100 Ditch Lining Material 3.28 1.39 4.42 1.50 Grass-Seeded 3.28 1.52 4.42 1.64 Grass:seeded ·----1.04 1.76 1.40 1.90 Grass-Seeded ·- 1.60 1.26 2.15 1.36 Grass-Seeded 010 V10 0100 V100 Ditch Lining Material 1.90 3.36 2.56 3.62 Grass-Seeded 1.90 2.69 2.56 2.90 Grass-Seeded 1.90 2.21 2.56 2.38 Grass-Seeded 1.60 1.16 2.15 1.25 Grass-Seeded 1.60 1.82 2.15 1.96 Grass-Seeded 1.60 1.67 2.15 1.80 Grass-Seeded --- -Cone Channel-Lining 1.25 1.09 1.69 1.18 Gra ss-Seeded EXHIBIT A Post-Development Drainage Area Map -L~ EXHIBITB Drainage Area Map -Ditch Design