HomeMy WebLinkAboutDrainage ReportDrainage R eport ·
for
Williams Creek Subdivision -Phase 1
College Station, Texas
July 2004
Revised August 20,04
Developer:
Joe and Janet Johnson Land and Investments, LP
1400 South Commercial Street
Coleman, Texas 76834
(325) 625-2124
Prepared By:
TEXCON General Contractors
1 707 Graham Road
Col1 ege Station, Texas 77845
(979) 764-7743
CERTIFICATION
I certify that this revised report for the drainage design for the Williams Creek Subdivision -
Phase I , was prepared by me in accordance with the provisions of the City of College Station
Drainage Policy and Design Standards for the owners hereof, with the exception that storm
water runoff detention is not being proposed for this project since the site discharges directly
into an existing drainage which flows into the 100-year floodplain limits.
TABLE OF CONTENTS
DRAINAGE REPORT -Revised
WILLIAMS CREEK SUBDIVISION -PHASE 1
CERTIFICATION .................................................................................................................................................................. 1
TABLE OF CONTENTS ........................................................................................................................................................ 2
LIST OF TABLES .................................................................................................................................................................. 2
INTRODUCTION ................................................................................................................................................................... 3
GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 3
FLOOD HAZARD INFORMATION .................................................................................................................................... 3
DEVELOPMENT DRAINAGE PA TTERNS ........................................................................................................................ 3
DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 3
STORM WATER RUNOFF DETERMINATION .............................................................................................................. .4
DETENTION FACILITY DESIGN ...................................................................................................................................... 6
STORM CULVERT & DRAINAGE CHANNEL DESIGN ................................................................................................ 6
CONCLUSIONS ..................................................................................................................................................................... 8
APPENDIX A .......................................................................................................................................................................... 9
Time of Concentration Equations & Calcuations
APPENDIX B ........................................................................................................................................................................ 20
Storm Sewer Culvert Data & Design Calc11latio11s
APPENDIX C ........................................................................................................................................................................ 35
Drai11age Cha1111el Design Data & Calculatio11 s
APPENDIX D ........................................................................................................................................................................ 40
Drainage Ditch Data & Lining Material
EXHIBIT A ............................................................................................................................................................................ 43
Post-Development Drainage Area Map
EXHIBIT B ............................................................................................................................................................................ 45
Drai11age Area Map -Ditch Design
LIST OF TABLES
TABLE 1 -Rainfall Intensity Calculations .......................................................................................... 4
TABLE 2 -Time of Concentration (tc) Equations .............................................................................. 4
TABLE 3A -Post-Development Runoff Information (Exhibits A & B) ........................................... 5
TABLE 3B -Drainage Structure Flow Summary ............................................................................... 6
DRAINAGE REPORT -Revised
WILLIAMS CREEK SUBDIVISION -PHASE 1
INTRODUCTION
The purpose of this revised repoti is to provide the hydrological effects of the construction of
the Williams Creek Subdivision -Phase I , and to verify that the proposed stom1 drainage
system meets the requirements set forth by the City of College Station Drainage Policy and
Design Standards.
GENERAL LOCATION AND DESCRIPTION
The project is located on a portion of a 213.91 acre tract located east of Rock Prairie Road and
south of Greens Prairie Road in College Station, Texas. This report addresses Phase I of this
subdivision, which is made up of 38.67 acres. This report also addresses the drainage
structures for Williams Creek Drive which provides access to Phase 1 from Greens Prairie
Road. The site is predominantly wooded. The existing ground elevations range from elevation
200 to elevation 284. Portions of the existing ground are steep, with slopes approaching I 0%.
The general location of the project site is shown on the vicinity map in Exhibit A.
FLOOD HAZARD INFORMATION
The project site is located in the Carters Creek Drainage Basin. Most of the proposed developed
area of the site is located in a Zone X Area according to the Flood Insurance Rate Map
prepared by the Federal Emergency Management Agency (FEMA) for Brazos County, Texas
and incorporated areas, Community No. 481195 and 480083, Panel No. 205D, Map No.
48041C0205D, effective dated Febrnary 9, 2000. A portion of this development is in the 100-
year floodplain. This area is shown on Exhibit A as the l 00-year floodplain limit. Lots with
floodplain are required to have a minimum finished floor elevation (FF), which is a minimum
of one foot above the Base Flood Elevation (BFE). The BFE information is also shown on
Exhibit A.
DEVELOPMENT DRAINAGE PATTERNS
Prior to development, the storm water runoff for Phase l flows in an easterly and northeasterly
direction into existing tributaries which discharge into Carters Creek.
DRAINAGE DESIGN CRITERIA
The design parameters for the stotm drainage analysis are as follows:
• The Rational Method is utilized to detem1ine peak stonn water runoff rates for the storm
drainage design.
• Design Stotm Frequency
Stonn culverts
• Runoff Coeffici ents
Und eveloped Land
I 0 and 100-year stonn events
Po st-development (minimum l acre lots)
c = 0.35
c = 0.50
• Rainfall Int ensity equations and valu es fo r Brazos County can be found in Table I.
• Time of Concentration, le -Calculati ons are based on the meth od found in the TR-55
publication. Refer to Table 2 for the equations and Appendix A for calculations. The
runoff flow path used for calculating the post-development times of concentration for the
larger drainage areas are shown in Exhibit A. Smaller drainage areas use a minimum le of
I 0 minutes to determine the rainfall intensity values. Exhibit B has the runoff flow paths
used for the drainage areas for the roadside ditch design.
STORM WATER RUNOFF DETERMINATION
The peak runoff values were detennined in accordance with the criteria presented in the
previous section for the 10, 25, 50, and 100-year stom1 events. The drainage areas for the post-
development condition are shown on Exhibit A. Post-development runoff conditions for the
storm culvert design are summarized in Table 3.
TABLE 1 -Rainfall Intensity Calculations
Rainfall Intensity Values (in/hr)
Storm
Event
110
'2s
lso
1100
le=
10 min
8.635
9.861
11.148
11 .639
I = b I (tc+d)e
I = Rainfall Intensity (in/hr)
tc = U(V*60)
tc =Time of concentration (min)
L = Length (ft)
V = Velocity (ft/sec)
Brazos County:
10 'i.ear storm 25 'f.ear storm 50 'i.ear storm 100 'i.ear storm
b= 80 b = 89 b= 98 b= 96
d= 8.5 d= 8.5 d= 8.5 d= 8.0
e= 0.763 e= 0.754 e= 0.745 e= 0.730
(Data taken from State Department of Hiqhwa'i.S and Public Transportation H'i.draulic Manual, page 2-16)
TABLE 2 -Time of Concentration (tc) Equations
The time of concentration was determined using methods found in TR-55, "Urban
Hydrology for Small Watersheds. " The equations are as follows :
Time of Concentration:
For Sheet Flow:
For Shallow Concentrated I-low:
Tc = Tt(s heet flow)+ Tt(concentrated sheet flow)
where: T1 =Travel Time, minutes
where: T1 =travel time, hours
n =Manning's roughness coefficient
L = flow length, feet
P2 = 2-year, 24-hour rainfall = 4 .5"
s = land slope, ft/ft
T1 =L I (60*V)
where: T1 =trave l time, minutes
V =Velocity, fps (See Fig 3-1 , App. E)
I. = ll ow length, feet
Refer to Appendi x A fo r calcul ati ons.
-I
TABLE 3A -Post-Development Runoff Information (Ex hibits A & B)
Area 5 year s torm c le Area # (acres) I, a,
A (min) (in/hr) (els)
1 5.68 0.5 10.0 7 .693 2 1 .85
2 6 32 .04 0 .35 42 .6 3 .465 38 .86
2A 3.19 0.35 22 .4 5 .14 3 5 .7 4
3 43.16 0 .35 61 .8 2 .697 4 0 .7 5
3A 0.51 0 .35 10.0 7 .693 1.37
4 0.41 0 .5 10.0 7 .693 1 .58
5 0.6 1 0 .5 10.0 7 .693 2 .35
6 6.18 0 .5 10.0 7 .693 23.77
7 7 .46 0 .5 10.0 7 .693 28 .69
8 1.16 0 .5 10.0 7 .693 4 .46
9 0.61 0 .5 10.0 7 .693 2 .35
11 0.5 0 .5 10.0 7 .693 1.92
12 0.52 0 .5 10.0 7 .693 2 .00
13A 0.09 0 .5 10.0 7 .693 0 .35
14 0.17 0 .5 10.0 7 .693 0 .65
15 0.85 0 .5 10.0 7 .693 3 .27
25 0.51 0 .5 10.0 7 .693 1.96
26 0.98 0 .5 10.0 7 .693 3 .7 7
101 5.68 0 .35 35.2 3.9 18 7 .7 9
102 0.13 0 .35 10.0 7 .693 0 .35
103 3.19 0 .35 20.1 5.465 6 .10
104 0.13 0 .35 10.0 7 .693 0 .35
105 3.90 0 .35 20.2 5.4 50 7 .4 4
106 0.37 0.35 10.0 7 .693 1.00
107 2.32 0 .35 23.9 4.955 4 .02
108 0.20 0 .35 10.0 7 .693 0 .54
109 3.21 0 .35 19.1 5.620 6 .3 1
110 0.13 0 .35 10.0 7 .693 0 .35
111 0.17 0 .35 10.0 7 .693 0.46
11 2 0.33 0 .35 10.0 7 .693 0 .89
113 0.09 0 .35 10.0 7 .693 0 .24
114 0.50 0 .35 10.0 7 .693 1.35
115 0.25 0 .35 10.0 7 .693 0 .67
116 0.35 0 .35 11 .0 7 .381 0 .90
11 7 0.44 0 .50 10.0 7 .693 1.69
118 0.44 0.50 10.0 7 .693 1.69
119 1.69 0 .50 11 .4 7 .265 6.14
120 0.37 0.50 10.0 7 .693 1.4 2
121 1.34 0.50 14 .9 6.397 4 .29
122 0.29 0.50 10.0 7 .693 1.12
123 1.60 0 .50 15.4 6.292 5.03
124 3.26 0 .50 11 .0 7 .381 12 .03
125 0.99 0.35 10 .0 7 .693 2 .67
126 4 .49 0 .35 1 3.7 6.667 10.48
127 1.26 0.50 10.0 7 .693 4 .85
128 1.28 0 .50 13.9 6.620 4 .24
129 0. 76 0.50 10.0 7 .693 2 .92
130 0.24 0.50 10.0 7 .693 0.92
131 0.37 0.50 10.0 7 .693 1.42
132 0.21 0.50 10.0 7 .693 0.81
133 0.19 0.50 10.0 7 .693 0.7 3
134 0.11 0.50 10.0 7 .693 0.4 2
135 0.16 0.50 10.0 7 .693 0.62
The Rational Method :
Q=CIA l=bl(tc+d)•
Q = Flow (cfs)
A= Area (acres)
le = Time of concentratio n (min)
C =Runoff Coeff.
I = Rainfall Intensity (in/h r)
Brazos County:
5 year storm 10 year storm 25 year storm
b 7 6 b 80 b 89
d 8 5 d 8 .5 d 8 5
e = o 79 e = o 763 e = o 7 5
10 year storm 25 year storm 50 year storm
1,.
(in/hr)
8 .6345
3.9771
5.8 378
3.1179
8.6345
8.6345
8 .6 34 5
8 .6 34 5
8 .6 34 5
8.6345
8.6345
8.6345
8.6345
8.6345
8.6345
8.6345
8.6345
8 .6345
4 .481
8 .635
6 .193
8 .635
6 .176
8 .635
5 .630
8 .635
6 .363
8 .635
8 .635
8 .635
8 .635
8 .635
8 .635
8 .295
8 .635
8 .635
8 .167
8 .635
7 .217
8 .635
7 .102
8 .295
8 .635
7 .513
8 .635
7 .462
8 .635
8 .635
8 .635
8 .635
8 .635
8 .635
8 .635
a" 1,,
(c rs) (in/hr)
24 .52 9.8615
44 .60 4 .584
6 .52 6.6982
4 7. 1 0 3 .6 04
1 .54 9.8615
1.77 9.8615
2 .63 9.8615
26.68 9.8615
32 .21 9.8615
5.01 9.8615
2.63 9 .8615
2.16 . 9.8615
2.24 9.8615
0 .39 9 .8615
0.7 3 9 .8615
3.67 9.8615
2.20 9 .8615
4 .2 3 9 .8615
8 .91 5 .158
0 .39 9 .861
6.91 7 .101
0 .39 9 .861
8 .4 3 7 .082
1.12 9 .861
4.57 6 .463
0.60 9 .861
7 .15 7 .294
0.39 9 .861
0.51 9 .861
1.00 9 .861
0.27 9 .861
1 .51 9 .861
0 .7 6 9 .861
1 .02 9 .4 7 8
1.90 9 .861
1.90 9.86 1
6.90 9 .334
1.60 9 .861
4 .84 8 .260
1 .25 9 .861
5.68 8 .130
13.52 9 .478
2.99 9 .861
11 .81 8 .595
5.44 9 .861
4 .7 8 8 .53 7
3.28 9 .861
1 .04 9 .86 1
1.60 9 .861
0 .91 9 .861
0 .82 9 .861
0 .4 7 9 .861
0 .69 9 .86 1
le = L/(V.60)
L = Le n gth (ft
a ,, 1,. a ,.
(c fs) (in/hr) (c fs)
28 .0 1 11 . 14 8 31 .66
51 .40 5.2294 58.64
7 .48 7 .6069 8 .4 9
54 .44 4 .1233 62 .29
1 .76 11 .148 1.99
2 .02 11 148 2 .29
3 .01 11 148 3 .40
30.4 7 11 .148 34 .4 5
36.7 8 11 .148 4 1 .58
5 .7 2 11 .148 6 .4 7
3 .01 11 .14 8 3 .40
2 .4 7 1 1 .14 8 2 .79
2 .56 11 .14 8 2 .90
0 .44 11 .14 8 0 .50
0 .84 11 .148 0 .95
4 .19 11 .148 4 .7 4
2 .51 11 . 148 2 .84
4 .83 11 .148 5 .46
10.25 5 .876 11 .68
0 .4 5 11 .148 0 .51
7 .93 8.058 9 .00
0 .45 11 .148 0 .51
9 .67 8 .037 10.97
1.28 11 .148 1 .44
5 .25 7 .343 5 .96
0 .69 11 .148 0.7 8
8 .19 8.275 9 .30
0 .45 11 .148 0 .5 1
0 .59 11 .148 0 .66
1.14 11 .148 1.29
0 .31 11 .148 0 .35
1 .73 11 .148 1.95
0 .86 11 .148 0 .98
1.16 10.719 1 .3 1
2 .17 11.148 2 .4 5
2 .17 11 .148 2 .4 5
7 .89 10.558 8 .92
1.82 11 .148 2 .06
5 .53 9 .358 6 .27
1 .43 11 .148 1 .62
6.50 9 .21 1 7 .3 7
15.45 10.719 1 7 .4 7
3 .42 11 .148 3 .86
13.51 9 .732 15.29
6 .21 11 .148 7 .02
5 .46 9 .667 6 .19
3 .75 11 .148 4 .24
1 .18 11 .148 1.34
1 .82 11 .148 2 .06
1.04 11 148 1 .1 7
0 .94 11 . 148 1.06
0 .54 11 .148 0 .6 1
0.79 11 .148 0 .89
V =Velocity (ft/sec)
50 year storm 100 year storm
b 98 b 96
d 8 5 d 8 0
e = O 7 4 5 e = 0 .7 30
100 year storm
I 1oe 0 100
(in/hr) (c rs )
11 .639 33 .06
5.4732 6 I .38
7 .9391 8 .86
4.3277 6 5 3 7
11 .639 2 .08
11 .639 2 .39
11 .639 3.55
11 .639 35.97
11 .639 4 3 .4 I
11 .639 6.7 5
11 .639 3.55
11 .639 2.91
11 .639 3.03
11 .639 0.52
11 .639 0.99
11 .639 4 .95
11 .639 2.97
11 .639 5. 70
6 .143 12 .2 1
11 .639 0.53
8 .408 9.39
11 .639 0.53
8.387 11.45
11 .639 1.51
7.665 6.22
11 .639 0.81
8.634 9.70
11 .639 0.53
11 .639 0.69
11 .639 1.34
11 .639 0.37
11 .639 2.04
11 .639 1.02
11 .189 1.37
11 .639 2.56
11 .639 2.56
11 .020 9.3 1
11 .639 2.15
9 .763 6.54
11 .639 1.69
9.610 7 .69
11 .189 18 .24
11 .639 4 .0 3
10.154 15 .96
11 .639 7 .33
10 .08 7 6.46
11 .639 4 .4 2
11 .639 1.40
11 .639 2 .15
11 .639 1.22
11 .63 9 1.11
11 .639 0 64
11 .639 0 93
TABLE JB -Drainage Structure Flow Summary
Culvert c le Contributing Contributing 110 010 l2s 0 2s lso Oso 1100 0 100
# (min) Area Nos. Area Acreage (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs)
1 0.50 10.0 1 5.68 8.635 24.52 9.861 2801 11.148 31.66 11.639 3306 -------------------------
28 0.35 42.6 28 3204 3.977 44.60 4.584 51.40 5.229 58.64 5.473 61.38 ---------· ----~--------
2A 0.35 22.4 2A 3.19 5.838 6.52 6.698 7.48 7.607 8.49 7.939 886 -----------------------
3 0.42 61 .8 3,4,5,6,7,26 58.84 3.118 77.05 3.604 8907 4.123 101.90 4.328 106.95 --------
3A 0.50 10.0 13A 0.09 8635 0.39 9.861 0.44 11.148 0.50 11.639 0.52 ---·-----
38 0.50 10.0 3A 0.51 8.635 1.54 9.861 1.76 11.148 1.99 11.639 2.08 ----------
4 0.50 10.0 7,26 8.44 8.635 36.44 9.861 41.62 11.148 47.04 11.639 49.12 -----
5 0.50 10.0 8,25 1.67 8.635 7.21 9.861 8.23 11 .148 9.31 11.639 9.72
6 0.50 10.0 9,11 1.11 8.635 4.79 9.861 5.47 11 .148 6.19 11.639 6.46 ---
7 0.50 10.0 6 6.18 8635 26.68 9.861 30.47 11 .148 34.45 11.639 35.97
8 0.35 10.0 112 0.33 8.635 1.00 9.861 1.14 11 .148 1.29 11.639 1.34
9 0.50 10.0 127, 129, 135 2.18 8.635 9.41 9.861 10.75 11 .148 12.15 11.639 12.68
117, 118, 119,
10 0.42 13.7 125 126 128 9.33 7.513 30.28 8.595 34.62 9.732 39.16 10.154 40.88
Channel#
1 0.50 10.0 5,6 6.79 8.635 29.31 9.861 33.48 11 .148 37.85 11.639 39.52
2 0.50 10.0 9, 11 1.11 8.635 4.79 9.861 5.47 11.148 6.19 11.639 6.46
DETENTION FACILITY DESIGN
The runoff from the development of Phase 1 is discharged directly into tributari es of Carters
Creek and then almost immediately into the 100-year floodplain. The existing drainages will
not be improved except for culve11s at roadway crossings. A private drainage easement is
proposed to prevent development in or adjacent to the existing drainage channels where the
channel is located in residential lots. Since runoff is discharged into the floodplain, it has been
proposed that detention will not be required for the construction of this phase. For future
phases, additional analysis will need to be performed to determine any detention requirements.
STORM CUL VERT & DRAINAGE CHANNEL DESIGN
The storm culverts for this project have been selected to be Reinforced Concrete Pipe (RCP)
meeting the requirements of ASTM C-76, Class III pipe meeting the requirements of ASTM C-
789. There will be sloped safety end treatment or headwall s at the end of each culvert.
Runoff from the proposed streets wi ll be coll ected by the roadside ditches and conveyed to the
culvert structures. Due to the open-ditch design, no inl ets wi ll be used for this development
except to intercept the ditch flow into Cul ve11No.l0. The proposed grate inlet was analyzed
using the orifice equation, solving for the depth of water on the inlet for the I 0-and I 00-year
storm events. Desi gn calculations and data for the grate inl et are as follows:
Q = 4.82 *Ag* y 112 ¢ y =(QI (4.82 * Ag))2
Where: Q = flow at inlet, cfs
Ag =open area of 1-3'x3' grate, ft 2 = 9.0 ft2 x 2 grates = 18.0 ft2
y = depth at inlet, ft
Actual
Design Ag 10-Year Storm 100-Year Storm Inlet Ag 50%
Size clogging 0 10 Depth, y 0 100 Depth, y
(ft2) (ft2) (cfs) (ft) I (in) (cfs) (ft) I (in)
2-3'x3' grates 18.0 9.0 30.28 o.49 I 5.8 40.88 o .89 I 10.7
(•
As shown by these calculations, the maximum depth of water for the 100-year storm for the
proposed and existing grate inlets is 5.8" and l 0. 7", respecti vely. The ditch between the ri ght-
of-way and the edge of pavement will be graded as necessary to ensure that the runoff from the
100-year storm event will remain w ithin the street right-of-way.
Appendix B presents a summary of the stom1 culvert design parameters and calculations. All
pipes are 18" in diameter or larger. The culverts were designed based on the 10-year storm
event, and data is also given for the 100-year storm event. As shown in the summary, all of the
culverts have a headwater elevation that is at least one foot below the roadway elevation for the
10-year storm event. Also, all of the culverts pass the 100-year stonn event without
overtopping the roadway. As required by College Station, the velocity of flow in the pipes is
not lower than 2.5 feet per second, and it does not exceed 15 feet per second. As the data
shows, even during low flow conditions, the velocity in the pipes will exceed 2.5 feet per
second and prevent sediment build-up in the culverts. The maximum flow in the storm culverts
will occur in Culvert No. 3. The maximum velocity for the culverts in this development will be
8.5 feet per second and will occur in Culvert No. 3. Appendix B contains a summary of th e
culvert calculator data for the l 0 and 100-year storm events. Concrete riprap will be placed at
the end of the culverts when the velocity exceeds 4.5 fps for the l 0-year sto1m event.
The storm water runoff in the roadside ditches of Joseph Creek Court and Moses Creek Court
will discharge into improved drainage channels to convey the water from the street right-of-
way to the existing drainage channel. The concrete lined channels will be constructed with
profiles that follow the existing ground profile. Appendix C contains a summary of the channel
design parameters and calculations. The velocity for the design storm event, the 25-year stom1 ,
is 11.4 fps for Channel No. 1 and 8. 7 fps for Channel No. 2. Concrete channel lining can
adequately handle these velocities. The channels are designed so that the water depth does not
exceed the limits of the concrete channel lining to prevent erosion. Rock riprap will be placed
at the end of the channels to dissipate the energy in the flow, control erosion, and transition the
flow into the existing drainage channel. Appendix C contains the channel calculator data for
the 25-and 100-year storn1 events.
The velocity of the flow in the roadside ditches was evaluated for the 10-year and 100-year
storm events. The drainages are shown on Exhibit B.
The city requirements for ditch lining material are as follows:
Maxi mum Design Velocities of Various
Surface Treatments1
Surface Treatment
Exposed Earth*
Grass -Seeded
Grass -Sodded
Impermeable
(Concrete, Gunite. Etc.)
*Temporary Channe ls Only
Maximum Design Velocity, (ft/sec)
3.0
4.5
6.0
10.0
1From .. Erosion and Sed iment Control Guidelines for Developing
Areas in Texas" by the Soil Conscn·ati on Service
In Appendi x D the ditch ve lociti es are summarized including comments stating the ditch linin g
material used. The cl itch lin ing 111al cri <.il is al so shown in the constru ction dr<1" in ss
CONCLUSlONS
The construction of this project will increase the storm water runoff from this site. However, a
majority of the runoff will be carried through a stom1 drainage system to existing drainage
channels and then directly to Carters Creek and into the 100-year floodplain. Due to the
location of this project and its proximity to Carters Creek's confluence with the Navasota
River, the peak runoff from this development will occur much sooner than the peak runoff in
Carters Creek, therefore, the increase in runoff has no affect on the water surface elevation in
Carters Creek. The increased flow directly into Carters Creek wi ll not have a significant
impact on the surrounding property. No flood damage to downstream or adjacent landowners
is expected as a result of this development.
APPENDIX A
Time of Concentration Equations & Calculations
<)
Sheet Flow:
Time of Concentration Calculations
Drainage Area #2A
Flow length = 200' = L
Slope = 3.0%
n = 0.24, dense grass
P2 = 4.5"
T1 = 0.007 (0.24 * 200)08
(4.5)05 (0.03)04
= 0.297 hours= 17.8 minutes
Shallow Concentrated Flow: Flow length= 765' = L
Slope= 2.9%
For unpaved surface at 2.9%, Velocity (V) = 2.75 fps (see Fig. 3-1)
= 765 ' I (60*2.75) = 4.6 minutes
Tc= 17.8+4.6 = 22.4 minutes
Sh eet Flow:
Time of Concentration Calculations
Drainage Area #2B
Flow length = 300' = L
Slope= 1.7%
n = 0.24, dense grass
P2 = 4.5"
T1 = 0.007 (0.24 * 300)08
(4.5)0 5 (0 .017)04
= 0.519 hours= 31 .1 minutes
Shallow Concentrated Flow: Flow length = 345 ' = L
Slope = 1.2%
For unpaved surface at 1.2%, Velocity (V) = 1.8 fps (see Fig. 3-1)
= 345 ' I (60*1.8) = 3.2 minutes
Shallow Concentrated Flow: Flow length= 360' = L
Slope= 2.2%
For unpaved surface at 2.2%, Velocity (V) = 2.4 fps (see Fig. 3-1)
-7 = 360' I (60*2.4) = 2.5 minutes
Shallow Concentrated Flow: Flow length = 480' = L
Slope= 2.7%
For unpaved surface at 2.7%, Velocity (V) = 2.75 fps (see Fig. 3-1)
= 480' I (60*2.75) = 2.9 minutes
Flow through stream Flow length= 855' = L
Slope= 1.4%
From Manning's Calculator data, Velocity (V) = 5 fps
= 855 ' I (60*5) = 2.9 minutes
Tc= 31. l + 3.2 + 2.5 + 2.9 + 2.9 = 42.6 minutes
Sheet Flow:
Time of Concentration Calculations
Drainage Area #3
Flow length = 300' = L
Slope = 1.4%
n = 0.24, dense grass
P2 = 4.5"
T1 = 0.007 (0.24 * 300)08
(4.5)05 (0.014)0.4
= 0.557 hours = 33.4 minutes
Shallow Concentrated Flo w: Flow length= 555' = L
Slope= 1.1 %
For unpaved surface at 1.1%, Velocity (V) = 1.7 fps (see Fig. 3-1)
~ = 555' I (60*1.7) = 5.4 minutes
Shallow Concentrated Flow: Flow length = 1030' = L
Slope = 0.87%
For unpaved surface at 0.87%, Velocity (V) = 1.45 fps (see Fig. 3-1)
~ = 1030 ' I (60*1.45) = 11.8 minutes
Shallow Concentrated Flow: Flow length =235 = L
Slope= 3.4%
For unpaved surface at 3.4%, Velocity (V) = 3.0 fps (see Fig. 3-1)
~ = 235' I (60*3) = 1.3 minutes
I
Shallow Concentrated Flow: Flow length =287 = L
Slope = 3.3%
For unpaved surface at 3.3%, Velocity (V) = 3.0 fps (see Fig. 3-1)
= 287' I (60*3) = 1.6 minutes
Flow through stream Flow length = 723 ' = L
Slope= 0.71%
From Manning's Calculator data, Velocity (V) = 2.5 fps
= 723' I (60*2.5) = 4.8 minutes
Flow through stream Flow length = 517' = L
Slope= 0.53%
From Manning's Calculator data, Velocity (V) = 2.5 fps
= 517' I (60*2.5) = 3.5 minutes
Tc = 33.4 + 5.4 + 11.8 + 1.3 + 1.6 + 4.8 + 3.5 =
61.8 minutes
Sheet Flow:
Time of Concentration Calculations
Drainage Area #101
Flow length = 120' = L
Slope= 1.0%
n = 0.24, dense grass
P2 = 4.5"
Ti= 0.007 (0.24 * 120)°-8
(4.5)05 (0.01)04
= 0.306 hours = 18.4 minutes
Shallow Concentrated Flow: Flow length = 1610' = L
Slope= 1.0%
Sheet Flow:
For unpaved surface at 1.0%, Velocity (V) = 1.6 fps (see Fig. 3-1)
= 1610 ' I (60*1.6) = 16.8 minutes
Tc= 18.4 + 16.8 = 35.2 minutes
Time of Concentration Calculations
Drainage Area #103
Flow length = 200' = L
Slope = 3.2%
n = 0.24, dense grass
P2 = 4.5"
Ti= 0.007 (0.24 * 200)°-8
(4.5)°5 (0.032)04
= 0.289 hours = 17.3 minutes
Shallow Concentrated Flow: Flow length= 525' = L
Slope= 3.8%
For unpaved surface at 3.8%, Velocity (V) = 3.1 fp s (see Fig. 3-1)
= 525 ' I (60*3.l) = 2.8 minutes
Tc= 17.3 + 2.8 = 20.l minutes
Sheet Flow:
Time of Concentration Calculations
Drainage Area #105
Flow length = 200 ' = L
Slope = 3.2%
n = 0.24, dense grass
P2 = 4.5"
T1 = 0.007 (0.24 * 200)°8
(4.5)05 (0.032)04
= 0.289 hours= 17 .3 minutes
Shallow Concentrated Flow #1: Flow length = 565 ' = L
Slope= 4.2%
Sheet Flow:
For unpaved surface at 4.2%, Velocity (V) = 3 .3 fps (see Fig. 3-1)
= 565 ' I (60*3 .3) = 2.9 minutes
Tc= 17.3 + 2.9 = 20.2 minutes
Time of Concentration Calculations
Drainage Area #107
Flow length = 200' = L
Slope = 2.0%
n = 0.24, dense grass
P2 = 4.5"
T, = 0.007 (0.24 * 200)°8
(4.5)05 (0.020)04
= 0.349 hours = 20.9 minutes
Shallow Concentrated Flow: Flow length = 625' = L
Slope = 4.8%
For unpaved surface at 4.8%, Velocity (V) = 3.5 fps (see Fig. 3-1)
= 625 ' I (60*3.5) = 3.0 minutes
Tc= 20.9 + 3.0 = 23.9 minutes
Sh eet Flow:
Time of Concentration Calculations
Drainage Area #109
Flow length= 200' = L
Slope= 4.0%
n = 0.24, dense grass
P2 = 4.5"
T1 = 0.007 (0.24 * 200)0 8
( 4.5)0 5 (0.040)04
= 0.265 hours = 15.9 minutes
Shallow Concentrated Flo w: Flow length= 85' = L
Slope= l l.0%
For unpaved surface at l l.0%, Velocity (V) = 5.1 fps (see Fig. 3-1)
= 85' I (60*5. l) = 0.3 minutes
Shallow Concentrated Flow: Flow length= 255' = L
Slope= l.6%
For unpaved surface at l.6%, Velocity (V) = 2.0 fps (see Fig. 3-1)
~ = 255' I (60*2.0) = 2.1 minutes
Shallow Concentrated Flow: Flow length = 17 5' = L
Slope= 5.7%
For unpaved surface at 5.7%, Velocity (V) = 3.8 fps (see Fig. 3-1)
~ = 175 ' I (60*3 .8) = 0.8 minutes
Tc= 15 .9 + 0.3 + 2.1+0.8 = 19.1 minutes
Sheet Flow:
Time of Concentration Calculations
Drainage Area #119
Flow length = 200' = L
Slope = 11 .0%
n = 0.24, dense grass
P2 = 4.5"
Tt = 0.007 (0.24 * 200)08
(4.5)05 (0.11)04
= 0.177 hours = 10.6 minutes
Shallow Concentrated Flow: Flow length= 235' = L
Slope= 8.5%
Sheet Flow:
For unpaved surface at 8.5%, Velocity (V) = 4.7 fps (see Fig. 3-l)
= 235' I (60*4.7) = 0.8 minutes
Tc= 10.6 + 0.8 = 11.4 minutes
Time of Concentration Calculations
Drainage Area #121
Flow length= 200' = L
Slope= 6.0%
n = 0.24, dense grass
P2 = 4.5"
T1 = 0.007 (0.24 * 200)°8
(4.5)05 (0.06)04
= 0.225 hours= 13.5 minutes
Shallow Concentrated Flow: Flow length= 360' = L
Slope= 6.7%
For unpaved surface at 6. 7%, Velocity (V) = 4.2 fps (see Fig. 3-l)
= 360' I (60*4.2) = 1.4 minutes
Tc= 13.5 + 1.4 = 14.9 minutes
Sheet Flow:
Time of Concentration Calculations
Drainage Area #123
Flow length = 200' = L
Slope = 5.7%
n = 0.24, dense grass
P2 = 4.5 "
T1 = 0.007 (0.24 * 200)08
(4.5)05 (0.057)04
= 0.230 hours = 13.8 minutes
Shallow Concentrated Flow: Flow length = 400' = L
Slope = 5.8%
Sheet Flow:
For unpaved surface at 5.8%, Velocity (V) = 4.2 fps (see Fig. 3-1)
= 400' I (60*4.2) = 1.6 minutes
Tc= 13.8 + l.6 = 15.4 minutes
Time of Concentration Calculations
Drainage Area #124
Flow length = 200 ' = L
Slope= 12.0%
n = 0.24, dense grass
P2 = 4.5"
T1 = 0.007 (0.24 * 200)08
(4.5)05 (0 .12)04
= 0.171 hours= l 0.3 minutes
Shallow Concentrated Flow: Flow length = 200 ' = L
Slope= 8.0%
For unpaved surface at 8.0%, Velocity (V) = 4.6 fps (see Fig. 3-1)
= 200' I (60*4.6) = 0.7 minutes
Tc= 10 .3 + 0.7 = 11.0 minutes
Sheet Flow:
Time of Concentration Calculations
Drainage Area #126
Flow length = 200' = L
Slope = 9.0%
n = 0.24, dense grass
P2 = 4.5"
Ti= 0.007 (0 .24 * 200)08
(4.5)05 (0 .090)04
= 0.191 hours = 11 .5 minutes
Shallow Concentrated Flow: Flow length = 480' = L
Slope = 5.2%
Sheet Flow:
For unpaved surface at 5.2%, Velocity (V) = 3.7 fps (see Fig. 3-1)
= 480' I (60*3 .7) = 2.2 minutes
Tc= 11.5 + 2.2 = 13.7 minutes
Time of Concentration Calculations
Drainage Area #128
Flow length = 200' = L
Slope= 8.0%
n = 0.24, dense grass
P2 = 4.5"
Ti= 0.007 (0 .24 * 200)°8
( 4.5)0.5 (0.080)04
=0.201hours=12.1 minutes
Shallow Concentrated Flow: Flow length = 440' = L
Slope= 7.0%
For unpaved surface at 7.0%, Velocity (V) = 4.2 fps (see Fig. 3-1)
= 440' I (60*4.2) = 1.8 minutes
Tc= 12.1 + 1.8 = 13.9 minutes
.... <+--.... <+-
QJ a.
0 ..-en
QJ en L. ::s
0 u L.
QJ ....,
Id 3
3-2
.so
.20 -
.10
.06
.04
. 02 -
.01 -
.005
I
1
' I
-~
I
' I J
j
J .
b
q, ,-b .:.. q, ~ .:..I ~<:::1. Q..'t7
I
J
I
. . iJ
I
' j
I
2
r
' IJ .
. I
4
'J
'
i
IJ
I
I
I
6
J
'
i ~
J
' J
Average velocity, ft/sec
. . ·
I
j
I
I
I
r
I I
10
I .
I
I
Fiicu~ '.1-1.-.\vrraicr vrlocitirs for cslimatinic lmvd tim• for shallow conc•nlralrd Oow.
(2 !0-Vl-TR-55. Second Ed .. J une 198Gl
I
20
APPENDIXB
Storm Sewer Culvert Data & Design Calculations
20
Williams Creek Subdivision, Phase 1
Culvert Summary
Inlet Outlet Culvert Size Length Slope
# Invert Elev Invert Elev
(in) (ft) (%) (ft) (ft)
1 2x24 40.0 1.00 240.15 239.75 --------------2A 18 32.0 1.00 237.38 237.06 ------------------· 28 48 40.0 0.40 222.10 221.94
1~·---------------------·
3 48 42.0 0.50 217.60 217.39 -----3A 18 24.0 5.37 228.31 227.02
38 18 24-.0 5.37 228.31 227.02
4 2x24 40.0 1.42 230.22 229.65
5 18 44.0 1.30 230.03 229.46
6 18 36.0 1.00 229.13 228.77
7 30 36.0 1.00 241.27 240.91
8 18 42.0 4.00 226.28 224.60
9 24 90.0 3.46 222.61 219.50 ---
10 30 59.0 0.90 219.64 219.11
Top of
Road
(ft)
243.78
241.16
228.37
224.69
230.60
230.60
233.70
233.70
232.39
245.43
228.85
225.05
224.89
10 year storm 100 year storm
Design Flow V10 HW Design Flow V100 HW
(cfs) (fps) (ft) (cfs) (fps) (ft)
24.52 3.9 242.2 33.06 5.3 242.6 ---------------6.52 3.7 239.0 8.86 5.0 239.4 -----44.60 3.5 226.3 61 .38 4.9 226.6 -------------------77.05 6.1 222.4 106.95 8.5 223.3 ---------------
0.39 4.8 228.6 0.52 5.3 228.6 --1.54 7.3 228.9 2.08 8.0 229.0 ---· ----. 36.44 7.0 232.7 49.12 8.0 233.5
7.21 6.7 231.6 9.72 5.5 232.1 - -
4.79 2.7 230.5 6.46 3.7 230.7
·---
26.68 5.4 244.3 35.97 7.3 245.0
1.00 5.8 226.8 1.34 6.3 226.8
9.41 10.2 224.2 12.68 11 .1 224.6 ------30.28 8.2 222.9 40.90 8.3 224.1
Culvert 1 -10 Year Storm
Culvert Calculator
Entered Data:
Shape ........ .
Number of Barrels
Solving for ................. .
Chart Number ................ .
Scale Number ................... .
Chart Description .............. :
Scale Descript ion .. .
Overtopping ........ .
Flowrate ........... .
Manning's n .................. .
Roadway Elevation ............ .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Los s .................. .
Tailwater ...................... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circular
2
Headwa t er
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE , PIPE PROJECTING FROM FILL
Off
2 4.5200 cfs
0. 0140
243 .7800 ft
240.1500 ft
239.7500 ft
24 .0000 in
40.0000 ft
0.5000
2 .0000 ft
242 .2406 ft Outlet Control
0.0100 ft/ft
3.9025 fps
Culvert 1 -100 Year Storm
Culvert Calculator
Entered Data :
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning' s n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diame ter ....................... .
Length ......................... .
Entrance Loss ... .
Tailwater .... .
Computed Results :
Headwater
Slope ....
Velo city .
Wil li a ms Creek Subd i v i sion -Phase 1
Cnl l r:-:ge Sta ti on , Te;-:.,1:·:
Circular
2
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE , PIPE PROJECTING FROM FILL
Off
33 .0600 cfs
0 .0140
243.7800 ft
240.1500 ft
239.7500 ft
24.0000 in
40.0000 ft
0.5000
2.0000 ft
242.6418 ft Outlet Control
0.0100 ft /ft
5.2617 fp s
Culvert 2A -10 Year Storm
Culv ert Calculator
Entered Data:
Shape ....
Number of Barrels .
Solving for . . . . . . . . ...... .
Chart Number .................. .
Scale Number ................... .
Chart Description .............. .
Scale Description ............. .
Overtopping .................. .
Flowrate ..................... .
Manning' s n .................. .
Roadway Elevation .............. .
Inlet Elev ation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ................... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT ; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
Off
6.5200 cfs
0. 0140
241.1600 ft
237.3800 ft
237.0600 ft
18.0000 in
32 .0000 ft
0.5000
1.5000 ft
239.0196 ft Outlet Control
0.0100 ft/ft
3.6896 fps
Culvert 2A -100 Year Storm
Culvert Calculator
Entered Data:
Shape .....
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning ' s n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...
Computed Results:
Headwater
Slope ...
Velocity .
Wi ·11 i a.ms Cree k Subd i v isi on
Col.:. qF· ~~l<'ll ir>11, Te:·'..'I~';
Pha se 1
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
Off
8.8600 cfs
0. 0140
241.1600 ft
237.3800 ft
237 .0600 ft
18.0000 in
32.0000 ft
0.5000
1.5000 ft
239 .4087 ft Outle t Control
0.0100 ft/ft
5.0137 fps
Culvert 2B -10 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solvi ng for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description ........... , .. .
Scale Description .............. .
Overt opping .................... .
Flowrate ....................... .
Manning ' s n .................... .
Roadway Elev ation .............. .
Inlet Elev ati on ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results :
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circular
1
Headwater
1
1
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
SQUARE EDGE ENTRANCE WITH HEADWALL
Off
44.6000 cfs
0 . 0140
228.3700 ft
222 .1000 ft
221. 9400 ft
48.0000 in
40.0000 ft
0.5000
4.0000 ft
226.2781 ft Outlet Control
0.0040 ft/ft
3 .5492 fps
Culvert 2B -100 Year Storm
Culvert Calculator
Entered Data :
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning's n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Veloci t y ....................... .
Williams Creek Subdj v isj on -Ph ase 1
Co l J ege '.:;t ;H i •.11 , Te;-:,•~;
Circular
1
Headwater
1
1
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
SQUARE EDGE ENTRANCE WITH HEADWALL
Off
61.3800 cfs
0. 0140
228.3700 ft
222 .1000 ft
221.9400 ft
48 .0000 in
40 .0000 ft
0.5000
4.0000 ft
226 .5804 ft Outlet Control
0 .0040 ft/ft
4.8845 fps
Culvert 3 -10 Year Storm
Culvert Calculator
Entered Da ta :
Shape .......................... .
Numbe r of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Numbe r ................... .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning's n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity : ...................... .
Circular
1
Headwater
1
1
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
SQUARE EDGE ENTRANCE WITH HEADWALL
Off
77.0500 cfs
0 .0140
224 .6900 ft
2i7.6000 ft
217.3900 ft
48.0000 in
42.0000 ft
0 .5000
4.0000 ft
222.4058 ft Outlet Control
0.0050 ft/ft
6 .1314 fps
Culvert 3 -100 Year Storm
Culvert Calculator
Entered Data :
Shape .......................... .
Number of Barrels .............. .
Solv ing for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning's n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diam.eter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
\·Ji 1 l i a ms Creek Subdi v i.sj o n -PhasE' ·1
I ! f'••c-:·1 .11 •:·n, Te;-:;;f:
Circular
1
Headwater
1
1
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
SQUARE EDGE ENTRANCE WITH HEADWALL
Off
106 .9500 cfs
0. 0140
224.6900 ft
217.6000 ft
217.3900 ft
48.0000 in
42.0000 ft
Q.5000
4.0000 ft
223.3472 ft Outlet Control
0.0050 ft/ft
8.5108 fps
Culvert 3A -10 Year Sto rm
Culvert Calculator
Entered Data:
Shape ....
Number of Barrels ...... .
Solving for ............ .
Chart Number ............ .
Scale Number ............ .
Chart Description ....... .
Scale Description ....... .
Ov ertopping ............. .
Flowrate .................... .
Manning's n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT ; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJ ECTING FROM FILL
Off
0.3900 cfs
0 .0140
230.6000 ft
228.3100 ft
227.0200 ft
18.0000 in
24.0000 ft
0 .5000
1.5000 ft
228 .5802 ft Inlet Control
0.0537 ft/ft
4.8466 fps
Culvert 3A -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number .............. .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Overtopping ............... .
Flowrate .................. .
Manning 's n ............... .
Roadway Elevation ......... .
Inlet Elevation ............ .
Outlet Elevation ........... .
Diam.eter . . . . . . . . . ....... .
Length ................... .
Entrance Loss ............ .
Tail water ............ .
Computed Results:
Headwa ter
Slope ....
Ve locity .
~il l iams Creek Subd ivisi on
('-:.:i I I ~.!CJr~ ·· 1_ ,-1 L i ('11, Tc'.·: ~:t ~~;
Phase 1
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT ; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
Off
0.52 00 cfs
0 . 0140
230.6000 ft
228.3100 ft
227.0200 ft
18.0000 in
24.0000 ft
0 .5000
1.5000 ft
22 8 .62 99 ft Inlet
0 .0537 ft /ft
5 .28 58 fps
Co ntrol
Culvert 3B -10 Year Storm
Cu lvert Cal culator
Entered Data:
Shape . . . . . . . . ............. .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description ..
Scale Description ..
Overtopping ....... .
Flowrate .......... .
Manning's n ....... .
Roadway Elevation ..
Inlet Elev ation ....
Outlet Elevation ............... .
Diameter ................ .
Length ....................... .
Entrance Loss ................ .
Tailwater .................... .
Computed Results :
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE , PIPE PROJECTING FROM FILL
Off
1.5400 cfs
0. 0140
230.6000 ft
228.3100 ft
227.0200 ft
18.0000 in
24.0000 ft
0.5000
1.5000 ft
228.9074 ft Inlet Control
0.0537 ft/ft
7.3099 fps
Culvert 3B -100 Year Storm
Culvert Calculator
Enter ed Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ......... .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning 's n .................. .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diam.eter ....................... .
Le ngth ......................... .
Entrance Loss .... .
Tailwater ....... .
Computed Results :
Headwater .
Slope .......... .
Velocity ......... .
1'/i1 ·1 icirns Ci-eek Subdi ,.1 i s i o n
r·ol l··q· SI i 1t i c:11, I "···>•~.;
Phase 1
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT ; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE , PIPE PROJECTING FROM FILL
Off
2.0800 cfs
0.0140
230 .6000 ft
22 8.3100 ft
227.0200 ft
18 .0000 in
24.0000 ft
0.5000
1.5000 ft
229.0209 ft Inlet Control
0.0537 Et/ft
7 .9861 fps
Culvert 4 -10 Year Storm
Culvert Calculator
Entered Data :
Shape ........... .
Number of Barrels
Solving for .................. .
Chart Number ................. .
Scale Number ................. .
Chart Description ............ .
Scale Description ............ .
Overtopping .................. .
Flowrate ..................... .
Manning's n .................. .
Roadway Elevation ............ .
Inlet Elevation .............. .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ..................... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circular
2
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
Off
36.4400 cfs
0. 0140
233.7000 ft
2:3 0.2200 ft
229 .6500 ft
24.0000 in
40.0000 ft
0.5000
1.5000 ft
232.6804 ft Outlet Control
0.0142 ft/ft
7.0309 fps
Culvert 4 -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning' s n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ........... .
Length ............. .
Entrance Loss ......... .
Tailwater .......... .
Computed Results:
Headwater ..
Slope ..... .
Ve l ocity .. .
Wi l liams Cr eek Subdi vi s i on PhasP 1
c~c) 1 I :::·SI€ ~-;1 cl t: i on, 'l'E·}:.:=ts
Circular
2
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
Off
49.1200 cfs
0 . 0140
233.7000 ft
230.2200 ft
229 .6500 ft
24 .0000 in
40.0000 ft
0.5000
1.5000 ft
233.5473 ft Outlet Control
0.0142 ft/ft
8.4239 fps
Culvert 5 -10 Year Storm
Culvert Ca l c u lator
Entered Data:
Shape ................... .
Number of Barrels ....... .
Solving for .............. .
Chart Number ............ .
Scale Number ........... .
Chart Description ...... .
Scale Description ...... .
Overtopping ............ .
Flowrate ............... .
Manning's n . . . . . . . . . . . . . ...... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation
Diameter ....................... .
Length ......................... .
Entrance Loss ......... .
Tailwater ............. .
Computed Results:
Headwater .................... .
Slope ........................ .
Velocity ..................... .
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
Off
7.2100 cfs
0 . 0140
233.7000 ft
230.0300 ft
229.4600 ft
18.0000 in
44.0000 ft
0 .5000
1.5000 ft
231.6077 ft Inlet Control
0.0130 ft/ft
6.6994 fps
Culvert 5 -100 Ye ar Storm
Culvert Calculator
Entered Data :
Shape .......................... .
Number of Barrels .............. .
Solving for ................. .
Chart Number ................ .
Scale Number ................ .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning' s n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter .................. .
Length ......................... .
Entrance Los s .................. .
Tailwater ....... .
Compu ted Results:
Headwater ...
Slope ...
Velocity ........ .
Wil l iams Cr eek Subd i v ision
Cu I I er_!,,. c:'t:,1 1 i c--1·. l"•:·;-:.-1 ~:;
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
Off
9.7200 cfs
0. 0140
233.7000 ft
230.0300 ft
229.4600 ft
18 .0000 in
44.0000 ft
0 .5000
1.5000 ft
232 .1001 ft Ou tlet Control
0 . 0130 ft/ft
5.5004 fps
Cu lver t 6 -10 Year Storm
Culve r t Cal culator
Entered Dat a:
Shape .......................... .
Number of Barrels .............. .
So l ving for .. .
Chart Number ...... .
Scal e Number ................... .
Chart Descr i p t ion .............. .
Sc ale Descriptio n .............. .
Overtopping .................... .
Fl owrate ....................... .
Manni ng's n .................... .
Roadway Elevation .............. .
Inlet Elev ation ................ .
Outlet Elevation .
Diameter ....................... .
Length ......................... .
Entrance Loss ........ .
Ta i lwater ............ .
Computed Results :
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Ci rcular
1
Headwater
1
3
CONCRETE PIPE CULVERT ; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECT ING FROM FILL
Of f
4 .79 0 0 cfs
0 . 0140
232 .3900 ft
229 .1300 ft
228.7700 ft
18 .0000 i n
36 .0000 ft
0.5000
1 .5000 f t
230.5277 ft Outlet Control
0.0100 ft/ft
2.7106 fps
Culvert 6 -100 Year Storm
Culve rt Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
.scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning ' s n .................... .
Roadway Elevation .............. .
I n l et Elevati on ................ .
Outlet Elevation ............... .
Di ameter ....................... .
Length ......................... .
Entr ance Loss .................. .
Tailwater .......... .
Computed Results:
Headwater .... .
Slo pe ......... .
Velocity ...... .
1,-J i.l l iams Creek Subdi.v jsi.c n
Col l •··<Jt' ~;t at::i c11, T e;-:i"\:•;
Pha s e 1
Cir cular
1
Headwater
1
3
CONCRETE PI PE CULVERT ; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PI PE PROJ ECTING FROM FILL
Off
6.4600 cfs
0 .0140
232 .3900 ft
229.1300 f t
228.7700 ft
18.0000 in
36 .0000 ft
0 .5000
1.5000 ft
230 .7387 ft Outle t Contro l
0 .0100 ft/ft
3 .6556 fps
Culv ert 7 -10 Year Storm
Culv ert Calculato r
Entered Data:
Shape ........... .
Number of Barrels
Solving for .......... .
Chart Number ......... .
Scale Number .................. .
Chart Description . . . . ...... .
Scale Description .............. .
Overtopping ................. .
Flowrate ............... .
Manning's n .......... .
Roadway Elevation ...... .
Inlet Elevation .......... .
Outlet Elevation .... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
Off
26.6800 cfs
0.0140
245.4300 ft
24.1. 2700 ft
240. 9100 ft
30.0000 in
36.0000 ft
0.5000
2.5000 ft
244.2744 ft Outlet Control
0.0100 ft/ft
5.4352 fps
Culvert 7 -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale pescription .............. .
Overtopping ............. .
Flowrate ................ .
Manning's n ............. .
Roadway Elevation ....... .
Inlet Elevation ....... .
Outlet Elevation .... .
Diameter ............ .
Length .............. .
Entrance Loss ..
Tailwater ...
Computed Results:
Headwater
Slope ...
Veloci t y ..... .
Wi l l iams Cr eek Subdi v isi on
(\.tl ·1 !:'."(!1 :·_;1 ::·t1 i r"•:l, TC·)-:~·1~;
PIF1se 1
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT ; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
Off
35.9700 cfs
0. 0140
245.4300 ft
241.2700 ft
240.9100 ft
30.0000 in
36.0000 ft
0.5000
2 .5000 ft
244 .981 2 ft Outle t Control
0 .0100 ft /ft
7 .3277 fp s
Culvert 8 -10 Year Storm
Culve r t Calculator
Entered Da t a :
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description
ENTRANCE
Scale Decsription .............. .
Flowrate ....................... .
Manning's n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Ci rcular
1
Headwater
1
1
CONCRETE PIPE CULVERT; NO BEVELED RING
SQUARE EDGE ENTRANCE WI TH HEADWALL
1 .0000 cfs
0 . 0140
228.8500 ft
226.2800 ft
224 .6000 ft
18.0000 in
42.0000 ft
0.0000
1 .5000 ft
226.7583 ft From Inlet
0.0400 ft/ft
5.7986 fps
Culvert 8 -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
ENTRANCE
Scale Decsription .............. .
Flowrate ....................... .
Manning' s n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outl~t Elevation ............... .
Diameter ....................... .
Length ....... · .................. .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results:
Headwa t er ...................... .
Sl ope .......................... .
Veloci t y ....................... .
\vi 11 i,1m s C r ee k Subdiv i s 1on ·· Phas e 1
c~:·: I I (•1.:~:. :·1 (··1 1 ; i".111, TE:·;·:~i~:;
Circular
1
Headwater
1
1
CONCRETE PIPE CULVERT; NO BEVELED RING
SQUARE EDGE ENTRANCE WITH HEADWALL
1.3400 cfs
0. 0140
228.8500 ft
226 .2800 ft
224 .6000 ft
18.0000 in
42.0000 ft
0.0000
1.5000 ft
226.8449 ft Fr om Inlet
0 .0400 ft/f t
6 .324 2 fps
Culvert 9 -10 Ye ar Storm
Culvert Cal cu l ator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solv ing for .................... .
Chart Number ................... .
Scale Number ................... .
Char t Descr ipti on .............. .
ENTRANCE
Scale Decsri ption .............. .
Flowrate ....................... .
Manning's n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outl et Elevation ............... .
Di ameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results :
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circu lar
1
Headwa t er
1
1
CONCRETE PIPE CULVERT ; NO BEVE LED RING
SQUARE EDGE ENTRANCE WITH HEADWALL
9 .4 100 cfs
0 .0140
225 .0500 ft
222 .610 0 ft
219 .5000 ft
24.0000 i n
90.0000 f t
0 .0000
2 .0000 f t
224.202 3 ft From Inlet
0.0346 ft/ft
10 .2366 fps
Culvert 9 -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solv ing for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
ENTRANCE
Scale Decsription .............. .
Flowrate ....................... .
Manning' s n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ~ .............. .
Diame ter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Compute d Results :
Headwater ...................... .
Slope .......................... .
Veloc i ty ....................... .
\-J.i] I iarns C 1~eek Subdivi s i o n
Co l l•·cy; S t «1I: i o n, Tezas
Phase 1
Circular
1
Headwa ter
1
1
CONCRETE PIPE CULVERT; NO BEVELED RI NG
SQUARE EDGE ENTRANCE WITH HEADWALL
12.6800 cfs
0. 0140
225 .0 500 ft
222 .6100 ft
2 19 .5000 ft
2 4 .00 00 in
90.0000 ft
0 .0000
2.0 0 0 0 f t
224 .5692 ft Fr om Inlet
0.034 6 ft /ft
11 .1126 fps
Culvert 10 -10 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Numbe r ................... .
Chart Description .............. .
ENTRANCE
Scale Decsription .............. .
Flowrate ....................... .
Manning' s n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results :
Headwater ................. _ .... .
Slope .......................... .
Velocity ....................... .
Circular
1
Headwater
1
1
CONCRETE PIPE CULVERT; NO BEVELED RING
SQUARE EDGE ENTRANCE WITH HEADWALL
30.2800 cfs
0. 0140
224.8900 ft
219.6400 ft
219. llOO ft
30.0000 in
59.0000 ft
0.0000
2.5000 ft
222 .8606 ft From Inlet
0.0090 ft/ft
8.2485 fps
Culvert 10 -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
ENTRANCE
Scale Decsription .............. .
Flowrate ....................... .
Manning 's n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
'ih J:l iarns C1·eek Subcli,1 i !::in11
Cu I I ecy; ~:I ;1 l. i c 1'. I,...·.·,;'.;
Phase l
Circular
1
Headwater
1
1
CONCRETE PIPE CULVERT; NO BEVELED RING
SQUARE EDGE ENTRANCE WITH HEADWALL
40.8800 cfs
0.0140
224.8900 ft
219.6400 ft
219.llOO ft
30.0000 in
59.0000 ft
0.0000
2.5000 ft
224.0641 ft From Inlet
0.0090 ft/ft
8.3280 fps
APPENDIXC
Drainage Channel Design Data & Calculations
.'~
Williams Creek Subdivision -Phase 1
Channel Summary
Channel Bottom Width Side Slopes Slope
#
(in) H:V (%)
1 48 2:1 3.40 -----· -·----------------·-•· ------
2-Segment 1 12 2:1 4.50 ------··--------------·-----2-Segment 2 12 2:1 2.50
25 year storm
Design Flow Depth v,. Design Flow
(cfs) (in) (fps) (cfs)
33.48 6.8 11.4 39.52 ----·-----------5.47 4.4 8.7 6.46 --------------·-5.47 5.1 7.0 6.46
The concrete channel lining is 15" in depth for Channel No. 1 and 12" in depth for Channel No . 2.
100 year storm
Depth V,oo
(in) (fps)
7.5 12.0
4.8 9.1
5.5 7.3
Channel 1 -25 Year Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
He i g h t ......................... .
Bottom width ................... .
Left s lope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Flow area ...................... .
Flow perime ter ................. .
Hy draulic radi us ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezo idal
Depth o f Flow
3 3 .4800 cfs
0.0340 ft /ft
0 .0140
1 5.0000 i n
48.0000 i n
0 .5000 ft /ft
0.5000 ft/ft
6.8330 in
11 .4416 fps
2.9262 ft2
78 .5583 in
5.3637 in
75 .3321 in
8.1250 ft2
115.0820 in
45.5536 %
Channel 1 -100 Year Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solv ing for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Wil Iiams Cree k Subd i v ision Phi1 se 1
::.'i:::· I ',_;(_J!:' :; : ~~1 1: ion, TE-:·:t·1 :·:
Trapezoidal
Depth of Flow
39.5200 cfs
0 .0340 ft/ft
0. 0140
15.0000 in
48.0000 i n
0.5000 ft/ft
0.5000 ft/ft
7.4992 in
12 .0458 fps
3.2808 ft 2
81 . 5'375 in
5 .7941 in
77.9968 in
8 .1250 ft2
115.0820 in
49.9947 %
Channel 2 -25 Year Storm
Channel Calculator
Giv en Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
5 .4700 cfs
0.0450 ft/ft
0 . 0140
12.0000 in
12.0000 in
0.5000 ft /ft
0.5000 ft/ft
4.3722 in
8.6846 fps
0.6299 ft2
31.5531 in
2.8745 in
29.4888 in
3.0000 ft2
65.6656 in
36.4350 %
Channel 2 -25 Year Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results :
Depth .......................... .
Velocity ....................... .
Flow_ area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perime ter ...................... .
Percent f ul l ................... .
\·l i l .liams Cceek Subdiv j sion --Phase l
c ·:·' I I ,,. < 1' ;·; t cl t i '.: 11 • 1 · f.:: :·: a ~:
Trapezoidal
Depth of Flow
5.4700 cfs
0.0250 ft/ft
0. 0140
12.0000 in
12.0000 in
0.5000 ft/ft
0.5000 ft/ft
5.0737 in
7.0097 fps
0.7803 ft2
34.6903 in
3.2392 in
32.2949 in
3 .0000 ft2
65 .6656 i n
42.2810 %
Channel 2 -100 Year Storm
Channel Calculator
Given I nput Data :
Shape .......................... .
Solv ing for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
6.4600 cfs
0.0450 ft /ft
0. 0140
12 .0000 i n
12.0000 in
0.5000 ft/ft
0.5000 ft/ft
4 .7581 in
9.0865 fps
0 .7109 ft2
33.2789 in
3.0763 in
31. 0324 in
3.0000 ft2
65.6656 in
39.6508 %
Channel 2 -100 Year Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bot torn width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results :
Depth .......................... .
Velocity ....................... .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Wi 1] i arn s Creek Subd i v is i on
Col I !""·-1· .-· l .-1 Li O il ' T e;-:«1 ~;
Trapezoidal
Depth of Flow
6.4600 cfs
0.0250 ft/ft
0 . 0140
12.0000 in
12 .0000 in
0.5000 ft/ft
0.5000 ft/ft
5.5126 in
7.3289 fps
0. 8814 ft2
36.6530 in
3.4630 in
34.0503 in
3.0000 ft2
65 .6656 in
45.9381 %
APPENDIXD
Drainage Ditch Data & Lining Material
Williams Creek Drive
Left Ditch
From To Slope Station Station
0+85.11 1 +73.20 3.05%
1+73.20 3+21 .90 -3 .56%
3+21 .90 3+65.00 1.85%
3+65.00 7+50.00 2.15%
7+50.00 11+63.78 -0.80% -·-11+63.78 12+53.78 -
12+53.78 14+00.00 1.90% -14+00.00 14+50.00 0.72% -----14+50.00 15+44.00 -2.30% -------15+44.00 15+80.00 -3.50% -----·· 15+80.00 16+50.00 -1.33% -----16+50.00 17+19.42 -2.90% ----17+19.42 17+91 .95 -
17+91.95 18+82.40 --· -18+82.40 19+50.00 3.99% -------19+50.00 21 +25.38 2.14% ----------21 +25.38 21 +85.00 -----
21 +92.92 24+00.00 3.08% ------------
24+00.00 24+90.03 4.87%
Joseph Creek Court
Left Ditch
From To Slope Station Station
0+25.00 1+00.00 1.07%
1 +00.00 2+50.00 0.51% --2+50.00 3+70.00 -2.13% ---3+70.00 6+00.00 1.37% ---6+00.00 6+70.11 1.74%
Moses Creek Court
Left Ditch
From To Slope Station Station
0+27.50 1+50.00 5.67%
1+55.oo 4+50.00 3.36%
4+50.00 5+00.00 1.98%
5+00.00 5+75.00 -0.40%
5+75.00 7+60.00 -1 .33%
7+60.00 9+4 1.45 -0.81 %
9+41.45 9+53.45 -
9+53.45 10+87.90 0.40%
Drainage
Area#
2
4
6
6
8
-
11 ---11 -13
15
15 --· -15 ---
---27 ---27
-
27 --·-
27
Drainage
Area#
35
35 ---34
32,33
32
Drainage
Area#
19 19 --19
24
24
24
-
23
0 10 V10 0 100 V100 Ditch Lining Material
0.39 1.75 0.53 1.88 Grass-Seeded
0.39 1.85 0.53 2.00 Grass-Seeded
1.12 1.89 1.51 2.03 Grass-Seeded
1.12 2.00 1.51 2.15 Grass-Seeded
0.60 1.18 0.81 1.27 Grass-Seeded ---- ---Conc-Rip!ap -0.51 1.57 0.69 1.69 Grass-Seeded -·--0.51 1.09 0.69 1.17 Grass-Seeded -----0.27 1.43 0.37 1 .5_~ Grass-Seeded
0.76 2.17 1.02 2.34 Grass-Seeded --------0.76 1.51 1.02 1.63 Grass-Seeded --0.76 2.03 1.02 2.18 Grass-Seeded --. --------- -Con~Riprap
- ---RCP -----5.44 3.74 7.33 4.03 Grass-Seeded -----5.44 2.96 7.33 3.19 Grass-Seeded ----------·--·------ ---RCP/Conc-Rie_t:__aE_ -------
5.44 3.39 7.33 3.65 Grass-Seeded ----·----
5.44 4.03 7.33 4.34 Grass-Seeded
010 V10 0100 V100 Ditch Lining Material
0.69 1.36 0.93 1.47 Grass-Seeded ----0.69 1.03 0.93 1.11 Grass-Seeded ,_ -----1.73 -Grass -Seede-d 0.47 1.60 0.64 -----------1.73 1.88 2.33 2.02 Grass-Seeded -----0.91 1.75 1.22 1.88 Grass-Seeded
010 V10 0100 V100 Ditch Lining Material
6.90 4.52 9.31 4.88 Grass-Sodded
6.90 3.72 9:3f 4]1 Grass-Seeded
6.90 3.05 9.31 3.29 Grass-Seeded
13.52 1.98 18.24 2.13 Grass-Seeded
13.52 3.11 18.24 3.35 Grass-Seeded
13.52 2.58 18.24 2.78 Grass-Seeded
- ---Conc-Riprap
5.68 1.59 7.69 1.72 Grass-Seeded
Williams Creek Dri ve
Right Ditch
From To Slope Station Station
0+85.11 1 +73.20 2.26%
1 +73.20 3+08.76 -3 .56%
3+08.76 3+65.00 0.56%
3+65.00 7+50.00 2.15%
7+50.00 10+50.00 -0.80% -10+50.00 11 +63.78 -2.92%
11+63.78 12+38.97 -
12+38.97 12+80.28 -
12+80.28 13+32.34 4.00%
13+32.34 14+00.00 2.00% --14+00.00 14+50.00 0.72%
14+50.00 15+44.00 -2.30%
15+44.00 15+80.00 --15+80.00 16+50.00 -1.33% --16+50.00 17+34.01 -3.30% ---17+34.01 18+04.84 --18+04.84 18+59.84 -----
18+59.84 19+50.00 2.54% --·-------
19+50.00 21 +25.38 2.23% ----21+25.38 21+86.68 ----
21 +92.92 24+00.00 3.08% ---24+00.00 24+90.03 4.87%
Joseph Cre ek Court
Right Ditch
From To
Station Station
0+25.00 1 +00.00 ------·----1 +00.00 2+50.00 --- --2+50.00 3+70.00
3+70.00 6+70.11
Moses Creek Court
Right Ditch
From To
Station Station
0+27.50 1 +50.00
1 +50.00 4+50.00
4+50.00 5+00.00
5+00.00 5+75.00
5+75.00 7+60.00
7+60.00 9+42.95
9+42.95 9+51 .95
9+51.95 10+87.90
Slope
0.40%
0.51% ----1 .62%
0.50%
Slope
6.07%
3.36%
1.98%
-0.40%
-1.33%
-1.05%
-
0.40%
Drainage
Area #
1
3
3
5
7
9
-
-
12
12
12
14
-
16
16
-
-
17,18,19,2
5,26,28
17,18,19,2
5,26,28
-
25,26,28
25,26
Drainage
Area#
29
29
30
31
Drainage
Area#
18
18
18
20
20
20
-
22
0 10 V10 0100 V100 Ditch Lining Material
8.91 3.41 12.21 3.70 Grass-Seeded
6.91 3.80 9.39 4.10 Grass-Seeded
6.91 1.90 9.39 2.05 Grass-Seeded
8.43 3.33 11 .45 3.57 Grass-Seeded -4.57 1.96 6.22 2.12 Grass-Seeded
7.15 3.56 9.70 3.84 Grass-Seeded
- ---Conc-Riprap
- -- -RCP
1.00 2.45 1.34 2.64 Grass-Seeded
1.00 1.89 1.34 2.03 Grass-Seeded ---·-1.00 1.29 1.34 1.38 Grass-Seeded --1.51 2.21 2.04 2.38 Grass-Seeded
- - --RCP
1.02 1.63 1.37 1.75 Grass-Seeded --1.02 2.29 1.37 2.47 Grass-Seeded -------Conc-Riprap --
--- -R9_P!CQ._nc-Rjprap --
30.28 4.85 40.88 5.22 Grass-Sodded --
30.28 4.62 40.88 4.98 Grass-Sodded
--~· ---· ---- ---RCPIG_onc-R_iprap
19.58 4.67 26.45 5.04 Grass-Sodded ---·-Grass-sodded -14.80 5.17 19.99 5.58
010 V10 0100 V100 Ditch Lining Material
3.28 1.39 4.42 1.50 Grass-Seeded
3.28 1.52 4.42 1.64 Grass:seeded ·----1.04 1.76 1.40 1.90 Grass-Seeded ·-
1.60 1.26 2.15 1.36 Grass-Seeded
010 V10 0100 V100 Ditch Lining Material
1.90 3.36 2.56 3.62 Grass-Seeded
1.90 2.69 2.56 2.90 Grass-Seeded
1.90 2.21 2.56 2.38 Grass-Seeded
1.60 1.16 2.15 1.25 Grass-Seeded
1.60 1.82 2.15 1.96 Grass-Seeded
1.60 1.67 2.15 1.80 Grass-Seeded
--- -Cone Channel-Lining
1.25 1.09 1.69 1.18 Gra ss-Seeded
EXHIBIT A
Post-Development Drainage Area Map
-L~
EXHIBITB
Drainage Area Map -Ditch Design