HomeMy WebLinkAboutFolderI -·--··-··~~-tJ70 I ~ATE SUBMITTED:j:Z.v I/JI
Lf.·/Of'm
l'Lto 1 l-hnr~ fY\±cX'eU P~S r!Uf-
DEVELOPMENT PERMIT
MINIMUM SUBMITTAL REQUIREMENTS
-\ J. $100.00 Development Permit Application Fee. ~ Drainage and erosion control plan, with supporting Drainage Report two (2) copies each.
Notice of Intent (N.0.1.) if disturbed area is greater than 5 acres.
PROPER IT OWNER'S INFORMATION:
Name l()(X) U .. AVAN ..--.-=ifc
Street Address ~ l JJ( n.at:te:J City __._Huw....__.._ ....... ~tb__."'-'-n__.__ ____ _
State j" f Zip Code -=f 1a:_j ~ E-Mail Address -----------
Phone Number LjOCJ -rff --'fjqqFaxNumber _____________ _
_..,.., ....... CIDTECT OR ENGINEER'S INFORMATION:
----7'-'it-tttv~Q~#-~~-~~.;-~h-f+*~HK>v~'-----------~-~~~~~-Name CJ"~ UL A ~~-aQ {,..-,
Street Address ---------------City -------------
State Zip Code E-Mail Address ------------
Application is hereby made for the following development specific site/waterway alterations: -noru --
, design engineer/owner, hereby acknowledge or affirm that:
The information and conclusions contained in the above plans and supporting documents comply with the current
requ· ements of the City of College Station, Texas City Code, Chapter 13 and its associated Drainage Policy and Design
s ds.
As ndition of ap roval of this permit application, I agree to construct the improvements proposed in this application
accJillfldm. g to th e ts and the requirements of Chapter 13 of the College Station City Code.
Contractor
1 of2
CERTIFICATION~o~~gnatedfloodbazardareas.)
A. I, certify that any nonresidential structure on or proposed to be on this site as part
lication is designated to prevent damage to the structure or its contents as a result of flooding from the 100 year
Engineer Date
B. I. certify that the finished floor elevation of the lowest floor, including any
basement, of any residential st ture, proposed as part of this application is at or above the base flood elevation established
in the latest Federal Insurance A · · stration Flood Hazard Study and maps, as amended.
~·klL Engineer · Date
C. I, certify t the alterations or development covered by this permit shall not
diminish the flood-carrying capacjty of the waterway · oining or crossing this pennitted site and that such alterations or
development are consistent with requirements of the City f College Station City Code, Chapter 13 concerning
encroachments of floodways and of floodway fringes.
Engineer Date
I, do certify that the proposed rations do not raise the level of the 100 year .
~10od above elevation established in the latest Federal Insurance Administration lood Haz.ard Study.
Engineer Date
Conditions or comments as part of approval: ~~~~~~~~~~~~~~~~~~~~~~~~~
In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to insure
that debris from construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage facilities.
All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer
for the above named project. All of the applicable codes and ordinances of the City of College Station shall apply.
DEVELOPMENT PERMIT
DPERMIT.IX>C 3!24199
2of2
04/01/2002 19:04 FAX 9792603564 MlTCHELL and MUl<GAN
jl1, ITC HELL & jl1, ORGAN, LL P
ENGINEERS & CONSTRUCTORS
511 UNIVERSITY DRIVE, SUITE 204
TO:
Spencer T110mpson
COMP.-\NY:
City of CS
COLLEGE STATION, TEXAS 77840
OFFICE (979) 260-6963
FAX (979) 260-3564
FACSIMILE T RANSMITTAL SHEET
FROM:
Veronica Morgan
DATE:
4-1-02
FAX NUMllER: TOT/IL NO. OF PAGES TNCLUDJNG COVER:
77 64-3496
l'J-!O~E NUMBER:
RF:
Sullivan Increase in Oversize
Participation
0 URGENT 0 FOR REVIEW
NOTES/COM~!E TS:
Spencer,
3
Sf:.NDER'S RE FERENCE NUMBER:
YOUR REFERENCE NL:f\4BER:
0 PLEASE CO MME T 0 PLEAS E REPLY 0 PLE.-\SE RECY CLE
Th.is is the increase in the oversize participation request for the Canyon Creek Townhome project. I have
some problems wi th portions of this logic that I believe we need to discuss. Other items may be
"approvable". Please call me so that we can set up a time to meet to discuss.
Thanks
Veronica Morgan
lgJUUl /UUJ
04101/2002 19 :04 FAX 97 9260356 4 MITCHELL ana MUKGAN
Mar. 4. :002 ~:J OPM OLL IDAY BUILDERS 409 762 -1010
fj Holliday Builders, Xnc.
Todd Sullivan
Canyon Creek Townhomes
1287 Harvey Mitchell Parkway
College Station Texas 77840
Todd:
If!:) UU<:/ UUJ
No.27 17 J 0
I ' ~
OENERALCONT~ACTORS
February 20, 2002
Per your request on the additional costs incurred on your site work utilities as a result of the
sanitary sewer being run to the property line on Nonhwest comer. This line would not have been
needed, as we would have tapped the s1~wer directly out of the building to the manhole. There
was an additional 185 LF ofline run from the manhole to the property line. Your costs on this
item per foot are $58 .64 per foot installed including labor and material. This is a total on that
item of 185X 58.63 -$10,846.55. The 11dditional costs incurred by having the sewer buried
deeper are $2,978.90.
The water line was also run to the property line where it could have been stopped at the last unit
needing water. This is an additional 40 LF of pipe that was not needed. Your costs on this item
per foot are 49. 96 per foot installed labor and material. This comes to a total of 40X49 .96 = $
1.998.40.
The sewer taps on the buildings could have been one tap per building in lieu of every which
would have been 15 taps at a cost of $350 .00 per tap instead of the 71 taps that you are now
required to have. This would be an additional cost of 56 taps@ 350 .00 = S 19,600.00. The
present drawings show only one sewer tap every two units. In consideration of this, it comes .to
38 taps as a result of the odd end units. This would be 38 units worth of taps at$ 350 each in lieu
of71. This would be an additional cost of 33 @$ 350.00 = $ 111500.00.
1027 Tremont P.O. Box 1567 Ga.1'-eston, Texas 77553 Tel: 409 :62-5275 Fax: 4.09 762·1010
04/01/2002 19 :05 FAX 9792603564 IITCHELL and MOKGA lf!:J UUJ/ UUJ
r
. Ma r . 4. :o o: 2:10PM 0 IDA Y BUI DER S 409 76>101 0 No.2717 P. 3
0 Holliday Builders, Inc. GENERAL CONTRACTORS
In sununary, if the sanitary sewer had not been run to the property line your costs would have
been $10,846.55 less. If the water line were not run to the property line your cost would have
been Sl ,998,40 less. If we could have run the sewer as a main under the buildings and only had
one tap per building in lieu of a tap for 1~very unit, your tap fee cost would have been $ 19,600.00 .
less. Or, if we could of at least only had to tap one time for two units your tap fee costs would
have $11,500.00 less.
The totals for the work with only tapping sewer 15 times are as follows
1. Shorter sanitary lines S 10,846 .55
2. Shorter water line $ 1,998.40
3. AdditioniU depth $ 2,978.90
4 . Fifteen sewer taps in lieu of 71 $ 19,600.00
5. Total $ 35,423.85
· The totals for the work with only tapping sewer 38 times are as follows
. l. Shorter sanitary lines S 10,846.55
2. Shorter water line $ 1,998.40
3. Additional depth on sewer $ 2,978,90
4. Thirty-eight taps in lieu of71 . $11,500.00
Total $27,323 .85
Bruce B1Jrkhardt
Project Manager
1027 Tremont P.O. Box 1567 Galvcsw n , Texas 77553 Tel: 409 762-52'75 Fax: 409 762-1010
~b LETTER OF COMPLETION
·~
3ewer
.\Tater
L,\ . CITY ENGINEER
CITY OF COLLEGE STATION
COLLEGE STATION, TEXAS
Dear Sir:
DATE: 04-01-02
RE: COMPLETION OF Canyon Creek
Town homes
The purpose of our letter is to request that the following listed
improvements be approved and accepted as being constructed under city
inspection and completed according to plans and specifications as
approved and required by the City of College Station, Texas. This
approval and acceptance by the City is requested in order that we may
finalize any sub-contracts and to affinn their warranty on the work. This
approval and acceptance by the City of the improvements listed below
does hereby void the letter of guarantee for the listed improvements on
the above referenced project.
The one year warranty is hereby affirmed and agreed to by
Elliott Construction, Inc. and by their sub-contractors as
indicated by signatures below.
WORK COMPLETED DATE
Piers. 6 11 &8 11 PVC. Manholes 04.-0.1.-02
8 11 C900. Fire Hydrant 04.-.0L-02
Storm Sewer 12" PVC, Junction/Inlet Boxestrw~) 04-0-1-02
Owner: G~~f)., L rut ~rJ n~rJ, L /IJ
Address: ftJ. [J,,Jc E-;l..
{ j //'-ft. _ff .. -l.'or., ;{:. 7 /f C/t/
Signature~;i'J'))~
Contractor: Elliott Construction, Inc
Address: P.O. Box 510
Utility Representative (s)
DEVELOPMENT PERMIT
PERMIT NO. 02-(01-070) ~-w
COLllGl STATION
Project: CANYON CREEK TOWNHOMES
FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA
RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE
SITE LEGAL DESCRIPTION:
CANYON CREEK TOWNHOMES
DATE OF ISSUE: 01/24/02
OWNER:
Todd Sullivan
710 Windell
Houston, TX 77219
TYPE OF DEVELOPMENT:
SPECIAL CONDITIONS:
SITE ADDRESS:
1267 HARVEY MITCHELL PKWY
DRAINAGE BASIN:
White Creek
VALID FOR 12 MONTHS
CONTRACTOR:
Clearing Grading Permit
All construction must be in compliance with the approved construction plans
All trees must be barricaded, as shown on plans, prior to any construction. Any trees not barricaded will not
count towards landscaping points. Barricades must be 1' per caliper inch of the tree diameter.
This permit allows construction of utilities as per approved plans. The Site Plan has NOT been approved. The
permitee proceeds at his or her own risk if the constructed items do not comply with the Approved Site Plan.
The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate
construction site in accordance with the approved erosion control plan as well as the City of College Station
Drainage Pol icy and Design Criteria. If it is determined the prescribed erosion control measures are ineffective
to retain all sediment onsite, it is the contractors responsibility to implement measures that will meet City, State
and Federal requirements. The Owner and/or Contractor shall assure that all disturbed areas are sodden and
establishment of vegetation occurs prior to removal of any silt fencing or hay bales used for temporary erosion
control. The Owner and/or Contractor shall also insure that any disturbed vegetation be returned to its original
condition, placement and state. The Owner and/or Contractor shall be responsible for any damage to
adjacent properties, city streets or infrastructure due to heavy machinery and/or equipment as well as erosion,
siltation or sedimentation resulting from the permitted work.
Any trees required to be protected by ordinance or as part of the landscape plan must be completely fenced
before any operations of this permit can begin.
In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be
taken to insure that debris from construction, erosion, and sedimentation shall not be deposited in city streets,
or existing drainage facilities.
I hereby grant this permit for development of an area outside the special flood hazard area. All development
shall be in accordance with the plans and specifications submitted to and approved by the City Engineer in the
development permit application for the above named project and all of the codes and ordinances of the City of
College Station that apply.
Date
Instructions -EPA Form 351<>-9 Form Approved. OMB No. 204<>-0188 &EPA Notice Of Intent (NOi) for Storm Water Discharges Associated with
Construction Activity to be Covered Under a NPDES Permit
Who Must Fiie a· Notice of Intent Form
Under the provisions oflhe Clean Water NJ., as amended, (33 U.S.C. 1251
etseq.; the Act), except as provided by Part l.B.3 the permit, Federal law
prohibits discharges of pollutants In storm water from construction activities
without a National Pollutant Discharge Elmlnation System Penntt. Operator(s)
of construction sites where 5 or more acres are disturbed, smaller sites that
are part of a larger common plan of development or sale where there Is a
cumulative disturbance of at least 5 acres, or any site designated by lhe
Director, must submit an NOi to obtain coverage under an NPDES Storm
Water Construcllon General Permit. If you have questions about whether
you need a permit under the N PDES Storm Water program, or if you need
inf~atlon as to whether a particular program is administered by EPA or
a Stille aaency.· wrlldto ctr telephone the Notice of Intent Prooessing Center at {703) 931!3230: . . J . . .
Where to Fiie NOi Form
NOls mu8t be sent to the following address:
Storm Water Nbb of lnl~t (A203) :J. 'T.
USEPA . I
401 M. Street, SW
Washington, D.C. 20460
. Do not send Storm Water Pollution Prevention Plans (SWPPP~) tC? Jl}e .-
above address. For overnight/express delivery of NOls, please lnchtd8 ~
room·number 2104 Northeast Mall and phone n,umber (202) 260-9541° ln
the address. " · · ~ ' · • ' I '\ i J ' ..-• -. A..,. \ ~1 •
When to FUe ... :·, •
This torm must be filed at~ 4s hours before construction begins.
• ~ c .. ... Completing the Form .· . . ,
OBTAIN ANO READ A COPY Of THE APPROPRIATE EPA SlORM W.«JER
CONSTRUCTION GENERAL PERMIT FOR YOUR AREA. To complete
this torm, type or print, using uppercase letters, in the appropriate areas
only. Please place each character between the marks (abbreviate if
necessary to stay within the number of charaaers aHowed for each item).
Use one space for breaks between worda, but not for pul'ICIUallon marks
unless they are needed to clarify your response. If you have any questions
on this form, call the Notice of Intent Processing Center at (703) 931-3230.
Section I. Fac:lllty OwnerlOperator (Appllcant) lnfonNrtlon
Provide the legal name, malling address, and telephone number of the
person, firm, public organization, or any other entity that meet either of the
following two criteria: (1) they have operational control over construclion
plans and specifications, includng the ability to make modifications to those
plans and specifications; or (2) they have the ~Y operational control
of tho,se activities at tie prqect rieoessary to ensure compliance with SWPPP
requirements or other permit conditions. Each person that meets either of
these criteria must fie this torm. Do not use a oolloqulal name. Correspon-
dence for the permit will be sent to this address.
Enter the approprlale letter to indicate the legal status of the owner/operator
of the project: F = Federal; S = State; M = Public (other than federal or
state); P = Private.
Section n. ProjectlSlte Information
Enter the official or legal name and complete street address, including city,
county, state, zip code, and phone number of the project or site. If it lacks
a street address; indicate with a general statement the location of the site
(e.g., Intersection of State Highways 61 and 34). COmplete site infonnatlon
must be provided for permit coverage to be granted.
The applicant must also provide the latitude and longitude of the facility in
degrees, minutes, and seconds to the nearest 16 seconds. The latitude
and longitude of your facility can be located on USGS quadrangle maps.
Quadrangle maps can be obtained by calling 1-800 USA MAPS. Longitude
and latitude may also be ob1ained at the Census Bureau Internet site:
http://www.census.gov/ogl-bin/gazetteer.
latitude and lotlgitude for a facility in decimal form must be converted to
degrees, minutes and seconds for proper entry on the NOi form. To convert
decimal latitude or longitude to degrees, minutes, and seconds, follow the
steps in the following example.
Convert decimal latitude 45.1234567 to degrees, minutes, and seconds.
1) The numbers to the left of the decimal point are degrees.
2) To obtain mlnU1e8, multiply the first four numbers to the right of the
decimal point by 0.006. 1234 x .. 006 = 7.404.
3) The numbers to the left of the decimal point in the result obtained in
step 2 are the minutes: 7'.
4) To obtain seconds, multiply the remaining three numbers to the right of
the decimal from the result in step 2 by 0.06: 404 x 0.06 = 24.24. Since
the numbers to the right of the decimal point are not used, the result is
~~ -
5) The conversion for 45.1234 = 45° 7' 24".
Indicate whether the project is on Indian Country Lands. . .
Indicate if the Storm WaterPoll~~ P~entlon Plan (sWPPP) has been
developed. Refer to Pait IV o( the ~rill permit for inbrinatiop on SWPPPs.
To be eligible tor coverage, a SWPPP rmH\1 h.~ been prepared.
Optional: Provide the address aoo'i>h6ne nlittiber where 'the SWPPP can
be viewed if different from addresses prevjo~ly gi"' q~ appropriate
box. ..J '.,1.,
Enter the name of the closest water body which receives the project's
construction storm water discharge.
. 'E"'8f !he ~afed construction start andJX>m.~ dates using four digits
tprtflA~(i.e. 05f27l1~8}~ , \ , .' , ,
Enter the flStimated artta to be disturl>Qd: including but not limited to:
grubbl!l9. e\tavattpn. _gra°111Jlg, an(! utlHtif"; pnc! infrastructure lnstaffation.
Indicate to the nearesi acre; if less. than 1 acre. enter ·1.-Note: 1 acre =
43,560 sq. ft .•• t • \ '• i ... . ; • ,. ~ • J • ...
Indicate y<>l,ll' be8l esumate of the likelihood of sto~water disCharges from
tl\f! P.it>Ject.,,..J:PA cecognizes that actual disoharg__e!I may dlller from this
eStlmate due to uribreseen or chance circumstances.
Indicate if there are any listed endangered or threatened species, or
designated critical habHat In the project atea.
Indicate which Part of the permit that the applicant is eligible with regard
to protection of endangered or ftreatenecl species, or designated critical
habitat.
Section Ill. Certtftc:etlon
Federal Statutes provide for severe penalties for submitting false information
on this application form. Federal regulations require this application to be
signEid,a~ foRows: 1.. ;.. , · • ,. . •
For a b0rporat1Jn: by a' resp0nsiblJ d,rporate officer, which means: =esiElent, secretary, .treasurer, or vice president Gf the torporation in me Qf a P,rlncipal business function, or ariy>other person who performs
r policy or decision· making functions, or (ii) the manager of one or
more manufacturing, production, or operating facilities employing more than
250 persons or having gross annual sates or expenditures exceeding $25
million (in second-quarter 1980 dollars), if authority to sign documents has beO\i assigned or delegated to the manager in accordance with corporate
procedures;
For a partnership or sole proprietorship: by a general partner of the proprietor,
or
For a munidpaltty, state, federal, or other public facility: by either a principal
executive or ranking elected official. An unsigned or undated NOi form will
not be granted permit coverage.
Paperwork Reduction Act Notice
Public reporting burden for this appUcation Is estimated to average 3.7
hours. This estimate includes time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of Information. An agency may not
conduct or sponsor, and a person Is not required to respond to, a collection
or information unless it displays a currently valid OMB control number.
Send comments regarding the burden estimate, any other aspect of the
collection of information, or suggestions for Improving this form, including
any suggestions which may increase or reduce this burden to: Director,
OPPE RegUatory lnfoimation Division (2137), U.S. Environmental Protection
Agency, 401 M Street, SW, Washington, D.C. 20460. Include the OMB
control number on any correspondence. Do not send the completed form
to this address.
THIS FORM REPLACES PREVIOUS FORM 351Q-6 (8-98)
See Reverse for Instructions
Form Approved. OMB No. 2040-0188
NPDES
FORM &EPA United States Environmental Protection Agency
Washington, DC 20460
Notice of Intent (NOi) for Storm Water Discharges Associated with
CONSTRUCTION ACTIVITY Under a NPDES General Permit
Submission of this Notice of Intent constitutes notice that the party identified in Section I of this form intends to be authorized by a NPDES permit issued
for s1orm water discharges associated with construction activity in the State/Indian Country Land identified in Section 11 of this form. Submission of this Notice
of Intent also constitutes notice that the party identified in Section I of this form meets the eligibility requirements in Part l.B~ of the general permit (including
those related to protection of endangered species determined through the procedures in Addendum A of the general permit), understands that continued
authorization to discharge is contingent on maintaining permit eligibility, and that implementation of the Storm Water Pollution Prevention Plan required under
Part IV of the general permit win begin at the time the permittee commences work on the construction project identified in Secion II below. IN ORDER TO
OBTAIN AUTHORIZATION, ALL INFORMATION REQUESTED MUST BE INCLUDED ON THIS FORM. SEE INSTRUCTIONS ON BACK OF FORM.
L Owner/O..J!$Eftor (A~lcant) Information
Name: 1l I> di_ iS1U.if lit. I ~£lV1 I i i I I i I I I i i I i i i I Phone: 1L/i 0~, 1;~ I I ~1i~i
~':1~~~t:g~~t:I: Status of ~
: : : : : : : : : : :
I i I I I I I i I I Owner/Operator:
State: jJi ~I ZipCode: ,TI~ 1,91-i I I I I
U. Project/Site :7iatlon t Ki ~ h ~~~~t~~~~~~ted on Ing, :::~~Y.;~~~:~~:att'.fii!:d~~~: :1:ii:v~:,,,, : .. o No
City ~~ :~: z~:t.1 61 b 4i }i i I /ll'Ji I I I I I I I [ Slat! iLXi Zip Code [f 1 'ti~ i.fDi-1 I I I I
Latitude:--·--·--· Longitude: I lqi(p,~Qdll County: ~rra.i:oosi i I I I I I i I I i i i I
Has the Storm Water PoHution Prevention Plan (SWPPP) been prepared? Yes ra1 No 0
Optional: Address of location of
SWPPP for viewing
SWPPP
~ddress in Section I above 0 Address in Section II above 0 Other address (if known) below:
Phone:
Address: I I I I i I I I I I I I I I I I I i I I I I i I I i i i I i I I I I I I I I I I I I I I
City; I I i i I I I I I I I i I I I I i I I I i I I State: l.J_J Zip Code: I I I I I 1-i I I I I
Name of Receiving Water: KA) h l If~ i6 t f 1 li (j ~ i i I I I i I I I I I I
" i / 1 Q !t ~ q vi I I i/i'O i 1dbOi.71
Month Day \'liar Month Day 'mar
Estimated Construction Start Date Estimated Completion Df te
Estimate of area to be disturbed (to nearest acre): I i i I I IOI
Estimate of Likelihood of Discharge (choose only one):
1. 0 Unlikely 3. d Once per week. 5. 0 Continual
2. 0 Once per month 4. 0 Once per day
AL Certification
Based on instruction provided in Addendum A of the permit, are
there any listed endangered or threatened species, or designated
critical habitat in the project area?
Yes 0 No&£
I have satisfied permit eligibility with regard to protection of
endangered species through the indicated section of Part l.B.3.e.(2}
of the permit (check one or more boxes):
(a) 0 (b) 0 <c> D (d) ui
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system
designed to assure that qualified personnel property gather and evaluate the information submitted. Based on my inquiry of the person or persons who
manage this system, or those persons directly responsible for gathering the information, the information submitted is, to the bes1 of my knowledge and
belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and
imprisonment for knowing violations.
Prim Name,l;o ~·~==~~~~~~~i7i;' 11!1 ~In I I I I I I I I I I I I I I I
Signature: __?~ _ . l-.___
EPA Form 3510-9 replaced 351Q-6 (8-98)
~-~ DEVELOPMENT PERMIT
PERMIT NO. 01-70
Project: Canyon Creek Townhomes
COlllGl STATION FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA
RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE
SITE LEGAL DESCRIPTION:
Gorzycki Property
DATE OF ISSUE: 11/1/01
OWNER:
Todd Sullivan
710 Windell
Houston, TX 77219
TYPE OF DEVELOPMENT:
SPECIAL CONDITIONS:
SITE ADDRESS:
1267 Harvey Mitchell Pkwy
DRAINAGE BASIN:
White Creek
VALID FOR 6 MONTHS
CONTRACTOR:
Clearing Grading Permit
All construction must be in compliance with the approved construction plans
All trees must be barricaded, as shown on plans, prior to any construction. Any trees not barricaded will not
count towards landscaping points. Barricades must be 1' per caliper inch of the tree diameter.
CLEARING AND GRADING ONLY
The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate
construction site in accordance with the approved erosion control plan as well as the City of College Station
Drainage Policy and Design Criteria. If it is determined the prescribed erosion control measures are ineffective
to retain all sediment onsite, it is the contractors responsibility to implement measures that will meet City, State
and Federal requirements. The Owner and/or Contractor shall assure that all disturbed areas are sodden and
establishment of vegetation occurs prior to removal of any silt fencing or hay bales used for temporary erosion
control. The Owner and/or Contractor shall also insure that any disturbed vegetation be returned to its original
condition, placement and state. The Owner and/or Contractor shall be responsible for any damage to
adjacent properties, city streets or infrastructure due to heavy machinery and/or equipment as well as erosion,
siltation or sedimentation resulting from the permitted work.
Any trees required to be protected by ordinance or as part of the landscape plan must be completely fenced
before any operations of this permit can begin.
In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be
taken to insure that debris from construction, erosion, and sedimentation shall not be deposited in city streets,
or existing drainage facilities.
I hereby grant this permit for development of an area outside the special flood hazard area. All development
shall be in accordance with the plans and specifications submitted to and approved by the City Engineer in the
development permit application for the above named project and all of the codes and ordinances of the City of
College Station that apply.
:~
Owner/ AgenUContractor Date
TCC Subdivision Public Infrastructure
Engineer's Estimate
1 Mobilization
2 Trench Safety
Wastewater System
3 6" PVC Sanitary Sewer, Depth 0-5'
4 8" PVC Sanitary Sewer, Depth 0-5'
5 8" PVC Sanitary Sewer, Depth 5'-10'
6 8" DIP CL 350 Sanitary Sewer
7 Piers
8 Manholes
9 Connect to Existing Manhole
Water System
10 12" PVC Waterline
11 8" PVC Waterline
12 Connect to Existing System
13 Fire Hydrant Assembly
14 12"x 8" M.J. Tee
15 12"x 22.5deg M.J. bend
16 12"x 45deg M.J. bend
17 12" M.J. Gate Valve
18 12"x 8" M.J. Reducer
19 8" M.J. Gate Valve
20 8"x 45deg M.J. bend
21 8"x 22.5deg M.J. bend
22 8"x 6" M.J. Tee
23 8"x 8" M.J. Tee
24 6" M.J. Gate Valve
25 8" M.J. Cap w/ 2" Blow Off Assembly
26 Water Service Connection & Copper Service Lines
Subtotal Wastewater System
Subtotal Water System
Total
D FOR
1CE
zooz
COLLEG ·-· s~,i. r10 ~
1
1
461
721
284
215
9
9
1
275
1533
1
2
1
1
1
1
1
5
3
4
2
2
2
2
38
Units Uni
Ea.
L.S.
L.F .
L.F .
L.F.
L.F .
Ea.
Ea.
Ea.
L.F.
L.F.
Ea.
Ea.
Ea.
Ea.
Ea.
Ea.
Ea.
Ea.
Ea.
Ea.
Ea.
Ea.
Ea.
Ea.
Ea.
$10,000.00
$3,000.00
$20.00
$25.00
$30.00
$45.00
$3,000.00
$1 ,500.00
$1 ,000.00
$35.00
$25.00
$750.00
$1,700.00
$450.00
$300.00
$300.00
$1 ,150.00
$250.00
$525.00
$150.00
$150.00
$175.00
$200.00
$425.00
$600.00
$400.00
$10,000.00
$3,000.00
$9,220.00
$18,025.00
$21,630.00
$9,675.00
$27,000.00
$13,500.00
$1 ,000.00
$9,625.00
$38,325.00
$750.00
$3,400.00
$450.00
$300.00
$300.00
$1 ,150.00
$250.00
$2,625.00
$450.00
$600.00
$350.00
$400.00
$850.00
$1 ,200.00
$15,200.00
$100,050.00
$76,225.00
$189,275.00
ENGi EERI~·'~
Mitchell and Morgan, LLP cost estimate 12-18-01.xls
CANYON CREEK TOWNHOMES
TCC SUBDIVISION
WATER AND FIRE FLOW ANALYSIS
December 2001
By
jl1, ITCH ELL & jl1, ORGAN, LLP
Engineers & Constructors
511 University Drive, Suite 204
College Station, Texas 77840
Office (979) 260-6963
Fax (979) 260-3564
CERTIFICATION
I hereby certify that this report for the Fire Flow Analysis for the TCC Subdivision was
prepared under my supervision in accordance with the provisions on the City of College
Station Development Guidelines and Fire Department Fire Prevention Criteria for the
owners thereof. _,,,,,,,,
--~e. OF r~ '!t. r"'"" ········· ~"'f ,f.:> .. ··*···.IS' . , * ... • •• •• * 'i
f *. . *".I 've'RoN'1c:f j:'ii.'MORGANi ~-: ......................... .:·tt--1 ,,1)\~ 77689 Al/ti ... Q •~7~ t'.. V• -"o: ~ a~ '•,<]/STE~~" ~., ,, Ss ........ ~0J
\\./ONAL ~,"\.~
CANYON CREEK TOWNHOMES
WATER & FIRE FLOW ANALYSIS
INTRODUCTION
This Fire Flow Analysis report is written to document and analyze the necessary
water infrastructure for the Canyon Creek Townhomes project. The TCC Subdivision is
a new development with approximately 7I two-story townhome units.
GENERAL LOCATION AND DESCRIPTION
The TCC Subdivision is located on the east side of Harvey Mitchell Parkway (FM
28 I 8), just south of the Luther Street/FM 28 I 8 intersection. The total acreage of the area
being considered for development is approximately 5.953 acres. The subdivision is
bordered on the west by FM 28 I 8, on the north by the Fairfield apartment development,
on the east by Walden Pond and the Melrose development, and on the south by a vacant
tract. The Fairfield development consists of approximately 400 units and water is
supplied to these units by multiple six (6) inch lines, an eight (8) inch loop, and a twelve
(12) inch main. The development to the east and south is supplied by a sixteen (16) inch
line on Southwest Parkway and an eight (8) inch line on Holleman. Also located on the
northeast border of the Canyon Creek Townhome project are Lots IA and 2A, Block I of
the Melrose Subdivision. The SAE Fraternity house is constructed on Lot IA, Block I
and is supplied by six (6) inch water line that connects into the Melrose Development's
eight (8) inch loop. Lot 2A is currently vacant.
MODELING
The water distribution system modeling for this project was performed by using
the BOSS EMS program. Mitchell & Morgan utilized the current College Station water
model and updated it with the new water lines recently constructed with the Fairfield
development. To this existing system we modeled the Canyon Creek Townhomes
domestic and fire flows.
The evaluation and fire flow criteria used within this study was as follows:
~ Maintain a minimum of 20 psi residual pressure during fire flow events
~ Calculate fire flows based upon the ISO fire flow calculations, and
~ Maintain velocities during fire flow events to 12 fps.
WATER DEMAND DEVELOPMENT
The TCC Subdivision consists of sixteen (16) four bedroom and fifty-five (55)
three bedroom units. In keeping with the criteria used to develop the City of College
Station Water Distribution Model, Mitchell & Morgan used 115 gallons/capita/day for
each unit, with 2.7 persons in a three bedroom units, and 3.I persons in a four bedroom
unit. Using these figures, the average day demand placed on each node was 3.I9 gpm.
FIRE FLOW ANALYSIS
Mitchell & Morgan, LLP used the formula obtained from the College Station Fire
Department (ISO calculations) to calculate fire flows throughout the site. In an effort to
1 Creek Townhomes Water Analysis
evaluate the correct water line size for the above referenced project, five separate
scenarios were analyzed based upon fire flows for the development.
The Canyon Creek development contains several townhouse buildings, which range in
size from a 4-unit building to a 7-unit building, with the most predominant on the site
being a 5-unit building. In accordance with the ISO calculations, the area to be used for
fire flows is that of the largest building which is isolated by a 4-hour firewall. Within the
following scenarios, several building areas were used to determine the correct size for the
water lines within the development.
Constructed within the adjacent Fairfield complex is an internal eight (8) inch loop feed,
which ends with an eight (8) inch radial feed water line stubbed out at the
Fairfield/Canyon Creek property line. The following scenarios use this eight (8) inch
radial feed line from Fairfield, to which we added an eight (8) inch radial water line to the
Canyon Creek Townhomes internal drive aisle and then looped an eight (8) inch water
line and stubbed out an eight (8) inch water line to the most southerly property comer for
future extension. (See Figure 1)
Scenario 1
A seven (7) unit building was used to compute the building area and calculate the fire
flow for the Canyon Creek Townhomes Subdivision. The area of 8, 169.5 sq ft per floor
was used for this scenario. Because these units are 2-stories, a total area of 16,339 square
feet was used in the following calculation:
2
Fire Flow = 18CA o.s
Where C = 1.0 for ordinary construction
and A = total floor area including all stories
further the ISO allows for a reduction in these flows if:
a. "The fire flow may be reduced by 25% for occupancies having a low fire
hazard or may be increased by up to 25% for occupancies having a high fire
hazard."
These units would qualify for a reduction of 25% under this formula.
Also the value after any reduction or increase has been calculated should have an
exposure protection value added to it. The percentage for any one side should not
exceed the following limits for the separation shown:
Separation
0-10 ft.
11-30 ft.
31-60 ft.
61-100 ft.
101 -150 ft.
Percentage
25%
20%
15%
10%
5%
Creek Townhomes Water Analysis
Therefore:
Note: The total percentage shall be the sum of the percentages for all
sides, but shall not exceed 75%.
18 (1.0) (16,339)0.s = 2,300.8 gpm
with a 25% reduction:
.75(2300.8) = 1725.6 gpm
with the 7-unit building there are 2 walls that will have a 10 foot separation from the
property line, one side of the building is common wall construction and the other side is
within 25 feet of the street, therefore:
(25+25+25+20) = 95%; therefore use 75%
1725.6 gpm + (1725.6 * .75) = 3019.8 gpm
When using this fire flow, the results are line velocities in the eight (8) inch radial water
line from the Fairfield development in excess of 19 ft/sand a pressure at the fire hydrant
of less than 20 psi.
Scenario 2
Because the area of the seven (7) unit building did not provide a~ceptable results, given
our analysis criteria, a building area for the five (5) units was used in Scenario 2. The
five (5) unit building was used to compute the building area and calculate the fire flow
for the Canyon Creek Townhomes development. An area of 6,030 sq ft per floor was
used and because these units are 2-stories, a total area of 12,060 square feet was utilized
for the total floor area as in the example in Scenario 1. These calculations resulted in a
fire flow of 2500 gpm for the five (5) unit building. This fire flow analysis resulted in a
pressure of 26 psi at the fire hydrant and velocities in the eight (8) inch radial water line
of 16 ft/s.
Scenario 3
In light of the velocities in Scenario 2, an area of four ( 4) units was used to compute the
building area and calculate the fire flow for the Canyon Creek Townhomes development.
This scenario would require that each five (5) unit building be separated internally with a
four hour firewall. This firewall separation would be a substantial change and cost
increase to the building plans for the townhome units, however the scenario was modeled
to see the effect that this change would have on the water line velocities. In this scenario,
an area of 4,571 sq ft per floor was used, which lead to a total floor area of 9,142 square
feet in the calculations. This area resulted in a fire flow of 2250 gpm at the hydrant, with
a pressure of 37 psi and a line velocity in the eight (8) inch radial water line of 14.5 ft/s.
Therefore, this decrease in building area produced a drop in the water line velocity of
only 1.5 ft/s when compared to Scenario 2.
3 Creek Townhomes Water Analysis
For Scenario 4, the model included the eight (8) inch radial water line from the Fairfield
Apartments but Canyon Creek increased th eir fine size from an eight (8) inch to a twelve
(12) in ch fin e for their portion of the radial f eed and kept an eight (8) inch internal loop.
Scenario 4
Scenario 4 duplicated Scenario 3, in that it utilized the fire flow obtained by using the
four (4) unit building area. This scenario used the fire flow of 2250 gpm, as calculated
previously, and changed the radial water line size being constructed by Canyon Creek to
a twelve ( 12) inch line. This resulted in pressures above 20 psi, consistent with our fire
flow criteria. Velocities in all Canyon Creek waterlines were below 12 ft/s; however, this
still caused the velocity in the eight (8) inch feeder line from Fairfield to be greater than
14 ft/s. While the velocity of 14 ft/s in the Fairfield eight (8) inch line is high, once an
eight (8) inch water line is run along FM2818 south of the Canyon Creek Townhomes
and connected to the eight (8) inch water line on Holleman Dr. this velocity will decrease
to 8.6 ft/s, a much more acceptable velocity for the ultimate design. It is also worthy to
note that the line which will experience this flow velocity is only 150 feet in length.
For Scenario 5, the model included the eight (8) inch radial water line.from the Fairfield
Apartments but Canyon Creek increased th eir line size from an eight (8) inch to a twelve
(12) inch line for their portion of the radial feed and modeled as a six (6) inch internal
loop.
Scenario 5
Scenario 5 duplicated Scenario 3, in that it utilized the fire flow obtained by using the
four ( 4) unit building area. This scenario used the fire flow of 2250 gpm, as calculated
previously, and changed the radial water line size being constructed by Canyon Creek to
a twelve (12) inch line and the internal loop to a six (6) inch line. This resulted in
pressures above 20 psi, consistent with our fire flow criteria. However, velocities in the
six (6) inch loop are above 12 ft/s.
For Scenario 6, the model included the eight (8) inch radial water line.from the Fairfield
Apartments but Canyon Creek increased their line size from an eight (8) inch to a twelve
(12) inch line for their portion of th e radial f eed and kept an eight (8) inch internal loop.
Scenario 6
Scenario 6 duplicated Scenario 2, in that it utilized the fire flow obtained by using the
five (5) unit building area. This scenario used the fire flow of 2500 gpm, as calculated
previously, and changed the radial water line size being constructed by Canyon Creek to
a twelve (12) inch line. This resulted in pressures above 20 psi, consistent with our fire
flow criteria. Velocities in all Canyon Creek waterlines were below 12 ft/s; however, this
still caused the velocity in the eight (8) inch feeder line from Fairfield to be greater than
16 ft/s. While the velocity of 16 ft/s in the Fairfield eight (8) inch line is high, once an
eight (8) inch water line is run along FM2818 south of the Canyon Creek Townhomes
and connected to the eight (8) inch water line on Holleman Dr. this velocity will decrease
4 Creek Townhomes Water Analysis
to below 12 ft/s , a much more acceptable velocity for the ultimate design. It is also
worthy to note that the line which will experience this flow velocity is only 150 feet in
length.
CONCLUSION
To adequately provide water service to the Canyon Creek Townhome
development the following should occur:
5
~ An eight (8) inch internal water line loop must be used in order to supply the
Canyon Creek Townhomes with adequate fire flow pressure.
~ An eight (8) inch water line should be extended from the internal loop to the most
southerly property line for future connection.
~ The radial water line from the existing Fairfield eight (8) inch radial water line
should be constructed as a twelve (12) inch line to keep the fire flow velocities to
within reasonable limits.
~ One four-hour firewall must be utilized in the seven (7) unit building to break it
effectively into a four ( 4) and three (3) unit building.
~ Although the velocities in the eight (8) inch radial water line from Fairfield are 16
ft/sec, this is only temporary until the system is looped back to Holleman.
~ It is important to recognize that as development occurs along Holleman and north
from Holleman along FM28 l 8 that each development be required to extend the
existing eight (8) inch water line toward the TCC Subdivision such that this loop
feed can be completed. Once this connection is complete, fire flow velocities in
the eight (8) inch water line from Fairfield will be well below the required 12
ft/sec. This will also ensure that developments in the area will have redundant
water lines for supply. This is extremely important when considering the need to
supply emergency water to an area when there is a water line break or an area
needs to be isolated for maintenance reasons.
Creek Townhomes Water Analysis
I :::IJ ~ ::::c m -:i: 0 < ~ ~ ~ ~ ~ \) ~ ~ ~ d=<> §' ~ to(') / I •o :::0::3 / 0 ::3 I 0. CD e:a / ( ~o-/ /r~ / ~ / 0:. / Fi? ii! z:::::--<n -·8 ~ ii" :::r·· • ... 8 ;-~ I \ I\ '"' , I '"'"' ... , \_,/ \ _________ ......... // I I '-~ ~ \ WATER SYSTEM LAYOUT CANYON CREEK TOWNHOMES Mitchell 4: Morgan, LLP. Consulti119 En9ineers ond Constructors 511 University Drive Eost, Suite 204 Colle«Je Stotion, TX 77840 J,j~2 Jr:i • fill -I December, 2001 ~1----"'==~-""'"] Ouigned by: JJM Drown By: JUJ Checked By: VJBM (409) 2eo-696J roa: (409) 2eo-'"4!4
2040
2035 CANYON CREEK
042
2416
2
FM 2818
Scenario 1
....SCel'fAe}D
Sce.,rio 1
variable symbol units variable symbol units
Diameter D [in] Elevation z [ft]
Roughness r [millift] Grade HGL [psi]
Length L [ft] Pressure p [psi]
Velocity v [ft/s] Demand Q [gpm]
Head loss loss [ft]
link ID Q r !: Y. loss node ID 6 HGL .E Q
2400 8 130 178.211 9.876 7.345 2034 312 435.902 53.687 0
2401 8 130 183.882 9.876 7.579 2035 314 428.557 49.638 0
2406 8 130 138.095 19.378 19.805 2036 312 420.978 47.22 0
2413 8 130 73.553 19.378 10.549 2037 300 401.174 43.839 0
2414 8 130 88.569 19.378 12.702 2038 312 377.923 28.564 0
2415 8 130 165.29 19.378 23.705 2039 314 341.244 11.805 3.19
2416 8 130 478.094 7.879 12.974 2040 316 331.067 6.529 3.19
2417 8 130 376.806 7.859 10.176 2041 319 324.478 2.373 3023.19
2418 8 130 245.176 7.838 6.59 2042 314 348.547 14.969 3.19
2419 8 130 . 443.627 11.458 24.07 2043 312 354.217 18.293 3.19
2420 8 130 104.164 11.479 5.67 2044 312 390.625 34.068 0
Scenario 2
Scenario 2
variable symbol units variable symbol units
Diameter D [in] Elevation z [ft]
Roughness r [millift] Grade HGL [psi]
Length L [ft] Pressure p [psi]
Velocity v [fUs] Demand Q [gpm]
Headloss loss [ft]
link ID Q r 1 Y. loss node ID ~ HGL E Q
2400 8 130 178.211 8.255 5.272 2034 312 459.609 63.959 0
2401 8 130 183.882 8.255 5.44 2035 314 454.337 60.808 0
2406 8 130 138.095 16.059 13.99 2036 312 448.898 59.318 0
2413 8 130 73.553 16.059 7.452 2037 300 434.907 58.455 0
2414 8 130 88.569 16.059 8.973 2038 312 418.483 46.139 0
2415 8 130 165.29 16.059 16.746 2039 314 392.575 34.047 3.19
2416 8 130 478.094 6.528 9.162 2040 316 385.395 30.069 3.19
2417 8 130 376.806 6.508 7.18 2041 319 380.751 26.757 2503.19
2418 8 130 245.176 6.488 4.645 2042 314 397.734 36.282 3.19
2419 8 130 443.627 9.49 16.983 2043 312 401 .737 38.883 3.19
2420 8 130 104.164 9.51 4.003 2044 312 427.456 50.027 0
Scenario 3
Scenario 3
variable symbol units variable symbol units
Diameter D [in] Elevation z [ft]
Roughness r [millift] Grade HGL [psi]
Length L [ft] Pressure p [psi]
Flow Q [gpm] Demand Q [gpm]
Velocity v [fUs]
Headloss loss [ft]
link ID Q I !: ':!. loss node ID ~ HGL .E Q
2400 8 130 178.21 1 7.477 4.389 2034 312 470.041 68.479 0
2401 8 130 183.882 7.477 4.529 2035 314 465.652 65.711 0
2406 8 130 138.095 14.463 11.528 2036 312 461 .123 64.615 0
2413 8 130 73.553 14.463 6.14 2037 300 449.596 64.82 0
2414 8 130 88.569 14.463 7.394 2038 312 436.062 53.756 0
2415 8 130 165.29 14.463 13.798 2039 314 414.716 43.64 3.19
2416 8 130 478.094 5.879 7.548 2040 316 408.805 40.212 3.19
2417 8 130 376.806 5.859 5.911 2041 319 404.984 37.257 2253.19
2418 8 130 245.176 5.838 3.821 2042 314 418.967 45.482 3.19
2419 8 130 443.627 8.543 13.983 2043 312 422.264 47.777 3.19
2420 8 130 104.164 8.563 3.298 2044 312 443.456 56.96 0
Scenario 4
Scenario 4
variable symbol units variable symbol units
Diameter D [in] Elevation z [ft]
Roughness r [millift] Grade HGL [psi]
Length L [ft] Pressure p [psi]
Flow Q [gpm] Demand Q [gpm]
Velocity v [fUs]
Head loss loss [ft]
link ID Q r b Y. loss node ID ~ HGL .E Q
2400 8 130 178.211 7.477 4.389 2034 312 470.041 68.479 0
2401 8 130 183.882 7.477 4.529 2035 314 465.652 65.711 0
2406 8 130 138.095 14.463 11.528 2036 312 461 .123 64.615 0
2413 12 130 73.553 6.428 0.852 2037 300 449.596 64.82 0
2414 12 130 88.569 6.428 1.026 2038 312 447.717 58.806 0
2415 12 130 165.29 6.428 1.915 2039 314 438.254 53.839 3.19
2416 8 130 478.094 5.879 7.548 2040 316 432.342 50.411 3.19
2417 8 130 376.806 5.859 5.911 2041 319 428.521 47.455 2253.19
2418 8 130 245.176 5.838 3.821 2042 314 442.504 55.681 3.19
2419 8 130 443.627 8.543 13.983 2043 312 445.802 57.976 3.19
2420 8 130 104.164 8.563 3.298 2044 312 448.743 59.251 0
Scenario 5
variable symbol units variable symbol units
Diameter D [in] Elevation z [ft]
Roughness r [mil lift] Grade HGL [psi]
Length L [ft] Pressure p [psi]
Flow Q [gpm] Demand Q [gpm]
Velocity v [fUs]
link ID Q r .!: Y. loss node ID ~ HGL .E Q
2400 8 130 178.211 7.477 4.389 2034 312 470.041 68.479 0
2401 8 130 183.882 7.477 4.529 2035 314 465.652 65.711 0
2406 8 130 138.095 14.463 11 .528 2036 312 461.123 64.615 0
2413 12 130 73.553 6.428 0.852 2037 300 449.596 64.82 0
2414 12 130 88.569 6.428 1.026 2038 312 447.717 58.806 0
2415 12 130 165.29 6.428 1.915 2039 314 415.161 43.833 3.19
2416 6 130 478.094 10.452 30.64 2040 316 391.167 32.57 3.19
2417 6 130 376.806 10.416 23.995 2041 319 375.654 24.548 2253.19
2418 6 130 245.176 10.38 15.512 2042 314 432.416 51 .31 3.19
2419 6 130 443.627 15.188 56.761 2043 312 445.802 57.976 3.19
2420 6 130 104.164 15.224 13.386 2044 312 448.743 59.251 0
Canyon Creek Townhomes
Residential Development
Drainage Analysis
January 2002
By
/k ITCH ELL.& /k ORGAN, LLP
Engineers & Constructors
511 University Drive, Suite 204
College Station, Texas 77840
Office (979) 260-6963
Fax (979) 260-3564
CERTIFICATION
I hereby certify that this report for the drainage design for the Canyon Creek Townhomes
development was prepared under my supervision in accordance with the provisions of the
City of College Station Drainage Policy and Design Standards for the owners thereof.
~~,,~~.
,.;;:-:'if:. OF iF:. .,,\
llflJ!ll' '.'l."'·······k ... -, .,,
/if!' ~.· * ·~ . 1... . .... ~.. • *'J I·· : .............. ~ .. 2 Z JOEL J. MITCHELL 2 g •• ~·············:··1 ,. '\. ~ 80649 ~~ .. $Ii' ,.,o~.f GJ ST~~\·~«;? • \, ~s. •••• ···~,<?>" _. .,,._~~IONAL f:.',J/:" .,,,,,,~
CANYON CREEK TOWNHOMES DRAINAGE ANALYSIS
INTRODUCTION
The purpose of this storm drainage report is to document and analyze the
necessary drainage infrastructure for the proposed Canyon Creek Townhomes
development. The development will be located on a 5.9 53-acre tract known as the TCC-
Subdivision. As per the College Station Drainage Policy and Design Standards (DPDS),
the objective of these drainage improvements is to limit the post-development peak flow
so as not to exceed pre-development peak flows. If changes to the site drainage patterns
or proposed building square footages affect the assumptions in this report, a letter of
addendum will be prepared in order to analyze the effect of the changes and to assure
compliance with the City of College Station DPDS.
GENERAL LOCATION AND DESCRIPTION
The proposed Canyon Creek Townhomes Subdivision is located on the east side
of Harvey Mitchell Parkway (FM 2818), between Holleman Dr. and George Bush Dr.
and is adjacent to the upper section of Whites Creek, which borders the property to the
south. The Fairfield Residential Tract as well as the Melrose and Walden Pond Tracts
surround the TCC-Subdivision property.
PRIMARY DRAINAGE BASIN DESCRIPTION
As seen in Exhibit A, this property lies near the 100-year floodplain per the
FEMA Flood Insurance Rate Map Panel 182 with an effective date of July 1992 .
However, because of the lack of detail of the FIRM, Mitchell & Morgan, L.L.P.
performed a 100-year flood plain analysis of the upper section of Whites Creek using
HEC-RAS 3.0. This analysis revealed that the 100-year water surface elevation is
approximately 307.20, almost six feet below the lowest proposed finished floor elevation.
This can be referenced in the 100-year floodplain analysis provided under a separate
cover. The TCC-Subdivision property currently drains to two separate points. The first
of these is the culvert at White's Creek and Harvey Mitchell Pkwy, which is referred top
as Study Point 'B'. The second, referred to as Study Point 'A', is the culvert at Harvey
Page 1of4
Mitchell Pkwy just to the north of the proposed access drive. Comparison of peak flows
at these two confluence points will determine if DPDS criteria have been met.
DRAINAGE DESIGN CRITERIA
All drainage design is in accordance with the City of College Station DPDS. As ·
such:
• The design rainstorm events used are the 5 through 100-year events to analyze the
effectiveness of the detention pond design: and
• Because of the size of pre-and post-development drainage basins, flow
calculations are based on the rational method, with a minimum time of
concentration of 10 minutes.
DRAINAGE FACILITY DESIGN
?redevelopment Drainage Patterns
As previously stated, the predevelopment drainage for the site consists of two
basins, EA and EB, which can be viewed in Exhibit B 1. The rational method calculations
for these drainage areas can be seen in Exhibit C. Drainage area EA includes 2.51 acres
of undeveloped, wooded area. EB consists of 3.45 acres of undeveloped area. The SCS
lag time method from the TR-55 manual was used in order to calculate the times of
concentration, which were in tum used to calculate the theoretical precipitation intensities
for each of the design storms. Based on the land cover and use, a Rational Method 'c'
value of 0.4 was used for both of these predevelopment drainage areas. All of the
aforementioned parameters can be seen in Exhibit C. Drainage areas EA and EB drain to
Study Points 'A' and 'B' respectively.
Post Developm ent Drainage Patterns
Post development drainage patterns for the proposed Canyon Creek Townhomes
consist of several drainage areas, which can be seen in Exhibit B2. As was expected, a
substantial increase in peak flows occurred because of the addition of approximately 3. 7
acres of impervious cover. This addition increased the 100-year peak flows at Study
Page 2of4
Points 'A' and 'B' by 12.0 and 15.5 cfs respectively. The pre-and post development
flows and the total increase can be seen in the table below.
Peak Discharge from Canyon Creek Townhomes
Location 5-Year 10-Year 25-Year 50-Year 100-Year
(cfs) (cfs) (cfs) (cfs) (cfs)
Pre-Developed 7.0 7.9 9.0 10.2 11.5
(EA)
Pre-Developed 10.1 11.4 13.0 14.7 16.5
(EB)
Post-Developed 14.4 16.2 18.5 20.9 23.5
(Study Pt. 'A')
Post-Developed 19.6 22.0 25.2 28.5 32.0
(Study Pt. 'B ')
Flow Increase 7.4 8.3 9.5 10.7 12.0
(Study Pt. 'A')
Flow Increase 9.5 10.7 12 .2 13.8 15.5
(Study Pt. 'B ')
In order to detain the excess volume and decrease the post development runoff peaks, a
series of detention ponds were designed. The excess runoff volume to Study Point 'A'
was detained in the parking lot and driveway with a series of three ponds. The majority
of the runoff will flow in to the central pond and then backfill into the two surrounding
ponds. A 12" PVC pipe at the bottom of the central junction box controls all of the ponds
and additional storage is gained in the connecting pipes, which are 12" PVC storm drains.
Study Point 'B' also had several complications. Because of the relatively small amount
of area available to detain in, several measures were taken in order to maximize the
available volume. The first of these was to place a 4 ft. retaining wall around the
perimeter of each of the main detention ponds in order to retain the area that would have
been lo st by grading at a 4: 1 slope. The bottom of both ponds was graded at 1 % slope
with a concrete flume running from the inlet to the outlet and then graded at 2% outward.
Page 3 of 4
Additionally, the adjacent parking areas and driveway were used to detain water so as to
attenuate the water entering the detention ponds and further decrease the peak flows. The
outlet pipe for pond Al is 6" PVC and the outlet pipe for pond A2 is 8" PVC with a 4"
diameter orifice at the pond that acts as a controlling structure. The outlet pipes for both
pond B 1 and B2 are 15" PVC. Because of the complications involved with backflow and
routing through multiple ponds, XP-SWMM 2000 was used to perform the hydraulic and
routing calculations, however, the Rational Method was used to calculate the peak flows
for each of the drainage basins, using a 10-minute time of concentration. These peak
flows were input into their respective junctions in order to more accurately model the
proposed drainage scenario. In order to effectively use the drive aisles and parking areas
for excess runoff detention, they were graded in order to store the maximum amount of
water, while at the same time maintaining enough slope to drain. The grading plan as
well as detention pond cross-section details can be seen in Exhibit D. The XP-SWMM
reports can be seen in Appendix A. The tables to focus on are El (pipe/orifice sizes), E4
(pond stage/storage and weir data), E9 (max pond elevations), and E15 (peak
flows/elevations). For ease ofreview, Exhibit E presents definitions of nodes, invert
elevations and peak elevations, orifice and pipe sizes for controlling structures, and peak
discharges. From this data it is apparent that there is adequate detention provided to
maintain the post development peak flows at a predevelopment level for all of the
required design storms.
CONCLUSION
The development of the TCC-Subdivision will cause a substantial increase in
runoff due to the proposed addition of approximately 3. 7 acres of impervious cover. In
order to control this excess within the limited amount of space a series of detention ponds
have been proposed. All of the storage for Study Point 'A' as well as portions for Study
Point 'B' will occur in the driveway and parking areas. The remainder of the storage
required for Study Point 'B' will occur in two ponds as seen in Exhibit D. After review
of the XP-SWMM output, it is clear that all of the proposed finished floor elevations are
well above the water surface elevations for the 100-year event and that none of the
proposed outflows exceed the predevelopment peak flows as listed in Exhibit E.
Page 4of4
City of College Station
480083
SUBJECT
TRACT
I
Lt.:. '-. .. JI: I ~ LI
SPECIAL FLOOD HAZARD AREAS INUND.A_TED
BY 100-YEAR FLOOD
ZONE A No base flood elevations determined.
ZONE AE Base flood elevations determined.
ZONE AH Rood depths of 1 to 3 feet (usually areas of
ponding); base flood elevations determined.
ZONE AO Rood depths pf 1 to 3 feet (usually sheet flow
on sloping terrain); average depths deter-
mined. For areas of aDuvial fan floocling;
velocities also determined.
ZONE A99 To be protected from 100-year flood by
Federal flood protection sys(em under con-
struction; no base flood elevations deter-mined. ., · · ·
ZONE V Coasta.1 flood with velocity hazard (wave
action); no base flood elevations determined.
ZONE VE Coastal flood with velocity hazard (wave
Klion); base flood elevations determined.
FLOODWAY AREAS IN ZONE AE
OTHER FLOOD AREAS
ZONEX Areas of 500-year flood; areas of 100-year
flood with average depchs of less than 1 foot or
with drainage areas less than 1 square m~e;
and areas protected by levees from 100-year
flood
OTHER AREAS
ZONE X Areas determined to be outside 500-yeac flood-
plain.
ZONED Areas in which flood hazards are undeter-
mined.
UNDEVELOPED COASTAL BARRIERS
Aoodplain Boundary
--------F1oodway Boundary
Zone D Boundary ,-Boundary Dividing Special Flood Hazard
Zones, and Boundary Dividing Areas of Dif-
ferent Coastlll Base Flood Elevations Within
Special Rood ~rd Zen-.
'fl\ll :2818 ; ~-~.,
~
_:::----ij
EXHIBIT A
---513---
@---@
(EL 9871
RM7x
•M1.5
Base Flood Elevation Line; Elevation in Feet•
Cross Section Line
Base Rood Elevation in Feet Where Uniform
Wittlin Zone•
Elevation Reference Mark
River Mae
"Referenced to the National Geodetic Vertical Datum of 1929
NOTES
This map 6 for use in administering the National Rood Insurance Program; it
dots not MaSSU!ly identify all areas subject to flooding. patticularly from local
drainage sources ot small size, or all planimetric features outside Special Rood
Hazard Areas. The community map repository should be consulted for possible
updated flood hanrd information prior to use of this map for property purchase
or construction purposes.
Coastal base flood elevations apply only landward of 0.0 NGVO, and include the
eflects of wave action; these elevations may also differ significantly from those
deo.-eloped by the National Weather Service for hurricane evacuation planning.
Areas of special flood hazard (100-yeM flood) include Zones A, AE, AH, AO, A99,
V,and VE.
Certain areas. not in Special ~Hazard Areas may be protected by tlo\ftl
control structures. · ·
R••un<l•ri-"'tho fl...,.,,f...,,..,. .;,,...,. rnmn1.11"'i ar cross sections and interoolated
_, ' '
' '
.-
\
_,
8
I
,' ,-
,,'' "'' : ,_,. --.. rgon LLP. 1~jl-J ~ c~~~:~. ;. vJs• Mitchell & ..,o d 'constructors J;i f rvt.MOl'r 81 Consulti~9 E'.'9inD~i~~ E~st, Suite 204 r-1 ~' l'tll!U~ Alif"A 511 Un•vers•ty . TX 77840 ; f{JJ --~~ ~ College Stohon,(409) 260-3~6• ~~~' (•09) 260-6963 ro.: T.C. C. SUBDMSION
---.........
' ' ,,'/ J.,M)l.d 113H:ll1Y't ,1_3/\l:l'IH _./...-
_ ... ··
' I
I
I
'
'
I
I
I
' '
·...,_
' ' ' ' '
: .-
< w 0 a:: w < < CL 0
w w 0 z I-
(!} a:: ...J < z <
< < w ...J w ()
z ...J > (/) :::!: ...J
;;: < Wet (/) w < I-ow < > I-a:: 0 z a:: a:: < 0 0 I-:::> < (!} CL I-
NO. AC. 0.4 0.6 0.95
EA 2.51 2.51 0.00 0.00 1.00
EB 3.45 3.45 0.00 0.00 1.38
FA-1 0.13 0.05 0.00 0.08 0.10
FA-2 1.86 0.17 0.20 1.49 1.60
FA-3 0.37 0.20 0.00 0.17 0.25
FB-1 0.04 0.00 0.02 0.01 0.03
FB-2 0.93 0.71 0.00 0.22 0.49
DBA-1 0.24 0.13 0.00 0.11 0.16
DBA-2 0.48 0.00 0.11 0.37 0.41
DBB-1 0.19 0.13 0.00 0.06 0.11
DBB-2 1.21 0.15 0.11 0.96 1.03
DBB-3 0.52 0.31 0.00 0.21 0.32
EXHIBIT C
Rational Formula Drainage Area Calculations
CANYON CREEK TOWNHOMES
;: ;:
0 0 ;: ;: ...J ...J LL LL 0 0 0 0 ...J ...J z z LL LL >-< J: :5 a:: J: a:: I-CJ ...J I-w I-w u I-CJ a:: (!} a:: ...J I-(!} I-...J 0 I-Wz w ...J I-z I-...J ...J .!::? w >w >ct :::> w :::> < w "' (/) 0 ...J 0 LL (!} ...J (!} LL > () :::> !::::!
ft. ft. ft. ft. ftls min min In/Hr
650.0 10.0 0.0 0.0 0.9 12.4 12.4 5.73
824.3 25.0 0.0 0.0 1.2 11 .2 11.2 6.01
206.1 1.0 0.0 0.0 0.5 7.0 10.0 6.33
550.0 7.5 0.0 0.0 0.8 11 .1 11 .1 6.03
384.6 4.0 0.0 0.0 0.7 8.9 10.0 6.33
45.2 0.3 35.3 0.8 0.9 1.4 10.0 6.33
523.3 17.0 0.0 0.0 1.3 6.8 10.0 6.33
234.9 3.5 0.0 0.0 0.9 4.5 10.0 6.33
248.3 5.5 0.0 0.0 1.1 3.9 10.0 6.33
135.1 4.3 0.0 0.0 1.3 1.8 10.0 6.33
372.2 6.6 0.0 0.0 0.9 6.6 10.0 6.33
185.5 2.5 0.0 0.0 0.8 3.8 10.0 6.33
Pre Development Flow (TOT AL)
Pre Development Flow (STUDY PT. A)
Pre Development Flow (STUDY PT. B)
Post Development Flow (TOTAL)
Undetained Flow (STUDY PT. A)
Undetained Flow (STUDY PT. B)
Detained Flow (Pond A)
Detained Flow (Pond B)
Post Development Flow (STUDY PT. A)
Post Development Flow (STUDY PT. B)
Post Development Flow Increase (TOTAL)
Post Development Flow Increase (STUDY PT. A)
Post Development Flow Increase (STUDY PT. B)
EXHIBIT C
N 0
cfs
5.7
8.3
0.6
9.7
1.6
0.2
3.1
1.0
2.6
0.7
6.5
2.0
14.0
5.7
8.3
28.0
11.8
3.3
3.6
9.3
11.8
16.2
13.9
6.1
7.9
!!?
In/Hr
7.0
7.3
7.7
7.3
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
Ill 0
cfs
7.0
10.1
0.7
11 .8
1.9
0.2
3.8
1.2
3.2
0.9
7.9
2.5
17.1
7.0
10.1
34 .0
14.4
4.0
4.4
11 .3
14.4
19.6
16.9
7.4
9.5
0
!:
In/Hr
7.9
8.2
8.6
8.3
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
0 .... 0
cfs
7.9
11.4
0.8
13.2
2.1
0.2
4.2
1.4
3.6
1.0
8.9
2.8
19.3
7.9
11.4
38.2
16.2
4.4
4.9
12.7
16.2
22.0
19.0
8.3
10.7
Ill !::::!
In/Hr
9.0
9.4
9.9
9.4
9.9
9.9
9.9
9.9
9.9
9.9
9.9
9.9
Ill N 0
cfs
9.0
13.0
0.9
15.1
2.4
0.3
4.8
1.6
4.1
1.1
10.2
3.2
22.0
9.0
13.0
43.7
18.5
5.1
5.6
14.5
18.5
25.2
21.6
9.4
12.2
0 !!?
In/Hr
10.2
10.7
11 .1
10.7
11.1
11 .1
11 .1
11.1
11.1
11.1
11 .1
11 .1
0 Ill 0
cfs
10.2
14.7
1.1
17.1
2.7
0.3
5.4
1.8
4.6
1.2
11 .5
3.6
24.9
10.2
14.7
49.4
20.9
5.7
6.4
16.3
20.9
28.5
24.5
10.7
13.8
0 0
!:
In/Hr
11 .5
12.0
12.5
12.0
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
0 0 .... 0
cfs
11 .5
16.5
1.2
19.2
3.1
0.3
6.1
2.0
5.2
1.4
12.9
4.0
28.0
11 .5
16.5
55.5
23.5
6.4
7.2
18.4
23.5
32.0
27.5
12.0
15.5
1 /15/02
0122-drainage revision.xis
z
0 z ;:::: 0 < ;:::: c::: u ~ _J w a. ~_J u::: u. a:: w ;:::: $: < ;:::: u Cl) u. z oz Cl) ' I-w ow w a. ::> 0 zO Cl xo_
Study Point 'A '
FA2 Central Pond ORIFICE
FA2.1 Left Pond PIPE 20-19
FA2.2 Right Pond PIPE 21 -19
Confluence 38
Predevelopment Confluence
Study Point 'B'
A1 Driveway Detention at Pond A 12PIPE1
A2 Detention Pond A PIPE
B1 Driveway Detention at Pond B 15_B1 -B2
B2 Detention Pond B PIPE-OB
Confluence 2818-HW
Predevelopment Confluence
Peak Flow Increase at Study Point 'A'
Peak Flow Increase at Study Point 'B'
EXHIBIT E
XP-SWMM Output Summary
CANYON CREEK TOWNHOMES
w 0 c::: z u~ z -c: ::> < Q u. ·-a:: ; 0 w I-c::: z >-< oo (!) 0 o >
I-ii5 I-;:::: oW u. ..--_J Wz 0 c::: < ~w _J w w > I-~ a. >w < uj ::> -0 z _J ~ s: oo I-_w
12 312.44 309.96 312.97
12 312.44 310.44 312.97
12 31 2.44 310.44 312.97
6 315 313 315.61
8 (4" cap) 310 310 312.54
15 311 .36 309.36 312.31
15 306 306 308.5
** All peak depths and elevations given are for the 100-year event
EXHIBIT E
c::: < w >-
0
0 ..--::c
~ I-0 < a. 0 I() 0 0 WW I() ..--N I() ..--a. 0 a a a a a
0.53
0.53
0.53
6.8 7.0 7.4 7.9 8.5
7.0 7.9 9.0 10.2 11.5
0.61
2.54
0.95
2.5
10.0 10.5 11.5 12.2 13.2
10.1 11 .4 13.0 14.7 16.5
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
Appendix A
CANYON CREEK TOWNHOMES
5 YEAR PROPOSED XP-SWMM ANALYSIS
Input File c,\XPS\final\0122-5ii.XP
Current Directory, c ,\XPS\XP-UDD-1
Executable Name: C:\XPS\XP-UDD-1\swmmengw.exe
Read O line(s) and found O i tems (s) from your cfg file .
• ....... "'"'. -••••• ·=== ........ ,.. .. ,.. ....... --···· ====· ·= .. = .... .
I XP-SWMM2000 I Storm Water Management Model I
I Version 7. 51 I l·===···········=·==···················=········I I Developed by I I···==··················-==·=··················= I I I I I I I I I I I I I I I I
XP Software Inc. and Pty. Ltd.
Based on the U.S. EPA
Storm Water Management Model Version 4.40
Originally Developed by
Metcalf & Eddy, Inc.
University of Florida
Camp Dresser & McKee Inc.
September 1970
EPA-SWMM is maintained by
Oregon State University I Camp Dresser & McKee Inc. l···=·=·········································I I XP Software October, 2000 I I Data File Version ---> 9.0 I
Input and Output file names by SWMM Layer
Input File to Layer
Output File to Layer
1 JOT.US
1 JOT.US
Special command line arguments in XP-SWMM2000. This I
now includes program defaults. $Keywords are the program!
defaults. Other Keywords are from the SWMMCOM.CFG file. I
or the command line or any cfg file on the command line. I
Examples include these in the file xpswm.bat under the I
section :solve or in the windows version XPSWMM32 in thel
file solve.bat
Note: the cfg file should be in the subdirectory swmxp
I I I
or defined by the set variable in the xpswm.bat I
file. Some examples of the command lines possiblel
are shown below: I
swmmd swmmcom. c fg
swmmd my. cfg
swmmd nokeys nconvS perv extranwq
$powerstation 0. 0000
$perv 0 .0000
$oldegg 0 .0000
$as 0.0000
$nof lat 0. 0000
$oldomega 0.0000
$oldvol 0. 0000
$implicit 0 .0000
$oldhot 0. 0000
$oldscs 0.0000
$flood 0.0000
$nokeys 0. 0000
$pzero .0000
$oldvol2 .0000
$oldhotl . 0000
$pumpwt . 0000
$ecloss 0.0000
$exout . 0000
$oldbnd . 0000
$nogrelev . 0000
$ncmid . 0000
$new_nl_97 0. 0000
$best97 . 0000
$newbound . 0000
7
11
21
24
28
29
31
33
40
42
55
59
63
70
77
97
154
161
164
290
294
295
I I I I
I Parameter Values on the Tapes Common Block.These are the I I values read from the data file and dynamically allocated I
1 by the model for this simulation. I
Number of Subcatchments in the Runoff Block (NW) ... .
Number of Channel/Pipes in the Runoff Block (NG) ... .
Runoff Water quality constituents (NRQ) ..
Runoff Land Uses per Subcatchment (NLU) ............ .
Number of Elements in the Transport Block (NET)
Number of Storage Junctions i n Transport (NTSE) ..
Page I of 11
0 122-5.doc
CANYON CREEK TOWNHOMES
5 YEAR PROPOSED XP-SWMM ANALYSIS
Number of Input Hydrographs in Transport (NTH)
Number of Elements in the Ext ran Block (NEE) ........
Number of Groundwater Subcatchments in Runoff (NGW).
Number of Interface locations for all Blocks (NIE).
Number of Pumps in Ext ran (NEP) ..
Number of Orifices i n Ext ran (NEO).
Number of Tide Gates/Free Outfalls in Ext ran (NTG) ..
Number of Extran Weirs (NEW) ·········· Number of scs hydrograph points. . ..........
Number of Extran printout locations (NPO) ..
Number of Tide elements in Ext ran (NTE) ..
Number of Natural channels (NNC) .....
Number of Storage junctions in Extran (NVSE)
Number of Time history data points in Ext ran (NTVAL) .
Number of Variable storage elements in Ext ran (NVST)
Number of Input Hydrographs in Ext ran (NEH) .........
Number of Particle sizes in Transport Block (NPS).
Number of User defined conduits (NHW) ...
Number of Connecting conduits in Ext ran (NECC).
Number of Upstream elements in Transport (NTCC) ..
Number of Storage/treatment plants (NSTU).
Number of Values for Rl lines in Transport (NRl ).
Number of Nodes to be allowed for (NNOD).
Number of Plugs in a Storage Treatment Unit.
#######################################################
# Entry made to the HYDRAULIC Layer(Block) of SWMM #
# Last Updated October,2000 by XP Software #
CANYON CREEK TOWNHOMES
HYDRAULICS TABLES IN THE OUTPUT FILE
21
21
10
10
0
21
20
10
0
21
These are the more important tables in the output file.
You can use your editor to find the table numbers,
for example: search for Table E20 to check continuity.
This output file can be imported into a Word Processor
and printed on US letter or A4 paper using portrait
mode, courier font, a size of 8 pt. and margins of 0.75
Table El Basic Conduit Data
Table E2 Conduit Factor Data
Table EJ Junction Data
Table E4 Conduit Connectivity Data
Table E4a Dry Weather Flow Data
Table E5 Junction Time Step Limitation Summary
Table E5a Conduit Explicit Condition Summary
Table E6 Final Model Condition
Table E7 Iteration Summary
Table EB Junction Time Step Limitation Summary
Table E9 Junction Summary Statistics
Table ElO Conduit Summary Statistics
Table Ell Area assumptions used in the analysis
Table El2 Mean conduit information
Table ElJ Channel losses (H) and culvert info
Table El4 Natural Channel Overbank Flow Information
Table El5 Spreadsheet Info List
Table El6 New Conduit Output Section
Table El7 Pump Operation
Table ElB Junction Continuity Error
Table El9 Junction Inf low Sources
Table E20 Junction Flooding and Volume List
Table E21 Continuity balance at simulation end
Table E22 Model Judgement Section
Time Control from Hydraulics Job Control
Year.. 95 Month.
Day. Hour.
Minute. Second.
Control information for simulation
Integration cycles. . .......... .
Length of integration step is .. .
Simulation length ................. .
Do not create equiv. pipes(NEQUAL).
Use U.S. customary units for I/O ...
Printing starts in cycle.
Intermediate printout intervals of.
Intermediate printout intervals of.
Summary printout intervals of ...
Summary printout time interval of ..
Hot start file parameter (REDO)
Initial time .......... .
Iteration variables: SURTOL.
SURJUN.
QREF.
Minimum depth (m or ft)
14400
0. 25
. 00
500
2.08
500
2.08
1
0 . 00
0. 0001
0. 0060
.0000
.0000
seconds
hours
cycles
minutes
cycles
minutes
hours
mm or inch
Page 2of 11
0122-5.doc
CANYON CREEK TOWNHOMES
5 YEAR PROPOSED XP-SWMM ANALYSIS
Underrelaxation parameter ..... .
Time weighting parameter ..... .
Courant Time Step Factor.
Default Expansion/Contraction K
Default Entrance/Exit K.
Default surface area of junctions ..
NJSW input hydrograph junctions.
or user defined hydrographs ...
Table El -Conduit Data
. 8500
. 8500
l. 0000
. 0000
. 0000
12.57 square feet.
8
* ••:::::::s :cs:::z••• • • • m: • • • • ••"'"':::: :s :sec::==""""•• ••s:a• ••• *
Inp Conduit
Num Name
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
7 15_Bl-B2
PIPE-OB
PIPE-20-19
10 ORIFICE
11 PIPE-21-19
Length Conduit
(ft) Class
200. 00 Trapezoid
200.00 Trapezoid
10.00 Trapezoid
1.00 Circular
50. 00 Circular
42.00 Circular
25.00 Circular
50.00 Circular
75.00 Circular
110.00 Circular
75.00 Circular
Total length of all conduits
Table E2 -Conduit Factor Data
Area
(ft '2)
1152. 00
1672. 00
1400.00
0.79
0.20
0.09
1.23
1.23
0.79
0.79
Manning Max Width
Coef. (ft)
0.07000
0.07000
0.07000
0.01400
0.01400
0.01400
0.01400
0.01400
0.01400
0.01400
10. 00
10. 00
10. 00
1. 00
0.50
.33
1.25
.25
.00
1. 00
0.79 0.01400 1. 00
838.0000 feet
Trapezoid
Depth Side
(ft) Slopes
18. 00
22.00
20. 00
1. 00
0.50
0. 33
1. 25
. 25
.00
1. 00
1. 00
. 00
. 00
. 00
Time Low Flow Depth at
Conduit
Name
Number Entrance Exit Exp/Conte Weighting Roughness Which Flow
of Barrels Loss Coef Loss Coef Coef f icnt Parameter Factor n Changes Routing
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
ORIFICE
1.0000
l . 0000
l. 0000
l . 0000
1.0000
0.2000
0.5000
0.2000
0. 5000
0. 5000
l. 0000
l. 0000
l . 0000
l. 0000
1.0000
.0000
.0000
.0000
. 0000
. 0000
If there are messages about (sqrt(g*d)*dt/dx), or
the sqrt (wave celerity) *time step/conduit length
in the output file all it means is that the
program will lower the internal time step to
satisfy this condition (explicit condition).
You control the actual internal time step by
using the minimum courant time step factor in the
HYDRAULICS job control . The message put in words
states that the smallest conduit with the fastest
velocity will control the time step selection.
You have further control by using the modify
conduit option in the HYDRAULICS Job Control.
0 . 8500
0. 8 500
0 . 8500
0. 8500
0. 8500
••=> Warning ! (sqrt (wave celerity) *time step/conduit length)
in conduit 38 is 1 .42 at full depth.
*•====•••••&•••••••*
Conduit Volume
Full pipe or full open conduit volume
Input full depth volume.. 5.79118+05 cubic feet
Table Ela -Junction Data
*••::s•SS:S:=====·········-·z=:::oc:ICCC::::::S:ll••••:caKE•:S*
Inp Junction Ground Crown Invert Qinst
Num Name Elevation Elevation Elevation cfs
l DBA-2
DBA-1
DBB-2,3
4 DBB-1
SECRK,FB-2
FA-1,2
FA-2 .1
FA-2. 2
WCULV,FA3
10 FB-1
11 NE-CREEK
12 2818-ECULV
13 37
317.0000 313.5000 313.0000 0 . 0000
. 0000
. 0000
. 0000
. 0000
317.0000 313.0000
313.0000 310 .6100
313.0000 309.7500
320. 0000 317. 0000
313.9400 311 .0650
313.9400 311 .4400
313.9400 311 .4400
310.0000 308.0000
324.0000 314.0000
320.0000 320.0000
324.0000 313.9900
310. 0000 307. 9000
310. 0000
309.3600
306.0000
295. 0000
309. 9600
310.4400
310.4400
0. 0000
0.0000
.0000
307.0000 .0000
294. 0000 . 0000
298. 0000 290. 0000
293. 9900 0. 0000
306. 9000 . 0000
I Table Elb -Junction Data
*••=:s=•••:s•&•••••••==:oc&•••••••••••===:sc••••:s••••••*
Initial
Depth-ft
0.0000
0.0000
0.0000
0.0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0.0000
0.0000
0. 0000
1.0000
1. 0000
1. 0000
1.0000
1.0000
0.0000 Standard
0.0000 Standard
0.0000 Standard
0.0000 Standard
0.0000 Standard
. 00
. 00
. 00
Dynamic Wave
Dynamic Wave
Dynamic Wave
Dynamic Wave
Dynamic Wave
Page 3of1 1
0122-5.doc
CANYON CREEK TOWNHOMES
S YEAR PROPOSED XP-SWMM ANALYSIS
Inp Jun ct ion
Num Name
DBA-2
DBA-1
DBB-2,3
DBB-1
SECRK,FB-2
FA-1, 2
FA-2.l
FA-2.2
WCULV, FA3
10 FB-1
11 NE-CREEK
12 2818-ECULV
13 37
x
Coard.
99.461
119. 644
99.058
120.185
135.269
90.483
85.336
95. 770
91 .056
132. 616
142 .323
132.962
94 . 966
y
Coard. Type of Manhole
473.221 Seal ed Manhole
4 78 . 014 Sealed Manhole
467.778 Sealed Manhole
466 .467 Sealed Manhole
464.853 Sealed Manhole
452.889 Sealed Manhole
453.292 Sealed Manhole
453.058 Sealed Manhole
446.853 Sealed Manhole
450.836 Sealed Manhole
480.638 Sealed Manhole
445. 097 Sealed Manhole
444.735 Sealed Manhole
Type of Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Table E4 -Conduit Connectivity
Input Conduit
Number Name
Upstream Downstream
Node Node
4
5
10
11
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
SECRK,FB-2 FB-1
NE-CREEK SECRK,FB-2
FB-1 2818-ECULV
WCULV,FA3 37
DBA-2 DBA-1
DBA-1
DBB-2, 3
DBB-1
PIPE-20-19 FA-2.l
ORIFICE FA-1, 2
PIPE-21-19 FA-2.2
NE-CREEK
DBB-1
SECRK,FB-2
FA-1,2
WCULV,FA3
FA-1, 2
Storage Junction Data
Upstream Downstream
Elevation Elevation
295.000
298.000
294.000
307. 000
313. 000
310. 000
309.360
306.000
310.440
309.960
310.440
2 94 . 000 No Design
295. 000 No Design
293.990 No Design
306. 900 No Design
312. 500 No Design
298 .000 No Design
308. 500 No Design
295. ooo No Design
310.065 No Design
307. 000 No Design
310.065 No Design
CROWN DEPTH
STORAGE JUNCTION JUNCTION
MAXIMUM OR
CONSTANT SURFACE
AREA (FT2)
PEAK OR
CONSTANT VOLUME
(CUBIC FEET)
ELEVATION STARTS
NUMBER OR NAME TYPE (FT) FROM
Maximum Capacity
DBA-2
DBA-1
DBB-2,3
DBB-1
FA-1, 2
FA-2.l
FA-2.2
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
2211.9768
1524.6000
7361.6400
2439.3600
9757. 4400
1524 .6000
1524.6000
5207.8244
6963.7006
24092.7453
13099. 6830
3310. 0292
839.7635
839.7635
317.0000 Node Invert
317.0000 Node Invert
313.0000 Node Invert
313.0000 Node Invert
313.9400 Node Invert
313.9400 Node Invert
313.9400 Node Invert
Variable storage data for node IDBA-2
Data
Point
Elevation
ft
313. 0000
315.0000
315.2500
315.5000
315.7500
316.0000
316.2500
316.5000
318.0000
Depth
ft
0.0000
.0000
2.2500
2.5000
2.7500
3.0000
3.2500
3.5000
5.0000
Area
ft'2
.9204
. 9204
245.2428
744. 8760
1378 . 2384
1918 . 8180
2211. 9768
2211. 9768
2211. 9768
Variable storage data for node IDBA-1
Data
Point
Elevation
ft
310.0000
310.2500
310.5000
310.7500
315. 0000
Depth
ft
0.0000
0. 2500
0.5000
0.7500
5.0000
Area
ft'2
0.4356
261. 3600
1001.8800
1524.6000
1524.6000
Variable storage data for node IDBB-2,3
Data
Point
Elevation
ft
309.3600
311.3600
311. 5000
311.7500
312.0000
312.2500
Depth
ft
0. 0000
2.0000
2.1400
2 . 3900
2.6400
2.8900
Area
ft ·2
4.3560
4.3560
130.6800
1001.8800
2962 .0800
4617.3600
Volume
ft •3
0. 0000
7. 8408
31.1883
149.3154
410.6766
820.9496
1336.8650
1889. 8592
5207.8244
Volume
ft'3
.0000
22.7055
170.6183
484.1506
6963.7006
Volume
ft •3
0.0000
8. 7120
16 .1271
140.6601
614.5473
1554. 3541
Page 4of 11
0122-5.doc
CANYON CREEK TOWNHOMES
5 YEAR PROPOSED XP-SWMM ANALYSIS
312.5000
315.3600
3. 1400
6.0000
7361.6400
7361.6400
Variable storage data for node IDBB-1
Data
Point
Elevation
ft
306.0000
306. 2500
306.5000
306.7500
307. 0000
307. 2500
312.0000
Depth
ft
0.0000
0. 2500
0.5000
0. 7500
l. 0000
1. 2500
6.0000
Area
f t'2
4.3560
174.2400
784.0800
1655.2800
2308.6800
2439.3600
2439.3600
Variable storage data for node IFA-1,2
Data
Point
10
Elevation
ft
309.9600
311. 9600
312.0200
312.1200
312.2200
312.3200
312.4200
312.5200
312.6200
312.6700
Depth
ft
.0000
. 0000
. 0600
.1600
.2600
.3600
.4600
. 5600
. 6600
. 7100
Area
ft'2
4.3560
4.3560
87.1200
740.5200
2003. 7600
5314.3200
7666. 5600
8363.5200
8929. 8000
9757.4400
Variable storage data for node IFA-2.
Data
Point
10
Elevation
ft
310.4400
312.4400
312.5000
312.6000
312. 7000
312.8000
312. 9000
313.0000
313.1000
313.1500
Depth
ft
0. 0000
2. 0000
2.0600
2.1600
2.2600
2.3600
2.4600
2.5600
2. 6600
2. 7100
Area
ft'2
4 .3560
4.3560
87.1200
696.9600
1524.6000
1524.6000
1524.6000
1524.6000
1524.6000
1524.6000
Variable storage data for node IFA-2 .2
Data
Point
10
Elevation
ft
310.4400
312.4400
312.5000
312.6000
312.7000
312.8000
312.9000
313.0000
313.1000
313.1500
Weir Data
Depth
ft
0. 0000
2. 0000
. 0600
.1600
.2600
2.3600
2.4600
2.5600
.6600
2. 7100
From To
Junction Junction
Link
Number
DBA-2
DBA-1
DBB-2,3
DBB-1
FA-2.l
FA-2.2
FA-2.2
DBA-2
DBA-1 WEIR
NE-CREEK WEIR
088-1 WEIR
SECRK,FB-2WEIR
FA-1,2 WEIR
FA-1,2 WEIR
DBB-2,3 WEIR
DBB-2,3 WEIR
tt
tt tt 3
tt tt
tt
tt
tt
Area
ft'2
4 .3560
4.3560
87.1200
696 .9600
1524.6000
1524 .6000
1524.6000
1524. 6000
1524.6000
1524.6000
Crest
Type Height (ft)
.23
4. 00
2.80
4 . 00
2.35
. 35
2.56
2.38
FREE OUTFALL DATA I DATA GROUP Il)
BOUNDARY CONDITION ON DATA GROUP Jl
3038.4549
24092. 7453
Volume
ft'3
0.0000
17.1788
127.8404
426.0572
919.2929
1512. 7230
13099. 6830
Volume
ft'3
0. 0000
8. 7120
10.9311
46.9857
179.0658
531 .7759
1177. 2382
1978. 4895
2843.0010
3310.0292
Volume
ft'3
. 0000
8. 7120
10. 9311
45.2809
153.6935
306.1535
458.6135
611. 0735
763.5335
839.7635
Volume
ft '3
0. 0000
8 . 7120
10 .9311
45.2809
153.6935
306.1535
458.6135
611. 0735
763.5335
839.7635
Weir
Top (ft)
Weir
Length I ft)
4. 00
10. 00
3.80
7 .00
3.50
3.50
3.50
4.00
5. 00
60. 00
5. 00
20. 00
23.00
23.00
23.00
10. 00
Outfall at Junction .... 2818-ECULV has boundary condition number .
Outfall at Junction .... 37 has boundary condition number.
Discharge
Coefficient
3. 0000
3. 0000
.0000
3. 0000
. 0000
. 0000
. 0000
. 0000
Weir
Power
1.5000
1.5000
1.5000
1.5000
1.5000
.5000
l. 5000
l. 5000
Page 5 of 11
0122-5.doc
CANYON CREEK TOWNHOMES
5 YEAR PROPOSED XP-SWMM ANALYSIS
INTERNAL CONNECTIVITY INFORMATION
CONDUIT JUNCTION JUNCTION
WEIR DBA-2 DBA-1
WEIR DBA-1 NE -CREEK
WEIR DBB-2,3 DBB-1
WEIR DBB-1 SECRK, FB -2
WEIR FA-2 .1 FA-1,2
WEIR FA-2. 2 FA-1,2
WEIR FA-2.2 DBB-2,3
WEIR DBA-2 DBB-2,3
PREE 2818-ECULV BOUNDARY
FREE 37 BOUNDARY
Table EB -Junction Time Step Limitation Summary
Not Convr
Avg Convr
Conv err
Omega Cng
Max Itern
• Number of times this junction did
converge during the simulation.
-Average junction iterations.
~ Mean convergence error.
• Change of omega during iterations
• Maximum number of iterations
not
Junction Not Convr Avg Convr Total Itt Omega Cng Max Itern Ittrn >10 Ittrn >25 Ittrn >40
DBA-2 1. 08 54442
DBA-1 1. 07 53758
DBB-2, 3 1. 39 70191
DBB-1 1.34 67567
SECRK, FB-2 1.17 59114
FA-1, 2 1. 24 62291
FA-2 .1 1. 24 62364
FA-2.2 1. 24 62364
WCULV, FA3 1. 08 54517
FB-1 1. 00 50348
NE-CREEK 1. 00 50370
2818-ECULV 1. 92 96457
37 1.61 81000
Total number of iterations for all junctions.
Minimum number of possible iterations.
Efficiency of the simulation ..
824783
654524
1.26
Good Efficiency
Extran Efficiency is an indicator of the efficiency of
the simulation. Ideal efficiency is one iterat ion per
time step. Altering the underrelaxation parameter,
lowering the time step, increasing the flow and head
tolerance are good ways of improving the efficiency,
another is lowering the internal time step. The lower
efficiency generally the faster your model wil l run.
I I I I I
the I
I If your efficiency is less than 1.5 then you may try I
increasing your time step so that your overall simulation!
is faster. Ideal efficiency would be around 2.0 I
Good Efficiency < l. 5 mean iterations
Excellent Efficiency< 2.5 and > 1.5 mean iterations
Good Efficiency< 4.0 and> 2 .5 mean iterations
Fair Efficiency< 7.5 and> 4.0 mean iterations
Poor Efficiency > 7.5 mean iterations
*•======c:a::::::a1:::::::::sssa••z:z:ms•••:sc:o::o:•••••::a11:••••==*
Table E9 -JUNCTION SUMMARY STATISTICS I I The Maximum area is only the area of the node, it I I does not include the area of the surrounding conduits!
* ••"' • •• •• ••sss•s •••="'"'===•a======•••••"'"'•••• a:m::1::a••s••:: *
Uppermost Maximum Time
I I I I I I
Feet o f
Ground PipeCrown Junction of Surcharge
Junction Elevation Elevation Elevation Occurence at Max
Name feet feet feet Hr. Min. Elevation ---------------------------
DBA-2 317.0000 317.0000 315.5190 13 . 0000
DBA-1 317.0000 317.0000 312.3452 29 0. 0000
DBB-2,3 313.0000 313. 0000 311.4018 16 . 0000
DBB-1 313.0000 313. 0000 307 .7665 24 . 0000
SECRK,FB-2 320.0000 317.0000 306 . 4009 10 0. 0000
FA-1,2 313.9400 313.9400 312 . 7774 22 0. 0000
FA-2.l 313.9400 313 . 9400 312 . 7830 22 0.0000
PA-2.2 313 .9400 313.9400 312 .7830 22 0.0000
WCULV,FA3 310.0000 308. 0000 307. 5878 10 0 . 0000
FB-1 324.0000 314.0000 306. 3905 10 0 . 0000
NE-CREEK 320. 0000 320.0000 306.4190 . 0000
2818-ECULV 324 . 0000 313. 9900 306.3900 . 0000
37 310. 0000 307. 9000 307.4877 10 .0000
0
Maximum
Freeboard Junction
of node Area
feet ft'2
. 4810 792.9837
.6548 1524.6000
. 5982 42.0519
. 2335 2439.3600
13 .5991 12.5660
1 .1626 9757.4400
.1570 1524 . 6000
.1570 1524 .6000
. 4122 12 .5660
17 .6095 12 .5660
13. 5810 12.5660
17.6100 12 . 5660
2.5123 12.5660
Page 6 of 11
0122-5.doc
CANYON CREEK TOWNHOMES
5 YEAR PROPOSED XP-SWMM ANALYSIS
Table ElO -CONDUIT SUMMARY STATISTICS I
Note: The peak flow may be l ess than the design flow I
and the conduit may s till surcharge because of the I
downstream boundary conditions. I
Time Time
Name
Conduit
Name
Design
Flow
(cfs)
Conduit
Design Vertical
Velocity Depth
(ft/a) (in)
Maximum
Computed
Flow
(cfsl
of
Occurence
Hr. Min.
Maximum
Computed
Velocity
( ft/s)
of
Occurence
Hr. Min .
Ratio of Maximum Depth >
Max. to at Pipe Ends
Design Upstream Dwnstrm
Flow (ft) (ft)
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
WEIR ij l
7648.6
21 775.
4436.7
10. 462
0. 5210
0. 9196
11.125
28.135
.339
5.427
.339
6.6394 216.0000 299.7404
13.0235 264 .0000 290.8377
3.1691 240.0000 299.9397
13.3204
2 .6536
10.7521
9.0657
22. 9264
.9785
6.9098
2.9785
12. 0000
6. 0000
3. 9600
15.0000
15.0000
12.0000
12.0000
12.0000
6. 804 2
l. 0841
0.6426
Undefnd Undefnd Undefnd
8. 6238
.0676
.3481
. 9134
.3481
.0000
WEIR Undefnd Undefnd Undefnd .0000
WEIR Undefnd Undefnd Undefnd .0000
WEIR Undefnd Undefnd Undefnd 0 .0000
WEIR Undefnd Undefnd Undefnd 0.0000
WEIR Undefnd Undefnd Undefnd 0.0000
WEIR Undefnd Undefnd Undefnd 0 .0000
WEIR
FREE
FREE
Undefnd Undefnd Undefnd l. 5545
Undefnd Undefnd Undefnd299 . 9397
Undefnd Undefnd Undefnd 6.8042
Table Ell. Area assumptions used in the anal ysis!
Subcritical and Critical flow assumptions from I
Subroutine Head. See Figure 17-1 in the I
manual for further information. I
10
41
10
10
13
29
16
24
49
10
49
0
13
10
10
Length of
0 . 554 9
0.7458
0 . 5129
14 .1791
5.4793
.8832
. 0955
.6203
l. 9927
7.5734
l. 9927
10
41
10
10
13
29
16
24
49
14
49
.0392 306.4009 306.3905
.0134 306.4190 306.4009
0.0676 306.3905 306.3900
.6504 307.5878 307.4877
2 .0806 315.5190 312.9791
0.6988 312.3452 306.4190
0.7751 311.4018 309.3270
.2512 307.7665 306.4009
.5763 312.7830 312.7774
.9054 312.7774 307.5878
.5763 312.7830 312.7774
Length
of
Dry
Flow (min)
Length
of Sub-
Critical
Flow (min)
Length of
Upstream
Critical
Flow(min)
Downstream Maximum Maximum Maximum
Vel•O
(ft.2/s)
Conduit
Name
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
0.0000
0.0000
0.0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0.0000
0.0000
60.0000
60.0000
60.0000
60.0000
0 . 0000
60.0000
0. 0000
60.0000
51.2958
60.0000
51. 2958
0. 0000
0 . 0000
0 . 0000
0 . 0000
0 . 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
Critical Hydraulic X-Sect
Flow(min) Radius-m Area(ftA2)
0. 0000
0. 0000
0. 0000
0. 0000
60. 0000
. 0000
60. 0000
0. 0000
8. 704 2
0. 0000
8. 7042
6.3523
5.3433
6.6165
0. 2744
0 .1507
.0825
. 3484
0.3498
0. 2921
0.2610
0. 2921
540.1866 6.6008
390.0311 7.3902
584.8376 6.3570
0.4799 8.3330
0.1978 .2137
.0934 37 .0440
.0653 11.6119
.2883 37.0016
. 8180 l. 6928
. 6524 12 . 5983
. 8180 l. 6928
I Table El2. Mean Conduit Flow Information
Conduit
Name
Mean
Flow
(cfs)
CREEK-S 294.8403
CREEK-N 290.6179
2818-HW 294.8903
38 .1649
12PIPE1 .4974
PIPE . 6179
15_Bl-B2 3.0641
PIPE-OB .2722
PIPE-20-19 0 .0124
ORIFICE 3.6832
PIPE-21-19 0.0124
WEIR ij 0. 0000
WEIR ij . 0000
WEIR ij .0000
WEIR ij 4 . 0000
WEIR ij 5 0. 0000
WEIR ij 0 . 0000
WEIR ij 0 .0000
WEIR ij 0 .3025
FREE# 294 .8903
FREE ij 4.1650
Total
Flow
(ft •3)
1061425.
1046225.
1061605.
14993.74
1790.569
2224 .424
11030. 74
11779 .81
44.6902
13259. 52
44.6902
0.0000
0.0000
0.0000
0.0000
0.0000
0. 0000
0. 0000
1088.954
1061605.
14994.08
Mean
Percent
Change
0.0643
0 . 0171
0 . 0650
0. 0280
0 . 0042
0. 0003
0 .0339
0.0341
0 . 0227
0 . 0161
0 . 0227
Low
Flow
Weightng
.0000
l. 0000
l. 0000
1.0000
. 0000
. 0000
. 9589
. 0000
. 0000
. 0000
. 0000
Mean Mean
Froude Hydraulic
Number Radius
0.0285
0.0453
0.0253
3.3155
1.2144
0.8428
.3234
. 5171
. 0626
1 .8263
0. 0626
.3521
.3430
. 6165
.2331
.0795
0 . 0825
0 . 1752
0. 3027
0 .2378
0 . 2366
.2378
Mean
Cross
Area
540.1641
389. 9956
584.8366
0. 3600
.1103
. 0930
0. 4 950
1.0430
0.7460
0. 5754
0.7460
Mean
Conduit
Roughness
0. 0700
0. 0700
. 0700
. 0140
. 0140
.0140
0.0140
0.0140
0.0140
.0140
0.0140
Page 7of 11
0122-5 .doc
CANYON CREEK TOWNHOMES
5 YEAR PROPOSED XP-SWMM ANALYSIS
I Table El3. Channel losses(H), headwater depth (HW), tailwater I depth (TW) , critical and normal depth (Ye and Yn) . I Use this section for culvert comparisons
Conduit
Name
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
Maximum
Flow
299.740
290 .838
299.940
6.804
1.084
0 . 643
8.624
7.068
l. 348
4. 913
1.348
Head Friction Critical
Loss Loss Depth
0.000
0.000
.000
0.000
0. 572
1.079
1.495
0. 728
0.000
1.544
0.000
. 012
.026
.000
0.100
1. 972
4.918
0.625
0.661
0.122
3.325
0.122
. 358
. 302
2.376
. 000
.479
. 345
1.140
l. 063
0 .491
0 . 911
0 . 491
Normal
Depth
4 .411
3.325
. 397
.588
. 500
. 203
.827
0 .427
0. 545
. 746
0. 545
CULVERT ANALYSIS CLASSIFICATION, and the time the I
culvert was in a particular classification I
during the simulation. The time is in minutes. I
The Dynamic Wave Equation is used for all conduit!
analysis but the culvert flow classification I
condition is based on the HW and TW depths. I
HW
Elevat
306.401
306.418
306.390
307.588
315.519
312.345
311.402
307.766
311.240
312.586
311.240
TW
Elev at
306.390 Max Flow
306.400 Max Flow
306. 390 Max Flow
307.488 Max Flow
312.979 Max Flow
306.418 Max Flow
309.327 Max Flow
306.401 Max Flow
311.043 Max Flow
307.587 Max Flow
311. 043 Max Flow
Inlet Inlet
Mild
Slope
Critical D
Conduit Outlet
Name Control
Mild
Slope TW
Control
Outlet
Control
Steep
Slope TW
Insignf
Entrance
Control
Slug Flow
Outlet/
Entrance
Control
Mild
Slope
TW > D
Outlet
Control
Mild
Slope
TW <= 0
Outlet
Control
Outlet
Control Control Configuration
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
. 000
. 000
. 000
. 000
.113
. 000
0. 000
0. 000
0.700
0. 000
0. 700
60. 000
60. 000
60.000
0.000
28.225
0.000
0.000
0.000
10.225
0.000
10.225
. 000
. 000
. 000
. 000
. 050
60. 000
60. 000
0. 000
. 000
60. 000
. 000
0. 000
0 .000
0.000
.000
.000
.000
.000
22.738
0 .000
.000
.000
0 .000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
4 9. 075
0 . 000
49.075
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0 .000
0.000
51.000
27. 613
0.000
0.000
37.263
0.000
0.000
0.000
Kinematic Wave Approximations I
Time in Minutes for Each Condition I
Conduit Length of Slope Super-
Name Normal Flow Criteria Critical
Roll
Waves
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
0. 00
. 00
. 00
. 83
.05
. 00
. 00
. 00
.33
0. 00
1. 33
60. 00
60. 00
60. 00
. 83
0.06
0. 00
0. 00
0.00
1. 64
0.00
1. 64
0. 00
0 . 00
. 00
60. 00
11. 43
0.00
4 9. 09
0 . 00
0.19
11. 06
0.19
Table El5 -SPREADSHEET INFO LIST
0 .00
0.00
0. 00
. 00
. 00
. 00
.00
. 00
. 00
. 00
. 00
Conduit Flow and Junction Depth Information for use in
spreadsheets. The maximum values in this table are the
true maximum values because they sample every time step.
The values in the review results may only be the
maximum of a subset of all the time steps in the run.
Note: These flows are only the flows in a single barrel.
Conduit
Name
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl -B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
WEIR # l
WEIR #
WEIR #
Maximum
Flow
299.7404
290.8377
299. 9397
. 8042
. 0841
.6426
.6238
7.0676
1.3481
4. 9134
1.3481
0. 0000
. 0000
.0000
Total
Fl ow
1061424. 93
1046224.62
1061604. 91
14993.7373
1790.5689
2224.4242
11030. 7383
11779. 8069
44.6902
13259. 5201
44 .6902
0.0000
0.0000
0.0000
Maximum
Velocity
0.5549
0.7458
0.5129
14.1791
5. 4 793
6.8832
8. 0955
5. 6203
1. 9927
7.5734
1. 9927
0.0000
0. 0000
0. 0000
## Junction Invert
## Name Elevation
## --- - -- - - - --- - --- - - -
## DBA-2 313.0000
## DBA-1 310.0000
## DBB-2,3 309.3600
## DBB-1 306.0000
## SECRK,FB-2 295.0000
## FA-1,2 309.9600
## FA-2.l 310.4400
## FA-2.2 310.4400
## WCULV, FA3 307 . 0000
## FB-1 294. 0000
## NE-CREEK 298.0000
## 2818-ECULV 293.9900
## 37 306.9000
##
.000 None
.000 None
.000 None
.000 None .ooo None
.000 None
.000 None
.000 None
O. 000 None
0.000 None o.ooo None
Maximum
Elevation
315 .5190
312.3452
311.4018
307.7665
306.4009
312.7774
312. 7830
312.7830
307. 5878
306.3905
306 .4190
306.3900
307.4877
Page 8of11
0122-5.doc
CANYON CREEK TOWNHOMES
5 YEAR PROPOSED XP-SWMM ANALYSIS
WEIR
WEIR
WEIR
WEIR
WEIR
FREE
FREE
0.0000 .0000
0.0000 .0000
0.0000 0.0000
0.0000 .0000
1.5545 1088.9539
299 .9397 1061604.95
6 .8042 14994.0819
0.0000
0.0000
0.0000
0. 0000
0. 0000
0. 0000
0. 0000
Table El5a -SPREADSHEET REACH LIST
Peak flow and Total Flow listed by Reach or those
conduits or diversions having the same
upstream and downstream nodes.
Upstream
Node
SECRK, FB-2
NE-CREEK
FB-1
WCULV, FA)
DBA-2
DBA-1
DBB-2,3
DBB-1
FA-2 .1
FA-1, 2
FA-2. 2
DBA-2
Downstream
Node
FB-1
SECRK,FB-2
2818-ECULV
37
DBA-1
NE-CREEK
DBB-1
SECRK, FB-2
FA-1, 2
WCULV, FA3
FA-1, 2
DBB-2, 3
Maximum
Flow
299.7404
290. 8377
299 .9397
6.8042
1 .0841
0. 6426
8.6238
7 . 0676
1.3481
4. 9134
1.3481
1.5545
Total
Flow
l.0614E+06
1. 0462E+06
l. 0616E+06
14993.7373
1790.5689
2224.4242
11030. 7383
11779. 8069
44.6902
13259. 5201
44.6902
1088.9539
##
##
##
##
##
##
##
#########################################################
# Table El6. New Conduit Information Section #
# Conduit Invert (IE) Elevation and Conduit #
# Maximum Water Surface (WS) Elevati ons #
#########################################################
Conduit Name Upstream Node Downstream Node IE Up IE On WS Up WS On Conduit Type
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_81-82
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
SECRK,FB-2
NE-CREEK
FB-1
WCULV,FA3
DBA-2
DBA-1
DBB-2,3
DBB-1
FA-2.1
FA-1,2
FA-2.2
FB-1
SECRK, FB-2
2818-ECULV
37
DBA-1
NE-CREEK
DBB-1
SECRK, FB-2
FA-1,2
WCULV,FA3
FA-1,2
295.0000 294.0000 306.4009 306.3905
298.0000 295.0000 306.4190 306.4009
294.0000 293.9900 306.3905 306.3900
307.0000 306.9000 307.5878 307.4877
313.0000 312.5000 315.5190 312.9791
310.0000 298.0000 312.3452 306.4190
309.3600 308.5000 311.4018 309.3270
306.0000 295.0000 307.7665 306.4009
310.4400 310.0650 312.7830 312.7774
309.9600 307.0000 312.7774 307.5878
310.4400 310.0650 312.7830 312.7774
Trapezoid
Trapezoid
Trapezoid
Circular
Circular
Circular
Circular
Circular
Circular
Circular
Circular
Table El8 -Junction Continuity Error. Division by Volume added 11/96
Continuity Error "" Net Flow + Beginning Volume -Ending Volume
Total Flow + (Beginning Volume + Ending Vol ume) /2
Net Flow .. Node Inflow -Node Outflow
Total Flow =-absolute (Inflow + Outflow
Intermediate column is a judgement on the node continuity error.
Excellent < 1 percent
Fair 5 to 10 percent
Terrible > 50 percent
Great
Poor
to 2 percent
10 to 25 percent
Good
Bad
2 to percent
25 to 50 percent
Junction
Name
<------Continuity Error -------> Remaining Beginning Net Flow Total Flow Failed to
Volume \ of Node \ of Inflow Volume Volume Thru Node Thru Node Converge
DBA-2
DBA-1
DBB-2, 3
DBB-1
0. 4 905
75.3427
-583.4518
126.6401
SECRK,FB-2 100507.2762
FA-1,2 -258.9186
FA-2.1 -6.4524
FA-2.2
WCULV, FA3
FB-1
-6.4524
-6.0069
61210.1127
NE-CREEK 29403. 5751
2818-ECULV 2770.5389
37 0.2917
. 00852
1.108
-2. 717
0 . 5336
4.420
-1.018
-10. 02
-10. 02
-.0200
2.763
1.376
0 .1302
. 00097
. 00005
. 00701
0. 0543
0. 0501
1992.9264
0. 0008
0.0174
1422.1203
0. 0004
0.0118 80.6520 146.4692
9.352 100952.0637 201460.4864
0.0241 0 .3605 1661.4904
.00060 0.6049 38.8315
. 00060
. 00056
5. 696
0 . 604 9 38.8315
0.3545 18.3572
61525.3177 122735.4351
2.736 29784.9130 59188.6808
0.2578 3082.2184 5852.8000
.00003 0.0542 0.3588
The total continuity error was l.93233E+OS cubic feet
The remaining total volume was 1. 97420E+05 cubic feet
Your mean node continuity error was Excellent
Your worst node continuity error was Fair
0.5231 5759.5233
646 .1488 5094 . 9967
-583.4514 21477.9893
60.8229 23620 .3994
-1.1465 2122848.742
-1920.0485 24598.8849
-44.6790 44 .6902
-44.6790 44.6902
-24.0095 29963.2555
-0.0047 2123209.806
-0.1927 2092449.041
-0.0427 2123209.858
-0.0129 29987.8192
Page 9 of11
0122-5.doc
CANYON CREEK TOWNHOMES
5 YEAR PROPOSED XP-SWMM ANALYSIS
Table El9 -Junction Inflow Sources
Unit s are either ft"') or m"'J
depending on t he units in your model.
Junction
Name
Constant
Inflow
to Node
DBA-2 . 0000
DBA-1 . 0000
DBB-2, 3 0. 0000
DBB-1 . 0000
SECRK, FB-2 . 0000
FA-1, 2 . 0000
WCULV,FA3 .0000
FB-1 0.0000
NE-CREEK l.0440E+06
2818-ECULV 0. 0000
37 0.0000
User
Infl ow
to Node
2880. 0004
1080.0035
9358.2971
809. 8542
3419.3844
11249. 9844
1709.9981
179.9676
0. 0000
0. 0000
0 . 0000
Interface
Infl ow
to Node
0 . 0000
0. 0000
. 0000
. 0000
. 0000
. 0000
0 . 0000
0. 0000
0 . 0000
0. 0000
0. 0000
DWF
Inlow
to Node
0. 0000
. 0000
0. 0000
0. 0000
0 . 0000
0. 0000
0. 0000
0 . 0000
0 . 0000
. 0000
0. 0000
Table E20 -Junction Flooding and Volume Listing. I
The maximum volume is the total volume I
in the node including the volume in the I
flooded storage area. This is the max j
volume at any time. The volume in the I
flooded storage area is the total volumel
above the ground elevation, where the I
flooded pond storage area starts. I
The fourth column is instantaneous, the fifth is thel
sum of the flooded volume over the entire simulation!
Units are either ft"'3 or m'"'J depending on the units. I
Outflow
from Node
. 0000
. 0000
. 0000
. 0000
0. 0000
0. 0000
0 .0000
0. 0000
.0000
l.0616E+06
14994 .0819
Out of
System
Flooded
Volume
Stored in System
Junction Surcharged Flooded
Name Time (min) Time(min)
DBA-2
DBA-1
DBB-2,3
DBB-1
SECRK,FB-2
FA-1,2
FA-2 .1
FA-2 . 2
WCULV, FA3
FB-1
NE-CREEK
2818-ECULV
37
0 . 0000
. 0000
0.0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0.0000
0.0000
0.0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
* """""""""' •••z::;;: ,.. .. .,.,. •• """""""'"' s .,,.. •:: ""'"""'"'"' * I Simulation Specific Information
0. 0000
0.0000
0.0000
0.0000
0.0000
.0000
. 0000
0. 0000
0. 0000
. 0000
0. 0000
0. 0000
0. 0000
Maximum Ponding Allowed
Volume Flood Pond Volume
163.9142
2916. 2277
9.5467
2772. 5954
143.2636
3310. 0292
280. 2824
280. 2824
7. 3857
155. 6986
105. 7931
155. 8184
.3847
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
0.0000
0.0000
0. 0000
0. 0000
0.0000
0.0000
0. 0000
11 Number of Simulated Conduits.
Number of Junctions.
Evaporation
from Node
0.0000
0. 0000
0 . 0000
0. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
Number of Input Conduits ....
Number of Natural Channels ..
Number of Storage Junctions ....
Number of Orifices.
Number of Weirs. . ........ .
Number of Pumps ................ .
Number of Free Outfalls .......... . Number of Tide Gate Outfalls.
I Average \ Change in Junction or Conduit is defined as: I Conduit \Change••> 100.0 I Q(n+l) -Q(n) ) I Qfull I Junction\ Change••> 100.0 I Y(n+l) -Yin) ) I Yfull
The Conduit with the largest average change was .. 2818-HW with
The Junction with the largest average change was .FA-2 .2 with
The Conduit with the largest sinuosity was ....... PIPE-20-19 with
I Table E21. Continuity balance at the end of the simulation I Junction Inflow, Outflow or Street Flooding I Error -Inflow + Initial Volume -Outflow - Final Volume
Inf low Inf low Average
Junction Volume,ft•3 Inflow, cfs
DBA-2 2880. 0005 . 8000
DBA-1 1080. 0035 0. 3000
DBB-2,3 9358.2971 2.5995
DBB-1 809.8542 0 .2250
SECRK,FB-2 3419.3844 0.9498
FA-1,2 11249.9844 3 .1250
WCULV,FA3 1709 .9981 0.4750
FB-1 179.9676 0.0500
NE-CREEK .044000E+06 290.0000
0.065 percent
. 012 percent
4.480
21
13
8
Page JO of 11
0122-5.doc
r CANYON CREEK TOWNHOMES
S YEAR PROPOSED XP-SWMM ANALYSIS
Outflow Outflow Average
Junction Volume, ft"'3 Outflow, cf a
--------------------- --------------
2818-ECULV l.061605E+06 294 .8903
37 14994 . 0819 4.1650
I Initial system volume 3. 9256E+OS Cu Ft I I Total system inflow volume l .0747E+06 Cu Ft I I Inflow + Initial volume 1. 4673E+06 Cu Ft I
l·····················································I I Total system outflow 1. 0766E+06 Cu ft I I Volume left in system 1. 9742E+05 Cu ft I I Evaporation 0. OOOOE+OO Cu ft I
[ Outflow + Final Volume 1. 2740E+06 Cu ft [
Total Model Continuity Error
Error in Continuity, Percent •
Error in Continuity, ft"')
+ Error means a continuity loss,
13. 16967
193232.213
a gain
Page 11 of 11
0122-5.doc
CANYON CREEK TOWNHOMES
10 YEAR PPROPOSED XP-SWMM ANALYSIS
Input File C•\XPS\0122-lOii.XP
Current Directory: C:\XPS\XP-UDD-1
Executable Name: C: \XPS\XP-UDD-1 \swmmengw. exe
Read a line{s) and found O items(s) from your cfg file.
I XP-SWMM2000 I Storm Water Management Model I I Version 7.51 I l···················=·······===····====·····=···I I Developed by I
l···················=·=···=·===····====·····=···I I I I XP Software Inc. and Pty. Ltd. I
I I I Based on the U.S. EPA I
J Storm Water Management Model Version 4.40 I
I I I Originally Developed by I I Metcalf & Eddy, Inc. I l University of Florida J I Camp Dresser & McKee Inc. I I September 1970 I
I I I EPA-SWMM is maintained by I I Oregon State University I I Camp Dresser & McKee Inc. I l··==······=·····==··==·························I I XP Software October, 2000 I I Data File Version ---> 9.0 I
Input and Output file names by SWMM Layer
Input File to Layer
Output File to Layer
JOT US
JOT US
Special command line arguments in XP-SWMM2000. This I
now includes program defaults . $Keywords are the program!
defaults. Other Keywords are from the SWMMCOM.CFG file. I
or the command line or any cfg file on the command line. I
Examples include these in the file xpswm.bat under the I
section :solve or in the windows version XPSWMM32 in thel
file solve.bat I
Note: the cfg file should be in the subdirectory swmxp I I or defined by the set variable in the xpewm.bat I
file. Some examples of the command lines possible!
are shown below: I
swmmd swmmcom.cfg
swmmd my . cfg
swmmd nokeys nconvS perv extranwq
$powerstation 0. 0000
$perv 0. 0000
Soldegg . 0000
Sas 0. 0000
$nof lat 0. 0000
$oldomega 0. 0000
$oldvol 0. 0000
$implicit .0000
$oldhot .0000
$oldscs 0. 0000
$flood . 0000
$nokeys 0.0000
$pzero 0.0000
$oldvol2 0.0000
Soldhotl 0. 0000
$pumpwt 0.0000
$ecloss 0. 0000
$exout 0.0000
$oldbnd 0. 0000
$nogrelev 0. 0000
$ncmid . 0000
$new nl 97 . 0000 -$best97 . 0000
$newbound . 0000
11
21
24
28
29
31
33
40
42
55
59
63
70
77
97
154
161
164
290
294
295
I I I I
I Parameter Values on the Tapes Common Block.These are the I I values read from the data file and dynamically allocated I I by the model for this simulation. I
Number of Subcatchments in the Runoff Block (NW) ...
Number of Channel/Pipes in the Runoff Block (NG).
Runoff Water quality constituents (NRQ) ............ .
Runoff Land Uses per Subcatchment (NLU) ......... .
Number of Elements in the Transport Block (NET)
Number of Storage Junctions in Transport (NTSE)
Page 1 of 11
0122-10.doc
CANYON CREEK TOWNHOMES
10 YEAR PPROPOSED XP-SWMM ANALYSIS
Number of Input Hydrographs in Transport (NTH)
Number of Elements in the Extran Block (NEE) . 21
Number of Groundwater Subcatchments in Runoff (NGW) .
Number of Interface locations for all Blocks (NIE).. 21
Number of Pumps in Extran (NEP) . . . . O
Number of Orifices in Extran (NEO).
Number of Tide Gates/Free Outfalls in Extran (NTG) .
Number of Extran Weirs (NEW) ..
Number of sea hydrograph points .................... .
Number of Extran printout locations (NPO) .......... .
Number of Tide elements in Extran (NTE) ..... .
Number of Natural channels (NNC)
Number of Storage junctions in Extran (NVSE) . . . 7
Number of Time history data points in Extran(NTVAL). o
Number of Variable storage elements in Extran (NVST) 10
Number of Input Hydrographs in Extran (NEH) . 10
Number of Particle sizes in Transport Block (NPS).
Number of User defined conduits (NHW)...... 21
Number of Connecting conduits in Extran (NECC) . 20
Number of Upstream elements in Transport (NTCC) . 10
Number of Storage/treatment plants (NSTU) ..
Number of Values for Rl lines in Transport (NRl).
Number of Nodes to be allowed for (NNOD).... 21
Number of Plugs in a Storage Treatment Unit ....
#######################################################
# Entry made to the HYDRAULIC Layer(Block) of SWMM #
# Last Updated October,2000 by XP Software #
CANYON CREEK TOWNHOMES
HYDRAULICS TABLES IN THE OUTPUT FILE
These are the more important tables in the output file.
You can use your editor to find the table numbers,
for example: search for Table E20 to check continuity.
This output file can be imported into a Word Processor
and printed on US letter or A4 paper using portrait
mode , courier font, a size of 8 pt . and margins of 0.75
Table El Basic Conduit Data
Table E2 -Conduit Factor Data
Table E3 Junction Data
Table E4 Conduit Connectivity Data
Table E4a Dry Weather Flow Data
Table ES Junction Time Step Limitation Summary
Table ESa Conduit Explicit Condition Summary
Table E6 Final Model Condition
Table E? Iteration Summary
Table EB Junction Time Step Limitation Summary
Table E9 Junction Summary Statistics
Table ElO -Conduit Summary Statistics
Table Ell Area assumptions used in the analysis
Table El2 Mean conduit information
Table El3 Channel losses (H) and culvert info
Table El4 Natural Channel Overbank Flow Information
Table ElS Spreadsheet Info List
Table El6 New Conduit Output Section
Table El? Pump Operation
Table ElB Junction Continuity Error
Table El9 Junction Inflow Sources
Table E20 Junction Flooding and Volume List
Table E21 Continuity balance at simulation
Table E22 Model Judgement Section
Time Control from Hydraulics Job Control
Year. 95 Month.
Day. Hour ..
Minute. Second ...
Control information for simulation
Integration cycles ...
Length of integration step is.
Simulation length ............ .
Do not create equiv. pipes (NEQUAL).
Use U.S. customary units for I/O.
Printing starts in cycle.
Intermediate printout intervals of.
Intermediate printout intervals of.
Summary printout intervals of.
Summary printout time interval of ..
Hot start file parameter (REDO) .
Initial time.
Iteration variables: SURTOL.
SURJUN.
QREF.
Minimum depth (m or ft).
14400
0 . 25
1. 00
500
2.08
500
2.08
l
0.00
0.0001
.0060
.0000
. 0000
end
seconds
hours
cycles
minutes
cycles
minutes
hours
mm or inch
Page 2of11
0122-10.doc
CANYON CREEK TOWNHOMES
10 YEAR PPROPOSED XP-SWMM ANALYSIS
Underrelaxation parameter.
Time weighting parameter .. .
Courant Time Step Factor .. .
Default Expansion/Contraction K
Default Entrance/Exit K.
Default surface area of junctions ..
NJSW input hydrograph junctions.
or user defined hydrographs.
Table El -Conduit Data
Inp Conduit
Num Name
l CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
1S_Bl-B2
PIPE-OB
PIPE-20-19
10 ORIFICE
11 PIPE-21-19
Length Conduit
(ft) Class
200. 00 Trapezoid
200.00 Trapezoid
10.00 Trapezoid
1.00 Circular
so. 00 Circular
42 .00 Circular
25. 00 Circular
SO. 00 Circular
75. 00 Circular
110. 00 Circular
75 .00 Circular
Total length of all conduits
Table E2 -Conduit Factor Data
0.8500
0. 8500
1.0000
0. 0000
0. 0000
12.57 square feet.
Area
(ft ·21
1152. 00
1672. 00
1400. 00
0. 79
0 . 20
0. 09
l. 23
l. 23
0. 79
0. 79
0. 79
Manning Max Width
Coef. (ft)
0.07000
0.07000
0. 07000
0.01400
0. 01400
0 . 01400
0 . 01400
0 . 01400
0.01400
0 .01400
0.01400
10. 00
10. 00
10. 00
.00
.so
0.33
l. 25
.25
.00
l. 00
l. 00
83 8. 0000 feet
Trapezoid
Depth Side
(ft) Slopes
18.00
22.00
20. 00
l. 00
0.50
0.33
l. 25
l. 25
l. 00
l. 00
l. 00
3.00
.00
3.00
.00
.00
.00
Time Low Flow Depth at
Conduit
Name
Number Entrance Exit Exp/Conte Weighting Roughness Which Flow
of Barrels Loss Coef Loss Coef Coefficnt Parameter Factor n Changes Routing
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
ORIFICE
.0000
. 0000
. 0000
. 0000
l. 0000
0.2000
0.5000
0. 2000
0.5000
0 . 5000
l. 0000
l. 0000
l. 0000
l. 0000
l. 0000
0. 0000
0 . 0000
. 0000
. 0000
. 0000
If there are messages about (sqrt(g•d)*dt/dx), or
the sqrt (wave celerity) •time step/conduit length
in the output file all it means is that the
program will lower the internal time step to
satisfy this condition (explicit condition).
You control the actual internal time step by
using the minimum courant time step factor in the
HYDRAULICS job control. The message put in words
states that the smallest conduit with the fastest
velocity will control the time step selection.
You have further control by using the modify
conduit option in the HYDRAULICS Job Control .
. 8500
. 8500
.8500
. 8500
.8500
===> Warning ! (sqrt (wave celerity) •time step/conduit length)
in conduit 38 is 1.42 at full depth.
Conduit Volume
Full pipe or full open conduit volume
Input full depth volume. 5. 7911E+OS cubic feet
Table E3a -Junction Data
Inp Junction Ground Crown Invert Qinst
Num Name Elevation Elevation Elevation cfs
l DBA-2
2 DBA-1
3 DBB-2,3
DBB-1
SECRK,FB-2
FA-1, 2
FA-2. l
FA-2. 2
WCULV, FA3
10 FB-1
11 NE-CREEK
12 2818-ECULV
13 37
317.0000 313.5000 313.0000
317.0000 313.0000 310.0000
313.0000 310.6100 309.3600
313. 0000 309. 7500 306. 0000
320. 0000 317. 0000 295. 0000
313.9400 311.0650 309.9600
313.9400 311.4400 310.4400
313.9400 311.4400 310.4400
310.0000 308.0000 307.0000
.0000
.0000
. 0000
. 0000
0. 0000
0. 0000
0. 0000
0.0000
.0000
324. 0000 314. 0000 294. 0000 . 0000
320. 0000 320. 0000 298. 0000 290. 0000
324. 0000 313. 9900 293. 9900 0. 0000
310.0000 307.9000 306.9000 .0000
I Table E3b -Junction Data
·=~---=···====··==···=··====·====·······=======···=··
Initial
Depth-ft
0. 0000
0 . 0000
0. 0000
0. 0000
0. 0000
0.0000
0.0000
0. 0000
0. 0000
0 . 0000
.0000
.0000
0. 0000
1.0000
l. 0000
1.0000
. 0000
1.0000
.0000 Standard Dynamic Wave
.0000 Standard Dynamic Wave
.0000 Standard Dynamic Wave
.0000 Standard Dynamic Wave
0.0000 Standard Dynamic Wave
Page 3 of 11
01 22-10.doc
CANYON CREEK TOWNHOMES
10 YEAR PPROPOSED XP-SWMM ANALYSIS
Inp Junction
Num Name
l DBA-2
DBA-1
DBB-2, 3
DBB-1
SECRK,FB-2
FA-1, 2
FA-2. l
FA-2.2
9 WCULV,FA3
10 FB-1
11 NE-CREEK
12 2818-ECULV
13 37
x
Coard.
99 . 350
119. 754
99. 058
120.185
135.269
90.483
85. 336
95. 770
91.056
132. 616
142.323
132.962
94.966
y
Coard. Type of Manhole
473.331 Sealed Manhole
478.014 Sealed Manhole
467.667 Sealed Manhole
466.356 Sealed Manhole
464.853 Sealed Manhole
452.889 Sealed Manhole
453.292 Sealed Manhole
452.615 Sealed Manhole
446.853 Sealed Manhole
450.836 Sealed Manhole
480. 638 Sealed Manhole
445.097 Sealed Manhole
444.735 Sealed Manhole
Type of Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Table E4 -Conduit Connectivity
Input Conduit
Number Name
Upstream Downstream
Node Node
10
11
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
SECRK, FB-2 FB-1
NE-CREEK SECRK,FB-2
FB-1
WCULV,FA3
DBA-2
DBA-1
DBB-2, 3
DBB-1
PIPE-20-19 FA-2.l
ORIFICE FA-1, 2
PIPE-21-19 FA-2.2
2818-ECULV
37
DBA-1
NE-CREEK
DBB-1
SECRK,FB-2
FA-1, 2
WCULV,FA3
FA-1,2
Upstream Downstream
Elevation Elevation
295.000
298.000
294.000
307.000
313.000
310.000
309.360
306.000
310.440
309.960
310.440
294.000 No Design
295 .000 No Design
293 . 990 No Design
306.900 No Design
312 .500 No Design
298. 000 No Design
308.500 No Design
295. ooo No Design
310.065 No Design
307 . 000 No Design
310 .065 No Design
* =z=====z=== = = = = = = = = = •=== .. • z:::s • =::: ••"' :: • *
Storage Junction Data
MAXIMUM OR PEAK OR CROWN DEPTH
STORAGE JUNCTION JUNCTION CONSTANT SURFACE CONSTANT VOLUME ELEVATION STARTS
NUMBER OR NAME TYPE AREA (FT2) (CUBIC FEET) (FT) FROM
Maximum Capacity
DBA-2
DBA-1
DBB-2, 3
DBB-1
FA-1,2
FA-2 .1
FA-2. 2
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
2211. 9768
1524.6000
7361.6400
2439.3600
9757.4400
1524.6000
1524 .6000
5207. 8244
6963.7006
24092. 7453
13099. 6830
3310. 0292
839.7635
839.7635
317.0000 Node Invert
317.0000 Node Invert
313.0000 Node Invert
313.0000 Node Invert
313. 9400 Node Invert
313. 94 00 Node Invert
313. 94 00 Node Invert
Variable storage data for node IDBA-2
Data
Point
Elevation
ft
313.0000
315.0000
315. 2500
315.5000
315.7500
316.0000
316.2500
316.5000
318. 0000
Depth
ft
0.0000
2. 0000
2.2500
. 5000
. 7500
. 0000
.2500
.5000
.0000
Area
ft'2
3. 9204
3. 9204
245.2428
744. 8760
1378. 2384
1918.8180
2211.9768
2211. 9768
2211. 9768
Variable storage data for node IDBA-1
Data
Point
4
5
Elevation
ft
310. 0000
310. 2500
310. 5000
310. 7500
315. 0000
Depth
ft
0. 0000
0. 2500
0 . 5000
0 . 7500
5. 0000
Area
ft ·2
.4356
261. 3600
1001.8800
1524.6000
1524.6000
Variable storage data for node IDBB-2,3
Data
Point
Elevation
ft
309. 3600
311.3600
311.5000
311.7500
312.0000
312.2500
Depth
ft
0.0000
2.0000
2 .1400
2. 3900
2.6400
2.8900
Area
ft'2
4.3560
4.3560
130.6800
1001. 8800
2962. 0800
4617. 3600
Volume
ft •3
0. 0000
7.8408
31.1883
149.3154
410.6766
820.9496
1336. 8650
1889. 8592
5207.8244
Volume
ft'3
0. 0000
22.7055
170.6183
484. 1506
6963. 7006
Volume
ft'3
.0000
8. 1120
16 .1271
140.6601
614.5473
1554.3541
Page 4 of11
01 22-10.doc
CANYON CREEK TOWNHOMES
10 YEAR PPROPOSED XP-SWMM ANALYSIS
312.5000
315.3600
.1400
6.0000
7361.6400
7361.6400
Variable storage data for node IDBB-1
*=s••=••=====••=====•===••••=======*
Data
Point
4
5
Elevation
ft
306.0000
306.2500
306.5000
306. 7500
307. 0000
307. 2500
312.0000
Depth
ft
0.0000
0 . 2500
0.5000
0.7500
1.0000
l . 2500
6. 0000
Area
ft'2
4.3560
174.2400
784. 0800
1655. 2800
2308. 6800
2439.3600
2439.3600
Variable storage data for node IFA-1,2
Data
Point
10
Elevation
ft
309.9600
311.9600
312.0200
312.1200
312. 2200
312.3200
312.4200
312.5200
312.6200
312.6700
Depth
ft
. 0000
2 . 0000
2.0600
2.1600
2. 2600
.3600
.4600
.5600
.6600
2. 7100
Area
ft'2
4.3560
4.3560
87.1200
740.5200
2003.7600
5314.3200
7666. 5600
8363.5200
8929.8000
9757. 4400
Variable storage data for node IFA-2.l
Data
Point
10
Elevation
ft
310.4400
312.4400
312.5000
312.6000
312.7000
312.8000
312.9000
313.0000
313.1000
313.1500
Depth
ft
. 0000
. 0000
. 0600
.1600
2.2600
.3600
. 4600
.5600
.6600
. 7100
Area
ft'2
4 .3560
4.3560
87.1200
696.9600
1524.6000
1524.6000
1524.6000
1524.6000
1524.6000
1524.6000
Variable storage data for node IFA-2 .2
Data
Point
10
Elevation
ft
310.4400
312.4400
312.5000
312.6000
312.7000
312. 8000
312.9000
313.0000
313.1000
313.1500
Weir Data
Depth
ft
0. 0000
2 . 0000
2 . 0600
2.1600
2.2600
2.3600
2.4600
2.5600
2.6600
2. 7100
From To
Junction Junction
Link
Number
DBA-2
DBA-1
DBB-2,3
DBB-1
FA-2 . l
FA-2.2
FA-2. 2
DBA-2
DBA-1 WEIR
NE-CREEK WEIR
DBB-1 WEIR
SECRK, FB-2WEIR 4
FA-1,2 WEIR 5
FA-1,2 WEIR
DBB-2,3 WEIR
DBB-2, 3 WEIR
Area
ft'2
4.3560
4 .3560
87.1200
696. 9600
1524.6000
1524 . 6000
1524 . 6000
1524. 6000
1524. 6000
1524.6000
Crest
Type Height {ft!
3.23
4 . 00
2.80
4. 00
2.35
2.35
.56
. 38
FREE OUTFALL DATA {DATA GROUP Il)
BOUNDARY CONDITION ON DATA GROUP Jl
3038 .4549
24092. 7453
Volume
ft '3
0. 0000
17.1788
127.8404
426.0572
919.2929
1512. 7230
13099. 6830
Volume
ft '3
. 0000
8. 7120
10 .9311
46.9857
179.0658
531 .7759
1177. 2382
1978.4895
2843.0010
3310.0292
Volume
ft '3
. 0000
.7120
10.9311
45.2809
153.6935
306.1535
458.6135
611. 0735
763.5335
839.7635
Volume
ft '3
0. 0000
8. 7120
10. 9311
45.2809
153.6935
306.1535
458.6135
611.0735
763.5335
839.7635
Weir
Top {ft)
Weir
Length {ft)
4 .00
10.00
3.80
.00
.50
.50
.50
4 .00
5. 00
60. 00
5. 00
20.00
23.00
23.00
23.00
10.00
Outfall at Junction .... 2818-ECULV has boundary condition number.
Outfall at Junction .... 37 has boundary condition number.
Discharge
Coefficient
3. 0000
. 0000
3. 0000
3. 0000
3. 0000
3.0000
. 0000
. 0000
Weir
Power
1.5000
1.5000
l . 5000
l. 5000
. 5000
. 5000
1.5000
1.5000
Page 5 of 11
0122-10.doc
CANYON CREEK TOWNHOMES
10 YEAR PPROPOSED XP-SWMM ANALYSIS
INTERNAL CONNECTIVITY INFORMATION I ····=·····===····===·--···==··=·--····===·-·-===•*
CONDUIT JUNCTION JUNCTION
WEIR DBA-2 DBA-1
WEIR DBA-1 NE -CREEK
WEIR DBB-2, 3 DBB-1
WEIR DBB-1 SECRK,FB-2
WEIR FA-2 .1 FA-1,2
WEIR FA-2.2 FA -1, 2
WEIR FA-2. 2 DBB-2, 3
WEIR DBA-2 DBB-2, 3
FREE 2818-ECULV BOUNDARY
FREE 37 BOUNDARY
Table EB -Junction Time Step Limitation Summary I
*za::sz••••===••••zz:::z:::zzs•E:::azz::•a•aaa::za:::sE•••*
Not Convr = Number of times this junction did
converge during the simulation .
Avg Convr • Average junction iterations.
Conv err • Mean convergence error.
Omega Cng • Change of omega during iterations
Max Itern • Maximum number of iterations
not
Junction Not Convr Avg Convr Total Itt Omega Cng Max Itern Ittrn >10 Ittrn >25 Ittrn >40 ---------------------------
DBA-2 1.07 52673
DBA-1 l. 07 52245
DBB-2,3 l. 40 68876
DBB-1 l. 31 63992
SECRK, FB-2 1.17 57296
FA-1,2 l. 36 66854
FA-2 .1 l. 34 65774
FA-2 .2 1.34 65774
WCULV, FA3 1.19 58153
FB-1 l. 00 49032
NE-CREEK l. 00 49052
2818-ECULV l. 91 93689
37 1.87 91466
Total number of iterations for all junctions.
Minimum number of possible iterations ...
Efficiency of the simulation .....
834876
637416
l. 31
7
10
10
10
Good Efficiency
·==============-·====····===···==================·====······ Extran Efficiency is an indicator of the efficiency of
the simulation. Ideal efficiency is one iter ation per
time step. Altering the underrelaxation parameter,
lowering the time step, increasing the flow and head
tolerance are good ways of improving the efficiency,
another is lowering the internal time step. The lower
efficiency generally the faster your model wil l run.
I I I I I
the I
I If your efficiency is less than 1. 5 then you may try I
increasing your time step so t hat your overall simulation!
is faster. Ideal efficiency would be around 2. o I
Good Efficiency < 1.5 mean iterations
Excellent Efficiency < . 5 and > . 5 mean iterations
Good Efficiency< 4.0 and> .5 mean iterations
Fair Efficiency< 7.5 and> 4.0 mean iterations
Poor Efficiency > 7. 5 mean i terations
I
I I I I I
Table E9 -JUNCTION SUMMARY STATISTICS I I The Maximum area is only the area of the node, it I I does not include the area of the surrounding conduits I
Uppermost Maximum Time Feet of
Ground PipeCrown Junction of Surcharge
Junction Elevation Elevation Elevation Occurence at Max
Name feet feet feet Hr. Min. Elevation
---------------------------
DBA-2 31 7 . 0000 317 . 0000 315 .5399 13 0. 0000
DBA-1 317.0000 317. 0000 312 .1474 30 0 . 0000
DBB-2, 3 313.0000 313 .0000 311 . 6754 16 0. 0000
DBB-1 313.0000 313 .0000 307 . 9897 25 0 . 0000
SECRK,FB-2 320. 0000 317.0000 306. 4009 9 0. 0000
FA-1,2 313.9400 313. 9400 312.7688 23 0. 0000
FA-2.l 313.9400 313 .9400 312.7756 23 0.0000
FA-2.2 313.9400 313. 9400 312. 7756 23 .0000
WCULV,FA3 310 . 0000 JOB . 0000 307 . 5991 10 .0000
FB-1 324.0000 314 . 0000 306.3905 9 .0000
NE-CREEK 320. 0000 320 . 0000 306 .4190 .0000
2818-ECULV 324.0000 313 . 9900 306.3900 . 0000
37 310.0000 307 . 9000 307.4991 10 . 0000
Maximum
Freeboard Junction
of node Area
feet ft'2
1.4601 846.0104
4.8526 1524 . 6000
1. 3 24 6 741 .8041
5.0103 2439. 3600
13.5991 12 .5660
1.1712 9757 .4400
1 .1644 1524 .6000
1. 1644 1524.6000
2.4009 12 .5660
17 .6095 12 .5660
13. 5810 12 .5660
17.6100 12 . 5660
2.5009 12 .5660
Page 6 of 11
0122-1 0.doc
CANYON CREEK TOWNHOMES
10 YEAR PPROPOSED XP-SWMM ANALYSIS
*==s===================================================*
Table ElO -CONDUIT SUMMARY STATISTICS
Note: The peak flow may be less than the design flow
and the conduit may still surcharge because of the
downstream boundary conditions .
Conduit
Design Vert ical
Maximum
Computed
Flow
(cfsl
Time Maximum
Computed
Velocity
( ft/sl
Time Ratio of Maximum Depth >
Max. to at Pipe Ends
Design Upstream Dwnstrm
Name
Conduit
Name
Design
Flow
(cfs)
Velocity Depth
(ft/sl (inl
of
Occurence
Hr. Min.
of
Occurence
Hr. Min. Flow (ft) (ft)
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
WEIR tt 1
WEIR tt
WEIR tt
WEIR tt 4
WEIR tt 5
WEIR tt
WEIR tt
WEIR tt
FREE tt 1
FREE tt 2
7648.6
21775.
4436.7
10. 462
0. 5210
0.9196
11. 125
28.135
.339
5. 427
.339
6.6394 216 .0000 300 .3135
13.0235 264.0000 290.8260
3.1691 240.0000 300 .5133
13. 3204 12. 0000
2.6536 6.0000
10.7521 3 .9600
9.0657 15.0000
22. 9264 15. 0000
2. 9785 12. 0000
6.9098 12.0000
2.9785 12.0000
7. 0088
1. 0886
0 . 6306
9 . 4 982
7.6243
1 .3495
4. 9230
1. 34 95
Undefnd Undefnd Undefnd .0000
Undefnd Undefnd Undefnd .0000
Undefnd Undefnd Undefnd 0.0000
Undefnd Undefnd Undefnd 0.0000
Undefnd Undefnd Undefnd 0.0000
Undefnd Undefnd Undefnd O. 0000
Undefnd Undefnd Undefnd 0.0000
Undefnd Undefnd Undefnd 1.9186
Undefnd Undefnd Undefnd300.5133
Undefnd Undefnd Undefnd 7.0088
*==================================================*
Table Ell. Area assumptions used in the analysis!
Subcritical and Critical flow assumptions from I
Subroutine Head. See Figure 17-1 in the I
manual for further information. I
10
43
10
10
13
30
16
25
49
11
49
0
13
10
10
Length of
0. 5560
0.7458
0 . 5138
14. 2729
5. 5001
6 .7668
8.6464
6.0593
1.9967
7. 5705
1.9967
10
43
10
10
13
30
16
25
49
15
49
0.0393 306.4009 306.3905
0.0134 306.4190 306.4009
0 .0677 306.3905 306.3900
0.6699 307.5991 307.4991
2.0893 315.5399 312.9796
0.6857 312.1474 306.4190
0.8537 311.6754 309.3888
0.2710 307.9897 306.4009
0.5769 312.7756 312.7688
0.9071 312.7688 307.5991
0 .5769 312.7756 312.7688
Length
of
Dry
Flow(min)
Length
of Sub-
Cri tical
Flow(min)
Length of
Upstream
Critical
Flow(min)
Downstream Maximum Maximum Maximum
Conduit
Name
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
0.0000
0.0000
0.0000
0.0000
. 0000
.0000
. 0000
. 0000
.0000
. 0000
. 0000
60. 0000
60. 0000
60.0000
60.0000
0. 0000
60.0000
. 0000
60.0000
50.9417
60.0000
50.9417
0. 0000
0 .0000
0 . 0000
0. 0000
0 . 0000
0 . 0000
0. 0000
0 . 0000
0. 0000
0 . 0000
0. 0000
Critical Hydraulic X-Sect Vel•o
Flow(min) Radius-m Area(ft ... 2) (ft ... 2/s)
0.0000
0.0000
0 .0000
0. 0000
60.0000
0 .0000
60.0000
0.0000
9.0583
0.0000
9.0583
6. 3523
5 .3433
6 . 6165
0. 2773
0 . 1507
0 . 0825
0.3490
0.3498
0.2920
.2660
. 2920
540.1886 6.6134
390.0340 7.3899
584.8377 6.3692
0.4911 8.5504
0 .1979 8.3037
0 .0932 35.7484
1. 0985 13. 8524
.2883 40.5682
. 8179 1. 7085
.6572 12.5636
. 8179 1. 7085
1 Table El2. Mean Conduit Flow Information
Conduit
Name
Mean
Flow
(cfs)
CREEK-S 295 . 3307
CREEK-N 290 .6036
2818-HW 295 . 3807
38 4.0464
12PIPE1 0 .5104
PIPE 0.6036
15_Bl-B2 3.4378
PIPE-OB 3.6771
PIPE-20-19 0.0005
ORIFICE 3.5216
PI PE-21-19 .0005
WEIR tt .0000
WEIR tt .0000
WEIR tt .0000
WEIR tt 0 . 0000
WEIR tt 0. 0000
WEIR tt 0.0000
WEIR # 7 0. 0000
WEIR tt 8 0.3895
FREE tt 295.3808
FREE tt 4.0465
Total
Flow
(ft'3 I
1063191.
1046173.
1063371.
14567.00
1837. 532
2173.070
12376.18
13237.39
1.7328
12677.81
1.7328
0.0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
1402.261
1063371.
14567.32
Mean
Percent
Change
0 . 0718
0 . 0187
0. 0735
0 .0438
0 .0058
0.0003
0.0464
0 .0448
0. 04 3 7
0.0309
0. 0437
Low
Flow
Weightng
1. 0000
1 . 0000
1. 0000
1. 0000
1.0000
1. 0000
0.9579
1.0000
1.0000
1.0000
1.0000
Mean Mean
Froude Hydraulic
Number Radius
0. 0286
0.0453
0. 0254
. 3108
. 2274
.8780
3. 3745
0. 5596
. 0668
. 8070
. 0668
.3522
5.3430
6.6165
0. 2308
. 0804
. 0825
0 .1796
.3053
.2334
.2355
0.2334
Mean
Cross
Area
540 .1660
389. 9984
584.8367
0 . 3566
.1130
. 0928
0 .5310
1. 0740
0. 7190
0.5661
0. 7190
Mean
Conduit
Roughness
0.0700
0.0700
0.0700
0.0140
0.0140
0.0140
0. 0140
0. 0140
0 .0140
0.0140
0.0140
Page 7of 11
0122-10.doc
CANYON CREEK TOWNHOMES
10 YEAR PPROPOSED XP-SWMM ANALYSIS
I Table El3 . Channel losses(H), headwater depth (HW), tailwater I
J depth (TW), critical and normal depth (Ye and Ynl. I Use this section for culvert comparisons
Conduit Maximum
Name Flow
Head Friction Critical
Loss Loss Depth
Normal
Depth
HW
Elevat
TW
Elevat
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
300.313
290.826
300.513
7.009
1. 089
0.631
9. 498
7.624
1.349
4 . 923
1.349
0.000
0.000
0.000
0.000
0.577
1. 042
1. 632
0.846
0.000
1. 528
0.000
0.012
0.026
0.000
0.100
1. 988
4.753
0.701
0.768
0.121
3. 294
0.121
2.360
2.302
2.379
1.000
0. 480
2 .147
1.167
1.096
. 491
0. 911
0. 4 91
4. 414
3.325
6. 402
0.599
0.500
.201
0.889
0. 444
.545
0. 747
0.545
306.401
306.418
306.390
307.599
315.540
312.147
311.675
307.990
311.252
312 .541
311.252
306.390 Max Flow
306.400 Max Flow
306.390 Max Flow
307.499 Max Flow
312.980 Max Flow
306.418 Max Flow
309. 389 Max Flow
306.401 Max Flow
311.046 Max Flow
307. 594 Max Flow
311.046 Max Flow
CULVERT ANALYSIS CLASSIFICATION, and the time the
culvert was in a particular classification I I during the simulation. The time is in minutes. I
The Dynamic Wave Equation is used for all conduit I
analysis but the culvert flow classification I
condition is based on the HW and TW depths. I
Mild Mild
Slope Slope TW
Critical D Control
Steep
Slope TW Slug Flow
Insignf Outlet/
Conduit Outlet Outlet Entrance Entrance
Name Control Control Control Control
Mild
Slope
TW > 0
Outlet
Control
Mild
Slope
TW <"" 0
Outlet
Control
Outlet
Control
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
. 000
. 000
. 000
. 000
0. 912
0.000
0. 000
0.000
0.762
0 .000
0.762
60.000
60.000
60 .000
0.000
27.850
0.000
0.000
0.000
13. 962
0.000
13.962
0.000
.000
0.000
9. 700
. 950
60.000
52.663
0.000
0.000
60.000
0.000
Kinematic Wave Approximations I
Time in Minutes for Each Condition I
Conduit Length of Slope Super-
Name Normal Flow Criteria Critical
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
lS_Bl-82
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
0.00
0.00
.00
.83
. 05
. 00
. 00
. 00
. 49
. 00
2.49
60.00
60.00
60.00
0.83
0.06
0.00
0. 04
0. 00
.86
. 00
. 86
0.00
0.00
0.00
60.00
11.12
. 00
45. 42
0.00
.20
15.20
.20
Table ElS -SPREADSHEET INFO LIST
0. 000
0. 000
0. 000
0. 000
0. 000
. 000
. 000
20. 575
0. 000
0. 000
0. 000
Roll
Waves
0. 00
0. 00
0.00
0. 00
. 00
. 00
0. 00
0. 00
. 00
. 00
0. 00
0. 000
. 000
0. 000
0. 000
0. 000
0. 000
. 000
. 000
45.275
0. 000
45. 275
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
. 000
. 000
. 000
so. 300
28. 288
0 . 000
7.338
39.425
0 . 000
. 000
0. 000
Conduit Flow and Junction Depth Information for use in
spreadsheets. The maximum values in this table are the
true maximum values because they sample every time step.
The values in the review results may only be the
maximum of a subset of all the time steps in the run.
Note: These flows are only the flows in a single barrel.
*========••===•••••••••=•m••=•••====•===========•=====••==*
Conduit
Name
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_81-82
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
WEIR #
WEIR #
WEIR #
Maximum
Flow
300.3135
290 . 8260
300. 5133
7.0088
1. 0886
0. 6306
9 . 4 982
7. 6243
1.3495
4. 9230
.3495
. 0000
. 0000
. 0000
Total
Flow
1063190.70
1046173 .01
1063370.66
14 566. 9963
1837.5319
2173.0699
12376 .1814
13237.3850
1. 7328
12677.8101
1.7328
0. 0000
0. 0000
0 . 0000
Maximum
Velocity
0.5560
0.7458
0. 5138
14. 2729
5. 5001
6. 7668
8. 6464
6.0593
1. 9967
7.5705
1.9967
. 0000
. 0000
. 0000
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
Junction
Name
DBA-2
DBA-1
DBB-2,3
DBB-1
SECRK,FB-2
FA-1,2
FA-2.1
FA-2. 2
WCULV,FA3
FB-1
NE-CREEK
2818-ECULV
37
Invert
Elevation
313.0000
310.0000
309.3600
306. 0000
295. 0000
309. 9600
310.4400
310.4400
307.0000
294. 0000
298. 0000
293. 9900
306. 9000
Inlet Inlet
Control Configuration
.000 None
.ooo None
.000 None
.ooo None
. 000 None
.000 None
.000 None
. ooo None
0. 000 None
.000 None
0.000 None
Maximum
Elevation
315.5399
312.1474
311. 6754
307.9897
306.4009
312.7688
312. 7756
312. 7756
307. 5991
306.3905
306.4190
306.3900
307.4991
Page 8of 11
01 22-10.doc
CANYON CREEK TOWNHOMES
10 YEAR PPROPOSED XP-SWMM ANALYSIS
WEIR # 4
WEIR # 5
WEIR #
WEIR #
WEIR #
FREE #
FREE # 2
0. 0000 . 0000
0. 0000 . 0000
. 0000 . 0000
. 0000 . 0000
1.9186 1402.2611
300.5133 1063370.71
7.0088 14567.3167
0 . 0000
0. 0000
0. 0000
0 . 0000
0 . 0000
. 0000
0. 0000
Table El5a -SPREADSHEET REACH LIST
Peak flow and Total Flow listed by Reach or those
conduits or diversions having the same
upstream and downstream nodes.
Upstream Downstream
Node Node
SECRK,FB-2 FB-1
NE-CREEK SECRK,FB-2
FB-1 2818-ECULV
WCULV,FA3 37
DBA-2 DBA-1
DBA-1 NE-CREEK
DBB-2 ,3 DBB-1
DBB-1 SECRK,FB-2
FA-2.1 FA-1,2
FA-1,2 WCULV,FA3
FA-2.2 FA-1,2
DBA-2 DBB-2,3
Maximum
Flow
300. 3135
290. 8260
300.5133
7. 0088
1.0886
. 6306
.4982
. 6243
.3495
4 .9230
1.3495
1.9186
Total
Flow
l.0632E+06
l.0462E+06
l.0634E+06
14566.9963
1837.5319
2173.0699
12376.1814
13237. 3850
1.7328
12677.8101
1.7328
1402 .2611
##
##
##
##
#ff
##
##
#########################################################
# Table El6. New Conduit Information Section #
# Conduit Invert (IE) Elevation and Conduit #
# Maximum Water Surface (WS} Elevations #
#########################################################
Conduit Name Upstream Node Downstream Node IE Up IE Dn WS Up WS On Conduit Type
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
SECRK,FB-2
NE-CREEK
FB-1
WCULV,FA3
DBA-2
DBA-1
DBB-2, 3
DBB-1
FA-2 .1
FA-1,2
FA-2.2
FB-1
SECRK, FB-2
2818-ECULV
37
DBA-1
NE-CREEK
DBB-1
SECRK,FB-2
FA-1,2
WCULV,FA3
FA-1, 2
295.0000 294 .0000 306 .4009 306 .3905
298.0000 295.0000 306.4190 306.4009
294.0000 293 .9900 306.3905 306 .3900
307.0000 306.9000 307 .5991 307.4991
313.0000 312.5000 315.5399 312.9796
310.0000 298.0000 312.1474 306.4190
309.3600 308.5000 311.6754 309.3888
306.0000 295.0000 307.9897 306.4009
310 4400 310.0650 312.7756 312 .7688
309.9600 307.0000 312.7688 307.5991
310.4400 310.0650 312.7756 312.7688
Trapezoid
Trapezoid
Trapezoid
Circular
Circular
Circular
Circular
Circular
Circular
Circular
Circular
Table ElB -Junction Continuity Error. Division by Volume added 11/96
Continuity Error a Net Flow + Beginning Volume -Ending Volume
Total Flow+ (Beginning Volume+ Ending Volume)/2
Net Flow ... Node Inflow -Node Outflow
Total Flow • absolute (Inflow + Outflow
Intermediate column is a judgement on the node continuity error.
Excellent < 1 percent
Fair 5 to 10 percent
Terrible > 50 percent
Great
Poor
1 to percent Good
Bad
to percent
10 to 25 percent 25 to 50 percent
Junction
Name
<------Continuity Error -------> Remaining Beginning Net Flow Total Flow Failed to
Volume \ of Node \ of Inflow Volume Volume Thru Node Thru Node Converge
DBA-2
DBA-1
DBB-2, 3
DBB-1
0. 2391
119.5540
-445.6657
105.1890
SECRK,FB-2 100507.2793
FA-1,2 -74 .1741
FA-2.1 -2.0894
FA-2. 2 -2.0894
WCULV,FA3 0.8780
FB-1 61210.1129
NE-CREEK 29403.6268
2818-ECULV 2770.5417
37 -0.0593
. 00369
1 .814
-1. 834
0.3950
4. 413
-.2934
-97.19
-97.19
.00301
2.759
1.376
0 .1300
-. 0002
. 00002
0. 0111
0. 0413
. 00975
0. 0513
1721.6139
0. 0008
82. 9129
.0163
916. 6906
0.0004
149.4038
9.320 100952.6175 201460.8483
.00688 0.3570 0.2895
.00019 .6006 0.2333
.00019 .6006 0.2333
. 00008
5. 676
2.727
0. 2569
0. 0000
0.3519 0.1896
61525.3288 122735.4410
29785.1395 59188.7103
3082.2184 5852.8000
0.0535 0.0018
The total continuity error was l.93593E+OS cubic feet
The remaining total volume was l.97152E+05 cubic feet
Your mean node continuity error was Excellent
Your worst node continuity error was Fair
0.2741
924.4773
6479.8298
5270.6148
-445.6653 24306.6471
38.6981 26513.4150
-0.9515 2126380.458
-74.1066 25281.4355
-1 .7221 1.7328
-1.7221 1.7328
1.0403 29134.8303
0.0006 2126741.331
0 .0560 2092346.082
-0.0399 2126741.374
-0.0075 29134.3130
Page 9 of 11
01 22-10.doc
CANYON CREEK TOWNHOMES
10 YEAR PPROPOSED XP-SWMM ANALYSIS
Table El9 -Junction Inflow Sources
Units are either ft•3 or m·J I I depending on the units in your model. I ·--·===·===······=··===·········===···=··-··==···==•*
Junction
Name
Constant
Inf low
to Node
DBA-2 . 0000
DBA-1 .0000
DBB-2, 3 . 0000
DBB-1 . 0000
SECRK, FB-2 0. 0000
FA-1,2 0 .0000
WCULV, FA3 0. 0000
FB-1 0. 0000
NE-CREEK l.0440E+06
2818-ECULV 0.0000
3 7 0. 0000
User
Inflow
to Node
3239.9986
1259.9981
10528.0805
899.8380
3779. 3196
12600. 0113
1890.0017
179.9676
0.0000
.0000
.0000
Interface
Inflow
to Node
0.0000
0.0000
0.0000
0.0000
0. 0000
0.0000
.0000
0. 0000
0.0000
0.0000
. 0000
DWF
Inlow
to Node
0. 0000
0. 0000
0.0000
0.0000
0.0000
0.0000
.0000
.0000
0.0000
0.0000
0. 0000
Table E20 -Junction Flooding and Volume Listing. I
The maximum volume is the total volume I
in the node including the volume in the I
flooded storage area. This is the max I
volume at any time. The volume in the I
flooded storage area is the total volume!
above the ground elevation, where the I
flooded pond storage area starts. I
The fourth column is instantaneous, the fifth is the!
sum of the flooded volume over the entire simulation!
Uni ts are either ft "3 or m"'3 depending on the uni ts. I
Outflow
from Node
0.0000
.0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
.0634E+06
14567. 3167
Out of
System
Flooded
Volume
Stored in System
Junction Surcharged Flooded
Name Time (min) Time(min)
DBA-2
DBA-1
DBB-2, 3
DBB-1
SECRK, FB-2
FA-1, 2
FA-2. l
FA-2. 2
WCULV,FA3
FB-1
NE-CREEK
2818-ECULV
37
0. 0000
0 . 0000
. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0.0000
0.0000
0.0000
0.0000
0.0000
0. 0000
. 0000
0. 0000
0. 0000
0 . 0000
0. 0000
0 . 0000
0. 0000
0.0000
0 . 0000
.0000
0.0000
0.0000
I Simulation Specific Information
Number of Input Conduits ..
Number of Natural Channels.
Number of Storage Junctions ..
Number of Orifices ............... .
Number of Free Outfalls.
0 . 0000
0 . 0000
0 . 0000
0. 0000
0 . 0000
. 0000
. 0000
. 0000
.0000
.0000
0.0000
0.0000
.0000
Maximum Ponding Allowed
Volume Flood Pond Volume
181.0478
2614. 5531
85.3295
3317.0907
143 .2642
3310.0292
268.9481
268.9481
7.5282
155. 6986
105.7928
155.8184
7.5279
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0. 0000
0.0000
0. 0000
0. 0000
0. 0000
0. 0000
11 Number of Simulated Conduits ..
O Number of Junctions ...
Number of Weirs.
Number of Pumps .............. .
Number of Tide Gate Outfalls ..
I Average \ Change in Junction or Conduit is def ined as: I Conduit \ Change ••> 100.0 ( Q(n+l) -Q(n) ) I Qfull I Junction \ Change ••> 100.0 ( Y(n+l) -Y(n) ) I Yfull
Evaporation
from Node
0. 0000
0. 0000
0 . 0000
0. 0000
0. 0000
0. 0000
. 0000
. 0000
. 0000
0. 0000
0. 0000
The Conduit with the largest average change was .. FREE # 1 with
The Junction with the largest average change was.FA-2.1 with
The Conduit with the largest sinuosity was ....... PI PE-20-19 with
O. 075 percent
o. 025 percent
8 .732
I Table E21. Continuity balance at the end of the simulation I Junction Inflow, Outflow or Street Flooding I Error • Inflow + Initial Volume -Outflow -Final Volume
* :z•••'""•••szz••• •"":a:••:"'= :a•z ==="'••"""'••SEE••••="'""•"'=== a: z z === •• zz:•••"" *
Inflow Inflow Average
Junction Volume,ft"'3 Inflow, cfs
DBA-2 3240. 0368 . 9000
DBA-1 1260.0130 0.3500
DBB-2,3 10528.2047 .9245
DBB-1 899.8486 .2500
SECRK,FB-2 3779.3641 .0498
FA-1, 2 12600. 1599 . 5000
WCULV,FA3 1890.0240 .5250
FB-1 179. 9697 0. 0500
NE-CREEK . 044000E+06 290. 0000
21
13
Page 10 of 11
0122-10.doc
CANYON CREEK TOWNHOMES
10 YEAR PPROPOSED XP-SWMM ANALYSIS
Outflow Outflow Average
Junction Volume,ft""J Outflow, cfs -----------------------------------
2818-ECULV l. 06337lE+06 295.3808
37 14567 . 3167 4.0465
I Initial system volume 3. 9030E+05 Cu Ft J
I Total system inflow volume 1 . 0784E+06 Cu Ft J
I Inflow + Initial volume 1 . 4687E+06 Cu Ft I
l·=····==···=··=========·===···=···==····=············I I Total system outflow l. 0779E+06 Cu ft I I Volume left in system l. 97l5E+05 Cu ft I I Evaporation O. OOOOE+OO Cu ft I I Outflow + Final Volume 1. 2751E+06 Cu ft I
Total Model Continuity Error
Error in Continuity, Percent =
Error in Continuity, ft"")
+ Error means a continuity loss,
13 .18136
193592.200
a gain
Page 11 of 11
01 22-10.doc
CANYON CREEK TOWNHOMES
25 YEAR PROPOSED XP-SWMM ANALYSIS
Input File ' C,\XPS\0122-25ii.XP
Current Directory: C: \XPS\XP-UDD-1
Executable Name : C:\XPS\XP-UDD-1\swmmengw.exe
Read O l ine(s) and found O items(s) from your cfg fil e .
XP-SWMM2000 I I Storm Water Management Model I I Version 7.51 I
l==============··================·==============I I Developed by I
l·===·····===······=······====····=··=········=·I
I I I XP Softwar e Inc. and Pty. Ltd. I
I I I Based on the U.S. EPA I I Storm Water Management Model Version 4.40 l
I I I Originally Developed by I I Metcalf & Eddy, Inc. I I University of Florida l I Camp Dresser & McKee Inc. I
I September 1970 I
I I I EPA-SWMM is maintained by I I Oregon State University I I Camp Dresser & McKee Inc. I
l======·========·=======·======================·I I XP Software October, 2000 I I Data File Version - --> 9 . O I *=============s=================================*
Input and Output file names by SWMM Layer
Input File to Layer
Output File to Layer
JOT US
l JOT US
Special command line arguments in XP-SWMM2000 . This I
now includes program defaults. $Keywords are the program!
defaults. Other Keywords are from the SWMMCOM.CFG file. I
or the command line or any cfg file on the command l ine. l
Examples include these in the file xpswm.bat under the I
section :solve or in the windows version XPSWMM32 in thel
file solve .bat I
Note: the cfg file should be in the subdirectory swmxp I I or defined by the set variable in the xpswm.bat I
file . Some examples of the command l ines possible!
are shown below: I
swmmd swmmcom.cfg
swmmd my. cfg
swmmd nokeys nconvs perv extranwq
$powerstation 0. 0000
$perv 0. 0000
$oldegg 0. 0000
$as . 0000
$noflat . 0000
$oldomega . 0000
$oldvol . 0000
$implicit . 0000
$oldhot . 0000
$olds cs . 0000
$flood . 0000
Snokeys 0. 0000
$pzero .0000
$oldvol2 .0000
$oldhotl .0000
$pumpwt 0. 0000
$ecloss .0000
$exout 0 .0000
$oldbnd 0. 0000
$nogrelev 0. 0000
$ncmid 0.0000
$new nl 97 0. 0000 -$best97 0 .0000
$newbound 0.0000
11
21
24
28
29
31
33
40
42
55
59
63
70
77
97
154
161
164
290
294
295
I I I I
I Parameter Values on the Tapes Common Block.These are the I I values read from the data file and dynamically allocated I I by the model for this simulation. I
Number of Subcatchments in the Runoff Block (NW) .
Number of Channel/Pipes in the Runoff Block (NG) ..
Runoff Water quality constituents (NRQ) .. .
Runoff Land Uses per Subcatchment (NLU) ... .
Number of Elements in the Transport Block (NET) .....
Number of Storage Junctions in Transport (NTSE).
Page I of 11
0 122-25.doc
CANYON CREEK TOWNHOMES
25 YEAR PROPOSED XP-SWMM ANALYSIS
Number of Input Hydrographs in Transport (NTH) .
Number of Elements in the Extran Block (NEE) . 21
Number of Groundwater Subcatchme nts in Runoff (NGW) . O
Number of Interface locations for all Blocks (NIE) . 21
Number of Pumps in Extran (NEP) ...
Number of Orifices in Extran (NEC) .......... .
Number of Tide Gates/Free Outfalls in Extran (NTG) ..
Number of Extran Weirs (NEW) ......... .
Number of scs hydrograph points ..
Number of Extran printout locations (NPO) ..
Number of Tide elements in Extran (NTE) ............ .
Number of Natural channels (NNC) .
Number of Storage junctions in Extran (NVSE) ..
Number of Time history data points in Extran(NTVAL).
Number of Variable storage elements in Extran (NVST) 10
Number of Input Hydrographs in Extran (NEH). 10
Number of Particle sizes in Transport Block (NPS) .
Number of User defined conduits (NHW) . 21
Number of Connecting conduits in Extran (NECC) . 20
Number of Upstream elements in Transport (NTCC) 10
Number of Storage/treatment plants (NSTU) . O
Number of Values for Rl lines in Transport (NRl)
Number of Nodes to be allowed for (NNOD) . 21
Number of Plugs in a Storage Treatment Unit.
#######################################################
# Entry made to the HYDRAULIC Layer(Block) of SWMM #
# Last Updated October,2000 by XP Software #
CANYON CREEK TOWNHOMES
HYDRAULICS TABLES IN THE OUTPUT FILE
These are the more important tables in the output file.
You can use your editor to find the table numbers,
for example: search for Table E20 to check continuity.
Thi s output file can be imported into a Word Processor
and printed on US letter or A4 paper using portrait
mode, courier font, a size of a pt. and margins of 0.75
Table El Basic Conduit Data
Table E2 Conduit Factor Data
Table EJ Junction Data
Table E4 Conduit Connectivity Data
Table E4a Dry Weather Flow Data
Table ES Junction Time Step Limitation Summary
Table ES a Conduit Explicit Condition Summary
Table E6 Final Model Condition
Table E7 Iteration Summary
Table EB Junction Time Step Limitation Summary
Table E9 Junction Summary Statistics
Table ElO Conduit Summary Statistics
Table Ell Area assumptions used in the analysis
Table El2 Mean conduit information
Table El3 Channel losses(Hl and culvert info
Table El4 Natural Channel Overbank Flow Information
Table El5 Spreadsheet Info List
Table El6 New Conduit Output Section
Table El7 Pump Operation
Table ElB Junction Continuity Error
Table El9 Junction Inflow Sources
Table E20 Junction Flooding and Volume List
Table E21 Continuity balance at simulation end
Table E22 Model Judgement Section
Time Control from Hydraulics Job Control
Year. 95 Month .....
Day. Hour ..
Minute. o Second.
Control information for simulation
Integration cycles.
Length of integration step is ....
Simulation length .......... .
Do not create equiv. pipes(NEQUAL).
Use U.S. customary units for I/O.
Printing starts in cycle.
Intermediate printout intervals of.
Intermediate printout intervals of.
Summary printout intervals of ..
Summary printout time interval of.
Hot start file parameter (REDO).
Initial time ..
Iteration variables: SURTOL.
SURJUN.
QREF.
Minimum depth (m or ft) ..
14400
0.25 seconds
1.00 hours
500 cycles
2.08 minutes
500 cycles
2. 08 minutes
1
0.00 hours
0.0001
0.0060 mm or inch
1. 0000
0. 0000
Page 2of 11
0122-25.doc
CANYON CREEK TOWNHOMES
25 YEAR PROPOSED XP-SWMM ANALYSIS
Underrelaxation parameter ..... .
Time weighting parameter ...... .
Courant Time Step Factor.
Default Expansion/Contraction K
Default Entrance/Exit K.
Default surface area of junctions.
NJSW input hydrograph junctions.
or user defined hydrographs.
Table El -Conduit Data
Inp Conduit
Num Name
CREEK-S
CREEK-N
2818-HW
4 38
5 12PIPE1
PIPE
7 15_Bl-B2
PIPE-OB
PIPE-20-19
10 ORIFICE
11 PIPE-21-19
Length Conduit
(ft) Class
200.00 Trapezoid
200.00 Trapezoid
10.00 Trapezoid
1.00 Circular
50.00 Circular
42.00 Circular
25.00 Circular
50.00 Circular
75.00 Circular
110.00 Circular
75.00 Circular
Total length of all conduits ...
Table E2 -Conduit Factor Data
0.8500
0.8500
1.0000
0.0000
0.0000
12.57 square feet.
8
Area
(ft ·2)
Manning Max Width
Coef. (ft)
1152. 00
1672. 00
1400.00
0.79
0 .20
0.09
.23
.23
.79
. 79
0.07000
0.07000
0.07000
0.01400
0.01400
0.01400
0.01400
0.01400
0.01400
0. 01400
0 .79 0.01400
838.0000 feet
10.00
10.00
10.00
1. 00
0.50
0.33
.25
1. 25
1. 00
1. 00
1. 00
Trapezoid
Depth Side
(ft) Slopes
18.00
22.00
20. 00
. 00
0.50
0. 33
. 25
1. 25
1. 00
1. 00
1. 00
. 00
.00
. 00
.00
.00
. 00
Time Low Flow Depth at
Conduit
Name
Number Entrance Exit Exp/Conte Weighting Roughness Which Flow
of Barrels Loss Coef Loss Coef Coefficnt Parameter Factor n Changes Routing
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
ORIFICE
.0000
1.0000
1.0000
1. 0000
1.0000
.2000
0.5000
.2000
0.5000
0.5000
. 0000
1.0000
1. 0000
1. 0000
1.0000
. 0000
. 0000
. 0000
. 0000
0. 0000
If there are messages about (sqrt(g•d)*dt/dx), or
the sqrt(wave celerity)*time step/conduit length
in the output file all it means is that the
program will lower the internal time step to
satisfy this condition (explicit condition) .
You control the actual internal time step by
using the minimum courant time step factor in the
HYDRAULICS job control. The message put in words
states that the smallest conduit with the fastest
velocity will control the time step selection.
You have further control by using the modify
conduit option in the HYDRAULICS Job Control .
.8500
0.8500
0.8500
.8500
0.8500
•• ,..> Warning ! (sqrt (wave celerity) *time step/conduit length)
in conduit 38 is 1 .42 at full depth.
Conduit Volume
Ful 1 pipe or ful 1 open conduit volume
Input full depth volume. 5. 7911E+05 cubic feet
*==============··=====•=====····==·····=•••••:••••···
Table E3a -Junction Data
Inp Junction Ground Crown Invert Qinst
Num Name Elevation Elevation Elevation cfs
DBA-2
2 DBA-1
3 DBB-2,3
DBB-1
SECRK,FB-2
6 FA-1,2
FA-2.1
FA-2.2
WCULV,FA3
10 FB-1
11 NE-CREEK
12 2818-ECULV
13 37
317.0000 313.5000
317.0000 313.0000
313.0000 310.6100
313.0000 309.7500
320. 0000 317. 0000
313.9400 311.0650
313.9400 311.4400
313 .9400 311 .4400
310. 0000 308. 0000
324.0000 314.0000
320.0000 320.0000
324.0000 313.9900
310.0000 307.9000
Table E3b -Junction Data
313. 0000
310. 0000
309.3600
306. 0000
295. 0000
309.9600
310.4400
310. 4400
0 . 0000
0. 0000
0. 0000
0. 0000
. 0000
0 . 0000
0. 0000
. 0000
307. 0000 . 0000
294.0000 .0000
298.0000 290.0000
293.9900 0.0000
306.9000 0.0000
Initial
Depth-ft
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
. 0000
0. 0000
0. 0000
. 0000
0. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
.0000 Standard Dynamic Wave
.0000 Standard Dynamic Wave
.0000 Standard Dynamic Wave
.0000 Standard Dynamic Wave
0.0000 Standard Dynamic Wave
Page 3 of 11
0 122-25 .doc
CANYON CREEK TOWNHOMES
25 YEAR PROPOSED XP-SWMM ANALYSIS
Inp Junction
Num Name
DBA-2
DBA-1
DBB-2,3
DBB-1
SECRK,FB-2
FA-1, 2
FA-2.l
FA-2.2
WCULV,FA3
10 FB-1
11 NE-CREEK
12 2818-ECULV
13 37
x
Coord.
99.350
119.754
99.058
120.185
135.269
90.483
85.336
95.770
91. 056
132.616
142.323
132.962
94.966
y
Coord. Type of Manhole
473.221 Sealed Manhole
478.014 Sealed Manhole
467.667 Sealed Manhole
466.245 Sealed Manhole
464.853 Sealed Manhole
452.889 Sealed Manhole
453.292 Sealed Manhole
452.615 Sealed Manhole
446.853 Sealed Manhole
450.836 Sealed Manhole
480.638 Sealed Manhole
445. 097 Sealed Manhole
444.735 Sealed Manhole
Type of Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Table E4 -Conduit Connectivity
Input Conduit
Number Name
Upstream Downstream
Node Node
10
11
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
SECRK, FB-2 FB-1
NE-CREEK SECRK,FB-2
FB-1 2818-ECULV
WCULV,FA3 37
DBA-2 DBA-1
DBA-1 NE-CREEK
DBB-2,3 DBB-1
DBB-1 SECRK,FB-2
PIPE-20-19 FA-2.l
ORIFICE FA-1,2
PIPE-21-19 FA-2.2
FA-1,2
WCULV,FA3
FA-1, 2
Storage Junction Data
Upstream Downstream
Elevation Elevation
295. 000
298.000
294.000
307. 000
313. 000
310.000
309. 360
306. 000
310.440
309.960
310.440
294.000 No Design
295.000 No Design
293.990 No Design
306 .900 No Design
312.500 No Design
298. ooo No Design
308 .500 No Design
295. 000 No Design
310. 065 No Design
307 . 000 No Design
310.065 No Design
PEAK OR CROWN DEPTH MAXIMUM OR
STORAGE JUNCTION JUNCTION CONSTANT SURFACE CONSTANT VOLUME ELEVATION STARTS
NUMBER OR NAME TYPE AREA (FT2) (CUBIC FEET) (FT) FROM
Maximum Capacity
DBA-2
DBA-1
DBB-2,3
DBB-1
FA-1,2
FA-2.1
FA-2. 2
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
2211.9768
1524.6000
7361.6400
2439.3600
9757.4400
1524.6000
1524.6000
5207.8244
6963. 7006
24092.7453
13099. 6830
3310. 0292
839.7635
839.7635
317.0000 Node Invert
317.0000 Node Invert
313.0000 Node Invert
313.0000 Node Invert
313. 9400 Node Invert
313.9400 Node Invert
313.9400 Node Invert
Variable storage data for node IDBA-2
Data
Point
Elevation
ft
313.0000
315.0000
315.2500
315. 5000
315.7500
316.0000
316.2500
316. 5000
318.0000
Depth
ft
0. 0000
2. 0000
2.2500
2. 5000
. 7500
. 0000
. 2500
.5000
. 0000
. 9204
. 9204
245.2428
744. 8760
1378.2384
1918.8180
2211. 9768
2211. 9768
2211.9768
Variable storage data for node IDBA-1
Data
Point
Elevation
ft
310. 0000
310.2500
310.5000
310.7500
315. 0000
Depth
ft
. 0000
. 2500
. 5000
. 7500
5. 0000
. 4356
261.3600
1001.8800
1524.6000
1524.6000
Variable storage data for node IDBB-2,3
Data
Point
Elevation
ft
309.3600
311.3600
311. 5000
311.7500
312 . 0000
312.2500
Depth
ft
0. 0000
2. 0000
2.1400
.3900
.6400
.8900
4.3560
4.3560
130.6800
1001. 8800
2962 .0800
4617.3600
.0000
7.8408
31.1883
149.3154
410.6766
820.9496
1336. 8650
1889. 8592
5207.8244
0. 0000
22.7055
170.6183
484.1506
6963.7006
. 0000
.7120
16.1271
140.6601
614.5473
1554.3541
Page 4of11
0122-25.doc
CANYON CREEK TOWNHOMES
25 YEAR PROPOSED XP-SWMM ANALYSIS
312.SOOO
31S.3600
3.1400
6.0000
7361 .6400
7361.6400
Variable storage data for node jDBB-1
Data
Point
Elevation
ft
306. 0000
306.2SOO
306.SOOO
306. 7SOO
307. 0000
307. 2SOO
312.0000
Depth
ft
0.0000
0.2SOO
o.sooo
0.7SOO
1. 0000
l.2SOO
6. 0000
Area
ft'2
4.3S60
174.2400
784 .0800
16SS.2800
2308 .6800
2439 .3600
2439.3600
Variable storage data for node jFA-1,2
Data
Point
10
Elevation
ft
309. 9600
311 .9600
312 .0200
312 .1200
312.2200
312.3200
312 .4200
312.S200
312.6200
312 .6700
Depth
ft
. 0000
. 0000
. 0600
.1600
. 2600
. 3600
2.4600
2.S600
. 6600
. 7100
Area
ft ·2
4.3S60
4 .3S60
87.1200
740. S200
2003 .7600
S314 .3200
7666.S600
8363.S200
8929. 8000
97S7 .4400
Variable storage data for node jFA-2.
Data
Point
4
s
6
10
Elevation
ft
310. 4400
312.4400
312 .SOOO
312.6000
312.7000
312.8000
312.9000
313 .0000
313.1000
313 .lSOO
Depth
ft
0 .0000
2.0000
2 .0600
2.1600
2 . 2600
2.3600
2.4600
2 .S600
.6600
. 7100
Area
ft'2
4.3S60
4.3S60
87.1200
696 . 9600
1S24.6000
1524.6000
1S24 .6000
1S24 .6000
1S24 .6000
1S24 .6000
Variable storage data for node IFA-2.
Data
Point
10
Elevation
ft
310.4400
312.4400
312. sooo
312 .6000
312. 7000
312.8000
312.9000
313 .0000
313.1000
313.lSOO
Weir Data
Depth
ft
0 .0000
.0000
.0600
.1600
.2600
.3600
2.4600
2 .S600
2.6600
2. 7100
From To
Junction Junction
Link
Number
DBA-2
DBA-1
DBB-2,3
DBB-1
FA-2.l
FA-2. 2
FA-2.2
DBA-2
DBA-1 WEIR
NE-CREEK WEIR
DBB-1 WEIR
SECRK,FB-2WEIR
FA-1,2 WEIR
FA-1,2 WEIR
DBB-2,3 WEIR
DBB-2,3 WEIR
4 s
Area
ft ·2
4.3S60
4.3S60
87.1200
696 .9600
1S24 .6000
1S24 .6000
1S24.6000
1S24 .6000
1S24.6000
1S24.6000
Crest
Type Height (ft)
.23
4. 00
2.80
. 00
. 3S
2.3S
2.S6
2.38
FREE OUTFALL DATA (DATA GROUP Il)
BOUNDARY CONDITION ON DATA GROUP Jl
3038 .4549
24092 . 7453
Volume
ft •3
0 . 0000
17 .1788
127.8404
426.0572
919. 2929
1Sl2 . 7230
13099. 6830
Volume
ft'3
.0000
.7120
10.9311
46.98S7
179.06S8
S31. 77S9
1177.2382
1978. 489S
2843.0010
3310.0292
Volume
ft'3
. 0000
. 7120
10.9311
4S.2809
1S3.6935
306.1S3S
458.6135
611. 073S
763.S33S
839.763S
Volume
ft'3
.0000
8. 7120
10.9311
4S.2809
1S3.693S
306.1S3S
458.613S
611. 073S
763.S335
839.763S
Weir
Topi ft I
Weir
Length I ft)
4.00
10.00
.80
.00
.so
. so
.so
4.00
. 00
60.00
S.00
20.00
23.00
23.00
23 .00
10.00
Outfall at Junction .... 2818-ECULV has boundary condition number.
Outfall at Junction .... 37 has boundary condition number.
Discharge
Coefficient
. 0000
. 0000
. 0000
. 0000
3.0000
3.0000
3.0000
3.0000
Weir
Power
. sooo
. sooo
l.SOOO
1 .5000
l.SOOO
l.SOOO
l.SOOO
l.SOOO
Page 5of 11
0122-25 .doc
CANYON CREEK TOWNHOMES
25 YEAR PROPOSED XP-SWMM ANALYSIS
INTERNAL CONNECTIVITY INFORMATION I
*=====·-=======-·=================··======···====*
CONDUIT
WEIR U 1
WEIR U
WEIR U
WEIR U
WEIR U
WEIR U
WEIR U
WEIR U
FREE U
FREE U
JUNCTION JUNCTION
DBA-2 DBA-1
DBA-1 NE-CREEK
DBB-2,3 DBB-1
DBB-1 SECRK,FB-2
FA-2.1 FA-1,2
FA-2.2 FA-1,2
FA-2.2 DBB-2,3
DBA-2 DBB-2,3
2818-ECULV BOUNDARY
37 BOUNDARY
Table ES -Junction Time Step Limitation Summary I
*••============····==========·====·-··==========·=·====·-=*
Not Convr = Number of times this junction did not
converge during the simulation.
Avg Convr • Average junction iterations.
Conv err = Mean convergence error.
Omega Cng • Change of omega during iterations
Max Itern • Maximum number of iterations
Junction Not Convr Avg Convr Total Itt Omega Cng Max Itern Ittrn >10 Ittrn >25 Ittrn >40
DBA-2
DBA-1
DBB-2,3
DBB-1
SECRK,FB-2
FA-1, 2
FA-2 .1
FA-2 .2
WCULV,FA3
FB-1
NE-CREEK
2818-ECULV
37
1.07
1. 06
1.39
1. 26
1.15
1.36
1.37
1.37
.17
.00
1. 00
1. 91
1. 92
56793
56520
74159
67118
61159
72560
73066
73066
62144
53314
53340
101832
102205
Total number of iterations for all junctions .
Minimum number of possible iterations.
Efficiency of the simulation.
907276
693082
1.31
8
10
10
12
8
Good Efficiency
Extran Efficiency is an indicator of the efficiency of
the simulation. Ideal efficiency is one iteration per
time step. Altering the underrelaxation parameter,
lowering the time step, increasing the flow and head
tolerance are good ways of improving the efficiency,
another is lowering the internal time step. The lower
efficiency generally the faster your model will run.
I I I I I
the I
I If your efficiency is less than 1.5 then you may try I
increasing your time step so that your overall simulation!
is faster. Ideal efficiency would be around 2. O f
Good Efficiency < 1.5 mean iterations
Excellent Efficiency< 2.5 and > 1.5 mean iterations
Good Efficiency< 4.0 and> 2.5 mean iterations
Fair Efficiency< 7.5 and> 4.0 mean iterations
Poor Efficiency > 7.5 mean iterations
I I I I I I
Table E9 -JUNCTION SUMMARY STATISTICS I I The Maximum area is only the area of the node, it I I does not include the area of the surrounding conduitsl
Junction
Name
Uppermost
Ground PipeCrown
Elevation Elevation
feet feet
Maximum
Junction
Elevation
feet
DBA-2 317.0000 317.0000 315.5642
DBA-1 317.0000 317.0000 312.3660
DBB-2,3 313.0000 313.0000 311.9302
DBB-1 313.0000 313.0000 308.2729
SECRK,FB-2 320.0000 317.0000 306.4010
FA-1,2 313.9400 313.9400 312.8213
FA-2.1 313.9400 313.9400 312.8206
FA-2.2 313.9400 313.9400 312.8206
WCULV, FA3 310. 0000 308. 0000 307. 6238
FB-1 324 .0000 314.0000 306.3905
NE-CREEK 320.0000 320.0000 306.4191
2818-ECULV 324.0000 313.9900 306.3900
37 310.0000 307.9000 307.5237
Time
of
Occurence
Hr. Min.
13
30
17
26
21
24
24
10
9
10
Feet of
Surcharge
at Max
Elevation
.0000
.0000
.0000
.0000
.0000
0.0000
0. 0000
0. 0000
0. 0000
. 0000
. 0000
. 0000
0. 0000
Maximum
Freeboard Junction
of node Area
feet ft"'2
1.4358 907.6170
. 6340 1524. 6000
.0698 2414. 7917
4. 7271 2439. 3600
13.5990 12.5660
1. 1187 9757. 4400
1.1194 1524.6000
.1194 1524.6000
.3762
17.6095
13.5809
17.6100
2.4763
12.5660
12.5660
12.5660
12.5660
12.5660
Page 6 of 11
0122-25.doc
CANYON CREEK TOWNHOMES
25 YEAR PROPOSED XP-SWMM ANALYSIS
Table ElO -CONDUIT SUMMARY STATISTICS
Note: The peak flow may be less than the design flow
and the conduit may still surcharge because of the
downstream boundary conditions .
Time Time
Name
Conduit
Name
Design
Flow
(cfs)
Conduit
Design Vertical
Velocity Depth
(ft/s) (in)
Maximum
Computed
Flow
(cfs)
of
Occurence
Hr. Min.
Maximum
Computed
Velocity
lft/s)
of
Occurence
Hr. Min .
Ratio of Maximum Depth >
Max. to at Pipe Ends
Design Upstream Dwnstrm
Flow (ft) (ft)
CREEK-S 7648.6
CREEK-N 21775.
2818-HW 4436.7
38 10.462
12PIPE1 0.5210
PIPE 0.9196
15_Bl-B2 11.125
PIPE-OB 28.135
PIPE-20-19 2.339
ORIFICE .427
6.6394 216.0000 301.1797
13.0235 264.0000 290.8358
3.1691 240.0000 301.4539
13.3204 12.0000 7.4454
2.6536 6.0000 1.0934
10.7521 .9600 0.6439
9.0657 15.0000 10.3285
22.9264 15.0000 .2779
.9785 12.0000 .3487
.9098 12.0000 .0625
PIPE-21-19
WEIR # 1
WEIR #
WEIR #
WEIR # 4
WEIR # 5
WEIR #
WEIR #
WEIR #
FREE #
FREE #
2.339 2.9785
Undefnd Undefnd
Undefnd Undefnd
Undefnd Undefnd
Undefnd Undefnd
Undefnd Undefnd
Undefnd Undefnd
Un de fnd Unde fnd
Undefnd Undefnd
Undefnd Undefnd
Undefnd Undefnd
12 .0000
Undefnd
Undefnd
Undefnd
Undefnd
.3487
. 0000
. 0000
.0000
. 0000
Undefnd -o. 3811
Undefnd -0. 3811
Undefnd . 0000
Undefnd 2. 3 724
Undefnd301.4539
Undefnd 7.4454
Table Ell. Area assumptions used in the ana l ysis I
Subcritical and Critical flow assumptions from I
Subroutine Head. See Figure 17-1 in the I
manual for further information. I
12
45
0.5576
0.7458
10 0.5154
10 14.4570
13 5.5214
30 6.8952
17 9.1330
26 6.5737
54 1.9939
10 7.6680
54
0
21
21
0
13
10
10
1.9939
12
45
10
10
13
30
17
26
54
16
54
.0394 306.4010 306.3905
.0134 306.4191 306.4010
.0679 306.3905 306 .3900
.7117 307.6238 307.5237
2.0985 315.5642 312.9804
0.7002 312.3660 306.4191
0.9284 311.9302 309.4524
0.2942 308.2729 306.4010
.5765 312.8206 312.8213
.9328 312.8213 307.6238
0 .5765 312.8206 312.8213
Length
of
Dry
Flow (min)
Length
of Sub-
Cri tical
Flow(minl
Length of
Upstream
Critical
Flow(min)
Length of
Downstream
Critical
Fl ow (min)
Maximum Maximum Maximum
Conduit
Name
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
0. 0000
0. 0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
. 0000
60.0000
60.0000
60. 0000
60.0000
0.0000
60.0000
0. 0000
60.0000
56.7583
60. 0000
56.7583
0. 0000
0. 0000
0. 0000
0. 0000
0.0000
0. 0000
0. 0000
0.0000
0. 0000
0. 0000
0. 0000
. 0000
. 0000
. 0000
. 0000
60. 0000
0. 0000
60. 0000
. 0000
.2417
. 0000
.2417
Hydraulic X-Sect Vel•D
Radius-m Area (ft.2) (ft.2/s)
6 .3523
5.3433
.6165
.2825
0. 1507
. 0825
0 .3552
.3498
. 2921
. 2662
.2921
540.1923 6.6324
390.0397 7.3902
584.8379 6 .3891
0.5150 9.0174
.1980 8.4052
.0934 37.1805
.1309 16. 0860
.2883 44.9426
. 8180 2. 6201
.6681 13 .0645
.8180 .6201
I Table El2. Mean Conduit Flow Information
Conduit
Name
Mean
Flow
(cfs)
CREEK-S 295.9793
CREEK-N 290.6161
2818-HW 296.0543
38 4.5946
12PIPE1 0.5238
PIPE .6161
15_Bl-B2 3.8934
PIPE-OB 4.1632
PIPE-20-19 -0.0380
ORIFICE . 994 9
PIPE-21-19 -0.0380
WEIR # . 0000
WEIR # . 0000
WEIR # .0000
WEIR # 4 0. 0000
WEIR # 5 -0. 0068
WEIR # -0. 0068
WEIR # . 0000
WEIR # . 5012
FREE# 1 296.0543
FREE# 2 4 .5947
Total
Flow
I ft •3)
1065526.
1046218.
1065795.
16540.66
1885.716
2217.999
14016.26
14987.44
-136.859
14381.49
-136 .859
0.0000
0.0000
0.0000
0.0000
-24.3551
-24.3551
0.0000
1804 .198
1065796.
16540.97
Mean
Percent
Change
.0677
. 0179
. 0697
.0421
.0055
. 0002
. 04 56
.0377
.0433
0.0288
0.0433
Low
Flow
Weightng
. 0000
. 0000
1. 0000
. 0000
. 0000
. 0000
0.9043
. 0000
1. 0000
1. 0000
1. 0000
Mean Mean
Froude Hydraulic
Number Radius
. 0286
. 04 53
. 0254
.3048
.2415
.8480
. 3606
. 5522
.0451
1. 8302
0.0451
.3522
5.3430
.6165
.2388
.0756
0.0825
0.1700
0.3041
0. 2414
.2430
0 . 2414
Mean
Cross
Area
540.1669
389.9998
584.8367
0.3717
0 .1063
.0930
0. 5182
. 0749
.7480
0 .5875
0.7480
Mean
Conduit
Roughness
0.0700
0.0700
.0700
.0140
. 0140
.0140
.0140
. 0140
0. 0140
. 014 0
.0140
Page 7 of11
0122 -25.doc
CANYON CREEK TOWNHOMES
25 YEAR PROPOSED XP-SWMM ANALYSIS
1 Table El3. Channel losses(H), headwater depth (HW), tailwater I
I depth (TW), critical and normal depth (Ye and Yn).
J Use this section for culvert comparisons
Conduit Maximum Head Friction Critical
Loss Loss Depth
Normal
Depth Name Flow
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
1S_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
301.180
290. 836
301.454
7.445
. 093
. 644
10.329
8.278
. 349
. 062
l. 349
0. 000
0 .000
0. 000
0. 000
0 .581
1.083
1 .750
0 .996
0. 000
. 538
.000
. 012
. 026
. 000
0.100
2 .007
4. 935
0. 774
0.904
0.122
. 330
0.122
2 .363
. 302
. 384
. 000
. 480
. 366
.188
.125
.491
.920
. 491
. 420
.325
.411
0. 624
0 .500
0. 204
0.952
. 464
0. 54 5
. 765
0.545
CULVERT ANALYSIS CLASSIFICATION, and the time the I
culvert was in a particular classification I
during the simulation. The time is in minutes. I
The Dynamic Wave Equation is used for all conduit !
analysis but the culvert flow classification I
condition is based on the HW and TW depths. I
Mild
Slope
Critical D
Conduit Outlet
Steep
Slope TW Slug Flow
Insignf Outlet/
HW
Elevat
306.401
306.418
306.390
307.624
315. 564
312.366
311.930
308.273
311.242
312.599
311.242
TW
Elevat
306. 390 Max Flow
306.400 Max Flow
306.390 Max Flow
307. 524 Max Flow
312.980 Max Flow
306. 419 Max Flow
309.452 Max Flow
306.401 Max Flow
311.044 Max Flow
307. 618 Max Flow
311.044 Max Flow
Inlet Inlet
Name Control
Mild
Slope TW
Control
Outlet
Control
Entrance Entrance
Control Control
Mild
Slope
TW > 0
Outlet
Control
Mild
Slope
TW <= 0
Outlet
Control
Outlet
Control Control Configuration
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
0.000
0 .000
0.000
0.000
0.662
0.000
. 000
. 000
. 800
. 000
. 800
60. 000
60.000
60. 000
0.000
27.500
0.000
0.000
0.000
.763
. 000
7.763
0.000
0.000
0.000
3.862
2 .862
60.000
46.325
0.000
0. 000
60. 000
. 000
Kinematic Wave Approximations I
Time in Minutes for Each Condition I
*============================a========*
Conduit Length of Slope Super-
Name Normal Flow Criteria Critical
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
. 00
. 00
. 00
. 84
0. 05
. 00
.01
.00
.37
0.00
2 .37
60. 00
60 .00
60.00
. 84
0.06
0 .00
0.05
0.00
2.77
. 00
. 77
. 00
0. 00
0. 00
60 . 00
5.35
0.00
41. 64
0. 00
. 22
. 02
.22
Table El5 -SPREADSHEET INFO LIST
. 000
. 000
. 000
. 000
. 000
. 000
0 . 000
18.150
0 . 000
0.000
0.000
Roll
Waves
. 00
.00
0.00
0.00
0.00
0. 00
0.00
0. 00
. 00
. 00
. 00
0.000
0.000
0.000
0.000
0.000
0.000
.000
.000
51.437
0.000
51.437
. 000
. 000
0.000
0.000
0.000
0.000
0. 000
0. 000
0. 000
. 000
. 000
0.000
0.000
.000
56 .138
28.975
0.000
13.675
41. 850
. 000
. 000
. 000
Conduit Flow and Junction Depth Information for use in
spreadsheets. The maximum values in this table are the
true maximum values because they sample every time step.
The values in the review results may only be the
maximum of a subset of all the time steps in the run.
Note: These flows are only the flows in a single barrel.
Conduit Maximum Total
Name Flow Flow
CREEK-S 301.1797 1065525.52
CREEK-N 290.8358 1046217.94
2818-HW 301.4539 1065795.47
38 .4454 16540.6633
12PIPE1 .0934 1885.7161
PIPE .6439 2217.9987
15_Bl-B2 10.3285 14016.2593
PIPE-OB .2779 14987.4371
PIPE-20-19 1.3487 -136.8590
ORIFICE 5.0625 14381.4927
PIPE-21-19 .3487 -136.8590
WEIR # l . 0000 0. 0000
WEIR # 2 . 0000 0. 0000
WEIR # 3 . 0000 0. 0000
Maximum
Velocity
0.5576
0.7458
0.5154
14.4570
5. 5214
. 8952
9.1330
6.5737
1.9939
.6680
. 9939
. 0000
0. 0000
0. 0000
## Junction Invert
## Name Elevation
## -------------------
## DBA-2 313.0000
## DBA-1 310.0000
## DBB-2,3 309.3600
## DBB-1 306.0000
## SECRK, FB-2 295. 0000
## FA-1,2 309.9600
## FA-2.1 310.4400
## FA-2.2 310.4400
## WCULV,FA3 307.0000
## FB-1 294. 0000
## NE-CREEK 298.0000
## 2818-ECULV 293. 9900
## 37 306.9000
##
0.000 None
0. 000 None
0 . 000 None
0. 000 None
. 000 None
.000 None
0.000 None
0.000 None
o.ooo None
0.000 None
o.ooo None
Maximum
Elevation
315.5642
312.3660
311.9302
308.2729
306.4010
312.8213
312. 8206
312.8206
307.6238
306.3905
306.4191
306. 3900
307.5237
Page 8 of 11
01 22-25 .doc
CANYON CREEK TOWNHOMES
25 YEAR PROPOSED XP-SWMM ANALYSIS
WEIR
WEIR
WEIR
WEIR
WEIR
FREE
FREE
0.0000 0.0000
-0.3811 -24.3551
-0.3811 -24.3551
. 0000 0. 0000
.3724 1804.1984
301.4539 1065795.52
7.4454 16540.9705
0.0000
0.0000
0.0000
0.0000
0.0000
0. 0000
. 0000
J Table El5a -SPREADSHEET REACH LIST I Peak flow and Total Flow listed by Reach or those I conduits or diversions having the same I upstream and downstream nodes.
Upstream Downstream Maximum
Node Node Flow
SECRK,FB-2 FB-1 301.1797
NE-CREEK SECRK, FB-2 290. 8358
FB-1 2818-ECULV 301 .4539
WCULV,FA3 37 7.4454
DBA-2 DBA-1 1.0934
DBA-1 NE-CREEK 0 .6439
DBB-2,3 DBB-1 10 .3285
DBB-1 SECRK,FB-2 8.2779
FA-2.l FA-1,2 1.3487
FA-1,2 WCULV,FA3 5.0625
FA-2.2 FA-1,2 1.3487
FA-2.l FA-1,2 -0.3811
FA-2.2 FA-1,2 -0.3811
DBA-2 DBB-2,3 2.3724
Total
Flow
l.0655E+06
l.0462E+06
1. 0658E+06
16540. 6633
1885. 7161
2217 . 9987
14016. 2593
14987. 4371
-136 . 8590
14381.4927
-136. 8590
-24.3551
-24. 3551
1804.1984
##
##
##
##
##
##
##
#########################################################
# Table El6. New Conduit Information Section #
# Conduit Invert (IE) Elevation and Conduit #
# Maximum Water Surf ace (WS) Elevations #
#########################################################
Conduit Name
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
Upstream Node
SECRK,FB-2
NE-CREEK
FB-1
WCULV,FA3
DBA-2
DBA-1
DBB-2,3
DBB-1
FA-2. l
FA-1,2
FA-2. 2
Downstream Node
FB-1
SECRK, FB-2
2818-ECULV
37
DBA-1
NE-CREEK
DBB-1
SECRK,FB-2
FA-1,2
WCULV,FA3
FA-1,2
IE Up
295.0000
298.0000
294.0000
307.0000
313.0000
310.0000
309.3600
306.0000
310.4400
309.9600
310.4400
IE Dn
294. 0000
295. 0000
293. 9900
306.9000
312.5000
298.0000
308.5000
295. 0000
310.0650
307.0000
310.0650
WS Up
306.4010
306.4191
306.3905
307.6238
315.5642
312.3660
311.9302
308.2729
312.8206
312. 8213
312.8206
Table El8 -Junction Continuity Error. Division by Volume added 11/96
Continuity Error "" Net Flow + Beginning Volume -Ending Volume
Total Flow + (Beginning Volume + Ending Volume) /2
Net Flow .. Node Inflow -Node Outflow
Total Flow .. absolute (Inflow + Outflow
Intermediate column is a judgement on the node continuity error.
Excellent < 1 percent
Fair 5 to 10 percent
Terrible > 50 percent
Great 1 to percent
Poor 10 to 25 percent
Good to percent
Bad 25 to 50 percent
ws Dn Conduit Type
306.3905
306.4010
306.3900
307.5237
312.9804
306.4191
309.4524
306.4010
312.8213
307.6238
312.8213
Trapezoid
Trapezoid
Trapezoid
Circular
Circular
Circular
Circular
Circular
Circular
Circular
Circular
Junction
Name
<------Continuity Error -------> Remaining Beginning Net Flow Total Flow Failed to
Volume \ of Node \ of Inflow Volume Volume Thru Node Thru Node Converge
DBA-2 0.1226
DBA-1 144. 6030
DBB-2,3 -153.9432
DBB-1 85.2646
SECRK,FB-2 100507.3414
FA-1,2 -303.8206
FA-2.l 160.5415
FA-2.2 160.5415
WCULV,FA3 0.7484
FB-1 61210.1125
NE-CREEK 29403.6219
2818-ECULV 2770.5323
37 -0.1678
.00166
2.033
-.5522
0.2832
4. 404
-1. 044
99. 114
99. 114
.00226
2.753
1 .376
0.1297
- . 0005
.00001
0.0133
0.0142
.0526
2052. 3071
0. 0008
.0167
1089.1750
0. 0004
.00787 80.4500 146.9973
9.278 100951.9931 201460.2221
0.0280 .8610 0.7307
0. 0148 . 0984 .4261
0.0148 .0984 .4261
. 00007 . 6690 0. 3596
5.650 61525.3103 122735.4219
2.714 29784.8749 59188 .4390
0.2557 3082.2184 5852.8000
. 00002 0 .1767 . 0056
The total continuity error was l.93985E+05 cubic feet
The remaining total volume was 1. 97481E+05 cubic feet
Your mean node continuity error was Excellent
Your worst node continuity error was Fair
0.1585 7379.9529
1107.7351 5543.7290
-153.9428 27878.4288
18.7173 29993.5289
-0.8877 2131050.164
-303. 6903 29104. 0634
161.2138 161.2141
161.2138 161.2141
1.0578 33082.1804
0.0009 2131590.940
0.0578 2092435.939
-0.0493 2131590.991
0.0033 33081.6338
Page 9 of11
01 22-25.doc
CANYON CREEK TOWNHOMES
25 YEAR PROPOSED XP-SWMM ANALYSIS
Table E19 -Junction Inflow Sources I
Units are either ft ... 3 or m"J I
depending on the units in your model. j
·====····====····=·=·===·····====····========····===·
Junction
Name
Constant
Inflow
to Node
User
Inflow
to Node
Interface
Inflow
to Node
OWF
Inlow
to Node
Outf low
from Node
Evaporation
from Node
081\-2 0. 0000
081\-1 0.0000
088-2,3 0.0000
088-1 0.0000
SECRK,F8-2 0.0000
FA-1,2 0.0000
WCULV, Fl\3 0. 0000
F8-l . 0000
NE-CREEK 1. 0440E+06
2818-ECULV 0. 0000
37 0. 0000
3689.9986
1439.9987
12057. 8411
989. 8218
4319.2223
14399. 9872
2160. 0011
269.9514
0.0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
.0000
.0000
.0000
0.0000
0.0000
0. 0000
0. 0000
0.0000
0. 0000
0. 0000
0. 0000
. 0000
. 0000
. 0000
. 0000
.0000
0.0000
0.0000
Table E20 -Junction Flooding and Volume Listing . I
The maximum volume is the total volume I
in the node including the volume in the I
flooded storage area. This i s the max I
volume at any time. The volume in the I
flooded storage area is the total volume!
above t he ground elevation, where the I
flooded pond storage area starts. I
The fourth column is instantaneous, the fifth is thel
sum of the flooded volume over the entire simulation!
Units are either ft"3 or m"3 depending on the units. I
. 0000
. 0000
. 0000
0. 0000
0.0000
0.0000
0.0000
0.0000
0.0000
l.0658E+06
16540.9705
Out of
System
Flooded
Vo l ume
Stored in System
Junction Surcharged Flooded
Name Time (min) Time (min)
0811-2
081\-1
088-2,3
088-1
SECRK,F8-2
FA-1,2
Fl\-2.l
FA-2. 2
WCULV,Fl\3
F8-l
NE-CREEK
2818-ECULV
37
0.0000
0.0000
0.0000
0.0000
0. 0000
0 .0000
0.0000
.0000
.0000
0.0000
.0000
0. 0000
0.0000
0. 0000
0.0000
0.0000
.0000
.0000
.0000
0.0000
.0000
.0000
.0000
.0000
.0000
.0000
I Simulation Specific Information
Number of Input Conduits.
Number of Natural Channels ..
Number of Storage Junctions.
Number of Orifices.
Number of Free Outfalls ..
. 0000
. 0000
. 0000
. 0000
0.0000
0. 0000
0.0000
0.0000
0.0000
0.0000
0.0000
.0000
.0000
Maximum Ponding Allowed
Volume Flood Pond Volume
202.3049
2947.8650
439.3170
4007 .9078
143.2652
3310 . 0292
337.5096
337.5096
7.8386
155.6987
105.7945
155.8184
7.8377
. 0000
0.0000
0.0000
0.0000
.0000
0.0000
0.0000
0. 0000
0.0000
0.0000
. 0000
.0000
.0000
11 Number of Simulated Conduits.
Number of Junctions .............. .
Number of Weirs .................. .
Number of Pumps. . ........... .
Number of Tide Gate Outfalls.
I Average \ Change in Junction or Conduit is defined as: I Conduit \Change=•> 100.0 ( Q(n+l) -Q(n) ) I Qfull I Junction \ Change==> 100.0 ( Y(n+l) -Y(n) ) I Yfull
. 0000
. 0000
.0000
0.0000
0.0000
.0000
0.0000
. 0000
. 0000
. 0000
. 0000
21
13
The Conduit with the largest average change was .. 2818-HW with
The Junction with the largest average change was.FA-2.2 with
. 070 percent
. 028 percent
The Conduit with the largest sinuosity was. . .. PIPE-20-19 with
I Table E2l . Continuity balance at the end of the simulation I Junction Inf low, Outfl ow or Street Flooding I Error .. Inflow + Initial Volume -Outflow -Final Volume
Inflow
Junction
081\-2
081\-1
088-2,3
088-1
SECRK,F8-2
Fl\-1,2
WCULV,Fl\3
F8-l
NE-CREEK
Inflow
Volume,ft"3
3690. 0384
1440 .0142
12057. 9711
989.8325
4319.2689
14400 .1425
2160.0244
269.9543
l .044000E+06
Average
Inflow, cfs
.0250
. 4000
. 3494
. 2750
1.1998
4.0000
0. 6000
. 0750
290.0000
9. 391
Page IO of 11
0122-25.doc
CANYON CREEK TOWNHOMES
25 YEAR PROPOSED XP-SWMM ANALYSIS
Outflow Outflow Average
Junction Volume,ft ... 3 Outflow, cfs -----------------------------------
2818-ECULV .065796E+06 296. 0543
37 16540. 9705 4.5947
I Initial system volume 3. 9048E+OS Cu Ft I Total system inflow volume 1. 0833E+06 Cu Ft
I Inflow+ Initial volume l.4738E+06 Cu Ft
I··===================·····====····===·······===····==
1 Total system outflow . 0823E+06 Cu ft I Volume left in system .9748E+05 Cu ft I Evaporation O.OOOOE+OO Cu ft I Outflow + Final Volume 1. 2798E+06 Cu ft
Total Model Continuity Error
Error in Continuity, Percent :
Error in Continuity, ft ... 3
+ Error means a continuity loss,
13 .16217
193984 .238
a gain
Page 11 of11
0 122-25.doc
CANYON CREEK TOWNHOMES
50 YEAR PROPOSED XP-SWMM ANALYSIS
Input File , c,\XPS\0122-50ii.XP
Current Directory' C, \XPS\XP-UDD-1
Executable Name: C: \XPS\XP-UDD-1 \swmmengw. exe
Read a line(s) and found O items(s) from your cfg file.
XP-SWMM2000 I
Storm Water Management Model I
Version 7.51 I ·====···=·=====····················====·=···===I
Developed by I
XP Software Inc. and Pty. Ltd.
Based on the U.S. EPA
Storm Water Management Model Version 4.40
Originally Developed by
Metcalf & Eddy, Inc.
University of Florida
Camp Dresser & McKee Inc.
September 1970
EPA-SWMM is maintained by
Oregon State University
Camp Dresser & McKee Inc. l====·········=·-------··············==········=I I XP Software October, 2000 I I Data File Version---> 9.0 j
Input and Output file names by SWMM Layer
Input File to Layer
Output File to Layer
JOT US
JOT US
Special command line arguments in XP-SWMM2000 . This I
now includes program defaults. $Keywords are the program!
defaults. Other Keywords are from the SWMMCOM.CFG file. I
or the command line or any cfg file on the command line. I
Examples include these in the file xpswm.bat under the I
section :solve or in the windows version XPSWMM32 in thel
file solve.bat I
Note: the cfg file should be in the subdirectory swmxp I I or defined by the set variable in the xpswm.bat I
file. Some examples of the command lines possible!
are shown below: I
swmmd swmmcom. cfg
swmmd my. c fg
swmmd nokeys nconvS perv extranwq
$powerstation 0. 0000
$perv 0 . 0000
$oldegg 0. 0000
$as 0.0000
$nof lat 0. 0000
$oldomega 0. 0000
$oldvol 0. 0000
$implicit 0. 0000
$oldhot 0 .0000
$oldscs 0. 0000
$flood .0000
$nokeys . 0000
$pzero .0000
$oldvol2 0. 0000
$oldhotl .0000
$pumpwt .0000
$ecloss .0000
$exout .0000
$oldbnd .0000
$nogrelev 0. 0000
$ncmid . 0000
$new nl 97 .0000 -$best97 0. 0000
$newbound 0. 0000
7
11
21
24
28
29
31
33
40
42
55
59
63
70
77
97
154
161
164
290
294
295
I I I I
I Parameter Values on the Tapes Common Block.These are the I I values read from the data file and dynamically allocated I I by the model for this simulation. I
Number of Subcatchments in the Runoff Block (NW) .
Number of Channel/Pipes in the Runoff Block (NG)
Runoff Water quality constituents (NRQ).
Runoff Land Uses per Subcatchment (NLU) ....... .
Number of Elements in the Transport Block (NET)
Number of Storage Junctions in Transport (NTSE) .
Page 1 of 11
0122-50.doc
CANYON CREEK TOWNHOMES
50 YEAR PROPOSED XP-SWMM ANALYSIS
Number of Input Hydrographs in Transport (NTH) ...
Number of Elements in the Extran Block (NEE) 21
Number of Groundwater Subcatchments in Runoff (NGW).
Number of Interface locations for all Blocks (NIE) 21
Number of Pumps in Ext ran (NEP) . . . . . . . . . . . . . . . 0
Number of Orifices in Ext ran (NEO) ·········· Number of Tide Gates/Free Outfalls in Ext ran (NTG).
Number of Extran Weirs (NEW) ...
Number of scs hydrograph points ...
Number of Extran printout locations (NPO). ..........
Number of Tide elements in Extran (NTE) ....
Number of Natural channels (NNC).
Number of Storage junctions in Ext ran (NVSE). 7
Number of Time history data points in Ext ran (NTVAL) . 0
Number of Variable storage elements in Ext ran INVSTI 10
Number of Input Hydrographs in Ext ran (NEH). 10
Number of Particle sizes in Transport Block INPS) .. 0
Number of User defined conduits (NHW) ...... 21
Number of Connecting conduits in Extran (NECC) 20
Number of Upstream elements in Transport (NTCC) 10
Number of Storage/treatment plants (NSTU) 0
Number of Values for Rl lines in Transport (NRl)
Number of Nodes to be allowed for (NNOD) ... 21
Number of Plugs in a Storage Treatment Unit.
#######################################################
# Entry made to the HYDRAULIC Layer (Block) of SWMM #
# Last Updated October,2000 by XP Software #
CANYON CREEK TOWNHOMES
HYDRAULICS TABLES IN THE OUTPUT FILE
These are the more important tables in the output file.
You can use your editor to find the table numbers,
for example: search for Table E20 to check continuity.
This output file can be imported into a Word Processor
and printed on US letter or A4 paper using portrait
mode, courier font, a size of 8 pt. and margins of 0.75
Table El
Table E2
Table EJ
Table E4
Table E4a
Table ES
Table ES a
Table E6
Table E7
Table EB
Table E9
Table ElO
Table Ell
Table El2
Basic Conduit Data
Conduit Factor Data
Junction Data
Conduit Connectivity Data
Dry Weather Flow Data
Junction Time Step Limitation Summary
Conduit Explicit Condition Summary
Final Model Condition
Iteration Summary
Junction Time Step Limitation Summary
Junction Summary Statistics
Conduit Summary Statistics
Area assumptions used in the analysis
Mean conduit information
Table El3
Table El4
Table ElS
Channel losses(H) and culvert info
Natural Channel Overbank Flow Information
Spreadsheet Info List
Table El6
Table El 7
Table ElB
Table El9
-New Conduit Output Section
Pump Operation
Junction Continuity Error
Junction Inflow Sources
Table
Table
Table
E20
E21
E22
Junction Flooding and Volume List
Continuity balance at simulation end
Model Judgement Section
Time Control from Hydraulics Job Control
Year.. 95 Month ....
Day....... 1 Hour ..
Minute ....•.. o Second.
Control information for simulation
Integration cycles .......... .
Length of integration step is.
Simulation length ........... .
Do not create equiv. pipes(NEQUAL).
Use U.S. customary units for I/O ..
Printing starts in cycle.
Intermediate printout intervals of.
Intermediate printout intervals of.
Summary printout intervals of ...
Summary printout time interval of ..
Hot start file parameter (REDO) ..
Initial time .....
Iteration variables: SURTOL.
SURJUN.
QREF.
Minimum depth (m or ft).
14400
0. 25
.00
500
2 .08
500
2.08
1
0. 00
0.0001
0.0060
1 . 0000
0. 0000
seconds
hours
cycles
minutes
cycles
minutes
hours
mm or inch
Page 2 of 11
0122-50.doc
CANYON CREEK TOWNHOMES
50 YEAR PROPOSED XP-SWMM ANALYSIS
Underrel axation parameter .
Time weighting parameter ....
Courant Time Step Factor ..
Default Expansion/Contraction K
Default Entrance/Exit K.
Default surface area of junctions ..
NJSW input hydrograph junctions.
or user defined hydrographs ...
Table El -Conduit Data
Inp Conduit
Num Name
1 CREEK-S
CREEK-N
2818-HW
4 38
S 12PIPE1
PIPE
1S_Bl-B2
PIPE-OB
9 PIPE-20-19
10 ORIFICE
11 PIPE-21-19
Length Conduit
(ft) Class
200.00 Trapezoid
200. 00 Trapezoid
10.00 Trapezoid
1.00 Circular
50.00 Circular
42.00 Circular
25.00 Circular
50.00 Circular
75.00 Circular
110. 00 Circular
75. 00 Circular
Total length of all conduits
Table E2 -Conduit Factor Data
0. 8SOO
0 . 8SOO
1. 0000
0. 0000
0 . 0000
12.57 square feet .
8
Area
( ft.2)
Manning Max Width
11S2. 00
1672. 00
1400.00
0.79
0 . 20
.09
. 23
1. 23
0.79
0.79
0. 79
Coef. (ft)
0.07000
0.07000
0.07000
0.01400
0.01400
0.01400
0.01400
0.01400
0.01400
0.01400
0.01400
10. 00
10. 00
10. 00
1. 00
0. so
0. 33
l.2S
l .2S
1. 00
1. 00
1. 00
838. 0000 feet
Trapezoid
Depth Side
(ft) Slopes
18.00
22.00
20.00
. 00
. so
.33
.2S
.2S
1. 00
1. 00
1. 00
3.00
3.00
3 .00
Time Low Flow Depth at
Conduit
Name
Number Entrance Exit Exp/Conte Weighting Roughness Which Flow
of Barrels Loss Coef Loss Coef Coef f icnt Parameter Factor n Changes Routing
12PIPE1
PIPE
1S_Bl-B2
PIPE-OB
ORIFICE
1 . 0000
1 . 0000
1. 0000
1 . 0000
1. 0000
0. 2000
0. sooo
0. 2000
0. sooo
0. sooo
1 . 0000
1 . 0000
1. 0000
1. 0000
1. 0000
. 0000
0. 0000
. 0000
0. 0000
. 0000
·=====·=·=====·=··=====·========·=======·-·====·----·
If there are messages about (sqrt(g*d)•dt/dx), or
the sqrt(wave celerity)•time step/conduit length
in the output file all it means is that the
program will lower the internal time step to
satisfy this condition (explicit condition).
You control the actual internal time step by
using the minimum courant t ime step factor in the
HYDRAULICS job control. The message put in words
states that the smallest conduit with the fastest
velocity will control the time step selection.
You have further control by using the modify
conduit option in the HYDRAULICS Job Control .
.8SOO
0.8SOO
0.8SOO
0.8SOO
0.8SOO
•••> Warning ! (sqrt (wave celerity) •time step/conduit length)
in conduit 38 is 1 .42 at full depth.
Conduit Volume
·=======·=====·=·==.
Full pipe or full open conduit volume
Input full depth volume. 5. 7911E+05 cubic feet
·=======·=====·····======·=====·=========·======·····
Table Ela -Junction Data
Inp Junction Ground Crown Invert Qinst
Num Name Elevation Elevation Elevation cf a
DBA-2
2 DBA-1
3 DBB-2,3
DBB-1
SECRK,FB-2
FA-1, 2
FA-2 .1
FA-2.2
WCULV,Fl\3
10 FB-1
11 NE-CREEK
12 2818-ECULV
13 37
317.0000 313.SOOO 313.0000 0 . 0000
. 0000
. 0000
. 0000
. 0000
317.0000 313.0000
312 .1600 310.6100
313.0000 309.7SOO
320.0000 317 .0000
313.9400 311 .06SO
313 .94 00 311 .4400
313.9400 311 .4400
310. 0000 308 . 0000
324 . 0000 314 . 0000
320.0000 320.0000
324.0000 313.9900
310.0000 307.9000
310. 0000
309.3600
306. 0000
29S. 0000
309. 9600
310.4400
310.4400
307. 0000
0. 0000
0 . 0000
0 . 0000
0 . 0000
294 . 0000 0 . 0000
298. 0000 290. 0000
293.9900
306. 9000
. 0000
0. 0000
Table EJb -Junction Data
Initial
Depth-ft
0. 0000
. 0000
. 0000
. 0000
. 0000
0. 0000
0 . 0000
0.0000
0. 0000
0.0000
.0000
.0000
.0000
1. 0000
1. 0000
1 . 0000
1. 0000
1 . 0000
.oooo Standard
0.0000 Standard
0.0000 Standard
0.0000 Standard
0.0000 Standard
. 00
. 00
. 00
Dynamic Wave
Dynamic Wave
Dynamic Wave
Dynamic Wave
Dynamic Wave
Page 3of11
0122-50.doc
CANYON CREEK TOWNHOMES
50 YEAR PROPOSED XP-SWMM ANALYSIS
Inp Junction
Num Name
DBA-2
DBA-1
DBB-2,3
4 DBB-1
5 SECRK,FB-2
FA-1, 2
FA-2.1
FA-2. 2
9 WCULV,FA3
10 FB-1
11 NE-CREEK
12 2818-ECULV
13 37
x
Coord.
99. 350
119. 976
99. 058
120.185
135.269
90. 4 83
85.336
95. 770
91. 056
132. 616
142. 323
132. 962
94 .966
y
Coord. Type of Manhole
473.221 Sealed Manhole
478.124 Sealed Manhole
467.667 Sealed Manhole
466.356 Sealed Manhole
464 .853 Sealed Manhole
452.889 Sealed Manhole
453.292 Sealed Manhole
452.615 Sealed Manhole
446. 853 Sealed Manhole
450.836 Sealed Manhole
480.638 Sealed Manhole
445.097 Sealed Manhole
444.735 Seal ed Manhole
Type of Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Table E4 -Conduit Connectivity
Input Conduit
Number Name
Upstream Downstream
Node Node
10
11
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
SECRK,FB-2 FB-1
NE-CREEK SECRK,FB-2
FB-1 2818-ECULV
WCULV,FA3 37
DBA-2 DBA-1
DBA-1 NE-CREEK
DBB-2,3
DBB-1
PIPE-20-19 FA-2.l
ORIFICE FA-1,2
PIPE-21-19 FA-2.2
DBB-1
SECRK,FB-2
FA-1,2
WCULV,FA3
FA-1, 2
Storage Junction Data
MAXIMUM OR
Upstream Downstream
Elevation Elevation
295. 000
298. 000
294.000
307. 000
313.000
310.000
309.360
306.000
310.440
309.960
310.440
294.000 No Design
295.000 No Design
293. 990 No Design
306. 900 No Design
312. 500 No Design
298. 000 No Design
308. 500 No Design
295.000 No Design
310.065 No Design
307. 000 No Design
310.065 No Design
PEAK OR CROWN DEPTH
STORAGE JUNCTION JUNCTION CONSTANT SURFACE CONSTANT VOLUME ELEVATION STARTS
NUMBER OR NAME TYPE AREA (FT2) (CUBIC FEET) (FT) FROM
Maximum Capacity
DBA-2
DBA-1
DBB-2,3
DBB-1
FA-1, 2
FA-2.1
FA-2. 2
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
2211. 9768
1524.6000
7361. 6400
2439.3600
9757.4400
1524.6000
1524.6000
5207.8244
6963. 7006
24092. 7453
13099. 6830
3310. 0292
839.7635
839. 7635
317.0000 Node Invert
31 7. 0000 Node Invert
312 .1600 Node Invert
313. 0000 Node Invert
313. 9400 Node Invert
313.9400 Node Invert
313.9400 Node Invert
Variable storage data for node IDBA-2
Data
Point
Elevation
ft
313. 0000
315. 0000
315.2500
315. 5000
315.7500
316. 0000
316.2500
316.5000
318.0000
Depth
ft
0. 0000
2. 0000
. 2500
2.5000
2.7500
3.0000
3.2500
3.5000
5.0000
Area
ft '2
3 . 9204
3. 9204
245.2428
744.8760
1378. 2384
1918. 8180
2211. 9768
2211. 9768
2211. 9768
Variable storage data for node IDBA-1
Data
Point
Elevation
ft
310.0000
310.2500
310. 5000
310.7500
315.0000
Depth
ft
0.0000
0.2500
0. 5000
0.7500
5 . 0000
Area
ft'2
0.4356
261.3600
1001.8800
1524.6000
1524.6000
Variable storage data for node IDBB-2,3
Data
Point
Elevation
ft
309.3600
311.3600
311. 5000
311. 7500
312.0000
312 .2500
Depth
ft
.0000
.0000
2 .1400
.3900
. 6400
2. 8900
Area
ft ·2
4.3560
4.3560
130. 6800
1001.8800
2962.0800
4617.3600
Volume
ft')
0. 0000
7 . 84 08
31.1883
149.3154
410 .6766
820.9496
1336. 8650
1889. 8592
5207.8244
Volume
ft')
0 . 0000
22 .7055
170.6183
484.1506
6963. 7006
Volume
ft')
0. 0000
8 . 7120
16. 1271
140.6601
614.5473
1554.3541
Page 4 of l l
0122-50.doc
CANYON CREEK TOWNHOMES
50 YEAR PROPOSED XP-SWMM ANALYSIS
312.5000
315.3600
.1400
6.0000
7361. 6400
7361.6400
Variable storage data for node [DBB-1
Data
Point
Elevation
ft
306.0000
306.2500
306.5000
306.7500
307. 0000
307.2500
312.0000
Depth
ft
0.0000
0.2500
0.5000
0.7500
l. 0000
1.2500
6.0000
Area
ft'2
4.3560
174.2400
784. 0800
1655. 2800
2308.6800
2439.3600
2439.3600
Variable storage data for node IFA-1,2
Data
Point
10
Elevation
ft
309. 9600
311. 9600
312.0200
312.1200
312.2200
312.3200
312.4200
312.5200
312.6200
312.6700
Depth
ft
0.0000
2.0000
2.0600
2.1600
2.2600
2.3600
2.4600
2.5600
2.6600
2. 7100
Area
ft'2
4.3560
4.3560
87.1200
740. 5200
2003.7600
5314 .3200
7666.5600
8363.5200
8929. 8000
9757.4400
Variable storage data for node fFA-2.l
Data
Point
10
Elevation
ft
310.4400
312.4400
312.5000
312.6000
312.7000
312.8000
312.9000
313. 0000
313.1000
313 .1500
Depth
ft
0.0000
2. 0000
2.0600
2.1600
. 2600
.3600
.4600
.5600
.6600
. 7100
Area
ft'2
4.3560
4.3560
87.1200
696.9600
1524.6000
1524.6000
1524.6000
1524.6000
1524.6000
1524.6000
Variable storage data for node IFA-2.2
Data
Point
10
Elevation
ft
310.4400
312.4400
312. 5000
312.6000
312.7000
312.8000
312.9000
313.0000
313.1000
313.1500
Weir Data
Depth
ft
. 0000
. 0000
. 0600
.1600
.2600
.3600
.4600
. 5600
2. 6600
2. 7100
From To
Junction Junction
Link
Number
DBA-2
DBA-1
DBB-2, 3
DBB-1
FA-2. l
FA-2 .2
FA-2. 2
DBA-2
DBA-1 WEIR
NE-CREEK WEIR
DBB-1 WEIR
SECRK, FB-2WEIR
FA-1,2 WEIR
FA-1,2 WEIR
DBB-2,3 WEIR
DBB-2,3 WEIR
#
#
#
# 4
#
#
#
#
Area
ft'2
4.3560
4.3560
87. 1200
696.9600
1524.6000
1524.6000
1524.6000
1524.6000
1524. 6000
1524.6000
Crest
Type Height (ft)
3. 23
4.00
2.80
4.00
2.35
.35
. 56
2.38
FREE OUTFALL DATA (DATA GROUP Il)
BOUNDARY CONDITION ON DATA GROUP Jl
3038 .4549
24092. 7453
Volume
ft •3
0.0000
17.1788
127.8404
426.0572
919. 2929
1512. 7230
13099. 6830
Volume
ft'3
0.0000
8. 7120
10.9311
46.9857
179.0658
531 .7759
1177. 2382
1978.4895
2843.0010
3310. 0292
Volume
ft'3
0. 0000
8 . 7120
10.9311
45.2809
153.6935
306.1535
458.6135
611 .0735
763.5335
839.7635
Volume
ft •3
0 . 0000
8 . 7120
10.9311
45.2809
153 .6935
306 .1535
458.6135
611.0735
763 .5335
839.7635
Weir
Top (ft)
Weir
Length (ft)
4.00
10. 00
. 80
.00
.50
.50
.50
4.00
5. 00
60. 00
.00
20.00
23.00
23.00
23.00
10.00
Outfall at Junction ... 2818-ECULV has boundary condition number.
Outfall at Junction. .37 has boundary condition number.
Discharge
Coefficient
3.0000
3.0000
3 .0000
3.0000
3.0000
3.0000
3.0000
3. 0000
Weir
Power
1.5000
l. 5000
1.5000
l. 5000
l. 5000
. 5000
. 5000
1. 5000
Page 5of1 1
0122-50.doc
CANYON CREEK TOWNHOMES
50 YEAR PROPOSED XP-SWMM ANALYSIS
INTERNAL CONNECTIVITY INFORMATION
CONDUIT
WEIR #
WEIR #
WEIR #
WEIR #
WEIR #
WEIR # 6
WEIR #
WEIR #
FREE #
FREE #
JUNCTION JUNCTION
D8A-2 D8A-l
D8A-l NE-CREEK
088-2,3 088-1
088-1 SECRK,F8-2
FA-2.l FA-1,2
FA-2.2 FA-1,2
FA-2.2 088-2,3
D8A-2 088-2,3
2818-ECULV BOUNDARY
37 BOUNDARY
Table EB -Junction Time Step Limitation Summary
Not Convr
Avg Convr
Conv err
Omega Cng
Max Itern
Number of times this junction did not
converge during the simulation.
Average junction iterations.
z Mean convergence error.
Change of omega during iterations
Maximum number of iterations
Junction Not Convr Avg Convr Total Itt Omega Cng Max !tern Ittrn >10 Ittrn >25 Ittrn >40
DBA-2
DBA-1
DB8-2,3
DBB-1
SECRK,FB-2
FA-1, 2
FA-2.l
FA-2.2
WCULV, FA3
FB-1
NE-CREEK
2818-ECULV
37
33
1.34
2 .11
1. 36
.29
1.14
1.54
.63
. 63
1. 02
1. 00
1. 00
1.87
1.81
77296
121816
78194
74153
65525
88742
93714
93714
58873
57599
57603
107711
104451
Total number of iterations for all junctions.
Minimum number of possible iterations ...
Efficiency of the simulation.
1079391
748787
1. 44
27
501
31
501
5
12
12
Good Efficiency
*=======================••z~z•:z===========================*
Extran Efficiency is an indicator of the efficiency of
the simulation. Ideal efficiency is one iteration per
time step. Altering the underrelaxation parameter,
lowering the time step, increasing the flow and head
tolerance are good ways of improving the efficiency,
another is lowering the internal time step. The lower
efficiency generally the faster your model will run.
I I I I I
the I
I If your efficiency is less than 1.5 then you may try I
increasing your time step so that your overall simulation!
is faster. Ideal efficiency would be around 2. O I
Good Efficiency < 1.5 mean iterations
Excellent Efficiency< 2.5 and > 1.5 mean iterations
Good Efficiency< 4 .0 and> 2 .5 mean iterations
Fair Efficiency < 7 . 5 and > 4. O mean iterations
Poor Efficiency > 7. 5 mean i terations
I Table E9 -JUNCTION SUMMARY STATISTICS I The Maximum area is only the area of the node, it I I does not include the area of the surrounding conduits!
I I I I I I
Uppermost Maximum
Ground PipeCrown Junction
Elevation Elevation Elevation
Time Feet of
Junction
Name
DBA-2
feet feet feet
317.0000 317.0000 315.5871
DBA-1 317.0000 317.0000 312.5000
D8B-2,3 312.1600 312.1600 312.1235
DBB-1 313.0000 313 .0000 308.5000
SECRK,FB-2 320.0000 317.0000 306.4011
FA-1,2 313.9400 313.9400 312.8731
FA-2.1 313.9400 313.9400 312.8738
FA-2.2 313.9400 313.9400 312.8738
WCULV,FA3 310.0000 308.0000 307.6488
F8-l 324.0000 314.0000 306.3905
NE-CREEK 320.0000 320.0000 306.4191
2818-ECULV 324.0000 313.9900 306.3900
37 310.0000 307.9000 307.5488
of Surcharge
Occurence at Max
Hr. Min. Elevation
12
30
18
26
9
24
25
25
10
9
10
0.0000
0.0000
0.0000
0.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0000
.0000
211
192
74
52
125
Maximum
Freeboard Junction
of node Area
feet ft"2
1.4129 965.4531
.5000 1524.6000
.0365 3780.0947
4.5000 2439.3600
13.5989 12.5660
.0669 9757.4400
.0662 1524.6000
1.0662 1524.6000
2.3512
17.6095
13. 5809
17.6100
2.4512
12.5660
12.5660
12.5660
12.5660
12.5660
122
Page 6of11
0122-50.doc
CANYON CREEK TOWNHOMES
50 YEAR PROPOSED XP-SWMM ANALYSIS
Table ElO -CONDUIT SUMMARY STATISTICS
Note: The peak flow may be less than the design flow
and the conduit may still surcharge because of the
downstream boundary conditions .
Name
Conduit
Name
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
WEIR #
WEIR #
WEIR #
WEIR #
WEIR #
WEIR #
WEIR #
WEIR #
FREE #
FREE # 2
Design
Flow
(cfs)
Conduit
Design Vertical
Velocity Depth
(ft/a) (in)
Maximum
Computed
Flow
(cfs)
7648.6 6.6394 216.0000 301.9117
21775. 13.0235 264.0000 290.8424
4436.7 3.1691 240.0000 302.1775
10.462 13.3204 12.0000 7.8869
0 .5210 2.6536 6.0000 1.0955
0.9196 10.7521 .9600 0.6520
11.125 9.0657 15.0000 10.9750
28.135 22.9264 15.0000 8.7666
.339 2.9785 12.0000 -1.1164
.427 6.9098 12.0000 5.2059
2.339 2.9785 12.0000 -1.1164
Undefnd Undefnd Undefnd 0.0000
Undefnd Undefnd Undefnd 0.0000
Undefnd Undefnd Undefnd 0.0000
Undefnd Undefnd Undefnd 0.0000
Undefnd Undefnd Undefnd -1.1720
Undefnd Undefnd Undefnd -1.1720
Undefnd Undefnd Undefnd 0.0000
Undefnd Undefnd Undefnd 2.8267
Undefnd Undefnd Undefnd302.1775
Undefnd Undefnd Undefnd 7.8869
Time
of
Occurence
Hr. Min.
12
2
12
10
12
32
18
27
15
10
15
19
19
0
12
12
10
Maximum
Computed
Velocity
Cft/sl
0.5589
0.7458
0.5167
14 . 6290
5.5283
6. 9724
9.4760
6.9575
-1.4079
7.7538
-1.4079
Time
of
Occurence
Hr. Min.
12
48
12
10
12
32
18
27
15
13
15
Ratio of Maximum Depth >
Max . to at Pipe Ends
Design Upstream Dwnstrm
Flow (ft) (ft)
.0395 306.4011 306.3905
.0134 306.4191 306.4011
0.0681 306.3905 306 .3900
.7539 307.6488 307.5488
.1027 315.5871 312 .9823
.7089 312.5000 306.4191
.9865 312.1235 309 .5103
.3116 308.5000 306.4011
-0.4772 312.8738 312.8731
0.9593 312.8731 307.6488
-0.4772 312.8738 312.8731
Table Ell. Area assumptions used in the analysis!
Subcritical and Critical flow assumptions from I
Subroutine Head. See Figure 17-1 in the I
manual for further information. I
Length Length of Length of Length
of of Sub-Upstream Downstream Maximum Maximum Maximum
Conduit Dry Critical Critical Cri tical Hydraulic X-Sect Vel*D
Name Flow (min} Flow(min) Flow(min) Flow(min) Radius-m Area(ft ... 2) (ft ... 2/s)
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
0. 0000
. 0000
. 0000
. 0000
60.0000
60.0000
60.0000
60.0000
0.1375
60.0000
0. 0104
60. 0000
60.0000
60. 0000
60. 0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0. 0000
0. 0000
0. 0000
0. 0000
I Table El2. Mean Conduit Flow Information
·----·===========·=·=================·======*
. 0000
. 0000
. 0000
. 0000
59.8625
0.0000
59.9896
0.0000
0.0000
0.0000
0.0000
6 . 3523
5.3434
6. 6165
0. 2877
0.1506
0. 082 5
0. 3 568
0 .3498
0. 2887
0. 2669
0 . 2887
540.1940 6.6485
390.0425 .3903
584.8380 .4044
0.5391 .4914
0.1982 8.4841
0.0935 38.0643
1.1582 17.8804
1 .2884 48.3564
0.8076 3.5669
0.6791 13.4479
0.8076 3.5669
Mean
Flow
(cf s)
Total
Flow
(ft'3)
Mean
Percent
Change
Low
Flow
Weightng
Mean Mean Mean
Cross
Area
Mean
Conduit
Roughness
Conduit
Name
CREEK-S 296. 7509 1068303.
CREEK-N 290. 6269 1046257.
2818-HW 296.8259 1068573.
38 5.1592 18572.96
12PIPE1 0.5204 1873.602
PIPE 0.6269 2256.983
15_Bl-B2 4.4727 16101.75
PIPE-OB 4.7741 17186.59
PIPE-20-19 -0.0413 -148.776
ORIFICE 4.4843 16143.36
PIPE-21-19 -0.0413 -148.776
WEIR # l 0. 0000 0. 0000
WEIR # 0 . 0000 0. 0000
WEIR # .0000 0.0000
WEIR # 4 . 0000 0. 0000
WEIR # 5 -0.0295 -106.341
WEIR # -0.0295 -106.341
WEIR # 0 . 0000 0. 0000
WEIR # 0.6243 2247.312
FREE # 296.8259 1068573.
FREE# 5.1592 18572.96
. 0575
. 0145
. 0583
. 0153
. 3942
. 0002
0. 3162
.0326
. 0360
. 0063
. 0360
. 0000
. 0000
. 0000
.0000
.0000
. 0000
.8809
. 0000
. 0000
. 0000
l . 0000
Froude Hydraulic
Number Radius
0. 0287
0. 04 53
0. 02 54
3.3122
1.3230
0. 8284
3.1926
0. 5609
0. 0250
1 . 8431
0. 0250
6.3522 540.1683
5.3431 390.0019
.6165 584.8368
.2463 0.3876
0.0774 0.1069
0.0825 0.0931
0.1726 0.5336
0.3039 1.0825
0.2507 0.7881
0.2483 0.6113
0.2507 0.7881
0. 0700
0. 0700
0. 0700
. 0140
. 0140
0 .0140
0. 0140
. 0140
0. 0140
0.0140
. 0140
Page 7 of 11
0 122-50.doc
CANYON CREEK TOWNHOMES
50 YEAR PROPOSED XP-SWMM ANALYSIS
I Table El3. Channel losses(H), headwater depth (HW), tailwater I depth (TW) , critical and normal depth (Ye and Yn) . I Use this section for culvert comparisons
Conduit
Name
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
Maximum
Flow
301. 912
290.842
302.178
7.887
1.096
0.652
10. 975
8.767
0.610
5.206
0.610
Head Friction Critical
Loss Loss Depth
0.000
0.000
0.000
0.000
0.582
1.108
1.824
1.116
0.000
l. 549
0.000
0.012
0.026
0.000
0.100
2.027
5.046
0.830
l. 013
0.025
.367
0.025
.366
. 302
.387
. 000
0. 482
2.500
1.239
. 14 7
.325
0. 925
0 .325
Normal
Depth
4 .425
3.325
6 .417
0. 649
0.500
0. 205
. 010
.479
.348
0. 786
0.348
CULVERT ANALYSIS CLASSIFICATION, and the time the j
culvert was in a particular classification I
during the simulation. The time is in minutes. I
The Dynamic Wave Equation is used for all conduit!
analysis but the culvert flow classification I
condition is based on the HW and TW depths. I
*========================================================z=*
Mild
Slope
Critical D
Conduit Outlet
HW
Elevat
306.401
306.419
306.390
307.649
315.587
312.500
312.124
308.499
312.781
312.659
312.781
TW
Elevat
306.390 Max Flow
306.401 Max Flow
306.390 Max Flow
307.549 Max Flow
312.982 Max Flow
306.418 Max Flow
309.510 Max Flow
306.401 Max Flow
312. 756 Max Flow
307. 643 Max Flow
312.756 Max Flow
Inlet Inlet
Name Control
Mild
Slope TW
Control
Outlet
Control
Steep
Slope TW
Insignf
Entrance
Control
Slug Flow
Outlet/
Entrance
Control
Mild
Slope
TW > D
Outlet
Control
Mild
Slope
TW c::-D
Outlet
Control
Outlet
Control Control Configuration
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
0.000
0.000
.000
0.000
0.800
0.000
0.000
0.000
0.000
0.000
0.000
60.000
60.000
60.000
0.000
24.575
0.000
0.000
0.000
0.512
0.000
0.512
0.000
0.000
0.000
0.000
4.700
60.000
42.650
0.000
0.000
60.000
0.000
. 000
. 000
. 000
. 000
. 000
. 000
0 . 000
14. 812
0 . 000
. 000
. 000
0 . 000
0.000
0.000
0.000
0.000
0. 000
0.000
0. 000
59 . 487
0 . 000
59. 487
. 000
. 000
. 000
. 000
0.000
0.000
0.000
0.000
0.000
. 000
. 000
0.000
.000
0.000
60.000
29.925
0.000
17.350
45.187
0.000
0.000
0.000
*=========== =========================*
Kinemat c Wave Approximations I
Time in M nutes for Each Condition I
Conduit Length of Slope Super-
Name Normal Flow Criteria Critical
Roll
Waves
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
0.00
0.00
0.00
0 .11
0.05
0.00
.02
.00
0.00
0.00
0.00
59.70
60.00
60. 00
.11
. 06
. 00
. 05
. 00
. 74
. 00
0 . 74
.00
. 00
0.00
60. 00
.30
. 00
37.08
0.00
0. 00
. 99
. 00
Table El5 -SPREADSHEET INFO LIST
. 00
. 00
. 00
. 00
. 00
.00
. 00
0 . 00
0. 00
. 00
.00
Conduit Flow and Junction Depth Information for use in
spreadsheets. The maximum values in this table are the
true maximum values because they sample every time step.
The values in the review results may only be the
maximum of a subset of all the time steps in the run.
Note: These flows are only the flows in a single barrel .
*================================•==z••••s•>Es•z•zzz:::====*
Conduit
Name
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
WEIR #
WEIR #
WEIR #
Maximum
Flow
301.9117
290. 8424
302.1775
7. 8869
1.0955
0. 6520
10.9750
8.7666
-1.1164
5.2059
-1.1164
0 . 0000
0. 0000
0. 0000
Total
Flow
1068303.34
1046256 .75
1068573.30
18572. 9598
1873.6025
2256.9830
16101 .7517
17186. 5854
-148. 7756
16143.3571
-148. 7756
0. 0000
.0000
0 .0000
Maximum
Velocity
0.5589
0.7458
0.5167
14.6290
5.5283
6. 9724
. 4760
. 9575
-1.4079
7. 7538
-1.4079
0. 0000
0.0000
0.0000
## Junction Invert
## Name Elevation
## -------------------
## DBA-2 313.0000
## DBA-1 310.0000
## DBB-2,3 309.3600
## DBB-1 306.0000
## SECRK, FB-2 295. 0000
## FA-1,2 309.9600
## FA-2.l 310.4400
## FA-2 .2 310.4400
## WCULV,FA3 307.0000
## FB-1 294.0000
## NE-CREEK 298.0000
## 2818-ECULV 293. 9900
## 37 306.9000
##
.000 None
.000 None
.000 None
.000 None
O. 000 None
.000 None
.000 None
.000 None
o. 000 None
.000 None
.000 None
Maximum
Elevation
315.5871
312.5000
312.1235
308.5000
306.4011
312.8731
312.8738
312.8738
307.6488
306.3905
306.4191
306.3900
307.5488
Page 8of 11
0122-50.doc
CANYON CREEK TOWNHOMES
50 YEAR PROPOSED XP-SWMM ANALYSIS
WEIR #
WEIR #
WEIR # 6
WEIR #
WEIR #
FREE #
FREE # 2
0 . 0000 . 0000
-1.1720 -106.3412
-1.1720 -106.3412
.0000 0.0000
.8267 2247.3116
302.1775 1068573.36
7 . 8869 18572. 9625
.0000
.0000
.0000
0.0000
0.0000
0.0000
0.0000
Table El5a -SPREADSHEET REACH LIST
Peak flow and Total Flow listed by Reach or those
conduits or diversions having the same
upstream and downstream nodes.
Upstream Downstream Maximum
Node Node Flow
SECRK,FB-2 FB-1 301.9117
NE-CREEK SECRK,FB-2 290.8424
FB-1 2818-ECULV 302.1775
WCULV,FA3 37 7.8869
DBA-2 DBA-1 1.0955
DBA-1 NE-CREEK 0. 6520
DBB-2,3 DBB-1 10.9750
DBB-1 SECRK,FB-2 8.7666
FA-2.1 FA-1,2 -1.1164
FA-1,2 WCULV,FA3 5.2059
FA-2.2 FA-1,2 -1.1164
FA-2.l FA-1,2 -1.1720
FA-2.2 FA-1,2 -1.1720
DBA-2 DBB-2,3 2.8267
Total
Flow
l.0683E+06
l.0463E+06
l.0686E+06
18572.9598
1873.6025
2256.9830
16101.7517
17186. 5854
-148. 7756
16143.3571
-148.7756
-106.3412
-106.3412
224 7. 3116
##
##
##
##
##
##
##
#########################################################
# Table El6. New Conduit Information Section #
# Conduit Invert (IE) Elevation and Conduit #
# Maximum Water Surface (WS) Elevations #
#########################################################
Conduit Name Upstream Node Downstream Node IE Up IE On WS Up WS On Conduit Type
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
SECRK,FB-2
NE-CREEK
FB-1
WCULV,FA3
DBA-2
DBA-1
DBB-2, 3
DBB-1
FA-2 .1
FA-1, 2
FA-2. 2
FB-1
SECRK, FB-2
2818-ECULV
37
DBA-1
NE-CREEK
DBB-1
SECRK,FB-2
FA-1,2
WCULV,FA3
FA-1,2
295.0000 294.0000
298. 0000 295. 0000
294.0000 293.9900
307.0000 306.9000
313.0000 312.5000
310.0000 298 .0000
309.3600 308.5000
306.0000 295 .0000
310.4400 310.0650
309.9600 307.0000
310.4400 310.0650
306.4011 306.3905
306.4191 306.4011
306.3905 306.3900
307.6488 307.5488
315.5871 312.9823
312.5000 306.4191
312.1235 309.5103
308.5000 306.4011
312.8738 312.8731
312.8731 307.6488
312.8738 312.8731
Table El8 -Junction Continuity Error. Division by Volume added 11/96
Continuity Error "' Net Flow + Beginning Volume -Ending Volume
Total Fl ow + (Beginning Volume + Ending Volume)/2
Net Flow Node Inflow -Node Outflow
Total Flow • absolute (Inflow + Outflow
Intermediate column is a judgement on the node continuity error.
Excellent < 1 percent
Fair S to 10 percent
Terrible > SO percent
Great
Poor
1 to 2 percent
10 to 2S percent
Good
Bad
to percent
2S to so percent
Trapezoid
Trapezoid
Trapezoid
Circular
Circular
Circular
Circular
Circular
Circular
Circular
Circular
Junction
Name
<------Continuity Error -------> Remaining Beginning Net Flow Total Flow Failed to
Volume \ of Node \ of Inflow Volume Volume Thru Node Thru Node Converge
DBA-2
DBA-1
DBB-2,3
DBB-1
19. 8783
162.5850
-266.4137
67 .4823
0. 24 06
2.155
-.8342
0.1957
.00183
0.0149
0.0245
.00620
0.0610
2332.1409
0.0008
79.8818
0. 0171
1255. 6870
0. 0004
149.3770
SECRK, FB-2 100507 . 4957 4.393
-1.018
76. 630
76.630
-. 0135
9.235 100952.2351 201460.6314
FA-1,2 -339 .3103
FA-2.l 232 .7081
FA-2.2 232.7081
WCULV,FA3 -5 .0183
FB-1 61210.1132
NE-CREEK 29403. 6622
2818-ECULV 2770.5242
37 -5.1899
2.746
1.376
0.1294
-.0140
0.0312
0. 0214
0. 0214
. 00046
5. 624
2.702
0.2S46
. 00048
319.647S
S9.7628
59.7628
23.2843
2S3.7413
37.3S86
37.3586
17.8534
61525.3216 122735.4372
29785.1149 59188.5403
3082.2184 5852 .8000
5.5558 0.3544
The total continuity error was l.93991E+OS cubic feet
The remaining total volume was l.9822SE+OS cubic feet
Your mean node continuity error was Excellent
Your worst node continuity error was Fair
19.9222 8260.9127
1239.0389 5750.5878
-266.4133 31936 .6051
-2.0129 34368.1397
-0.9006 2136605.803
-273.4041 33033.6174
255.1123 255.1168
255.1123 255.1168
0.4127 37146.3174
-0.0024 2137146.S91
0.2368 2092513.731
-0.0574 2137146.659
0.0114 37145 .9223
33
Page 9of11
0122-50.doc
CANYON CREEK TOWNHOMES
50 YEAR PROPOSED XP-SWMM ANALYSIS
Table El9 -Junction Inflow Sources
Junction
Name
08A-2
08A-l
088-2,3
088-1
SECRK,F8-2
FA-1,2
WCULV,FA3
F8-l
NE-CREEK
2818-ECULV
37
Units are either ft~3 or m~3
depending on the units in your model.
Constant
Inflow
to Node
0.0000
0. 0000
0. 0000
0. 0000
. 0000
. 0000
. 0000
.0000
.0440E+06
0.0000
0.0000
User
Inf low
to Node
4139.9986
1620.0023
13587.5416
1079.8026
4859 .1281
16380.0266
2430.0005
269.9514
. 0000
. 0000
. 0000
Interface
Inflow
to Node
0.0000
0.0000
. 0000
. 0000
. 0000
. 0000
. 0000
0 . 0000
. 0000
. 0000
.0000
OWF
Inlow
to Node
0 . 0000
. 0000
. 0000
. 0000
. 0000
0.0000
0.0000
.0000
.0000
.0000
. 0000
Table E20 -Junction Flooding and Volume Listing. I
The maximum volume is the total volume I
in the node including the volume in the I
flooded storage area. This is the max I
volume at any time. The volume in the I
flooded storage area is the total volume!
above the ground elevation, where the I
flooded pond storage area starts. I
The fourth column is instantaneous, the fifth is thel
sum of the flooded volume over the entire simulation!
Units are either ftA3 or mAJ depending on the units. I
Outflow
from Node
. 0000
0. 0000
0. 0000
0.0000
0.0000
0.0000
0.0000
0.0000
.0000
1. 0686E+06
18572. 9625
Out of
System
Flooded
Volume
Stored in System
Junction Surcharged Flooded
Name Time (min) Time(min)
08A-2
08A-l
088-2,3
088-1
SECRK,F8-2
FA-1,2
FA-2.l
FA-2.2
WCULV,FA3
F8-l
NE-CREEK
2818-ECULV
37
0 . 0000
0. 0000
0. 0000
0. 0000
0. 0000
0 . 0000
0 . 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
0.0000
0.0000
0.0000
.0000
0.0000
.0000
.0000
.0000
.0000
.0000
. 0000
.0000
. 0000
I Simulation Specific Information
Number of Input Conduits ...
Number of Natural Channels.
Number of Storage Junctions.
Number of Orifices.
Number of Free Outfalls.
. 0000
. 0000
. 0000
. 0000
0. 0000
. 0000
.0000
0.0000
0.0000
0.0000
.0000
.0000
.0000
Maximum Ponding Allowed
Volume Flood Pond Volume
223.5638
3152 .2447
1030. 0070
4562. 0114
143.2657
3310. 0292
418.6285
418.6285
8. 1534
155.6987
105. 7948
155. 8184
8.1528
0. 0000
0. 0000
0.0000
. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0.0000
0. 0000
0. 0000
0. 0000
11 Number of Simulated Conduits ..
Number of Junctions.
Number of Weirs.
Number of Pumps.
Number of Tide Gate Outfalls.
I Average \ Change in Junction or Conduit is defined as: I Conduit \Change==> 100.0 ( Q(n+l) -Q(n) ) I Qfull I Junction \ Change ==> 100. O ( Y (n+l) -Y (n) ) I Yfull
Evaporation
from Node
. 0000
. 0000
. 0000
. 0000
0. 0000
0. 0000
0. 0000
0. 0000
.0000
0.0000
.0000
The Conduit with the largest average change was .. 12PIPE1
The Junction with the largest average change was.FA-2 .1
The Conduit with the largest sinuosity was ....... 12PIPE1
with
with
with
. 3 94 percent
0.023 percent
286. 257
*::::::::::::::z::z:::::::::::::::::::::::::::::::::::::::::::::::::*
I Table E21. Continuity balance at the end of the simulation I Junction Inflow, Outflow or Street Flooding I Error = Inflow + Initial Volume -Outflow -Final Volume
Inf low Inf low Average
Junction Volume,ftA3 Inflow, cfs
08A-2 4139.9986 1.1500
08A-l 1620.0023 0.4500
088-2,3 13587.5417 .7743
088-1 1079.8026 .2999
SECRK,F8-2 4859.1282 1.3498
FA-1,2 16380 .0267 4.5500
WCULV,FA3 2430.0005 0.6750
F8-l 269 .9514 0.0750
NE-CREEK l.044000E+06 290.0000
21
13
Page 10of11
0122-50.doc
CANYON CREEK TOWNHOMES
50 YEAR PROPOSED XP-SWMM ANALYSIS
Outflow Outflow Average
Junction Volume,ft"'3 Outflow, cfs
-----------------------------------
2818-ECULV l.068573E+06 296.8259
37 18572. 9625 5.1592
I Initial system volume 3. 9099E+OS Cu Ft I I Total system inflow volume l.0884E+06 Cu Ft I I Inflow+ Initial volume l.4794E+06 Cu Ft I
l·=================================================··=I I Total system outflow 1. 0871E+06 Cu ft I I Volume left in system 1. 9822E+OS Cu ft I I Evaporation a. OOOOE+OO Cu ft I I Outflow + Final Volume 1. 28548+06 Cu ft I
Total Model Continuity Error
Error in Continuity, Percent z
Error in Continuity, ft"'J
+ Error means a continuity loss,
13. 11276
193984.297
a gain
Page 11 of 11
0122-50.doc
CANYON CREEK TOWNHOMES
100 YEAR PROPOSED XP-SWMM ANALYSIS
Input File C•\XPS\0122-lOOii.XP
Current Directory' c,\XPS\XP-UDD-1
Executable Name: C:\XPS\XP-UDD-1\swmmengw.exe
Read O line(s) and found o items(s) from your cfg file.
XP-SWMM2000 I
Storm Water Management Model I I Version 7. 51 I
l···======================··········=·==========I I Developed by I l····=··=··===================·==·=··········===I
I I j XP Software Inc. and Pty. Ltd. I
I I I Based on the U.S. EPA I I Storm Water Management Model Version 4.40 I
I I I Originally Developed by I I Metcalf & Eddy, Inc. I I University of Florida I I Camp Dresser & McKee Inc. I
I September 1970 I
I I I EPA-SWMM is maintained by I I Oregon State University I I Camp Dresser & McKee Inc . I
l················==·====·=====·=================I I XP Software October, 2000 I I Data File Version ---> 9.0 I
*===============================================*
Input and Output file names by SWMM Layer
Input File to Layer
Output File to Layer
1 JOT US
1 JOT US
*===========================================================*
Special command line arguments in XP-SWMM2000. This I
now includes program defaults. $Keywords are the program!
defaults. Other Keywords are from the SWMMCOM.CFG file. I
or the command line or any cfg file on the command line. I
Examples include these in the file xpswm.bat under the I
section :solve or in the windows version XPSWMM32 in thel
file solve.bat I
Note: the cfg file should be in the subdirectory swmxp
I I
or defined by the set variable in t he xpswm.bat I
file. Some examples of the command lines possible!
a re shown be low: I
swmmd swmmcom.cfg
swmmd my. c fg
swmmd nokeys nconvS perv extranwq
$powerstation .0000
$perv .0000
$oldegg .0000
$as .0000
$no flat .0000
$oldomega .0000
$oldvol .0000
$implicit 0. 0000
$oldhot 0. 0000
$olds cs 0. 0000
$flood 0. 0000
$nokeys 0 . 0000
$pzero . 0000
$oldvol2 . 0000
$oldhotl . 0000
$pumpwt . 0000
$ecloss . 0000
$exout 0. 0000
$oldbnd . 0000
$nogrelev . 0000
$ncmid . 0000
$new_nl -97 . 0000
$best97 0 . 0000
$newbound 0.0000
11
21
24
28
29
31
33
40
42
55
59
63
70
77
97
154
161
164
290
294
295
I I I I
I Parameter Values on the Tapes Common Block.These are the I
I values read from the data file and dynamically allocated 1 I by the model for this simulation. I
Number of Subcatchments in the Runoff Block (NW) .
Number of Channel/Pipes in the Runoff Block (NG)
Runoff Water quality constituents (NRQ) ..
Runoff Land Uses per Subcatchment (NLU) .
Number of Elements in the Transport Block (NET) .
Number of Storage Junctions in Transport (NTSE) .
Page 1 of 11
0122-100.doc
CANYON CREEK TOWNHOMES
100 YEAR PROPOSED XP-SWMM ANALYSIS
Number of Input Hydrographs in Transport (NTH) .
Number of Elements in the Extran Block (NEE).... 21
Number of Groundwater Subcatchments in Runoff (NGW).
Number of Interface locations for all Blocks (NIE). 21
Number of Pumps in Extran (NEP) . . O
Number of Orifices in Extran (NEO) ...
Number of Tide Gates/Free Outfalls in Extran (NTG) ..
Number of Extran Weirs (NEW)
Number of scs hydrograph points.
Number of Extran printout locations (NPO)
Number of Tide elements in Extran (NTE) . . . ......•..
Number of Natural channels (NNC) .
Number of Storage junctions in Extran (NVSE) ..
Number of Time history data points in Extran(NTVAL).
Number of Variable storage elements in Extran (NVST ) 10
Number of Input Hydrographs in Extran (NEH) 10
Number of Particle sizes in Transport Block (NPS ).
Number of User defined conduits (NHW)............... 21
Number of Connecting conduits in Extran (NECC). 20
Number of Upstream elements in Transport (NTCC) 10
Number of Storage/treatment plants (NSTU) 0
Number of Values for Rl lines in Transport (NRl)
Number of Nodes to be allowed for (NNOD) . 21
Number of Plugs in a Storage Treatment Unit.
#######################################################
# Entry made to the HYDRAULIC Layer (Block) of SWMM #
# Last Updated October,2000 by XP Software #
CANYON CREEK TOWNHOMES
HYDRAULICS TABLES IN THE OUTPUT FILE
These are the more important tables in the output file.
You can use your editor to find the table numbers,
for example: search for Table E20 to check continuity.
This output file can be imported into a Word Processor
and printed on US letter or A4 paper using portrait
mode, courier font, a size of e pt. and margins of 0.75
Table El Basic Conduit Data
Table E2 Conduit Factor Data
Table E3 Junction Data
Table E4 Conduit Connectivity Data
Table E4a Dry Weather Flow Data
Table ES Junction Time Step Limitation Summary
Table ES a Conduit Explicit Condition Summary
Table E6 Final Model Condition
Table E7 Iteration Summary
Table EB Junction Time Step Limitation Summary
Table E9 Junction Summary Statistics
Table ElO Conduit Summary Statistics
Table Ell Area assumptions used in the analysis
Table El2 Mean conduit information
Table El3 Channel losses (H) and culvert info
Table El4 Natural Channel Overbank Flow Information
Table ElS Spreadsheet Info List
Table El6 New Conduit Output Section
Table El7 Pump Operation
Table El8 Junction Continuity Error
Table El9 Junction Inf low Sources
Table E20 Junction Flooding and Volume List
Table E21 Continuity balance at simulation end
Table E22 Model Judgement Section
Time Control from Hydraulics Job Control
Year. 95 Month.
Day. Hour.
Minute. Second.
Control information for simulation
Integration cycles.
Length of integration step is.
Simulation length .............. .
Do not create equiv. pipes(NEQUAL).
Use U.S. customary units for I/O .. .
Printing starts in cycle .......... .
Intermediate printout interval s of.
Intermediate printout interval s of.
Summary printout intervals of.
Summary printout time interval of.
Hot start file parameter (REDO).
Initial time.
Iteration variables: SURTOL.
SURJUN.
QREF.
Minimum depth (m or ft) .
14400
0 . 25
1. 00
0
1
500
2 .08
500
2.08
. 00
0.0001
0.0060
1 .0000
0. 0000
seconds
hours
cycles
minutes
cycles
minutes
hours
mm or inch
Page 2of11
01 22-100.doc
CANYON CREEK TOWNHOMES
100 YEAR PROPOSED XP-SWMM ANALYSIS
Underrelaxation parameter.
Time weighting parameter.
Courant Time Step Factor ..
Default Expansion/Contraction K
Default Entrance/Exit K ..
Default surface area of junctions.
NJSW input hydrograph junctions.
or user defined hydrographs.
Table El -Conduit Data
Inp Conduit
Num Name
CREEK-S
CREEK-N
2818-HW
4 38
5 12PIPE1
6 PIPE
15_Bl-B2
PIPE-OB
9 PIPE-20-19
10 ORIFICE
11 PIPE-21-19
Length Conduit
(ft) Class
200.00 Trapezoid
200. 00 Trapezoid
10. 00 Trapezoid
1.00 Circular
50. 00 Circular
42.00 Circular
25.00 Circular
50.00 Circular
75.00 Circular
110.00 Circular
75. 00 Circular
Total length of all conduits
Table E2 -Conduit Factor Data
0.8500
0. 8500
1. 0000
0. 0000
0. 0000
12.57 square feet.
Area
( ft'2)
Manning Max Width
Coef. (ft)
1152.00
1672 00
1400.00
0. 79
0. 20
. 09
0.07000
. 07000
. 07000
.01400
. 01400
. 01400
. 23 . 01400
1. 23 . 01400
0.79 0.01400
0.79 0.01400
0.79 0.01400
838.0000 feet
10.00
10.00
10.00
1. 00
. 50
.33
.25
1 .25
1. 00
1. 00
1. 00
Trapezoid
Depth Side
(ft) Slopes
18.00
22. 00
20.00
.00
.50
.33
.25
1.25
1. 00
1. 00
1. 00
3.00
3.00
3.00
3.00
3.00
3.00
Time Low Flow Depth at
Conduit
Name
Number Entrance Exit Exp/Conte Weighting Roughness Which Flow
of Barrels Loss Coef Loss Coef Coefficnt Parameter Factor n Changes Routing
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
ORIFICE
1.0000
1.0000
.0000
.0000
1. 0000
0.2000
0. 5000
0.2000
0.5000
0. 5000
. 0000
. 0000
. 0000
. 0000
1.0000
.0000
.0000
.0000
0. 0000
0 . 0000
*===================================================*
If there are messages about (sqrt(g*d)*dt/dx), or
the sqrt(wave celerity)*time step/conduit length
in the output file all it means is that the
program will lower the internal time step to
satisfy this condition (explicit condition).
You control the actual internal time step by
using the minimum courant time step factor in the
HYDRAULICS job control . The message put in words
states that the smallest conduit with the fastest
velocity will control the time step selection.
You have further control by using the modify
conduit option in the HYDRAULICS Job Control.
0.8500
0.8500
0.8500
0. 8500
0.8500
===> Warning ! (sqrt (wave celerity) •time step/conduit length)
in conduit 38 is 1.42 at full depth.
Conduit Volume
Full pipe or full open conduit volume
Input full depth volume. 5. 7911E+05 cubic feet
Table E3a -Junction Data
*=============================z==~~=================*
Inp Junction Ground Crown Invert Qinst
Num Name Elevation Elevation Elevation cf s
1 DBA-2
DBA-1
DBB-2, 3
4 DBB-1
5 SECRK,FB-2
6 FA-1,2
FA-2 .1
FA-2. 2
9 WCULV, FA3
10 FB-1
11 NE-CREEK
12 2818-ECULV
13 37
317.0000 313.5000 313.0000
317.0000 313.0000 310.0000
312.1600 310.6100 309.3600
313.0000 309 .7500 306.0000
320. 0000 317 . 0000 295. 0000
309. 9600
310.4400
310.4400
307.0000
0. 0000
0. 0000
0. 0000
. 0000
0. 0000
0.0000
0.0000
.0000
.0000
313.9400
313.9400
313.9400
310. 0000
324.0000
320. 0000
324.0000
310.0000
311. 0650
311.4400
311.4400
308.0000
314.0000
320.0000
313.9900
307 .9000
294.0000 0.0000
298.0000 290.0000
293.9900 .0000
306. 9000 . 0000
Table E3b -Junction Data
Initial
Depth-ft
0.0000
0.0000
.0000
.0000
. 0000
. 0000
. 0000
0. 0000
0. 0000
0.0000
0.0000
0.0000
0.0000
. 0000
. 0000
. 0000
. 0000
. 0000
.0000 Standard Dynamic Wave
.0000 Standard Dynamic Wave
.0000 Standard Dynamic Wave
0.0000 Standard Dynamic Wave
0.0000 Standard Dynamic Wave
Page 3 of 11
01 22-100.doc
CANYON CREEK TOWNHOMES
100 YEAR PROPOSED XP-SWMM ANALYSIS
Inp Junction
Num Name
DBA-2
DBA-1
DBB-2,3
DBB-1
SECRK, FB-2
FA-1,2
FA-2.l
FA-2. 2
WCULV,FA3
10 FB-1
11 NE-CREEK
12 2818-ECULV
13 37
x
Coord.
99 .461
119.754
99.058
120.185
135.269
90.483
85.336
95.770
91.166
132.616
142.323
132.962
94 . 966
y
Coord. Type of Manhole
473.221 Sealed Manhole
478.014 Sealed Manhole
467.556 Sealed Manhole
466.356 Sealed Manhole
464 .853 Sealed Manhole
452 . 889 Sealed Manhole
453. 292 Sealed Manhole
453.058 Sealed Manhole
446.853 Sealed Manhole
450.947 Sealed Manhole
480.638 Sealed Manhole
445.208 Sealed Manhole
444.735 Sealed Manhole
Type of Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Normal Inlet
Table E4 -Conduit Connectivity
Input Conduit
Number Name
Upstream Downstream
Node Node
10
11
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
SECRK,FB-2 FB-1
NE-CREEK SECRK,FB-2
FB-1 2818-ECULV
WCULV,FA3 37
DBA-2 DBA-1
DBA-1 NE-CREEK
DBB-2,3
DBB-1
PIPE-20-19 FA-2.1
ORIFICE FA-1, 2
PIPE-21-19 FA-2.2
DBB-1
SECRK,FB-2
FA-1,2
WCULV,FA3
FA-1,2
Storage Junction Data
MAXIMUM OR
Upstream Downstream
El evation Elevation
295.000
298.000
294.000
307.000
313.000
310.000
309.360
306.000
310.440
309.960
310 .440
294 . 000 No Design
295. 000 No Design
293. 990 No Design
306.900 No Design
312.500 No Design
298. 000 No Design
308. 500 No Design
295. 000 No Design
310. 065 No Design
307. 000 No Design
310. 065 No Design
PEAK OR CROWN
STORAGE JUNCTION JUNCTION CONSTANT SURFACE CONSTANT VOLUME ELEVATION
NUMBER OR NAME TYPE AREA (FT2) (CUBIC FEET) (FT)
DEPTH
STARTS
FROM
Maximum Capacity
DBA-2
DBA-1
DBB-2, 3
DBB-1
FA-1, 2
FA-2 .l
FA-2.2
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
Stage/Area
2211. 9768
1524.6000
7361.6400
2439. 3600
9757 . 4400
1524.6000
1524.6000
5207. 8244
6963.7006
24092.7453
13099.6830
3310.0292
839.7635
839.7635
317.0000 Node Invert
317.0000 Node Invert
312.1600 Node Invert
313. 0000 Node Invert
313.9400 Node Invert
313.9400 Node Invert
313.9400 Node Invert
Variable storage data for node IDBA-2
*==================================*
Data
Point
Elevation
ft
313.0000
315.0000
315.2500
315.5000
315 . 7500
316.0000
316.2500
316.5000
318. 0000
Depth
ft
.0000
.0000
.2500
2.5000
.7500
.0000
.2500
.5000
5.0000
Area
ft ·2
.9204
3 .9204
245.2428
744 .8760
1378 . 2384
1918.8180
2211 .9768
2211 . 9768
2211 .9768
Variable storage data for node jDBA-1
Data
Point
Elevation
ft
310.0000
310.2500
310.5000
310.7500
315. 0000
Depth
ft
. 0000
0.2500
. 5000
. 7500
5. 0000
Area
ft ·2
. 4356
261.3600
1001 .8800
1524 .6000
1524 . 6000
Variable storage data for node IDBB-2,3
Data
Point
4
5
6
Elevation
ft
309.3600
311.3600
311.5000
311. 7500
312.0000
312.2500
Depth
ft
0.0000
2.0000
2. 1400
2.3900
.6400
.8900
Area
ft•2
4.3560
4.3560
130. 6800
1001. 8800
2962 .0800
4617.3600
Volume
ft•)
.0000
7.8408
31.1883
149.3154
410.6766
820. 9496
1336. 8650
1889. 8592
5207.8244
Vol ume
ft•)
.0000
22 .7055
170. 6183
484.1506
6963.7006
Volume
ft •3
0. 0000
8. 7120
16 .1271
140 .6601
614 .5473
1554 .3541
Page 4of11
0122-100.doc
CANYON CREEK TOWNHOMES
100 YEAR PROPOSED XP-SWMM ANALYSIS
312 .5000
315. 3600
.1400
6 . 0000
7361.6400
7361 . 6400
Variable storage data for node IDBB-1
Data
Point
Elevation
ft
306.0000
306.2500
306.5000
306.7500
307. 0000
307.2500
312 .0000
Depth
ft
. 0000
. 2500
. 5000
0 .7500
1.0000
1 .2500
6.0000
Area
ft ·2
4. 3560
174 .2400
784 .0800
1655 .2800
2308 .6800
2439.3600
2439 .3600
Variable storage data for node IFA-1 ,2
Data
Point
10
Elevation
ft
309.9600
311.9600
312 .0200
312 .1200
312 .2200
312 .3200
312 .4200
312 .5200
312 .6200
312 .6700
Depth
ft
0.0000
.0000
.0600
2 .1600
.2600
.3600
2.4600
2 .5600
.6600
. 7100
Area
ft•2
4.3560
4.3560
87 .1200
740 . 5200
2003 .7600
5314 .3200
7666 .5600
8363 .5200
8929 . 8000
9757 .4400
Variable storage data for node IFA-2 .
Data
Point
10
Elevation
ft
310.4400
312.4400
312.5000
312.6000
312.7000
312 .8000
312.9000
313 .0000
313.1000
313.1500
Depth
ft
0 . 0000
2 .0000
2.0600
2 .1600
2 .2600
2 .3600
. 4600
. 5600
.6600
2. 7100
Area
ft•2
4.3560
4.3560
87 .1200
696.9600
1524 .6000
1524.6000
1524.6000
1524. 6000
1524.6000
1524.6000
Variable storage data for node [FA-2 .2
Data
Point
10
Elevation
ft
310. 4400
312.4400
312.5000
312.6000
312.7000
312.8000
312.9000
313. 0000
313.1000
313.1500
Weir Data
Depth
ft
.0000
.0000
.0600
.1600
.2600
.3600
.4600
2.5600
.6600
. 7100
From To
Junction Junction
Link
Number
DBA-2
DBA-1
DBB-2, 3
DBB-1
FA-2 .1
FA-2. 2
FA-2. 2
DBA-2
DBA-1 WEIR
NE-CREEK WEIR
DBB-1 WEIR
SECRK,FB-2WEIR
FA-1,2 WEIR
FA-1,2 WEIR
DBB-2,3 WEIR
DBB-2,3 WEIR
# 1
# 2
# 3
# 4
# 5
#
#
#
Area
ft•2
4.3560
4.3560
87.1200
696.9600
1524.6000
1524.6000
1524.6000
1524.6000
1524.6000
1524.6000
Crest
Type Height (ft)
.23
4.00
2.80
4.00
.35
.35
. 56
.38
FREE OUTFALL DATA (DATA GROUP Il)
BOUNDARY CONDITION ON DATA GROUP Jl
3038.4549
24092.7453
Volume
ftA3
.0000
17.1788
127.8404
426.0572
919. 2929
1512.7230
13099. 6830
Vol ume
f tA3
0.0000
8. 7120
10.9311
46.9857
179.0658
531.7759
1177.2382
1978. 4895
2843.0010
3310. 0292
Volume
ft •3
.0000
.7120
10.9311
45.2809
153.6935
306.1535
458.6135
611. 0735
763.5335
839.7635
Volume
f tA3
.0000
.7120
10.9311
45.2809
153.6935
306.1535
458.6135
611. 0735
763 .5335
839. 7635
Weir
Top(ftl
Weir
Length(ft)
4.00
10. 00
3.80
7.00
3.50
.50
.50
4.00
5.00
60.00
5.00
20.00
23 .00
23.00
23.00
10.00
Outfall at Junction ... 2818-ECULV has boundary condition number ..
Outfall at Juncti on .... 37 has boundary condition number.
Discharge
Coefficient
. 0000
. 0000
.0000
.0000
.0000
.0000
.0000
3.0000
Weir
Power
1.5000
1 5000
1.5000
1.5000
1.5000
1.5000
1.5000
1.5000
Page 5of11
0122-100.doc
CANYON CREEK TOWNHOMES
100 YEAR PROPOSED XP-SWMM ANALYSIS
INTERNAL CONNEC'TIVITY INFORMATION
CONDUIT
WEIR #
WEIR #
WEIR #
WEIR # 4
WEIR #
WEIR #
WEIR #
WEIR #
FREE #
FREE #
JUNC'TION JUNC'TION
DBA-2 DBA-1
DBA-1 NE-CREEK
DBB-2,3 DBB-1
DBB-1 SECRK, FB-2
FA-2 .1 FA-1, 2
FA-2.2 FA-1,2
FA-2.2 DBB-2,3
DBA-2 DBB-2,3
2818-ECULV BOUNDARY
37 BOUNDARY
Table ES -Junction Time Step Limitation Summary
Not Convr = Number of times this junction did not
converge during the simulation.
Avg Convr Average junction iterations.
Conv err • Mean convergence error.
Omega Cng '"' Change of omega during iterations
Max !tern = Maximum number of iterations
Junction Not Convr Avg Convr Total ltt Omega Cng Max !tern Ittrn >10 Ittrn >25 Ittrn >40
DBA-2
DBA-1
DBB-2,3
DBB-1
SECRK, FB-2
FA-1, 2
FA-2.1
FA-2 .2
WCULV,FA3
FB-1
NE-CREEK
2818-ECULV
37
15
48
0
1. 23
1.54
1. 58
2.02
1.14
1.87
.91
1.91
1. 00
1. 00
1. 00
1.90
1. 85
70619
88937
90991
116608
65428
107461
109935
109935
57604
57599
57603
109525
106751
Total number of iterations for all junctions ..
Minimum number of possible iterations.
Efficiency of the simulation.
1148996
748787
1.53
27
501
35
501
13
13
99
58
207
110
0
48
95
63
Excellent Efficiency
Extran Efficiency is an indicator of the efficiency of
the simulation. Ideal efficiency is one iteration per
time step. Altering the underrelaxation parameter,
lowering the time step, increasing the flow and head
tolerance are good ways of improving the efficiency,
another is lowering the internal time step. The lower
efficiency generally the faster your model will run.
I I I I I
the I
I If your efficiency is less than 1.5 then you may try I
increasing your time step so that your overall simulation!
is faster. Ideal efficiency would be around 2. o I
Good Efficiency < 1.5 mean iterations
Excellent Efficiency < . 5 and > 1. 5 mean iterations
Good Efficiency< 4.0 and> 2.5 mean iterations
Fair Efficiency< 7.5 and> 4.0 mean iterations
Poor Efficiency > 7.5 mean iterations
·======================================================·
Table E9 -JUNC'TION SUMMARY STATISTICS I I The Maximum area is only the area of the node, it I I does not include the area of the surrounding conduits I • =·==== ===== == = = = = = = = = =··=· •• "' •• ••'"" "'"' -"'"' ::i: "'"'"'"'"'"' :.••••-=•::.:.
I I I I I I
Uppermost Maximum
Ground PipeCrown Junction
Elevation Elevation Elevation
Time Feet of
Junction
Name
DBA-2
DBA-1
DBB-2,3
DBB-1
SECRK, FB-2
FA-1, 2
FA-2 .1
FA-2. 2
WCULV,FA3
FB-1
NE-CREEK
2818-ECULV
37
feet feet feet
317.0000
317.0000
312.1600
313. 0000
320. 0000
313.9400
313. 9400
313.9400
310. 0000
324.0000
320.0000
324. 0000
317.0000
317.0000
312 .1600
313. 0000
317. 0000
313.9400
313.9400
313.9400
308.0000
314.0000
320.0000
313. 9900
315.6129
312.5473
312.3057
308.5001
306.4012
312.9779
312. 9784
312.9784
307. 6867
306.3905
306.4193
306. 3900
310.0000 307.9000 307.5867
of Surcharge
Occurence at Max
Hr. Min. Elevation
12
26
19
22
9
25
25
25
10
9
10
0.0000
0.0000
0.1457
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0.0000
0.0000
0.0000
Maximum
Freeboard Junction
of node Area
feet ft•2
1. 3871 1030. 8268
4.4527 1524.6000
0.0000 5229.1624
4.4999 2439.3600
13.5988 12.5660
0.9621 9757.4400
0. 9616 1524. 6000
0. 9616 1524. 6000
2.3133 12.5660
17. 6095
13. 5807
17.6100
2. 4133
12.5660
12.5660
12.5660
12.5660
48
0
62
Page 6 of I I
0122-100.doc
CANYON CREEK TOWNHOMES
100 YEAR PROPOSED XP-SWMM ANALYSIS
Table ElO -CONDUIT SUMMARY STATISTICS
Note: The peak flow may be less than the design flow
and the conduit may still surcharge because of the
downstream boundary conditions.
Time Time
Name
Conduit
Name
Design
Flow
(cfs)
Conduit
Design Vertical
Velocity Depth
(ft/s) (in)
Maximum
Computed
Flow
(cfs)
of
Occurence
Hr. Min.
Maximum
Computed
Velocity
( ft/s)
of
Occurence
Hr. Min.
Ratio of Maximum Depth >
Max. to at Pipe Ends
Design Upstream Dwnstrm
Flow (ft) (ft)
CREEK-S 7648. 6
CREEK-N 21775.
2818-HW 4436.7
38 10.462
12PIPE1 0.5210
PIPE 0. 9196
15_81-82 11.125
PIPE-08 28 .135
6.6394 216.0000 302.9471
13.0235 264.0000 290.9079
3.1691 240.0000 303.2440
13.3204 12.0000 8.5378
2.6536 6.0000
10.7521 3.9600
9.0657 15.0000
22. 9264 15. 0000
.0980
.6548
11. 5896
8.7665
PIPE-20-19 2.339 .9785
ORIFICE 5. 427 . 9098
PIPE-21-19 2.339 2.9785
WEIR # Undefnd Undefnd
WEIR # Undef nd Undef nd
WEIR # Undefnd Undefnd
WEIR # 4 Undefnd Undefnd
WEIR # Undefnd Undefnd
WEIR # Undefnd Undefnd
WEIR # Undefnd Undefnd
WEIR # Undefnd Undefnd
FREE # Undefnd Undefnd
FREE # Undefnd Undefnd
12.0000 -l.3155
12.0000 5.4565
12.0000 -1.3155
Undefnd 0.0000
Undefnd O. 0000
Undefnd O. 0000
Undefnd o. 0000
Undefnd -2.5411
Undefnd -2. 5411
Undefnd 0. 0000
Undefnd 3. 3713
Undefnd303. 2440
Undefnd 8.5378
···====···======·=====·======·=====·======·====·=·=· Table Ell. Area assumptions used in the analysis I
Subcritical and Critical flow assumptions from I
Subroutine Head. See Figure 17-1 in the I
manual for further information. I
10 . 5608
2 . 74 59
10 0.5185
10 14. 8534
12 5.5359
27 . 9994
19 .7544
32 6 .9574
12
10
12
0
16
16
12
10
10
-1 .6589
7. 8720
-l.6589
Length Length of Length of
10
10
10
12
27
19
32
12
12
12
.0396 306.4012 306.3905
.0134 306.4193 306.4012
0.0683 306.3905 306.3900
0.8161 307.6867 307.5867
2.1073 315.6129 312.9845
0.7120 312.5473 306.4193
1.0417 312.3057 309.5812
0.3116 308.5001 306.4012
-0. 5624 312. 9784 312. 9779
1.0054 312.9779 307.6867
-0.5624 312.9784 312.9779
Length
of of Sub-Upstream Downstream Maximum Maximum Maximum
Conduit Dry Critical Critical Critical Hydraulic X-Sect Vel*D
Name Flow (min) Flow (min) Flow (min) Flow (min) Radius-m Area (ft ... 2) (ft ... 2/s)
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_81-82
PIPE-08
PIPE-20-19
ORIFICE
PIPE-21-19
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
60.0000
60.0000
60.0000
60.0000
11.1865
60.0000
0.1052
60.0000
60. 0000
60.0000
60.0000
0. 0000
0.0000
0. 0000
0.0000
0. 0000
0. 0000
0. 0000
. 0000
. 0000
. 0000
. 0000
0. 0000
0. 0000
0. 0000
0. 0000
48.8135
0. 0000
59.8948
0 . 0000
0. 0000
0 . 0000
0. 0000
.3524
.3434
.6165
0.2943
0.1502
0. 082 5
0.3621
.3498
. 2500
. 2700
. 2500
540.2001 6.6713
390 .0519 7.3915
584.8383 6.4270
0.5748 10.1990
0 .1983 8.5732
.0935 38.3774
.1881 19.6402
.2884 48.3555
.7939 4.2247
.6956 14.0416
0.7939 4.2247
*a aa: ==a as .. ,., ::a••"":::••••"" zz: z ••••••:.:• • •::: :a:a•ss * I Table El2. Mean Conduit Flow Information
Conduit
Name
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_81-82
PIPE-08
PIPE-20-19
ORIFICE
PIPE-21-19
WEIR # l
WEIR #
WEIR #
WEIR # 4
WEIR # 5
WEIR # 6
WEIR # 7
WEIR # 8
FREE # l
FREE # 2
Mean
Flow
(cfs)
297.4649
290. 6326
297.5399
5.4152
0.4490
.6325
4. 9524
5. 3070
-0.0369
4 .6403
-0.0369
0. 0000
Total
Flow
(ft •31
1070874.
1046277.
1071144.
19494.80
1616. 526
2277.042
17828.46
19105.24
-132.888
16705.01
-132.888
0. 0000
. 0000 0. 0000
. 0000 0. 0000
. 0000 0. 0000
-0.0657 -236.556
-0.0657 -236.556
0 . 0000 0. 0000
0.8468 3048.490
297.5399 1071144.
5.4152 19494.78
Mean Low
Percent Flow
Change Weightng
0. 0618
0 . 0154
0.0626
0.0149
0.1970
0.0002
2.9382
0. 0331
0. 0080
0. 0044
0.0080
l. 0000
l . 0000
l. 0000
l . 0000
l. 0000
l. 0000
0. 9248
1.0000
1.0000
1.0000
1.0000
Mean Mean
Froude Hydraulic
Number Radius
. 0287
. 0453
. 0255
. 3026
. 4727
.8160
. 2914
0.6001
0.0257
1.8624
0. 0257
6 . 3 522
5.3431
6.6165
0.2503
0.0731
0.0825
0.1862
0.3061
0. 2500
0. 2502
0. 2500
Mean Mean
Cross Conduit
Area Roughness
540.1705
390. 0053
584.8369
0. 4020
.1016
0.0932
0.5864
1.1099
.7930
.6179
.7930
0.0700
0.0700
0.0700
0 . 0140
0 . 0140
0 . 0140
0. 0140
0 . 0140
0. 0140
0 . 0140
0.0140
Page 7 of 11
0122-100.doc
CANYON CREEK TOWNHOMES
100 YEAR PROPOSED XP-SWMM ANALYSIS
I Table El3. Channel losses(H), headwater depth (HW), tailwater I I depth (TW), critical and normal depth (Ye and Yn). I I Use this section for culvert comparisons I
*••••••••=========c•••••••••••••••••••========••••••••••=•=•••••*
Conduit Maximum
Name Flow
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
302. 947
290.908
303.244
8.538
1.098
0.655
11. 590
8. 766
0 .610
5. 457
0.610
Head Friction Critical
Loss Loss Depth
0.000
0.000
0.000
0.000
0.583
1.116
1.870
1.116
0.000
1.577
0.000
. 012
. 026
. 000
.100
2. 04 9
5. 085
0. 884
1. 013
0. 025
3. 452
0. 025
. 371
. 303
. 393
.000
. 484
2.547
2. 946
.147
. 325
. 934
. 325
CULVERT ANALYSIS CLASSIFICATION, and the time the
culvert was in a particular classification
Normal
Depth
.431
.325
6.427
. 687
0 . 500
0. 206
. 081
. 479
.348
0 . 826
0.348
I I during the simulation. The time is in minutes. I
The Dynamic Wave Equation is used for all conduitl
analysis but the culvert flow classification I
condition is based on the HW and TW depths. I
Mild Mild
Slope Slope TW
Critical D Control
Conduit Outlet Outlet
Steep
HW
Elev at
306.401
306 .419
306.390
307.687
315.613
312.547
312.306
308.500
312.781
312 .790
312.781
TW
Elev at
306.390 Max Flow
306.401 Max Flow
306.390 Max Flow
307. 587 Max Flow
312. 984 Max Flow
306.419 Max Flow
309.581 Max Flow
306.401 Max Flow
312.756 Max Flow
307.685 Max Flow
312.756 Max Flow
Inlet Inlet
Name Control Control
Slope TW Slug Flow
Insignf Outl et/
Entrance Entrance
Control Control
Mild
Slope
TW > D
Outlet
Control
Mild
Slope
TW <• D
Outlet
Control
Outlet
Control Control Configuration
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
0 .000
0.000
0.000
0.000
0.700
0.000
. 000
. 000
. 000
. 000
0.000
60. 000
60. 000
60 .000
0.000
21.962
. 000
. 000
0.000
0 .000
0.000
0.000
0. 000
0. 000
0 . 000
0. 000
13. 575
60. 000
40.138
0. 000
. 000
60. 000
0. 000
• • ""'•"""" ::s .. z:rz:o::•a•: :ii: :z"",. cas s: z: z•c: :s = = = === •
Kinematic Wave Approximations I
Time in Minutes for Each Condition I
Conduit Length of Slope Super-
Name Normal Flow Criteria Critical
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
0. 00
0.00
0. 00
. 07
.05
0.00
0.02
0.00
0. 00
.00
0. 00
60.00
60.00
60.00
0.07
0.06
0.00
0.05
0.00
0.00
.00
0.00
0 . 00
0 . 00
0. 00
60. 00
0 . 27
0. 00
32 .44
0. 00
. 00
. 00
. 00
Table E15 -SPREADSHEET INFO LIST
0. 000
0. 000
0. 000
. 000
0. 000
0. 000
0. 000
11. 863
0.000
.000
.000
Roll
Waves
0.00
0.00
.00
0.00
0. 00
. 00
. 00
. 00
. 00
0 . 00
0. 00
0. 000
0. 000
0 .000
0. 000
0. 000
0. 000
. 000
. 000
60. 000
. 000
60. 000
0 . 000
0 . 000
0 . 000
0 . 000
0 .000
0. 000
. 000
. 000
. 000
0.000
0.000
0. 000
0.000
0.000
60.000
23.762
0.000
19.863
48.138
0 .000
0.000
0.000
Conduit Flow and Junction Depth Information for use in
spreadsheets. The maximum values in this table are the
true maximum values because they sample every time step.
The values in the review results may only be the
maximum of a subset of all the time steps in the run.
Note: These flows are only the flows in a single barrel.
Conduit
Name
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
l5_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
WEIR # 1
WEIR # 2
WEIR # 3
Maximum Total
Flow Flow
302.9471 1070873.53
290.9079 1046277.48
303.2440 1071143 .51
8.5378 19494 .8005
. 0980 1616. 5264
.6548 2277.0418
11.5896 17828.4608
8.7665 19105.2405
-1.3155 -132.8878
5.4565 16705.0072
-1.3155 -132 .8878
0. 0000 0 . 0000
. 0000 0 . 0000
. 0000 0 . 0000
Maximum
Velocit y
0. 5608
0.7459
0.5185
14.8534
5.5359
. 9994
. 7544
. 9574
-1.6589
7. 8720
-1 .6589
0. 0000
.0000
0.0000
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
Junction Invert
Name Elevation
OBA-2 313. 0000
DBA-1 310. 0000
DBB-2,3 309.3600
DBB-1 306. 0000
SECRK,FB-2 295.0000
FA-1,2 309.9600
FA-2.1 310.4400
FA-2.2 310.4400
WCULV, FA3 307. 0000
FB-1 294. 0000
NE-CREEK 298.0000
2818-ECULV 293. 9900
37 306.9000
0.000 None
0.000 None
o. ooo None
0.000 None
o. ooo None
o.ooo None
o.ooo None
0.000 None
0.000 None
0.000 None
0.000 None
Maximum
Elevation
315.6129
312.5473
312.3057
308.5001
306.4012
312.9779
312.9784
312.9784
307.6867
306 .3905
306.4193
306.3900
307.5867
Page 8of 11
0122-100.doc
CANYON CREEK TOWNHOMES
100 YEAR PROPOSED XP-SWMM ANALYSIS
WEIR
WEIR
WEIR
WEIR
WEIR
FREE
FREE
0. 0000 0. 0000
-2.5411 -236.5563
-2.5411 -236.5563
0. 0000 . 0000
.3713 3048.4899
303.2440 1071143.59
8.5378 19494.7847
. 0000
. 0000
. 0000
0. 0000
0.0000
0.0000
0.0000
I Table El5a -SPREADSHEET REACH LIST I Peak flow and Total Flow listed by Reach or those
j conduits or div ersions having the same I upstream and downstream nodes.
Upstream
Node
SECRK,FB-2
NE-CREEK
FB-1
WCULV,FA3
DBA-2
DBA-1
DBB-2,3
DBB-1
FA-2 .1
FA-1, 2
FA-2. 2
FA-2 .1
FA-2.2
DBA-2
Downstream
Node
FB-1
SECRK, FB-2
2818-ECULV
37
DBA-1
NE-CREEK
DBB-1
SECRK,FB-2
FA-1,2
WCULV,FA3
FA-1,2
FA-1,2
FA-1,2
DBB-2,3
Maximum
Flow
302.9471
290.9079
303.2440
.5378
1 . 0980
0. 654 8
11. 5896
8.7665
-1.3155
5.4565
-1. 3155
-2.5411
-2. 5411
3. 3713
Total
Flow
l .0709E+06
l. 0463E+06
1. 0711E+06
19494.8005
1616. 5264
2277. 0418
17828.4608
19105.2405
-132.8878
16705 . 0072
-132. 8878
-236 .5563
-236. 5563
3048 .4899
##
##
##
##
##
##
##
#########################################################
#Table El6. New Conduit Information Section #
# Conduit Invert (IE) Elevation and Conduit #
# Maximum Water Surface (WS ) Elevations #
#########################################################
Conduit Name Upstream Node Downstream Node IE Up IE Dn WS Up WS Dn Conduit Type
CREEK-S
CREEK-N
2818-HW
38
12PIPE1
PIPE
15_Bl-B2
PIPE-OB
PIPE-20-19
ORIFICE
PIPE-21-19
SECRK,FB-2
NE-CREEK
FB-1
WCULV ,FA3
DBA-2
DBA-1
DBB-2,3
DBB-1
FA-2.l
FA-1,2
FA-2 .2
FB-1
SECRK, FB-2
2818-ECULV
37
DBA-1
NE-CREEK
DBB-1
SECRK, FB-2
FA-1,2
WCULV,FA3
FA-1,2
295.0000 294.0000
298.0000 295.0000
294.0000 293.9900
307.0000 306.9000
313.0000 312.5000
310.0000 298.0000
309.3600 308.5000
306.0000 295.0000
310.4400 310.0650
309.9600 307.0000
310.4400 310.0650
306.4012 306.3905
306.4193 306.4012
306.3905 306.3900
307.6867 307.5867
315.6129 312.9845
312.5473 306.4193
312.3057 309.5812
308.5001 306 .4012
312.9784 312.9779
312.9779 307.6867
312.9784 312.9779
Table E18 -Junction Continuity Error. Division by Volume added 11/96
Continuity Error = Net Flow + Beginning Volume -Ending Vol ume
Total Flow + (Beginning Volume + Ending Volume) /2
Net Flow Node Inflow -Node Outflow
Total Flow = absolute (Inflow + Outflow
Intermediate column is a judgement on the node continuity error.
Excellent < 1 percent
Fair 5 to 10 percent
Terrible > 50 percent
Great 1 to 2 percent Good to percent
Poor 10 to 25 percent Bad 25 to 50 percent
Trapezoid
Trapezoid
Trapezoid
Circular
Circular
Circular
Circular
Circular
Circular
Circul ar
Circular
Junction
Name
<------Continuity Error -------> Remaining Beginning Net Flow Total Flow Failed to
Volume \: of Node \ of Inflow Volume Volume Thru Node Thru Node Converge
DBA-2
DBA-1
DBB-2,3
DBB-1
15.1984
147.4483
430.1333
71. 0594
SECRK, FB-2 100507 .1970
FA-1,2 -182.2173
FA-2.1 306.5860
FA-2.2 306.5860
WCULV, FA3 -5. 5909
FB-1 61210.1104
NE-CREEK 29403.5222
2818-ECULV 2770.5132
37 -5.3566
0.1626
1.937
1.192
0.1855
4.383
-.4793
69.727
69. 727
-. 0143
2.739
1.376
0.1291
-. 0137
.00139 . 0711 0. 0174
0.0135 2415.4365 1422.1203
0.0393 0.0008 0.0004
.00650 82.3518 146.4692
9 .188 100951 .4674 201460.4864
.0167
0.0280
0. 0280
2759 . 9688
101.6645
101.6645
1661.4904
38.8315
38.8315
.00051 24.1619 18.3572
5.596 61525.3004 122735.4351
2 .688 29784.7231 59188 .6808
0.2533 3082.2184 5852.8000
.00049 5.7267 0.3588
The total continuity error was l.94975E+05 cubic feet
The remaining total volume was 2.00835E+05 cubic feet
Your mean node continuity error was Excellent
Your worst node continuity error was Fair
15.2521 9345.0167
1140.7644 5693.5711
430.1337 36084 .2547
6.9420 38193.4745
-1.8221 2141745.265
916.2610 35803.9016
369.4191 369.4441
369.4191 369.4441
0.2139 38989.8094
-0.0244 2142286.998
-0.4355 2092554.521
-0.0684 2142287.100
0.0114 38989.5852
15
0
48
0
Page 9of 11
0122-100.doc
CANYON CREEK TOWNHOMES
100 YEAR PROPOSED XP-SWMM ANALYSIS
Table El9 -Junction Inf low Sources
Units are either ft•3 or m·3
depending on the units in your model.
Junction
Name
Constant
Inflow
to Node
DBA-2 . 0000
DBA-1 . 0000
DBB-2,3 .0000
DBB-1 . 0000
SECRK,FB-2 .0000
FA-1,2 .0000
WCULV,FA3 .0000
FB-1 . 0000
NE-CREEK l.0440E+06
2818-ECULV 0.0000
37 0.0000
User
Inflow
to Node
4680.0003
1800.0029
15207.3040
1259.7732
5489. 0117
18360.0061
2790.0016
269.9514
.0000
. 0000
0.0000
Interface
Inflow
to Node
. 0000
. 0000
. 0000
. 0000
0. 0000
. 0000
. 0000
0. 0000
0. 0000
0. 0000
0. 0000
DWF
Inlow
to Node
. 0000
. 0000
. 0000
. 0000
. 0000
.0000
0.0000
0.0000
0.0000
0.0000
0.0000
Table E20 -Junction Flooding and Volume Listing. 1
The maximum volume is the total volume I
in the node including the volume in the I
flooded storage area. This is the max I
volume at any time. The volume in the l
flooded storage area is the total volume!
above the ground elevation, where the I
flooded pond storage area starts. I
The fourth column is instantaneous, the fifth is thel
sum of the flooded volume over the entire simulation!
Units are either ftA3 or mA3 depending on the units. I
Outflow
from Node
. 0000
. 0000
.0000
.0000
0. 0000
0.0000
0.0000
0.0000
0.0000
.0711E+06
19494.7847
Out of
System
Flooded
Volume
Stored in System
Junction Surcharged Flooded
Name Time (min) Time(min)
DBA-2
DBA-1
DBB-2,3
DBB-1
SECRK, FB-2
FA-1,2
FA-2 .1
FA-2. 2
WCULV, FA3
FB-1
NE-CREEK
2818-ECULV
37
.0000
0.0000
13 . 9833
0.0000
0.0000
0.0000
0 .0000
0.0000
0.0000
0.0000
0.0000
0. 0000
0. 0000
0.0000
. 0000
13. 9854
0. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
.0000
.0000
I Simulation Specific Information
Number of Input Conduits.
Number of Natural Channels.
Number of Storage Junctions.
Number of Orifices ..
Number of Free Outfalls.
.0000
0. 0000
0.0000
0.0000
.0000
.0000
.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
Maximum Ponding Allowed
Volume Flood Pond Volume
249. 0913
3224.3176
1828. 5720
4562.1618
143.2674
3310. 0292
578.0710
578.0710
8.6288
155. 6988
105. 7971
155.8184
8.6285
0.0000
0.0000
1300.4847
0.0000
0 .0000
0. 0000
0.0000
0.0000
0.0000
0. 0000
0 . 0000
0. 0000
0 . 0000
11 Number of Simulated Conduits.
o Number of Junctions.
Number of Weirs ........... .
Number of Pumps.
Number of Tide Gate Outfalls.
I Average \ Change in Junction or Conduit is defined as: I Conduit \ Change •-> 100. O ( Q (n+l) - Q (n) ) I Qfull I Junction\ Change==> 100.0 ( Y(n+l) -Yin)) I Yfull
Evaporation
from Node
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
.0000
0.0000
0.0000
0. 0000
The Conduit with the largest average change was .. 15_Bl-B2
The Junction with the largest average change was.DBB-2,3
The Conduit with the largest sinuosity was ....... 12PIPE1
with
with
with
.938 percent
.010 percent
146.188
I Table E21. Continuity balance at the end of t he simulation I Junction Inflow, Outflow or Street Flooding I Error z Inflow + Initial Volume -Outflow -Final Volume
Inflow Inflow Average
Junction Volume,ftA3 Inflow, cfs
DBA-2 4680. 0004 1. 3000
DBA-1 1800.0029 0.5000
DBB-2,3 15207.3041 4.2243
DBB-1 1259.7732 0.3499
SECRK, FB-2 5489 . 0118 . 5247
FA-1,2 18360.0062 5.1000
WCULV, FA3 2790. 001 7 . 7750
FB-1 269. 9514 . 0750
NE-CREEK l .044000E+06 290.0000
21
13
Page 10 of 11
0122-100.doc
CANYON CREEK TOWNHOMES
100 YEAR PROPOSED XP-SWMM ANALYSIS
Outflow Outflow Average
Junction Volume,ft"3 Outfl ow, cf s -----------------------------------2818-ECULV l.071144E+06 297.5399
37 19494 . 7847 5 .4152
I Initial system volume 3.9256E+OS Cu Ft I I Total system inflow volume 1. 0939E+06 Cu Ft I I Inflow + Initial volume 1.4864£+06 Cu Ft I
l=========··=·······======================··==·····===I I Total system outflow 1. 0906E+06 Cu ft I I Volume left in system 2. 0083E+05 Cu ft I I Evaporation O. OOOOE+OO Cu ft I
I Outflow + Final Volume 1. 2915E+06 Cu ft I
Total Model Continuity Error
Error in Conti nuity, Percent :
Error in Continuity, ftA3
+ Error means a continuity loss,
I
13 .11519 I
194946 .002 I
a gain I
Page 1 I of I I
0122-I 00.doc