Loading...
HomeMy WebLinkAboutFolderI -·--··-··~~-tJ70 I ~ATE SUBMITTED:j:Z.v I/JI Lf.·/Of'm l'Lto 1 l-hnr~ fY\±cX'eU P~S r!Uf- DEVELOPMENT PERMIT MINIMUM SUBMITTAL REQUIREMENTS -\ J. $100.00 Development Permit Application Fee. ~ Drainage and erosion control plan, with supporting Drainage Report two (2) copies each. Notice of Intent (N.0.1.) if disturbed area is greater than 5 acres. PROPER IT OWNER'S INFORMATION: Name l()(X) U .. AVAN ..--.-=ifc Street Address ~ l JJ( n.at:te:J City __._Huw....__.._ ....... ~tb__."'-'-n__.__ ____ _ State j" f Zip Code -=f 1a:_j ~ E-Mail Address ----------- Phone Number LjOCJ -rff --'fjqqFaxNumber _____________ _ _..,.., ....... CIDTECT OR ENGINEER'S INFORMATION: ----7'-'it-tttv~Q~#-~~-~~.;-~h-f+*~HK>v~'-----------~-~~~~~-Name CJ"~ UL A ~~-aQ {,..-, Street Address ---------------City ------------- State Zip Code E-Mail Address ------------ Application is hereby made for the following development specific site/waterway alterations: -noru -- , design engineer/owner, hereby acknowledge or affirm that: The information and conclusions contained in the above plans and supporting documents comply with the current requ· ements of the City of College Station, Texas City Code, Chapter 13 and its associated Drainage Policy and Design s ds. As ndition of ap roval of this permit application, I agree to construct the improvements proposed in this application accJillfldm. g to th e ts and the requirements of Chapter 13 of the College Station City Code. Contractor 1 of2 CERTIFICATION~o~~gnatedfloodbazardareas.) A. I, certify that any nonresidential structure on or proposed to be on this site as part lication is designated to prevent damage to the structure or its contents as a result of flooding from the 100 year Engineer Date B. I. certify that the finished floor elevation of the lowest floor, including any basement, of any residential st ture, proposed as part of this application is at or above the base flood elevation established in the latest Federal Insurance A · · stration Flood Hazard Study and maps, as amended. ~·klL Engineer · Date C. I, certify t the alterations or development covered by this permit shall not diminish the flood-carrying capacjty of the waterway · oining or crossing this pennitted site and that such alterations or development are consistent with requirements of the City f College Station City Code, Chapter 13 concerning encroachments of floodways and of floodway fringes. Engineer Date I, do certify that the proposed rations do not raise the level of the 100 year . ~10od above elevation established in the latest Federal Insurance Administration lood Haz.ard Study. Engineer Date Conditions or comments as part of approval: ~~~~~~~~~~~~~~~~~~~~~~~~~ In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to insure that debris from construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage facilities. All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer for the above named project. All of the applicable codes and ordinances of the City of College Station shall apply. DEVELOPMENT PERMIT DPERMIT.IX>C 3!24199 2of2 04/01/2002 19:04 FAX 9792603564 MlTCHELL and MUl<GAN jl1, ITC HELL & jl1, ORGAN, LL P ENGINEERS & CONSTRUCTORS 511 UNIVERSITY DRIVE, SUITE 204 TO: Spencer T110mpson COMP.-\NY: City of CS COLLEGE STATION, TEXAS 77840 OFFICE (979) 260-6963 FAX (979) 260-3564 FACSIMILE T RANSMITTAL SHEET FROM: Veronica Morgan DATE: 4-1-02 FAX NUMllER: TOT/IL NO. OF PAGES TNCLUDJNG COVER: 77 64-3496 l'J-!O~E NUMBER: RF: Sullivan Increase in Oversize Participation 0 URGENT 0 FOR REVIEW NOTES/COM~!E TS: Spencer, 3 Sf:.NDER'S RE FERENCE NUMBER: YOUR REFERENCE NL:f\4BER: 0 PLEASE CO MME T 0 PLEAS E REPLY 0 PLE.-\SE RECY CLE Th.is is the increase in the oversize participation request for the Canyon Creek Townhome project. I have some problems wi th portions of this logic that I believe we need to discuss. Other items may be "approvable". Please call me so that we can set up a time to meet to discuss. Thanks Veronica Morgan lgJUUl /UUJ 04101/2002 19 :04 FAX 97 9260356 4 MITCHELL ana MUKGAN Mar. 4. :002 ~:J OPM OLL IDAY BUILDERS 409 762 -1010 fj Holliday Builders, Xnc. Todd Sullivan Canyon Creek Townhomes 1287 Harvey Mitchell Parkway College Station Texas 77840 Todd: If!:) UU<:/ UUJ No.27 17 J 0 I ' ~ OENERALCONT~ACTORS February 20, 2002 Per your request on the additional costs incurred on your site work utilities as a result of the sanitary sewer being run to the property line on Nonhwest comer. This line would not have been needed, as we would have tapped the s1~wer directly out of the building to the manhole. There was an additional 185 LF ofline run from the manhole to the property line. Your costs on this item per foot are $58 .64 per foot installed including labor and material. This is a total on that item of 185X 58.63 -$10,846.55. The 11dditional costs incurred by having the sewer buried deeper are $2,978.90. The water line was also run to the property line where it could have been stopped at the last unit needing water. This is an additional 40 LF of pipe that was not needed. Your costs on this item per foot are 49. 96 per foot installed labor and material. This comes to a total of 40X49 .96 = $ 1.998.40. The sewer taps on the buildings could have been one tap per building in lieu of every which would have been 15 taps at a cost of $350 .00 per tap instead of the 71 taps that you are now required to have. This would be an additional cost of 56 taps@ 350 .00 = S 19,600.00. The present drawings show only one sewer tap every two units. In consideration of this, it comes .to 38 taps as a result of the odd end units. This would be 38 units worth of taps at$ 350 each in lieu of71. This would be an additional cost of 33 @$ 350.00 = $ 111500.00. 1027 Tremont P.O. Box 1567 Ga.1'-eston, Texas 77553 Tel: 409 :62-5275 Fax: 4.09 762·1010 04/01/2002 19 :05 FAX 9792603564 IITCHELL and MOKGA lf!:J UUJ/ UUJ r . Ma r . 4. :o o: 2:10PM 0 IDA Y BUI DER S 409 76>101 0 No.2717 P. 3 0 Holliday Builders, Inc. GENERAL CONTRACTORS In sununary, if the sanitary sewer had not been run to the property line your costs would have been $10,846.55 less. If the water line were not run to the property line your cost would have been Sl ,998,40 less. If we could have run the sewer as a main under the buildings and only had one tap per building in lieu of a tap for 1~very unit, your tap fee cost would have been $ 19,600.00 . less. Or, if we could of at least only had to tap one time for two units your tap fee costs would have $11,500.00 less. The totals for the work with only tapping sewer 15 times are as follows 1. Shorter sanitary lines S 10,846 .55 2. Shorter water line $ 1,998.40 3. AdditioniU depth $ 2,978.90 4 . Fifteen sewer taps in lieu of 71 $ 19,600.00 5. Total $ 35,423.85 · The totals for the work with only tapping sewer 38 times are as follows . l. Shorter sanitary lines S 10,846.55 2. Shorter water line $ 1,998.40 3. Additional depth on sewer $ 2,978,90 4. Thirty-eight taps in lieu of71 . $11,500.00 Total $27,323 .85 Bruce B1Jrkhardt Project Manager 1027 Tremont P.O. Box 1567 Galvcsw n , Texas 77553 Tel: 409 762-52'75 Fax: 409 762-1010 ~b LETTER OF COMPLETION ·~ 3ewer .\Tater L,\ . CITY ENGINEER CITY OF COLLEGE STATION COLLEGE STATION, TEXAS Dear Sir: DATE: 04-01-02 RE: COMPLETION OF Canyon Creek Town homes The purpose of our letter is to request that the following listed improvements be approved and accepted as being constructed under city inspection and completed according to plans and specifications as approved and required by the City of College Station, Texas. This approval and acceptance by the City is requested in order that we may finalize any sub-contracts and to affinn their warranty on the work. This approval and acceptance by the City of the improvements listed below does hereby void the letter of guarantee for the listed improvements on the above referenced project. The one year warranty is hereby affirmed and agreed to by Elliott Construction, Inc. and by their sub-contractors as indicated by signatures below. WORK COMPLETED DATE Piers. 6 11 &8 11 PVC. Manholes 04.-0.1.-02 8 11 C900. Fire Hydrant 04.-.0L-02 Storm Sewer 12" PVC, Junction/Inlet Boxestrw~) 04-0-1-02 Owner: G~~f)., L rut ~rJ n~rJ, L /IJ Address: ftJ. [J,,Jc E-;l.. { j //'-ft. _ff .. -l.'or., ;{:. 7 /f C/t/ Signature~;i'J'))~ Contractor: Elliott Construction, Inc Address: P.O. Box 510 Utility Representative (s) DEVELOPMENT PERMIT PERMIT NO. 02-(01-070) ~-w COLllGl STATION Project: CANYON CREEK TOWNHOMES FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE SITE LEGAL DESCRIPTION: CANYON CREEK TOWNHOMES DATE OF ISSUE: 01/24/02 OWNER: Todd Sullivan 710 Windell Houston, TX 77219 TYPE OF DEVELOPMENT: SPECIAL CONDITIONS: SITE ADDRESS: 1267 HARVEY MITCHELL PKWY DRAINAGE BASIN: White Creek VALID FOR 12 MONTHS CONTRACTOR: Clearing Grading Permit All construction must be in compliance with the approved construction plans All trees must be barricaded, as shown on plans, prior to any construction. Any trees not barricaded will not count towards landscaping points. Barricades must be 1' per caliper inch of the tree diameter. This permit allows construction of utilities as per approved plans. The Site Plan has NOT been approved. The permitee proceeds at his or her own risk if the constructed items do not comply with the Approved Site Plan. The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site in accordance with the approved erosion control plan as well as the City of College Station Drainage Pol icy and Design Criteria. If it is determined the prescribed erosion control measures are ineffective to retain all sediment onsite, it is the contractors responsibility to implement measures that will meet City, State and Federal requirements. The Owner and/or Contractor shall assure that all disturbed areas are sodden and establishment of vegetation occurs prior to removal of any silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor shall also insure that any disturbed vegetation be returned to its original condition, placement and state. The Owner and/or Contractor shall be responsible for any damage to adjacent properties, city streets or infrastructure due to heavy machinery and/or equipment as well as erosion, siltation or sedimentation resulting from the permitted work. Any trees required to be protected by ordinance or as part of the landscape plan must be completely fenced before any operations of this permit can begin. In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to insure that debris from construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage facilities. I hereby grant this permit for development of an area outside the special flood hazard area. All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer in the development permit application for the above named project and all of the codes and ordinances of the City of College Station that apply. Date Instructions -EPA Form 351<>-9 Form Approved. OMB No. 204<>-0188 &EPA Notice Of Intent (NOi) for Storm Water Discharges Associated with Construction Activity to be Covered Under a NPDES Permit Who Must Fiie a· Notice of Intent Form Under the provisions oflhe Clean Water NJ., as amended, (33 U.S.C. 1251 etseq.; the Act), except as provided by Part l.B.3 the permit, Federal law prohibits discharges of pollutants In storm water from construction activities without a National Pollutant Discharge Elmlnation System Penntt. Operator(s) of construction sites where 5 or more acres are disturbed, smaller sites that are part of a larger common plan of development or sale where there Is a cumulative disturbance of at least 5 acres, or any site designated by lhe Director, must submit an NOi to obtain coverage under an NPDES Storm Water Construcllon General Permit. If you have questions about whether you need a permit under the N PDES Storm Water program, or if you need inf~atlon as to whether a particular program is administered by EPA or a Stille aaency.· wrlldto ctr telephone the Notice of Intent Prooessing Center at {703) 931!3230: . . J . . . Where to Fiie NOi Form NOls mu8t be sent to the following address: Storm Water Nbb of lnl~t (A203) :J. 'T. USEPA . I 401 M. Street, SW Washington, D.C. 20460 . Do not send Storm Water Pollution Prevention Plans (SWPPP~) tC? Jl}e .- above address. For overnight/express delivery of NOls, please lnchtd8 ~ room·number 2104 Northeast Mall and phone n,umber (202) 260-9541° ln the address. " · · ~ ' · • ' I '\ i J ' ..-• -. A..,. \ ~1 • When to FUe ... :·, • This torm must be filed at~ 4s hours before construction begins. • ~ c .. ... Completing the Form .· . . , OBTAIN ANO READ A COPY Of THE APPROPRIATE EPA SlORM W.«JER CONSTRUCTION GENERAL PERMIT FOR YOUR AREA. To complete this torm, type or print, using uppercase letters, in the appropriate areas only. Please place each character between the marks (abbreviate if necessary to stay within the number of charaaers aHowed for each item). Use one space for breaks between worda, but not for pul'ICIUallon marks unless they are needed to clarify your response. If you have any questions on this form, call the Notice of Intent Processing Center at (703) 931-3230. Section I. Fac:lllty OwnerlOperator (Appllcant) lnfonNrtlon Provide the legal name, malling address, and telephone number of the person, firm, public organization, or any other entity that meet either of the following two criteria: (1) they have operational control over construclion plans and specifications, includng the ability to make modifications to those plans and specifications; or (2) they have the ~Y operational control of tho,se activities at tie prqect rieoessary to ensure compliance with SWPPP requirements or other permit conditions. Each person that meets either of these criteria must fie this torm. Do not use a oolloqulal name. Correspon- dence for the permit will be sent to this address. Enter the approprlale letter to indicate the legal status of the owner/operator of the project: F = Federal; S = State; M = Public (other than federal or state); P = Private. Section n. ProjectlSlte Information Enter the official or legal name and complete street address, including city, county, state, zip code, and phone number of the project or site. If it lacks a street address; indicate with a general statement the location of the site (e.g., Intersection of State Highways 61 and 34). COmplete site infonnatlon must be provided for permit coverage to be granted. The applicant must also provide the latitude and longitude of the facility in degrees, minutes, and seconds to the nearest 16 seconds. The latitude and longitude of your facility can be located on USGS quadrangle maps. Quadrangle maps can be obtained by calling 1-800 USA MAPS. Longitude and latitude may also be ob1ained at the Census Bureau Internet site: http://www.census.gov/ogl-bin/gazetteer. latitude and lotlgitude for a facility in decimal form must be converted to degrees, minutes and seconds for proper entry on the NOi form. To convert decimal latitude or longitude to degrees, minutes, and seconds, follow the steps in the following example. Convert decimal latitude 45.1234567 to degrees, minutes, and seconds. 1) The numbers to the left of the decimal point are degrees. 2) To obtain mlnU1e8, multiply the first four numbers to the right of the decimal point by 0.006. 1234 x .. 006 = 7.404. 3) The numbers to the left of the decimal point in the result obtained in step 2 are the minutes: 7'. 4) To obtain seconds, multiply the remaining three numbers to the right of the decimal from the result in step 2 by 0.06: 404 x 0.06 = 24.24. Since the numbers to the right of the decimal point are not used, the result is ~~ - 5) The conversion for 45.1234 = 45° 7' 24". Indicate whether the project is on Indian Country Lands. . . Indicate if the Storm WaterPoll~~ P~entlon Plan (sWPPP) has been developed. Refer to Pait IV o( the ~rill permit for inbrinatiop on SWPPPs. To be eligible tor coverage, a SWPPP rmH\1 h.~ been prepared. Optional: Provide the address aoo'i>h6ne nlittiber where 'the SWPPP can be viewed if different from addresses prevjo~ly gi"' q~ appropriate box. ..J '.,1., Enter the name of the closest water body which receives the project's construction storm water discharge. . 'E"'8f !he ~afed construction start andJX>m.~ dates using four digits tprtflA~(i.e. 05f27l1~8}~ , \ , .' , , Enter the flStimated artta to be disturl>Qd: including but not limited to: grubbl!l9. e\tavattpn. _gra°111Jlg, an(! utlHtif"; pnc! infrastructure lnstaffation. Indicate to the nearesi acre; if less. than 1 acre. enter ·1.-Note: 1 acre = 43,560 sq. ft .•• t • \ '• i ... . ; • ,. ~ • J • ... Indicate y<>l,ll' be8l esumate of the likelihood of sto~water disCharges from tl\f! P.it>Ject.,,..J:PA cecognizes that actual disoharg__e!I may dlller from this eStlmate due to uribreseen or chance circumstances. Indicate if there are any listed endangered or threatened species, or designated critical habHat In the project atea. Indicate which Part of the permit that the applicant is eligible with regard to protection of endangered or ftreatenecl species, or designated critical habitat. Section Ill. Certtftc:etlon Federal Statutes provide for severe penalties for submitting false information on this application form. Federal regulations require this application to be signEid,a~ foRows: 1.. ;.. , · • ,. . • For a b0rporat1Jn: by a' resp0nsiblJ d,rporate officer, which means: =esiElent, secretary, .treasurer, or vice president Gf the torporation in me Qf a P,rlncipal business function, or ariy>other person who performs r policy or decision· making functions, or (ii) the manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sates or expenditures exceeding $25 million (in second-quarter 1980 dollars), if authority to sign documents has beO\i assigned or delegated to the manager in accordance with corporate procedures; For a partnership or sole proprietorship: by a general partner of the proprietor, or For a munidpaltty, state, federal, or other public facility: by either a principal executive or ranking elected official. An unsigned or undated NOi form will not be granted permit coverage. Paperwork Reduction Act Notice Public reporting burden for this appUcation Is estimated to average 3.7 hours. This estimate includes time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of Information. An agency may not conduct or sponsor, and a person Is not required to respond to, a collection or information unless it displays a currently valid OMB control number. Send comments regarding the burden estimate, any other aspect of the collection of information, or suggestions for Improving this form, including any suggestions which may increase or reduce this burden to: Director, OPPE RegUatory lnfoimation Division (2137), U.S. Environmental Protection Agency, 401 M Street, SW, Washington, D.C. 20460. Include the OMB control number on any correspondence. Do not send the completed form to this address. THIS FORM REPLACES PREVIOUS FORM 351Q-6 (8-98) See Reverse for Instructions Form Approved. OMB No. 2040-0188 NPDES FORM &EPA United States Environmental Protection Agency Washington, DC 20460 Notice of Intent (NOi) for Storm Water Discharges Associated with CONSTRUCTION ACTIVITY Under a NPDES General Permit Submission of this Notice of Intent constitutes notice that the party identified in Section I of this form intends to be authorized by a NPDES permit issued for s1orm water discharges associated with construction activity in the State/Indian Country Land identified in Section 11 of this form. Submission of this Notice of Intent also constitutes notice that the party identified in Section I of this form meets the eligibility requirements in Part l.B~ of the general permit (including those related to protection of endangered species determined through the procedures in Addendum A of the general permit), understands that continued authorization to discharge is contingent on maintaining permit eligibility, and that implementation of the Storm Water Pollution Prevention Plan required under Part IV of the general permit win begin at the time the permittee commences work on the construction project identified in Secion II below. IN ORDER TO OBTAIN AUTHORIZATION, ALL INFORMATION REQUESTED MUST BE INCLUDED ON THIS FORM. SEE INSTRUCTIONS ON BACK OF FORM. L Owner/O..J!$Eftor (A~lcant) Information Name: 1l I> di_ iS1U.if lit. I ~£lV1 I i i I I i I I I i i I i i i I Phone: 1L/i 0~, 1;~ I I ~1i~i ~':1~~~t:g~~t:I: Status of ~ : : : : : : : : : : : I i I I I I I i I I Owner/Operator: State: jJi ~I ZipCode: ,TI~ 1,91-i I I I I U. Project/Site :7iatlon t Ki ~ h ~~~~t~~~~~~ted on Ing, :::~~Y.;~~~:~~:att'.fii!:d~~~: :1:ii:v~:,,,, : .. o No City ~~ :~: z~:t.1 61 b 4i }i i I /ll'Ji I I I I I I I [ Slat! iLXi Zip Code [f 1 'ti~ i.fDi-1 I I I I Latitude:--·--·--· Longitude: I lqi(p,~Qdll County: ~rra.i:oosi i I I I I I i I I i i i I Has the Storm Water PoHution Prevention Plan (SWPPP) been prepared? Yes ra1 No 0 Optional: Address of location of SWPPP for viewing SWPPP ~ddress in Section I above 0 Address in Section II above 0 Other address (if known) below: Phone: Address: I I I I i I I I I I I I I I I I I i I I I I i I I i i i I i I I I I I I I I I I I I I I City; I I i i I I I I I I I i I I I I i I I I i I I State: l.J_J Zip Code: I I I I I 1-i I I I I Name of Receiving Water: KA) h l If~ i6 t f 1 li (j ~ i i I I I i I I I I I I " i / 1 Q !t ~ q vi I I i/i'O i 1dbOi.71 Month Day \'liar Month Day 'mar Estimated Construction Start Date Estimated Completion Df te Estimate of area to be disturbed (to nearest acre): I i i I I IOI Estimate of Likelihood of Discharge (choose only one): 1. 0 Unlikely 3. d Once per week. 5. 0 Continual 2. 0 Once per month 4. 0 Once per day AL Certification Based on instruction provided in Addendum A of the permit, are there any listed endangered or threatened species, or designated critical habitat in the project area? Yes 0 No&£ I have satisfied permit eligibility with regard to protection of endangered species through the indicated section of Part l.B.3.e.(2} of the permit (check one or more boxes): (a) 0 (b) 0 <c> D (d) ui I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage this system, or those persons directly responsible for gathering the information, the information submitted is, to the bes1 of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Prim Name,l;o ~·~==~~~~~~~i7i;' 11!1 ~In I I I I I I I I I I I I I I I Signature: __?~ _ . l-.___ EPA Form 3510-9 replaced 351Q-6 (8-98) ~-~ DEVELOPMENT PERMIT PERMIT NO. 01-70 Project: Canyon Creek Townhomes COlllGl STATION FOR AREAS OUTSIDE THE SPECIAL FLOOD HAZARD AREA RE: CHAPTER 13 OF THE COLLEGE STATION CITY CODE SITE LEGAL DESCRIPTION: Gorzycki Property DATE OF ISSUE: 11/1/01 OWNER: Todd Sullivan 710 Windell Houston, TX 77219 TYPE OF DEVELOPMENT: SPECIAL CONDITIONS: SITE ADDRESS: 1267 Harvey Mitchell Pkwy DRAINAGE BASIN: White Creek VALID FOR 6 MONTHS CONTRACTOR: Clearing Grading Permit All construction must be in compliance with the approved construction plans All trees must be barricaded, as shown on plans, prior to any construction. Any trees not barricaded will not count towards landscaping points. Barricades must be 1' per caliper inch of the tree diameter. CLEARING AND GRADING ONLY The Contractor shall take all necessary precautions to prevent silt and debris from leaving the immediate construction site in accordance with the approved erosion control plan as well as the City of College Station Drainage Policy and Design Criteria. If it is determined the prescribed erosion control measures are ineffective to retain all sediment onsite, it is the contractors responsibility to implement measures that will meet City, State and Federal requirements. The Owner and/or Contractor shall assure that all disturbed areas are sodden and establishment of vegetation occurs prior to removal of any silt fencing or hay bales used for temporary erosion control. The Owner and/or Contractor shall also insure that any disturbed vegetation be returned to its original condition, placement and state. The Owner and/or Contractor shall be responsible for any damage to adjacent properties, city streets or infrastructure due to heavy machinery and/or equipment as well as erosion, siltation or sedimentation resulting from the permitted work. Any trees required to be protected by ordinance or as part of the landscape plan must be completely fenced before any operations of this permit can begin. In accordance with Chapter 13 of the Code of Ordinances of the City of College Station, measures shall be taken to insure that debris from construction, erosion, and sedimentation shall not be deposited in city streets, or existing drainage facilities. I hereby grant this permit for development of an area outside the special flood hazard area. All development shall be in accordance with the plans and specifications submitted to and approved by the City Engineer in the development permit application for the above named project and all of the codes and ordinances of the City of College Station that apply. :~ Owner/ AgenUContractor Date TCC Subdivision Public Infrastructure Engineer's Estimate 1 Mobilization 2 Trench Safety Wastewater System 3 6" PVC Sanitary Sewer, Depth 0-5' 4 8" PVC Sanitary Sewer, Depth 0-5' 5 8" PVC Sanitary Sewer, Depth 5'-10' 6 8" DIP CL 350 Sanitary Sewer 7 Piers 8 Manholes 9 Connect to Existing Manhole Water System 10 12" PVC Waterline 11 8" PVC Waterline 12 Connect to Existing System 13 Fire Hydrant Assembly 14 12"x 8" M.J. Tee 15 12"x 22.5deg M.J. bend 16 12"x 45deg M.J. bend 17 12" M.J. Gate Valve 18 12"x 8" M.J. Reducer 19 8" M.J. Gate Valve 20 8"x 45deg M.J. bend 21 8"x 22.5deg M.J. bend 22 8"x 6" M.J. Tee 23 8"x 8" M.J. Tee 24 6" M.J. Gate Valve 25 8" M.J. Cap w/ 2" Blow Off Assembly 26 Water Service Connection & Copper Service Lines Subtotal Wastewater System Subtotal Water System Total D FOR 1CE zooz COLLEG ·-· s~,i. r10 ~ 1 1 461 721 284 215 9 9 1 275 1533 1 2 1 1 1 1 1 5 3 4 2 2 2 2 38 Units Uni Ea. L.S. L.F . L.F . L.F. L.F . Ea. Ea. Ea. L.F. L.F. Ea. Ea. Ea. Ea. Ea. Ea. Ea. Ea. Ea. Ea. Ea. Ea. Ea. Ea. Ea. $10,000.00 $3,000.00 $20.00 $25.00 $30.00 $45.00 $3,000.00 $1 ,500.00 $1 ,000.00 $35.00 $25.00 $750.00 $1,700.00 $450.00 $300.00 $300.00 $1 ,150.00 $250.00 $525.00 $150.00 $150.00 $175.00 $200.00 $425.00 $600.00 $400.00 $10,000.00 $3,000.00 $9,220.00 $18,025.00 $21,630.00 $9,675.00 $27,000.00 $13,500.00 $1 ,000.00 $9,625.00 $38,325.00 $750.00 $3,400.00 $450.00 $300.00 $300.00 $1 ,150.00 $250.00 $2,625.00 $450.00 $600.00 $350.00 $400.00 $850.00 $1 ,200.00 $15,200.00 $100,050.00 $76,225.00 $189,275.00 ENGi EERI~·'~ Mitchell and Morgan, LLP cost estimate 12-18-01.xls CANYON CREEK TOWNHOMES TCC SUBDIVISION WATER AND FIRE FLOW ANALYSIS December 2001 By jl1, ITCH ELL & jl1, ORGAN, LLP Engineers & Constructors 511 University Drive, Suite 204 College Station, Texas 77840 Office (979) 260-6963 Fax (979) 260-3564 CERTIFICATION I hereby certify that this report for the Fire Flow Analysis for the TCC Subdivision was prepared under my supervision in accordance with the provisions on the City of College Station Development Guidelines and Fire Department Fire Prevention Criteria for the owners thereof. _,,,,,,,, --~e. OF r~ '!t. r"'"" ········· ~"'f ,f.:> .. ··*···.IS' . , * ... • •• •• * 'i f *. . *".I 've'RoN'1c:f j:'ii.'MORGANi ~-: ......................... .:·tt--1 ,,1)\~ 77689 Al/ti ... Q •~7~ t'.. V• -"o: ~ a~ '•,<]/STE~~" ~., ,, Ss ........ ~0J \\./ONAL ~­,"\.~ CANYON CREEK TOWNHOMES WATER & FIRE FLOW ANALYSIS INTRODUCTION This Fire Flow Analysis report is written to document and analyze the necessary water infrastructure for the Canyon Creek Townhomes project. The TCC Subdivision is a new development with approximately 7I two-story townhome units. GENERAL LOCATION AND DESCRIPTION The TCC Subdivision is located on the east side of Harvey Mitchell Parkway (FM 28 I 8), just south of the Luther Street/FM 28 I 8 intersection. The total acreage of the area being considered for development is approximately 5.953 acres. The subdivision is bordered on the west by FM 28 I 8, on the north by the Fairfield apartment development, on the east by Walden Pond and the Melrose development, and on the south by a vacant tract. The Fairfield development consists of approximately 400 units and water is supplied to these units by multiple six (6) inch lines, an eight (8) inch loop, and a twelve (12) inch main. The development to the east and south is supplied by a sixteen (16) inch line on Southwest Parkway and an eight (8) inch line on Holleman. Also located on the northeast border of the Canyon Creek Townhome project are Lots IA and 2A, Block I of the Melrose Subdivision. The SAE Fraternity house is constructed on Lot IA, Block I and is supplied by six (6) inch water line that connects into the Melrose Development's eight (8) inch loop. Lot 2A is currently vacant. MODELING The water distribution system modeling for this project was performed by using the BOSS EMS program. Mitchell & Morgan utilized the current College Station water model and updated it with the new water lines recently constructed with the Fairfield development. To this existing system we modeled the Canyon Creek Townhomes domestic and fire flows. The evaluation and fire flow criteria used within this study was as follows: ~ Maintain a minimum of 20 psi residual pressure during fire flow events ~ Calculate fire flows based upon the ISO fire flow calculations, and ~ Maintain velocities during fire flow events to 12 fps. WATER DEMAND DEVELOPMENT The TCC Subdivision consists of sixteen (16) four bedroom and fifty-five (55) three bedroom units. In keeping with the criteria used to develop the City of College Station Water Distribution Model, Mitchell & Morgan used 115 gallons/capita/day for each unit, with 2.7 persons in a three bedroom units, and 3.I persons in a four bedroom unit. Using these figures, the average day demand placed on each node was 3.I9 gpm. FIRE FLOW ANALYSIS Mitchell & Morgan, LLP used the formula obtained from the College Station Fire Department (ISO calculations) to calculate fire flows throughout the site. In an effort to 1 Creek Townhomes Water Analysis evaluate the correct water line size for the above referenced project, five separate scenarios were analyzed based upon fire flows for the development. The Canyon Creek development contains several townhouse buildings, which range in size from a 4-unit building to a 7-unit building, with the most predominant on the site being a 5-unit building. In accordance with the ISO calculations, the area to be used for fire flows is that of the largest building which is isolated by a 4-hour firewall. Within the following scenarios, several building areas were used to determine the correct size for the water lines within the development. Constructed within the adjacent Fairfield complex is an internal eight (8) inch loop feed, which ends with an eight (8) inch radial feed water line stubbed out at the Fairfield/Canyon Creek property line. The following scenarios use this eight (8) inch radial feed line from Fairfield, to which we added an eight (8) inch radial water line to the Canyon Creek Townhomes internal drive aisle and then looped an eight (8) inch water line and stubbed out an eight (8) inch water line to the most southerly property comer for future extension. (See Figure 1) Scenario 1 A seven (7) unit building was used to compute the building area and calculate the fire flow for the Canyon Creek Townhomes Subdivision. The area of 8, 169.5 sq ft per floor was used for this scenario. Because these units are 2-stories, a total area of 16,339 square feet was used in the following calculation: 2 Fire Flow = 18CA o.s Where C = 1.0 for ordinary construction and A = total floor area including all stories further the ISO allows for a reduction in these flows if: a. "The fire flow may be reduced by 25% for occupancies having a low fire hazard or may be increased by up to 25% for occupancies having a high fire hazard." These units would qualify for a reduction of 25% under this formula. Also the value after any reduction or increase has been calculated should have an exposure protection value added to it. The percentage for any one side should not exceed the following limits for the separation shown: Separation 0-10 ft. 11-30 ft. 31-60 ft. 61-100 ft. 101 -150 ft. Percentage 25% 20% 15% 10% 5% Creek Townhomes Water Analysis Therefore: Note: The total percentage shall be the sum of the percentages for all sides, but shall not exceed 75%. 18 (1.0) (16,339)0.s = 2,300.8 gpm with a 25% reduction: .75(2300.8) = 1725.6 gpm with the 7-unit building there are 2 walls that will have a 10 foot separation from the property line, one side of the building is common wall construction and the other side is within 25 feet of the street, therefore: (25+25+25+20) = 95%; therefore use 75% 1725.6 gpm + (1725.6 * .75) = 3019.8 gpm When using this fire flow, the results are line velocities in the eight (8) inch radial water line from the Fairfield development in excess of 19 ft/sand a pressure at the fire hydrant of less than 20 psi. Scenario 2 Because the area of the seven (7) unit building did not provide a~ceptable results, given our analysis criteria, a building area for the five (5) units was used in Scenario 2. The five (5) unit building was used to compute the building area and calculate the fire flow for the Canyon Creek Townhomes development. An area of 6,030 sq ft per floor was used and because these units are 2-stories, a total area of 12,060 square feet was utilized for the total floor area as in the example in Scenario 1. These calculations resulted in a fire flow of 2500 gpm for the five (5) unit building. This fire flow analysis resulted in a pressure of 26 psi at the fire hydrant and velocities in the eight (8) inch radial water line of 16 ft/s. Scenario 3 In light of the velocities in Scenario 2, an area of four ( 4) units was used to compute the building area and calculate the fire flow for the Canyon Creek Townhomes development. This scenario would require that each five (5) unit building be separated internally with a four hour firewall. This firewall separation would be a substantial change and cost increase to the building plans for the townhome units, however the scenario was modeled to see the effect that this change would have on the water line velocities. In this scenario, an area of 4,571 sq ft per floor was used, which lead to a total floor area of 9,142 square feet in the calculations. This area resulted in a fire flow of 2250 gpm at the hydrant, with a pressure of 37 psi and a line velocity in the eight (8) inch radial water line of 14.5 ft/s. Therefore, this decrease in building area produced a drop in the water line velocity of only 1.5 ft/s when compared to Scenario 2. 3 Creek Townhomes Water Analysis For Scenario 4, the model included the eight (8) inch radial water line from the Fairfield Apartments but Canyon Creek increased th eir fine size from an eight (8) inch to a twelve (12) in ch fin e for their portion of the radial f eed and kept an eight (8) inch internal loop. Scenario 4 Scenario 4 duplicated Scenario 3, in that it utilized the fire flow obtained by using the four (4) unit building area. This scenario used the fire flow of 2250 gpm, as calculated previously, and changed the radial water line size being constructed by Canyon Creek to a twelve ( 12) inch line. This resulted in pressures above 20 psi, consistent with our fire flow criteria. Velocities in all Canyon Creek waterlines were below 12 ft/s; however, this still caused the velocity in the eight (8) inch feeder line from Fairfield to be greater than 14 ft/s. While the velocity of 14 ft/s in the Fairfield eight (8) inch line is high, once an eight (8) inch water line is run along FM2818 south of the Canyon Creek Townhomes and connected to the eight (8) inch water line on Holleman Dr. this velocity will decrease to 8.6 ft/s, a much more acceptable velocity for the ultimate design. It is also worthy to note that the line which will experience this flow velocity is only 150 feet in length. For Scenario 5, the model included the eight (8) inch radial water line.from the Fairfield Apartments but Canyon Creek increased th eir line size from an eight (8) inch to a twelve (12) inch line for their portion of the radial feed and modeled as a six (6) inch internal loop. Scenario 5 Scenario 5 duplicated Scenario 3, in that it utilized the fire flow obtained by using the four ( 4) unit building area. This scenario used the fire flow of 2250 gpm, as calculated previously, and changed the radial water line size being constructed by Canyon Creek to a twelve (12) inch line and the internal loop to a six (6) inch line. This resulted in pressures above 20 psi, consistent with our fire flow criteria. However, velocities in the six (6) inch loop are above 12 ft/s. For Scenario 6, the model included the eight (8) inch radial water line.from the Fairfield Apartments but Canyon Creek increased their line size from an eight (8) inch to a twelve (12) inch line for their portion of th e radial f eed and kept an eight (8) inch internal loop. Scenario 6 Scenario 6 duplicated Scenario 2, in that it utilized the fire flow obtained by using the five (5) unit building area. This scenario used the fire flow of 2500 gpm, as calculated previously, and changed the radial water line size being constructed by Canyon Creek to a twelve (12) inch line. This resulted in pressures above 20 psi, consistent with our fire flow criteria. Velocities in all Canyon Creek waterlines were below 12 ft/s; however, this still caused the velocity in the eight (8) inch feeder line from Fairfield to be greater than 16 ft/s. While the velocity of 16 ft/s in the Fairfield eight (8) inch line is high, once an eight (8) inch water line is run along FM2818 south of the Canyon Creek Townhomes and connected to the eight (8) inch water line on Holleman Dr. this velocity will decrease 4 Creek Townhomes Water Analysis to below 12 ft/s , a much more acceptable velocity for the ultimate design. It is also worthy to note that the line which will experience this flow velocity is only 150 feet in length. CONCLUSION To adequately provide water service to the Canyon Creek Townhome development the following should occur: 5 ~ An eight (8) inch internal water line loop must be used in order to supply the Canyon Creek Townhomes with adequate fire flow pressure. ~ An eight (8) inch water line should be extended from the internal loop to the most southerly property line for future connection. ~ The radial water line from the existing Fairfield eight (8) inch radial water line should be constructed as a twelve (12) inch line to keep the fire flow velocities to within reasonable limits. ~ One four-hour firewall must be utilized in the seven (7) unit building to break it effectively into a four ( 4) and three (3) unit building. ~ Although the velocities in the eight (8) inch radial water line from Fairfield are 16 ft/sec, this is only temporary until the system is looped back to Holleman. ~ It is important to recognize that as development occurs along Holleman and north from Holleman along FM28 l 8 that each development be required to extend the existing eight (8) inch water line toward the TCC Subdivision such that this loop feed can be completed. Once this connection is complete, fire flow velocities in the eight (8) inch water line from Fairfield will be well below the required 12 ft/sec. This will also ensure that developments in the area will have redundant water lines for supply. This is extremely important when considering the need to supply emergency water to an area when there is a water line break or an area needs to be isolated for maintenance reasons. Creek Townhomes Water Analysis I :::IJ ~ ::::c m -:i: 0 < ~ ~ ~ ~ ~ \) ~ ~ ~ d=<> §' ~ to(') / I •o :::0::3 / 0 ::3 I 0. CD e:a / ( ~o-/ /r~ / ~ / 0:. / Fi? ii! z:::::--<n -·8 ~ ii" :::r·· • ... 8 ;-~ I \ I\ '"' , I '"'"' ... , \_,/ \ _________ ......... // I I '-~ ~ \ WATER SYSTEM LAYOUT CANYON CREEK TOWNHOMES Mitchell 4: Morgan, LLP. Consulti119 En9ineers ond Constructors 511 University Drive Eost, Suite 204 Colle«Je Stotion, TX 77840 J,j~2 Jr:i • fill -I December, 2001 ~1----"'==~-""'"] Ouigned by: JJM Drown By: JUJ Checked By: VJBM (409) 2eo-696J roa: (409) 2eo-'"4!4 2040 2035 CANYON CREEK 042 2416 2 FM 2818 Scenario 1 ....SCel'fAe}D Sce.,rio 1 variable symbol units variable symbol units Diameter D [in] Elevation z [ft] Roughness r [millift] Grade HGL [psi] Length L [ft] Pressure p [psi] Velocity v [ft/s] Demand Q [gpm] Head loss loss [ft] link ID Q r !: Y. loss node ID 6 HGL .E Q 2400 8 130 178.211 9.876 7.345 2034 312 435.902 53.687 0 2401 8 130 183.882 9.876 7.579 2035 314 428.557 49.638 0 2406 8 130 138.095 19.378 19.805 2036 312 420.978 47.22 0 2413 8 130 73.553 19.378 10.549 2037 300 401.174 43.839 0 2414 8 130 88.569 19.378 12.702 2038 312 377.923 28.564 0 2415 8 130 165.29 19.378 23.705 2039 314 341.244 11.805 3.19 2416 8 130 478.094 7.879 12.974 2040 316 331.067 6.529 3.19 2417 8 130 376.806 7.859 10.176 2041 319 324.478 2.373 3023.19 2418 8 130 245.176 7.838 6.59 2042 314 348.547 14.969 3.19 2419 8 130 . 443.627 11.458 24.07 2043 312 354.217 18.293 3.19 2420 8 130 104.164 11.479 5.67 2044 312 390.625 34.068 0 Scenario 2 Scenario 2 variable symbol units variable symbol units Diameter D [in] Elevation z [ft] Roughness r [millift] Grade HGL [psi] Length L [ft] Pressure p [psi] Velocity v [fUs] Demand Q [gpm] Headloss loss [ft] link ID Q r 1 Y. loss node ID ~ HGL E Q 2400 8 130 178.211 8.255 5.272 2034 312 459.609 63.959 0 2401 8 130 183.882 8.255 5.44 2035 314 454.337 60.808 0 2406 8 130 138.095 16.059 13.99 2036 312 448.898 59.318 0 2413 8 130 73.553 16.059 7.452 2037 300 434.907 58.455 0 2414 8 130 88.569 16.059 8.973 2038 312 418.483 46.139 0 2415 8 130 165.29 16.059 16.746 2039 314 392.575 34.047 3.19 2416 8 130 478.094 6.528 9.162 2040 316 385.395 30.069 3.19 2417 8 130 376.806 6.508 7.18 2041 319 380.751 26.757 2503.19 2418 8 130 245.176 6.488 4.645 2042 314 397.734 36.282 3.19 2419 8 130 443.627 9.49 16.983 2043 312 401 .737 38.883 3.19 2420 8 130 104.164 9.51 4.003 2044 312 427.456 50.027 0 Scenario 3 Scenario 3 variable symbol units variable symbol units Diameter D [in] Elevation z [ft] Roughness r [millift] Grade HGL [psi] Length L [ft] Pressure p [psi] Flow Q [gpm] Demand Q [gpm] Velocity v [fUs] Headloss loss [ft] link ID Q I !: ':!. loss node ID ~ HGL .E Q 2400 8 130 178.21 1 7.477 4.389 2034 312 470.041 68.479 0 2401 8 130 183.882 7.477 4.529 2035 314 465.652 65.711 0 2406 8 130 138.095 14.463 11.528 2036 312 461 .123 64.615 0 2413 8 130 73.553 14.463 6.14 2037 300 449.596 64.82 0 2414 8 130 88.569 14.463 7.394 2038 312 436.062 53.756 0 2415 8 130 165.29 14.463 13.798 2039 314 414.716 43.64 3.19 2416 8 130 478.094 5.879 7.548 2040 316 408.805 40.212 3.19 2417 8 130 376.806 5.859 5.911 2041 319 404.984 37.257 2253.19 2418 8 130 245.176 5.838 3.821 2042 314 418.967 45.482 3.19 2419 8 130 443.627 8.543 13.983 2043 312 422.264 47.777 3.19 2420 8 130 104.164 8.563 3.298 2044 312 443.456 56.96 0 Scenario 4 Scenario 4 variable symbol units variable symbol units Diameter D [in] Elevation z [ft] Roughness r [millift] Grade HGL [psi] Length L [ft] Pressure p [psi] Flow Q [gpm] Demand Q [gpm] Velocity v [fUs] Head loss loss [ft] link ID Q r b Y. loss node ID ~ HGL .E Q 2400 8 130 178.211 7.477 4.389 2034 312 470.041 68.479 0 2401 8 130 183.882 7.477 4.529 2035 314 465.652 65.711 0 2406 8 130 138.095 14.463 11.528 2036 312 461 .123 64.615 0 2413 12 130 73.553 6.428 0.852 2037 300 449.596 64.82 0 2414 12 130 88.569 6.428 1.026 2038 312 447.717 58.806 0 2415 12 130 165.29 6.428 1.915 2039 314 438.254 53.839 3.19 2416 8 130 478.094 5.879 7.548 2040 316 432.342 50.411 3.19 2417 8 130 376.806 5.859 5.911 2041 319 428.521 47.455 2253.19 2418 8 130 245.176 5.838 3.821 2042 314 442.504 55.681 3.19 2419 8 130 443.627 8.543 13.983 2043 312 445.802 57.976 3.19 2420 8 130 104.164 8.563 3.298 2044 312 448.743 59.251 0 Scenario 5 variable symbol units variable symbol units Diameter D [in] Elevation z [ft] Roughness r [mil lift] Grade HGL [psi] Length L [ft] Pressure p [psi] Flow Q [gpm] Demand Q [gpm] Velocity v [fUs] link ID Q r .!: Y. loss node ID ~ HGL .E Q 2400 8 130 178.211 7.477 4.389 2034 312 470.041 68.479 0 2401 8 130 183.882 7.477 4.529 2035 314 465.652 65.711 0 2406 8 130 138.095 14.463 11 .528 2036 312 461.123 64.615 0 2413 12 130 73.553 6.428 0.852 2037 300 449.596 64.82 0 2414 12 130 88.569 6.428 1.026 2038 312 447.717 58.806 0 2415 12 130 165.29 6.428 1.915 2039 314 415.161 43.833 3.19 2416 6 130 478.094 10.452 30.64 2040 316 391.167 32.57 3.19 2417 6 130 376.806 10.416 23.995 2041 319 375.654 24.548 2253.19 2418 6 130 245.176 10.38 15.512 2042 314 432.416 51 .31 3.19 2419 6 130 443.627 15.188 56.761 2043 312 445.802 57.976 3.19 2420 6 130 104.164 15.224 13.386 2044 312 448.743 59.251 0 Canyon Creek Townhomes Residential Development Drainage Analysis January 2002 By /k ITCH ELL.& /k ORGAN, LLP Engineers & Constructors 511 University Drive, Suite 204 College Station, Texas 77840 Office (979) 260-6963 Fax (979) 260-3564 CERTIFICATION I hereby certify that this report for the drainage design for the Canyon Creek Townhomes development was prepared under my supervision in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners thereof. ~~,,~~. ,.;;:-:'if:. OF iF:. .,,\ llflJ!ll' '.'l."'·······k ... -, .,, /if!' ~.· * ·~ . 1... . .... ~.. • *'J I·· : .............. ~ .. 2 Z JOEL J. MITCHELL 2 g •• ~·············:··1 ,. '\. ~ 80649 ~~ .. $Ii' ,.,o~.f GJ ST~~\·~«;? • \, ~s. •••• ···~,<?>" _. .,,._~~IONAL f:.',J/:" .,,,,,,~ CANYON CREEK TOWNHOMES DRAINAGE ANALYSIS INTRODUCTION The purpose of this storm drainage report is to document and analyze the necessary drainage infrastructure for the proposed Canyon Creek Townhomes development. The development will be located on a 5.9 53-acre tract known as the TCC- Subdivision. As per the College Station Drainage Policy and Design Standards (DPDS), the objective of these drainage improvements is to limit the post-development peak flow so as not to exceed pre-development peak flows. If changes to the site drainage patterns or proposed building square footages affect the assumptions in this report, a letter of addendum will be prepared in order to analyze the effect of the changes and to assure compliance with the City of College Station DPDS. GENERAL LOCATION AND DESCRIPTION The proposed Canyon Creek Townhomes Subdivision is located on the east side of Harvey Mitchell Parkway (FM 2818), between Holleman Dr. and George Bush Dr. and is adjacent to the upper section of Whites Creek, which borders the property to the south. The Fairfield Residential Tract as well as the Melrose and Walden Pond Tracts surround the TCC-Subdivision property. PRIMARY DRAINAGE BASIN DESCRIPTION As seen in Exhibit A, this property lies near the 100-year floodplain per the FEMA Flood Insurance Rate Map Panel 182 with an effective date of July 1992 . However, because of the lack of detail of the FIRM, Mitchell & Morgan, L.L.P. performed a 100-year flood plain analysis of the upper section of Whites Creek using HEC-RAS 3.0. This analysis revealed that the 100-year water surface elevation is approximately 307.20, almost six feet below the lowest proposed finished floor elevation. This can be referenced in the 100-year floodplain analysis provided under a separate cover. The TCC-Subdivision property currently drains to two separate points. The first of these is the culvert at White's Creek and Harvey Mitchell Pkwy, which is referred top as Study Point 'B'. The second, referred to as Study Point 'A', is the culvert at Harvey Page 1of4 Mitchell Pkwy just to the north of the proposed access drive. Comparison of peak flows at these two confluence points will determine if DPDS criteria have been met. DRAINAGE DESIGN CRITERIA All drainage design is in accordance with the City of College Station DPDS. As · such: • The design rainstorm events used are the 5 through 100-year events to analyze the effectiveness of the detention pond design: and • Because of the size of pre-and post-development drainage basins, flow calculations are based on the rational method, with a minimum time of concentration of 10 minutes. DRAINAGE FACILITY DESIGN ?redevelopment Drainage Patterns As previously stated, the predevelopment drainage for the site consists of two basins, EA and EB, which can be viewed in Exhibit B 1. The rational method calculations for these drainage areas can be seen in Exhibit C. Drainage area EA includes 2.51 acres of undeveloped, wooded area. EB consists of 3.45 acres of undeveloped area. The SCS lag time method from the TR-55 manual was used in order to calculate the times of concentration, which were in tum used to calculate the theoretical precipitation intensities for each of the design storms. Based on the land cover and use, a Rational Method 'c' value of 0.4 was used for both of these predevelopment drainage areas. All of the aforementioned parameters can be seen in Exhibit C. Drainage areas EA and EB drain to Study Points 'A' and 'B' respectively. Post Developm ent Drainage Patterns Post development drainage patterns for the proposed Canyon Creek Townhomes consist of several drainage areas, which can be seen in Exhibit B2. As was expected, a substantial increase in peak flows occurred because of the addition of approximately 3. 7 acres of impervious cover. This addition increased the 100-year peak flows at Study Page 2of4 Points 'A' and 'B' by 12.0 and 15.5 cfs respectively. The pre-and post development flows and the total increase can be seen in the table below. Peak Discharge from Canyon Creek Townhomes Location 5-Year 10-Year 25-Year 50-Year 100-Year (cfs) (cfs) (cfs) (cfs) (cfs) Pre-Developed 7.0 7.9 9.0 10.2 11.5 (EA) Pre-Developed 10.1 11.4 13.0 14.7 16.5 (EB) Post-Developed 14.4 16.2 18.5 20.9 23.5 (Study Pt. 'A') Post-Developed 19.6 22.0 25.2 28.5 32.0 (Study Pt. 'B ') Flow Increase 7.4 8.3 9.5 10.7 12.0 (Study Pt. 'A') Flow Increase 9.5 10.7 12 .2 13.8 15.5 (Study Pt. 'B ') In order to detain the excess volume and decrease the post development runoff peaks, a series of detention ponds were designed. The excess runoff volume to Study Point 'A' was detained in the parking lot and driveway with a series of three ponds. The majority of the runoff will flow in to the central pond and then backfill into the two surrounding ponds. A 12" PVC pipe at the bottom of the central junction box controls all of the ponds and additional storage is gained in the connecting pipes, which are 12" PVC storm drains. Study Point 'B' also had several complications. Because of the relatively small amount of area available to detain in, several measures were taken in order to maximize the available volume. The first of these was to place a 4 ft. retaining wall around the perimeter of each of the main detention ponds in order to retain the area that would have been lo st by grading at a 4: 1 slope. The bottom of both ponds was graded at 1 % slope with a concrete flume running from the inlet to the outlet and then graded at 2% outward. Page 3 of 4 Additionally, the adjacent parking areas and driveway were used to detain water so as to attenuate the water entering the detention ponds and further decrease the peak flows. The outlet pipe for pond Al is 6" PVC and the outlet pipe for pond A2 is 8" PVC with a 4" diameter orifice at the pond that acts as a controlling structure. The outlet pipes for both pond B 1 and B2 are 15" PVC. Because of the complications involved with backflow and routing through multiple ponds, XP-SWMM 2000 was used to perform the hydraulic and routing calculations, however, the Rational Method was used to calculate the peak flows for each of the drainage basins, using a 10-minute time of concentration. These peak flows were input into their respective junctions in order to more accurately model the proposed drainage scenario. In order to effectively use the drive aisles and parking areas for excess runoff detention, they were graded in order to store the maximum amount of water, while at the same time maintaining enough slope to drain. The grading plan as well as detention pond cross-section details can be seen in Exhibit D. The XP-SWMM reports can be seen in Appendix A. The tables to focus on are El (pipe/orifice sizes), E4 (pond stage/storage and weir data), E9 (max pond elevations), and E15 (peak flows/elevations). For ease ofreview, Exhibit E presents definitions of nodes, invert elevations and peak elevations, orifice and pipe sizes for controlling structures, and peak discharges. From this data it is apparent that there is adequate detention provided to maintain the post development peak flows at a predevelopment level for all of the required design storms. CONCLUSION The development of the TCC-Subdivision will cause a substantial increase in runoff due to the proposed addition of approximately 3. 7 acres of impervious cover. In order to control this excess within the limited amount of space a series of detention ponds have been proposed. All of the storage for Study Point 'A' as well as portions for Study Point 'B' will occur in the driveway and parking areas. The remainder of the storage required for Study Point 'B' will occur in two ponds as seen in Exhibit D. After review of the XP-SWMM output, it is clear that all of the proposed finished floor elevations are well above the water surface elevations for the 100-year event and that none of the proposed outflows exceed the predevelopment peak flows as listed in Exhibit E. Page 4of4 City of College Station 480083 SUBJECT TRACT I Lt.:. '-. .. JI: I ~ LI SPECIAL FLOOD HAZARD AREAS INUND.A_TED BY 100-YEAR FLOOD ZONE A No base flood elevations determined. ZONE AE Base flood elevations determined. ZONE AH Rood depths of 1 to 3 feet (usually areas of ponding); base flood elevations determined. ZONE AO Rood depths pf 1 to 3 feet (usually sheet flow on sloping terrain); average depths deter- mined. For areas of aDuvial fan floocling; velocities also determined. ZONE A99 To be protected from 100-year flood by Federal flood protection sys(em under con- struction; no base flood elevations deter-mined. ., · · · ZONE V Coasta.1 flood with velocity hazard (wave action); no base flood elevations determined. ZONE VE Coastal flood with velocity hazard (wave Klion); base flood elevations determined. FLOODWAY AREAS IN ZONE AE OTHER FLOOD AREAS ZONEX Areas of 500-year flood; areas of 100-year flood with average depchs of less than 1 foot or with drainage areas less than 1 square m~e; and areas protected by levees from 100-year flood OTHER AREAS ZONE X Areas determined to be outside 500-yeac flood- plain. ZONED Areas in which flood hazards are undeter- mined. UNDEVELOPED COASTAL BARRIERS Aoodplain Boundary --------F1oodway Boundary Zone D Boundary ,-Boundary Dividing Special Flood Hazard Zones, and Boundary Dividing Areas of Dif- ferent Coastlll Base Flood Elevations Within Special Rood ~rd Zen-. 'fl\ll :2818 ; ~-~., ~ _:::----ij EXHIBIT A ---513--- @---@ (EL 9871 RM7x •M1.5 Base Flood Elevation Line; Elevation in Feet• Cross Section Line Base Rood Elevation in Feet Where Uniform Wittlin Zone• Elevation Reference Mark River Mae "Referenced to the National Geodetic Vertical Datum of 1929 NOTES This map 6 for use in administering the National Rood Insurance Program; it dots not MaSSU!ly identify all areas subject to flooding. patticularly from local drainage sources ot small size, or all planimetric features outside Special Rood Hazard Areas. The community map repository should be consulted for possible updated flood hanrd information prior to use of this map for property purchase or construction purposes. Coastal base flood elevations apply only landward of 0.0 NGVO, and include the eflects of wave action; these elevations may also differ significantly from those deo.-eloped by the National Weather Service for hurricane evacuation planning. Areas of special flood hazard (100-yeM flood) include Zones A, AE, AH, AO, A99, V,and VE. Certain areas. not in Special ~Hazard Areas may be protected by tlo\ftl control structures. · · R••un<l•ri-"'tho fl...,.,,f...,,..,. .;,,...,. rnmn1.11"'i ar cross sections and interoolated _, ' ' ' ' .- \ _, 8 I ,' ,- ,,'' "'' : ,_,. --.. rgon LLP. 1~jl-J ~ c~~~:~. ;. vJs• Mitchell & ..,o d 'constructors J;i f rvt.MOl'r 81 Consulti~9 E'.'9inD~i~~ E~st, Suite 204 r-1 ~' l'tll!U~ Alif"A 511 Un•vers•ty . TX 77840 ; f{JJ --~~ ~ College Stohon,(409) 260-3~6• ~~~' (•09) 260-6963 ro.: T.C. C. SUBDMSION ---......... ' ' ,,'/ J.,M)l.d 113H:ll1Y't ,1_3/\l:l'IH _./...- _ ... ·· ' I I I ' ' I I I ' ' ·...,_ ' ' ' ' ' : .- < w 0 a:: w < < CL 0 w w 0 z I- (!} a:: ...J < z < < < w ...J w () z ...J > (/) :::!: ...J ;;: < Wet (/) w < I-ow < > I-a:: 0 z a:: a:: < 0 0 I-:::> < (!} CL I- NO. AC. 0.4 0.6 0.95 EA 2.51 2.51 0.00 0.00 1.00 EB 3.45 3.45 0.00 0.00 1.38 FA-1 0.13 0.05 0.00 0.08 0.10 FA-2 1.86 0.17 0.20 1.49 1.60 FA-3 0.37 0.20 0.00 0.17 0.25 FB-1 0.04 0.00 0.02 0.01 0.03 FB-2 0.93 0.71 0.00 0.22 0.49 DBA-1 0.24 0.13 0.00 0.11 0.16 DBA-2 0.48 0.00 0.11 0.37 0.41 DBB-1 0.19 0.13 0.00 0.06 0.11 DBB-2 1.21 0.15 0.11 0.96 1.03 DBB-3 0.52 0.31 0.00 0.21 0.32 EXHIBIT C Rational Formula Drainage Area Calculations CANYON CREEK TOWNHOMES ;: ;: 0 0 ;: ;: ...J ...J LL LL 0 0 0 0 ...J ...J z z LL LL >-< J: :5 a:: J: a:: I-CJ ...J I-w I-w u I-CJ a:: (!} a:: ...J I-(!} I-...J 0 I-Wz w ...J I-z I-...J ...J .!::? w >w >ct :::> w :::> < w "' (/) 0 ...J 0 LL (!} ...J (!} LL > () :::> !::::! ft. ft. ft. ft. ftls min min In/Hr 650.0 10.0 0.0 0.0 0.9 12.4 12.4 5.73 824.3 25.0 0.0 0.0 1.2 11 .2 11.2 6.01 206.1 1.0 0.0 0.0 0.5 7.0 10.0 6.33 550.0 7.5 0.0 0.0 0.8 11 .1 11 .1 6.03 384.6 4.0 0.0 0.0 0.7 8.9 10.0 6.33 45.2 0.3 35.3 0.8 0.9 1.4 10.0 6.33 523.3 17.0 0.0 0.0 1.3 6.8 10.0 6.33 234.9 3.5 0.0 0.0 0.9 4.5 10.0 6.33 248.3 5.5 0.0 0.0 1.1 3.9 10.0 6.33 135.1 4.3 0.0 0.0 1.3 1.8 10.0 6.33 372.2 6.6 0.0 0.0 0.9 6.6 10.0 6.33 185.5 2.5 0.0 0.0 0.8 3.8 10.0 6.33 Pre Development Flow (TOT AL) Pre Development Flow (STUDY PT. A) Pre Development Flow (STUDY PT. B) Post Development Flow (TOTAL) Undetained Flow (STUDY PT. A) Undetained Flow (STUDY PT. B) Detained Flow (Pond A) Detained Flow (Pond B) Post Development Flow (STUDY PT. A) Post Development Flow (STUDY PT. B) Post Development Flow Increase (TOTAL) Post Development Flow Increase (STUDY PT. A) Post Development Flow Increase (STUDY PT. B) EXHIBIT C N 0 cfs 5.7 8.3 0.6 9.7 1.6 0.2 3.1 1.0 2.6 0.7 6.5 2.0 14.0 5.7 8.3 28.0 11.8 3.3 3.6 9.3 11.8 16.2 13.9 6.1 7.9 !!? In/Hr 7.0 7.3 7.7 7.3 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 Ill 0 cfs 7.0 10.1 0.7 11 .8 1.9 0.2 3.8 1.2 3.2 0.9 7.9 2.5 17.1 7.0 10.1 34 .0 14.4 4.0 4.4 11 .3 14.4 19.6 16.9 7.4 9.5 0 !: In/Hr 7.9 8.2 8.6 8.3 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 0 .... 0 cfs 7.9 11.4 0.8 13.2 2.1 0.2 4.2 1.4 3.6 1.0 8.9 2.8 19.3 7.9 11.4 38.2 16.2 4.4 4.9 12.7 16.2 22.0 19.0 8.3 10.7 Ill !::::! In/Hr 9.0 9.4 9.9 9.4 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 Ill N 0 cfs 9.0 13.0 0.9 15.1 2.4 0.3 4.8 1.6 4.1 1.1 10.2 3.2 22.0 9.0 13.0 43.7 18.5 5.1 5.6 14.5 18.5 25.2 21.6 9.4 12.2 0 !!? In/Hr 10.2 10.7 11 .1 10.7 11.1 11 .1 11 .1 11.1 11.1 11.1 11 .1 11 .1 0 Ill 0 cfs 10.2 14.7 1.1 17.1 2.7 0.3 5.4 1.8 4.6 1.2 11 .5 3.6 24.9 10.2 14.7 49.4 20.9 5.7 6.4 16.3 20.9 28.5 24.5 10.7 13.8 0 0 !: In/Hr 11 .5 12.0 12.5 12.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 0 0 .... 0 cfs 11 .5 16.5 1.2 19.2 3.1 0.3 6.1 2.0 5.2 1.4 12.9 4.0 28.0 11 .5 16.5 55.5 23.5 6.4 7.2 18.4 23.5 32.0 27.5 12.0 15.5 1 /15/02 0122-drainage revision.xis z 0 z ;:::: 0 < ;:::: c::: u ~ _J w a. ~_J u::: u. a:: w ;:::: $: < ;:::: u Cl) u. z oz Cl) ' I-w ow w a. ::> 0 zO Cl xo_ Study Point 'A ' FA2 Central Pond ORIFICE FA2.1 Left Pond PIPE 20-19 FA2.2 Right Pond PIPE 21 -19 Confluence 38 Predevelopment Confluence Study Point 'B' A1 Driveway Detention at Pond A 12PIPE1 A2 Detention Pond A PIPE B1 Driveway Detention at Pond B 15_B1 -B2 B2 Detention Pond B PIPE-OB Confluence 2818-HW Predevelopment Confluence Peak Flow Increase at Study Point 'A' Peak Flow Increase at Study Point 'B' EXHIBIT E XP-SWMM Output Summary CANYON CREEK TOWNHOMES w 0 c::: z u~ z -c: ::> < Q u. ·-a:: ; 0 w I-c::: z >-< oo (!) 0 o > I-ii5 I-;:::: oW u. ..--_J Wz 0 c::: < ~w _J w w > I-~ a. >w < uj ::> -0 z _J ~ s: oo I-_w 12 312.44 309.96 312.97 12 312.44 310.44 312.97 12 31 2.44 310.44 312.97 6 315 313 315.61 8 (4" cap) 310 310 312.54 15 311 .36 309.36 312.31 15 306 306 308.5 ** All peak depths and elevations given are for the 100-year event EXHIBIT E c::: < w >- 0 0 ..--::c ~ I-0 < a. 0 I() 0 0 WW I() ..--N I() ..--a. 0 a a a a a 0.53 0.53 0.53 6.8 7.0 7.4 7.9 8.5 7.0 7.9 9.0 10.2 11.5 0.61 2.54 0.95 2.5 10.0 10.5 11.5 12.2 13.2 10.1 11 .4 13.0 14.7 16.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Appendix A CANYON CREEK TOWNHOMES 5 YEAR PROPOSED XP-SWMM ANALYSIS Input File c,\XPS\final\0122-5ii.XP Current Directory, c ,\XPS\XP-UDD-1 Executable Name: C:\XPS\XP-UDD-1\swmmengw.exe Read O line(s) and found O i tems (s) from your cfg file . • ....... "'"'. -••••• ·=== ........ ,.. .. ,.. ....... --···· ====· ·= .. = .... . I XP-SWMM2000 I Storm Water Management Model I I Version 7. 51 I l·===···········=·==···················=········I I Developed by I I···==··················-==·=··················= I I I I I I I I I I I I I I I I XP Software Inc. and Pty. Ltd. Based on the U.S. EPA Storm Water Management Model Version 4.40 Originally Developed by Metcalf & Eddy, Inc. University of Florida Camp Dresser & McKee Inc. September 1970 EPA-SWMM is maintained by Oregon State University I Camp Dresser & McKee Inc. l···=·=·········································I I XP Software October, 2000 I I Data File Version ---> 9.0 I Input and Output file names by SWMM Layer Input File to Layer Output File to Layer 1 JOT.US 1 JOT.US Special command line arguments in XP-SWMM2000. This I now includes program defaults. $Keywords are the program! defaults. Other Keywords are from the SWMMCOM.CFG file. I or the command line or any cfg file on the command line. I Examples include these in the file xpswm.bat under the I section :solve or in the windows version XPSWMM32 in thel file solve.bat Note: the cfg file should be in the subdirectory swmxp I I I or defined by the set variable in the xpswm.bat I file. Some examples of the command lines possiblel are shown below: I swmmd swmmcom. c fg swmmd my. cfg swmmd nokeys nconvS perv extranwq $powerstation 0. 0000 $perv 0 .0000 $oldegg 0 .0000 $as 0.0000 $nof lat 0. 0000 $oldomega 0.0000 $oldvol 0. 0000 $implicit 0 .0000 $oldhot 0. 0000 $oldscs 0.0000 $flood 0.0000 $nokeys 0. 0000 $pzero .0000 $oldvol2 .0000 $oldhotl . 0000 $pumpwt . 0000 $ecloss 0.0000 $exout . 0000 $oldbnd . 0000 $nogrelev . 0000 $ncmid . 0000 $new_nl_97 0. 0000 $best97 . 0000 $newbound . 0000 7 11 21 24 28 29 31 33 40 42 55 59 63 70 77 97 154 161 164 290 294 295 I I I I I Parameter Values on the Tapes Common Block.These are the I I values read from the data file and dynamically allocated I 1 by the model for this simulation. I Number of Subcatchments in the Runoff Block (NW) ... . Number of Channel/Pipes in the Runoff Block (NG) ... . Runoff Water quality constituents (NRQ) .. Runoff Land Uses per Subcatchment (NLU) ............ . Number of Elements in the Transport Block (NET) Number of Storage Junctions i n Transport (NTSE) .. Page I of 11 0 122-5.doc CANYON CREEK TOWNHOMES 5 YEAR PROPOSED XP-SWMM ANALYSIS Number of Input Hydrographs in Transport (NTH) Number of Elements in the Ext ran Block (NEE) ........ Number of Groundwater Subcatchments in Runoff (NGW). Number of Interface locations for all Blocks (NIE). Number of Pumps in Ext ran (NEP) .. Number of Orifices i n Ext ran (NEO). Number of Tide Gates/Free Outfalls in Ext ran (NTG) .. Number of Extran Weirs (NEW) ·········· Number of scs hydrograph points. . .......... Number of Extran printout locations (NPO) .. Number of Tide elements in Ext ran (NTE) .. Number of Natural channels (NNC) ..... Number of Storage junctions in Extran (NVSE) Number of Time history data points in Ext ran (NTVAL) . Number of Variable storage elements in Ext ran (NVST) Number of Input Hydrographs in Ext ran (NEH) ......... Number of Particle sizes in Transport Block (NPS). Number of User defined conduits (NHW) ... Number of Connecting conduits in Ext ran (NECC). Number of Upstream elements in Transport (NTCC) .. Number of Storage/treatment plants (NSTU). Number of Values for Rl lines in Transport (NRl ). Number of Nodes to be allowed for (NNOD). Number of Plugs in a Storage Treatment Unit. ####################################################### # Entry made to the HYDRAULIC Layer(Block) of SWMM # # Last Updated October,2000 by XP Software # CANYON CREEK TOWNHOMES HYDRAULICS TABLES IN THE OUTPUT FILE 21 21 10 10 0 21 20 10 0 21 These are the more important tables in the output file. You can use your editor to find the table numbers, for example: search for Table E20 to check continuity. This output file can be imported into a Word Processor and printed on US letter or A4 paper using portrait mode, courier font, a size of 8 pt. and margins of 0.75 Table El Basic Conduit Data Table E2 Conduit Factor Data Table EJ Junction Data Table E4 Conduit Connectivity Data Table E4a Dry Weather Flow Data Table E5 Junction Time Step Limitation Summary Table E5a Conduit Explicit Condition Summary Table E6 Final Model Condition Table E7 Iteration Summary Table EB Junction Time Step Limitation Summary Table E9 Junction Summary Statistics Table ElO Conduit Summary Statistics Table Ell Area assumptions used in the analysis Table El2 Mean conduit information Table ElJ Channel losses (H) and culvert info Table El4 Natural Channel Overbank Flow Information Table El5 Spreadsheet Info List Table El6 New Conduit Output Section Table El7 Pump Operation Table ElB Junction Continuity Error Table El9 Junction Inf low Sources Table E20 Junction Flooding and Volume List Table E21 Continuity balance at simulation end Table E22 Model Judgement Section Time Control from Hydraulics Job Control Year.. 95 Month. Day. Hour. Minute. Second. Control information for simulation Integration cycles. . .......... . Length of integration step is .. . Simulation length ................. . Do not create equiv. pipes(NEQUAL). Use U.S. customary units for I/O ... Printing starts in cycle. Intermediate printout intervals of. Intermediate printout intervals of. Summary printout intervals of ... Summary printout time interval of .. Hot start file parameter (REDO) Initial time .......... . Iteration variables: SURTOL. SURJUN. QREF. Minimum depth (m or ft) 14400 0. 25 . 00 500 2.08 500 2.08 1 0 . 00 0. 0001 0. 0060 .0000 .0000 seconds hours cycles minutes cycles minutes hours mm or inch Page 2of 11 0122-5.doc CANYON CREEK TOWNHOMES 5 YEAR PROPOSED XP-SWMM ANALYSIS Underrelaxation parameter ..... . Time weighting parameter ..... . Courant Time Step Factor. Default Expansion/Contraction K Default Entrance/Exit K. Default surface area of junctions .. NJSW input hydrograph junctions. or user defined hydrographs ... Table El -Conduit Data . 8500 . 8500 l. 0000 . 0000 . 0000 12.57 square feet. 8 * ••:::::::s :cs:::z••• • • • m: • • • • ••"'"':::: :s :sec::==""""•• ••s:a• ••• * Inp Conduit Num Name CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 7 15_Bl-B2 PIPE-OB PIPE-20-19 10 ORIFICE 11 PIPE-21-19 Length Conduit (ft) Class 200. 00 Trapezoid 200.00 Trapezoid 10.00 Trapezoid 1.00 Circular 50. 00 Circular 42.00 Circular 25.00 Circular 50.00 Circular 75.00 Circular 110.00 Circular 75.00 Circular Total length of all conduits Table E2 -Conduit Factor Data Area (ft '2) 1152. 00 1672. 00 1400.00 0.79 0.20 0.09 1.23 1.23 0.79 0.79 Manning Max Width Coef. (ft) 0.07000 0.07000 0.07000 0.01400 0.01400 0.01400 0.01400 0.01400 0.01400 0.01400 10. 00 10. 00 10. 00 1. 00 0.50 .33 1.25 .25 .00 1. 00 0.79 0.01400 1. 00 838.0000 feet Trapezoid Depth Side (ft) Slopes 18. 00 22.00 20. 00 1. 00 0.50 0. 33 1. 25 . 25 .00 1. 00 1. 00 . 00 . 00 . 00 Time Low Flow Depth at Conduit Name Number Entrance Exit Exp/Conte Weighting Roughness Which Flow of Barrels Loss Coef Loss Coef Coef f icnt Parameter Factor n Changes Routing 12PIPE1 PIPE 15_Bl-B2 PIPE-OB ORIFICE 1.0000 l . 0000 l. 0000 l . 0000 1.0000 0.2000 0.5000 0.2000 0. 5000 0. 5000 l. 0000 l. 0000 l . 0000 l. 0000 1.0000 .0000 .0000 .0000 . 0000 . 0000 If there are messages about (sqrt(g*d)*dt/dx), or the sqrt (wave celerity) *time step/conduit length in the output file all it means is that the program will lower the internal time step to satisfy this condition (explicit condition). You control the actual internal time step by using the minimum courant time step factor in the HYDRAULICS job control . The message put in words states that the smallest conduit with the fastest velocity will control the time step selection. You have further control by using the modify conduit option in the HYDRAULICS Job Control. 0 . 8500 0. 8 500 0 . 8500 0. 8500 0. 8500 ••=> Warning ! (sqrt (wave celerity) *time step/conduit length) in conduit 38 is 1 .42 at full depth. *•====•••••&•••••••* Conduit Volume Full pipe or full open conduit volume Input full depth volume.. 5.79118+05 cubic feet Table Ela -Junction Data *••::s•SS:S:=====·········-·z=:::oc:ICCC::::::S:ll••••:caKE•:S* Inp Junction Ground Crown Invert Qinst Num Name Elevation Elevation Elevation cfs l DBA-2 DBA-1 DBB-2,3 4 DBB-1 SECRK,FB-2 FA-1,2 FA-2 .1 FA-2. 2 WCULV,FA3 10 FB-1 11 NE-CREEK 12 2818-ECULV 13 37 317.0000 313.5000 313.0000 0 . 0000 . 0000 . 0000 . 0000 . 0000 317.0000 313.0000 313.0000 310 .6100 313.0000 309.7500 320. 0000 317. 0000 313.9400 311 .0650 313.9400 311 .4400 313.9400 311 .4400 310.0000 308.0000 324.0000 314.0000 320.0000 320.0000 324.0000 313.9900 310. 0000 307. 9000 310. 0000 309.3600 306.0000 295. 0000 309. 9600 310.4400 310.4400 0. 0000 0.0000 .0000 307.0000 .0000 294. 0000 . 0000 298. 0000 290. 0000 293. 9900 0. 0000 306. 9000 . 0000 I Table Elb -Junction Data *••=:s=•••:s•&•••••••==:oc&•••••••••••===:sc••••:s••••••* Initial Depth-ft 0.0000 0.0000 0.0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0.0000 0.0000 0. 0000 1.0000 1. 0000 1. 0000 1.0000 1.0000 0.0000 Standard 0.0000 Standard 0.0000 Standard 0.0000 Standard 0.0000 Standard . 00 . 00 . 00 Dynamic Wave Dynamic Wave Dynamic Wave Dynamic Wave Dynamic Wave Page 3of1 1 0122-5.doc CANYON CREEK TOWNHOMES S YEAR PROPOSED XP-SWMM ANALYSIS Inp Jun ct ion Num Name DBA-2 DBA-1 DBB-2,3 DBB-1 SECRK,FB-2 FA-1, 2 FA-2.l FA-2.2 WCULV, FA3 10 FB-1 11 NE-CREEK 12 2818-ECULV 13 37 x Coard. 99.461 119. 644 99.058 120.185 135.269 90.483 85.336 95. 770 91 .056 132. 616 142 .323 132.962 94 . 966 y Coard. Type of Manhole 473.221 Seal ed Manhole 4 78 . 014 Sealed Manhole 467.778 Sealed Manhole 466 .467 Sealed Manhole 464.853 Sealed Manhole 452.889 Sealed Manhole 453.292 Sealed Manhole 453.058 Sealed Manhole 446.853 Sealed Manhole 450.836 Sealed Manhole 480.638 Sealed Manhole 445. 097 Sealed Manhole 444.735 Sealed Manhole Type of Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Table E4 -Conduit Connectivity Input Conduit Number Name Upstream Downstream Node Node 4 5 10 11 CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB SECRK,FB-2 FB-1 NE-CREEK SECRK,FB-2 FB-1 2818-ECULV WCULV,FA3 37 DBA-2 DBA-1 DBA-1 DBB-2, 3 DBB-1 PIPE-20-19 FA-2.l ORIFICE FA-1, 2 PIPE-21-19 FA-2.2 NE-CREEK DBB-1 SECRK,FB-2 FA-1,2 WCULV,FA3 FA-1, 2 Storage Junction Data Upstream Downstream Elevation Elevation 295.000 298.000 294.000 307. 000 313. 000 310. 000 309.360 306.000 310.440 309.960 310.440 2 94 . 000 No Design 295. 000 No Design 293.990 No Design 306. 900 No Design 312. 500 No Design 298 .000 No Design 308. 500 No Design 295. ooo No Design 310.065 No Design 307. 000 No Design 310.065 No Design CROWN DEPTH STORAGE JUNCTION JUNCTION MAXIMUM OR CONSTANT SURFACE AREA (FT2) PEAK OR CONSTANT VOLUME (CUBIC FEET) ELEVATION STARTS NUMBER OR NAME TYPE (FT) FROM Maximum Capacity DBA-2 DBA-1 DBB-2,3 DBB-1 FA-1, 2 FA-2.l FA-2.2 Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area 2211.9768 1524.6000 7361.6400 2439.3600 9757. 4400 1524 .6000 1524.6000 5207.8244 6963.7006 24092.7453 13099. 6830 3310. 0292 839.7635 839.7635 317.0000 Node Invert 317.0000 Node Invert 313.0000 Node Invert 313.0000 Node Invert 313.9400 Node Invert 313.9400 Node Invert 313.9400 Node Invert Variable storage data for node IDBA-2 Data Point Elevation ft 313. 0000 315.0000 315.2500 315.5000 315.7500 316.0000 316.2500 316.5000 318.0000 Depth ft 0.0000 .0000 2.2500 2.5000 2.7500 3.0000 3.2500 3.5000 5.0000 Area ft'2 .9204 . 9204 245.2428 744. 8760 1378 . 2384 1918 . 8180 2211. 9768 2211. 9768 2211. 9768 Variable storage data for node IDBA-1 Data Point Elevation ft 310.0000 310.2500 310.5000 310.7500 315. 0000 Depth ft 0.0000 0. 2500 0.5000 0.7500 5.0000 Area ft'2 0.4356 261. 3600 1001.8800 1524.6000 1524.6000 Variable storage data for node IDBB-2,3 Data Point Elevation ft 309.3600 311.3600 311. 5000 311.7500 312.0000 312.2500 Depth ft 0. 0000 2.0000 2.1400 2 . 3900 2.6400 2.8900 Area ft ·2 4.3560 4.3560 130.6800 1001.8800 2962 .0800 4617.3600 Volume ft •3 0. 0000 7. 8408 31.1883 149.3154 410.6766 820.9496 1336.8650 1889. 8592 5207.8244 Volume ft'3 .0000 22.7055 170.6183 484.1506 6963.7006 Volume ft •3 0.0000 8. 7120 16 .1271 140.6601 614.5473 1554. 3541 Page 4of 11 0122-5.doc CANYON CREEK TOWNHOMES 5 YEAR PROPOSED XP-SWMM ANALYSIS 312.5000 315.3600 3. 1400 6.0000 7361.6400 7361.6400 Variable storage data for node IDBB-1 Data Point Elevation ft 306.0000 306. 2500 306.5000 306.7500 307. 0000 307. 2500 312.0000 Depth ft 0.0000 0. 2500 0.5000 0. 7500 l. 0000 1. 2500 6.0000 Area f t'2 4.3560 174.2400 784.0800 1655.2800 2308.6800 2439.3600 2439.3600 Variable storage data for node IFA-1,2 Data Point 10 Elevation ft 309.9600 311. 9600 312.0200 312.1200 312.2200 312.3200 312.4200 312.5200 312.6200 312.6700 Depth ft .0000 . 0000 . 0600 .1600 .2600 .3600 .4600 . 5600 . 6600 . 7100 Area ft'2 4.3560 4.3560 87.1200 740.5200 2003. 7600 5314.3200 7666. 5600 8363.5200 8929. 8000 9757.4400 Variable storage data for node IFA-2. Data Point 10 Elevation ft 310.4400 312.4400 312.5000 312.6000 312. 7000 312.8000 312. 9000 313.0000 313.1000 313.1500 Depth ft 0. 0000 2. 0000 2.0600 2.1600 2.2600 2.3600 2.4600 2.5600 2. 6600 2. 7100 Area ft'2 4 .3560 4.3560 87.1200 696.9600 1524.6000 1524.6000 1524.6000 1524.6000 1524.6000 1524.6000 Variable storage data for node IFA-2 .2 Data Point 10 Elevation ft 310.4400 312.4400 312.5000 312.6000 312.7000 312.8000 312.9000 313.0000 313.1000 313.1500 Weir Data Depth ft 0. 0000 2. 0000 . 0600 .1600 .2600 2.3600 2.4600 2.5600 .6600 2. 7100 From To Junction Junction Link Number DBA-2 DBA-1 DBB-2,3 DBB-1 FA-2.l FA-2.2 FA-2.2 DBA-2 DBA-1 WEIR NE-CREEK WEIR 088-1 WEIR SECRK,FB-2WEIR FA-1,2 WEIR FA-1,2 WEIR DBB-2,3 WEIR DBB-2,3 WEIR tt tt tt 3 tt tt tt tt tt Area ft'2 4 .3560 4.3560 87.1200 696 .9600 1524.6000 1524 .6000 1524.6000 1524. 6000 1524.6000 1524.6000 Crest Type Height (ft) .23 4. 00 2.80 4 . 00 2.35 . 35 2.56 2.38 FREE OUTFALL DATA I DATA GROUP Il) BOUNDARY CONDITION ON DATA GROUP Jl 3038.4549 24092. 7453 Volume ft'3 0.0000 17.1788 127.8404 426.0572 919.2929 1512. 7230 13099. 6830 Volume ft'3 0. 0000 8. 7120 10.9311 46.9857 179.0658 531 .7759 1177. 2382 1978. 4895 2843.0010 3310.0292 Volume ft'3 . 0000 8. 7120 10. 9311 45.2809 153.6935 306.1535 458.6135 611. 0735 763.5335 839.7635 Volume ft '3 0. 0000 8 . 7120 10 .9311 45.2809 153.6935 306.1535 458.6135 611. 0735 763.5335 839.7635 Weir Top (ft) Weir Length I ft) 4. 00 10. 00 3.80 7 .00 3.50 3.50 3.50 4.00 5. 00 60. 00 5. 00 20. 00 23.00 23.00 23.00 10. 00 Outfall at Junction .... 2818-ECULV has boundary condition number . Outfall at Junction .... 37 has boundary condition number. Discharge Coefficient 3. 0000 3. 0000 .0000 3. 0000 . 0000 . 0000 . 0000 . 0000 Weir Power 1.5000 1.5000 1.5000 1.5000 1.5000 .5000 l. 5000 l. 5000 Page 5 of 11 0122-5.doc CANYON CREEK TOWNHOMES 5 YEAR PROPOSED XP-SWMM ANALYSIS INTERNAL CONNECTIVITY INFORMATION CONDUIT JUNCTION JUNCTION WEIR DBA-2 DBA-1 WEIR DBA-1 NE -CREEK WEIR DBB-2,3 DBB-1 WEIR DBB-1 SECRK, FB -2 WEIR FA-2 .1 FA-1,2 WEIR FA-2. 2 FA-1,2 WEIR FA-2.2 DBB-2,3 WEIR DBA-2 DBB-2,3 PREE 2818-ECULV BOUNDARY FREE 37 BOUNDARY Table EB -Junction Time Step Limitation Summary Not Convr Avg Convr Conv err Omega Cng Max Itern • Number of times this junction did converge during the simulation. -Average junction iterations. ~ Mean convergence error. • Change of omega during iterations • Maximum number of iterations not Junction Not Convr Avg Convr Total Itt Omega Cng Max Itern Ittrn >10 Ittrn >25 Ittrn >40 DBA-2 1. 08 54442 DBA-1 1. 07 53758 DBB-2, 3 1. 39 70191 DBB-1 1.34 67567 SECRK, FB-2 1.17 59114 FA-1, 2 1. 24 62291 FA-2 .1 1. 24 62364 FA-2.2 1. 24 62364 WCULV, FA3 1. 08 54517 FB-1 1. 00 50348 NE-CREEK 1. 00 50370 2818-ECULV 1. 92 96457 37 1.61 81000 Total number of iterations for all junctions. Minimum number of possible iterations. Efficiency of the simulation .. 824783 654524 1.26 Good Efficiency Extran Efficiency is an indicator of the efficiency of the simulation. Ideal efficiency is one iterat ion per time step. Altering the underrelaxation parameter, lowering the time step, increasing the flow and head tolerance are good ways of improving the efficiency, another is lowering the internal time step. The lower efficiency generally the faster your model wil l run. I I I I I the I I If your efficiency is less than 1.5 then you may try I increasing your time step so that your overall simulation! is faster. Ideal efficiency would be around 2.0 I Good Efficiency < l. 5 mean iterations Excellent Efficiency< 2.5 and > 1.5 mean iterations Good Efficiency< 4.0 and> 2 .5 mean iterations Fair Efficiency< 7.5 and> 4.0 mean iterations Poor Efficiency > 7.5 mean iterations *•======c:a::::::a1:::::::::sssa••z:z:ms•••:sc:o::o:•••••::a11:••••==* Table E9 -JUNCTION SUMMARY STATISTICS I I The Maximum area is only the area of the node, it I I does not include the area of the surrounding conduits! * ••"' • •• •• ••sss•s •••="'"'===•a======•••••"'"'•••• a:m::1::a••s••:: * Uppermost Maximum Time I I I I I I Feet o f Ground PipeCrown Junction of Surcharge Junction Elevation Elevation Elevation Occurence at Max Name feet feet feet Hr. Min. Elevation --------------------------- DBA-2 317.0000 317.0000 315.5190 13 . 0000 DBA-1 317.0000 317.0000 312.3452 29 0. 0000 DBB-2,3 313.0000 313. 0000 311.4018 16 . 0000 DBB-1 313.0000 313. 0000 307 .7665 24 . 0000 SECRK,FB-2 320.0000 317.0000 306 . 4009 10 0. 0000 FA-1,2 313.9400 313.9400 312 . 7774 22 0. 0000 FA-2.l 313.9400 313 . 9400 312 . 7830 22 0.0000 PA-2.2 313 .9400 313.9400 312 .7830 22 0.0000 WCULV,FA3 310.0000 308. 0000 307. 5878 10 0 . 0000 FB-1 324.0000 314.0000 306. 3905 10 0 . 0000 NE-CREEK 320. 0000 320.0000 306.4190 . 0000 2818-ECULV 324 . 0000 313. 9900 306.3900 . 0000 37 310. 0000 307. 9000 307.4877 10 .0000 0 Maximum Freeboard Junction of node Area feet ft'2 . 4810 792.9837 .6548 1524.6000 . 5982 42.0519 . 2335 2439.3600 13 .5991 12.5660 1 .1626 9757.4400 .1570 1524 . 6000 .1570 1524 .6000 . 4122 12 .5660 17 .6095 12 .5660 13. 5810 12.5660 17.6100 12 . 5660 2.5123 12.5660 Page 6 of 11 0122-5.doc CANYON CREEK TOWNHOMES 5 YEAR PROPOSED XP-SWMM ANALYSIS Table ElO -CONDUIT SUMMARY STATISTICS I Note: The peak flow may be l ess than the design flow I and the conduit may s till surcharge because of the I downstream boundary conditions. I Time Time Name Conduit Name Design Flow (cfs) Conduit Design Vertical Velocity Depth (ft/a) (in) Maximum Computed Flow (cfsl of Occurence Hr. Min. Maximum Computed Velocity ( ft/s) of Occurence Hr. Min . Ratio of Maximum Depth > Max. to at Pipe Ends Design Upstream Dwnstrm Flow (ft) (ft) CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 WEIR ij l 7648.6 21 775. 4436.7 10. 462 0. 5210 0. 9196 11.125 28.135 .339 5.427 .339 6.6394 216.0000 299.7404 13.0235 264 .0000 290.8377 3.1691 240.0000 299.9397 13.3204 2 .6536 10.7521 9.0657 22. 9264 .9785 6.9098 2.9785 12. 0000 6. 0000 3. 9600 15.0000 15.0000 12.0000 12.0000 12.0000 6. 804 2 l. 0841 0.6426 Undefnd Undefnd Undefnd 8. 6238 .0676 .3481 . 9134 .3481 .0000 WEIR Undefnd Undefnd Undefnd .0000 WEIR Undefnd Undefnd Undefnd .0000 WEIR Undefnd Undefnd Undefnd 0 .0000 WEIR Undefnd Undefnd Undefnd 0.0000 WEIR Undefnd Undefnd Undefnd 0.0000 WEIR Undefnd Undefnd Undefnd 0 .0000 WEIR FREE FREE Undefnd Undefnd Undefnd l. 5545 Undefnd Undefnd Undefnd299 . 9397 Undefnd Undefnd Undefnd 6.8042 Table Ell. Area assumptions used in the anal ysis! Subcritical and Critical flow assumptions from I Subroutine Head. See Figure 17-1 in the I manual for further information. I 10 41 10 10 13 29 16 24 49 10 49 0 13 10 10 Length of 0 . 554 9 0.7458 0 . 5129 14 .1791 5.4793 .8832 . 0955 .6203 l. 9927 7.5734 l. 9927 10 41 10 10 13 29 16 24 49 14 49 .0392 306.4009 306.3905 .0134 306.4190 306.4009 0.0676 306.3905 306.3900 .6504 307.5878 307.4877 2 .0806 315.5190 312.9791 0.6988 312.3452 306.4190 0.7751 311.4018 309.3270 .2512 307.7665 306.4009 .5763 312.7830 312.7774 .9054 312.7774 307.5878 .5763 312.7830 312.7774 Length of Dry Flow (min) Length of Sub- Critical Flow (min) Length of Upstream Critical Flow(min) Downstream Maximum Maximum Maximum Vel•O (ft.2/s) Conduit Name CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 0.0000 0.0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0.0000 0.0000 60.0000 60.0000 60.0000 60.0000 0 . 0000 60.0000 0. 0000 60.0000 51.2958 60.0000 51. 2958 0. 0000 0 . 0000 0 . 0000 0 . 0000 0 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 Critical Hydraulic X-Sect Flow(min) Radius-m Area(ftA2) 0. 0000 0. 0000 0. 0000 0. 0000 60. 0000 . 0000 60. 0000 0. 0000 8. 704 2 0. 0000 8. 7042 6.3523 5.3433 6.6165 0. 2744 0 .1507 .0825 . 3484 0.3498 0. 2921 0.2610 0. 2921 540.1866 6.6008 390.0311 7.3902 584.8376 6.3570 0.4799 8.3330 0.1978 .2137 .0934 37 .0440 .0653 11.6119 .2883 37.0016 . 8180 l. 6928 . 6524 12 . 5983 . 8180 l. 6928 I Table El2. Mean Conduit Flow Information Conduit Name Mean Flow (cfs) CREEK-S 294.8403 CREEK-N 290.6179 2818-HW 294.8903 38 .1649 12PIPE1 .4974 PIPE . 6179 15_Bl-B2 3.0641 PIPE-OB .2722 PIPE-20-19 0 .0124 ORIFICE 3.6832 PIPE-21-19 0.0124 WEIR ij 0. 0000 WEIR ij . 0000 WEIR ij .0000 WEIR ij 4 . 0000 WEIR ij 5 0. 0000 WEIR ij 0 . 0000 WEIR ij 0 .0000 WEIR ij 0 .3025 FREE# 294 .8903 FREE ij 4.1650 Total Flow (ft •3) 1061425. 1046225. 1061605. 14993.74 1790.569 2224 .424 11030. 74 11779 .81 44.6902 13259. 52 44.6902 0.0000 0.0000 0.0000 0.0000 0.0000 0. 0000 0. 0000 1088.954 1061605. 14994.08 Mean Percent Change 0.0643 0 . 0171 0 . 0650 0. 0280 0 . 0042 0. 0003 0 .0339 0.0341 0 . 0227 0 . 0161 0 . 0227 Low Flow Weightng .0000 l. 0000 l. 0000 1.0000 . 0000 . 0000 . 9589 . 0000 . 0000 . 0000 . 0000 Mean Mean Froude Hydraulic Number Radius 0.0285 0.0453 0.0253 3.3155 1.2144 0.8428 .3234 . 5171 . 0626 1 .8263 0. 0626 .3521 .3430 . 6165 .2331 .0795 0 . 0825 0 . 1752 0. 3027 0 .2378 0 . 2366 .2378 Mean Cross Area 540.1641 389. 9956 584.8366 0. 3600 .1103 . 0930 0. 4 950 1.0430 0.7460 0. 5754 0.7460 Mean Conduit Roughness 0. 0700 0. 0700 . 0700 . 0140 . 0140 .0140 0.0140 0.0140 0.0140 .0140 0.0140 Page 7of 11 0122-5 .doc CANYON CREEK TOWNHOMES 5 YEAR PROPOSED XP-SWMM ANALYSIS I Table El3. Channel losses(H), headwater depth (HW), tailwater I depth (TW) , critical and normal depth (Ye and Yn) . I Use this section for culvert comparisons Conduit Name CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 Maximum Flow 299.740 290 .838 299.940 6.804 1.084 0 . 643 8.624 7.068 l. 348 4. 913 1.348 Head Friction Critical Loss Loss Depth 0.000 0.000 .000 0.000 0. 572 1.079 1.495 0. 728 0.000 1.544 0.000 . 012 .026 .000 0.100 1. 972 4.918 0.625 0.661 0.122 3.325 0.122 . 358 . 302 2.376 . 000 .479 . 345 1.140 l. 063 0 .491 0 . 911 0 . 491 Normal Depth 4 .411 3.325 . 397 .588 . 500 . 203 .827 0 .427 0. 545 . 746 0. 545 CULVERT ANALYSIS CLASSIFICATION, and the time the I culvert was in a particular classification I during the simulation. The time is in minutes. I The Dynamic Wave Equation is used for all conduit! analysis but the culvert flow classification I condition is based on the HW and TW depths. I HW Elevat 306.401 306.418 306.390 307.588 315.519 312.345 311.402 307.766 311.240 312.586 311.240 TW Elev at 306.390 Max Flow 306.400 Max Flow 306. 390 Max Flow 307.488 Max Flow 312.979 Max Flow 306.418 Max Flow 309.327 Max Flow 306.401 Max Flow 311.043 Max Flow 307.587 Max Flow 311. 043 Max Flow Inlet Inlet Mild Slope Critical D Conduit Outlet Name Control Mild Slope TW Control Outlet Control Steep Slope TW Insignf Entrance Control Slug Flow Outlet/ Entrance Control Mild Slope TW > D Outlet Control Mild Slope TW <= 0 Outlet Control Outlet Control Control Configuration CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 . 000 . 000 . 000 . 000 .113 . 000 0. 000 0. 000 0.700 0. 000 0. 700 60. 000 60. 000 60.000 0.000 28.225 0.000 0.000 0.000 10.225 0.000 10.225 . 000 . 000 . 000 . 000 . 050 60. 000 60. 000 0. 000 . 000 60. 000 . 000 0. 000 0 .000 0.000 .000 .000 .000 .000 22.738 0 .000 .000 .000 0 .000 . 000 . 000 . 000 . 000 . 000 . 000 . 000 4 9. 075 0 . 000 49.075 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 .000 0.000 51.000 27. 613 0.000 0.000 37.263 0.000 0.000 0.000 Kinematic Wave Approximations I Time in Minutes for Each Condition I Conduit Length of Slope Super- Name Normal Flow Criteria Critical Roll Waves CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 0. 00 . 00 . 00 . 83 .05 . 00 . 00 . 00 .33 0. 00 1. 33 60. 00 60. 00 60. 00 . 83 0.06 0. 00 0. 00 0.00 1. 64 0.00 1. 64 0. 00 0 . 00 . 00 60. 00 11. 43 0.00 4 9. 09 0 . 00 0.19 11. 06 0.19 Table El5 -SPREADSHEET INFO LIST 0 .00 0.00 0. 00 . 00 . 00 . 00 .00 . 00 . 00 . 00 . 00 Conduit Flow and Junction Depth Information for use in spreadsheets. The maximum values in this table are the true maximum values because they sample every time step. The values in the review results may only be the maximum of a subset of all the time steps in the run. Note: These flows are only the flows in a single barrel. Conduit Name CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl -B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 WEIR # l WEIR # WEIR # Maximum Flow 299.7404 290.8377 299. 9397 . 8042 . 0841 .6426 .6238 7.0676 1.3481 4. 9134 1.3481 0. 0000 . 0000 .0000 Total Fl ow 1061424. 93 1046224.62 1061604. 91 14993.7373 1790.5689 2224.4242 11030. 7383 11779. 8069 44.6902 13259. 5201 44 .6902 0.0000 0.0000 0.0000 Maximum Velocity 0.5549 0.7458 0.5129 14.1791 5. 4 793 6.8832 8. 0955 5. 6203 1. 9927 7.5734 1. 9927 0.0000 0. 0000 0. 0000 ## Junction Invert ## Name Elevation ## --- - -- - - - --- - --- - - - ## DBA-2 313.0000 ## DBA-1 310.0000 ## DBB-2,3 309.3600 ## DBB-1 306.0000 ## SECRK,FB-2 295.0000 ## FA-1,2 309.9600 ## FA-2.l 310.4400 ## FA-2.2 310.4400 ## WCULV, FA3 307 . 0000 ## FB-1 294. 0000 ## NE-CREEK 298.0000 ## 2818-ECULV 293.9900 ## 37 306.9000 ## .000 None .000 None .000 None .000 None .ooo None .000 None .000 None .000 None O. 000 None 0.000 None o.ooo None Maximum Elevation 315 .5190 312.3452 311.4018 307.7665 306.4009 312.7774 312. 7830 312.7830 307. 5878 306.3905 306 .4190 306.3900 307.4877 Page 8of11 0122-5.doc CANYON CREEK TOWNHOMES 5 YEAR PROPOSED XP-SWMM ANALYSIS WEIR WEIR WEIR WEIR WEIR FREE FREE 0.0000 .0000 0.0000 .0000 0.0000 0.0000 0.0000 .0000 1.5545 1088.9539 299 .9397 1061604.95 6 .8042 14994.0819 0.0000 0.0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000 Table El5a -SPREADSHEET REACH LIST Peak flow and Total Flow listed by Reach or those conduits or diversions having the same upstream and downstream nodes. Upstream Node SECRK, FB-2 NE-CREEK FB-1 WCULV, FA) DBA-2 DBA-1 DBB-2,3 DBB-1 FA-2 .1 FA-1, 2 FA-2. 2 DBA-2 Downstream Node FB-1 SECRK,FB-2 2818-ECULV 37 DBA-1 NE-CREEK DBB-1 SECRK, FB-2 FA-1, 2 WCULV, FA3 FA-1, 2 DBB-2, 3 Maximum Flow 299.7404 290. 8377 299 .9397 6.8042 1 .0841 0. 6426 8.6238 7 . 0676 1.3481 4. 9134 1.3481 1.5545 Total Flow l.0614E+06 1. 0462E+06 l. 0616E+06 14993.7373 1790.5689 2224.4242 11030. 7383 11779. 8069 44.6902 13259. 5201 44.6902 1088.9539 ## ## ## ## ## ## ## ######################################################### # Table El6. New Conduit Information Section # # Conduit Invert (IE) Elevation and Conduit # # Maximum Water Surface (WS) Elevati ons # ######################################################### Conduit Name Upstream Node Downstream Node IE Up IE On WS Up WS On Conduit Type CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_81-82 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 SECRK,FB-2 NE-CREEK FB-1 WCULV,FA3 DBA-2 DBA-1 DBB-2,3 DBB-1 FA-2.1 FA-1,2 FA-2.2 FB-1 SECRK, FB-2 2818-ECULV 37 DBA-1 NE-CREEK DBB-1 SECRK, FB-2 FA-1,2 WCULV,FA3 FA-1,2 295.0000 294.0000 306.4009 306.3905 298.0000 295.0000 306.4190 306.4009 294.0000 293.9900 306.3905 306.3900 307.0000 306.9000 307.5878 307.4877 313.0000 312.5000 315.5190 312.9791 310.0000 298.0000 312.3452 306.4190 309.3600 308.5000 311.4018 309.3270 306.0000 295.0000 307.7665 306.4009 310.4400 310.0650 312.7830 312.7774 309.9600 307.0000 312.7774 307.5878 310.4400 310.0650 312.7830 312.7774 Trapezoid Trapezoid Trapezoid Circular Circular Circular Circular Circular Circular Circular Circular Table El8 -Junction Continuity Error. Division by Volume added 11/96 Continuity Error "" Net Flow + Beginning Volume -Ending Volume Total Flow + (Beginning Volume + Ending Vol ume) /2 Net Flow .. Node Inflow -Node Outflow Total Flow =-absolute (Inflow + Outflow Intermediate column is a judgement on the node continuity error. Excellent < 1 percent Fair 5 to 10 percent Terrible > 50 percent Great Poor to 2 percent 10 to 25 percent Good Bad 2 to percent 25 to 50 percent Junction Name <------Continuity Error -------> Remaining Beginning Net Flow Total Flow Failed to Volume \ of Node \ of Inflow Volume Volume Thru Node Thru Node Converge DBA-2 DBA-1 DBB-2, 3 DBB-1 0. 4 905 75.3427 -583.4518 126.6401 SECRK,FB-2 100507.2762 FA-1,2 -258.9186 FA-2.1 -6.4524 FA-2.2 WCULV, FA3 FB-1 -6.4524 -6.0069 61210.1127 NE-CREEK 29403. 5751 2818-ECULV 2770.5389 37 0.2917 . 00852 1.108 -2. 717 0 . 5336 4.420 -1.018 -10. 02 -10. 02 -.0200 2.763 1.376 0 .1302 . 00097 . 00005 . 00701 0. 0543 0. 0501 1992.9264 0. 0008 0.0174 1422.1203 0. 0004 0.0118 80.6520 146.4692 9.352 100952.0637 201460.4864 0.0241 0 .3605 1661.4904 .00060 0.6049 38.8315 . 00060 . 00056 5. 696 0 . 604 9 38.8315 0.3545 18.3572 61525.3177 122735.4351 2.736 29784.9130 59188.6808 0.2578 3082.2184 5852.8000 .00003 0.0542 0.3588 The total continuity error was l.93233E+OS cubic feet The remaining total volume was 1. 97420E+05 cubic feet Your mean node continuity error was Excellent Your worst node continuity error was Fair 0.5231 5759.5233 646 .1488 5094 . 9967 -583.4514 21477.9893 60.8229 23620 .3994 -1.1465 2122848.742 -1920.0485 24598.8849 -44.6790 44 .6902 -44.6790 44.6902 -24.0095 29963.2555 -0.0047 2123209.806 -0.1927 2092449.041 -0.0427 2123209.858 -0.0129 29987.8192 Page 9 of11 0122-5.doc CANYON CREEK TOWNHOMES 5 YEAR PROPOSED XP-SWMM ANALYSIS Table El9 -Junction Inflow Sources Unit s are either ft"') or m"'J depending on t he units in your model. Junction Name Constant Inflow to Node DBA-2 . 0000 DBA-1 . 0000 DBB-2, 3 0. 0000 DBB-1 . 0000 SECRK, FB-2 . 0000 FA-1, 2 . 0000 WCULV,FA3 .0000 FB-1 0.0000 NE-CREEK l.0440E+06 2818-ECULV 0. 0000 37 0.0000 User Infl ow to Node 2880. 0004 1080.0035 9358.2971 809. 8542 3419.3844 11249. 9844 1709.9981 179.9676 0. 0000 0. 0000 0 . 0000 Interface Infl ow to Node 0 . 0000 0. 0000 . 0000 . 0000 . 0000 . 0000 0 . 0000 0. 0000 0 . 0000 0. 0000 0. 0000 DWF Inlow to Node 0. 0000 . 0000 0. 0000 0. 0000 0 . 0000 0. 0000 0. 0000 0 . 0000 0 . 0000 . 0000 0. 0000 Table E20 -Junction Flooding and Volume Listing. I The maximum volume is the total volume I in the node including the volume in the I flooded storage area. This is the max j volume at any time. The volume in the I flooded storage area is the total volumel above the ground elevation, where the I flooded pond storage area starts. I The fourth column is instantaneous, the fifth is thel sum of the flooded volume over the entire simulation! Units are either ft"'3 or m'"'J depending on the units. I Outflow from Node . 0000 . 0000 . 0000 . 0000 0. 0000 0. 0000 0 .0000 0. 0000 .0000 l.0616E+06 14994 .0819 Out of System Flooded Volume Stored in System Junction Surcharged Flooded Name Time (min) Time(min) DBA-2 DBA-1 DBB-2,3 DBB-1 SECRK,FB-2 FA-1,2 FA-2 .1 FA-2 . 2 WCULV, FA3 FB-1 NE-CREEK 2818-ECULV 37 0 . 0000 . 0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0.0000 0.0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 * """""""""' •••z::;;: ,.. .. .,.,. •• """""""'"' s .,,.. •:: ""'"""'"'"' * I Simulation Specific Information 0. 0000 0.0000 0.0000 0.0000 0.0000 .0000 . 0000 0. 0000 0. 0000 . 0000 0. 0000 0. 0000 0. 0000 Maximum Ponding Allowed Volume Flood Pond Volume 163.9142 2916. 2277 9.5467 2772. 5954 143.2636 3310. 0292 280. 2824 280. 2824 7. 3857 155. 6986 105. 7931 155. 8184 .3847 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 0.0000 0.0000 0. 0000 0. 0000 0.0000 0.0000 0. 0000 11 Number of Simulated Conduits. Number of Junctions. Evaporation from Node 0.0000 0. 0000 0 . 0000 0. 0000 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 Number of Input Conduits .... Number of Natural Channels .. Number of Storage Junctions .... Number of Orifices. Number of Weirs. . ........ . Number of Pumps ................ . Number of Free Outfalls .......... . Number of Tide Gate Outfalls. I Average \ Change in Junction or Conduit is defined as: I Conduit \Change••> 100.0 I Q(n+l) -Q(n) ) I Qfull I Junction\ Change••> 100.0 I Y(n+l) -Yin) ) I Yfull The Conduit with the largest average change was .. 2818-HW with The Junction with the largest average change was .FA-2 .2 with The Conduit with the largest sinuosity was ....... PIPE-20-19 with I Table E21. Continuity balance at the end of the simulation I Junction Inflow, Outflow or Street Flooding I Error -Inflow + Initial Volume -Outflow - Final Volume Inf low Inf low Average Junction Volume,ft•3 Inflow, cfs DBA-2 2880. 0005 . 8000 DBA-1 1080. 0035 0. 3000 DBB-2,3 9358.2971 2.5995 DBB-1 809.8542 0 .2250 SECRK,FB-2 3419.3844 0.9498 FA-1,2 11249.9844 3 .1250 WCULV,FA3 1709 .9981 0.4750 FB-1 179.9676 0.0500 NE-CREEK .044000E+06 290.0000 0.065 percent . 012 percent 4.480 21 13 8 Page JO of 11 0122-5.doc r CANYON CREEK TOWNHOMES S YEAR PROPOSED XP-SWMM ANALYSIS Outflow Outflow Average Junction Volume, ft"'3 Outflow, cf a --------------------- -------------- 2818-ECULV l.061605E+06 294 .8903 37 14994 . 0819 4.1650 I Initial system volume 3. 9256E+OS Cu Ft I I Total system inflow volume l .0747E+06 Cu Ft I I Inflow + Initial volume 1. 4673E+06 Cu Ft I l·····················································I I Total system outflow 1. 0766E+06 Cu ft I I Volume left in system 1. 9742E+05 Cu ft I I Evaporation 0. OOOOE+OO Cu ft I [ Outflow + Final Volume 1. 2740E+06 Cu ft [ Total Model Continuity Error Error in Continuity, Percent • Error in Continuity, ft"') + Error means a continuity loss, 13. 16967 193232.213 a gain Page 11 of 11 0122-5.doc CANYON CREEK TOWNHOMES 10 YEAR PPROPOSED XP-SWMM ANALYSIS Input File C•\XPS\0122-lOii.XP Current Directory: C:\XPS\XP-UDD-1 Executable Name: C: \XPS\XP-UDD-1 \swmmengw. exe Read a line{s) and found O items(s) from your cfg file. I XP-SWMM2000 I Storm Water Management Model I I Version 7.51 I l···················=·······===····====·····=···I I Developed by I l···················=·=···=·===····====·····=···I I I I XP Software Inc. and Pty. Ltd. I I I I Based on the U.S. EPA I J Storm Water Management Model Version 4.40 I I I I Originally Developed by I I Metcalf & Eddy, Inc. I l University of Florida J I Camp Dresser & McKee Inc. I I September 1970 I I I I EPA-SWMM is maintained by I I Oregon State University I I Camp Dresser & McKee Inc. I l··==······=·····==··==·························I I XP Software October, 2000 I I Data File Version ---> 9.0 I Input and Output file names by SWMM Layer Input File to Layer Output File to Layer JOT US JOT US Special command line arguments in XP-SWMM2000. This I now includes program defaults . $Keywords are the program! defaults. Other Keywords are from the SWMMCOM.CFG file. I or the command line or any cfg file on the command line. I Examples include these in the file xpswm.bat under the I section :solve or in the windows version XPSWMM32 in thel file solve.bat I Note: the cfg file should be in the subdirectory swmxp I I or defined by the set variable in the xpewm.bat I file. Some examples of the command lines possible! are shown below: I swmmd swmmcom.cfg swmmd my . cfg swmmd nokeys nconvS perv extranwq $powerstation 0. 0000 $perv 0. 0000 Soldegg . 0000 Sas 0. 0000 $nof lat 0. 0000 $oldomega 0. 0000 $oldvol 0. 0000 $implicit .0000 $oldhot .0000 $oldscs 0. 0000 $flood . 0000 $nokeys 0.0000 $pzero 0.0000 $oldvol2 0.0000 Soldhotl 0. 0000 $pumpwt 0.0000 $ecloss 0. 0000 $exout 0.0000 $oldbnd 0. 0000 $nogrelev 0. 0000 $ncmid . 0000 $new nl 97 . 0000 -$best97 . 0000 $newbound . 0000 11 21 24 28 29 31 33 40 42 55 59 63 70 77 97 154 161 164 290 294 295 I I I I I Parameter Values on the Tapes Common Block.These are the I I values read from the data file and dynamically allocated I I by the model for this simulation. I Number of Subcatchments in the Runoff Block (NW) ... Number of Channel/Pipes in the Runoff Block (NG). Runoff Water quality constituents (NRQ) ............ . Runoff Land Uses per Subcatchment (NLU) ......... . Number of Elements in the Transport Block (NET) Number of Storage Junctions in Transport (NTSE) Page 1 of 11 0122-10.doc CANYON CREEK TOWNHOMES 10 YEAR PPROPOSED XP-SWMM ANALYSIS Number of Input Hydrographs in Transport (NTH) Number of Elements in the Extran Block (NEE) . 21 Number of Groundwater Subcatchments in Runoff (NGW) . Number of Interface locations for all Blocks (NIE).. 21 Number of Pumps in Extran (NEP) . . . . O Number of Orifices in Extran (NEO). Number of Tide Gates/Free Outfalls in Extran (NTG) . Number of Extran Weirs (NEW) .. Number of sea hydrograph points .................... . Number of Extran printout locations (NPO) .......... . Number of Tide elements in Extran (NTE) ..... . Number of Natural channels (NNC) Number of Storage junctions in Extran (NVSE) . . . 7 Number of Time history data points in Extran(NTVAL). o Number of Variable storage elements in Extran (NVST) 10 Number of Input Hydrographs in Extran (NEH) . 10 Number of Particle sizes in Transport Block (NPS). Number of User defined conduits (NHW)...... 21 Number of Connecting conduits in Extran (NECC) . 20 Number of Upstream elements in Transport (NTCC) . 10 Number of Storage/treatment plants (NSTU) .. Number of Values for Rl lines in Transport (NRl). Number of Nodes to be allowed for (NNOD).... 21 Number of Plugs in a Storage Treatment Unit .... ####################################################### # Entry made to the HYDRAULIC Layer(Block) of SWMM # # Last Updated October,2000 by XP Software # CANYON CREEK TOWNHOMES HYDRAULICS TABLES IN THE OUTPUT FILE These are the more important tables in the output file. You can use your editor to find the table numbers, for example: search for Table E20 to check continuity. This output file can be imported into a Word Processor and printed on US letter or A4 paper using portrait mode , courier font, a size of 8 pt . and margins of 0.75 Table El Basic Conduit Data Table E2 -Conduit Factor Data Table E3 Junction Data Table E4 Conduit Connectivity Data Table E4a Dry Weather Flow Data Table ES Junction Time Step Limitation Summary Table ESa Conduit Explicit Condition Summary Table E6 Final Model Condition Table E? Iteration Summary Table EB Junction Time Step Limitation Summary Table E9 Junction Summary Statistics Table ElO -Conduit Summary Statistics Table Ell Area assumptions used in the analysis Table El2 Mean conduit information Table El3 Channel losses (H) and culvert info Table El4 Natural Channel Overbank Flow Information Table ElS Spreadsheet Info List Table El6 New Conduit Output Section Table El? Pump Operation Table ElB Junction Continuity Error Table El9 Junction Inflow Sources Table E20 Junction Flooding and Volume List Table E21 Continuity balance at simulation Table E22 Model Judgement Section Time Control from Hydraulics Job Control Year. 95 Month. Day. Hour .. Minute. Second ... Control information for simulation Integration cycles ... Length of integration step is. Simulation length ............ . Do not create equiv. pipes (NEQUAL). Use U.S. customary units for I/O. Printing starts in cycle. Intermediate printout intervals of. Intermediate printout intervals of. Summary printout intervals of. Summary printout time interval of .. Hot start file parameter (REDO) . Initial time. Iteration variables: SURTOL. SURJUN. QREF. Minimum depth (m or ft). 14400 0 . 25 1. 00 500 2.08 500 2.08 l 0.00 0.0001 .0060 .0000 . 0000 end seconds hours cycles minutes cycles minutes hours mm or inch Page 2of11 0122-10.doc CANYON CREEK TOWNHOMES 10 YEAR PPROPOSED XP-SWMM ANALYSIS Underrelaxation parameter. Time weighting parameter .. . Courant Time Step Factor .. . Default Expansion/Contraction K Default Entrance/Exit K. Default surface area of junctions .. NJSW input hydrograph junctions. or user defined hydrographs. Table El -Conduit Data Inp Conduit Num Name l CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 1S_Bl-B2 PIPE-OB PIPE-20-19 10 ORIFICE 11 PIPE-21-19 Length Conduit (ft) Class 200. 00 Trapezoid 200.00 Trapezoid 10.00 Trapezoid 1.00 Circular so. 00 Circular 42 .00 Circular 25. 00 Circular SO. 00 Circular 75. 00 Circular 110. 00 Circular 75 .00 Circular Total length of all conduits Table E2 -Conduit Factor Data 0.8500 0. 8500 1.0000 0. 0000 0. 0000 12.57 square feet. Area (ft ·21 1152. 00 1672. 00 1400. 00 0. 79 0 . 20 0. 09 l. 23 l. 23 0. 79 0. 79 0. 79 Manning Max Width Coef. (ft) 0.07000 0.07000 0. 07000 0.01400 0. 01400 0 . 01400 0 . 01400 0 . 01400 0.01400 0 .01400 0.01400 10. 00 10. 00 10. 00 .00 .so 0.33 l. 25 .25 .00 l. 00 l. 00 83 8. 0000 feet Trapezoid Depth Side (ft) Slopes 18.00 22.00 20. 00 l. 00 0.50 0.33 l. 25 l. 25 l. 00 l. 00 l. 00 3.00 .00 3.00 .00 .00 .00 Time Low Flow Depth at Conduit Name Number Entrance Exit Exp/Conte Weighting Roughness Which Flow of Barrels Loss Coef Loss Coef Coefficnt Parameter Factor n Changes Routing 12PIPE1 PIPE 15_Bl-B2 PIPE-OB ORIFICE .0000 . 0000 . 0000 . 0000 l. 0000 0.2000 0.5000 0. 2000 0.5000 0 . 5000 l. 0000 l. 0000 l. 0000 l. 0000 l. 0000 0. 0000 0 . 0000 . 0000 . 0000 . 0000 If there are messages about (sqrt(g•d)*dt/dx), or the sqrt (wave celerity) •time step/conduit length in the output file all it means is that the program will lower the internal time step to satisfy this condition (explicit condition). You control the actual internal time step by using the minimum courant time step factor in the HYDRAULICS job control. The message put in words states that the smallest conduit with the fastest velocity will control the time step selection. You have further control by using the modify conduit option in the HYDRAULICS Job Control . . 8500 . 8500 .8500 . 8500 .8500 ===> Warning ! (sqrt (wave celerity) •time step/conduit length) in conduit 38 is 1.42 at full depth. Conduit Volume Full pipe or full open conduit volume Input full depth volume. 5. 7911E+OS cubic feet Table E3a -Junction Data Inp Junction Ground Crown Invert Qinst Num Name Elevation Elevation Elevation cfs l DBA-2 2 DBA-1 3 DBB-2,3 DBB-1 SECRK,FB-2 FA-1, 2 FA-2. l FA-2. 2 WCULV, FA3 10 FB-1 11 NE-CREEK 12 2818-ECULV 13 37 317.0000 313.5000 313.0000 317.0000 313.0000 310.0000 313.0000 310.6100 309.3600 313. 0000 309. 7500 306. 0000 320. 0000 317. 0000 295. 0000 313.9400 311.0650 309.9600 313.9400 311.4400 310.4400 313.9400 311.4400 310.4400 310.0000 308.0000 307.0000 .0000 .0000 . 0000 . 0000 0. 0000 0. 0000 0. 0000 0.0000 .0000 324. 0000 314. 0000 294. 0000 . 0000 320. 0000 320. 0000 298. 0000 290. 0000 324. 0000 313. 9900 293. 9900 0. 0000 310.0000 307.9000 306.9000 .0000 I Table E3b -Junction Data ·=~---=···====··==···=··====·====·······=======···=·· Initial Depth-ft 0. 0000 0 . 0000 0. 0000 0. 0000 0. 0000 0.0000 0.0000 0. 0000 0. 0000 0 . 0000 .0000 .0000 0. 0000 1.0000 l. 0000 1.0000 . 0000 1.0000 .0000 Standard Dynamic Wave .0000 Standard Dynamic Wave .0000 Standard Dynamic Wave .0000 Standard Dynamic Wave 0.0000 Standard Dynamic Wave Page 3 of 11 01 22-10.doc CANYON CREEK TOWNHOMES 10 YEAR PPROPOSED XP-SWMM ANALYSIS Inp Junction Num Name l DBA-2 DBA-1 DBB-2, 3 DBB-1 SECRK,FB-2 FA-1, 2 FA-2. l FA-2.2 9 WCULV,FA3 10 FB-1 11 NE-CREEK 12 2818-ECULV 13 37 x Coard. 99 . 350 119. 754 99. 058 120.185 135.269 90.483 85. 336 95. 770 91.056 132. 616 142.323 132.962 94.966 y Coard. Type of Manhole 473.331 Sealed Manhole 478.014 Sealed Manhole 467.667 Sealed Manhole 466.356 Sealed Manhole 464.853 Sealed Manhole 452.889 Sealed Manhole 453.292 Sealed Manhole 452.615 Sealed Manhole 446.853 Sealed Manhole 450.836 Sealed Manhole 480. 638 Sealed Manhole 445.097 Sealed Manhole 444.735 Sealed Manhole Type of Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Table E4 -Conduit Connectivity Input Conduit Number Name Upstream Downstream Node Node 10 11 CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB SECRK, FB-2 FB-1 NE-CREEK SECRK,FB-2 FB-1 WCULV,FA3 DBA-2 DBA-1 DBB-2, 3 DBB-1 PIPE-20-19 FA-2.l ORIFICE FA-1, 2 PIPE-21-19 FA-2.2 2818-ECULV 37 DBA-1 NE-CREEK DBB-1 SECRK,FB-2 FA-1, 2 WCULV,FA3 FA-1,2 Upstream Downstream Elevation Elevation 295.000 298.000 294.000 307.000 313.000 310.000 309.360 306.000 310.440 309.960 310.440 294.000 No Design 295 .000 No Design 293 . 990 No Design 306.900 No Design 312 .500 No Design 298. 000 No Design 308.500 No Design 295. ooo No Design 310.065 No Design 307 . 000 No Design 310 .065 No Design * =z=====z=== = = = = = = = = = •=== .. • z:::s • =::: ••"' :: • * Storage Junction Data MAXIMUM OR PEAK OR CROWN DEPTH STORAGE JUNCTION JUNCTION CONSTANT SURFACE CONSTANT VOLUME ELEVATION STARTS NUMBER OR NAME TYPE AREA (FT2) (CUBIC FEET) (FT) FROM Maximum Capacity DBA-2 DBA-1 DBB-2, 3 DBB-1 FA-1,2 FA-2 .1 FA-2. 2 Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area 2211. 9768 1524.6000 7361.6400 2439.3600 9757.4400 1524.6000 1524 .6000 5207. 8244 6963.7006 24092. 7453 13099. 6830 3310. 0292 839.7635 839.7635 317.0000 Node Invert 317.0000 Node Invert 313.0000 Node Invert 313.0000 Node Invert 313. 9400 Node Invert 313. 94 00 Node Invert 313. 94 00 Node Invert Variable storage data for node IDBA-2 Data Point Elevation ft 313.0000 315.0000 315. 2500 315.5000 315.7500 316.0000 316.2500 316.5000 318. 0000 Depth ft 0.0000 2. 0000 2.2500 . 5000 . 7500 . 0000 .2500 .5000 .0000 Area ft'2 3. 9204 3. 9204 245.2428 744. 8760 1378. 2384 1918.8180 2211.9768 2211. 9768 2211. 9768 Variable storage data for node IDBA-1 Data Point 4 5 Elevation ft 310. 0000 310. 2500 310. 5000 310. 7500 315. 0000 Depth ft 0. 0000 0. 2500 0 . 5000 0 . 7500 5. 0000 Area ft ·2 .4356 261. 3600 1001.8800 1524.6000 1524.6000 Variable storage data for node IDBB-2,3 Data Point Elevation ft 309. 3600 311.3600 311.5000 311.7500 312.0000 312.2500 Depth ft 0.0000 2.0000 2 .1400 2. 3900 2.6400 2.8900 Area ft'2 4.3560 4.3560 130.6800 1001. 8800 2962. 0800 4617. 3600 Volume ft •3 0. 0000 7.8408 31.1883 149.3154 410.6766 820.9496 1336. 8650 1889. 8592 5207.8244 Volume ft'3 0. 0000 22.7055 170.6183 484. 1506 6963. 7006 Volume ft'3 .0000 8. 1120 16 .1271 140.6601 614.5473 1554.3541 Page 4 of11 01 22-10.doc CANYON CREEK TOWNHOMES 10 YEAR PPROPOSED XP-SWMM ANALYSIS 312.5000 315.3600 .1400 6.0000 7361.6400 7361.6400 Variable storage data for node IDBB-1 *=s••=••=====••=====•===••••=======* Data Point 4 5 Elevation ft 306.0000 306.2500 306.5000 306. 7500 307. 0000 307. 2500 312.0000 Depth ft 0.0000 0 . 2500 0.5000 0.7500 1.0000 l . 2500 6. 0000 Area ft'2 4.3560 174.2400 784. 0800 1655. 2800 2308. 6800 2439.3600 2439.3600 Variable storage data for node IFA-1,2 Data Point 10 Elevation ft 309.9600 311.9600 312.0200 312.1200 312. 2200 312.3200 312.4200 312.5200 312.6200 312.6700 Depth ft . 0000 2 . 0000 2.0600 2.1600 2. 2600 .3600 .4600 .5600 .6600 2. 7100 Area ft'2 4.3560 4.3560 87.1200 740.5200 2003.7600 5314.3200 7666. 5600 8363.5200 8929.8000 9757. 4400 Variable storage data for node IFA-2.l Data Point 10 Elevation ft 310.4400 312.4400 312.5000 312.6000 312.7000 312.8000 312.9000 313.0000 313.1000 313.1500 Depth ft . 0000 . 0000 . 0600 .1600 2.2600 .3600 . 4600 .5600 .6600 . 7100 Area ft'2 4 .3560 4.3560 87.1200 696.9600 1524.6000 1524.6000 1524.6000 1524.6000 1524.6000 1524.6000 Variable storage data for node IFA-2 .2 Data Point 10 Elevation ft 310.4400 312.4400 312.5000 312.6000 312.7000 312. 8000 312.9000 313.0000 313.1000 313.1500 Weir Data Depth ft 0. 0000 2 . 0000 2 . 0600 2.1600 2.2600 2.3600 2.4600 2.5600 2.6600 2. 7100 From To Junction Junction Link Number DBA-2 DBA-1 DBB-2,3 DBB-1 FA-2 . l FA-2.2 FA-2. 2 DBA-2 DBA-1 WEIR NE-CREEK WEIR DBB-1 WEIR SECRK, FB-2WEIR 4 FA-1,2 WEIR 5 FA-1,2 WEIR DBB-2,3 WEIR DBB-2, 3 WEIR Area ft'2 4.3560 4 .3560 87.1200 696. 9600 1524.6000 1524 . 6000 1524 . 6000 1524. 6000 1524. 6000 1524.6000 Crest Type Height {ft! 3.23 4 . 00 2.80 4. 00 2.35 2.35 .56 . 38 FREE OUTFALL DATA {DATA GROUP Il) BOUNDARY CONDITION ON DATA GROUP Jl 3038 .4549 24092. 7453 Volume ft '3 0. 0000 17.1788 127.8404 426.0572 919.2929 1512. 7230 13099. 6830 Volume ft '3 . 0000 8. 7120 10 .9311 46.9857 179.0658 531 .7759 1177. 2382 1978.4895 2843.0010 3310.0292 Volume ft '3 . 0000 .7120 10.9311 45.2809 153.6935 306.1535 458.6135 611. 0735 763.5335 839.7635 Volume ft '3 0. 0000 8. 7120 10. 9311 45.2809 153.6935 306.1535 458.6135 611.0735 763.5335 839.7635 Weir Top {ft) Weir Length {ft) 4 .00 10.00 3.80 .00 .50 .50 .50 4 .00 5. 00 60. 00 5. 00 20.00 23.00 23.00 23.00 10.00 Outfall at Junction .... 2818-ECULV has boundary condition number. Outfall at Junction .... 37 has boundary condition number. Discharge Coefficient 3. 0000 . 0000 3. 0000 3. 0000 3. 0000 3.0000 . 0000 . 0000 Weir Power 1.5000 1.5000 l . 5000 l. 5000 . 5000 . 5000 1.5000 1.5000 Page 5 of 11 0122-10.doc CANYON CREEK TOWNHOMES 10 YEAR PPROPOSED XP-SWMM ANALYSIS INTERNAL CONNECTIVITY INFORMATION I ····=·····===····===·--···==··=·--····===·-·-===•* CONDUIT JUNCTION JUNCTION WEIR DBA-2 DBA-1 WEIR DBA-1 NE -CREEK WEIR DBB-2, 3 DBB-1 WEIR DBB-1 SECRK,FB-2 WEIR FA-2 .1 FA-1,2 WEIR FA-2.2 FA -1, 2 WEIR FA-2. 2 DBB-2, 3 WEIR DBA-2 DBB-2, 3 FREE 2818-ECULV BOUNDARY FREE 37 BOUNDARY Table EB -Junction Time Step Limitation Summary I *za::sz••••===••••zz:::z:::zzs•E:::azz::•a•aaa::za:::sE•••* Not Convr = Number of times this junction did converge during the simulation . Avg Convr • Average junction iterations. Conv err • Mean convergence error. Omega Cng • Change of omega during iterations Max Itern • Maximum number of iterations not Junction Not Convr Avg Convr Total Itt Omega Cng Max Itern Ittrn >10 Ittrn >25 Ittrn >40 --------------------------- DBA-2 1.07 52673 DBA-1 l. 07 52245 DBB-2,3 l. 40 68876 DBB-1 l. 31 63992 SECRK, FB-2 1.17 57296 FA-1,2 l. 36 66854 FA-2 .1 l. 34 65774 FA-2 .2 1.34 65774 WCULV, FA3 1.19 58153 FB-1 l. 00 49032 NE-CREEK l. 00 49052 2818-ECULV l. 91 93689 37 1.87 91466 Total number of iterations for all junctions. Minimum number of possible iterations ... Efficiency of the simulation ..... 834876 637416 l. 31 7 10 10 10 Good Efficiency ·==============-·====····===···==================·====······ Extran Efficiency is an indicator of the efficiency of the simulation. Ideal efficiency is one iter ation per time step. Altering the underrelaxation parameter, lowering the time step, increasing the flow and head tolerance are good ways of improving the efficiency, another is lowering the internal time step. The lower efficiency generally the faster your model wil l run. I I I I I the I I If your efficiency is less than 1. 5 then you may try I increasing your time step so t hat your overall simulation! is faster. Ideal efficiency would be around 2. o I Good Efficiency < 1.5 mean iterations Excellent Efficiency < . 5 and > . 5 mean iterations Good Efficiency< 4.0 and> .5 mean iterations Fair Efficiency< 7.5 and> 4.0 mean iterations Poor Efficiency > 7. 5 mean i terations I I I I I I Table E9 -JUNCTION SUMMARY STATISTICS I I The Maximum area is only the area of the node, it I I does not include the area of the surrounding conduits I Uppermost Maximum Time Feet of Ground PipeCrown Junction of Surcharge Junction Elevation Elevation Elevation Occurence at Max Name feet feet feet Hr. Min. Elevation --------------------------- DBA-2 31 7 . 0000 317 . 0000 315 .5399 13 0. 0000 DBA-1 317.0000 317. 0000 312 .1474 30 0 . 0000 DBB-2, 3 313.0000 313 .0000 311 . 6754 16 0. 0000 DBB-1 313.0000 313 .0000 307 . 9897 25 0 . 0000 SECRK,FB-2 320. 0000 317.0000 306. 4009 9 0. 0000 FA-1,2 313.9400 313. 9400 312.7688 23 0. 0000 FA-2.l 313.9400 313 .9400 312.7756 23 0.0000 FA-2.2 313.9400 313. 9400 312. 7756 23 .0000 WCULV,FA3 310 . 0000 JOB . 0000 307 . 5991 10 .0000 FB-1 324.0000 314 . 0000 306.3905 9 .0000 NE-CREEK 320. 0000 320 . 0000 306 .4190 .0000 2818-ECULV 324.0000 313 . 9900 306.3900 . 0000 37 310.0000 307 . 9000 307.4991 10 . 0000 Maximum Freeboard Junction of node Area feet ft'2 1.4601 846.0104 4.8526 1524 . 6000 1. 3 24 6 741 .8041 5.0103 2439. 3600 13.5991 12 .5660 1.1712 9757 .4400 1 .1644 1524 .6000 1. 1644 1524.6000 2.4009 12 .5660 17 .6095 12 .5660 13. 5810 12 .5660 17.6100 12 . 5660 2.5009 12 .5660 Page 6 of 11 0122-1 0.doc CANYON CREEK TOWNHOMES 10 YEAR PPROPOSED XP-SWMM ANALYSIS *==s===================================================* Table ElO -CONDUIT SUMMARY STATISTICS Note: The peak flow may be less than the design flow and the conduit may still surcharge because of the downstream boundary conditions . Conduit Design Vert ical Maximum Computed Flow (cfsl Time Maximum Computed Velocity ( ft/sl Time Ratio of Maximum Depth > Max. to at Pipe Ends Design Upstream Dwnstrm Name Conduit Name Design Flow (cfs) Velocity Depth (ft/sl (inl of Occurence Hr. Min. of Occurence Hr. Min. Flow (ft) (ft) CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 WEIR tt 1 WEIR tt WEIR tt WEIR tt 4 WEIR tt 5 WEIR tt WEIR tt WEIR tt FREE tt 1 FREE tt 2 7648.6 21775. 4436.7 10. 462 0. 5210 0.9196 11. 125 28.135 .339 5. 427 .339 6.6394 216 .0000 300 .3135 13.0235 264.0000 290.8260 3.1691 240.0000 300 .5133 13. 3204 12. 0000 2.6536 6.0000 10.7521 3 .9600 9.0657 15.0000 22. 9264 15. 0000 2. 9785 12. 0000 6.9098 12.0000 2.9785 12.0000 7. 0088 1. 0886 0 . 6306 9 . 4 982 7.6243 1 .3495 4. 9230 1. 34 95 Undefnd Undefnd Undefnd .0000 Undefnd Undefnd Undefnd .0000 Undefnd Undefnd Undefnd 0.0000 Undefnd Undefnd Undefnd 0.0000 Undefnd Undefnd Undefnd 0.0000 Undefnd Undefnd Undefnd O. 0000 Undefnd Undefnd Undefnd 0.0000 Undefnd Undefnd Undefnd 1.9186 Undefnd Undefnd Undefnd300.5133 Undefnd Undefnd Undefnd 7.0088 *==================================================* Table Ell. Area assumptions used in the analysis! Subcritical and Critical flow assumptions from I Subroutine Head. See Figure 17-1 in the I manual for further information. I 10 43 10 10 13 30 16 25 49 11 49 0 13 10 10 Length of 0. 5560 0.7458 0 . 5138 14. 2729 5. 5001 6 .7668 8.6464 6.0593 1.9967 7. 5705 1.9967 10 43 10 10 13 30 16 25 49 15 49 0.0393 306.4009 306.3905 0.0134 306.4190 306.4009 0 .0677 306.3905 306.3900 0.6699 307.5991 307.4991 2.0893 315.5399 312.9796 0.6857 312.1474 306.4190 0.8537 311.6754 309.3888 0.2710 307.9897 306.4009 0.5769 312.7756 312.7688 0.9071 312.7688 307.5991 0 .5769 312.7756 312.7688 Length of Dry Flow(min) Length of Sub- Cri tical Flow(min) Length of Upstream Critical Flow(min) Downstream Maximum Maximum Maximum Conduit Name CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 0.0000 0.0000 0.0000 0.0000 . 0000 .0000 . 0000 . 0000 .0000 . 0000 . 0000 60. 0000 60. 0000 60.0000 60.0000 0. 0000 60.0000 . 0000 60.0000 50.9417 60.0000 50.9417 0. 0000 0 .0000 0 . 0000 0. 0000 0 . 0000 0 . 0000 0. 0000 0 . 0000 0. 0000 0 . 0000 0. 0000 Critical Hydraulic X-Sect Vel•o Flow(min) Radius-m Area(ft ... 2) (ft ... 2/s) 0.0000 0.0000 0 .0000 0. 0000 60.0000 0 .0000 60.0000 0.0000 9.0583 0.0000 9.0583 6. 3523 5 .3433 6 . 6165 0. 2773 0 . 1507 0 . 0825 0.3490 0.3498 0.2920 .2660 . 2920 540.1886 6.6134 390.0340 7.3899 584.8377 6.3692 0.4911 8.5504 0 .1979 8.3037 0 .0932 35.7484 1. 0985 13. 8524 .2883 40.5682 . 8179 1. 7085 .6572 12.5636 . 8179 1. 7085 1 Table El2. Mean Conduit Flow Information Conduit Name Mean Flow (cfs) CREEK-S 295 . 3307 CREEK-N 290 .6036 2818-HW 295 . 3807 38 4.0464 12PIPE1 0 .5104 PIPE 0.6036 15_Bl-B2 3.4378 PIPE-OB 3.6771 PIPE-20-19 0.0005 ORIFICE 3.5216 PI PE-21-19 .0005 WEIR tt .0000 WEIR tt .0000 WEIR tt .0000 WEIR tt 0 . 0000 WEIR tt 0. 0000 WEIR tt 0.0000 WEIR # 7 0. 0000 WEIR tt 8 0.3895 FREE tt 295.3808 FREE tt 4.0465 Total Flow (ft'3 I 1063191. 1046173. 1063371. 14567.00 1837. 532 2173.070 12376.18 13237.39 1.7328 12677.81 1.7328 0.0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 1402.261 1063371. 14567.32 Mean Percent Change 0 . 0718 0 . 0187 0. 0735 0 .0438 0 .0058 0.0003 0.0464 0 .0448 0. 04 3 7 0.0309 0. 0437 Low Flow Weightng 1. 0000 1 . 0000 1. 0000 1. 0000 1.0000 1. 0000 0.9579 1.0000 1.0000 1.0000 1.0000 Mean Mean Froude Hydraulic Number Radius 0. 0286 0.0453 0. 0254 . 3108 . 2274 .8780 3. 3745 0. 5596 . 0668 . 8070 . 0668 .3522 5.3430 6.6165 0. 2308 . 0804 . 0825 0 .1796 .3053 .2334 .2355 0.2334 Mean Cross Area 540 .1660 389. 9984 584.8367 0 . 3566 .1130 . 0928 0 .5310 1. 0740 0. 7190 0.5661 0. 7190 Mean Conduit Roughness 0.0700 0.0700 0.0700 0.0140 0.0140 0.0140 0. 0140 0. 0140 0 .0140 0.0140 0.0140 Page 7of 11 0122-10.doc CANYON CREEK TOWNHOMES 10 YEAR PPROPOSED XP-SWMM ANALYSIS I Table El3 . Channel losses(H), headwater depth (HW), tailwater I J depth (TW), critical and normal depth (Ye and Ynl. I Use this section for culvert comparisons Conduit Maximum Name Flow Head Friction Critical Loss Loss Depth Normal Depth HW Elevat TW Elevat CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 300.313 290.826 300.513 7.009 1. 089 0.631 9. 498 7.624 1.349 4 . 923 1.349 0.000 0.000 0.000 0.000 0.577 1. 042 1. 632 0.846 0.000 1. 528 0.000 0.012 0.026 0.000 0.100 1. 988 4.753 0.701 0.768 0.121 3. 294 0.121 2.360 2.302 2.379 1.000 0. 480 2 .147 1.167 1.096 . 491 0. 911 0. 4 91 4. 414 3.325 6. 402 0.599 0.500 .201 0.889 0. 444 .545 0. 747 0.545 306.401 306.418 306.390 307.599 315.540 312.147 311.675 307.990 311.252 312 .541 311.252 306.390 Max Flow 306.400 Max Flow 306.390 Max Flow 307.499 Max Flow 312.980 Max Flow 306.418 Max Flow 309. 389 Max Flow 306.401 Max Flow 311.046 Max Flow 307. 594 Max Flow 311.046 Max Flow CULVERT ANALYSIS CLASSIFICATION, and the time the culvert was in a particular classification I I during the simulation. The time is in minutes. I The Dynamic Wave Equation is used for all conduit I analysis but the culvert flow classification I condition is based on the HW and TW depths. I Mild Mild Slope Slope TW Critical D Control Steep Slope TW Slug Flow Insignf Outlet/ Conduit Outlet Outlet Entrance Entrance Name Control Control Control Control Mild Slope TW > 0 Outlet Control Mild Slope TW <"" 0 Outlet Control Outlet Control CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 . 000 . 000 . 000 . 000 0. 912 0.000 0. 000 0.000 0.762 0 .000 0.762 60.000 60.000 60 .000 0.000 27.850 0.000 0.000 0.000 13. 962 0.000 13.962 0.000 .000 0.000 9. 700 . 950 60.000 52.663 0.000 0.000 60.000 0.000 Kinematic Wave Approximations I Time in Minutes for Each Condition I Conduit Length of Slope Super- Name Normal Flow Criteria Critical CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE lS_Bl-82 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 0.00 0.00 .00 .83 . 05 . 00 . 00 . 00 . 49 . 00 2.49 60.00 60.00 60.00 0.83 0.06 0.00 0. 04 0. 00 .86 . 00 . 86 0.00 0.00 0.00 60.00 11.12 . 00 45. 42 0.00 .20 15.20 .20 Table ElS -SPREADSHEET INFO LIST 0. 000 0. 000 0. 000 0. 000 0. 000 . 000 . 000 20. 575 0. 000 0. 000 0. 000 Roll Waves 0. 00 0. 00 0.00 0. 00 . 00 . 00 0. 00 0. 00 . 00 . 00 0. 00 0. 000 . 000 0. 000 0. 000 0. 000 0. 000 . 000 . 000 45.275 0. 000 45. 275 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 . 000 . 000 . 000 so. 300 28. 288 0 . 000 7.338 39.425 0 . 000 . 000 0. 000 Conduit Flow and Junction Depth Information for use in spreadsheets. The maximum values in this table are the true maximum values because they sample every time step. The values in the review results may only be the maximum of a subset of all the time steps in the run. Note: These flows are only the flows in a single barrel. *========••===•••••••••=•m••=•••====•===========•=====••==* Conduit Name CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_81-82 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 WEIR # WEIR # WEIR # Maximum Flow 300.3135 290 . 8260 300. 5133 7.0088 1. 0886 0. 6306 9 . 4 982 7. 6243 1.3495 4. 9230 .3495 . 0000 . 0000 . 0000 Total Flow 1063190.70 1046173 .01 1063370.66 14 566. 9963 1837.5319 2173.0699 12376 .1814 13237.3850 1. 7328 12677.8101 1.7328 0. 0000 0. 0000 0 . 0000 Maximum Velocity 0.5560 0.7458 0. 5138 14. 2729 5. 5001 6. 7668 8. 6464 6.0593 1. 9967 7.5705 1.9967 . 0000 . 0000 . 0000 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## Junction Name DBA-2 DBA-1 DBB-2,3 DBB-1 SECRK,FB-2 FA-1,2 FA-2.1 FA-2. 2 WCULV,FA3 FB-1 NE-CREEK 2818-ECULV 37 Invert Elevation 313.0000 310.0000 309.3600 306. 0000 295. 0000 309. 9600 310.4400 310.4400 307.0000 294. 0000 298. 0000 293. 9900 306. 9000 Inlet Inlet Control Configuration .000 None .ooo None .000 None .ooo None . 000 None .000 None .000 None . ooo None 0. 000 None .000 None 0.000 None Maximum Elevation 315.5399 312.1474 311. 6754 307.9897 306.4009 312.7688 312. 7756 312. 7756 307. 5991 306.3905 306.4190 306.3900 307.4991 Page 8of 11 01 22-10.doc CANYON CREEK TOWNHOMES 10 YEAR PPROPOSED XP-SWMM ANALYSIS WEIR # 4 WEIR # 5 WEIR # WEIR # WEIR # FREE # FREE # 2 0. 0000 . 0000 0. 0000 . 0000 . 0000 . 0000 . 0000 . 0000 1.9186 1402.2611 300.5133 1063370.71 7.0088 14567.3167 0 . 0000 0. 0000 0. 0000 0 . 0000 0 . 0000 . 0000 0. 0000 Table El5a -SPREADSHEET REACH LIST Peak flow and Total Flow listed by Reach or those conduits or diversions having the same upstream and downstream nodes. Upstream Downstream Node Node SECRK,FB-2 FB-1 NE-CREEK SECRK,FB-2 FB-1 2818-ECULV WCULV,FA3 37 DBA-2 DBA-1 DBA-1 NE-CREEK DBB-2 ,3 DBB-1 DBB-1 SECRK,FB-2 FA-2.1 FA-1,2 FA-1,2 WCULV,FA3 FA-2.2 FA-1,2 DBA-2 DBB-2,3 Maximum Flow 300. 3135 290. 8260 300.5133 7. 0088 1.0886 . 6306 .4982 . 6243 .3495 4 .9230 1.3495 1.9186 Total Flow l.0632E+06 l.0462E+06 l.0634E+06 14566.9963 1837.5319 2173.0699 12376.1814 13237. 3850 1.7328 12677.8101 1.7328 1402 .2611 ## ## ## ## #ff ## ## ######################################################### # Table El6. New Conduit Information Section # # Conduit Invert (IE) Elevation and Conduit # # Maximum Water Surface (WS} Elevations # ######################################################### Conduit Name Upstream Node Downstream Node IE Up IE Dn WS Up WS On Conduit Type CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 SECRK,FB-2 NE-CREEK FB-1 WCULV,FA3 DBA-2 DBA-1 DBB-2, 3 DBB-1 FA-2 .1 FA-1,2 FA-2.2 FB-1 SECRK, FB-2 2818-ECULV 37 DBA-1 NE-CREEK DBB-1 SECRK,FB-2 FA-1,2 WCULV,FA3 FA-1, 2 295.0000 294 .0000 306 .4009 306 .3905 298.0000 295.0000 306.4190 306.4009 294.0000 293 .9900 306.3905 306 .3900 307.0000 306.9000 307 .5991 307.4991 313.0000 312.5000 315.5399 312.9796 310.0000 298.0000 312.1474 306.4190 309.3600 308.5000 311.6754 309.3888 306.0000 295.0000 307.9897 306.4009 310 4400 310.0650 312.7756 312 .7688 309.9600 307.0000 312.7688 307.5991 310.4400 310.0650 312.7756 312.7688 Trapezoid Trapezoid Trapezoid Circular Circular Circular Circular Circular Circular Circular Circular Table ElB -Junction Continuity Error. Division by Volume added 11/96 Continuity Error a Net Flow + Beginning Volume -Ending Volume Total Flow+ (Beginning Volume+ Ending Volume)/2 Net Flow ... Node Inflow -Node Outflow Total Flow • absolute (Inflow + Outflow Intermediate column is a judgement on the node continuity error. Excellent < 1 percent Fair 5 to 10 percent Terrible > 50 percent Great Poor 1 to percent Good Bad to percent 10 to 25 percent 25 to 50 percent Junction Name <------Continuity Error -------> Remaining Beginning Net Flow Total Flow Failed to Volume \ of Node \ of Inflow Volume Volume Thru Node Thru Node Converge DBA-2 DBA-1 DBB-2, 3 DBB-1 0. 2391 119.5540 -445.6657 105.1890 SECRK,FB-2 100507.2793 FA-1,2 -74 .1741 FA-2.1 -2.0894 FA-2. 2 -2.0894 WCULV,FA3 0.8780 FB-1 61210.1129 NE-CREEK 29403.6268 2818-ECULV 2770.5417 37 -0.0593 . 00369 1 .814 -1. 834 0.3950 4. 413 -.2934 -97.19 -97.19 .00301 2.759 1.376 0 .1300 -. 0002 . 00002 0. 0111 0. 0413 . 00975 0. 0513 1721.6139 0. 0008 82. 9129 .0163 916. 6906 0.0004 149.4038 9.320 100952.6175 201460.8483 .00688 0.3570 0.2895 .00019 .6006 0.2333 .00019 .6006 0.2333 . 00008 5. 676 2.727 0. 2569 0. 0000 0.3519 0.1896 61525.3288 122735.4410 29785.1395 59188.7103 3082.2184 5852.8000 0.0535 0.0018 The total continuity error was l.93593E+OS cubic feet The remaining total volume was l.97152E+05 cubic feet Your mean node continuity error was Excellent Your worst node continuity error was Fair 0.2741 924.4773 6479.8298 5270.6148 -445.6653 24306.6471 38.6981 26513.4150 -0.9515 2126380.458 -74.1066 25281.4355 -1 .7221 1.7328 -1.7221 1.7328 1.0403 29134.8303 0.0006 2126741.331 0 .0560 2092346.082 -0.0399 2126741.374 -0.0075 29134.3130 Page 9 of 11 01 22-10.doc CANYON CREEK TOWNHOMES 10 YEAR PPROPOSED XP-SWMM ANALYSIS Table El9 -Junction Inflow Sources Units are either ft•3 or m·J I I depending on the units in your model. I ·--·===·===······=··===·········===···=··-··==···==•* Junction Name Constant Inf low to Node DBA-2 . 0000 DBA-1 .0000 DBB-2, 3 . 0000 DBB-1 . 0000 SECRK, FB-2 0. 0000 FA-1,2 0 .0000 WCULV, FA3 0. 0000 FB-1 0. 0000 NE-CREEK l.0440E+06 2818-ECULV 0.0000 3 7 0. 0000 User Inflow to Node 3239.9986 1259.9981 10528.0805 899.8380 3779. 3196 12600. 0113 1890.0017 179.9676 0.0000 .0000 .0000 Interface Inflow to Node 0.0000 0.0000 0.0000 0.0000 0. 0000 0.0000 .0000 0. 0000 0.0000 0.0000 . 0000 DWF Inlow to Node 0. 0000 0. 0000 0.0000 0.0000 0.0000 0.0000 .0000 .0000 0.0000 0.0000 0. 0000 Table E20 -Junction Flooding and Volume Listing. I The maximum volume is the total volume I in the node including the volume in the I flooded storage area. This is the max I volume at any time. The volume in the I flooded storage area is the total volume! above the ground elevation, where the I flooded pond storage area starts. I The fourth column is instantaneous, the fifth is the! sum of the flooded volume over the entire simulation! Uni ts are either ft "3 or m"'3 depending on the uni ts. I Outflow from Node 0.0000 .0000 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 .0634E+06 14567. 3167 Out of System Flooded Volume Stored in System Junction Surcharged Flooded Name Time (min) Time(min) DBA-2 DBA-1 DBB-2, 3 DBB-1 SECRK, FB-2 FA-1, 2 FA-2. l FA-2. 2 WCULV,FA3 FB-1 NE-CREEK 2818-ECULV 37 0. 0000 0 . 0000 . 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0.0000 0.0000 0.0000 0.0000 0.0000 0. 0000 . 0000 0. 0000 0. 0000 0 . 0000 0. 0000 0 . 0000 0. 0000 0.0000 0 . 0000 .0000 0.0000 0.0000 I Simulation Specific Information Number of Input Conduits .. Number of Natural Channels. Number of Storage Junctions .. Number of Orifices ............... . Number of Free Outfalls. 0 . 0000 0 . 0000 0 . 0000 0. 0000 0 . 0000 . 0000 . 0000 . 0000 .0000 .0000 0.0000 0.0000 .0000 Maximum Ponding Allowed Volume Flood Pond Volume 181.0478 2614. 5531 85.3295 3317.0907 143 .2642 3310.0292 268.9481 268.9481 7.5282 155. 6986 105.7928 155.8184 7.5279 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000 11 Number of Simulated Conduits .. O Number of Junctions ... Number of Weirs. Number of Pumps .............. . Number of Tide Gate Outfalls .. I Average \ Change in Junction or Conduit is def ined as: I Conduit \ Change ••> 100.0 ( Q(n+l) -Q(n) ) I Qfull I Junction \ Change ••> 100.0 ( Y(n+l) -Y(n) ) I Yfull Evaporation from Node 0. 0000 0. 0000 0 . 0000 0. 0000 0. 0000 0. 0000 . 0000 . 0000 . 0000 0. 0000 0. 0000 The Conduit with the largest average change was .. FREE # 1 with The Junction with the largest average change was.FA-2.1 with The Conduit with the largest sinuosity was ....... PI PE-20-19 with O. 075 percent o. 025 percent 8 .732 I Table E21. Continuity balance at the end of the simulation I Junction Inflow, Outflow or Street Flooding I Error • Inflow + Initial Volume -Outflow -Final Volume * :z•••'""•••szz••• •"":a:••:"'= :a•z ==="'••"""'••SEE••••="'""•"'=== a: z z === •• zz:•••"" * Inflow Inflow Average Junction Volume,ft"'3 Inflow, cfs DBA-2 3240. 0368 . 9000 DBA-1 1260.0130 0.3500 DBB-2,3 10528.2047 .9245 DBB-1 899.8486 .2500 SECRK,FB-2 3779.3641 .0498 FA-1, 2 12600. 1599 . 5000 WCULV,FA3 1890.0240 .5250 FB-1 179. 9697 0. 0500 NE-CREEK . 044000E+06 290. 0000 21 13 Page 10 of 11 0122-10.doc CANYON CREEK TOWNHOMES 10 YEAR PPROPOSED XP-SWMM ANALYSIS Outflow Outflow Average Junction Volume,ft""J Outflow, cfs ----------------------------------- 2818-ECULV l. 06337lE+06 295.3808 37 14567 . 3167 4.0465 I Initial system volume 3. 9030E+05 Cu Ft J I Total system inflow volume 1 . 0784E+06 Cu Ft J I Inflow + Initial volume 1 . 4687E+06 Cu Ft I l·=····==···=··=========·===···=···==····=············I I Total system outflow l. 0779E+06 Cu ft I I Volume left in system l. 97l5E+05 Cu ft I I Evaporation O. OOOOE+OO Cu ft I I Outflow + Final Volume 1. 2751E+06 Cu ft I Total Model Continuity Error Error in Continuity, Percent = Error in Continuity, ft"") + Error means a continuity loss, 13 .18136 193592.200 a gain Page 11 of 11 01 22-10.doc CANYON CREEK TOWNHOMES 25 YEAR PROPOSED XP-SWMM ANALYSIS Input File ' C,\XPS\0122-25ii.XP Current Directory: C: \XPS\XP-UDD-1 Executable Name : C:\XPS\XP-UDD-1\swmmengw.exe Read O l ine(s) and found O items(s) from your cfg fil e . XP-SWMM2000 I I Storm Water Management Model I I Version 7.51 I l==============··================·==============I I Developed by I l·===·····===······=······====····=··=········=·I I I I XP Softwar e Inc. and Pty. Ltd. I I I I Based on the U.S. EPA I I Storm Water Management Model Version 4.40 l I I I Originally Developed by I I Metcalf & Eddy, Inc. I I University of Florida l I Camp Dresser & McKee Inc. I I September 1970 I I I I EPA-SWMM is maintained by I I Oregon State University I I Camp Dresser & McKee Inc. I l======·========·=======·======================·I I XP Software October, 2000 I I Data File Version - --> 9 . O I *=============s=================================* Input and Output file names by SWMM Layer Input File to Layer Output File to Layer JOT US l JOT US Special command line arguments in XP-SWMM2000 . This I now includes program defaults. $Keywords are the program! defaults. Other Keywords are from the SWMMCOM.CFG file. I or the command line or any cfg file on the command l ine. l Examples include these in the file xpswm.bat under the I section :solve or in the windows version XPSWMM32 in thel file solve .bat I Note: the cfg file should be in the subdirectory swmxp I I or defined by the set variable in the xpswm.bat I file . Some examples of the command l ines possible! are shown below: I swmmd swmmcom.cfg swmmd my. cfg swmmd nokeys nconvs perv extranwq $powerstation 0. 0000 $perv 0. 0000 $oldegg 0. 0000 $as . 0000 $noflat . 0000 $oldomega . 0000 $oldvol . 0000 $implicit . 0000 $oldhot . 0000 $olds cs . 0000 $flood . 0000 Snokeys 0. 0000 $pzero .0000 $oldvol2 .0000 $oldhotl .0000 $pumpwt 0. 0000 $ecloss .0000 $exout 0 .0000 $oldbnd 0. 0000 $nogrelev 0. 0000 $ncmid 0.0000 $new nl 97 0. 0000 -$best97 0 .0000 $newbound 0.0000 11 21 24 28 29 31 33 40 42 55 59 63 70 77 97 154 161 164 290 294 295 I I I I I Parameter Values on the Tapes Common Block.These are the I I values read from the data file and dynamically allocated I I by the model for this simulation. I Number of Subcatchments in the Runoff Block (NW) . Number of Channel/Pipes in the Runoff Block (NG) .. Runoff Water quality constituents (NRQ) .. . Runoff Land Uses per Subcatchment (NLU) ... . Number of Elements in the Transport Block (NET) ..... Number of Storage Junctions in Transport (NTSE). Page I of 11 0 122-25.doc CANYON CREEK TOWNHOMES 25 YEAR PROPOSED XP-SWMM ANALYSIS Number of Input Hydrographs in Transport (NTH) . Number of Elements in the Extran Block (NEE) . 21 Number of Groundwater Subcatchme nts in Runoff (NGW) . O Number of Interface locations for all Blocks (NIE) . 21 Number of Pumps in Extran (NEP) ... Number of Orifices in Extran (NEC) .......... . Number of Tide Gates/Free Outfalls in Extran (NTG) .. Number of Extran Weirs (NEW) ......... . Number of scs hydrograph points .. Number of Extran printout locations (NPO) .. Number of Tide elements in Extran (NTE) ............ . Number of Natural channels (NNC) . Number of Storage junctions in Extran (NVSE) .. Number of Time history data points in Extran(NTVAL). Number of Variable storage elements in Extran (NVST) 10 Number of Input Hydrographs in Extran (NEH). 10 Number of Particle sizes in Transport Block (NPS) . Number of User defined conduits (NHW) . 21 Number of Connecting conduits in Extran (NECC) . 20 Number of Upstream elements in Transport (NTCC) 10 Number of Storage/treatment plants (NSTU) . O Number of Values for Rl lines in Transport (NRl) Number of Nodes to be allowed for (NNOD) . 21 Number of Plugs in a Storage Treatment Unit. ####################################################### # Entry made to the HYDRAULIC Layer(Block) of SWMM # # Last Updated October,2000 by XP Software # CANYON CREEK TOWNHOMES HYDRAULICS TABLES IN THE OUTPUT FILE These are the more important tables in the output file. You can use your editor to find the table numbers, for example: search for Table E20 to check continuity. Thi s output file can be imported into a Word Processor and printed on US letter or A4 paper using portrait mode, courier font, a size of a pt. and margins of 0.75 Table El Basic Conduit Data Table E2 Conduit Factor Data Table EJ Junction Data Table E4 Conduit Connectivity Data Table E4a Dry Weather Flow Data Table ES Junction Time Step Limitation Summary Table ES a Conduit Explicit Condition Summary Table E6 Final Model Condition Table E7 Iteration Summary Table EB Junction Time Step Limitation Summary Table E9 Junction Summary Statistics Table ElO Conduit Summary Statistics Table Ell Area assumptions used in the analysis Table El2 Mean conduit information Table El3 Channel losses(Hl and culvert info Table El4 Natural Channel Overbank Flow Information Table El5 Spreadsheet Info List Table El6 New Conduit Output Section Table El7 Pump Operation Table ElB Junction Continuity Error Table El9 Junction Inflow Sources Table E20 Junction Flooding and Volume List Table E21 Continuity balance at simulation end Table E22 Model Judgement Section Time Control from Hydraulics Job Control Year. 95 Month ..... Day. Hour .. Minute. o Second. Control information for simulation Integration cycles. Length of integration step is .... Simulation length .......... . Do not create equiv. pipes(NEQUAL). Use U.S. customary units for I/O. Printing starts in cycle. Intermediate printout intervals of. Intermediate printout intervals of. Summary printout intervals of .. Summary printout time interval of. Hot start file parameter (REDO). Initial time .. Iteration variables: SURTOL. SURJUN. QREF. Minimum depth (m or ft) .. 14400 0.25 seconds 1.00 hours 500 cycles 2.08 minutes 500 cycles 2. 08 minutes 1 0.00 hours 0.0001 0.0060 mm or inch 1. 0000 0. 0000 Page 2of 11 0122-25.doc CANYON CREEK TOWNHOMES 25 YEAR PROPOSED XP-SWMM ANALYSIS Underrelaxation parameter ..... . Time weighting parameter ...... . Courant Time Step Factor. Default Expansion/Contraction K Default Entrance/Exit K. Default surface area of junctions. NJSW input hydrograph junctions. or user defined hydrographs. Table El -Conduit Data Inp Conduit Num Name CREEK-S CREEK-N 2818-HW 4 38 5 12PIPE1 PIPE 7 15_Bl-B2 PIPE-OB PIPE-20-19 10 ORIFICE 11 PIPE-21-19 Length Conduit (ft) Class 200.00 Trapezoid 200.00 Trapezoid 10.00 Trapezoid 1.00 Circular 50.00 Circular 42.00 Circular 25.00 Circular 50.00 Circular 75.00 Circular 110.00 Circular 75.00 Circular Total length of all conduits ... Table E2 -Conduit Factor Data 0.8500 0.8500 1.0000 0.0000 0.0000 12.57 square feet. 8 Area (ft ·2) Manning Max Width Coef. (ft) 1152. 00 1672. 00 1400.00 0.79 0 .20 0.09 .23 .23 .79 . 79 0.07000 0.07000 0.07000 0.01400 0.01400 0.01400 0.01400 0.01400 0.01400 0. 01400 0 .79 0.01400 838.0000 feet 10.00 10.00 10.00 1. 00 0.50 0.33 .25 1. 25 1. 00 1. 00 1. 00 Trapezoid Depth Side (ft) Slopes 18.00 22.00 20. 00 . 00 0.50 0. 33 . 25 1. 25 1. 00 1. 00 1. 00 . 00 .00 . 00 .00 .00 . 00 Time Low Flow Depth at Conduit Name Number Entrance Exit Exp/Conte Weighting Roughness Which Flow of Barrels Loss Coef Loss Coef Coefficnt Parameter Factor n Changes Routing 12PIPE1 PIPE 15_Bl-B2 PIPE-OB ORIFICE .0000 1.0000 1.0000 1. 0000 1.0000 .2000 0.5000 .2000 0.5000 0.5000 . 0000 1.0000 1. 0000 1. 0000 1.0000 . 0000 . 0000 . 0000 . 0000 0. 0000 If there are messages about (sqrt(g•d)*dt/dx), or the sqrt(wave celerity)*time step/conduit length in the output file all it means is that the program will lower the internal time step to satisfy this condition (explicit condition) . You control the actual internal time step by using the minimum courant time step factor in the HYDRAULICS job control. The message put in words states that the smallest conduit with the fastest velocity will control the time step selection. You have further control by using the modify conduit option in the HYDRAULICS Job Control . .8500 0.8500 0.8500 .8500 0.8500 •• ,..> Warning ! (sqrt (wave celerity) *time step/conduit length) in conduit 38 is 1 .42 at full depth. Conduit Volume Ful 1 pipe or ful 1 open conduit volume Input full depth volume. 5. 7911E+05 cubic feet *==============··=====•=====····==·····=•••••:••••··· Table E3a -Junction Data Inp Junction Ground Crown Invert Qinst Num Name Elevation Elevation Elevation cfs DBA-2 2 DBA-1 3 DBB-2,3 DBB-1 SECRK,FB-2 6 FA-1,2 FA-2.1 FA-2.2 WCULV,FA3 10 FB-1 11 NE-CREEK 12 2818-ECULV 13 37 317.0000 313.5000 317.0000 313.0000 313.0000 310.6100 313.0000 309.7500 320. 0000 317. 0000 313.9400 311.0650 313.9400 311.4400 313 .9400 311 .4400 310. 0000 308. 0000 324.0000 314.0000 320.0000 320.0000 324.0000 313.9900 310.0000 307.9000 Table E3b -Junction Data 313. 0000 310. 0000 309.3600 306. 0000 295. 0000 309.9600 310.4400 310. 4400 0 . 0000 0. 0000 0. 0000 0. 0000 . 0000 0 . 0000 0. 0000 . 0000 307. 0000 . 0000 294.0000 .0000 298.0000 290.0000 293.9900 0.0000 306.9000 0.0000 Initial Depth-ft 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 . 0000 0. 0000 0. 0000 . 0000 0. 0000 . 0000 . 0000 . 0000 . 0000 . 0000 .0000 Standard Dynamic Wave .0000 Standard Dynamic Wave .0000 Standard Dynamic Wave .0000 Standard Dynamic Wave 0.0000 Standard Dynamic Wave Page 3 of 11 0 122-25 .doc CANYON CREEK TOWNHOMES 25 YEAR PROPOSED XP-SWMM ANALYSIS Inp Junction Num Name DBA-2 DBA-1 DBB-2,3 DBB-1 SECRK,FB-2 FA-1, 2 FA-2.l FA-2.2 WCULV,FA3 10 FB-1 11 NE-CREEK 12 2818-ECULV 13 37 x Coord. 99.350 119.754 99.058 120.185 135.269 90.483 85.336 95.770 91. 056 132.616 142.323 132.962 94.966 y Coord. Type of Manhole 473.221 Sealed Manhole 478.014 Sealed Manhole 467.667 Sealed Manhole 466.245 Sealed Manhole 464.853 Sealed Manhole 452.889 Sealed Manhole 453.292 Sealed Manhole 452.615 Sealed Manhole 446.853 Sealed Manhole 450.836 Sealed Manhole 480.638 Sealed Manhole 445. 097 Sealed Manhole 444.735 Sealed Manhole Type of Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Table E4 -Conduit Connectivity Input Conduit Number Name Upstream Downstream Node Node 10 11 CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB SECRK, FB-2 FB-1 NE-CREEK SECRK,FB-2 FB-1 2818-ECULV WCULV,FA3 37 DBA-2 DBA-1 DBA-1 NE-CREEK DBB-2,3 DBB-1 DBB-1 SECRK,FB-2 PIPE-20-19 FA-2.l ORIFICE FA-1,2 PIPE-21-19 FA-2.2 FA-1,2 WCULV,FA3 FA-1, 2 Storage Junction Data Upstream Downstream Elevation Elevation 295. 000 298.000 294.000 307. 000 313. 000 310.000 309. 360 306. 000 310.440 309.960 310.440 294.000 No Design 295.000 No Design 293.990 No Design 306 .900 No Design 312.500 No Design 298. ooo No Design 308 .500 No Design 295. 000 No Design 310. 065 No Design 307 . 000 No Design 310.065 No Design PEAK OR CROWN DEPTH MAXIMUM OR STORAGE JUNCTION JUNCTION CONSTANT SURFACE CONSTANT VOLUME ELEVATION STARTS NUMBER OR NAME TYPE AREA (FT2) (CUBIC FEET) (FT) FROM Maximum Capacity DBA-2 DBA-1 DBB-2,3 DBB-1 FA-1,2 FA-2.1 FA-2. 2 Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area 2211.9768 1524.6000 7361.6400 2439.3600 9757.4400 1524.6000 1524.6000 5207.8244 6963. 7006 24092.7453 13099. 6830 3310. 0292 839.7635 839.7635 317.0000 Node Invert 317.0000 Node Invert 313.0000 Node Invert 313.0000 Node Invert 313. 9400 Node Invert 313.9400 Node Invert 313.9400 Node Invert Variable storage data for node IDBA-2 Data Point Elevation ft 313.0000 315.0000 315.2500 315. 5000 315.7500 316.0000 316.2500 316. 5000 318.0000 Depth ft 0. 0000 2. 0000 2.2500 2. 5000 . 7500 . 0000 . 2500 .5000 . 0000 . 9204 . 9204 245.2428 744. 8760 1378.2384 1918.8180 2211. 9768 2211. 9768 2211.9768 Variable storage data for node IDBA-1 Data Point Elevation ft 310. 0000 310.2500 310.5000 310.7500 315. 0000 Depth ft . 0000 . 2500 . 5000 . 7500 5. 0000 . 4356 261.3600 1001.8800 1524.6000 1524.6000 Variable storage data for node IDBB-2,3 Data Point Elevation ft 309.3600 311.3600 311. 5000 311.7500 312 . 0000 312.2500 Depth ft 0. 0000 2. 0000 2.1400 .3900 .6400 .8900 4.3560 4.3560 130.6800 1001. 8800 2962 .0800 4617.3600 .0000 7.8408 31.1883 149.3154 410.6766 820.9496 1336. 8650 1889. 8592 5207.8244 0. 0000 22.7055 170.6183 484.1506 6963.7006 . 0000 .7120 16.1271 140.6601 614.5473 1554.3541 Page 4of11 0122-25.doc CANYON CREEK TOWNHOMES 25 YEAR PROPOSED XP-SWMM ANALYSIS 312.SOOO 31S.3600 3.1400 6.0000 7361 .6400 7361.6400 Variable storage data for node jDBB-1 Data Point Elevation ft 306. 0000 306.2SOO 306.SOOO 306. 7SOO 307. 0000 307. 2SOO 312.0000 Depth ft 0.0000 0.2SOO o.sooo 0.7SOO 1. 0000 l.2SOO 6. 0000 Area ft'2 4.3S60 174.2400 784 .0800 16SS.2800 2308 .6800 2439 .3600 2439.3600 Variable storage data for node jFA-1,2 Data Point 10 Elevation ft 309. 9600 311 .9600 312 .0200 312 .1200 312.2200 312.3200 312 .4200 312.S200 312.6200 312 .6700 Depth ft . 0000 . 0000 . 0600 .1600 . 2600 . 3600 2.4600 2.S600 . 6600 . 7100 Area ft ·2 4.3S60 4 .3S60 87.1200 740. S200 2003 .7600 S314 .3200 7666.S600 8363.S200 8929. 8000 97S7 .4400 Variable storage data for node jFA-2. Data Point 4 s 6 10 Elevation ft 310. 4400 312.4400 312 .SOOO 312.6000 312.7000 312.8000 312.9000 313 .0000 313.1000 313 .lSOO Depth ft 0 .0000 2.0000 2 .0600 2.1600 2 . 2600 2.3600 2.4600 2 .S600 .6600 . 7100 Area ft'2 4.3S60 4.3S60 87.1200 696 . 9600 1S24.6000 1524.6000 1S24 .6000 1S24 .6000 1S24 .6000 1S24 .6000 Variable storage data for node IFA-2. Data Point 10 Elevation ft 310.4400 312.4400 312. sooo 312 .6000 312. 7000 312.8000 312.9000 313 .0000 313.1000 313.lSOO Weir Data Depth ft 0 .0000 .0000 .0600 .1600 .2600 .3600 2.4600 2 .S600 2.6600 2. 7100 From To Junction Junction Link Number DBA-2 DBA-1 DBB-2,3 DBB-1 FA-2.l FA-2. 2 FA-2.2 DBA-2 DBA-1 WEIR NE-CREEK WEIR DBB-1 WEIR SECRK,FB-2WEIR FA-1,2 WEIR FA-1,2 WEIR DBB-2,3 WEIR DBB-2,3 WEIR 4 s Area ft ·2 4.3S60 4.3S60 87.1200 696 .9600 1S24 .6000 1S24 .6000 1S24.6000 1S24 .6000 1S24.6000 1S24.6000 Crest Type Height (ft) .23 4. 00 2.80 . 00 . 3S 2.3S 2.S6 2.38 FREE OUTFALL DATA (DATA GROUP Il) BOUNDARY CONDITION ON DATA GROUP Jl 3038 .4549 24092 . 7453 Volume ft •3 0 . 0000 17 .1788 127.8404 426.0572 919. 2929 1Sl2 . 7230 13099. 6830 Volume ft'3 .0000 .7120 10.9311 46.98S7 179.06S8 S31. 77S9 1177.2382 1978. 489S 2843.0010 3310.0292 Volume ft'3 . 0000 . 7120 10.9311 4S.2809 1S3.6935 306.1S3S 458.6135 611. 073S 763.S33S 839.763S Volume ft'3 .0000 8. 7120 10.9311 4S.2809 1S3.693S 306.1S3S 458.613S 611. 073S 763.S335 839.763S Weir Topi ft I Weir Length I ft) 4.00 10.00 .80 .00 .so . so .so 4.00 . 00 60.00 S.00 20.00 23.00 23.00 23 .00 10.00 Outfall at Junction .... 2818-ECULV has boundary condition number. Outfall at Junction .... 37 has boundary condition number. Discharge Coefficient . 0000 . 0000 . 0000 . 0000 3.0000 3.0000 3.0000 3.0000 Weir Power . sooo . sooo l.SOOO 1 .5000 l.SOOO l.SOOO l.SOOO l.SOOO Page 5of 11 0122-25 .doc CANYON CREEK TOWNHOMES 25 YEAR PROPOSED XP-SWMM ANALYSIS INTERNAL CONNECTIVITY INFORMATION I *=====·-=======-·=================··======···====* CONDUIT WEIR U 1 WEIR U WEIR U WEIR U WEIR U WEIR U WEIR U WEIR U FREE U FREE U JUNCTION JUNCTION DBA-2 DBA-1 DBA-1 NE-CREEK DBB-2,3 DBB-1 DBB-1 SECRK,FB-2 FA-2.1 FA-1,2 FA-2.2 FA-1,2 FA-2.2 DBB-2,3 DBA-2 DBB-2,3 2818-ECULV BOUNDARY 37 BOUNDARY Table ES -Junction Time Step Limitation Summary I *••============····==========·====·-··==========·=·====·-=* Not Convr = Number of times this junction did not converge during the simulation. Avg Convr • Average junction iterations. Conv err = Mean convergence error. Omega Cng • Change of omega during iterations Max Itern • Maximum number of iterations Junction Not Convr Avg Convr Total Itt Omega Cng Max Itern Ittrn >10 Ittrn >25 Ittrn >40 DBA-2 DBA-1 DBB-2,3 DBB-1 SECRK,FB-2 FA-1, 2 FA-2 .1 FA-2 .2 WCULV,FA3 FB-1 NE-CREEK 2818-ECULV 37 1.07 1. 06 1.39 1. 26 1.15 1.36 1.37 1.37 .17 .00 1. 00 1. 91 1. 92 56793 56520 74159 67118 61159 72560 73066 73066 62144 53314 53340 101832 102205 Total number of iterations for all junctions . Minimum number of possible iterations. Efficiency of the simulation. 907276 693082 1.31 8 10 10 12 8 Good Efficiency Extran Efficiency is an indicator of the efficiency of the simulation. Ideal efficiency is one iteration per time step. Altering the underrelaxation parameter, lowering the time step, increasing the flow and head tolerance are good ways of improving the efficiency, another is lowering the internal time step. The lower efficiency generally the faster your model will run. I I I I I the I I If your efficiency is less than 1.5 then you may try I increasing your time step so that your overall simulation! is faster. Ideal efficiency would be around 2. O f Good Efficiency < 1.5 mean iterations Excellent Efficiency< 2.5 and > 1.5 mean iterations Good Efficiency< 4.0 and> 2.5 mean iterations Fair Efficiency< 7.5 and> 4.0 mean iterations Poor Efficiency > 7.5 mean iterations I I I I I I Table E9 -JUNCTION SUMMARY STATISTICS I I The Maximum area is only the area of the node, it I I does not include the area of the surrounding conduitsl Junction Name Uppermost Ground PipeCrown Elevation Elevation feet feet Maximum Junction Elevation feet DBA-2 317.0000 317.0000 315.5642 DBA-1 317.0000 317.0000 312.3660 DBB-2,3 313.0000 313.0000 311.9302 DBB-1 313.0000 313.0000 308.2729 SECRK,FB-2 320.0000 317.0000 306.4010 FA-1,2 313.9400 313.9400 312.8213 FA-2.1 313.9400 313.9400 312.8206 FA-2.2 313.9400 313.9400 312.8206 WCULV, FA3 310. 0000 308. 0000 307. 6238 FB-1 324 .0000 314.0000 306.3905 NE-CREEK 320.0000 320.0000 306.4191 2818-ECULV 324.0000 313.9900 306.3900 37 310.0000 307.9000 307.5237 Time of Occurence Hr. Min. 13 30 17 26 21 24 24 10 9 10 Feet of Surcharge at Max Elevation .0000 .0000 .0000 .0000 .0000 0.0000 0. 0000 0. 0000 0. 0000 . 0000 . 0000 . 0000 0. 0000 Maximum Freeboard Junction of node Area feet ft"'2 1.4358 907.6170 . 6340 1524. 6000 .0698 2414. 7917 4. 7271 2439. 3600 13.5990 12.5660 1. 1187 9757. 4400 1.1194 1524.6000 .1194 1524.6000 .3762 17.6095 13.5809 17.6100 2.4763 12.5660 12.5660 12.5660 12.5660 12.5660 Page 6 of 11 0122-25.doc CANYON CREEK TOWNHOMES 25 YEAR PROPOSED XP-SWMM ANALYSIS Table ElO -CONDUIT SUMMARY STATISTICS Note: The peak flow may be less than the design flow and the conduit may still surcharge because of the downstream boundary conditions . Time Time Name Conduit Name Design Flow (cfs) Conduit Design Vertical Velocity Depth (ft/s) (in) Maximum Computed Flow (cfs) of Occurence Hr. Min. Maximum Computed Velocity lft/s) of Occurence Hr. Min . Ratio of Maximum Depth > Max. to at Pipe Ends Design Upstream Dwnstrm Flow (ft) (ft) CREEK-S 7648.6 CREEK-N 21775. 2818-HW 4436.7 38 10.462 12PIPE1 0.5210 PIPE 0.9196 15_Bl-B2 11.125 PIPE-OB 28.135 PIPE-20-19 2.339 ORIFICE .427 6.6394 216.0000 301.1797 13.0235 264.0000 290.8358 3.1691 240.0000 301.4539 13.3204 12.0000 7.4454 2.6536 6.0000 1.0934 10.7521 .9600 0.6439 9.0657 15.0000 10.3285 22.9264 15.0000 .2779 .9785 12.0000 .3487 .9098 12.0000 .0625 PIPE-21-19 WEIR # 1 WEIR # WEIR # WEIR # 4 WEIR # 5 WEIR # WEIR # WEIR # FREE # FREE # 2.339 2.9785 Undefnd Undefnd Undefnd Undefnd Undefnd Undefnd Undefnd Undefnd Undefnd Undefnd Undefnd Undefnd Un de fnd Unde fnd Undefnd Undefnd Undefnd Undefnd Undefnd Undefnd 12 .0000 Undefnd Undefnd Undefnd Undefnd .3487 . 0000 . 0000 .0000 . 0000 Undefnd -o. 3811 Undefnd -0. 3811 Undefnd . 0000 Undefnd 2. 3 724 Undefnd301.4539 Undefnd 7.4454 Table Ell. Area assumptions used in the ana l ysis I Subcritical and Critical flow assumptions from I Subroutine Head. See Figure 17-1 in the I manual for further information. I 12 45 0.5576 0.7458 10 0.5154 10 14.4570 13 5.5214 30 6.8952 17 9.1330 26 6.5737 54 1.9939 10 7.6680 54 0 21 21 0 13 10 10 1.9939 12 45 10 10 13 30 17 26 54 16 54 .0394 306.4010 306.3905 .0134 306.4191 306.4010 .0679 306.3905 306 .3900 .7117 307.6238 307.5237 2.0985 315.5642 312.9804 0.7002 312.3660 306.4191 0.9284 311.9302 309.4524 0.2942 308.2729 306.4010 .5765 312.8206 312.8213 .9328 312.8213 307.6238 0 .5765 312.8206 312.8213 Length of Dry Flow (min) Length of Sub- Cri tical Flow(minl Length of Upstream Critical Flow(min) Length of Downstream Critical Fl ow (min) Maximum Maximum Maximum Conduit Name CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 0. 0000 0. 0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 . 0000 60.0000 60.0000 60. 0000 60.0000 0.0000 60.0000 0. 0000 60.0000 56.7583 60. 0000 56.7583 0. 0000 0. 0000 0. 0000 0. 0000 0.0000 0. 0000 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 . 0000 . 0000 . 0000 . 0000 60. 0000 0. 0000 60. 0000 . 0000 .2417 . 0000 .2417 Hydraulic X-Sect Vel•D Radius-m Area (ft.2) (ft.2/s) 6 .3523 5.3433 .6165 .2825 0. 1507 . 0825 0 .3552 .3498 . 2921 . 2662 .2921 540.1923 6.6324 390.0397 7.3902 584.8379 6 .3891 0.5150 9.0174 .1980 8.4052 .0934 37.1805 .1309 16. 0860 .2883 44.9426 . 8180 2. 6201 .6681 13 .0645 .8180 .6201 I Table El2. Mean Conduit Flow Information Conduit Name Mean Flow (cfs) CREEK-S 295.9793 CREEK-N 290.6161 2818-HW 296.0543 38 4.5946 12PIPE1 0.5238 PIPE .6161 15_Bl-B2 3.8934 PIPE-OB 4.1632 PIPE-20-19 -0.0380 ORIFICE . 994 9 PIPE-21-19 -0.0380 WEIR # . 0000 WEIR # . 0000 WEIR # .0000 WEIR # 4 0. 0000 WEIR # 5 -0. 0068 WEIR # -0. 0068 WEIR # . 0000 WEIR # . 5012 FREE# 1 296.0543 FREE# 2 4 .5947 Total Flow I ft •3) 1065526. 1046218. 1065795. 16540.66 1885.716 2217.999 14016.26 14987.44 -136.859 14381.49 -136 .859 0.0000 0.0000 0.0000 0.0000 -24.3551 -24.3551 0.0000 1804 .198 1065796. 16540.97 Mean Percent Change .0677 . 0179 . 0697 .0421 .0055 . 0002 . 04 56 .0377 .0433 0.0288 0.0433 Low Flow Weightng . 0000 . 0000 1. 0000 . 0000 . 0000 . 0000 0.9043 . 0000 1. 0000 1. 0000 1. 0000 Mean Mean Froude Hydraulic Number Radius . 0286 . 04 53 . 0254 .3048 .2415 .8480 . 3606 . 5522 .0451 1. 8302 0.0451 .3522 5.3430 .6165 .2388 .0756 0.0825 0.1700 0.3041 0. 2414 .2430 0 . 2414 Mean Cross Area 540.1669 389.9998 584.8367 0.3717 0 .1063 .0930 0. 5182 . 0749 .7480 0 .5875 0.7480 Mean Conduit Roughness 0.0700 0.0700 .0700 .0140 . 0140 .0140 .0140 . 0140 0. 0140 . 014 0 .0140 Page 7 of11 0122 -25.doc CANYON CREEK TOWNHOMES 25 YEAR PROPOSED XP-SWMM ANALYSIS 1 Table El3. Channel losses(H), headwater depth (HW), tailwater I I depth (TW), critical and normal depth (Ye and Yn). J Use this section for culvert comparisons Conduit Maximum Head Friction Critical Loss Loss Depth Normal Depth Name Flow CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 1S_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 301.180 290. 836 301.454 7.445 . 093 . 644 10.329 8.278 . 349 . 062 l. 349 0. 000 0 .000 0. 000 0. 000 0 .581 1.083 1 .750 0 .996 0. 000 . 538 .000 . 012 . 026 . 000 0.100 2 .007 4. 935 0. 774 0.904 0.122 . 330 0.122 2 .363 . 302 . 384 . 000 . 480 . 366 .188 .125 .491 .920 . 491 . 420 .325 .411 0. 624 0 .500 0. 204 0.952 . 464 0. 54 5 . 765 0.545 CULVERT ANALYSIS CLASSIFICATION, and the time the I culvert was in a particular classification I during the simulation. The time is in minutes. I The Dynamic Wave Equation is used for all conduit ! analysis but the culvert flow classification I condition is based on the HW and TW depths. I Mild Slope Critical D Conduit Outlet Steep Slope TW Slug Flow Insignf Outlet/ HW Elevat 306.401 306.418 306.390 307.624 315. 564 312.366 311.930 308.273 311.242 312.599 311.242 TW Elevat 306. 390 Max Flow 306.400 Max Flow 306.390 Max Flow 307. 524 Max Flow 312.980 Max Flow 306. 419 Max Flow 309.452 Max Flow 306.401 Max Flow 311.044 Max Flow 307. 618 Max Flow 311.044 Max Flow Inlet Inlet Name Control Mild Slope TW Control Outlet Control Entrance Entrance Control Control Mild Slope TW > 0 Outlet Control Mild Slope TW <= 0 Outlet Control Outlet Control Control Configuration CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 0.000 0 .000 0.000 0.000 0.662 0.000 . 000 . 000 . 800 . 000 . 800 60. 000 60.000 60. 000 0.000 27.500 0.000 0.000 0.000 .763 . 000 7.763 0.000 0.000 0.000 3.862 2 .862 60.000 46.325 0.000 0. 000 60. 000 . 000 Kinematic Wave Approximations I Time in Minutes for Each Condition I *============================a========* Conduit Length of Slope Super- Name Normal Flow Criteria Critical CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 . 00 . 00 . 00 . 84 0. 05 . 00 .01 .00 .37 0.00 2 .37 60. 00 60 .00 60.00 . 84 0.06 0 .00 0.05 0.00 2.77 . 00 . 77 . 00 0. 00 0. 00 60 . 00 5.35 0.00 41. 64 0. 00 . 22 . 02 .22 Table El5 -SPREADSHEET INFO LIST . 000 . 000 . 000 . 000 . 000 . 000 0 . 000 18.150 0 . 000 0.000 0.000 Roll Waves . 00 .00 0.00 0.00 0.00 0. 00 0.00 0. 00 . 00 . 00 . 00 0.000 0.000 0.000 0.000 0.000 0.000 .000 .000 51.437 0.000 51.437 . 000 . 000 0.000 0.000 0.000 0.000 0. 000 0. 000 0. 000 . 000 . 000 0.000 0.000 .000 56 .138 28.975 0.000 13.675 41. 850 . 000 . 000 . 000 Conduit Flow and Junction Depth Information for use in spreadsheets. The maximum values in this table are the true maximum values because they sample every time step. The values in the review results may only be the maximum of a subset of all the time steps in the run. Note: These flows are only the flows in a single barrel. Conduit Maximum Total Name Flow Flow CREEK-S 301.1797 1065525.52 CREEK-N 290.8358 1046217.94 2818-HW 301.4539 1065795.47 38 .4454 16540.6633 12PIPE1 .0934 1885.7161 PIPE .6439 2217.9987 15_Bl-B2 10.3285 14016.2593 PIPE-OB .2779 14987.4371 PIPE-20-19 1.3487 -136.8590 ORIFICE 5.0625 14381.4927 PIPE-21-19 .3487 -136.8590 WEIR # l . 0000 0. 0000 WEIR # 2 . 0000 0. 0000 WEIR # 3 . 0000 0. 0000 Maximum Velocity 0.5576 0.7458 0.5154 14.4570 5. 5214 . 8952 9.1330 6.5737 1.9939 .6680 . 9939 . 0000 0. 0000 0. 0000 ## Junction Invert ## Name Elevation ## ------------------- ## DBA-2 313.0000 ## DBA-1 310.0000 ## DBB-2,3 309.3600 ## DBB-1 306.0000 ## SECRK, FB-2 295. 0000 ## FA-1,2 309.9600 ## FA-2.1 310.4400 ## FA-2.2 310.4400 ## WCULV,FA3 307.0000 ## FB-1 294. 0000 ## NE-CREEK 298.0000 ## 2818-ECULV 293. 9900 ## 37 306.9000 ## 0.000 None 0. 000 None 0 . 000 None 0. 000 None . 000 None .000 None 0.000 None 0.000 None o.ooo None 0.000 None o.ooo None Maximum Elevation 315.5642 312.3660 311.9302 308.2729 306.4010 312.8213 312. 8206 312.8206 307.6238 306.3905 306.4191 306. 3900 307.5237 Page 8 of 11 01 22-25 .doc CANYON CREEK TOWNHOMES 25 YEAR PROPOSED XP-SWMM ANALYSIS WEIR WEIR WEIR WEIR WEIR FREE FREE 0.0000 0.0000 -0.3811 -24.3551 -0.3811 -24.3551 . 0000 0. 0000 .3724 1804.1984 301.4539 1065795.52 7.4454 16540.9705 0.0000 0.0000 0.0000 0.0000 0.0000 0. 0000 . 0000 J Table El5a -SPREADSHEET REACH LIST I Peak flow and Total Flow listed by Reach or those I conduits or diversions having the same I upstream and downstream nodes. Upstream Downstream Maximum Node Node Flow SECRK,FB-2 FB-1 301.1797 NE-CREEK SECRK, FB-2 290. 8358 FB-1 2818-ECULV 301 .4539 WCULV,FA3 37 7.4454 DBA-2 DBA-1 1.0934 DBA-1 NE-CREEK 0 .6439 DBB-2,3 DBB-1 10 .3285 DBB-1 SECRK,FB-2 8.2779 FA-2.l FA-1,2 1.3487 FA-1,2 WCULV,FA3 5.0625 FA-2.2 FA-1,2 1.3487 FA-2.l FA-1,2 -0.3811 FA-2.2 FA-1,2 -0.3811 DBA-2 DBB-2,3 2.3724 Total Flow l.0655E+06 l.0462E+06 1. 0658E+06 16540. 6633 1885. 7161 2217 . 9987 14016. 2593 14987. 4371 -136 . 8590 14381.4927 -136. 8590 -24.3551 -24. 3551 1804.1984 ## ## ## ## ## ## ## ######################################################### # Table El6. New Conduit Information Section # # Conduit Invert (IE) Elevation and Conduit # # Maximum Water Surf ace (WS) Elevations # ######################################################### Conduit Name CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 Upstream Node SECRK,FB-2 NE-CREEK FB-1 WCULV,FA3 DBA-2 DBA-1 DBB-2,3 DBB-1 FA-2. l FA-1,2 FA-2. 2 Downstream Node FB-1 SECRK, FB-2 2818-ECULV 37 DBA-1 NE-CREEK DBB-1 SECRK,FB-2 FA-1,2 WCULV,FA3 FA-1,2 IE Up 295.0000 298.0000 294.0000 307.0000 313.0000 310.0000 309.3600 306.0000 310.4400 309.9600 310.4400 IE Dn 294. 0000 295. 0000 293. 9900 306.9000 312.5000 298.0000 308.5000 295. 0000 310.0650 307.0000 310.0650 WS Up 306.4010 306.4191 306.3905 307.6238 315.5642 312.3660 311.9302 308.2729 312.8206 312. 8213 312.8206 Table El8 -Junction Continuity Error. Division by Volume added 11/96 Continuity Error "" Net Flow + Beginning Volume -Ending Volume Total Flow + (Beginning Volume + Ending Volume) /2 Net Flow .. Node Inflow -Node Outflow Total Flow .. absolute (Inflow + Outflow Intermediate column is a judgement on the node continuity error. Excellent < 1 percent Fair 5 to 10 percent Terrible > 50 percent Great 1 to percent Poor 10 to 25 percent Good to percent Bad 25 to 50 percent ws Dn Conduit Type 306.3905 306.4010 306.3900 307.5237 312.9804 306.4191 309.4524 306.4010 312.8213 307.6238 312.8213 Trapezoid Trapezoid Trapezoid Circular Circular Circular Circular Circular Circular Circular Circular Junction Name <------Continuity Error -------> Remaining Beginning Net Flow Total Flow Failed to Volume \ of Node \ of Inflow Volume Volume Thru Node Thru Node Converge DBA-2 0.1226 DBA-1 144. 6030 DBB-2,3 -153.9432 DBB-1 85.2646 SECRK,FB-2 100507.3414 FA-1,2 -303.8206 FA-2.l 160.5415 FA-2.2 160.5415 WCULV,FA3 0.7484 FB-1 61210.1125 NE-CREEK 29403.6219 2818-ECULV 2770.5323 37 -0.1678 .00166 2.033 -.5522 0.2832 4. 404 -1. 044 99. 114 99. 114 .00226 2.753 1 .376 0.1297 - . 0005 .00001 0.0133 0.0142 .0526 2052. 3071 0. 0008 .0167 1089.1750 0. 0004 .00787 80.4500 146.9973 9.278 100951.9931 201460.2221 0.0280 .8610 0.7307 0. 0148 . 0984 .4261 0.0148 .0984 .4261 . 00007 . 6690 0. 3596 5.650 61525.3103 122735.4219 2.714 29784.8749 59188 .4390 0.2557 3082.2184 5852.8000 . 00002 0 .1767 . 0056 The total continuity error was l.93985E+05 cubic feet The remaining total volume was 1. 97481E+05 cubic feet Your mean node continuity error was Excellent Your worst node continuity error was Fair 0.1585 7379.9529 1107.7351 5543.7290 -153.9428 27878.4288 18.7173 29993.5289 -0.8877 2131050.164 -303. 6903 29104. 0634 161.2138 161.2141 161.2138 161.2141 1.0578 33082.1804 0.0009 2131590.940 0.0578 2092435.939 -0.0493 2131590.991 0.0033 33081.6338 Page 9 of11 01 22-25.doc CANYON CREEK TOWNHOMES 25 YEAR PROPOSED XP-SWMM ANALYSIS Table E19 -Junction Inflow Sources I Units are either ft ... 3 or m"J I depending on the units in your model. j ·====····====····=·=·===·····====····========····===· Junction Name Constant Inflow to Node User Inflow to Node Interface Inflow to Node OWF Inlow to Node Outf low from Node Evaporation from Node 081\-2 0. 0000 081\-1 0.0000 088-2,3 0.0000 088-1 0.0000 SECRK,F8-2 0.0000 FA-1,2 0.0000 WCULV, Fl\3 0. 0000 F8-l . 0000 NE-CREEK 1. 0440E+06 2818-ECULV 0. 0000 37 0. 0000 3689.9986 1439.9987 12057. 8411 989. 8218 4319.2223 14399. 9872 2160. 0011 269.9514 0.0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 .0000 .0000 .0000 0.0000 0.0000 0. 0000 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 . 0000 . 0000 . 0000 . 0000 .0000 0.0000 0.0000 Table E20 -Junction Flooding and Volume Listing . I The maximum volume is the total volume I in the node including the volume in the I flooded storage area. This i s the max I volume at any time. The volume in the I flooded storage area is the total volume! above t he ground elevation, where the I flooded pond storage area starts. I The fourth column is instantaneous, the fifth is thel sum of the flooded volume over the entire simulation! Units are either ft"3 or m"3 depending on the units. I . 0000 . 0000 . 0000 0. 0000 0.0000 0.0000 0.0000 0.0000 0.0000 l.0658E+06 16540.9705 Out of System Flooded Vo l ume Stored in System Junction Surcharged Flooded Name Time (min) Time (min) 0811-2 081\-1 088-2,3 088-1 SECRK,F8-2 FA-1,2 Fl\-2.l FA-2. 2 WCULV,Fl\3 F8-l NE-CREEK 2818-ECULV 37 0.0000 0.0000 0.0000 0.0000 0. 0000 0 .0000 0.0000 .0000 .0000 0.0000 .0000 0. 0000 0.0000 0. 0000 0.0000 0.0000 .0000 .0000 .0000 0.0000 .0000 .0000 .0000 .0000 .0000 .0000 I Simulation Specific Information Number of Input Conduits. Number of Natural Channels .. Number of Storage Junctions. Number of Orifices. Number of Free Outfalls .. . 0000 . 0000 . 0000 . 0000 0.0000 0. 0000 0.0000 0.0000 0.0000 0.0000 0.0000 .0000 .0000 Maximum Ponding Allowed Volume Flood Pond Volume 202.3049 2947.8650 439.3170 4007 .9078 143.2652 3310 . 0292 337.5096 337.5096 7.8386 155.6987 105.7945 155.8184 7.8377 . 0000 0.0000 0.0000 0.0000 .0000 0.0000 0.0000 0. 0000 0.0000 0.0000 . 0000 .0000 .0000 11 Number of Simulated Conduits. Number of Junctions .............. . Number of Weirs .................. . Number of Pumps. . ........... . Number of Tide Gate Outfalls. I Average \ Change in Junction or Conduit is defined as: I Conduit \Change=•> 100.0 ( Q(n+l) -Q(n) ) I Qfull I Junction \ Change==> 100.0 ( Y(n+l) -Y(n) ) I Yfull . 0000 . 0000 .0000 0.0000 0.0000 .0000 0.0000 . 0000 . 0000 . 0000 . 0000 21 13 The Conduit with the largest average change was .. 2818-HW with The Junction with the largest average change was.FA-2.2 with . 070 percent . 028 percent The Conduit with the largest sinuosity was. . .. PIPE-20-19 with I Table E2l . Continuity balance at the end of the simulation I Junction Inf low, Outfl ow or Street Flooding I Error .. Inflow + Initial Volume -Outflow -Final Volume Inflow Junction 081\-2 081\-1 088-2,3 088-1 SECRK,F8-2 Fl\-1,2 WCULV,Fl\3 F8-l NE-CREEK Inflow Volume,ft"3 3690. 0384 1440 .0142 12057. 9711 989.8325 4319.2689 14400 .1425 2160.0244 269.9543 l .044000E+06 Average Inflow, cfs .0250 . 4000 . 3494 . 2750 1.1998 4.0000 0. 6000 . 0750 290.0000 9. 391 Page IO of 11 0122-25.doc CANYON CREEK TOWNHOMES 25 YEAR PROPOSED XP-SWMM ANALYSIS Outflow Outflow Average Junction Volume,ft ... 3 Outflow, cfs ----------------------------------- 2818-ECULV .065796E+06 296. 0543 37 16540. 9705 4.5947 I Initial system volume 3. 9048E+OS Cu Ft I Total system inflow volume 1. 0833E+06 Cu Ft I Inflow+ Initial volume l.4738E+06 Cu Ft I··===================·····====····===·······===····== 1 Total system outflow . 0823E+06 Cu ft I Volume left in system .9748E+05 Cu ft I Evaporation O.OOOOE+OO Cu ft I Outflow + Final Volume 1. 2798E+06 Cu ft Total Model Continuity Error Error in Continuity, Percent : Error in Continuity, ft ... 3 + Error means a continuity loss, 13 .16217 193984 .238 a gain Page 11 of11 0 122-25.doc CANYON CREEK TOWNHOMES 50 YEAR PROPOSED XP-SWMM ANALYSIS Input File , c,\XPS\0122-50ii.XP Current Directory' C, \XPS\XP-UDD-1 Executable Name: C: \XPS\XP-UDD-1 \swmmengw. exe Read a line(s) and found O items(s) from your cfg file. XP-SWMM2000 I Storm Water Management Model I Version 7.51 I ·====···=·=====····················====·=···===I Developed by I XP Software Inc. and Pty. Ltd. Based on the U.S. EPA Storm Water Management Model Version 4.40 Originally Developed by Metcalf & Eddy, Inc. University of Florida Camp Dresser & McKee Inc. September 1970 EPA-SWMM is maintained by Oregon State University Camp Dresser & McKee Inc. l====·········=·-------··············==········=I I XP Software October, 2000 I I Data File Version---> 9.0 j Input and Output file names by SWMM Layer Input File to Layer Output File to Layer JOT US JOT US Special command line arguments in XP-SWMM2000 . This I now includes program defaults. $Keywords are the program! defaults. Other Keywords are from the SWMMCOM.CFG file. I or the command line or any cfg file on the command line. I Examples include these in the file xpswm.bat under the I section :solve or in the windows version XPSWMM32 in thel file solve.bat I Note: the cfg file should be in the subdirectory swmxp I I or defined by the set variable in the xpswm.bat I file. Some examples of the command lines possible! are shown below: I swmmd swmmcom. cfg swmmd my. c fg swmmd nokeys nconvS perv extranwq $powerstation 0. 0000 $perv 0 . 0000 $oldegg 0. 0000 $as 0.0000 $nof lat 0. 0000 $oldomega 0. 0000 $oldvol 0. 0000 $implicit 0. 0000 $oldhot 0 .0000 $oldscs 0. 0000 $flood .0000 $nokeys . 0000 $pzero .0000 $oldvol2 0. 0000 $oldhotl .0000 $pumpwt .0000 $ecloss .0000 $exout .0000 $oldbnd .0000 $nogrelev 0. 0000 $ncmid . 0000 $new nl 97 .0000 -$best97 0. 0000 $newbound 0. 0000 7 11 21 24 28 29 31 33 40 42 55 59 63 70 77 97 154 161 164 290 294 295 I I I I I Parameter Values on the Tapes Common Block.These are the I I values read from the data file and dynamically allocated I I by the model for this simulation. I Number of Subcatchments in the Runoff Block (NW) . Number of Channel/Pipes in the Runoff Block (NG) Runoff Water quality constituents (NRQ). Runoff Land Uses per Subcatchment (NLU) ....... . Number of Elements in the Transport Block (NET) Number of Storage Junctions in Transport (NTSE) . Page 1 of 11 0122-50.doc CANYON CREEK TOWNHOMES 50 YEAR PROPOSED XP-SWMM ANALYSIS Number of Input Hydrographs in Transport (NTH) ... Number of Elements in the Extran Block (NEE) 21 Number of Groundwater Subcatchments in Runoff (NGW). Number of Interface locations for all Blocks (NIE) 21 Number of Pumps in Ext ran (NEP) . . . . . . . . . . . . . . . 0 Number of Orifices in Ext ran (NEO) ·········· Number of Tide Gates/Free Outfalls in Ext ran (NTG). Number of Extran Weirs (NEW) ... Number of scs hydrograph points ... Number of Extran printout locations (NPO). .......... Number of Tide elements in Extran (NTE) .... Number of Natural channels (NNC). Number of Storage junctions in Ext ran (NVSE). 7 Number of Time history data points in Ext ran (NTVAL) . 0 Number of Variable storage elements in Ext ran INVSTI 10 Number of Input Hydrographs in Ext ran (NEH). 10 Number of Particle sizes in Transport Block INPS) .. 0 Number of User defined conduits (NHW) ...... 21 Number of Connecting conduits in Extran (NECC) 20 Number of Upstream elements in Transport (NTCC) 10 Number of Storage/treatment plants (NSTU) 0 Number of Values for Rl lines in Transport (NRl) Number of Nodes to be allowed for (NNOD) ... 21 Number of Plugs in a Storage Treatment Unit. ####################################################### # Entry made to the HYDRAULIC Layer (Block) of SWMM # # Last Updated October,2000 by XP Software # CANYON CREEK TOWNHOMES HYDRAULICS TABLES IN THE OUTPUT FILE These are the more important tables in the output file. You can use your editor to find the table numbers, for example: search for Table E20 to check continuity. This output file can be imported into a Word Processor and printed on US letter or A4 paper using portrait mode, courier font, a size of 8 pt. and margins of 0.75 Table El Table E2 Table EJ Table E4 Table E4a Table ES Table ES a Table E6 Table E7 Table EB Table E9 Table ElO Table Ell Table El2 Basic Conduit Data Conduit Factor Data Junction Data Conduit Connectivity Data Dry Weather Flow Data Junction Time Step Limitation Summary Conduit Explicit Condition Summary Final Model Condition Iteration Summary Junction Time Step Limitation Summary Junction Summary Statistics Conduit Summary Statistics Area assumptions used in the analysis Mean conduit information Table El3 Table El4 Table ElS Channel losses(H) and culvert info Natural Channel Overbank Flow Information Spreadsheet Info List Table El6 Table El 7 Table ElB Table El9 -New Conduit Output Section Pump Operation Junction Continuity Error Junction Inflow Sources Table Table Table E20 E21 E22 Junction Flooding and Volume List Continuity balance at simulation end Model Judgement Section Time Control from Hydraulics Job Control Year.. 95 Month .... Day....... 1 Hour .. Minute ....•.. o Second. Control information for simulation Integration cycles .......... . Length of integration step is. Simulation length ........... . Do not create equiv. pipes(NEQUAL). Use U.S. customary units for I/O .. Printing starts in cycle. Intermediate printout intervals of. Intermediate printout intervals of. Summary printout intervals of ... Summary printout time interval of .. Hot start file parameter (REDO) .. Initial time ..... Iteration variables: SURTOL. SURJUN. QREF. Minimum depth (m or ft). 14400 0. 25 .00 500 2 .08 500 2.08 1 0. 00 0.0001 0.0060 1 . 0000 0. 0000 seconds hours cycles minutes cycles minutes hours mm or inch Page 2 of 11 0122-50.doc CANYON CREEK TOWNHOMES 50 YEAR PROPOSED XP-SWMM ANALYSIS Underrel axation parameter . Time weighting parameter .... Courant Time Step Factor .. Default Expansion/Contraction K Default Entrance/Exit K. Default surface area of junctions .. NJSW input hydrograph junctions. or user defined hydrographs ... Table El -Conduit Data Inp Conduit Num Name 1 CREEK-S CREEK-N 2818-HW 4 38 S 12PIPE1 PIPE 1S_Bl-B2 PIPE-OB 9 PIPE-20-19 10 ORIFICE 11 PIPE-21-19 Length Conduit (ft) Class 200.00 Trapezoid 200. 00 Trapezoid 10.00 Trapezoid 1.00 Circular 50.00 Circular 42.00 Circular 25.00 Circular 50.00 Circular 75.00 Circular 110. 00 Circular 75. 00 Circular Total length of all conduits Table E2 -Conduit Factor Data 0. 8SOO 0 . 8SOO 1. 0000 0. 0000 0 . 0000 12.57 square feet . 8 Area ( ft.2) Manning Max Width 11S2. 00 1672. 00 1400.00 0.79 0 . 20 .09 . 23 1. 23 0.79 0.79 0. 79 Coef. (ft) 0.07000 0.07000 0.07000 0.01400 0.01400 0.01400 0.01400 0.01400 0.01400 0.01400 0.01400 10. 00 10. 00 10. 00 1. 00 0. so 0. 33 l.2S l .2S 1. 00 1. 00 1. 00 838. 0000 feet Trapezoid Depth Side (ft) Slopes 18.00 22.00 20.00 . 00 . so .33 .2S .2S 1. 00 1. 00 1. 00 3.00 3.00 3 .00 Time Low Flow Depth at Conduit Name Number Entrance Exit Exp/Conte Weighting Roughness Which Flow of Barrels Loss Coef Loss Coef Coef f icnt Parameter Factor n Changes Routing 12PIPE1 PIPE 1S_Bl-B2 PIPE-OB ORIFICE 1 . 0000 1 . 0000 1. 0000 1 . 0000 1. 0000 0. 2000 0. sooo 0. 2000 0. sooo 0. sooo 1 . 0000 1 . 0000 1. 0000 1. 0000 1. 0000 . 0000 0. 0000 . 0000 0. 0000 . 0000 ·=====·=·=====·=··=====·========·=======·-·====·----· If there are messages about (sqrt(g*d)•dt/dx), or the sqrt(wave celerity)•time step/conduit length in the output file all it means is that the program will lower the internal time step to satisfy this condition (explicit condition). You control the actual internal time step by using the minimum courant t ime step factor in the HYDRAULICS job control. The message put in words states that the smallest conduit with the fastest velocity will control the time step selection. You have further control by using the modify conduit option in the HYDRAULICS Job Control . .8SOO 0.8SOO 0.8SOO 0.8SOO 0.8SOO •••> Warning ! (sqrt (wave celerity) •time step/conduit length) in conduit 38 is 1 .42 at full depth. Conduit Volume ·=======·=====·=·==. Full pipe or full open conduit volume Input full depth volume. 5. 7911E+05 cubic feet ·=======·=====·····======·=====·=========·======····· Table Ela -Junction Data Inp Junction Ground Crown Invert Qinst Num Name Elevation Elevation Elevation cf a DBA-2 2 DBA-1 3 DBB-2,3 DBB-1 SECRK,FB-2 FA-1, 2 FA-2 .1 FA-2.2 WCULV,Fl\3 10 FB-1 11 NE-CREEK 12 2818-ECULV 13 37 317.0000 313.SOOO 313.0000 0 . 0000 . 0000 . 0000 . 0000 . 0000 317.0000 313.0000 312 .1600 310.6100 313.0000 309.7SOO 320.0000 317 .0000 313.9400 311 .06SO 313 .94 00 311 .4400 313.9400 311 .4400 310. 0000 308 . 0000 324 . 0000 314 . 0000 320.0000 320.0000 324.0000 313.9900 310.0000 307.9000 310. 0000 309.3600 306. 0000 29S. 0000 309. 9600 310.4400 310.4400 307. 0000 0. 0000 0 . 0000 0 . 0000 0 . 0000 294 . 0000 0 . 0000 298. 0000 290. 0000 293.9900 306. 9000 . 0000 0. 0000 Table EJb -Junction Data Initial Depth-ft 0. 0000 . 0000 . 0000 . 0000 . 0000 0. 0000 0 . 0000 0.0000 0. 0000 0.0000 .0000 .0000 .0000 1. 0000 1. 0000 1 . 0000 1. 0000 1 . 0000 .oooo Standard 0.0000 Standard 0.0000 Standard 0.0000 Standard 0.0000 Standard . 00 . 00 . 00 Dynamic Wave Dynamic Wave Dynamic Wave Dynamic Wave Dynamic Wave Page 3of11 0122-50.doc CANYON CREEK TOWNHOMES 50 YEAR PROPOSED XP-SWMM ANALYSIS Inp Junction Num Name DBA-2 DBA-1 DBB-2,3 4 DBB-1 5 SECRK,FB-2 FA-1, 2 FA-2.1 FA-2. 2 9 WCULV,FA3 10 FB-1 11 NE-CREEK 12 2818-ECULV 13 37 x Coord. 99. 350 119. 976 99. 058 120.185 135.269 90. 4 83 85.336 95. 770 91. 056 132. 616 142. 323 132. 962 94 .966 y Coord. Type of Manhole 473.221 Sealed Manhole 478.124 Sealed Manhole 467.667 Sealed Manhole 466.356 Sealed Manhole 464 .853 Sealed Manhole 452.889 Sealed Manhole 453.292 Sealed Manhole 452.615 Sealed Manhole 446. 853 Sealed Manhole 450.836 Sealed Manhole 480.638 Sealed Manhole 445.097 Sealed Manhole 444.735 Seal ed Manhole Type of Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Table E4 -Conduit Connectivity Input Conduit Number Name Upstream Downstream Node Node 10 11 CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB SECRK,FB-2 FB-1 NE-CREEK SECRK,FB-2 FB-1 2818-ECULV WCULV,FA3 37 DBA-2 DBA-1 DBA-1 NE-CREEK DBB-2,3 DBB-1 PIPE-20-19 FA-2.l ORIFICE FA-1,2 PIPE-21-19 FA-2.2 DBB-1 SECRK,FB-2 FA-1,2 WCULV,FA3 FA-1, 2 Storage Junction Data MAXIMUM OR Upstream Downstream Elevation Elevation 295. 000 298. 000 294.000 307. 000 313.000 310.000 309.360 306.000 310.440 309.960 310.440 294.000 No Design 295.000 No Design 293. 990 No Design 306. 900 No Design 312. 500 No Design 298. 000 No Design 308. 500 No Design 295.000 No Design 310.065 No Design 307. 000 No Design 310.065 No Design PEAK OR CROWN DEPTH STORAGE JUNCTION JUNCTION CONSTANT SURFACE CONSTANT VOLUME ELEVATION STARTS NUMBER OR NAME TYPE AREA (FT2) (CUBIC FEET) (FT) FROM Maximum Capacity DBA-2 DBA-1 DBB-2,3 DBB-1 FA-1, 2 FA-2.1 FA-2. 2 Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area 2211. 9768 1524.6000 7361. 6400 2439.3600 9757.4400 1524.6000 1524.6000 5207.8244 6963. 7006 24092. 7453 13099. 6830 3310. 0292 839.7635 839. 7635 317.0000 Node Invert 31 7. 0000 Node Invert 312 .1600 Node Invert 313. 0000 Node Invert 313. 9400 Node Invert 313.9400 Node Invert 313.9400 Node Invert Variable storage data for node IDBA-2 Data Point Elevation ft 313. 0000 315. 0000 315.2500 315. 5000 315.7500 316. 0000 316.2500 316.5000 318.0000 Depth ft 0. 0000 2. 0000 . 2500 2.5000 2.7500 3.0000 3.2500 3.5000 5.0000 Area ft '2 3 . 9204 3. 9204 245.2428 744.8760 1378. 2384 1918. 8180 2211. 9768 2211. 9768 2211. 9768 Variable storage data for node IDBA-1 Data Point Elevation ft 310.0000 310.2500 310. 5000 310.7500 315.0000 Depth ft 0.0000 0.2500 0. 5000 0.7500 5 . 0000 Area ft'2 0.4356 261.3600 1001.8800 1524.6000 1524.6000 Variable storage data for node IDBB-2,3 Data Point Elevation ft 309.3600 311.3600 311. 5000 311. 7500 312.0000 312 .2500 Depth ft .0000 .0000 2 .1400 .3900 . 6400 2. 8900 Area ft ·2 4.3560 4.3560 130. 6800 1001.8800 2962.0800 4617.3600 Volume ft') 0. 0000 7 . 84 08 31.1883 149.3154 410 .6766 820.9496 1336. 8650 1889. 8592 5207.8244 Volume ft') 0 . 0000 22 .7055 170.6183 484.1506 6963. 7006 Volume ft') 0. 0000 8 . 7120 16. 1271 140.6601 614.5473 1554.3541 Page 4 of l l 0122-50.doc CANYON CREEK TOWNHOMES 50 YEAR PROPOSED XP-SWMM ANALYSIS 312.5000 315.3600 .1400 6.0000 7361. 6400 7361.6400 Variable storage data for node [DBB-1 Data Point Elevation ft 306.0000 306.2500 306.5000 306.7500 307. 0000 307.2500 312.0000 Depth ft 0.0000 0.2500 0.5000 0.7500 l. 0000 1.2500 6.0000 Area ft'2 4.3560 174.2400 784. 0800 1655. 2800 2308.6800 2439.3600 2439.3600 Variable storage data for node IFA-1,2 Data Point 10 Elevation ft 309. 9600 311. 9600 312.0200 312.1200 312.2200 312.3200 312.4200 312.5200 312.6200 312.6700 Depth ft 0.0000 2.0000 2.0600 2.1600 2.2600 2.3600 2.4600 2.5600 2.6600 2. 7100 Area ft'2 4.3560 4.3560 87.1200 740. 5200 2003.7600 5314 .3200 7666.5600 8363.5200 8929. 8000 9757.4400 Variable storage data for node fFA-2.l Data Point 10 Elevation ft 310.4400 312.4400 312.5000 312.6000 312.7000 312.8000 312.9000 313. 0000 313.1000 313 .1500 Depth ft 0.0000 2. 0000 2.0600 2.1600 . 2600 .3600 .4600 .5600 .6600 . 7100 Area ft'2 4.3560 4.3560 87.1200 696.9600 1524.6000 1524.6000 1524.6000 1524.6000 1524.6000 1524.6000 Variable storage data for node IFA-2.2 Data Point 10 Elevation ft 310.4400 312.4400 312. 5000 312.6000 312.7000 312.8000 312.9000 313.0000 313.1000 313.1500 Weir Data Depth ft . 0000 . 0000 . 0600 .1600 .2600 .3600 .4600 . 5600 2. 6600 2. 7100 From To Junction Junction Link Number DBA-2 DBA-1 DBB-2, 3 DBB-1 FA-2. l FA-2 .2 FA-2. 2 DBA-2 DBA-1 WEIR NE-CREEK WEIR DBB-1 WEIR SECRK, FB-2WEIR FA-1,2 WEIR FA-1,2 WEIR DBB-2,3 WEIR DBB-2,3 WEIR # # # # 4 # # # # Area ft'2 4.3560 4.3560 87. 1200 696.9600 1524.6000 1524.6000 1524.6000 1524.6000 1524. 6000 1524.6000 Crest Type Height (ft) 3. 23 4.00 2.80 4.00 2.35 .35 . 56 2.38 FREE OUTFALL DATA (DATA GROUP Il) BOUNDARY CONDITION ON DATA GROUP Jl 3038 .4549 24092. 7453 Volume ft •3 0.0000 17.1788 127.8404 426.0572 919. 2929 1512. 7230 13099. 6830 Volume ft'3 0.0000 8. 7120 10.9311 46.9857 179.0658 531 .7759 1177. 2382 1978.4895 2843.0010 3310. 0292 Volume ft'3 0. 0000 8 . 7120 10.9311 45.2809 153.6935 306.1535 458.6135 611 .0735 763.5335 839.7635 Volume ft •3 0 . 0000 8 . 7120 10.9311 45.2809 153 .6935 306 .1535 458.6135 611.0735 763 .5335 839.7635 Weir Top (ft) Weir Length (ft) 4.00 10. 00 . 80 .00 .50 .50 .50 4.00 5. 00 60. 00 .00 20.00 23.00 23.00 23.00 10.00 Outfall at Junction ... 2818-ECULV has boundary condition number. Outfall at Junction. .37 has boundary condition number. Discharge Coefficient 3.0000 3.0000 3 .0000 3.0000 3.0000 3.0000 3.0000 3. 0000 Weir Power 1.5000 l. 5000 1.5000 l. 5000 l. 5000 . 5000 . 5000 1. 5000 Page 5of1 1 0122-50.doc CANYON CREEK TOWNHOMES 50 YEAR PROPOSED XP-SWMM ANALYSIS INTERNAL CONNECTIVITY INFORMATION CONDUIT WEIR # WEIR # WEIR # WEIR # WEIR # WEIR # 6 WEIR # WEIR # FREE # FREE # JUNCTION JUNCTION D8A-2 D8A-l D8A-l NE-CREEK 088-2,3 088-1 088-1 SECRK,F8-2 FA-2.l FA-1,2 FA-2.2 FA-1,2 FA-2.2 088-2,3 D8A-2 088-2,3 2818-ECULV BOUNDARY 37 BOUNDARY Table EB -Junction Time Step Limitation Summary Not Convr Avg Convr Conv err Omega Cng Max Itern Number of times this junction did not converge during the simulation. Average junction iterations. z Mean convergence error. Change of omega during iterations Maximum number of iterations Junction Not Convr Avg Convr Total Itt Omega Cng Max !tern Ittrn >10 Ittrn >25 Ittrn >40 DBA-2 DBA-1 DB8-2,3 DBB-1 SECRK,FB-2 FA-1, 2 FA-2.l FA-2.2 WCULV, FA3 FB-1 NE-CREEK 2818-ECULV 37 33 1.34 2 .11 1. 36 .29 1.14 1.54 .63 . 63 1. 02 1. 00 1. 00 1.87 1.81 77296 121816 78194 74153 65525 88742 93714 93714 58873 57599 57603 107711 104451 Total number of iterations for all junctions. Minimum number of possible iterations ... Efficiency of the simulation. 1079391 748787 1. 44 27 501 31 501 5 12 12 Good Efficiency *=======================••z~z•:z===========================* Extran Efficiency is an indicator of the efficiency of the simulation. Ideal efficiency is one iteration per time step. Altering the underrelaxation parameter, lowering the time step, increasing the flow and head tolerance are good ways of improving the efficiency, another is lowering the internal time step. The lower efficiency generally the faster your model will run. I I I I I the I I If your efficiency is less than 1.5 then you may try I increasing your time step so that your overall simulation! is faster. Ideal efficiency would be around 2. O I Good Efficiency < 1.5 mean iterations Excellent Efficiency< 2.5 and > 1.5 mean iterations Good Efficiency< 4 .0 and> 2 .5 mean iterations Fair Efficiency < 7 . 5 and > 4. O mean iterations Poor Efficiency > 7. 5 mean i terations I Table E9 -JUNCTION SUMMARY STATISTICS I The Maximum area is only the area of the node, it I I does not include the area of the surrounding conduits! I I I I I I Uppermost Maximum Ground PipeCrown Junction Elevation Elevation Elevation Time Feet of Junction Name DBA-2 feet feet feet 317.0000 317.0000 315.5871 DBA-1 317.0000 317.0000 312.5000 D8B-2,3 312.1600 312.1600 312.1235 DBB-1 313.0000 313 .0000 308.5000 SECRK,FB-2 320.0000 317.0000 306.4011 FA-1,2 313.9400 313.9400 312.8731 FA-2.1 313.9400 313.9400 312.8738 FA-2.2 313.9400 313.9400 312.8738 WCULV,FA3 310.0000 308.0000 307.6488 F8-l 324.0000 314.0000 306.3905 NE-CREEK 320.0000 320.0000 306.4191 2818-ECULV 324.0000 313.9900 306.3900 37 310.0000 307.9000 307.5488 of Surcharge Occurence at Max Hr. Min. Elevation 12 30 18 26 9 24 25 25 10 9 10 0.0000 0.0000 0.0000 0.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 . 0000 .0000 211 192 74 52 125 Maximum Freeboard Junction of node Area feet ft"2 1.4129 965.4531 .5000 1524.6000 .0365 3780.0947 4.5000 2439.3600 13.5989 12.5660 .0669 9757.4400 .0662 1524.6000 1.0662 1524.6000 2.3512 17.6095 13. 5809 17.6100 2.4512 12.5660 12.5660 12.5660 12.5660 12.5660 122 Page 6of11 0122-50.doc CANYON CREEK TOWNHOMES 50 YEAR PROPOSED XP-SWMM ANALYSIS Table ElO -CONDUIT SUMMARY STATISTICS Note: The peak flow may be less than the design flow and the conduit may still surcharge because of the downstream boundary conditions . Name Conduit Name CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 WEIR # WEIR # WEIR # WEIR # WEIR # WEIR # WEIR # WEIR # FREE # FREE # 2 Design Flow (cfs) Conduit Design Vertical Velocity Depth (ft/a) (in) Maximum Computed Flow (cfs) 7648.6 6.6394 216.0000 301.9117 21775. 13.0235 264.0000 290.8424 4436.7 3.1691 240.0000 302.1775 10.462 13.3204 12.0000 7.8869 0 .5210 2.6536 6.0000 1.0955 0.9196 10.7521 .9600 0.6520 11.125 9.0657 15.0000 10.9750 28.135 22.9264 15.0000 8.7666 .339 2.9785 12.0000 -1.1164 .427 6.9098 12.0000 5.2059 2.339 2.9785 12.0000 -1.1164 Undefnd Undefnd Undefnd 0.0000 Undefnd Undefnd Undefnd 0.0000 Undefnd Undefnd Undefnd 0.0000 Undefnd Undefnd Undefnd 0.0000 Undefnd Undefnd Undefnd -1.1720 Undefnd Undefnd Undefnd -1.1720 Undefnd Undefnd Undefnd 0.0000 Undefnd Undefnd Undefnd 2.8267 Undefnd Undefnd Undefnd302.1775 Undefnd Undefnd Undefnd 7.8869 Time of Occurence Hr. Min. 12 2 12 10 12 32 18 27 15 10 15 19 19 0 12 12 10 Maximum Computed Velocity Cft/sl 0.5589 0.7458 0.5167 14 . 6290 5.5283 6. 9724 9.4760 6.9575 -1.4079 7.7538 -1.4079 Time of Occurence Hr. Min. 12 48 12 10 12 32 18 27 15 13 15 Ratio of Maximum Depth > Max . to at Pipe Ends Design Upstream Dwnstrm Flow (ft) (ft) .0395 306.4011 306.3905 .0134 306.4191 306.4011 0.0681 306.3905 306 .3900 .7539 307.6488 307.5488 .1027 315.5871 312 .9823 .7089 312.5000 306.4191 .9865 312.1235 309 .5103 .3116 308.5000 306.4011 -0.4772 312.8738 312.8731 0.9593 312.8731 307.6488 -0.4772 312.8738 312.8731 Table Ell. Area assumptions used in the analysis! Subcritical and Critical flow assumptions from I Subroutine Head. See Figure 17-1 in the I manual for further information. I Length Length of Length of Length of of Sub-Upstream Downstream Maximum Maximum Maximum Conduit Dry Critical Critical Cri tical Hydraulic X-Sect Vel*D Name Flow (min} Flow(min) Flow(min) Flow(min) Radius-m Area(ft ... 2) (ft ... 2/s) CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 0. 0000 . 0000 . 0000 . 0000 60.0000 60.0000 60.0000 60.0000 0.1375 60.0000 0. 0104 60. 0000 60.0000 60. 0000 60. 0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000 I Table El2. Mean Conduit Flow Information ·----·===========·=·=================·======* . 0000 . 0000 . 0000 . 0000 59.8625 0.0000 59.9896 0.0000 0.0000 0.0000 0.0000 6 . 3523 5.3434 6. 6165 0. 2877 0.1506 0. 082 5 0. 3 568 0 .3498 0. 2887 0. 2669 0 . 2887 540.1940 6.6485 390.0425 .3903 584.8380 .4044 0.5391 .4914 0.1982 8.4841 0.0935 38.0643 1.1582 17.8804 1 .2884 48.3564 0.8076 3.5669 0.6791 13.4479 0.8076 3.5669 Mean Flow (cf s) Total Flow (ft'3) Mean Percent Change Low Flow Weightng Mean Mean Mean Cross Area Mean Conduit Roughness Conduit Name CREEK-S 296. 7509 1068303. CREEK-N 290. 6269 1046257. 2818-HW 296.8259 1068573. 38 5.1592 18572.96 12PIPE1 0.5204 1873.602 PIPE 0.6269 2256.983 15_Bl-B2 4.4727 16101.75 PIPE-OB 4.7741 17186.59 PIPE-20-19 -0.0413 -148.776 ORIFICE 4.4843 16143.36 PIPE-21-19 -0.0413 -148.776 WEIR # l 0. 0000 0. 0000 WEIR # 0 . 0000 0. 0000 WEIR # .0000 0.0000 WEIR # 4 . 0000 0. 0000 WEIR # 5 -0.0295 -106.341 WEIR # -0.0295 -106.341 WEIR # 0 . 0000 0. 0000 WEIR # 0.6243 2247.312 FREE # 296.8259 1068573. FREE# 5.1592 18572.96 . 0575 . 0145 . 0583 . 0153 . 3942 . 0002 0. 3162 .0326 . 0360 . 0063 . 0360 . 0000 . 0000 . 0000 .0000 .0000 . 0000 .8809 . 0000 . 0000 . 0000 l . 0000 Froude Hydraulic Number Radius 0. 0287 0. 04 53 0. 02 54 3.3122 1.3230 0. 8284 3.1926 0. 5609 0. 0250 1 . 8431 0. 0250 6.3522 540.1683 5.3431 390.0019 .6165 584.8368 .2463 0.3876 0.0774 0.1069 0.0825 0.0931 0.1726 0.5336 0.3039 1.0825 0.2507 0.7881 0.2483 0.6113 0.2507 0.7881 0. 0700 0. 0700 0. 0700 . 0140 . 0140 0 .0140 0. 0140 . 0140 0. 0140 0.0140 . 0140 Page 7 of 11 0 122-50.doc CANYON CREEK TOWNHOMES 50 YEAR PROPOSED XP-SWMM ANALYSIS I Table El3. Channel losses(H), headwater depth (HW), tailwater I depth (TW) , critical and normal depth (Ye and Yn) . I Use this section for culvert comparisons Conduit Name CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 Maximum Flow 301. 912 290.842 302.178 7.887 1.096 0.652 10. 975 8.767 0.610 5.206 0.610 Head Friction Critical Loss Loss Depth 0.000 0.000 0.000 0.000 0.582 1.108 1.824 1.116 0.000 l. 549 0.000 0.012 0.026 0.000 0.100 2.027 5.046 0.830 l. 013 0.025 .367 0.025 .366 . 302 .387 . 000 0. 482 2.500 1.239 . 14 7 .325 0. 925 0 .325 Normal Depth 4 .425 3.325 6 .417 0. 649 0.500 0. 205 . 010 .479 .348 0. 786 0.348 CULVERT ANALYSIS CLASSIFICATION, and the time the j culvert was in a particular classification I during the simulation. The time is in minutes. I The Dynamic Wave Equation is used for all conduit! analysis but the culvert flow classification I condition is based on the HW and TW depths. I *========================================================z=* Mild Slope Critical D Conduit Outlet HW Elevat 306.401 306.419 306.390 307.649 315.587 312.500 312.124 308.499 312.781 312.659 312.781 TW Elevat 306.390 Max Flow 306.401 Max Flow 306.390 Max Flow 307.549 Max Flow 312.982 Max Flow 306.418 Max Flow 309.510 Max Flow 306.401 Max Flow 312. 756 Max Flow 307. 643 Max Flow 312.756 Max Flow Inlet Inlet Name Control Mild Slope TW Control Outlet Control Steep Slope TW Insignf Entrance Control Slug Flow Outlet/ Entrance Control Mild Slope TW > D Outlet Control Mild Slope TW c::-D Outlet Control Outlet Control Control Configuration CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 0.000 0.000 .000 0.000 0.800 0.000 0.000 0.000 0.000 0.000 0.000 60.000 60.000 60.000 0.000 24.575 0.000 0.000 0.000 0.512 0.000 0.512 0.000 0.000 0.000 0.000 4.700 60.000 42.650 0.000 0.000 60.000 0.000 . 000 . 000 . 000 . 000 . 000 . 000 0 . 000 14. 812 0 . 000 . 000 . 000 0 . 000 0.000 0.000 0.000 0.000 0. 000 0.000 0. 000 59 . 487 0 . 000 59. 487 . 000 . 000 . 000 . 000 0.000 0.000 0.000 0.000 0.000 . 000 . 000 0.000 .000 0.000 60.000 29.925 0.000 17.350 45.187 0.000 0.000 0.000 *=========== =========================* Kinemat c Wave Approximations I Time in M nutes for Each Condition I Conduit Length of Slope Super- Name Normal Flow Criteria Critical Roll Waves CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 0.00 0.00 0.00 0 .11 0.05 0.00 .02 .00 0.00 0.00 0.00 59.70 60.00 60. 00 .11 . 06 . 00 . 05 . 00 . 74 . 00 0 . 74 .00 . 00 0.00 60. 00 .30 . 00 37.08 0.00 0. 00 . 99 . 00 Table El5 -SPREADSHEET INFO LIST . 00 . 00 . 00 . 00 . 00 .00 . 00 0 . 00 0. 00 . 00 .00 Conduit Flow and Junction Depth Information for use in spreadsheets. The maximum values in this table are the true maximum values because they sample every time step. The values in the review results may only be the maximum of a subset of all the time steps in the run. Note: These flows are only the flows in a single barrel . *================================•==z••••s•>Es•z•zzz:::====* Conduit Name CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 WEIR # WEIR # WEIR # Maximum Flow 301.9117 290. 8424 302.1775 7. 8869 1.0955 0. 6520 10.9750 8.7666 -1.1164 5.2059 -1.1164 0 . 0000 0. 0000 0. 0000 Total Flow 1068303.34 1046256 .75 1068573.30 18572. 9598 1873.6025 2256.9830 16101 .7517 17186. 5854 -148. 7756 16143.3571 -148. 7756 0. 0000 .0000 0 .0000 Maximum Velocity 0.5589 0.7458 0.5167 14.6290 5.5283 6. 9724 . 4760 . 9575 -1.4079 7. 7538 -1.4079 0. 0000 0.0000 0.0000 ## Junction Invert ## Name Elevation ## ------------------- ## DBA-2 313.0000 ## DBA-1 310.0000 ## DBB-2,3 309.3600 ## DBB-1 306.0000 ## SECRK, FB-2 295. 0000 ## FA-1,2 309.9600 ## FA-2.l 310.4400 ## FA-2 .2 310.4400 ## WCULV,FA3 307.0000 ## FB-1 294.0000 ## NE-CREEK 298.0000 ## 2818-ECULV 293. 9900 ## 37 306.9000 ## .000 None .000 None .000 None .000 None O. 000 None .000 None .000 None .000 None o. 000 None .000 None .000 None Maximum Elevation 315.5871 312.5000 312.1235 308.5000 306.4011 312.8731 312.8738 312.8738 307.6488 306.3905 306.4191 306.3900 307.5488 Page 8of 11 0122-50.doc CANYON CREEK TOWNHOMES 50 YEAR PROPOSED XP-SWMM ANALYSIS WEIR # WEIR # WEIR # 6 WEIR # WEIR # FREE # FREE # 2 0 . 0000 . 0000 -1.1720 -106.3412 -1.1720 -106.3412 .0000 0.0000 .8267 2247.3116 302.1775 1068573.36 7 . 8869 18572. 9625 .0000 .0000 .0000 0.0000 0.0000 0.0000 0.0000 Table El5a -SPREADSHEET REACH LIST Peak flow and Total Flow listed by Reach or those conduits or diversions having the same upstream and downstream nodes. Upstream Downstream Maximum Node Node Flow SECRK,FB-2 FB-1 301.9117 NE-CREEK SECRK,FB-2 290.8424 FB-1 2818-ECULV 302.1775 WCULV,FA3 37 7.8869 DBA-2 DBA-1 1.0955 DBA-1 NE-CREEK 0. 6520 DBB-2,3 DBB-1 10.9750 DBB-1 SECRK,FB-2 8.7666 FA-2.1 FA-1,2 -1.1164 FA-1,2 WCULV,FA3 5.2059 FA-2.2 FA-1,2 -1.1164 FA-2.l FA-1,2 -1.1720 FA-2.2 FA-1,2 -1.1720 DBA-2 DBB-2,3 2.8267 Total Flow l.0683E+06 l.0463E+06 l.0686E+06 18572.9598 1873.6025 2256.9830 16101.7517 17186. 5854 -148. 7756 16143.3571 -148.7756 -106.3412 -106.3412 224 7. 3116 ## ## ## ## ## ## ## ######################################################### # Table El6. New Conduit Information Section # # Conduit Invert (IE) Elevation and Conduit # # Maximum Water Surface (WS) Elevations # ######################################################### Conduit Name Upstream Node Downstream Node IE Up IE On WS Up WS On Conduit Type CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 SECRK,FB-2 NE-CREEK FB-1 WCULV,FA3 DBA-2 DBA-1 DBB-2, 3 DBB-1 FA-2 .1 FA-1, 2 FA-2. 2 FB-1 SECRK, FB-2 2818-ECULV 37 DBA-1 NE-CREEK DBB-1 SECRK,FB-2 FA-1,2 WCULV,FA3 FA-1,2 295.0000 294.0000 298. 0000 295. 0000 294.0000 293.9900 307.0000 306.9000 313.0000 312.5000 310.0000 298 .0000 309.3600 308.5000 306.0000 295 .0000 310.4400 310.0650 309.9600 307.0000 310.4400 310.0650 306.4011 306.3905 306.4191 306.4011 306.3905 306.3900 307.6488 307.5488 315.5871 312.9823 312.5000 306.4191 312.1235 309.5103 308.5000 306.4011 312.8738 312.8731 312.8731 307.6488 312.8738 312.8731 Table El8 -Junction Continuity Error. Division by Volume added 11/96 Continuity Error "' Net Flow + Beginning Volume -Ending Volume Total Fl ow + (Beginning Volume + Ending Volume)/2 Net Flow Node Inflow -Node Outflow Total Flow • absolute (Inflow + Outflow Intermediate column is a judgement on the node continuity error. Excellent < 1 percent Fair S to 10 percent Terrible > SO percent Great Poor 1 to 2 percent 10 to 2S percent Good Bad to percent 2S to so percent Trapezoid Trapezoid Trapezoid Circular Circular Circular Circular Circular Circular Circular Circular Junction Name <------Continuity Error -------> Remaining Beginning Net Flow Total Flow Failed to Volume \ of Node \ of Inflow Volume Volume Thru Node Thru Node Converge DBA-2 DBA-1 DBB-2,3 DBB-1 19. 8783 162.5850 -266.4137 67 .4823 0. 24 06 2.155 -.8342 0.1957 .00183 0.0149 0.0245 .00620 0.0610 2332.1409 0.0008 79.8818 0. 0171 1255. 6870 0. 0004 149.3770 SECRK, FB-2 100507 . 4957 4.393 -1.018 76. 630 76.630 -. 0135 9.235 100952.2351 201460.6314 FA-1,2 -339 .3103 FA-2.l 232 .7081 FA-2.2 232.7081 WCULV,FA3 -5 .0183 FB-1 61210.1132 NE-CREEK 29403. 6622 2818-ECULV 2770.5242 37 -5.1899 2.746 1.376 0.1294 -.0140 0.0312 0. 0214 0. 0214 . 00046 5. 624 2.702 0.2S46 . 00048 319.647S S9.7628 59.7628 23.2843 2S3.7413 37.3S86 37.3586 17.8534 61525.3216 122735.4372 29785.1149 59188.5403 3082.2184 5852 .8000 5.5558 0.3544 The total continuity error was l.93991E+OS cubic feet The remaining total volume was l.9822SE+OS cubic feet Your mean node continuity error was Excellent Your worst node continuity error was Fair 19.9222 8260.9127 1239.0389 5750.5878 -266.4133 31936 .6051 -2.0129 34368.1397 -0.9006 2136605.803 -273.4041 33033.6174 255.1123 255.1168 255.1123 255.1168 0.4127 37146.3174 -0.0024 2137146.S91 0.2368 2092513.731 -0.0574 2137146.659 0.0114 37145 .9223 33 Page 9of11 0122-50.doc CANYON CREEK TOWNHOMES 50 YEAR PROPOSED XP-SWMM ANALYSIS Table El9 -Junction Inflow Sources Junction Name 08A-2 08A-l 088-2,3 088-1 SECRK,F8-2 FA-1,2 WCULV,FA3 F8-l NE-CREEK 2818-ECULV 37 Units are either ft~3 or m~3 depending on the units in your model. Constant Inflow to Node 0.0000 0. 0000 0. 0000 0. 0000 . 0000 . 0000 . 0000 .0000 .0440E+06 0.0000 0.0000 User Inf low to Node 4139.9986 1620.0023 13587.5416 1079.8026 4859 .1281 16380.0266 2430.0005 269.9514 . 0000 . 0000 . 0000 Interface Inflow to Node 0.0000 0.0000 . 0000 . 0000 . 0000 . 0000 . 0000 0 . 0000 . 0000 . 0000 .0000 OWF Inlow to Node 0 . 0000 . 0000 . 0000 . 0000 . 0000 0.0000 0.0000 .0000 .0000 .0000 . 0000 Table E20 -Junction Flooding and Volume Listing. I The maximum volume is the total volume I in the node including the volume in the I flooded storage area. This is the max I volume at any time. The volume in the I flooded storage area is the total volume! above the ground elevation, where the I flooded pond storage area starts. I The fourth column is instantaneous, the fifth is thel sum of the flooded volume over the entire simulation! Units are either ftA3 or mAJ depending on the units. I Outflow from Node . 0000 0. 0000 0. 0000 0.0000 0.0000 0.0000 0.0000 0.0000 .0000 1. 0686E+06 18572. 9625 Out of System Flooded Volume Stored in System Junction Surcharged Flooded Name Time (min) Time(min) 08A-2 08A-l 088-2,3 088-1 SECRK,F8-2 FA-1,2 FA-2.l FA-2.2 WCULV,FA3 F8-l NE-CREEK 2818-ECULV 37 0 . 0000 0. 0000 0. 0000 0. 0000 0. 0000 0 . 0000 0 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 0.0000 0.0000 0.0000 .0000 0.0000 .0000 .0000 .0000 .0000 .0000 . 0000 .0000 . 0000 I Simulation Specific Information Number of Input Conduits ... Number of Natural Channels. Number of Storage Junctions. Number of Orifices. Number of Free Outfalls. . 0000 . 0000 . 0000 . 0000 0. 0000 . 0000 .0000 0.0000 0.0000 0.0000 .0000 .0000 .0000 Maximum Ponding Allowed Volume Flood Pond Volume 223.5638 3152 .2447 1030. 0070 4562. 0114 143.2657 3310. 0292 418.6285 418.6285 8. 1534 155.6987 105. 7948 155. 8184 8.1528 0. 0000 0. 0000 0.0000 . 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 11 Number of Simulated Conduits .. Number of Junctions. Number of Weirs. Number of Pumps. Number of Tide Gate Outfalls. I Average \ Change in Junction or Conduit is defined as: I Conduit \Change==> 100.0 ( Q(n+l) -Q(n) ) I Qfull I Junction \ Change ==> 100. O ( Y (n+l) -Y (n) ) I Yfull Evaporation from Node . 0000 . 0000 . 0000 . 0000 0. 0000 0. 0000 0. 0000 0. 0000 .0000 0.0000 .0000 The Conduit with the largest average change was .. 12PIPE1 The Junction with the largest average change was.FA-2 .1 The Conduit with the largest sinuosity was ....... 12PIPE1 with with with . 3 94 percent 0.023 percent 286. 257 *::::::::::::::z::z:::::::::::::::::::::::::::::::::::::::::::::::::* I Table E21. Continuity balance at the end of the simulation I Junction Inflow, Outflow or Street Flooding I Error = Inflow + Initial Volume -Outflow -Final Volume Inf low Inf low Average Junction Volume,ftA3 Inflow, cfs 08A-2 4139.9986 1.1500 08A-l 1620.0023 0.4500 088-2,3 13587.5417 .7743 088-1 1079.8026 .2999 SECRK,F8-2 4859.1282 1.3498 FA-1,2 16380 .0267 4.5500 WCULV,FA3 2430.0005 0.6750 F8-l 269 .9514 0.0750 NE-CREEK l.044000E+06 290.0000 21 13 Page 10of11 0122-50.doc CANYON CREEK TOWNHOMES 50 YEAR PROPOSED XP-SWMM ANALYSIS Outflow Outflow Average Junction Volume,ft"'3 Outflow, cfs ----------------------------------- 2818-ECULV l.068573E+06 296.8259 37 18572. 9625 5.1592 I Initial system volume 3. 9099E+OS Cu Ft I I Total system inflow volume l.0884E+06 Cu Ft I I Inflow+ Initial volume l.4794E+06 Cu Ft I l·=================================================··=I I Total system outflow 1. 0871E+06 Cu ft I I Volume left in system 1. 9822E+OS Cu ft I I Evaporation a. OOOOE+OO Cu ft I I Outflow + Final Volume 1. 28548+06 Cu ft I Total Model Continuity Error Error in Continuity, Percent z Error in Continuity, ft"'J + Error means a continuity loss, 13. 11276 193984.297 a gain Page 11 of 11 0122-50.doc CANYON CREEK TOWNHOMES 100 YEAR PROPOSED XP-SWMM ANALYSIS Input File C•\XPS\0122-lOOii.XP Current Directory' c,\XPS\XP-UDD-1 Executable Name: C:\XPS\XP-UDD-1\swmmengw.exe Read O line(s) and found o items(s) from your cfg file. XP-SWMM2000 I Storm Water Management Model I I Version 7. 51 I l···======================··········=·==========I I Developed by I l····=··=··===================·==·=··········===I I I j XP Software Inc. and Pty. Ltd. I I I I Based on the U.S. EPA I I Storm Water Management Model Version 4.40 I I I I Originally Developed by I I Metcalf & Eddy, Inc. I I University of Florida I I Camp Dresser & McKee Inc. I I September 1970 I I I I EPA-SWMM is maintained by I I Oregon State University I I Camp Dresser & McKee Inc . I l················==·====·=====·=================I I XP Software October, 2000 I I Data File Version ---> 9.0 I *===============================================* Input and Output file names by SWMM Layer Input File to Layer Output File to Layer 1 JOT US 1 JOT US *===========================================================* Special command line arguments in XP-SWMM2000. This I now includes program defaults. $Keywords are the program! defaults. Other Keywords are from the SWMMCOM.CFG file. I or the command line or any cfg file on the command line. I Examples include these in the file xpswm.bat under the I section :solve or in the windows version XPSWMM32 in thel file solve.bat I Note: the cfg file should be in the subdirectory swmxp I I or defined by the set variable in t he xpswm.bat I file. Some examples of the command lines possible! a re shown be low: I swmmd swmmcom.cfg swmmd my. c fg swmmd nokeys nconvS perv extranwq $powerstation .0000 $perv .0000 $oldegg .0000 $as .0000 $no flat .0000 $oldomega .0000 $oldvol .0000 $implicit 0. 0000 $oldhot 0. 0000 $olds cs 0. 0000 $flood 0. 0000 $nokeys 0 . 0000 $pzero . 0000 $oldvol2 . 0000 $oldhotl . 0000 $pumpwt . 0000 $ecloss . 0000 $exout 0. 0000 $oldbnd . 0000 $nogrelev . 0000 $ncmid . 0000 $new_nl -97 . 0000 $best97 0 . 0000 $newbound 0.0000 11 21 24 28 29 31 33 40 42 55 59 63 70 77 97 154 161 164 290 294 295 I I I I I Parameter Values on the Tapes Common Block.These are the I I values read from the data file and dynamically allocated 1 I by the model for this simulation. I Number of Subcatchments in the Runoff Block (NW) . Number of Channel/Pipes in the Runoff Block (NG) Runoff Water quality constituents (NRQ) .. Runoff Land Uses per Subcatchment (NLU) . Number of Elements in the Transport Block (NET) . Number of Storage Junctions in Transport (NTSE) . Page 1 of 11 0122-100.doc CANYON CREEK TOWNHOMES 100 YEAR PROPOSED XP-SWMM ANALYSIS Number of Input Hydrographs in Transport (NTH) . Number of Elements in the Extran Block (NEE).... 21 Number of Groundwater Subcatchments in Runoff (NGW). Number of Interface locations for all Blocks (NIE). 21 Number of Pumps in Extran (NEP) . . O Number of Orifices in Extran (NEO) ... Number of Tide Gates/Free Outfalls in Extran (NTG) .. Number of Extran Weirs (NEW) Number of scs hydrograph points. Number of Extran printout locations (NPO) Number of Tide elements in Extran (NTE) . . . ......•.. Number of Natural channels (NNC) . Number of Storage junctions in Extran (NVSE) .. Number of Time history data points in Extran(NTVAL). Number of Variable storage elements in Extran (NVST ) 10 Number of Input Hydrographs in Extran (NEH) 10 Number of Particle sizes in Transport Block (NPS ). Number of User defined conduits (NHW)............... 21 Number of Connecting conduits in Extran (NECC). 20 Number of Upstream elements in Transport (NTCC) 10 Number of Storage/treatment plants (NSTU) 0 Number of Values for Rl lines in Transport (NRl) Number of Nodes to be allowed for (NNOD) . 21 Number of Plugs in a Storage Treatment Unit. ####################################################### # Entry made to the HYDRAULIC Layer (Block) of SWMM # # Last Updated October,2000 by XP Software # CANYON CREEK TOWNHOMES HYDRAULICS TABLES IN THE OUTPUT FILE These are the more important tables in the output file. You can use your editor to find the table numbers, for example: search for Table E20 to check continuity. This output file can be imported into a Word Processor and printed on US letter or A4 paper using portrait mode, courier font, a size of e pt. and margins of 0.75 Table El Basic Conduit Data Table E2 Conduit Factor Data Table E3 Junction Data Table E4 Conduit Connectivity Data Table E4a Dry Weather Flow Data Table ES Junction Time Step Limitation Summary Table ES a Conduit Explicit Condition Summary Table E6 Final Model Condition Table E7 Iteration Summary Table EB Junction Time Step Limitation Summary Table E9 Junction Summary Statistics Table ElO Conduit Summary Statistics Table Ell Area assumptions used in the analysis Table El2 Mean conduit information Table El3 Channel losses (H) and culvert info Table El4 Natural Channel Overbank Flow Information Table ElS Spreadsheet Info List Table El6 New Conduit Output Section Table El7 Pump Operation Table El8 Junction Continuity Error Table El9 Junction Inf low Sources Table E20 Junction Flooding and Volume List Table E21 Continuity balance at simulation end Table E22 Model Judgement Section Time Control from Hydraulics Job Control Year. 95 Month. Day. Hour. Minute. Second. Control information for simulation Integration cycles. Length of integration step is. Simulation length .............. . Do not create equiv. pipes(NEQUAL). Use U.S. customary units for I/O .. . Printing starts in cycle .......... . Intermediate printout interval s of. Intermediate printout interval s of. Summary printout intervals of. Summary printout time interval of. Hot start file parameter (REDO). Initial time. Iteration variables: SURTOL. SURJUN. QREF. Minimum depth (m or ft) . 14400 0 . 25 1. 00 0 1 500 2 .08 500 2.08 . 00 0.0001 0.0060 1 .0000 0. 0000 seconds hours cycles minutes cycles minutes hours mm or inch Page 2of11 01 22-100.doc CANYON CREEK TOWNHOMES 100 YEAR PROPOSED XP-SWMM ANALYSIS Underrelaxation parameter. Time weighting parameter. Courant Time Step Factor .. Default Expansion/Contraction K Default Entrance/Exit K .. Default surface area of junctions. NJSW input hydrograph junctions. or user defined hydrographs. Table El -Conduit Data Inp Conduit Num Name CREEK-S CREEK-N 2818-HW 4 38 5 12PIPE1 6 PIPE 15_Bl-B2 PIPE-OB 9 PIPE-20-19 10 ORIFICE 11 PIPE-21-19 Length Conduit (ft) Class 200.00 Trapezoid 200. 00 Trapezoid 10. 00 Trapezoid 1.00 Circular 50. 00 Circular 42.00 Circular 25.00 Circular 50.00 Circular 75.00 Circular 110.00 Circular 75. 00 Circular Total length of all conduits Table E2 -Conduit Factor Data 0.8500 0. 8500 1. 0000 0. 0000 0. 0000 12.57 square feet. Area ( ft'2) Manning Max Width Coef. (ft) 1152.00 1672 00 1400.00 0. 79 0. 20 . 09 0.07000 . 07000 . 07000 .01400 . 01400 . 01400 . 23 . 01400 1. 23 . 01400 0.79 0.01400 0.79 0.01400 0.79 0.01400 838.0000 feet 10.00 10.00 10.00 1. 00 . 50 .33 .25 1 .25 1. 00 1. 00 1. 00 Trapezoid Depth Side (ft) Slopes 18.00 22. 00 20.00 .00 .50 .33 .25 1.25 1. 00 1. 00 1. 00 3.00 3.00 3.00 3.00 3.00 3.00 Time Low Flow Depth at Conduit Name Number Entrance Exit Exp/Conte Weighting Roughness Which Flow of Barrels Loss Coef Loss Coef Coefficnt Parameter Factor n Changes Routing 12PIPE1 PIPE 15_Bl-B2 PIPE-OB ORIFICE 1.0000 1.0000 .0000 .0000 1. 0000 0.2000 0. 5000 0.2000 0.5000 0. 5000 . 0000 . 0000 . 0000 . 0000 1.0000 .0000 .0000 .0000 0. 0000 0 . 0000 *===================================================* If there are messages about (sqrt(g*d)*dt/dx), or the sqrt(wave celerity)*time step/conduit length in the output file all it means is that the program will lower the internal time step to satisfy this condition (explicit condition). You control the actual internal time step by using the minimum courant time step factor in the HYDRAULICS job control . The message put in words states that the smallest conduit with the fastest velocity will control the time step selection. You have further control by using the modify conduit option in the HYDRAULICS Job Control. 0.8500 0.8500 0.8500 0. 8500 0.8500 ===> Warning ! (sqrt (wave celerity) •time step/conduit length) in conduit 38 is 1.42 at full depth. Conduit Volume Full pipe or full open conduit volume Input full depth volume. 5. 7911E+05 cubic feet Table E3a -Junction Data *=============================z==~~=================* Inp Junction Ground Crown Invert Qinst Num Name Elevation Elevation Elevation cf s 1 DBA-2 DBA-1 DBB-2, 3 4 DBB-1 5 SECRK,FB-2 6 FA-1,2 FA-2 .1 FA-2. 2 9 WCULV, FA3 10 FB-1 11 NE-CREEK 12 2818-ECULV 13 37 317.0000 313.5000 313.0000 317.0000 313.0000 310.0000 312.1600 310.6100 309.3600 313.0000 309 .7500 306.0000 320. 0000 317 . 0000 295. 0000 309. 9600 310.4400 310.4400 307.0000 0. 0000 0. 0000 0. 0000 . 0000 0. 0000 0.0000 0.0000 .0000 .0000 313.9400 313.9400 313.9400 310. 0000 324.0000 320. 0000 324.0000 310.0000 311. 0650 311.4400 311.4400 308.0000 314.0000 320.0000 313.9900 307 .9000 294.0000 0.0000 298.0000 290.0000 293.9900 .0000 306. 9000 . 0000 Table E3b -Junction Data Initial Depth-ft 0.0000 0.0000 .0000 .0000 . 0000 . 0000 . 0000 0. 0000 0. 0000 0.0000 0.0000 0.0000 0.0000 . 0000 . 0000 . 0000 . 0000 . 0000 .0000 Standard Dynamic Wave .0000 Standard Dynamic Wave .0000 Standard Dynamic Wave 0.0000 Standard Dynamic Wave 0.0000 Standard Dynamic Wave Page 3 of 11 01 22-100.doc CANYON CREEK TOWNHOMES 100 YEAR PROPOSED XP-SWMM ANALYSIS Inp Junction Num Name DBA-2 DBA-1 DBB-2,3 DBB-1 SECRK, FB-2 FA-1,2 FA-2.l FA-2. 2 WCULV,FA3 10 FB-1 11 NE-CREEK 12 2818-ECULV 13 37 x Coord. 99 .461 119.754 99.058 120.185 135.269 90.483 85.336 95.770 91.166 132.616 142.323 132.962 94 . 966 y Coord. Type of Manhole 473.221 Sealed Manhole 478.014 Sealed Manhole 467.556 Sealed Manhole 466.356 Sealed Manhole 464 .853 Sealed Manhole 452 . 889 Sealed Manhole 453. 292 Sealed Manhole 453.058 Sealed Manhole 446.853 Sealed Manhole 450.947 Sealed Manhole 480.638 Sealed Manhole 445.208 Sealed Manhole 444.735 Sealed Manhole Type of Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Normal Inlet Table E4 -Conduit Connectivity Input Conduit Number Name Upstream Downstream Node Node 10 11 CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB SECRK,FB-2 FB-1 NE-CREEK SECRK,FB-2 FB-1 2818-ECULV WCULV,FA3 37 DBA-2 DBA-1 DBA-1 NE-CREEK DBB-2,3 DBB-1 PIPE-20-19 FA-2.1 ORIFICE FA-1, 2 PIPE-21-19 FA-2.2 DBB-1 SECRK,FB-2 FA-1,2 WCULV,FA3 FA-1,2 Storage Junction Data MAXIMUM OR Upstream Downstream El evation Elevation 295.000 298.000 294.000 307.000 313.000 310.000 309.360 306.000 310.440 309.960 310 .440 294 . 000 No Design 295. 000 No Design 293. 990 No Design 306.900 No Design 312.500 No Design 298. 000 No Design 308. 500 No Design 295. 000 No Design 310. 065 No Design 307. 000 No Design 310. 065 No Design PEAK OR CROWN STORAGE JUNCTION JUNCTION CONSTANT SURFACE CONSTANT VOLUME ELEVATION NUMBER OR NAME TYPE AREA (FT2) (CUBIC FEET) (FT) DEPTH STARTS FROM Maximum Capacity DBA-2 DBA-1 DBB-2, 3 DBB-1 FA-1, 2 FA-2 .l FA-2.2 Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area Stage/Area 2211. 9768 1524.6000 7361.6400 2439. 3600 9757 . 4400 1524.6000 1524.6000 5207. 8244 6963.7006 24092.7453 13099.6830 3310.0292 839.7635 839.7635 317.0000 Node Invert 317.0000 Node Invert 312.1600 Node Invert 313. 0000 Node Invert 313.9400 Node Invert 313.9400 Node Invert 313.9400 Node Invert Variable storage data for node IDBA-2 *==================================* Data Point Elevation ft 313.0000 315.0000 315.2500 315.5000 315 . 7500 316.0000 316.2500 316.5000 318. 0000 Depth ft .0000 .0000 .2500 2.5000 .7500 .0000 .2500 .5000 5.0000 Area ft ·2 .9204 3 .9204 245.2428 744 .8760 1378 . 2384 1918.8180 2211 .9768 2211 . 9768 2211 .9768 Variable storage data for node jDBA-1 Data Point Elevation ft 310.0000 310.2500 310.5000 310.7500 315. 0000 Depth ft . 0000 0.2500 . 5000 . 7500 5. 0000 Area ft ·2 . 4356 261.3600 1001 .8800 1524 .6000 1524 . 6000 Variable storage data for node IDBB-2,3 Data Point 4 5 6 Elevation ft 309.3600 311.3600 311.5000 311. 7500 312.0000 312.2500 Depth ft 0.0000 2.0000 2. 1400 2.3900 .6400 .8900 Area ft•2 4.3560 4.3560 130. 6800 1001. 8800 2962 .0800 4617.3600 Volume ft•) .0000 7.8408 31.1883 149.3154 410.6766 820. 9496 1336. 8650 1889. 8592 5207.8244 Vol ume ft•) .0000 22 .7055 170. 6183 484.1506 6963.7006 Volume ft •3 0. 0000 8. 7120 16 .1271 140 .6601 614 .5473 1554 .3541 Page 4of11 0122-100.doc CANYON CREEK TOWNHOMES 100 YEAR PROPOSED XP-SWMM ANALYSIS 312 .5000 315. 3600 .1400 6 . 0000 7361.6400 7361 . 6400 Variable storage data for node IDBB-1 Data Point Elevation ft 306.0000 306.2500 306.5000 306.7500 307. 0000 307.2500 312 .0000 Depth ft . 0000 . 2500 . 5000 0 .7500 1.0000 1 .2500 6.0000 Area ft ·2 4. 3560 174 .2400 784 .0800 1655 .2800 2308 .6800 2439.3600 2439 .3600 Variable storage data for node IFA-1 ,2 Data Point 10 Elevation ft 309.9600 311.9600 312 .0200 312 .1200 312 .2200 312 .3200 312 .4200 312 .5200 312 .6200 312 .6700 Depth ft 0.0000 .0000 .0600 2 .1600 .2600 .3600 2.4600 2 .5600 .6600 . 7100 Area ft•2 4.3560 4.3560 87 .1200 740 . 5200 2003 .7600 5314 .3200 7666 .5600 8363 .5200 8929 . 8000 9757 .4400 Variable storage data for node IFA-2 . Data Point 10 Elevation ft 310.4400 312.4400 312.5000 312.6000 312.7000 312 .8000 312.9000 313 .0000 313.1000 313.1500 Depth ft 0 . 0000 2 .0000 2.0600 2 .1600 2 .2600 2 .3600 . 4600 . 5600 .6600 2. 7100 Area ft•2 4.3560 4.3560 87 .1200 696.9600 1524 .6000 1524.6000 1524.6000 1524. 6000 1524.6000 1524.6000 Variable storage data for node [FA-2 .2 Data Point 10 Elevation ft 310. 4400 312.4400 312.5000 312.6000 312.7000 312.8000 312.9000 313. 0000 313.1000 313.1500 Weir Data Depth ft .0000 .0000 .0600 .1600 .2600 .3600 .4600 2.5600 .6600 . 7100 From To Junction Junction Link Number DBA-2 DBA-1 DBB-2, 3 DBB-1 FA-2 .1 FA-2. 2 FA-2. 2 DBA-2 DBA-1 WEIR NE-CREEK WEIR DBB-1 WEIR SECRK,FB-2WEIR FA-1,2 WEIR FA-1,2 WEIR DBB-2,3 WEIR DBB-2,3 WEIR # 1 # 2 # 3 # 4 # 5 # # # Area ft•2 4.3560 4.3560 87.1200 696.9600 1524.6000 1524.6000 1524.6000 1524.6000 1524.6000 1524.6000 Crest Type Height (ft) .23 4.00 2.80 4.00 .35 .35 . 56 .38 FREE OUTFALL DATA (DATA GROUP Il) BOUNDARY CONDITION ON DATA GROUP Jl 3038.4549 24092.7453 Volume ftA3 .0000 17.1788 127.8404 426.0572 919. 2929 1512.7230 13099. 6830 Vol ume f tA3 0.0000 8. 7120 10.9311 46.9857 179.0658 531.7759 1177.2382 1978. 4895 2843.0010 3310. 0292 Volume ft •3 .0000 .7120 10.9311 45.2809 153.6935 306.1535 458.6135 611. 0735 763.5335 839.7635 Volume f tA3 .0000 .7120 10.9311 45.2809 153.6935 306.1535 458.6135 611. 0735 763 .5335 839. 7635 Weir Top(ftl Weir Length(ft) 4.00 10. 00 3.80 7.00 3.50 .50 .50 4.00 5.00 60.00 5.00 20.00 23 .00 23.00 23.00 10.00 Outfall at Junction ... 2818-ECULV has boundary condition number .. Outfall at Juncti on .... 37 has boundary condition number. Discharge Coefficient . 0000 . 0000 .0000 .0000 .0000 .0000 .0000 3.0000 Weir Power 1.5000 1 5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 Page 5of11 0122-100.doc CANYON CREEK TOWNHOMES 100 YEAR PROPOSED XP-SWMM ANALYSIS INTERNAL CONNEC'TIVITY INFORMATION CONDUIT WEIR # WEIR # WEIR # WEIR # 4 WEIR # WEIR # WEIR # WEIR # FREE # FREE # JUNC'TION JUNC'TION DBA-2 DBA-1 DBA-1 NE-CREEK DBB-2,3 DBB-1 DBB-1 SECRK, FB-2 FA-2 .1 FA-1, 2 FA-2.2 FA-1,2 FA-2.2 DBB-2,3 DBA-2 DBB-2,3 2818-ECULV BOUNDARY 37 BOUNDARY Table ES -Junction Time Step Limitation Summary Not Convr = Number of times this junction did not converge during the simulation. Avg Convr Average junction iterations. Conv err • Mean convergence error. Omega Cng '"' Change of omega during iterations Max !tern = Maximum number of iterations Junction Not Convr Avg Convr Total ltt Omega Cng Max !tern Ittrn >10 Ittrn >25 Ittrn >40 DBA-2 DBA-1 DBB-2,3 DBB-1 SECRK, FB-2 FA-1, 2 FA-2.1 FA-2 .2 WCULV,FA3 FB-1 NE-CREEK 2818-ECULV 37 15 48 0 1. 23 1.54 1. 58 2.02 1.14 1.87 .91 1.91 1. 00 1. 00 1. 00 1.90 1. 85 70619 88937 90991 116608 65428 107461 109935 109935 57604 57599 57603 109525 106751 Total number of iterations for all junctions .. Minimum number of possible iterations. Efficiency of the simulation. 1148996 748787 1.53 27 501 35 501 13 13 99 58 207 110 0 48 95 63 Excellent Efficiency Extran Efficiency is an indicator of the efficiency of the simulation. Ideal efficiency is one iteration per time step. Altering the underrelaxation parameter, lowering the time step, increasing the flow and head tolerance are good ways of improving the efficiency, another is lowering the internal time step. The lower efficiency generally the faster your model will run. I I I I I the I I If your efficiency is less than 1.5 then you may try I increasing your time step so that your overall simulation! is faster. Ideal efficiency would be around 2. o I Good Efficiency < 1.5 mean iterations Excellent Efficiency < . 5 and > 1. 5 mean iterations Good Efficiency< 4.0 and> 2.5 mean iterations Fair Efficiency< 7.5 and> 4.0 mean iterations Poor Efficiency > 7.5 mean iterations ·======================================================· Table E9 -JUNC'TION SUMMARY STATISTICS I I The Maximum area is only the area of the node, it I I does not include the area of the surrounding conduits I • =·==== ===== == = = = = = = = = =··=· •• "' •• ••'"" "'"' -"'"' ::i: "'"'"'"'"'"' :.••••-=•::.:. I I I I I I Uppermost Maximum Ground PipeCrown Junction Elevation Elevation Elevation Time Feet of Junction Name DBA-2 DBA-1 DBB-2,3 DBB-1 SECRK, FB-2 FA-1, 2 FA-2 .1 FA-2. 2 WCULV,FA3 FB-1 NE-CREEK 2818-ECULV 37 feet feet feet 317.0000 317.0000 312.1600 313. 0000 320. 0000 313.9400 313. 9400 313.9400 310. 0000 324.0000 320.0000 324. 0000 317.0000 317.0000 312 .1600 313. 0000 317. 0000 313.9400 313.9400 313.9400 308.0000 314.0000 320.0000 313. 9900 315.6129 312.5473 312.3057 308.5001 306.4012 312.9779 312. 9784 312.9784 307. 6867 306.3905 306.4193 306. 3900 310.0000 307.9000 307.5867 of Surcharge Occurence at Max Hr. Min. Elevation 12 26 19 22 9 25 25 25 10 9 10 0.0000 0.0000 0.1457 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0.0000 0.0000 0.0000 Maximum Freeboard Junction of node Area feet ft•2 1. 3871 1030. 8268 4.4527 1524.6000 0.0000 5229.1624 4.4999 2439.3600 13.5988 12.5660 0.9621 9757.4400 0. 9616 1524. 6000 0. 9616 1524. 6000 2.3133 12.5660 17. 6095 13. 5807 17.6100 2. 4133 12.5660 12.5660 12.5660 12.5660 48 0 62 Page 6 of I I 0122-100.doc CANYON CREEK TOWNHOMES 100 YEAR PROPOSED XP-SWMM ANALYSIS Table ElO -CONDUIT SUMMARY STATISTICS Note: The peak flow may be less than the design flow and the conduit may still surcharge because of the downstream boundary conditions. Time Time Name Conduit Name Design Flow (cfs) Conduit Design Vertical Velocity Depth (ft/s) (in) Maximum Computed Flow (cfs) of Occurence Hr. Min. Maximum Computed Velocity ( ft/s) of Occurence Hr. Min. Ratio of Maximum Depth > Max. to at Pipe Ends Design Upstream Dwnstrm Flow (ft) (ft) CREEK-S 7648. 6 CREEK-N 21775. 2818-HW 4436.7 38 10.462 12PIPE1 0.5210 PIPE 0. 9196 15_81-82 11.125 PIPE-08 28 .135 6.6394 216.0000 302.9471 13.0235 264.0000 290.9079 3.1691 240.0000 303.2440 13.3204 12.0000 8.5378 2.6536 6.0000 10.7521 3.9600 9.0657 15.0000 22. 9264 15. 0000 .0980 .6548 11. 5896 8.7665 PIPE-20-19 2.339 .9785 ORIFICE 5. 427 . 9098 PIPE-21-19 2.339 2.9785 WEIR # Undefnd Undefnd WEIR # Undef nd Undef nd WEIR # Undefnd Undefnd WEIR # 4 Undefnd Undefnd WEIR # Undefnd Undefnd WEIR # Undefnd Undefnd WEIR # Undefnd Undefnd WEIR # Undefnd Undefnd FREE # Undefnd Undefnd FREE # Undefnd Undefnd 12.0000 -l.3155 12.0000 5.4565 12.0000 -1.3155 Undefnd 0.0000 Undefnd O. 0000 Undefnd O. 0000 Undefnd o. 0000 Undefnd -2.5411 Undefnd -2. 5411 Undefnd 0. 0000 Undefnd 3. 3713 Undefnd303. 2440 Undefnd 8.5378 ···====···======·=====·======·=====·======·====·=·=· Table Ell. Area assumptions used in the analysis I Subcritical and Critical flow assumptions from I Subroutine Head. See Figure 17-1 in the I manual for further information. I 10 . 5608 2 . 74 59 10 0.5185 10 14. 8534 12 5.5359 27 . 9994 19 .7544 32 6 .9574 12 10 12 0 16 16 12 10 10 -1 .6589 7. 8720 -l.6589 Length Length of Length of 10 10 10 12 27 19 32 12 12 12 .0396 306.4012 306.3905 .0134 306.4193 306.4012 0.0683 306.3905 306.3900 0.8161 307.6867 307.5867 2.1073 315.6129 312.9845 0.7120 312.5473 306.4193 1.0417 312.3057 309.5812 0.3116 308.5001 306.4012 -0. 5624 312. 9784 312. 9779 1.0054 312.9779 307.6867 -0.5624 312.9784 312.9779 Length of of Sub-Upstream Downstream Maximum Maximum Maximum Conduit Dry Critical Critical Critical Hydraulic X-Sect Vel*D Name Flow (min) Flow (min) Flow (min) Flow (min) Radius-m Area (ft ... 2) (ft ... 2/s) CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_81-82 PIPE-08 PIPE-20-19 ORIFICE PIPE-21-19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 60.0000 60.0000 60.0000 60.0000 11.1865 60.0000 0.1052 60.0000 60. 0000 60.0000 60.0000 0. 0000 0.0000 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 . 0000 . 0000 . 0000 . 0000 0. 0000 0. 0000 0. 0000 0. 0000 48.8135 0. 0000 59.8948 0 . 0000 0. 0000 0 . 0000 0. 0000 .3524 .3434 .6165 0.2943 0.1502 0. 082 5 0.3621 .3498 . 2500 . 2700 . 2500 540.2001 6.6713 390 .0519 7.3915 584.8383 6.4270 0.5748 10.1990 0 .1983 8.5732 .0935 38.3774 .1881 19.6402 .2884 48.3555 .7939 4.2247 .6956 14.0416 0.7939 4.2247 *a aa: ==a as .. ,., ::a••"":::••••"" zz: z ••••••:.:• • •::: :a:a•ss * I Table El2. Mean Conduit Flow Information Conduit Name CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_81-82 PIPE-08 PIPE-20-19 ORIFICE PIPE-21-19 WEIR # l WEIR # WEIR # WEIR # 4 WEIR # 5 WEIR # 6 WEIR # 7 WEIR # 8 FREE # l FREE # 2 Mean Flow (cfs) 297.4649 290. 6326 297.5399 5.4152 0.4490 .6325 4. 9524 5. 3070 -0.0369 4 .6403 -0.0369 0. 0000 Total Flow (ft •31 1070874. 1046277. 1071144. 19494.80 1616. 526 2277.042 17828.46 19105.24 -132.888 16705.01 -132.888 0. 0000 . 0000 0. 0000 . 0000 0. 0000 . 0000 0. 0000 -0.0657 -236.556 -0.0657 -236.556 0 . 0000 0. 0000 0.8468 3048.490 297.5399 1071144. 5.4152 19494.78 Mean Low Percent Flow Change Weightng 0. 0618 0 . 0154 0.0626 0.0149 0.1970 0.0002 2.9382 0. 0331 0. 0080 0. 0044 0.0080 l. 0000 l . 0000 l. 0000 l . 0000 l. 0000 l. 0000 0. 9248 1.0000 1.0000 1.0000 1.0000 Mean Mean Froude Hydraulic Number Radius . 0287 . 0453 . 0255 . 3026 . 4727 .8160 . 2914 0.6001 0.0257 1.8624 0. 0257 6 . 3 522 5.3431 6.6165 0.2503 0.0731 0.0825 0.1862 0.3061 0. 2500 0. 2502 0. 2500 Mean Mean Cross Conduit Area Roughness 540.1705 390. 0053 584.8369 0. 4020 .1016 0.0932 0.5864 1.1099 .7930 .6179 .7930 0.0700 0.0700 0.0700 0 . 0140 0 . 0140 0 . 0140 0. 0140 0 . 0140 0. 0140 0 . 0140 0.0140 Page 7 of 11 0122-100.doc CANYON CREEK TOWNHOMES 100 YEAR PROPOSED XP-SWMM ANALYSIS I Table El3. Channel losses(H), headwater depth (HW), tailwater I I depth (TW), critical and normal depth (Ye and Yn). I I Use this section for culvert comparisons I *••••••••=========c•••••••••••••••••••========••••••••••=•=•••••* Conduit Maximum Name Flow CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 302. 947 290.908 303.244 8.538 1.098 0.655 11. 590 8. 766 0 .610 5. 457 0.610 Head Friction Critical Loss Loss Depth 0.000 0.000 0.000 0.000 0.583 1.116 1.870 1.116 0.000 1.577 0.000 . 012 . 026 . 000 .100 2. 04 9 5. 085 0. 884 1. 013 0. 025 3. 452 0. 025 . 371 . 303 . 393 .000 . 484 2.547 2. 946 .147 . 325 . 934 . 325 CULVERT ANALYSIS CLASSIFICATION, and the time the culvert was in a particular classification Normal Depth .431 .325 6.427 . 687 0 . 500 0. 206 . 081 . 479 .348 0 . 826 0.348 I I during the simulation. The time is in minutes. I The Dynamic Wave Equation is used for all conduitl analysis but the culvert flow classification I condition is based on the HW and TW depths. I Mild Mild Slope Slope TW Critical D Control Conduit Outlet Outlet Steep HW Elev at 306.401 306 .419 306.390 307.687 315.613 312.547 312.306 308.500 312.781 312 .790 312.781 TW Elev at 306.390 Max Flow 306.401 Max Flow 306.390 Max Flow 307. 587 Max Flow 312. 984 Max Flow 306.419 Max Flow 309.581 Max Flow 306.401 Max Flow 312.756 Max Flow 307.685 Max Flow 312.756 Max Flow Inlet Inlet Name Control Control Slope TW Slug Flow Insignf Outl et/ Entrance Entrance Control Control Mild Slope TW > D Outlet Control Mild Slope TW <• D Outlet Control Outlet Control Control Configuration CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 0 .000 0.000 0.000 0.000 0.700 0.000 . 000 . 000 . 000 . 000 0.000 60. 000 60. 000 60 .000 0.000 21.962 . 000 . 000 0.000 0 .000 0.000 0.000 0. 000 0. 000 0 . 000 0. 000 13. 575 60. 000 40.138 0. 000 . 000 60. 000 0. 000 • • ""'•"""" ::s .. z:rz:o::•a•: :ii: :z"",. cas s: z: z•c: :s = = = === • Kinematic Wave Approximations I Time in Minutes for Each Condition I Conduit Length of Slope Super- Name Normal Flow Criteria Critical CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 0. 00 0.00 0. 00 . 07 .05 0.00 0.02 0.00 0. 00 .00 0. 00 60.00 60.00 60.00 0.07 0.06 0.00 0.05 0.00 0.00 .00 0.00 0 . 00 0 . 00 0. 00 60. 00 0 . 27 0. 00 32 .44 0. 00 . 00 . 00 . 00 Table E15 -SPREADSHEET INFO LIST 0. 000 0. 000 0. 000 . 000 0. 000 0. 000 0. 000 11. 863 0.000 .000 .000 Roll Waves 0.00 0.00 .00 0.00 0. 00 . 00 . 00 . 00 . 00 0 . 00 0. 00 0. 000 0. 000 0 .000 0. 000 0. 000 0. 000 . 000 . 000 60. 000 . 000 60. 000 0 . 000 0 . 000 0 . 000 0 . 000 0 .000 0. 000 . 000 . 000 . 000 0.000 0.000 0. 000 0.000 0.000 60.000 23.762 0.000 19.863 48.138 0 .000 0.000 0.000 Conduit Flow and Junction Depth Information for use in spreadsheets. The maximum values in this table are the true maximum values because they sample every time step. The values in the review results may only be the maximum of a subset of all the time steps in the run. Note: These flows are only the flows in a single barrel. Conduit Name CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE l5_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 WEIR # 1 WEIR # 2 WEIR # 3 Maximum Total Flow Flow 302.9471 1070873.53 290.9079 1046277.48 303.2440 1071143 .51 8.5378 19494 .8005 . 0980 1616. 5264 .6548 2277.0418 11.5896 17828.4608 8.7665 19105.2405 -1.3155 -132.8878 5.4565 16705.0072 -1.3155 -132 .8878 0. 0000 0 . 0000 . 0000 0 . 0000 . 0000 0 . 0000 Maximum Velocit y 0. 5608 0.7459 0.5185 14.8534 5.5359 . 9994 . 7544 . 9574 -1.6589 7. 8720 -1 .6589 0. 0000 .0000 0.0000 ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## Junction Invert Name Elevation OBA-2 313. 0000 DBA-1 310. 0000 DBB-2,3 309.3600 DBB-1 306. 0000 SECRK,FB-2 295.0000 FA-1,2 309.9600 FA-2.1 310.4400 FA-2.2 310.4400 WCULV, FA3 307. 0000 FB-1 294. 0000 NE-CREEK 298.0000 2818-ECULV 293. 9900 37 306.9000 0.000 None 0.000 None o. ooo None 0.000 None o. ooo None o.ooo None o.ooo None 0.000 None 0.000 None 0.000 None 0.000 None Maximum Elevation 315.6129 312.5473 312.3057 308.5001 306.4012 312.9779 312.9784 312.9784 307.6867 306 .3905 306.4193 306.3900 307.5867 Page 8of 11 0122-100.doc CANYON CREEK TOWNHOMES 100 YEAR PROPOSED XP-SWMM ANALYSIS WEIR WEIR WEIR WEIR WEIR FREE FREE 0. 0000 0. 0000 -2.5411 -236.5563 -2.5411 -236.5563 0. 0000 . 0000 .3713 3048.4899 303.2440 1071143.59 8.5378 19494.7847 . 0000 . 0000 . 0000 0. 0000 0.0000 0.0000 0.0000 I Table El5a -SPREADSHEET REACH LIST I Peak flow and Total Flow listed by Reach or those j conduits or div ersions having the same I upstream and downstream nodes. Upstream Node SECRK,FB-2 NE-CREEK FB-1 WCULV,FA3 DBA-2 DBA-1 DBB-2,3 DBB-1 FA-2 .1 FA-1, 2 FA-2. 2 FA-2 .1 FA-2.2 DBA-2 Downstream Node FB-1 SECRK, FB-2 2818-ECULV 37 DBA-1 NE-CREEK DBB-1 SECRK,FB-2 FA-1,2 WCULV,FA3 FA-1,2 FA-1,2 FA-1,2 DBB-2,3 Maximum Flow 302.9471 290.9079 303.2440 .5378 1 . 0980 0. 654 8 11. 5896 8.7665 -1.3155 5.4565 -1. 3155 -2.5411 -2. 5411 3. 3713 Total Flow l .0709E+06 l. 0463E+06 1. 0711E+06 19494.8005 1616. 5264 2277. 0418 17828.4608 19105.2405 -132.8878 16705 . 0072 -132. 8878 -236 .5563 -236. 5563 3048 .4899 ## ## ## ## ## ## ## ######################################################### #Table El6. New Conduit Information Section # # Conduit Invert (IE) Elevation and Conduit # # Maximum Water Surface (WS ) Elevations # ######################################################### Conduit Name Upstream Node Downstream Node IE Up IE Dn WS Up WS Dn Conduit Type CREEK-S CREEK-N 2818-HW 38 12PIPE1 PIPE 15_Bl-B2 PIPE-OB PIPE-20-19 ORIFICE PIPE-21-19 SECRK,FB-2 NE-CREEK FB-1 WCULV ,FA3 DBA-2 DBA-1 DBB-2,3 DBB-1 FA-2.l FA-1,2 FA-2 .2 FB-1 SECRK, FB-2 2818-ECULV 37 DBA-1 NE-CREEK DBB-1 SECRK, FB-2 FA-1,2 WCULV,FA3 FA-1,2 295.0000 294.0000 298.0000 295.0000 294.0000 293.9900 307.0000 306.9000 313.0000 312.5000 310.0000 298.0000 309.3600 308.5000 306.0000 295.0000 310.4400 310.0650 309.9600 307.0000 310.4400 310.0650 306.4012 306.3905 306.4193 306.4012 306.3905 306.3900 307.6867 307.5867 315.6129 312.9845 312.5473 306.4193 312.3057 309.5812 308.5001 306 .4012 312.9784 312.9779 312.9779 307.6867 312.9784 312.9779 Table E18 -Junction Continuity Error. Division by Volume added 11/96 Continuity Error = Net Flow + Beginning Volume -Ending Vol ume Total Flow + (Beginning Volume + Ending Volume) /2 Net Flow Node Inflow -Node Outflow Total Flow = absolute (Inflow + Outflow Intermediate column is a judgement on the node continuity error. Excellent < 1 percent Fair 5 to 10 percent Terrible > 50 percent Great 1 to 2 percent Good to percent Poor 10 to 25 percent Bad 25 to 50 percent Trapezoid Trapezoid Trapezoid Circular Circular Circular Circular Circular Circular Circul ar Circular Junction Name <------Continuity Error -------> Remaining Beginning Net Flow Total Flow Failed to Volume \: of Node \ of Inflow Volume Volume Thru Node Thru Node Converge DBA-2 DBA-1 DBB-2,3 DBB-1 15.1984 147.4483 430.1333 71. 0594 SECRK, FB-2 100507 .1970 FA-1,2 -182.2173 FA-2.1 306.5860 FA-2.2 306.5860 WCULV, FA3 -5. 5909 FB-1 61210.1104 NE-CREEK 29403.5222 2818-ECULV 2770.5132 37 -5.3566 0.1626 1.937 1.192 0.1855 4.383 -.4793 69.727 69. 727 -. 0143 2.739 1.376 0.1291 -. 0137 .00139 . 0711 0. 0174 0.0135 2415.4365 1422.1203 0.0393 0.0008 0.0004 .00650 82.3518 146.4692 9 .188 100951 .4674 201460.4864 .0167 0.0280 0. 0280 2759 . 9688 101.6645 101.6645 1661.4904 38.8315 38.8315 .00051 24.1619 18.3572 5.596 61525.3004 122735.4351 2 .688 29784.7231 59188 .6808 0.2533 3082.2184 5852.8000 .00049 5.7267 0.3588 The total continuity error was l.94975E+05 cubic feet The remaining total volume was 2.00835E+05 cubic feet Your mean node continuity error was Excellent Your worst node continuity error was Fair 15.2521 9345.0167 1140.7644 5693.5711 430.1337 36084 .2547 6.9420 38193.4745 -1.8221 2141745.265 916.2610 35803.9016 369.4191 369.4441 369.4191 369.4441 0.2139 38989.8094 -0.0244 2142286.998 -0.4355 2092554.521 -0.0684 2142287.100 0.0114 38989.5852 15 0 48 0 Page 9of 11 0122-100.doc CANYON CREEK TOWNHOMES 100 YEAR PROPOSED XP-SWMM ANALYSIS Table El9 -Junction Inf low Sources Units are either ft•3 or m·3 depending on the units in your model. Junction Name Constant Inflow to Node DBA-2 . 0000 DBA-1 . 0000 DBB-2,3 .0000 DBB-1 . 0000 SECRK,FB-2 .0000 FA-1,2 .0000 WCULV,FA3 .0000 FB-1 . 0000 NE-CREEK l.0440E+06 2818-ECULV 0.0000 37 0.0000 User Inflow to Node 4680.0003 1800.0029 15207.3040 1259.7732 5489. 0117 18360.0061 2790.0016 269.9514 .0000 . 0000 0.0000 Interface Inflow to Node . 0000 . 0000 . 0000 . 0000 0. 0000 . 0000 . 0000 0. 0000 0. 0000 0. 0000 0. 0000 DWF Inlow to Node . 0000 . 0000 . 0000 . 0000 . 0000 .0000 0.0000 0.0000 0.0000 0.0000 0.0000 Table E20 -Junction Flooding and Volume Listing. 1 The maximum volume is the total volume I in the node including the volume in the I flooded storage area. This is the max I volume at any time. The volume in the l flooded storage area is the total volume! above the ground elevation, where the I flooded pond storage area starts. I The fourth column is instantaneous, the fifth is thel sum of the flooded volume over the entire simulation! Units are either ftA3 or mA3 depending on the units. I Outflow from Node . 0000 . 0000 .0000 .0000 0. 0000 0.0000 0.0000 0.0000 0.0000 .0711E+06 19494.7847 Out of System Flooded Volume Stored in System Junction Surcharged Flooded Name Time (min) Time(min) DBA-2 DBA-1 DBB-2,3 DBB-1 SECRK, FB-2 FA-1,2 FA-2 .1 FA-2. 2 WCULV, FA3 FB-1 NE-CREEK 2818-ECULV 37 .0000 0.0000 13 . 9833 0.0000 0.0000 0.0000 0 .0000 0.0000 0.0000 0.0000 0.0000 0. 0000 0. 0000 0.0000 . 0000 13. 9854 0. 0000 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 .0000 .0000 I Simulation Specific Information Number of Input Conduits. Number of Natural Channels. Number of Storage Junctions. Number of Orifices .. Number of Free Outfalls. .0000 0. 0000 0.0000 0.0000 .0000 .0000 .0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Maximum Ponding Allowed Volume Flood Pond Volume 249. 0913 3224.3176 1828. 5720 4562.1618 143.2674 3310. 0292 578.0710 578.0710 8.6288 155. 6988 105. 7971 155.8184 8.6285 0.0000 0.0000 1300.4847 0.0000 0 .0000 0. 0000 0.0000 0.0000 0.0000 0. 0000 0 . 0000 0. 0000 0 . 0000 11 Number of Simulated Conduits. o Number of Junctions. Number of Weirs ........... . Number of Pumps. Number of Tide Gate Outfalls. I Average \ Change in Junction or Conduit is defined as: I Conduit \ Change •-> 100. O ( Q (n+l) - Q (n) ) I Qfull I Junction\ Change==> 100.0 ( Y(n+l) -Yin)) I Yfull Evaporation from Node . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000 .0000 0.0000 0.0000 0. 0000 The Conduit with the largest average change was .. 15_Bl-B2 The Junction with the largest average change was.DBB-2,3 The Conduit with the largest sinuosity was ....... 12PIPE1 with with with .938 percent .010 percent 146.188 I Table E21. Continuity balance at the end of t he simulation I Junction Inflow, Outflow or Street Flooding I Error z Inflow + Initial Volume -Outflow -Final Volume Inflow Inflow Average Junction Volume,ftA3 Inflow, cfs DBA-2 4680. 0004 1. 3000 DBA-1 1800.0029 0.5000 DBB-2,3 15207.3041 4.2243 DBB-1 1259.7732 0.3499 SECRK, FB-2 5489 . 0118 . 5247 FA-1,2 18360.0062 5.1000 WCULV, FA3 2790. 001 7 . 7750 FB-1 269. 9514 . 0750 NE-CREEK l .044000E+06 290.0000 21 13 Page 10 of 11 0122-100.doc CANYON CREEK TOWNHOMES 100 YEAR PROPOSED XP-SWMM ANALYSIS Outflow Outflow Average Junction Volume,ft"3 Outfl ow, cf s -----------------------------------2818-ECULV l.071144E+06 297.5399 37 19494 . 7847 5 .4152 I Initial system volume 3.9256E+OS Cu Ft I I Total system inflow volume 1. 0939E+06 Cu Ft I I Inflow + Initial volume 1.4864£+06 Cu Ft I l=========··=·······======================··==·····===I I Total system outflow 1. 0906E+06 Cu ft I I Volume left in system 2. 0083E+05 Cu ft I I Evaporation O. OOOOE+OO Cu ft I I Outflow + Final Volume 1. 2915E+06 Cu ft I Total Model Continuity Error Error in Conti nuity, Percent : Error in Continuity, ftA3 + Error means a continuity loss, I 13 .11519 I 194946 .002 I a gain I Page 1 I of I I 0122-I 00.doc