Loading...
HomeMy WebLinkAboutDrainage ReportDrainage Report for Williams Creek Subdivision -Phase 5 College Station, Texas July, 2006 Revised August, 2006 Developer: Joe and Janet Johnson Land and Investments, LP 1400 South Commercial Street Coleman, Texas 76834 (325) 625-2124 Prepared By: Civil Development, Ltd. 2900 Longmire Drive, Suite K College Station, Texas 77845 . (979) 764-7743 Prepared for Texco11 General Conrracturs CERTIFICATION I certify that this revised report for the drainage design for the Williams Creek Subdivision - Phase 5, was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners hereof, with the exception that stom1 water runoff detention is not being proposed for this project since the runoff wi ll discharge directly into tributaries of Carters Creek and then into the I 00-year floodplain and th e primary channel of Carters Creek. TABLE OF CONTENTS DRAINAGE REPORT-Revised 812006 WILLIAMS CREEK SUBDIVISION -PHASE 5 CERTIFICATION ................................................................................................................................................................. I TABLE OF CONTENTS ....................................................................................................................................................... 2 LIST OFT ABLES .................................................................................................................................................................. 2 INTRODUCTION .................................................................................................................................................................. 3 GENERAL LOCATION AND DESCRIPTION ................................................................................................................. 3 FLOOD HAZARD INFORMATION ................................................................................................................................... 3 DEVELOPMENT DRAINAGE PATTERNS ...................................................................................................................... 3 DRAINAGE DESIGN CRITERIA ....................................................................................................................................... 3 STORM WATER RUNOFF DETERMINATION .............................................................................................................. 4 STORM CUL VERT & DRAINAGE CHANNEL DESIGN ............................................................................................... 5 CONCLUSIONS ..................................................................................................................................................................... 7 APPENDIX A ......................................................................................................................................................................... 8 Time of Concentration Equations & Calculations APPENDIX B ........................................................................................................................................................................ 11 Storm Sewer Culvert Data & Design Calculations APPENDIX C ....................................................................................................................................................................... 14 Drainage Channel Design Data & Calculations APPENDIX D ....................................................................................................................................................................... 19 Drainage Ditch Data & Lining Material EXHIBIT A ........................................................................................................................................................................... 22 Drainage Area Map -Post-Development, Culverts & Channels \ EXHIBIT B ........................................................................................................................................................................... 24 Drainage Area Map -Post-Development, Ditch Velocities LIST OFT ABLES TABLE 1 -Rainfall Intensity Calculations .............................................................................................. 4 TABLE 2 -Time of Concentration (tc) Equations .................................................................................. 4 TABLE 3 -Post-Development Runoff In formation -Revised 812006 ................................................... 5 TABLE 4 -Area Inlet Eq uati ons & Data -Revised 812006 .................................................................... 6 2 INTRODUCTION DRAINAGE REPORT-Revised 812006 WILLIAMS CREEK SUBDIVISION -PHASE 5 The purpose of this revised report is to provide the hydrological effects of the construction of the Williams Creek Subdivision -Phase 5, and to verify that the proposed storm drainage system meets the requirements set forth by the City of College Station Drainage Policy and Design Standards. GENERAL LOCATION AND DESCRIPTION The project is located on a portion of a 116 acre tract located east of Rock Prairie Road and south of Greens Prairie Road in College Station, Texas. This report addresses Phase 5 of this subdivision, which is made up of 30.8 acres. The site is predominantly wooded. The existing ground elevations range from Elevation 206 to Elevation 250. The general location of the project site is shown on the vicinity map in Exhibit A. FLOOD HAZARD INFORMATION The project site is located in the Carters Creek Drainage Basin. This phase of the proposed subdivision is located in a Zone X Area according to the Flood Insurance Rate Map prepared by the Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated areas, Community No. 481195 and 480083, Panel No. 205D, Map No. 48041C0205D, effective dated February 9, 2000. The location of the Flood Hazard Area adjacent to this property is shown on Exhibit A as the 100-year floodplain. DEVELOPMENT DRAINAGE PATTERNS Prior to development, the storm water runoff for Phase 5 flows in a westerly or easterly direction into the Carters Creek floodplain or into existing tributaries which discharge into Carters Creek. DRAINAGE DESIGN CRITERIA The design parameters for the storm drainage analysis are as follows: \ • The Rational Method is utilized to determine peak stom1 water runoff rates for the stom1 drainage design for culverts, ditches and channels. • Design Storm Frequency Storm culvert & channel Roadside ditches • Runoff Coefficients 25-and l 00-year storm events 10-and 100-year storm events Post-development (1 acre minimum lot size) c = 0.50 • Rainfall Intensity equations and values for Brazos County can be found in Table 1. • Time of Concentration, tc -Calculations are based on the method found in the TR-55 publication. Refer to Table 2 for the equations and Appendix A for calculations. The runoff flow path used for calculating the post-develop ment times of concentration fo r the larger drainage areas are shown on the ex hibits. Smaller drainage areas use a minimum tc of 10 minutes to detem1 ine the rainfall intensity values. Exhibit A has the runoff flow paths used for the drainage areas for the culvert and channel design. STORM WATER RUNOFF DETERMINATION The peak runoff values were determined in accordance with the criteria presented in the previous section for th e 10, 25, 50, and 100-year storm events. The drainage areas for the post- development condition are shown on Exhibits A & B. Post-development runoff conditions for the drainage structure design drainage areas are summarized in Table 3. TABLE 1 -Rainfall Intensity Calculations Rainfall Intensity Values (in/hr) Storm Event 110 '2s 1100 te = 10 min 8.635 9.861 11 .639 I = b I (tc+d)" I = Rainfall Intensity (in/hr) tc = U(V*60) t.: = Time of concentration (min) L = Length (ft) V =Velocity (ft/sec) Brazos County: 10 }'_ear storm 25 }'_ear storm 50 }'_ear storm 100 }'_ear storm b= 80 b= 89 b= 98 b= 96 d = 8.5 d= 8.5 d = 8.5 d= 8.0 e= 0.763 e= 0.754 e = 0.745 e= 0.730 (Data taken from State Department of Highwa}'_s and Public Transportation Hl'_draulic Manual, page 2-16) TABLE 2 -Time of Concentration (tc) Equations The time of concentration was determined using methods found in TR-55, "Urban Hydrology for Small Watersheds. " The equations are as follows: Time of Concentration: For Sheet Flow: Tc= Tr(shcct now)+ Tt(concentrated sheet now) where: Tr = Travel Time, minutes 0.007 (n L)0·8 (P z) o.s s o.4 where: T1 = travel time, hours n =Manning's roughness coefficient L = flow length, feet P2 = 2-year, 24-hour rainfall = 4.5" s = land slope, ft/ft For Shallow Concentrated Flow: T1 =L I (60*V) Refer to Appendix A for calcul ations . ..j where: T1 =travel time, minutes V =Velocity , fps (See Fig 3-1, App. A) L = flow length , feet \ TABLE 3 -Post-Development Runoff Information -Revised 812006 Area 10-year storm Culvert/ c tc Channel No. Area # A 110 0 10 (acres) (min) (in/hr) (cfs) Culvert 4 1 32.20 0.50 26.6 5.297 85.28 -· ---~ --- -Channel 8 2 2.64 0.50 10.0 8.635 11.40 - --------·----Headwal~ Op~_ning -Left 403, 5 2.31 0.50 10.0 8.635 9.97 ----Headwall Opening -Right 404, 6 2.02 0.50 10.0 8.635 8.72 The Rational Method: Q =CIA I = b I (tc+d)e Q = Flow (cfs) A= Area (acres) tc = Time of concentration (min) tc = L/(V*60) L = Length (ft C = Runoff Coeff. I = Rainfall Intensity (in/hr) Brazos County: 10 year storm b = 80 d = 8.5 e = 0.763 25 year storm b = 89 d = 8.5 e = 0.754 V =Velocity (ft/sec) 100 year storm b = 96 d = 8.0 e = 0.730 STORM CULVERT & DRAINAGE CHANNEL DESIGN 25-year storm 100-year storm l2s 0 2s 1100 0 100 (in/hr) (cfs) (in/hr) (cfs) 6.085 97 .96 7.223 116.30 --- 9.861 13.02 11 .639 15.36 . -- 9.861 11 .39 11 .639 13.44 --9.861 9.96 11 .639 11 .76 The culvert for this project has been selected to be Reinforced Concrete Pipe (RCP) meet ing the requirements of ASTM C-76, Class III pipe meeting the requirements of ASTM C-789. There wi ll be dissipator blocks at the downstream end of the culvert to slow the discharge out of the pipe and to help control erosion. Runoff from the proposed streets will be collected by the roadside ditches and conveyed to the culvert structures, Drainage Channel No. 8, or to the Rock Prairie Road ditches. Headwall openings will be used for this development at Culvert No. 4. Th ese openings in the headwalls will allow the ditches to be less deep at the culvert location, thereby reducing the amoun~ of disturbance due to the construction of the street ditch side slopes. Th e drainage areas for the culvert and channel designs are shown on Exhibit A, which also shows the drain age areas for the headwall openings. The headwall openings for the left and right side ditches will be placed at the low poi11t of th e ditch to collect the storm water, which will then be discharged directly through the concrete headwall and onto the concrete splash pads at each end of the culvert. The proposed headwall openings were analyzed using the orifice equation, solving for th e depth of water at the opening for the I 0-and I 00-year storm events. It was assumed that 25% oft/re open area would be clogged for the opening design. Design calculations and data for tir e headwall openings are shown in Table 4. TABLE 4 -Area Inlet Equations & Data -Revised 812006 Q = 4.82 * ~ * y 112 ¢ y =(QI (4.82 * ~))2 Where: Q = flow at inlet, cfs Ag = open area of 1-3'x3' grate, ft2 = 7 .8 ft2 y = depth at inlet, ft Headwall Actual Design Ag 10-Year Storm Opening Opening Ag 25% Location Size clogging 0 10 Depth, y (ft2) (ft2) (cfs) (ft) 100-Year Storm 0100 Depth, y (in) (cfs) (ft) (in) Left 7 -9"x9" 3.94 2.96 9.97 0.49 5.9 13.44 0.89 10.7 --- Right 7 -9"x9" 3.94 2.96 8.72 0.37 4.5 11 .76 0.68 As shown by these calculations, the maximum depth of water for the I 00-year storm for the proposed headwall openings is I 0. 7" on the left side. The top of the headwall is Elevation 230.00, and the bottom of the headwall opening is Elevation 228.55. For the JOO-year storm event, this results in 0.56' of freeboard for Headwall Opening Left, and 0. 77' of freeboard for Headwall Opening Right. The typical roadway ditch will be constructed such that the ditch between the right-of-way and the edge of pavement is a minimum of 18" in depth, and will be graded as necessary to ensure that the runoff from the 100-year storm event will remain within the street right-of-way. Appendix 8 presents a summary of the storm culvert design parameters and calculations. The proposed pipe is 42" in diameter, and it was designed based on the 25-year storm event, and data is also given for the 100-year storm event. As shown in the summary, the culvert has a headwater elevation that is at least one foot below the roadway elevation for the 25-year storm event. Also, the culvert passes the 100-year stom1 event without overtopping the roadway. As required by College Station, the velocity of flow in the pipes is not lower than 2.5 feet per second, and it does not exceed 15 feet per second. As the data shows, even during low flow conditions, the velocity in the pipe wi ll exceed 2.5 feet per second and prevent sediment huild- up in the culvert. The maximum velocity for the culvert in this development will be 12. l f~et per second. Appendix 8 contains a summary of the culvert calculator data for the 25-and l 00- year stom1 events. The culvert will discharge onto a concrete pad with dissipator blocks to reduce the velocity. The storm water runoff in the roadside ditches of Williams Ridge Court will discharge into an improved drainage channel which wi ll convey the water from the street right-of-way to an existing drainage which ultimately flows into Carters Creek. The channel (Channel No. 8) will be lined with concrete in the bottom to control possible erosion from the high velocities. The velocity in the concrete lined channel is 7.8 fps for the 25-year stom1 event and 8.2 fps for the 100-year stonn event at the discharge of th e chann el. Appendix C contains a summary of the channel design parameters and calculations for the 25-and I 00-year storm events. There will be dissipator blocks and rock riprap at the end of the channel to slow th e velocity and reduce erosion . The velocity of the now in th e roadside ditches was evalu ated for th e I 0-year and I 00-year storm events. The drai nage areas are shown on Ex hibit B. 8.2 The city requirements for ditch lining material are as follows : Maximum Design Velocities of Various Surface Treatments1 Surface Treatment Exposed Earth* Grass -Seeded Grass -Sodded Impermeable (Concrete, Gunite, Etc.) *Temporary Channels Only Maximum Design Velocity, (ft/sec) 3.0 4.5 6.0 10.0 1From "Erosion and Sediment Control Guidelines for Developing Areas in Texas" by the Soil Conservation Service In Appendix D the ditch velocities are summarized including comments stating the ditch lining material used. The ditch lining material is also shown in the construction drawings. Although concrete or grass block sod are not required, these have been included in areas where erosion is anticipated. CONCLUSIONS The construction of this project will increase the storm water runoff from this site. However, the runoff will be carried through a drainage system to existing drainages and then into the 100- year floodplain. Due to the location of this project and its proximity to Carters Creek's confluence with the Navasota River, the peak runoff from this development will occur much sooner than the peak runoff in Carters Creek, therefore, the increase in runoff has no affect on the water surface elevation in Carters Creek. The increased flow directly into Carters Creek will not have a significant impact on the surrounding property. No flood damage to downstream or adjacent landowners is expected as a result of this development. 7 APPENDIX A Time of Concentration Equations & Calculations \ Time of Concentration Calculations Williams Creek Subdivision -Phase 5 Drainage Area #1 Sheet Flow: n= 0.24 {dense grass) P= 4.5 L= 175 Elev1= Elev2= Slope= 0.018 T1= 0.007(L*n)08 = 0.327 hours= 19.6 min (P)°-s*(S)o4 Concentrated Flow 1: V= 2.15 fps (unpaved) L= 357 Elev1= Elev2= Slope= 0.018 T1= L/(60*V) = 2.8 min Concentrated Flow 2: V= 3.25 fps (unpaved) L= 760 Elev1= Elev2= Slope= 0.041 T1= L/(60*V) = 3.9 min Concentrated Flow 3: V= 4.4 fps L= 75 Elev1= Elev2= Slope= 0.075 T1= L/(60*V) = 0.3 min \ ITc= 26.6 min ... <+--.... <+- CV a. 0 VI CV VI s... ::I 0 u s... OJ ..... .., 3: 3-2 .50 .20 - .10 .06 .04 . 02 - .01 - .005 I 1 j j I ' 7 I ' I J I j . b ::..q, L'"" ~I '?1 ::..1 ~ Q_~ ~ J 7 j I ' I 2 ' I 4 I I I I I I I 6 ' I J ' I Average velocity, ft/sec ,. , I ' I I I r ~ I I 10 7 7 Fiicu,..., :1-L-Av~rai::~ vdociti~· for C•timatinic tmvd tim~ for •hallow conc~ntrat~d no w. (2 10-Vl -TR-55. Second Ed .. June 198G) I 20 \ APPENDIXB Storm Sewer Culvert Data & Design Calculations \ 11 Williams Creek Subdivision -Phase 5 Culvert Summary Size Length Slope Inlet Invert Culvert #of Elev No. Barrels (in) (ft) (%) (ft) 4 1 42 80.0 1.00 222.70 Outlet Invert Elev (ft) 221.90 Top of Road 25-year storm 100-year storm Design Flow V2s HW Design Flow V100 HW (ft) (cfs) (fps) (ft) (cfs) (fps) (ft) 234.60 97.96 10.2 229.15 116.30 12.1 230.84 \ Culv ert 4 -25 Year St orm Culvert Calcula t or Enter ed Data: Shape .......................... . Number of Barr els .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . Scale Descri ption .............. . Overtopping .................... . Flowr ate ....................... . Manning's n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results: Headwater ...................... . Slope .......................... . Velocity ....................... . Ci rcular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE SQUARE EDGE ENTRANCE WITH HEADWALL Off 97 .96 00 cfs 0 .0140 234.6000 ft 222.7000 ft 221.9000 ft 42.0000 in 80.0000 ft 0 .0000 3.5000 ft 22 9.1535 ft Inlet Control 0.0100 ft/ft 10 .1818 fps Culvert 4 -100 Year Storm Culvert Calculator Entered Data: Shape .......................... . Number of Barrels .............. . Solving for .................... . Chart Number ................... . Scale Number ................... . Chart Description .............. . Scale Description .............. . Overtopping .................... . Flowrate ....................... . Manning' s n .................... . Roadway Elevation .............. . Inlet Elevation ................ . Outlet Elevation ............... . Diameter ....................... . Length ......................... . Entrance Loss .................. . Tailwater ...................... . Computed Results : Headwater ...................... . Slope .......................... . Ve l ocity ....................... . Williams Creek Su bdivis ion -Phas e 5 College Station , Texas Ci rcular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING EMfRANCE SQUARE EDGE ENTRANCE WITH HEADWALL Off 116.3000 cfs 0 .0140 234.6000 ft 222 .7000 ft 221 .9000 ft 42.0000 in 80 .0000 ft 0.0000 3.5000 ft 230 .8430 ft Inlet Control 0.0100 ft /ft 12.0880 fps APPENDIX C Drainage Channel Design Data & Calculations 14 Williams Creek Subdivision -Phase 5 Channel Summary Bottom Side Slope 25-year storm Channel No. Width Slopes Design Flow Depth (in) (H:V) (%) (cfs) (in) 8-Segment 1 24 2:1 5.11 13.02 5.0 --8-Segment 2 24 2:1 3.00 13.02 5.8 ------ 8-Segment 3 24 2:1 2.00 13.02 6.5 100-year storm Channel V2s Design Flow Depth V100 Lining (fps) (cfs) (in) (fps) Material 10.9 15.36 5.5 11.5 Concrete 9.0 15.36 6.4 9.5 Concrete - 7.8 15.36 7.1 8.2 Concrete \ Channel 8 -25 Year Storm (Segment 1, 5.11% Slope) Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trapezoidal Depth of Flow 13. 0200 cfs 0.0511 ft/ft 0. 0140 15.0000 in 24.0000 in 0. 5000 ft/ft (V/H) 0.5000 ft/ft (V/H) 5.0357 in 10 .9275 fps 110.5277 cfs 1.1915 ft2 46.5205 in 3.6882 in 44 .1429 in 5.6250 ft2 91.0820 in 33.5716 % Channel 8 -100 Year Storm (Segment 1, 5.11% Slope) Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Williams Creek Subdivi sion -Phase 5 College Station , Texas Trapezoidal · Depth of 'Flow 15.3600 cfs 0.0511 ft/ft 0. 0140 15.0000 in 24.0000 in 0.5000 ft/ft (V/H) 0.5000 ft/ft (V/H) 5.5077 in 11. 4690 fps 110 .5277 cfs 1.3393 ft2 48.6312 in 3.9657 in 46.0308 in 5.6250 ft2 91.0820 in 36.7180 % \ Channel 8 -25 Year Storm (Segment 2, 3.0% Slope) Channel Calculator Given Input Data : Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trapezoidal Depth of Flow 13 .0200 cfs 0.0300 ft/ft 0.0140 15 .0000 in 24 .0000 in 0.5000 ft/ft (V/H) 0. 5000 ft/ft (V/H) 5.8153 in 9.0485 fps 84.6879 cfs 1.4389 ft2 50.0069 in 4.1435 in 47.2613 in 5 .6250 ft2 91.0820 in 38.7688 % Channel 8 -100 Year Storm (Segment 2, 3.0% Slope) Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Williams Creek Subdivision -Phase 5 College Statio n, Texas Trapezoidal , Depth of Flow 15.3600 cfs 0.0300 ft/ft 0 . 0140 15.0000 in 24.0000 in 0.5000 ft/ft (V/H) 0.5000 ft/ft (V/H) 6 .3518 in 9 .4874 fps 84.6879 cfs 1 .6190 ft2 52.4062 in 4.4486 in 49 .4073 in 5.6250 ft2 91.0820 in 42 .3454 % \ Channel 8 -25 Year Storm (Segment 3, 2.0% Slope) Channel Calculator Given Input Data : Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trapezoidal Depth of Flow 13. 0200 cfs 0.0200 ft /ft 0.0140 15.0000 in 24.0000 in 0 .500 0 ft/ft (V/H) 0 . 5000 ft/ft (V/H) 6 .4793 in 7.8294 fps 69.1474 cfs 1.6630 ft2 52.9764 in 4.5203 in 49.9173 in 5 .6250 ft2 91.0820 in 43.1955 % Channel 8 -100 Year Storm (Segment 3 , 2.0% Slope) Channel Calculator Given Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic r adius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Will iams Creek Subdiv i sion -Phase 5 College Stati on, Texas Trapezoidal . Depth of Flow 15.3600 cfs 0.0200 ft/ft 0 .0140 15 .0000 in 24.0000 in 0 .5000 ft/ft (V/H) 0.5000 ft/ft (V/H) 7.0695 in 8 .2034 fps 69 .1474 cfs 1.8724 ft2 55 .6159 in 4.8480 in 52 .2781 in 5.6250 ft2 91.0820 in 47.1302 % \ APPENDIXD Drainage Ditch Data & Lining Material \ 19 Williams Creek Subdivision -Phase 5 Ditch Velocity Data Revised 812006 Williams Creek Drive Left Ditch (n = O 035 for grass and n = 0 014 for concrete) From To Station Slope Drainage Area # 0 10 Station (ds) 54+60 54+80 7.95% 403 5.14 54+80 55+26 0.40% 403 5.14 55+26 55+60 -0.40% 1,2,3,4 4.62 55+60 55+80 -11 .70% 1,2,3,4 4.62 -55+80 56+37 -3.20% 1,2,3.4 4.62 56+37 57+50 -5.60% 2,3.4 4.27 57+50 58+82 -4.60% 3,4 3.84 58+82 60+86 -1 .75% 4 3.28 -----61+90 64+73 0.90% 21 0.95 Williams Ridge Court Left Ditch (n = 0.035) From To Station Slope Drainage Area # 0 10 Station (cfs) 0+00 2+00 2.00% 5 1.17 --- 2+00 3+50 1.00% 5,6 1.73 --------- 3+50 5+25 1.56% 5,6,7 2.37 -----5+25 6+50 1.89% 5,6,7,8 2.81 -----------6+50 8+25 2.15% 5~.7~~-3.41 -·-------8+25 10+25 2.14% 5,6,7,8~9._!~ 4.19 ---10+25 12+00 3.82% 5,6_,I.8.~.10, 11 4.88 ----12+00 13+16.34 5.10% 5,6.7,8,9,10, 11 , 12 5.79 Williams Creek Drive Right Ditch (n = 0.035 for grass and n = 0.014 for concrete) From To Station Slope Drainage Area # 0 10 Station (els) 54+60 54+97 4.80% 404 6.09 ----------- 54+97 55+26 0.40% 404 609 ----- 55+26 55+45 -0.40% 2~.24J~.26 2.50 ---- 55+45 55+80 -7.11% 23,24,25,26 2.50 ---55+80 56+37 -3.20% 23,24J5~2_6 2.50 -------------56+37 57+50 -5.60% 23 ,24,25 2.16 ----------57+50 58+82 -4.60% 23,24 1.77 ----58+82 60+86 -1.75% 23 1.25 ----60+86 60+86 -1.75% 22 2.12 Williams Ridge Court Right Ditch (n = 0.035) From To Station Slope Drainage Area # 0 10 Station (cfs) 0+00 2+00 2.00% 20 0.82 2+00 3+50 1.00% 19,20 1.42 3+50 5+25 1.56% 18.19,20 2.12 5+25 6+50 1.89% 17,18,19,20 2.63 6+50 8+25 2.15% 16,17,18,19,20 3.32 8+25 10+25 2.14% 15.16.17.18.19.20 4.06 10+25 12+00 3.82% 14. 15.16, 17, 18.1 9.20 4.71 12+00 13+16.34 5.10% h3, 14.15.16, 17.18.19.2( 5.61 1. Concrete ditch lining depth = 9·· 2 Concrete ditch lining deplh = 7 5 .. V 10 d 10 0100 V100 d100 Driveway Lot# Ditch Lining (fps) (in) (els) (fps) (in) Culvert (in) Material 9.5 4.4 6.93 10.2 4.9 --Concrete 2 3.2 5.9 6.93 3.4 6.9 --Concrete' 3.2 5.9 6.23 3.4 6.9 - -Concrete 1 10.7 3.9 6.23 11.5 4.4 --Concrete2 3.3 7.1 6.23 3.6 7.9 18 1 Grass Sod - 4.0 6.2 5.76 4.3 6.9 18 1 Grass Sod 3.6 6.2 5.18 3.9 6.9 15 2 Grass Seed 2.4 7.0 4.42 2.6 7.8 15 -Grass Seed 1.4 5.0 1.28 1.5 5.6 12 -Grass Seed V10 d 10 0100 V 100 d100 Driveway Lot# Ditch Lining (fps) (in) (cfs) (fps) (in) Culvert (in) Material 2.0 4.6 1.57 2.1 5.2 12 11 Grass Seed 1.7 6.1 2.33 1.8 6.8 12 12 Grass Seed --2.1 6.3 3.20 2.3 7.1 12 12 Grass Seed 2.4 6.5 3.78 2.6 7.3 12 13 Grass Seed -2.6 6.8 4.60 2.8 7.6 15 14 Grass Seed ---2.8 7.4 5.65 3.0 8.3 15 14 Grass Seed 3.6 7.0 6.58 3.9 7.8 18 15 Grass Seed --4.2 7.1 7.80 4.5 7.9 18 16 Grass Sod V10 d 10 0 100 V100 d100 Driveway Lot# Ditch Lining (fps) (in) (ds) (fps) (in) Culvert (in) Material 8.2 5.2 8.21 8.8 5.8 --Concrete' --- Concrete 1• 2.7 4.2 8.21 2.9 5.0 - ---Concrete 1 \ 2.7 4.2 3.38 2.9 5.0 -- 7.6 3.4 3.38 8.2 3.9 --Concrete 2 --- 2.8 5.6 3.38 3.1 6.3 12 1 Grass Sod ------ 3.4 4.8 2.91 3.6 5.4 12 1 Grass Sod -3.0 4.6 2.39 3.2 5.2 12 2 Grass Seed -- 1.9 4.9 1.69 2.0 5.4 12 2 Grass Seed --- 1.7 6.7 2.85 1.8 7.5 12 3.4 Grass Seed V10 d 10 0 100 V100 d 100 Driveway Lot # Ditch Lining (fps) (in) (efs) (fps) (in) Culvert (in) Material 1.8 4.1 1.11 1.9 4.5 12 23.24 Grass Seed 1.6 5.7 1.92 1.7 6.3 12 22 Grass Seed 2.1 6.1 2.85 22 6.8 12 21 Grass Seed 2.4 6.3 3.55 2.5 7.1 12 20 Grass Seed 2.6 6.8 4.48 2.8 7.6 15 19 Grass Seed 2.8 7.3 5.47 3.0 8.2 15 19 Grass Seed 3.5 6.9 6.34 3.8 7.7 18 18 Grass Seed 4.1 7.0 7.57 4.5 7.8 18 17 Grass Sod Williams Creek Subdivision -Phase 5 Ditch Velocity Evaluation Data -Exhibit B Revised 812006 Area, c tc 5 year storm Area # A Is Os (acres) (min) (in/hr) (cfs) 1 0.08 0.50 10.0 7.693 0.31 2 0.10 0.50 10.0 7.693 0.38 3 0.13 0.50 10.0 7.693 0.50 4 0.76 0.50 10.0 7.693 2.92 5 0.27 0.50 10.0 7.693 1.04 6 0.13 0.50 10.0 7.693 0.50 7 0.15 0.50 10.0 7.693 0.58 8 0.10 0.50 10.0 7.693 0.38 9 0.14 0.50 10.0 7.693 0.54 10 0.18 0.50 10.0 7.693 0.69 11 0.16 0.50 10.0 7.693 0.62 12 0.21 0.50 10.0 7.693 0.81 13 0.21 0.50 10.0 7.693 0.81 14 0.15 0.50 10.0 7.693 0.58 15 0.17 0.50 10.0 7.693 0.65 16 0.16 0.50 10.0 7.693 0.62 17 0.12 0.50 10.0 7.693 0.46 18 0.16 0.50 10.0 7.693 0.62 19 0.14 0.50 10.0 7.693 0.54 20 0.19 0.50 10.0 7.693 0.73 21 0.22 0.50 10.0 7.693 0.85 22 0.49 0.50 10.0 7.693 1.88 23 0.29 0.50 10.C 7.693 1.12 24 0.12 0.50 1C.O 7.693 0.46 25 0.09 0.50 10.0 7.693 0.35 26 0.08 0.50 10.0 7.693 0.31 403 1.19 0.50 10.0 7.693 4.58 ---404 1.41 0.50 10.0 7.693 5.42 The Rational Method: Q = CIA I = b I (tc+d)e Q = Flow (cfs) le = Time of concentration (min) A = Area (acres) C = Runoff Coeff. I = Rainfall Intensity (in/hr) Brazos County: 5 year storm 10 yea r storm b = 76 b = 80 d = 8.5 d = 8.5 e = 0.79 e = 0.763 25 year storm b = 89 d = 8.5 e = 0.754 10 year storm 25 year storm 50 year storm 110 (in/hr) 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 8.635 0 10 l2s (cfs) (in/hr) 0.35 9.861 0.43 9.861 0.56 9.861 3.28 9.861 1.17 9.861 0.56 9.861 0.65 9.861 0.43 9.861 0.60 9.861 0.78 9.861 0.69 9.861 0.91 9.861 0.91 9.861 0.65 9.861 073 9.861 0.69 9.861 0.52 9.861 0.69 9.861 0.60 9.861 0.82 9.861 0.95 9.861 2.12 9.861 1.25 9.861 0.52 9.861 0.39 9.861 0.35 9.861 5.14 9.861 6.09 9.861 tc = L/(V*60) L = Length (ft 0 2s lso Oso (cfs) (in/hr) (cfs) 0.39 11 .148 0.45 0.49 11 .148 0.56 0.64 11.148 0.72 3.75 11 .148 4.24 1.33 11 .148 1.50 0.64 11 .148 0.72 0.74 11.148 0.84 0.49 11.148 0.56 0.69 11 .148 0.78 0.89 11.148 1.00 0.79 11.148 0.89 1.04 11.148 1.17 1.04 11.148 1.17 0.74 11.148 0.84 0.84 11 .148 0.95 0.79 11 .148 0.89 0.59 11.148 0.67 0.79 11.148 0.89 0.69 11.148 0.78 0.94 11.148 1.06 1.08 11 .148 1.23 2.42 11 .148 2.73 1.43 11.148 1.62 0.59 11 .148 0.67 0.44 11 .148 0.50 0.39 11 .148 0.45 5.87 11 .148 6.63 -6.95 11.148 7.86 V =Velocity (ft/sec) 50 year storm b = 98 d = 8.5 e = 0.745 100 year storm b = 96 d = 8.0 e = 0.730 100 year storm 1100 0 100 (in/hr) (cfs) 11 .639 0.47 11 .639 0.58 11 .639 0.76 11 .639 4.42 11 .639 1.57 11 .639 0.76 11 .639 0.87 11 .639 0.58 11 .639 0.81 11 .639 1.05 11 .639 0.93 11 .639 1.22 11 .639 1.22 11 .639 0.87 11 .639 0.99 11 .639 0.93 11 .639 0.70 11 .639 0.93 11.639 0.8 1 11 .639 1.11 11 .639 1.28 11 .639 2.85 11 .639 1.69 11 .639 0.70 11 .639 0.52 11.639 0.47 11.639 6.93 11 .639 8.21 \ EXHIBIT A Drainage Area Map -Post-Development, Culverts & Channels \ 22 EXHIBIT B Drainage Area Map -Post-Development, Ditch Velocities 24