HomeMy WebLinkAboutDrainage Report.. ~ ...
Dramage Report
for
Williams Creek Subdivision -Phase 3
College Station, Texas
October 2005
Developer:
Joe and Janet Johnson Land and Investments, LP
1400 South Commercjal Street
Coleman, Texas 76834
(325) 625-2124
Prepared By:
TEXCON General Contractors
1 707 Graham Road
College Station, Texas 77845
(979) 764-7743
CERTIFICATION
I certify that this report for the drainage design for the Williams Creek Subdivision -Phase 3,
was prepared by me in accordance with the provisions of the City of College Station Drainage
Policy and Design Standards for the owners hereof, with the exception that storm water runoff
detention is not being proposed for this project since the runoff will discharge directly into the
l 00-year floodplain of Carters Creek.
TABLE OF CONTENTS
DRAINAGE REPORT
WILLIAMS CREEK SUBDIVISION -PHASE 3
CERTIFICATION .................................................................................................................................................................. 1
TABLE OF CONTENTS ........................................................................................................................................................ 2
LIST OFT ABLES .................................................................................................................................................................. 2
INTRODUCTION ................................................................................................................................................................... 3
GENERAL LOCATION AND DESCRIPTION .................................................................................................................. 3
FLOOD HAZARD INFORMATION .................................................................................................................................... 3
DEVELOPMENT DRAINAGE PATTERNS ....................................................................................................................... 3
DRAINAGE DESIGN CRITERIA ........................................................................................................................................ 3
STORM WATER RUNOFF DETERMINATION .............................................................................................................. .4
STORM CULVERT & DRAINAGE CHANNEL DESIGN ................................................................................................ 5
CONCLUSIONS ..................................................................................................................................................................... 7
APPENDIX A .......................................................................................................................................................................... 8
Time of Concentration Equations & Calculations
APPENDIX B ........................................................................................................................................................................ 19
Storm Sewer Culvert Data & Design Calculations
APPENDIX C ........................................................................................................................................................................ 27
Drainage Channel Design Data & Calculations
APPENDIX D ........................................................................................................................................................................ 35
Drainage Ditch Data & Lining Material
EXHIBIT A ............................................................................................................................................................................ 40
Drainage Area Map -Post-Development, Culverts & Channels
EXHIBIT B ............................................................................................................................................................................ 42
Drainage Area Map -Post-Development, Ditch Velocities
LIST OF TABLES
TABLE 1 -Rainfall Intensity Calculations .............................................................................................. 4
TABLE 2 -Time of Concentration (tc) Equations .................................................................................. 4
TABLE 3 -Post-Development Runoff Information ................................................................................ 5
TABLE 4 -Area Inlet Equations & Data ................................................................................................. 6
2
DRAINAGE REPORT
WILLIAMS CREEK SUBDIVISION -PHASE 3
INTRODUCTION
The purpose of this report is to provide the hydrological effects of the construction of the
Williams Creek Subdivision -Phase 3, and to verify that the proposed storm drainage system
meets the requirements set forth by the City of College Station Drainage Policy and Design
Standards.
GENERAL LOCATION AND DESCRIPTION
The project is located on a portion of a 213.91 acre tract located east of Rock Prairie Road and
south of Greens Prairie Road in College Station, Texas. This report addresses Phase 3 of this
subdivision, which is made up of 56.69 acres. The site is predominantly wooded. The existing
ground elevations range from Elevation 200 to Elevation 284. Portions of the existing ground
are steep, with slopes approaching 25%. The general location of the project site is shown on
the vicinity map in Exhibit A.
FLOOD HAZARD INFORMATION
The project site is located in the Carters Creek Drainage Basin. Approximately 43.5 acres of
this phase of the subdivision is located in the 100-year floodplain. The remainder of this phase
of the proposed subdivision is located in a Zone X Area according to the Flood Insurance Rate
Map prepared by the Federal Emergency Management Agency (FEMA) for Brazos County,
Texas and incorporated areas, Community No. 481195 and 480083, Panel No. 205D, Map No .
48041 C0205D, effective dated February 9, 2000. No development is proposed for the portion
of this development in the l 00-year floodplain. This area is shown on Exhibit A as the l 00-
year floodplain. Lots which contain floodplain area are required to have a minimum finished
floor elevation (FF), which is a minimum of one foot above the Base Flood Elevation (BFE).
The BFE information is also shown on Exhibit A.
DEVELOPMENT DRAINAGE PATTERNS
Prior to development, the storm water runoff for Phase 3 flows in a north or easterly direction
into the Carters Creek floodplain or into existing tributaries which discharge into Carters Creek.
DRAINAGE DESIGN CRITERIA
The design parameters for the storm drainage analysis are as follows :
• The Rational Method is utilized to determine peak storm water runoff rates for the stonn
drainage design for culverts, ditches and channels.
• Design Stonn Frequency
Stom1 cu lverts & channels
Roadside ditches
• Runoff Coeffici ents
25-and I 00-year stom1 events
I 0-and 100-year stom1 events
Post-development (I acre minimum lot size) c = 0.50
• Rainfall Intensity equations and values for Brazos Co unty can be round in Tabl e I.
• Time of Concentration, tc -Calculations are based on the method found in the TR-55
publication. Refer to Table 2 for the equations and Appendix A for calculations. The
runoff flow path us ed for calculating the post-development times of concentration for the
larger drainage areas are shown on the exhibits. Smaller drainage areas use a minimum tc
of 10 minutes to determine the rainfall intensity values. Exhibit A has the runoff flow paths
used for the drainage areas for the culvert and channel design. Exhibit B has th e runoff
flow paths used for the drainage areas for the roadside ditch design.
STORM WATER RUNOFF DETERMINATION
The peak runoff values were detem1ined in accordance with the criteria presented in th e
previous section for the 10, 25 , 50, and 100-year storm events. The drainage areas for the post-
development condition are shown on Exhibit A. Post-development runoff conditions for the
storm culvert design drainage areas are summarized in Tables 3.
TABLE 1 -Rainfall Intensity Calculations
Rainfall Intensity Values (in/hr)
Storm
Event
110
hs
'100
le=
10 min
8.635
9.861
11 .639
I = b I (tc+d)e
I = Rainfall Intensity (in/hr)
tc = L/(V*60)
t.: =Time of concentration (min)
L = Length (ft)
V = Velocity (ft/sec)
Brazos County:
10 '{_ear storm 25 '{_ear storm 50 '{_ear storm 100 '{_ear storm
b= 80 b= 89 b= 98 b = 96
d= 8.5 d= 8.5 d= 8.5 d= 8.0
e= 0.763 e= 0.754 e= 0.745 e = 0.730
(Data taken from State Department of Hiqhwa'{_s and Public Transportation H'{_draulic Manual, page 2-1 6)
TABLE 2 -Time of Concentration (tc) Equations
The time of concentration was determined using methods found in TR-55, "Urban
Hydrology for Small Watersheds." The equations are as f ollows:
Time of Concentration: Tc = T1(shret flow)+ T1(co11cenlra1ed sheet flow)
where: T1 =Travel Time, minutes
For Sheet Flow: 0.007 (n L)°-8
(P2)0.s so.4 where: T1 =travel time, hours
For S hallow Concentrated Flow:
Refer to A ppendix A for calculati ons.
-I
n =Manning's roughness coefficient
L = flow length, feet
P2 = 2-year, 24-hour rainfall = 4 .5"
s = land slope, ft/ft
T1 = L I (60*V)
where: T1 =trave l ti me, minutes
V =Velocity, fps (See Fig 3-1, App /\)
L = fl ow length, fee l
TABLE 3 -Post-Development Runoff Information
Area c le
10-year storm
Culvert/
Channel No.
Culvert 1
Channel4
Inlet 1; Culvert 2; Culvert 4
Channel 5
Inlet 2; Culvert 3A; Culvert 5
Culvert 38; Channel 6
Inlet 3
The Rational Method:
Q=CIA
Q = Flow (cfs)
A= Area (acres)
C = Runoff Coeff.
Area #
301
301+301A
302
302+302A
303
303+303A
303A
I = Rainfall Intensity (in/hr)
Brazos County:
10 year storm
b = 80
d = 8.5
e = 0.763
A 125
(acres) (min) (in/hr)
17.47 0.50 31 .3 4.813
18.80 0.50 31.6 4.785
6.19 0.50 35.8 4.435
7.01 0.50 36.1 4.412
5.34 0.50 31 .2 4.822
6.36 0.50 31 .7 4.776
1.02 0.50 10.0 8.635
I = b I (tc+d)e
tc = Time of concentration (min)
25 year storm
b = 89
d = 8.5
e = 0.754
100 year storm
b = 96
d = 8.0
e = 0.730
STORM CULVERT & DRAINAGE CHANNEL DESIGN
0 25
(cfs)
42.04
44.98
13.73
15.46
12.87
15.19
4.40
25-year storm
125 0 25
(in/hr) (cfs)
5.534 48.34
5.503 51 .73
5.105 15.80
5.079 17.80
5.545 14.81
5.493 17.47
9.861 5.03
tc = L/(V*60)
L = Length (ft
100-year storm
1100 0100
(in/hr) (cfs)
6.582 57.49
6.546 61.53
6.081 18.82
6.051 21.21
6.594 17.61
6.534 20.78
11 .639 5.94
V =Velocity (fl/sec)
The storm culverts for this project have been selected to be Reinforced Concrete Pipe (RCP)
meeting the requirements of ASTM C-76, Class III pipe meeting the requirements of ASTM C-
789. There will be sloped safety end treatments at the end of each culvert.
Runoff from the proposed streets will be collected by the roadside ditches and conveyed to the
culvert structures or area inlet structures. Due to the steep side slope of the ditches on the right
side of Johnson Creek Loop, inl ets will be used for this development in some locations. The
inlets will allow the ditches to be less deep at the culvert locations, thereby reducing th e
amount of disturbance due to the construction of the street ditch side slopes. The drainage
areas for the culvert and channel designs are shown ori Exhibit A.
The in lets for the right side ditch will be placed at the low point of the ditch to collect the storm
water. This stom1 water will then be conveyed parallel to the roadway in a culvert where it
discharges into a junction box and then into another culvert to be conveyed to th e drainage
channels. The elevation of the top of the junction boxes will match the ditch tlowline, and the
junction boxes will have a grate top instead of a ring-and-cover. This will allow some of the
storm water to enter the pipes at this point as it flows towards the inl ets located in the low point
of the ditch . The inlets located in th e low points are co nservatively designed assuming the
junction box/inlets on grade do not coll ect the runoff.
The proposed grate inlets were analyzed using th e ori fi cc equation, solving for th e depth of
water on th e inl et for the I 0-and I 00-year storm events. It was assumed that 75% 01· th e open
area of the grate would be clogged for the inl et design. Design calculations and data for the
grate inl et are shown in Table 4.
TABLE 4 -Area Inlet Equations & Data
Q = 4.82 * ~ * y 112 ~ y =(QI (4.82 * ~))2
Where: Q = flow at inlet, cfs
Ag = open area of 1-3'x3' grate, ft2 = 7 .8 ft2
y = depth at inlet, ft
Actual
Design Ag
Inlet Ag 75% Inlet No. Size clogging 0 10
(ft2) (ft2) (cfs)
1 2-3'x3' grates 15.6 3.9 13.73
2 2-3'x3' grates 15.6 3.9 12.87
3 1-3'x3' grate 7.8 2.0 4.40
10-Year Storm 100-Year Storm
Depth, y 0100 Depth, y
(ft) (in) (cfs) (ft)
0.53 6.4 18.82 1.00
0.47 5.6 17.61 0.88
0.22 2.6 5.94 0.40
As shown by these calculations, the maximum depth of water for the l 00-year storm for the
proposed grate inlets is 12" at Inlet No. 1. The ditch between the right-of-way and the edge of
pavement is a minimum of 18" in depth, and wi ll be graded as necessary to ensure that the
runoff from the l 00-year storm event will remain within the street right-of-way.
Appendix B presents a summary of the storm culvert design parameters and calculations. All
pipes are 18" in diameter or larger. The culverts were designed based on the 25-year storm
event, and data is also given for the 100-year storm event. As shown in the summary, all of the
culverts have a headwater elevation that is at least one foot below the roadway elevation for the
25-year storm event. Also, all of the culverts pass the 100-year storm event without
overtopping the roadway. As required by College Station, the velocity of flow in the pipes is
not lower than 2.5 feet per second, and it does not exceed 15 feet per second. As the data
shows, even during lo w flow conditions, the velocity in the pipes will exceed 2.5 feet per
second and prevent sediment build-up in the culverts. The maximum flow in the storm cul verts
will occur in Culvert No. 1. The maximum velocity for the culverts in this development will be
8.5 feet per second and will occur in Culvert No. l. Appendix B contains a sum mary of the
culvert calculator data for the 25-and 100-year storm events. Concrete riprap w ill be placed at
the end of the culverts to direct the water to the drainage channels.
The storm water runoff in the roadside ditches of Johnson Creek Loop wil l di scharge into three
different improved drainage channels which will convey the water from the street ri ght-of-way
to the flo odplain or an existing drainage whi ch ultimately flows into Carters Creek. Two of the
channels (Channel Nos. 4 & 5) will be lined with concrete in the bottom to control possible
erosion from the hi gh velociti es. The velocities in the concrete lined channels are 5.8 fps and
5.4 fps for Chann el No. 4 & No. 5, respectively, at the discharge of th e channels. The third
chann el, Channel No. 6, is a grass lined channel. Rock riprap will be placed at th e end of each
channel to disperse th e energy of the storm water and control erosion. Appendi x C cont ains a
s ummary o f the channel design parameters and calculations for th e 25-and 100-year storm
events.
(1
(in)
12.0
10.5
4.8
The velocity of the flow in the roadside ditches was evaluated for the 10-year and 100-year
storm events. The drainage areas are shown on Exhibit B.
The city requirements for ditch lining material are as follows:
Maximum Design Velocities of Various
Surface Treatments'
Surface Treatment
Exposed Earth*
Grass -Seeded
Grass -Sodded
Impermeable
(Concrete, Gunite, Etc .)
*Temporary Channels Only
Maximum Design Velocity, (ft/sec)
3.0
4.5
6.0
10.0
'From "Erosion and Sediment Control Guidelines for Developing
Areas in Texas" by the Soil Conservation Service
In Appendix D the ditch velocities are summarized including comments stating the ditch lining
material used. The ditch lining material is also shown in the construction drawings.
CONCLUSIONS
The construction of this project will increase the storm water runoff from this site. However,
the runoff will be carried through a drainage system to the Carters Creek 100-year floodplain or
into an existing drainage and then into the 100-year floodplain. Due to the location of this
project and its proximity to Carters Creek's confluence with the Navasota River, the peak
runoff from this development will occur much sooner than the peak runoff in Carters Creek,
therefore, the increase in runoff has no affect on the water surface elevation in Carters Creek.
The increased flow directly into Carters Creek will not have a significant impact on the
surrounding property. No flood damage to downstream or adjacent landowners is expected as a
result of this development.
7
APPENDIX A
Time of Concentration Equations & Calculations
Tc Calculations
Drainage Area #301
Sheet Flow: n= 0.4 (woods -light underbrush)
P= ' . 4.5; . "
L= 200 Elev1= . · 280 Elev2= 270 Slope= 0.050
T,= 0.007{L *n)08 0.364 hours= 21 .8 min
(P)os*(S)0.4
Concentrated Flow 1: V= . 4.2 fps (unpaved)
L= 355 Elev1= 270 Elev2= ·245.9 Slope= 0.068
T,= U(60*V) = 1.4 min
Ditch Flow 1 : V= 2.3 fps Q= 3 cfs
L= 25 Elev1= 24p.9 Elev2= 245.5 Slope= 0.016
T,= U(60*V) 0.2 min
Ditch Flow 2: V= 2 fps Q= 8 cfs
L= 600 Elev1= 245.5 Elev2= 241.9 Slope= 0.006
T,= U(60*V) = 5.0 min
Ditch Flow 3: V= Q=
L= Elev1= 241.9 Elev2= 237.5 Slope= 0.022
T,= U(60*V) = 0.9 min
Ditch Flow 4: V= 4.5 fps Q= 18 cfs
L= 250 Elev1= 237.5 Elev2= 230 Slope= 0.030
T,= U(60*V) = 0.9 min
Ditch Flow 5: V= 3.3 fps Q= 22 cfs
L= 224 Elev1= 230 Elev2= 228.2 Slope= 0.008
T,= U(60*V) 1.1 min
I Tc= 31 .3 min
Concentrated Pipe Flow 1: V= 3.69 fps
L= 60 Elev1= Elev2= Slope= 0.010
T,= L/(60*V) 0.3 min
ITc= 31 .6 min
Drainage Area #302
Sheet Flow: n= 0.4 (woods -light underbrush)
P= 4.5
L= 156 Elev,= 283.8 Elev2= 282 Slope= 0.012
T,= 0.007{L *n}08 0.537 hours= 32.2 min
(P)°s*(S)oA
Concentrated Flow 1: V= 6.8 fps (unpaved)
L= 31 1 Elev,= 282 Elev2= 232 Slope= 0.162
T1= L/(60*V) 0.8 min
Concentrated Ditch Flow 1 : V= 2.3 fps Q= 4 cfs
L= 203 Elev1= 232 Elev2= 229.3 Slope= 0.013
T1= L/(60*V) = 1.5 min
Concentrated Ditch Flow 2: V= 1.9 fps Q= 6
L= 100 Elev1= 229.3 Elev2= 228.7 Slope= 0.006
T1= L/(60*V) = 0.9 min
Concentrated Ditch Flow 3: V= 2.6 fps Q= 8
L= 65 Elev,= 228.7 Elev2= 228 Slope= 0.012
T1= L/(60*V) 0.4 min
ITc= 35.8 min
Concentrated Pipe Flow 1: V= 6.9 fps Q= 12
L= 75 Elev,= 228 Elev2= 220.5 Slope= 0.010
T1= L/(60*V) = 0.2 min
Concentrated Pipe Flow 2: V= 6.9 fps Q= 12
L= 59 Elev1= 220.5 Elev2= 214.6 Slope= 0.010
T1= L/(60*V) 0.1 min
I' c-:Jll.1 mm
Drainage Area #303
Sheet Flow: n= 0.24 (dense grass)
P= 4.5
L= 257 Elev1= 284.3 Elev2= 280 Slope= 0.017
Ti= 0.007(l *n}°8 = 0.458 hours= 27.5 min
(P)os*(S)oA
Concentrated Flow 1 : V= 2.4 fps (unpaved)
L= 73 Elev1= 280 Elev2= 278.3 Slope= 0.023
Ti= L/(60*V) = 0.5 min
Concentrated Ditch Flow 1 : V= 2.3 fps Q= 2
L= 100 Elev1= 278.3 Elev2= 276.1 Slope= 0.022
Ti= L/(60*V) 0.7 min
Concentrated Ditch Flow 2: V= 3.4 fps Q= 3
L= 100 Elev1= 276.1 Elev2= 271.55 Slope= 0.046
Ti= L/(60*V) 0.5 min
Concentrated Ditch Flow 3: V= 3.9 fps Q= 4
L= 200 Elev1= 271.55 Elev2= 260.48 Slope= 0.055
Ti= L/(60*V) 0.9 min
Concentrated Ditch Flow 4: V= 4.7 fps Q= 6
L= 195 Elev1= 260.48 Elev2= 246.83 Slope= 0.070
Ti= L/(60*V) 0.7 min
Concentrated Ditch Flow 5: V= 4.2 fps Q= 8
L= 100 Elev1= 246.83 Elev2= 242.49 Slope= 0.043
Ti= L/(60*V) 0.4 min
Concentrated Ditch Flow 6: V= 3.1 fps Q= 10
L= 100 Elev1= 242.49 Elev2= 240.93 Slope= 0.016
Ti= L/(60'V) 0.5 min
I Tc= 31 .2 min
Concentrated PiQe Flow 1: V= 6.9 fps O= 12
L= 117 Slope= 0.01'0
U(60*V) = 0.3 min
Concentrated Pipe Flow 2: V= 6.9 fps Q= 12
L= 86 Slope= 0.010
U(60*V) = 0.2 min
31.7 min
Drainage Area #401
Sheet Flow: n= 0.4 (woods -light underbrush)
P= 4.5
L= 110 Elev1= Elev2= Slope= 0.021
T1= 0.007(l *n)08 = 0 .319 hours= 19.1 min
(P)os*(S)04
Concentrated Flow 1: V= 6 fps (unpaved)
L= 359 Elev1= Elev2= Slope= 0.139
T1= L/(60*V) = 1.0 min
Ditch Flow 1: V= 1.7 fps Q= 4 cfs
L= 137 Elev1= Elev2= Slope= 0.006
T1= L/(60*V) = 1.3 min
ITc= 21.4 min
Drainage Area #401 & #401 A
Concentrated Flow 1: V= 2.5 fps
L= 140 Elev1= Elev2= Slope= 0.016
T1= L/(60*V) = 0.9 min
ITc= 22.3 min
Drainage Area #404
Sheet Flow: n= 0.4 (woods)
P= 4.5
L= 156 Elev1= 283.8 Elev2= 282 Slope= 0.012
T1= 0.007(L*n)08 = 0.537 hours= 32.2 min
(P)os*(S)04
Concentrated Flow 1: V= 6.8 fps (unpaved)
L= 311 Elev,= Elev2= Slope= 0.161
T1= L/(60*V) = 0.8 min
Concentrated Ditch Flow V= 1.9 fps (unpaved) Q= 2 cfs
.L
L= 203 Elev1= Elev2= Slope= 0.013
T1= L/(60*V) = 1.8 min
ITc= 34.8 min
Drainage Area #404 & #405
Concentrated Ditch Flow V= 1.7 fps (unpaved) Q= 4 cfs
.L
L= 100 Elev1= Elev2= Slope= 0.006
T1= L/(60*V) = 1.0 min
ITc= 35.8 min
Drainage Area #404, #405, & #407 A
Concentrated Ditch Flow V= 2.4 fps (unpaved) Q= 6 cfs
1 :
L= 65 Elev1= · Elev2= Slope= 0.012
T1= L/(60*V) = 0.5 min
ITc= 36.3 min
Drainage Area #410
Sheet Flow: n= 0.4 (woods -light underbrush)
P= 4.5
L= 188 Elev1= Elev2= Slope= 0.123
T1= 0.007(L *n}08 = 0.242 hours= 14.5 min
(P)o s*(S )04
Ditch Flow 1: V= 2.4 fps Q= 2 cfs
L= 100 Elev1= Elev2= Slope= 0.023
T1= L/(60*V) = 0.7 min
Ditch Flow 2: V= 3 fps Q= 2 cfs
L= 216 Elev1= Elev2= Slope= 0.045
T1= L/(60*V) = 1.2 min
ITc= 16.4 min
Drainage Area #410 & #407
Concentrated Ditch Flow V= 2.6 fps Q= 3 cfs
1 :
L= 11 5 Elev1= Elev2= Slope= 0.022
T1= L/(60*V) = 0.7 min
Concentrated Ditch Flow V= 2.6 fps Q= 4 cfs
2:
L= 35 Elev,= Elev2= Slope= 0.01 8
T1= L/(60*V) = 0.2 min
Concentrated Ditch Flow V= 2.6 fps Q= 4 cfs
3:
L= 48 Elev1= Elev2= Slope= 0 .019
T1= L/(60*V) = 0.3 min
ITc= 17.6 min
Drainage Area #411
Sheet Flow: n= 0.4 (woods -light underbrush)
P= 4.5
L= 193 Elev1= Elev2= Slope= 0.120
T1= 0.007(L *nf8 = 0.249 hours= 14.9 min
(P)os*(S)o4
Ditch Flow 1: V= 1.7 fps Q= 2 cfs
L= 72 Elev1= Elev2= Slope= 0.010
T1= L/(60*V) = 0.7 min
Ditch Flow 2: V= 1 .4 fps Q= 2 cfs
L= 38 Elev1= Elev2= Slope= 0.006
Ti= L/(60*V) = 0.5 min
ITc= 16.1 min
Drainage Area #424
Sheet Flow: n= 0.24 (woods -light underbrush)
P= 4.5
L= 257 Elev,= Elev2= Slope= 0.017
T1= 0.007(l *n}08 = 0.459 hours= 27.5 min
(P)os*(S)04
Concentrated Flow: V= 2.4 fps (unpaved)
L= 73 Elev1= Elev2= Slope= 0.023
T1= L/(60*V) = 0.5 min
ITc= 28.0 min
Drainage Area #424 & #421
Concentrated Ditch Flow V= 2.3 fps (unpaved) Q= 2
1 :
L= 100 Elev1= Elev2= Slope= 0.223
T1= L/(60*V) = 0.7 min
ITc= 28.7 min
Drainage Area #424, #421 ,& #420
Concentrated Ditch Flow V= 3.9 fps (unpaved) Q= 4
.L
L= 100 Elev1= Elev2= Slope= 0.045
Ti= L/(60*V) = 0.4 min
ITc= 29.1 min
Drainage Area #424, #421, #420,& #417
Concentrated Ditch Flow V= 3.9 fps Q= 4
1
L= 200 Elev1= Elev2= Slope= 0.055
T,= L/(60*V) = 0.9 min
ITc= 30.0 min
Drainage Area #424, #421 , #420, #417,& #416
Concentrated Ditch Flow V= 4.7 fps (unpaved) Q= 6
~
L= 195 Elev1= Elev2= Slope= 0.070
T,= L/(60*V) = 0.7 min
ITc= 30.7 min
Dra inage Area #424, #421 , #420, #417, #416,& #414
Concentrated Ditch Flow V= 4.2 fps Q= 8
~
L= 100 Elev1= Elev2= Slope= 0.043
T,= L/(60*V) = 0.4 min
ITc= 31 .1 min
Drainage Area #424, #421 , #420, #417, #416, #414, & #412
Concentrated Ditch Flow V= 3.1 fps Q= 10
1 :
L= 100 Elev1= Elev2= Slope= 0.020
T,= L/(60*V) = 0.5 min
!Tc= 31 .6 min
..... ..... -..... .....
v a.
0 .,,
v .,,
L. ::s
0 u
L.
qJ .... ..,
3:
3-2
. 50 -
.20 -
.10
.06
.04 -
.02 -
.01 -
.005
I
1
j
,
I ,,
' I
I
J
'
'
'
' ., J ' . '
b :..q,[o' 'b q, ~~ Q.,;1
I
I
7
' I
2
~
~
f
I
4
f
I)
' ,,
i
)
I
I
6
I
,
I
' ;
I
Average velocity, ft/sec
~
I I
10
,. , ,
' I
I
I
:
I
Fil(U"' .1-L-Avual(<: vdociti.,. for c•limalinr: lrnvd lim" for •hallow conc.,ntrat<:d now.
(210-VI.T R·55. Second Ed .. June 198Gl
I
20
APPENDIXB
Storm Sewer Culvert Data & Design Calculations
Williams Creek Subdivision -Phase 3
Culvert Summary
Size length Slope Inlet Invert Culvert #of Elev No. Barrels
(in) (ft) (%) (ft)
1 2 30 60.0 1.00 226.60 -----
2 1 24 59.0 1.00 222.08 --· ----
3A 1 24 61 .7 1.00 236.40 -·---· ------·-·
38 1 24 30.0 1.00 235.68 ---· -
4 1 24 64.0 1.19 222.94 ------· --
5 1 24 116.3 1.01 237.67
Outlet Top of Road 25-year storm 100-year storm
Invert Elev Design Flow V2s HW Design Flow V100 HW
(ft) (ft) (cfs) (fps) (ft) (cfs) (fps) (ft)
226.00 230.56 48.34 8.2 229.1 57.49 8.5 229.4 ---
221.49 228.19 15.80 7.3 224.3 18.82 7.6 224.6 -----
235.78 245.98 14.81 7.2 238.6 17.61 7.5 239.0 ·------------235.38 240.63 17.47 5.6 238.3 20.78 7.6 238.8 -----
222.18 228.19 15.80 7.9 225.2 18.82 8.1 225.4 -----------236.50 242.92 14.81 7.3 239.8 17.61 7.5 240.1
Culvert 1 -25 Year Storm
Culvert Calculator
Entered Data:
Shape ...... .
Number of Barrels
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Flowrate ....................... .
Manning's n ................ .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ......... .
Diameter ................. .
Length ................... .
Entrance Loss ............ .
Tailwater ....... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circular
2
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
48.3400 cfs
0 .0140
230.5600 ft
226.6000 ft
226.0000 ft
30.0000 in
60.0000 ft
0.5000
2.5000 ft
229.1144 ft From Inlet
0.0100 ft/ft
8.2199 fps
Culvert 1 -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels . . . . . . . .... .
Solving for .................... .
Chart Number .................. '. .
Scale Number ................... .
Chart Description ........ .
Scale Description ........ .
Flowrate ................. .
Manning's n ...... .
Roadway Elevation .
Inlet Elevation ...
Outlet Elevation ..
Diameter .............. .
Length ................ .
Entrance Loss ........... .
Tailwater ........... .
Computed Results:
Headwater ........ .
Slope ............ .
Velocity ......... .
Wil l i ams Cr eek Subdivi sio n
College Station, Texas
Circular
2
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
57.4900 cfs
0 .0140
230.5600 ft
226.6000 ft
226.0000 ft
30.0000 in
60.0000 ft
0.5000
2.5000 ft
229.4862 ft From Inlet
0.0100 ft/ft
8.5304 fps
Culvert 2 -25 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number .................. .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Flowrate ....................... .
Manning's n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ..... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
15.8000 cfs
0.0140
228. 1900 ft
222.0800 ft
221.4900 ft
24.0000 in
59 .0000 ft
0 .5000
2.0000 ft
224.3023 ft From Inlet
0. 0100 ft/ft
7.3463 fps
Culvert 2 -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Flowrate ....................... .
Manning 's n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results :
Headwater ...... .
Slope ............. .
Velocity ........... .
Will iams Creek Subdivision -Phase 3
CoLlege s ·at: ion, Te :.:as
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
18.8200 cfs
0. 0140
228 .1900 ft
222.0800 ft
221 .4900 ft
24.0000 in
59 .0000 ft
0 .5000
2.0000 ft
224.5876 ft From Inlet
0 .0100 ft /ft
7.5672 fps
Culvert 3A -25 Year Storm
Culvert Calculator
Entered Data :
Shape ........... .
Number of Barrels
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning's n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ....... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ....
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circular
1
Headwater
1
1
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
SQUARE EDGE ENTRANCE WITH HEADWALL
Off
14 .8100 cfs
0.0140
245.9800 ft
236.4000 ft
235 .7800 ft
24.0000 in
61.7000 ft
0.5000
2.0000 ft
238.6253 ft Inlet Control
0 .0100 ft/ft
7.2495 fps
Culvert 3A -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning' s n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation
Diameter ....... .
Length ......... .
Entrance Loss .................. .
Tailwater ...
Computed Results:
Headwater ..
Slope ..... .
Velocity .. .
VJil.Uams Creek Subdivjsi o n
Co l lege S tati o n, Texas
Piuse 3
Circular
1
Headwater
1
1
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
SQUARE EDGE ENTRANCE WITH HEADWALL
Off
17.6100 cfs
0.0140
245.9800 ft
236.4000 ft
235.7800 ft
24.0000 in
61 .7000 ft
0.5000
2.0000 ft
23 8.9949 ft Inlet Control
0.0100 ft/ft
7.4932 fps
Culvert 3B -25 Year Storm
Cu lver t Calculator
Entered Data:
Shape ... .' ...................... .
Number of Barrel s .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ...................... .
Manning 's n ................ .
Roadway Elev ation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ....................... .
Entrance Loss ................ .
Tailwater ....
Computed Resu l t s :
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circular
1
Headwater
1
1
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
SQUARE EDGE ENTRANCE WITH HEADWALL
Off
17.4700 c fs
0.0140
240.6300 ft
235.6800 ft
235 .3800 ft
24.0000 in
30 .0000 ft
0 .5000
2.0000 ft
238.3073 ft Ou tlet Control
0 .0100 ft/ft
5 .5609 fps
Culvert 3B -100 Ye a r Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Overtopping .................... .
Flowrate ....................... .
Manning 's n .................... .
Roadway El e v ation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss ........... .
Tailwa ter ..
Computed Results :
Headwater
Slope ....
Velocity .
\·l i l l.iarns Creek Subdiv i sion -Ph ase
CollegE' S .. ~tion, J°,'";.:cis
Circular
1
Headwater
1
1
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
SQUARE EDGE ENTRANCE WITH HEADWALL
Off
20.7800 cfs
0. 0140
240.6300 ft
235.6800 ft
23 5.3800 ft
24 .0000 in
30.0000 ft
0.5000
2.0000 ft
238.7513 ft I nlet Control
0.0100 ft/ft
7.6279 fps
Culvert 4 -25 Yea r Storm
Culvert Calcu l ator
Entered Dat a :
Shape ...... .
Number of Barrels .............. '.
Solving for .................... 1
•
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Flowr ate ....................... .
Manning 's n .................... .
Roadway Elevation .............. .
I nlet Elevati on ................ .
Outlet Elevati on ............... .
Di ameter ....................... .
Length ......................... .
Entrance Lo ss .................. .
Tailwater ................... .
Comput ed Results :
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circ ular
1
Headwate r
1
3
CONCRETE PI PE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE , PIPE PROJECTING FROM FILL
15.8000 c f s
0 . 0140
228 . 1900 ft
222.940 0 ft
222 .1800 ft
24.0000 in
64.0000 ft
0.5000
2 .5000 ft
225.1604 ft From Inlet
0.0119 ft/ft
7 .8708 f ps
Culver t 4 -100 Year Storm
Culver t Calcul ator
Entered Data:
Shape .......................... .
Number of Barr els .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Descr iption .............. .
Flowrate ....................... .
Manning ' s n .................... .
Roadwa y Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diamete r ................. .
Length ................. .
Entrance Loss
Tai l water ....
Compu ted Results :
Headwater ...................... .
Slope .................... .
Velocity ................. .
Wi l l iams Creek Subdiv i s i o n -Pha se 3
Co l leqe Statio n , Texa s
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
18.8200 c fs
0 .0140
228 .1900 ft
222.9400 ft
222 .1800 ft
24.0000 i n
64.0000 ft
0 .5000
2 .5000 f t
225 .4457 f t From Inlet
0.0119 ft/ft
8.1460 fps
Culvert 5 -25 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Flowrate ....................... .
Manning's n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ..... .
Diameter ....................... .
Length ......................... .
Entrance Loss ...... .
Tailwater .......... .
Computed Results:
Headwater ...................... .
Slope .......................... .
Velocity ....................... .
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT ; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
14.8100 cfs
0.0140
242.9200 ft
237 .6700 ft
236.5000 ft
24.0000 in
116 .3000 ft
0.5000
2.5000 ft
239.7775 ft From Inlet
0.0101 ft/ft
7.2780 fps
Culvert 5 -100 Year Storm
Culvert Calculator
Entered Data:
Shape .......................... .
Number of Barrels .............. .
Solving for .................... .
Chart Number ................... .
Scale Number ................... .
Chart Description .............. .
Scale Description .............. .
Flowrate ....................... .
Manning's n .................... .
Roadway Elevation .............. .
Inlet Elevation ................ .
Outlet Elevation ............... .
Diameter ....................... .
Length ......................... .
Entrance Loss .................. .
Tailwater ...................... .
Computed Results :
Headwater .
Slope ..... .
Velocity .. .
Williams Creek Suhd i vision -Phase 3
College Station, Texas
Circular
1
Headwater
1
3
CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE
GROOVE END ENTRANCE, PIPE PROJECTING FROM FILL
17.6100 cfs
0. 0140
242.9200 ft
237.6700 ft
236.5000 ft
24.0000 in
116.3000 ft
0.5000
2.5000 ft
24 0.0521 ft From Inlet
0 .0101 ft/ft
7.5244 fps
APPENDIXC
Drainage Channel Design Data & Calculations
7 ' _,
Williams Creek Subdivision -Phase 3
Channel Summary
Bottom Side Slope
25-year storm
Channel No. Width Slopes Design Flow Depth
(in) (H:V) (%) (cfs) (in)
4-Segment 1 96 4:1 5.00 51.73 9.9
4-Segment 2 48 2:1 3.43 51.73 8.7 --
4-Segment 3 48 2:1 5.95 51.73 7.5 -
5-Segment 1 24 2:1 5.00 17.80 10.9
5-Segment 2 24 2:1 7.75 17.80 5.3
6 60 4:1 1.00 17.47 9.2
100-year storm Channel
V2s Design Flow Depth V100 Lining
(fps) (cfs) (in) (fps) Material
5.5 61.53 10.9 5.8 Concrete ---
13.1 61.53 9.6 13.8 Concrete -
15.9 61.53 8.2 16.7 Concrete -
5.2 21 .21 11 .8 5.4 Concrete
13.9 21.21 5.9 14.6 Concrete --·-
2.8 20.78 10.0 3.0 Grass Sod
Channel 4 -1 -25 Year Storm
Channel Calcul ator
Given Input Data :
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning ' s n .................... .
He i ght ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Resu lts :
Depth .......................... .
Ve l oci ty ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radi us ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Pe rcent full ................... .
Trapezoidal
Depth of Flow
51 .7300 cfs
0 .0050 ft/ft
0 . 0140
24 .0000 i n
96 .0000 in
0 .25 00 ft/ft (V/H)
0 .2500 ft/ft (V/H)
9.933 6 in
5.5247 fps
28 7 .0370 cfs
9.3634 ft 2
177 .914 2 i n
7.5785 i n
175 .4685 in
3 2.0000 ft 2
2 93 .9091 i n
41 .3 8 98 %
Channel 4 -1 -100 Year St orm
Channel Calculato r
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Ri ght slope .................... .
Computed Results :
Depth .......................... .
Velo city ....................... .
Flow area ...................... .
Flow p erimeter ................. .
Hydraulic radi us ............... .
Top wid th ...................... .
Area · ........................... .
Perime t er ...................... .
Percent f ull ................... .
Wi lliams Creek Subdivi sion -Pha se 3
Col leg e Sta tion, Texas
Trapezoidal
Depth of Flow
6 1 .5300 cfs
0 .0050 ft /ft
0.0140
24 .0 00 0 i n
96.0000 in
0 .25 0 0 ft/ft
0 .25 00 f t/ft
10.9068 i n
5 .8 1 81 fps
1 0 .5755 ft2
185.9394 i n
8 .1902 in
183 .2 541 i n
32 .00 0 0 f t 2
2 93 .9091 i n
45 .4448 %
Channel 4-2 -25 Year Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
51.7300 cfs
0.0343 ft/ft
0.0140
24.0000 in
48.0000 in
0.5000 ft/ft (V/H)
0 .5000 ft/ft (V/H)
8.6878 in
13. 1153 fps
362.2592 cfs
3.9443 ft2
86.8531 in
6.5395 in
82. 7513 in
16.0000 ft2
155 .3313 in
36.1993 %
Channel 4-2 -100 Year Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Height .......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Wi ll iams Creek Subdivision -Phase 3
College Station , Texas
Trapezoidal
Depth of Flow
61 .5300 cfs
0.0343 ft/ft
0.0140
24.0000 in
48.0000 in
0.5000 ft/ft
0.5000 ft/ft
9.5571 in
13.8137 fps
4 .4543 ft2
90.7406 in
7.0687 in
86.2284 in
16.0000 ft2
155.3313 in
39.8212 %
Channel 4 -3 -2 5 Year Storm
Channel Calc u l ato r
Given Input Data :
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bott om width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results :
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radi us ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
51.7300 cfs
0 .0595 ft/ft
0 . 0140
24 .0000 in
48 .0000 i n
0 .5000 ft/ft (V/H)
0.5000 ft/ft (V/H)
7.4550 in
15.8832 fps
477 .1235 cfs
3 .2569 ft2
81.3398 i n
5.7659 in
77.8200 in
16.0000 ft2
155.3313 in
31.0625 %
Channel 4-3 -100 Ye a r Stor m
Channel Calculator
Giv en Input Data:
Shape .......................... .
Sol ving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning' s n .................... .
Height ......................... .
Bottom width . · .................. .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Flow area ...................... .
Flow per ime ter ................. .
Hydr aulic r adi us ............... .
Top width ...................... .
Area ........................... .
Pe r imet er ...................... .
Percent f u ll ................... .
Will i ams Creek Subd ivisio n -Phase 3
Col leg e Statio n , Texa s
Trapezoidal
Depth of Flow
61.5300 cfs
0.0595 ft/f t
0. 0140
24.0000 in
48.0000 in
0.5000 ft/ft
0 .5000 ft/ft
8.2113 i n
16.74 94 fps
3 .6736 ft2
8 4.722 1 in
6.243 9 i n
8 0 .8453 in
16.0000 ft2
155.3313 in
34.213 8 %
Channel 5 -1 -25 Year Storm
Channel Calculator
Giv en Input Data :
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning 's n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
17.8000 cfs
0 .0050 ft/ft
0.0140
24 .0000 in
24 .0000 in
0.5000 ft/f t (V/H)
0 .5000 ft/ft (V/H)
10.8616 in
5 .1612 fps
95.7679 cfs
3.4488 ft2
72.5745 in
6 .8430 in
67 .4464 in
12.0000 ft2
1 31.3313 in
45 .2567 %
Channel 5 -1 -100 Year Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Height ......................... .
Bottom wi dth ................... .
Left slope ..................... .
Right slope .................... .
Computed Results :
Dept h .......................... .
Velocity ....................... .
Flow area ...................... .
Flow pe r imeter ................. .
Hydraulic r adi us ............... .
Top width ...................... .
Area ........................... .
Perime t er ...................... .
Percent fu ll ................... .
Williams Creek Subdivision -Phase 3
College S tat i on , Te xas
Trapezoidal
Depth of Flow
21 .2100 cfs
0.0050 ft/ft
0.0140
24 .0000 in
24 .0000 i n
0 .5000 ft/ft
0.5000 ft/ft
11 .8441 in
5.4074 fps
3.9224 ft 2
76.9685 in
7.3384 in
71 .3765 in
12.0000 ft 2
131.3313 in
49.3505 %
Channel 5-2 -25 Year Storm
Channel Calculator
Given Input Data :
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Full Flowrate .................. .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
17.8000 cfs
0.0775 ft/ft
0. 0140
24.0000 in
24.0000 in
0 . 5000 ft/ft (V/H)
0 .5000 ft/ft (V/H)
5.3296 in
13. 8761 fps
377.0386 cfs
1.2828 ft2
47.8347 in
3.8616 in
45 .3184 in
12 .0000 ft2
131 .3313 in
22.2067 %
Channel 5 -2 -100 Year Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
WilJ ia111s Cre ek Subdivi sion -µ11ase 3
Coll ege Sta t ion , Texas
Trapezoidal
Depth of Flow
21.2100 cfs
0.0775 ft/ft
0 . 0140
24.0000 in
24.0000 in
0 .5000 ft/ft
0.5000 ft/ft
5.8574 in
14.5999 fps
1 .4528 ft2
50.1951 in
4.1677 in
47.4296 in
12.0000 ft2
131.3313 in
24.4059 %
Channel 6 -25 Year Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radius ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Trapezoidal
Depth of Flow
17.4700 cfs
0.0100 ft/ft
0.0350
24 .0000 in
60 .0000 in
0.2500 ft/ft
0.2500 ft/ft
9.1794 in
2.8336 fps
6.1654 ft2
135.6955 in
6.5427 in
133.4354 in
26.0000 ft2
257.9091 in
38.2476 %
Channel 6 -100 Year Storm
Channel Calculator
Given Input Data:
Shape .......................... .
Solving for .................... .
Flowrate ....................... .
Slope .......................... .
Manning's n .................... .
Height ......................... .
Bottom width ................... .
Left slope ..................... .
Right slope .................... .
Computed Results:
Depth .......................... .
Velocity ....................... .
Flow area ...................... .
Flow perimeter ................. .
Hydraulic radi us ............... .
Top width ...................... .
Area ........................... .
Perimeter ...................... .
Percent full ................... .
Wil liams Creek Subcilv is ion -Phase l
Co l Lege Sta t.ion , Tc~:-:as
Trapezoidal
Depth of Flow
20.7800 cfs
0.0100 ft/ft
0.0350
24.0000 in
60 .0000 in
0.2500 ft/ft
0 .2500 ft/ft
10 .0392 in
2.9760 fps
6 .9826 ft2
142.7855 in
7.0420 in
140.3137 in
2 6 .0000 ft2
2 57.9091 in
41.8301 %
APPENDIXD
Drainage Ditch Data & Lining Material
Williams Creek Subdivision -Phase 3
Left Ditch Evaluation Data
Area, c Area# A
(acres)
402 0.28 0.50 --403 0.23 0.50 ---403,406 0.43 0.50 -409 0.29 0.50 -409,408 0.40 0.50 ---
413 0.24 0.50 -----
423 0.23 0.50 -----423,422 0.31 0.50 -----
423,422,419 0.39 0.50 -----423,422,419,418 1.15 0.50 ------423,422,419,418,415 1.37 0.50
The Rational Method:
tc
(min)
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
Q =CIA I = b I (tc+d)"
5 year storm 1 O year storm 25 year storm
Is Os 110 0 10 l2s 0 2s
(in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs)
7.693 1.08 8.635 1.21 9.861 1.38
7.693 0.88 8.635 0.99 9.861 1.13
7.693 1.65 8.635 1.86 9.861 2.12
7.693 1.12 8.635 1.25 9.861 1.43
7.693 1.54 8.635 1.73 9.861 1.97
7.693 0.92 8.635 1.04 9.861 1.18
7.693 0.88 8.635 0.99 9.861 1.13
7.693 1.19 8.635 1.34 9.861 1.53
7.693 1.50 8.635 1.68 9.861 1.92
7.693 4.42 8.635 4.96 9.861 5.67
7.693 5.27 8.635 5.91 9.861 6.76
0 = Flow (cfs)
A= Area (acres)
C = Runoff Coeff.
le = Time of concentration (min)
tc = L/(V*60)
L = Length (ft
V =Velocity (ft/sec)
I = Rainfall Intensity (i n/hr)
Brazos Count'i_:
5 't_ear storm 10 'i_ear storm 25 'i_ear storm
b = 76 b = 80 b = 89
d = 8.5 d = 8.5 d = 8.5
e = 0.785 e = 0.763 e = 0.754
50 year storm 100 year storm
150 Oso 1100 0 100
(in/hr) (cfs) (i n/hr) (cfs)
11.148 1.56 11 .639 1.63
11 .148 1.28 11.639 1.34
11 .148 2.40 11.639 2.50
11 .148 1.62 11 .639 1.69 ------
11 .148 2.23 11 .639 2.33
11 .148 1.34 11 .639 1.40 --
11.148 1.28 11 .639 1.34 ·-
11 .148 1.73 11 .639 1.80 -11.148 2.17 11 .639 2.27 -11 .148 6.41 11 .639 6.69 ------·-11 .148 7.64 11 .639 7.97
50 't_ear storm 100 't_ear storm
b = 98 b = 96
d = 8.5 d = 8.0
e = 0.745 e = 0 .730
Williams Creek Subdivision -Phase 3
Right Ditch Evaluation Data
Area, c Area# A
(acres )
401 3.02 0.50 -------401 ,401A 4.82 0.50 ----404 1.76 0.50 -404,405 2.99 0.50 ----· 404,405,407A 3.59 0.50
410 1.35 0.50 ----------410,407 2.66 0.50 -411 0.47 0.50 -424 1.15 0.50 ----424,421 1.41 0.50 --424,421 ,420 2.11 0.50 ----424,421 ,420,417 3.14 0.50 -----424,421 ,420,417,416 3.96 0.50 ----424,421 ,420,417,416,414 4.64 0.50
424,421,420,417,416,414,412 4.86 0.50
The Rational Method:
tc
(min)
21 .4
22.3
34.8
35.8
36.3
16.4
17.6
16.1
28.0
28.7
29.1
30.0
30.7
31 .1
31.6
Q = CIA I = b I (tc+d)8
5 year storm 1 O year storm 25 year storm
Is Os 110 0 10 l2s 0 2s
(l nlhr) (cfs) (I nf hr) (cfs) (inf hr) (cfs)
5.277 7.97 5.986 9.04 6.866 10.37
5.156 12.43 5.852 14.10 6.715 16.18
3.946 3.47 4.513 3.97 5.194 4.57 ------3.876 5.79 4.435 6.63 5.105 7.63
3.842 6.90 4.397 7.89 5.062 9.09
6.093 4.11 6.883 4.65 7.882 5.32 ---------5.872 7.81 6.640 8.83 7.608 10.12
6.151 1.45 6.947 1.63 7.955 1.87 --
4.512 2.59 5.141 2.96 5.908 3.40
4.446 3.13 5.067 3.57 5.824 4.11
4.409 4.65 5.026 5.30 5.777 6.09
4.327 6.79 4.936 7.75 5.675 8.91 ------4.267 8.45 4.869 9.64 5.598 11 .08 ------4.233 9.82 4.831 11.21 5.556 12.89
4.191 10.18 4.785 11 .63 5.503 13.37
ll = Flow (cts) tc = Time ot concentration (min)
tc = L/(V*60)
L = Length (tt
A= Area (acres)
C = Runoff Coeff.
I = Rainfall Intensity (inlhr)
Brazos Count'i_:
5 'i_ear storm
b = 76
d = 8.5
e = 0.785
V =Velocity (ft/sec)
10 'i.ear storm 25 'i.ear storm
b = 80 b = 89
d = 8.5 d = 8.5
e = 0.763 e = 0.754
50 year storm 100 year storm
lso Oso 1100 0 100
(lnlhr) (cfs) (inf hr) (cfs)
7.796 11 .77 8.135 12.28
7.625 18.38 7.958 19.18
5.916 5.21 6.185 5.44
5.816 8.70 6.081 9.09
5.768 10.35 6.031 10.83
8.934 6.03 9.321 6.29 ---8.626 11.47 9.000 11 .97
9.015 2.12 9.406 2.21
6.719 3.86 7.017 4.03
6.625 4.67 6.919 4.88
6.572 6.93 6.865 7.24
6.457 10.14 6.746 10.59
6.371 12.62 6.656 13.18
6.323 14.67 6.607 15.33
6.264 15.22 6.546 15.91
50 'i.ear storm 100 'i.ear storm
b = 98 b = 96
d = 8.5 d = 8.0
e = 0.745 e = 0.730
Williams Creek Subdivision -Phase 3
Johnson Creek Loop
Left Ditch
From To Slope Drainage Area # Station Station
13+70 16+56 0.60% 402 ------16+56 19+25 -1 .32% 403 -19+25 21+57 -0.60% 403,406 ---,_
21+90 23+00 2.20% 409,408 ----23+00 25+25 4.45% 409 --25+25 28+60 2.28% 413 -28+60 29+40 -0.60% 413
29 +4 0 32+00 7.00% 423,422,419,418,415
32 +00 34+00 5.48% 423,422,419,418 --34+00 35+00 4.54% 423,422,419
35+00 36+00 2.23% 423,422 -36+00 37+50 0.80% 423 -37+50 38+64 0.60% 423
n = 0.035 for Grass "V" bottom ditch
n = O 014 for Concrete 4H·1v Side slopes
0 10 V10 d10 0 100 V100 d100 Ditch Lining Material
(els) (fps) (in) (els) (fps) (in)
1.21 1.3 5.9 1.63 1.4 6.6 Grass seeded
0.99 1.6 4.7 1.34 1.7 5.3 Grass seeded --------1.86 1.4 6.9 2.50 1.5 7.7 Grass seeded --1.73 2.2 5.3 2.33 2.4 5.9 Grass seeded
1.25 2.7 4.1 1.69 2.9 4.6 Grass seeded >-1.04 2.0 4.3 1.40 2.2 4.8 Grass seeded
1.04 1.2 5.6 1.40 1.3 6.2 Grass seeded
5.91 9.4 4.8 7.97 10.1 5.3 Concrete ---------4.96 4.1 6.6 6.69 4.4 7.4 Grass Sod ------------1.68 2.9 4.5 2.27 3.2 5.1 Grass sod --------1.34 2.1 4.8 1.80 2.3 5.3 Grass seeded ----0.99 1.3 5.2 1.34 1.4 5.8 Grass seeded ----0.99 1.2 5.5 1.34 1.3 6.1 Grass seeded
Williams Creek Subdivision -Phase 3
Johnson Creek Loop
Right Ditch
From To Station Slope Drainage Area # Station
13+70 15+00 0.60% 401 -
15+00 16+56 1.63% 401, 401A ---16+56 19+25 -1.32% 404
19+25 20+25 -0 .60% 404,405
20+25 20+90 -1.24% 404,405,407A
21+02 21+50 1.88% 404 ,405,407A
21+50 21+85 1.79% 410,407 ----21+85 25+91 4.45% 410 --25+91 27+50 -1.00% 411 ------27+50 27+88 -1.83% 411 ·---27+88 29+00 1.34% 424,421 ,420,417,416,414
29 +00 32+00 7.00% 424 ,421,420,417,416
32+00 34+00 5.48% 424 ,421 ,420,417
34+00 35+00 4.54% 424,421 ,420
35+00 36+00 2.23% 424,421 -------·--36+00 37+50 0.80% 424 ----37+50 38+64 0.60% 424
n = 0.035 for Grass "V" bottom ditch
n = 0.014 for Concrete 4H:1V Side slopes
0 10 V10 d10 0100 V100 d100 Ditch Lining Material
(els) (fps) (in) (els) (fps) (in)
9.04 2.1 12.5 12.28 2.3 14.0 Grass seeded
14.10 3.4 12.2 19.1 8 3.7 13.7 Grass seeded
3.97 2.3 7.9 5.44 2.5 8.9 Grass seeded
6.63 1.9 11 .1 9.09 2.1 12.5 Grass seeded
7.89 2.6 10.4 10.83 2.9 11.7 Grass seeded
7.89 3.1 9.6 10.83 3.3 10.8 Grass seeded ----8.83 3.1 10.1 11 .97 3.4 11 .3 Grass sod
4.65 3.7 6.7 6.29 4.0 7.5 Grass sod -1.63 1.6 6.0 2.21 1.8 6.7 Grass seeded -
1.63 2.1 5.3 2.21 2.2 6.0 Grass seeded
11.21 5.9 8.3 15.33 6.4 9.3 Concrete
9.64 10.6 5.7 13.18 11.4 6.4 Concrete -7.75 4.6 7.8 10.59 5.0 8.8 Grass Sod ·-5.30 3.9 7.0 7.24 4.2 7.9 Grass sod --3.57 2.7 6.9 4.88 2.9 7.8 Grass seeded
2.96 1.8 7.8 4.03 1.9 8.7 Grass seeded
2.96 1.6 8.2 4.03 1.7 9.2 Grass seeded
EXHIBIT A
Drainage Area Map -Post-Development, Culverts & Channels
.~()
EXHIBIT B
Drainage Area Map -Post-Development, Ditch Velocities
42