Loading...
HomeMy WebLinkAboutDrainage Report11 I Drainage Report for Castlegate Subdivision -Section 7, Phase 1 College Station, Texas June 2006 Revised July 2006 Developer: Greens Prairie Investors, Ltd. By Greens Prairie Associates, LLC 4490 Castlegate Drive College Station, Texas 77845 (979) 690-7250 Prepared Bv: Civil Development, Ltd. 2900 Longmire Drive, Suite K College Station, Texas 77845 (9 79) 764-7743 CERTIFICATION I, Joseph P. Schultz, Licensed Professional Engineer No. 65889, State of Texas, certify that this revised report for the drainage design for the Castlegate Subdivision -Section 7, Plzase 1, was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners hereof. TABLE OF CONTENTS DRAINAGE REPORT (Revised 712006) CASTLEGATE SUBDIVISION -SECTION 7, PHASE 1 CERTIFICATION ................................................................................................................................................................. 1 TABLE OF CONTENTS ....................................................................................................................................................... 2 LIST OF TABLES .................................................................................................................................................................. 2 INTRODUCTION .................................................................................................................................................................. 3 GENERAL LOCATION AND DESCRIPTION ................................................................................................................. 3 FLOOD HAZARD INFORMATION ................................................................................................................................... 3 DEVELOPMENT DRAINAGE PATTERNS ...................................................................................................................... 3 DRAINAGE DESIGN CRITERIA ....................................................................................................................................... 3 STORM WATER RUNOFF DETERMINATION .............................................................................................................. 4 DETENTION FACILITY DESIGN ..................................................................................................................................... 5 STORM SEWER DESIGN .................................................................................................................................................... 5 CONCLUSIONS ..................................................................................................................................................................... 6 APPENDIX A ......................................................................................................................................................................... 7 Time of Conce11tratio11 Equations & Calculations APPENDIX B ........................................................................................................................................................................ 13 Storm Sewer fillet Desig11 Calculations APPENDIX C ....................................................................................................................................................................... 16 Storm Sewer Pipe Design Calculations EXHIBIT A ........................................................................................................................................................................... 27 Post-Developme11t Drai11age Area Map LIST OFT ABLES TABLE 1 -Rainfall Intensity Calculations .............................................................................................. 4 TABLE 2 -Time of Concentration (tc) Equations .................................................................................. 4 TABLE 3 -Post-Development Runoff Information -Storm Sewer Design ........................................... 5 INTRODUCTION DRAINAGE REPORT (Revised 712006) CASTLEGATE SUBDIVISION -SECTION 7, PHASE 1 The purpose of this revised report is to provide the hydrological effects of the construction of the Castlegate Subdivision -Section 7, Phase 1, and to verify that the proposed storm drainage system meets the requirements set forth by the City of College Station Drainage Policy and Design Standards. GENERAL LOCATION AND DESCRIPTION The project is located in the Castlegate Subdivision west of State Highway 6 along the north side of Greens Prairie Road in College Station, Texas. This report addresses Section 7, Phase 1 of this subdivision, which is made up of 18 acres, which is adjacent to Castlegate Section 5, and has access off of Castlegate Drive. The site is predominantly wooded. The existing ground elevations range from Elevation 308 to Elevation 334. The general location of the project site is shown on the vicinity map in Exhibit A. FLOOD HAZARD INFORMATION The project site is located in the Spring Creek branch of the Lick Creek Drainage Basin. Most of the proposed developed area of the site is located in a Zone X Area according to the Flood Insurance Rate Map prepared by the Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated areas dated February 9, 2000, panel number 48041 C0205-D. There is Flood Hazard Area on the east and west portions of this development. This area is shown on Exhibit A as the 100-year floodplain limit. No residential area of this development lies within the Flood Hazard Area. DEVELOPMENT DRAINAGE PATTERNS Prior to development, the storm water runoff for Section 7, Phase 1 generally flows in a northeasterly or northwesterly direction until it enters tributaries of Spring Creek. Ultimately, this runoff flows into Spring Creek and then north to the existillg regional detention faci lity. Refer to the vicinity map in Exhibit A for the location of this regional detention facility. DRAINAGE DESIGN CRITERIA The design parameters for the storm sewer and detention facility analysis are as follows: • The Rational Method is utilized to detennine peak storm water runoff rates for the stom1 sewer design. • Design Storm Frequency Stotm sewer system • Ru no ff Coefficients 10 and 100-year stonn events Post-development (s ingle fam ily residential) C= 0.55 • Rain fa ll Intensity equations and values for Brazos County can be found in Table I. • Time of Concentration, tc -Calculations are based on the method found in the TR-55 publication. Refer to Table 2 for the equations and Appendix A for calculations. The runoff flow paths used for calculating the post-development times of concentration for the storm sewer design are shown on Exhibit A. For smaller drainage areas, a minimum tc of 10 minutes is used to determine the rainfall intensity values. STORM WATER RUNOFF DETERMINATION The peak runoff values were determined in accordance with the criteria presented in the previous section for the 5, 10, 25 , 50, and 100-year storm events. The drainage areas for the post-development conditions for the storm sewer design are shown on Exhibit A. Post- development runoff conditions for the storm sewer design are summarized in Table 3. Tlte design of the storm sewer system for Phase 1 includes the future development of Phase 2. TABLE 1 -Rainfall Intensity Calculations Rainfall Intensity Values (in/hr) Storm Event Is 110 l2s lso 1100 tc = 10 min 7.693 8.635 9.861 11 .148 11 .639 I = b I (tc+d)" I = Rainfall Intensity (in/hr) tc = U(V*60) tc = Time of concentration (min) L = Length (ft) V = Velocity (ft/sec) Brazos County: 5 year storm 10 year storm 25 year storm 50 year storm 100 year storm b= 76 b = 80 b= 89 b= 98 b= 96 d= 8.5 d= 8.5 d= 8.5 d= 8.5 d= 8.0 e= 0.785 e= 0.763 e= 0.754 e= 0.745 e= 0.730 (Data taken from State Department of Hiqhwavs and Public Transportation Hydraulic Manual. page 2-16) TABLE 2 -Time of Concentration (tc) Equations The time of concentration was determined using methods found in TR-55, "Urban Hydrology for Small Watersheds. " The equations are as follows: Time of Concentration: For Sheet Flow: For Shallow Concentrated Flow: Refer to Appendix A for calc ul ations. Tc = Tt(sheet now)+ T1(concentraled sheet now) where: T1 =Travel Time, minutes where: T1 =travel time, hours n =Manning's roughness coefficient L = flow length, feet P2 = 2-year, 24-hour rainfall = 4.5" s = land slope, ft/ft T, = LI (60*V) where: T, =travel time, minutes V =Velocity, fps (See Fig 3-1 , App. A) L = !low length, feet TABLE 3 -Post-Development Runoff In formation -Storm Sewer Design 5 year storm 10 year storm 25 year storm 50 year storm 100 year storm le Area# A c 110 010 125 0 25 150 0 50 1100 0100 15 0 5 (acres) (min) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) 1 0.51 0.55 10 7.693 2.16 8.635 2.42 9.861 2.77 11 .148 3.13 11 .639 3.26 -2 1.88 0.55 10 7.693 7.95 8.635 8.93 9.861 10.20 11.148 11 .53 11 .639 12 03 3 0.25 0.55 10 7.693 1.06 8.635 1.19 9.861 1.36 11 .148 1.53 11 .639 1.60 3A 1.39 0.55 10 7.693 5.88 8.635 6.60 9.861 7.54 11 .148 8.52 11 .639 8.90 -4 0.46 0.55 10 7.693 1.95 8.635 2.18 9.861 2.49 11 .148 2.82 11 .639 2.94 5 1.63 0.55 11. 7 7.180 6.44 8.074 7.24 9.229 8.27 10.441 9.36 10.897 9.77 6 1.58 0.55 21 .2 5.305 4.61 6.017 5.23 6.901 6.00 7.835 6.81 8.176 7.10 -7 0.32 0.55 10 7.693 1.35 8.635 1.52 9.861 1.74 11.148 1.96 11 .639 2.05 8 0.93 0.55 10 7.693 3.93 8.635 4.42 9.861 5.04 11 .148 5.70 11.639 5.95 ------9 0.69 0.55 10 7.693 2.92 8.635 3.28 9.861 3.74 11.148 4.23 11 .639 4.42 -------··-· 10 1.45 0.55 15.9 6.190 4.94 6.991 5.57 8.004 6.38 9.070 7.23 9.463 7.55 ---~·-----------11 0.35 0.55 10 7.693 1.48 8.635 1.66 9.861 1.90 11.148 2.15 11 .639 2.24 -------------12 2.30 0.55 21 .5 5.263 6.66 5.971 7.55 6.849 8.66 7.776 9.84 8.115 10.27 DETENTION FACILITY DESIGN The detention facility handling the runoff from this site is a regional facility designed by LJA Engineering & Surveying, Inc. The detention facility is located adjacent to Spring Creek prior to Spring Creek entering the State Highway 6 right-of-way. Also, a detention pond was constructed upstream of Castlegate Drive, noted as "existing pond" 011 Exhibit A , to reduce the peak flow resulting from the Castlegate development. STORM SEWER DESIGN The storm sewer piping material for this project has been selected to be High Density Poly- Ethylene (HOPE) pipe meeting the requirements of AASHTO M294, Type S with watertight joints. The curb inlets will be cast-in-place concrete. Appendix B presents a summary of the stom1 sewer inlet design parameters and calculations. The inlets were designed based on a l 0-year design storm. As per College Station guidelines, the capacities of inlets in sump were reduced by l 0% to allow for clogging. Inlets for the residential streets were located to maintain a gutter flow depth of 5" or less. This design depth will prevent the spread of water from reaching the crown of the road for the 10- year storm event. Refer to Appendix B for a summary of the gutter flow depths. The runoff intercepted by the proposed storm sewer inlets was calculated using the following equations. The depth of flow in the gutter was determined by using the Straight Crown Flow equation. The capacities for the inlets in sump (Inlets 1, 2, 7 & 8) were calculated using the Inlets in Sumps, Weir Flow equation with a maximum allowable depth of 7" (5" gutter flow plus 2" gutter depression). These eq uations and resulting data are summarized in Appendix B. The flow intercepted by Inl ets 9, I 0 & I I was calculated by using the Capacity of Inlets On Grade equation. The maximum depth in the proposed streets is 4. 91 inches for the I 0-year storm event and 5.51 inches for the I 00-year storm event. These equations and the resulting data are summarized in Appendi x B. The area between the ri ght-of-way and th e curb line of th e streets will be graded as s/1011111 011 th e Gradi11g Plan to provide a minimum of 6" of frecboa rd above the curb line. This will ensure that the runoff from the 100-year stonn event will remain within the street right-of-way. Appendix C presents a summary of the storm sewer pipe design parameters and calculations. All pipes are 18" in diameter or larger. For pipes with 18" and 24" diameters, the cross- sectional area is reduced by 25%, as per College Station requirements. A summary of how this was achieved is shown in Appendix C as well. The pipes for the storm sewer system were designed based on the I 0-year stom1 event. Based on the depth of flow in the street determined for the JOO-year storm event, this runoff will be contained within the street right-of-way until it enters the storm sewer system. As required by College Station, the velocity of flow in the storm sewer pipe system is not lower than 2.5 feet per second, and it does not exceed 15 feet per second. As the data shows, even during low flow conditions, the velocity in the pipes will exceed 2.5 feet per second and prevent sediment build-up in the pipes. The maximum flow in the stom1 sewer pipe system will occur in Pipe No. 7. The maximum velocity for the pipe system in this development will be 9.4 feet per second and will occur in Pipe No. 2. Appendix C contains a summary of the pipe calculations as well as flow diagrams mapping the flows through the storm sewer system for the 10 and 100-year events. In Appendix C, calculations are provided that show that the existing 30" storm sewer pipe (Pipe 15) located along Castlegate Drive has adequate capacity for the runoff from both Phases of the Section 7 development. CONCLUSIONS The construction of this project will increase the stonn water runoff from this site. The proposed storm sewer system should adequately control the runoff and release it into an existing drainage or existing storm sewer system, which discharge into tributaries of Spring Creek. As shown in the Castlegate Floodplain Analysis, the Castlegate Subdivision does not have a significant effect on the 100-year floodplain water surface elevations or the floodplain limits. The existing pond also provides detention for Castlegate, and there will be 110 impact on the downstream properties within Castlegate. The regional detention facility should adequately control the peak post-development runoff so that it will not have any impact on the properties downstream of the Crowley Tract resulting from this development. APPENDIX A Time of Concentration Equations & Calculations -, , Castlegate Subdivision -Section 7, Phase 1 Post-Development Time of Concentration Calculations Revised 712006 Refer to Exhibit A for flow path locations. Drainage Area # 5 Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 100 Elev1= Elev2= Ti= 0.007(L *nt" = 0.149 hours= I 8.9 min (P)o.s*(S)o.4 Concentrated Flow: V= 2.05 fps (unpaved) L= 240 Elev1= Elev2= Ti= U(60*V) = 2.0 min Gutter Flow 1: V= 3.45 fps (paved) L= 63 Elev1= Elev2= Ti= U(60*V) = 0.3 min Gutter Flow 2: V= 2.50 fps (paved) Slope= Slope= Slope= L= 80 Elev1= Elev2= Slope= Ti= U(60*V) = 0.5 min ITc= 11.7 min 0.042 0.0150 0.0286 0.0150 Drainage Area #6 Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 175 Elev1= Elev2= Slope= 0.022 T1= 0.007(L *ntts = 0.302 hours= I 18 .1 min (P)os*(S)o4 Concentrated Flow: V= 2.8 fps (unpaved) L= 140 Elev1= Elev2= Slope= 0.0300 T1= L/(60*V) = 0.8 min Gutter Flow 1: V= 2.8 fps (paved) L= 307 Elev1= Elev2= Slope= 0.0190 T1= L/(60*V) = 1.8 min Gutter Flow 2: V= 3.45 fps (paved) L= 158 Elev1= Elev2= Slope= 0.0286 T1= L/(60*V) = 0.8 min Gutter Flow 3: V= 2.5 fps (paved) L= 80 Elev1= Elev2= Slope= 0.0150 T1= L/(60*V) = 0.5 min ITc= 21.2 min Drainage Area #10 Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 125 Elev 1 = Elev 2 = Slope= 0.025 T,= 0.007(L *nl o.s = 0.219 hours=I 13.1 min (P) o.s *(S) o.4 Concentrated Flow: V= 2.2 fps (unpaved) L= 300 Elev 1 = Elev 2 = Slope= 0.0190 T,= U(60*V) = 2.3 min Gutter Flow 1: V= 2.05 fps (paved) L= 65 Elev 1 = Elev 2 = Slope= 0.0100 T,= U(60*V) = 0.5 min I Tc= 15.9 min Drainage Area #12 Sheet Flow: n= P= L= 200 T1= 0.007(L *nl o.B = (P) o.s *(SJ o.4 Concentrated Flow: V= L= 320 T1= U(60*V) = Gutter Flow 1: V= L= 210 T1= U(60*V) = 0.24 (dense grass) 4.5 Elev 1 = Elev 2 = 0.298 hours=._l __ 1_7._9_m_in __ ~ 2.8 fps (unpaved) Elev 1 = Elev 2 = 1.9 min 2.05 fps (paved) Elev 1 = Elev 2 = 1.7 min Ir c = 21.5 min Slope= 0.030 Slope= 0.0300 Slope= 0.0100 .... .._ -.... .._ cu 0. 0 ..- VI cu VI "-::s 0 u "-cu ..... .., :JC 3-2 .50 .20 - .10 .06 .04 . 02 - .01 - .005 I 1 J --~ I j 7 7 'tf j J . 'b q, ,,_ 'b I ~ q, ~ ~, ::::,~ ~'t7 ii I J I I I I 2 ' ' . ' I 4 ) I I I ) ' I I 6 IJ I j I I Average velocity. ft/sec ... . (2!0-Vl-TR-55. ~cond Ed .. June l98Gl . , . ' , I I ~ I I 10 , , I I 20 APPENDIX B Storm Sewer Inlet Design Calculations Castlegate Subdivision Section 7, Phase 1 Depth of Flow in Street Gutter -Revised 712006 Gutter A c Location {acres) A1 0.51 0.55 - A2 1.88 0.55 -·-- - - A3 0.25 0.55 - -- - A4 0.46 0.55 ------ B1 1.06 0.55 --------B2 0.10 0.55 --- C1 1.63 0.55 - --------C2 1.58 0.55 ----------- 01 0.89 0.55 ----- - E1 0.32 0.55 --------- E2 0.69 0.55 ------E3 0.93 0.55 -------- E4 1.45 0.55 --------ES 2.65 0.55 Transverse (Crown) slope (ft/ft) 27' street = 0.0330 Slope (ft/ft) 0.0100 0.0184 ---- 0.0100 - - 0.01 84 -- 0.0150 - - 0.0150 --0.0150 -----0.0150 ----0.01 85 --0.01 20 ---- 0.0100 --0.01 20 -- 0.0100 ---- 0.0100 10-year storm 010 Y10.,.c1ual (cfs) {ft) {in) 2.42 0.253 3.04 - 9.53 0.378 4.53 ---·-------- 1.19 0.194 2.33 --- 2.61 0.233 2.79 ---------- 5.03 0.309 3.71 ---------- 0.47 0.127 1.53 ---·-------- 7.24 0.354 4.25 -------------5.23 0.313 3.76 --· ---------4.23 0.278 3.34 ----------- 1.52 0.206 2.47 ----------------3.28 0.284 3.40 -----------4.42 0.307 3.68 --~------- 6.89 0.375 4.50 ---------8.70 0.409 4.91 Straight Crown Flow (Solved to find actual depth of flow in gutter, y): Q = 0.56 * (z/n) * S112 * y813 ¢ y ={QI [0.56 * (z/n) * S112]}318 n =Roughness Coefficient= 0.018 S = StreeUGutter Slope (ft/ft) y = Depth of flow at inlet (ft) z = Reciprocal of crown slope: 27' street = 30 100-year storm 0 100 Y100 {cfs) (ft) {in) 3.26 0.283 3.40 14.67 0.444 5.33 - 1.60 0.217 2.60 5.58 0.309 3.71 -- 6.79 0.345 4.15 --- 0.64 0.143 1.71 ---- 9.77 0.396 4.75 ----- 7.10 0.351 4.22 --------- 5.70 0.311 3.73 ------- 2.05 0.230 2.76 ----4.42 0.317 3.81 -- 5.95 0.343 4.12 ---9.28 0.419 5.03 -· ---11.83 0.459 5.51 Castlegate Subdivision Section 7, Phase 1 Inlet Length Calculations -Revised 712006 Inlets In Sump Inlet# Length & Type Flow from A c a,. Area# (acres) (els) I 5· 7 0.32 0.55 1.52 -9 0.69 0.55 3.28 2 10' 8 0.93 0.55 4.42 '5:'5'8 10 1.45 0.55 7 5' 3 0.25 0.55 1.19 ----4 a.46 a.55 2.18 8 1a· 1 0.51 0.55 2.42 2 1.88 0.55 8.93 10 year storm a.....,,_ a,. .... Orot ... 1Ho y,._ .... (els) from Inlet# (els) (efs) (ft) (In) 1.52 1.67 0.176 2.11 3.28 3.60 0.235 2.82 4.42 4.86 0.263 3.15 f.63 ff 7.25 7.98 0.317 3.80 1.19 1.31 a.161 1.93 a.co 1a 2.18 2.4a a.2a2 2.42 2.42 2.66 a.21a 2.52 a.77 9 9.70 10.67 0.353 4.24 lnlels On Grade 1 O year storm Inlet# 9 10 11 Length & Type Flow from y,. a,_ .... a......, Area# (ft) (In) (ft) (els) 1a· 5 a.354 4.25 0.65 6.47 1a· 6 ci:'3i3-''3}6 a.61 6.07 ~-------10' 11,12 0.409 4.9f 0.70 7.02 Transverse (Crown) slope (fVft) = 0.033 Straight Crown Flow (Solved to find actual depth of flow. y): a= o.56 • (z/n) ·sin· y"' «> y = (0 t [0.56 • (z/n) • s"W" n = Roughness Coefficient = z = Reciprocal of crown slope = S = StreeVGuller Slope (fVft) y = Deplh of now al inlet (ft) Capacity of Inlets on grade: Oc = 0.7 '[1/(H, • H2)]' [H,~2• H,~2] Oc = Flow capacity of inlet (cfs) H, =a+ y O.Q18 30 H2 =a = gutter depression (2" Standard; 4" Recessed) y = Depth of now in approach gutter (ft) a.,,.. .. a_ ..... a. . ..,"_ ~ ....... (els) (efs) (els) ltromlnlet• (els) a.77 6.47 I 0.77 ·0.84 5.23 I a.co f.63 7.02 I f.63 100 year storm Lto4t..,.'<111 L11-'ua1 a, .. Oc."Y .. ., a,. .... Orot.t+tn y,,. (ft) (ft) (efs) (efs) 3.95 5 2.05 4.42 9.61 10 5.95 7.55 4.29 2.78 5 1.80 2.94 a.66 9.98 1a 3.26 12.a3 2.88 "v•tng.,,,,,_•r •o.583' Ocape-tod C10-r .... 1 y,,. (els) (els) (ft) (In) 6.47 7.24 a.396 4.75 5.23 5.23 0.351 4.22 7.02 -VO OT59 ~ Inlets In sumps Weir Flow: L = Q I (3 ' y"2) «> y = (Q I 3L)"' L = Length of inlel opening (ft) Q = Flow at Inlet (cfs) y = lotal depth of now on inlet (ft) max y for inlet in sump = 7" = 0.583' from Inlet I (efs) (efs) (ft) 2.05 2.25 0.608 4.42 4.86 5.95 6.55 0.752 ff 11.84 13.02 1.60 1.76 a.526 1a 3.60 3.96 3.26 3.59 0.763 9 14.91 16.40 100 year storm a,_, ... a......, a.,,.... 0.-..tu"" (ft) (els) (els) (els) a.69 6.89 2.88 6.89 a.64 6.45 a.66 8.45 -o:75 7'i4 4.29 7.54 (In) 7.30 9.03 6.31 9.16 Oc.,.,.,o.,., °"1,.1otal a_ ... Q100·Tot•I s LKi ... I (els) from Inlet• (efs) (els) (els) (ft/ft) (ft) 2.88 6.89 9.77 0.015a 1a 0.68 6.45 7.1a a.Q15a 1a ---4.29 7.54 ff.33 O.OfOO fO APPENDIX C Storm Sewer Pipe Design Calculations Castlegate Subdivision Section 7, Phase 1 Pipe Calculations -Revised 712006 Size Inlet Invert Ele' Outlet Invert 10-year Storm Contributing Contributing 0 10 Mannings Pipe Length Slope Tc 110 Elev Area Area •Actual Design V10 Tr•v•I Tim•, t119 No. %Full (in) (ft) (%) (ft) (ft) Numbers (acres) (min) (In/hr) (cfs) (els) (fps) (sec) 1 30 156.2 1.00 307.00 305.44 7,8,9,10,11,12 6.04 21 .5 5.97 19.84 7.8 51 .2 ---· ------2 30 56.8 1.50 307.97 307.10 8,10,11,12 5.03 21 .5 5.97 16.52 8.7 41 .1 ------11 24 222.3 1.00 310.75 308.47 11 ,12 2.65 21 .5 5.97 11.34 7.02 6.8 52.3 7 30 153.2 0.50 309.08 308.31 1,2,3,4,5,6 6.31 21 .2 6.02 20.88 6.1 66.1 --8 30 61.1 0.40 309.37 309.13 1,2,5,6 5.60 21 .2 6.02 18.53 5.4 65.8 -9 24 326.3 1.40 314.36 309. 79 5,6 3.21 21 .2 6.02 10.62 17.16 8.5 61.1 -10 18 30.6 1.00 315.17 314.86 6 1.58 21 .2 6.02 5.23 8.44 6.2 71 .8 ·r hese values reflect the actual flow for the 18" & 24" pipes. The design flow for these pipe sizes reflects a 25% reduction 1n pipe area. (Refer to attached calculation for specific information.) Existing Pipe 15 (30" RCP @ 0.85%) Information taken from Castlegate, Section 9 Drainage Report: 0 10 = 8.91 cfs 0 100 = 11 .00 cfs Drainage Area 3A, as shown on Exhibit A: 0 10 = 6.60 cfs 0 100 = 8.90 cfs When the flow from Pipe 1 is added to the existing storm sewer Pipe 15, then: 0 10 = 8.91 cfs + 19.84 cfs = 28.75 cfs 0 100 = 11.00 cfs + 26.96 cfs = 37.96 cfs Manning's Data Sheets for Pipe 15 for these two flowrates are included in this appendix. The existing pipe has adequate capacity. 20 7 33 25 11 38 5 (min) 0.33 0.11 0.54 0.42 0.19 0.64 0.08 100-year Storm 1100 0 100 Mannings •Actual Design V100 Trevel Time, tlloo •;.Full (In/hr) (els) (cfs) (fps) (sec) (min) 8.12 26.96 8.4 62.1 19 0.31 8.12 22.45 9.4 48.9 ~ 0.10 8.12 12.18 7.54 6.9 54.7 32 0.54 ----1-·-- 8.18 28.37 6.2 87.9 25 0.41 8.18 25.18 5.6 86.8 11 0.18 ---8.18 14.43 23.31 9.0 ~ 36 0.60 --8.18 7.10 11.47 6.8 90.7 5 0.08 City of College Station requirement to Reduce Cross-Sectional Area of 18" & 24" Pipes by 25% Using Mannings Equation from page 48 of the College Station Drainage Policy & Design Standards Manual: Q = 1.49/n * A * R213 * S 112 Q =Flow Capacity (cfs) 18" Pipe: Pipe size (inches)= Wetted Perimeter W P• (ft) = Cross-Sectional Area A, (ft2) = Reduced Area AR, (W) = Hydraulic Radius R = A/WP· (ft) = Reduced Hydr Radius RR = AR/WP • (ft) = Roughness Coefficient n = Friction Slope of Conduit Sr. (fUft) = Example Calculation: Slope Flow Capacity Reduced Flow Capacity s Q 0.005 6.91 0.006 7.57 0.007 8.18 24" Pipe: Pipe size (inches)= Wetted Perimeter WP• (ft) = Cross-Sectional Area A, (W) = Reduced Area AR, (W) = Oreduced 4.28 4.69 5.06 Hydraulic Radius R =A/WP, (ft)= Reduced Hydr Radius RR= AR/Wp. (ft)= Roughness Coefficient n = Friction Slope of Conduit Sr. (fUft) = Example Calculation: Slope Flow Capacity Reduced Flow Capacity s Q Oreduced 0.005 14.89 9.22 ---------·--0.006 16.31 10.1 ·----------------0.007 17.(31 10.9 Conclusion: 18 4.71 1.766 1.325 0.375 0.281 0.014 0.01 % Difference OreduceiO 0.619 0.619 0.619 24 6.28 3.14 2.355 0.5 0.375 0.014 0.01 % Difference OreduceiQ 0.619 0.619 --· 0.619 - Multiply actual Q in 18" & 24" pipes by 1.615 to reflect a 25% reduction in the cross-sectional area called for on page 4 7, paragraph 5 of the College Station Drainage Policy & Design Standards manual. Pipe 1 -10 Year Storm Manning Pipe Calculato r Giv en Input Data : Shape .......................... . Solving f or .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 30.0000 in 19.8400 cfs 0.0100 ft/ft 0 .0140 15 .3684 in 4.9087 ft2 2.5311 ft2 47.8607 in 94 .2478 in 7.8385 fps 7 .6154 in 51 .2278 % 38.0873 cfs 7.7591 fps Pipe 1 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 30.0000 in 26 .9600 cfs 0 .0100 ft/ft 0 .0140 18.6331 in 4.9087 ft2 3.2038 ft2 54.4631 in 94.2478 in 8.4150 fps 8 .4708 in 62.1104 % 38.0873 cfs 7.7591 fps Cast legat e Subdiv i sion -Section 7, Phase 1 College Station, Texas Revised 7/2006 Pipe 2 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results : Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 30.0000 in 16 .5200 cfs 0.0150 ft/ft 0.0140 12 .3315 in 4 .9087 ft2 1 .9014 ft2 41.7584 in 94.2478 in 8 .6884 fps 6.5567 in 41 .1050 % 46 .6473 cfs 9.5029 fps Pipe 2 -100 Year Storm Manning Pipe Calc ulator Given Input Data : Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 30.0000 in 22.4500 cfs 0.0150 ft/ft 0 .0140 14 .6680 in 4 .9087 ft2 2.3852 ft2 46.4599 in 94.2478 in 9.4122 fps 7.3928 in 48.8934 % 46 .6473 cfs 9.5029 fps Castlegate Subdivision -Section 7, Phase 1 College Stat ion, Texas Revised 7/2006 Pipe 11 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... · Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24 .0000 in 11.3400 cfs 0.0100 ft/ft 0.0140 12.5601 in 3.1416 ft2 1.6641 ft2 38.8197 in 75.3982 in 6 .8145 fps 6. 172 9 in 52.3336 % 21.0065 cfs 6.6866 fps Pipe 11 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24.0000 in 12.1800 cfs 0 .0100 ft/ft 0 . 0140 13. ll80 in 3.1416 ft2 1 .7569 ft2 39 .9384 in 75.3982 in 6.9328 fps 6.3345 in 54 .6584 % 21 .0065 cfs 6.6866 fps Cas tlegate Subdivision -Sec tion 7 , Phase 1 College St a t ion , Texas Revised 7/2006 Pipe 7 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 30.0000 in 20.8800 cfs 0 .0050 ft/ft 0. 0140 19.8428 in 4.9087 ft2 3 .4455 ft2 56.9861 in 94.2478 in 6 .0601 fps 8.7065 in 66.1425 % 26.9318 cfs 5.4865 fps Pipe 7 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ..... ." ................. . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 30.0000 in 28.3700 cfs 0 .0050 ft/ft 0.0140 26.3648 in 4.9087 ft2 4.5703 ft2 72 .9151 in 94 .2478 in 6.2075 fps 9.0259 in 87 .8825 % 26.9318 cfs 5.4865 fps Castlegate Subdivision -Section 7, Phase 1 Colleg e Station, Texas Revised 7/2006 Pipe 8 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 30.0000 in 18.5300 cfs 0.0040 ft/ft 0.0140 19.7326 in 4.9087 ft2 3.4237 ft2 56.7536 in 94 .2478 in 5.4122 fps 8 .6869 in 65.7753 % 24.0886 cfs 4.9073 fps Pipe 8 -100 Year Storm Manning Pipe Calculator Given Inpu t Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . We t ted Area .................... . We t ted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 30 .0000 in 25.1800 cfs 0.0040 ft/ft 0. 0140 26.0313 in 4 .9087 ft2 4 .5241 ft2 71.9124 in 94.2478 in 5.5658 fps 9.0592 in 86.7709 % 24.0886 cfs 4.9073 fps Castlegate Subdivision -Section 7, Phase 1 Col lege Sta t i o n, Texas Revised 7/2006 Pipe 9 -10 Year Storm Manning Pipe Calc ulator Given Input Data : Shape .......................... . Solving f o r .................... . Di ameter ....................... . Flowrate ....................... . Slope .......................... . Manning 's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24 .0000 in 17.1600 cfs 0. 0140 ft/ft 0. 0140 14.6604 in 3 .1416 ft2 2 .0105 ft2 43.0645 in 75.3982 in 8 .5350 fps 6.7229 in 61.0851 % 24 .8552 cfs 7.9117 fps Pipe 9 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full f low velocity ............. . Circular Depth of Flow 24.0000 in 23 .3100 cfs 0.0140 ft/ft 0 .0140 18.4522 in 3.1416 ft2 2 .5918 ft2 51.3237 in 75.3982 in 8.9936 fps 7 .2720 in 76 .8843 % 24 .8552 cfs 7.9117 fps Ca s tlegate Subdivi sion -Sect ion 7, Phase 1 Co llege Station, Texas Revised 7 /2006 Pipe 10 -10 Year Storm Manning Pipe Calculator Given I nput Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning 's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 18.0000 in 8 .4400 cfs 0.0100 ft/ft 0. 0140 12.9278 in 1. 7671 ft2 1.3585 ft2 36.4036 in 56.5487 in 6.2128 fps 5.3737 in 71.8214 % 9.7540 cfs 5.5197 fps Pipe 10 -100 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 18.0000 in 11.4700 cfs 0.0100 ft/ft 0. 0140 16 .3428 in 1 .7671 ft2 1.6857 ft2 45.4504 in 56.5487 in 6.1874 fps 5 .3408 in 90.7933 % 9.7540 cfs 5.5197 fps Castlegate Subdivi sion -Section 7, Phase 1 Co llege Statio n, Texa s Reid sed 7 /2006 Existing Pipe 15 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diamete r ....................... . Flowrate ....................... . Slope .......................... . Manning ' s n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hy draulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 30.0000 in 28 .7500 cfs 0.0085 ft/ft 0.0139 20 .5383 in 4 .9087 ft2 3 .5814 ft2 58.4689 in 94 .2478 in 8.0276 fps 8 .8204 in 68.4608 % 35 .3674 cfs 7 .2050 fps Existing Pipe 15 -100 Year Storm Manning Pi pe Calc ulato r Given Input Data: Shape .......................... . Solving f or .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning 's n .................... . Computed Results: Depth .......................... . Area ........................... . Wetted Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Full flow Flowrate ............. . Full f l ow velocity ............. . Circular Depth of Flow 30.0000 in 37.9600 cfs 0 .0085 ft/ft 0 . 0140 27.6031 in 4 .9087 ft2 4.7251 ft2 77.0539 in 94.2478 in 8.0337 fps 8 .8304 in 92.0104 % 35.3674 cfs 7.2050 fps Castleg ate Subdivision -Section 7, Ph ase 1 College Station, Texas Revised 7/2006 EXHIBIT A Post-Development Drainage Area Map 27 * C1vIL DEVELOPMENT, Lta.* Date: To: From: Subj ect: Remarks: CIVIL ENGINEERING & DESIGN-BUILD SERVICES TRANSMITTAL July 28, 2006 Carol Cotter Development Services City of College Station Joe Schultz, P.E.~ Civil Developme;f Ltd. P.O. Box 11929 College Station, Texas 77842 Phone: (979) 764-7743 Construction Drawings Castlegate Subdivision, Section 7 College Station, Texas Accompanying this transmittal are the following documents • 1 set of sealed construction drawings for your review (others wi II follow if revisions are approved) • one copy ofresponses to City Comments • two copies of the revised construction estimate • two copies of the revised Drainage Report • two copies of the Water and Sewer Report Castlegate Subdivision, Section 7 Final Plat Res ponse to Engineering Co mments No. 2 1. Your drainage report certifies that there will not be any impact on properties downstream of the Crowley Tract resulting from this development. Are you also certifying that there is no impact downstream of Section 7? Response: The Castlegate development downstream of Section 7 was designed assuming full development of all sections of Castlegate. Greenbelt areas were left along the tributaries of Spring Creek through Castlegate so that the 100-year floodplain limits were almost totally within these areas. Also, the existing pond located in Section 7 provides detention for the Castlegate Subdivision. Construction of Section 7 will have no downstream impact. 2. Is the runoff coefficient of 0.5 adequate? The previous report for Section 7 used 0.5, but the development was for a less dense residential development. Response: The runoff coefficient was changed to C=0.55. The revised results are included in the revised drainage report. 3. Page 3 of the Drainage Report states that the runoff flows into a proposed regional detention facility. I'm assuming you mean the existing one. Response: It is the existing detention facility. Page 3 was revised in the report. 4. Pl ease show in the plans the grading req uired to keep the 100-year storm within the ROW. Response: A Grading Plan (Sheet 4A) has been added. 5. What is the size of the existing storm pipe into which Pipe 1 is discharging? Is there capacity? Response: The existing pipe is 30 " in diameter. Calculations have been added to the drainage report to show this pipe is adequate. 6. The drainage from off-site onto Stone Castle Circle and from Stone Castle Circle off-site needs to ensure that there is no unde1m ining of the roadway. Please address. Response: Rock rip-rap has been placed at the end of streets to prevent undermining (Sheets 3 & 4). 7. The manhole lids in the pavement near the storm inlets shall be watertight. Response: Lids for Manholes 2 & 5 have been specified as watertight on Sheet 10. 8. Are yo u able to center a joint of pipe (min 18') over the sewer line at Sta 0+15 , Sheet 6? How are you planning to meet TCEQ requirements at this location? Response: The water line design has been revised so that a joint of pipe is centered over the sewer line. 9. Plan view ca lls out 8x6 tee at Sta 3+20 .35. Profile shows 8x8. (Sheet 6) Response: The plan view has been revised. Castlegate, Section 7 Res ponse tn Eng ineering Comments o. 2 l)agc I of 2 10. The sewer (and future water) line crossings under the high pressure gas li ne may need additional protection (encasement). Please provide documentation from Citgo with their requirements for these crossings. (Sheets 9 & 11) Response: We met with the Citgo Field Representative and were told th eir requirements for sewer and water crossings are: • PVC pipe only at the crossing -do ductile iron • Minimum of 2 ' of clearance No written documentation was given for these requirements. In order to meet Ctigo 's requirement of 38" of clearance for the street in Phase 2, the profile of Stone Castle Circle has been revised as shown in the plans. This revision resulted in the addition of another storm sewer inlet and storm sewer pipe. 11. Show conflicts with gas line crossings. Response: Gas line crossings have been shown. 12. Submit water and sewer design reports. Response: Water and Sewer Reports are included with this submittal. Castlega te. Section 7 Response to Engineering Comments No. 2 !'age~ or 2 Item I 2 3 4 5 -- 6 7 8 Castlegate Subdivision, Phase 7 Revised Engineer's Estimate July 28, 2006 Description I Unit Estimated uantit Sitework & Pavement -·-·------------------. --Mobilization/Construction Staking LS 1 Clearing & Grubbing (w/onsite burning) AC 5.9 Excavation (est. cut= 2354 cy., est. fill = 164 cy) I LS 11 6" Lime Stabilization (6% lime by weight) I SY 7,579 j 6" Crushed Limestone Base I SY _2,_8 .!21 ---~ -----2" Hot Mix Asphaltic Concrete SY 5,817 Curb & Gutter (all types) LF 3,979 Concrete apron SF 4,1181 Unit Price 6,000.00 3,000.00 14,200.00 ~ 3.60 8.QQ; 7 50 1 8:501 5.50 Sitework and Pavi ng Subtotal! Drainage ----~---311 --30.0~ 9 18" HDPE Pipe, structural backfill 10 24" HDPE Pipe, structural backfill ' LF 601 35.001 11 30" HDPE Pipe, structural backfill I LF 61 1 55.001 12 30" HDPE Pipe, non-structural backfill LF 30~1 47.00 13 1 O' Recessed Inlet EA 3,200.00 ----T--I 14 5' Recessed Inlet EA 3,000.00 15 Concrete Headwall for 30" HDPE Pipe I EA 1 2,800.00 16 Connect to junction box I EA 1 2,500.001 17 Silt Fence _l ~~ --~------~~40~! ____ 2.75 18 Inlet Protection 125 .ool --------..._ --19 Construction Exit ' EA 1 1,500.00! 20 Rock Rip Rap I SY 36 55.00 21 Hydromulch Seeding (back of curb to ROW) SY 5,290 0.60 22 SWPPP Implementation & Maintenance LS 1 2,500.00 23 TV Ins2ection ' I LF 1,002 3.50 Drainage Subtotal[ Water 24 6" C909 Water Pipe, structural backfill i LF -381- 25 6" C909 Water Pipe, non-structural backfill 1 LF I 695 1 26 8" C909 Water Pipe, structural backfill I LF 196 27 8" C909 Water Pipe, non-structural backfill I LF ~-1,22 1 28 Fire Hydrant Assembly (w/ 8"x 6" tee, valve, vert. extension) EA I 29 Fire Hydrant Assembly (w/ 6"x 6" tee, valve, vert. extension) I EA 1 30 8" M.J. Gate Valve I EA 31 31 6" M.J. Gate Valve EA 3 32 8"x 8" M.J. Tee EA 1 I 33 8"x 6" M.J. Tee -----· ----------· ·--34 6"x 6" M.J. Tee 35 8" x 45° M.J. Bend 36 8" x 22.5° M.J. Bend 37 8" x 11.25° M.J. Bend 38 6" x 45° M.J . Bend 39 6" x 22.5° M.J. Bend 40 6" x 11.25° M.J. Bend 4 1 8" x 6" M.J. Reducer 42 Conn ec t to existing water line 43 2" Blow Off Assembl y l'agL· I u( 2 EA EA EA EA EA EA EA EA EA EA EA I 6 2 I 2 ·--··--t 26.00 22.00 30.00: 26.00 1 --2,600.00 2,400.00 850.00 550.00 375.00 350.00 - 300.00 300.00 300.00 300.00 250.00 250.00 250.00 375.00 500.00 750.00 Total 6,000 17,550 14,200 27,284 46,536 43,628 33,822 22,649 $2 11 ,668 930 21,035 3,355 14,523 16,000 6,000 2,800 2,500 3,853 875 ---- 1,500 1,980 3,174 2,500 3,507 $84,532 988 15,290 5,880 31 ,746 2,_600 2,400 2,550 1,650 375 350 300 1,800 600 300 250 250 250 375 500 1.500 Item I 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 Castlegate Subdivision, Phase 7 Revised Engineer's Estimate July 28, 2006 Description Unit Estimated I 1 Unit Price Quantity 1.5'' Water Service '.S 15 ft (avg. length = 3 ft) I EA I 81 900.001 1.5" Water Service > 15 ft (avg. length = 49 ft) I EA 11 1,200.00 l" Water Service '.S 15 ft (avg. length = l 0 ft) I EA 3 700.001 l" Water Service > 15 ft (avg. length = 44 ft) EA l 1,000.001 Water Subtotal I Sewer -----6" PVC Sewer Line, 03034, SDR 26, structural backfill LF 444 30.00 6" PVC Sewer Line, 03034, SDR 26, non structural backfill LF 642 26.00 6" PVC Sewer Line, 02241, SDR 26, structural backfill LF 20 33.00 8" PVC Sewer Line, 03034, SDR 26, structural backfill LF 326 55.00 8" PVC Sewer Line, 03034, SDR 26, non structural backfill LF 886 40.00 8" PVC Sewer Line, 02241, SDR 26, non structural backfill LF 20 43 .00 Standard 4' Manhole, 0-8.00 ft depth EA 2 2,600.00 Standard 4' Manhole, 8.01-10.00 ft depth EA 6 2,900.00 Standard 4' Manhole, 14.01-16.00 ft depth, on existing 12" lirn EA 1 3,800.00 6' Drop Structure for 8" sewer line EA 1 1,000.00 6" PVC Cap EA 2 100.00 TV Inspection LF 2,338 3.50 4" Sewer Service '.S 15 ft (avg. length = 4 ft) EA 14 500.001 4" Sewer Service > 15 ft ~avg. length = 39 ft) EA 12 900.00 Sewer Subtotal! TOT AL CONSTRUCTION I Total 7,200 13,200 2,100 1,000 $93,454 --· --13,320 16,692 660 17,930 35,440 -860 5,200 17,400 3,800 1,000 200 8,183 7,000 10,800 $138,485 $528,139 Water and Sewer System Report for Castlegate Subdivision, Phase 7 College Station, Texas July 2006 Prepared B y: Civil Development, Ltd. 2900 Longmire Drive, Suite K College Station, Texas 77845 (979) 764-7743 General Information Location: General Note: Land Use: Design Criteria Castlegate Subdivision, Phase 7 is located immediately south of Phase 8 and west of Phase 6 in southern College Station. Phase 7 contains 30 platted lots, but there are an additional 17 lots in a future phase adjacent to it that will be served by the same water and sewer lines. These additional lots have been taken into account in this analysis of the water and sewer systems. Single Family Residential WATER SYSTEM ANALYSIS Primary Water Supply: Existing 12" line along Castlegate Drive. Domestic Demand: Avg. Pop Density: Average Flow: Peaking Factor: Peak Flow: Design Flow: Fire Demand: Fire Flow: Pipe: Roughness Coeff: Hydraulic Software: 2.67 people per lot 100 gpd/cap or 267 gpd per lot= 0.18 gpm per lot 4 0.74 gpm per lot 1.50 gpm per lot 1000 gpm at most hydraulically remote point PVC DR-14 C909 150 (Hazen Williams) Haestad Methods WaterCAD v.6.0 Existing City System Pressure Tests Flow Hydrant #: V-035 Flowrate: 1140 gpm Adj. Hydrant #: V-036 Static Pressure: 90 psi (208 ft water) Residual Pressure: 85 psi (196 ft water) Applicable Exhibits: Exhibit A -College Station Utilities Flow Test Report Water System Analysis Summary Criteria Required As Location Designed Min. Pressure -fire (psi) 20 73 C7 FH2 Max. Velocity (fps) 12 6.82 P-1 Max. Le11gth of 6" pipe (ft) 1500 700 (connected to~ 8 "on both Max Length of 6" pipe (ft) 800 25 (no t connected on both e11ds Max. Length of 3 "pipe (ft) 500 NA Applicable Exhibits: Exhibit B -Water System Schematic Conclusion Design Criteria: Exhibit C -Junction Summary -Static & Fire Flow Conditions Exhibit D -Pipe Summary -Fire Flow Conditions The proposed water system for Castlegate Subdivision, Phase 7 meets or exceeds all of the design criteria for the City of College Station. It will provide adequate water pressure and flow for both domestic and fire demands. SEWER SYSTEM ANALYSIS Primary Sewer Outfall: Existing 12" sewer line in Castlegate Drive Domestic Demand: Avg. Pop Density: Average Flow: Peaking Factor: Pipe: Applicable Exhibits: Conclusion: 2.67 people per lot 100 gpd/cap or 267 gpd per lot 4 PVC D3034 SDR 26 Exhibit E -Sewer System Schematic Exhibit F -Sanitary Sewer Analysis Spreadsheet As indicated on the spreadsheet, the sewer system for Castlegate Subdivision, Phase 7 easily meets all of the design criteria and requirements of TCEQ and the City of College Station. If will easily serve all of the lots in this subdivision, as well as the future lots that will share the system. 1601 GRAHAM ROAD COLLEGE STATION TEXAS 77845 Date: 4 MARCH 2004 Nwnber pages including cover sheet - 1 Fax to: 764-7759 Attention: JOESCHULTZ Company: TEXCON From: Butch Willis Water Wastewater Division Phone: 979-764-3435 Fax: 979-764-3452 FLOW TEST REPORT Location: CASTLEGATE DRIVE Flow hydrant number: V .:.035 Pitot reading: 80 (GPM): 1140 . , ·-'>.Static hydrllllt nUmber: . V-036 . .·-" , - -{~·~ ... ~ .:. .. . J ·.: ·~ ?. ··s• .. ~t--• ....... ~001 Exhibit A i . ,,;~~-·~~~i1l~~i,?;!1;,:~·:, .. ,).i,c;~~~.,,; .. ::~:~~~'. _;,. ;.;.: ?:< .; . : ~;l~~-:i:~t'. : . ~':. '"~ . -,-.:~:~ ••.. .-,.-.· -< -~ . '• .. \ \}~: .•:.'.·'.'._·< . ? .. . :.· . . . ·.·: Exhibit B Water System Schematic 1 ested Hydrant C8 01 -··--·--P-10 ...----·..B -----1~-U-----.... ..---- Cast\egate Drive ' 7 -1---\ 2 : BLOCK \ ,~ _\ , I / I ,' \ .l C7 F\-1 I I --_i _j . ! ' ! ' ! !, r r-1r---1--1·-lliOCKJ I 9 I I -- ' Ill I r-1 \\ / , \2 \ 3 "-.c: Q ~ (1J O> <I> :;:; Cl) (1J 0 Exhibit C Castlegate Subdivision, Phase 7 Water System Analysis Junction Summary Static Flow Conditions Label Elevation j Demand I Hydraulic Grade I Pressure (ft) (gpm) (ft) (psi) C7 01 317 1a 519.22 a7.49 C7 02 317 3 519.22 a7.49 C7 03 321 15 519.22 a5.76 C7 05 321 6 519.21 a5.76 C7 FH1 316 0 519.23 a7.93 C7 FH2 324 27 519.21 84.46 ''··" ... ca 01 312 0 519.27 a9.67 Tot. Static Demand: 69 Lowest Pressure in Subdivision Phase (Static): 84.46 Fire Flow Conditions C7 01 317 18 499.41 7a.92 C702 317 3 499.41 7a.92 C7 03 321 15 499.39 77.18 C705 321 6 499.39 77.18 C7 FH1 316 0 501.75 80.36 C7 FH2 324 1027 493.60 73.3a ca 01 312 0 507.50 a4.59 Tot. Fire Demand: 1069 Lowest Pressure in Subdivision Phase (Fire): 73.38 Label P-1 P-2 P-4 P-5 P-6 P-8 P-9 P-1 0 Exhibit D Castlegate Subdivision, Phase 7 Water System Analysis Pipe Summary Fire Flow Conditions Length . __ Diameter Material Hazen-Discharge (ft) (in) Williams (gpm) 363 8.0 PVC 150 1,069 534 8.0 PVC 150 534 536 8.0 PVC 150 -535 31 6.0 PVC 150 3 54 6.0 PVC 150 6 352 6.0 PVC 150 513 348 6.0 PVC 150 -514 555 12.0 PVC 150 -1,069 Velocity (ft/s) 6.82 3.41 3.42 0.03 0.07 5.82 5.84 3.03 Highest Pipe Velocity: 6.82 ---~,~ --..... --.... , --.. ., Exn.1b·1t E system scnernotic C7 f Cast\egate Drive tt __ ... ,,- I I -------·'\ I I -~,\ Lin~ .9 :i: !!! " 0 E 0 "O u: "' ..J 0 " ~ z " 0/) !::: "' r10111 To f= "O ·§ :3-~ 5 -0 2Z "O "-:"§ E z ·;;; :: c: 0 " 0:: 0 0 <!:: u: u 267 GPD per VIH # MH# Lot GPD !lutfall #I -. -( ·7 ;\ C7 B 18 4,806 --C7 B C7E 8 2,136 4,806 ( ·7 c C7 D 9 2.403 -·-C7 D C7 E ' 12 3,204 2,403 -I «7 E C7 F 0 -5,607 ------ - - Exhibit F Castlegate Subdivision, Phase 7 Sanitary Sewer Analysis July 3, 2006 Flow Calculations Manning Min. Average Daily Infiltration Peaking Inside Friction Design Peak Size Material Flows (ADF) (10%ADF) Diameter Slope Slope Factor Flows ADF ADF I GPD I CFS CFS CFS (in.) Inches % % 4,806 0.0074 0.0007 4.00 0.03 6 D3034 5.793 0.0010 0.80 6,942 0.0107 0.0011 4.00 0.04 8 D3034 7.754 0.0004 0.40 2,403 0.0037 0.0004 4.00 0.02 6 D3034 5.793 0.0003 0.80 5,607 0.0087 0.0009 4.00 0.04 8 D3034 7.754 0.0003 0.40 5,607 0.0087 0.0009 4.00 0.04 8 D3034 7.754 0.0003 0.40 Pipe Calculations Actual Manning Min. Slope for Ave. Daily Ave. Daily Friction Design Pipe Peak Peak Existing Flow Flow Slope Slope Slope Flow Flow or Velocity Depth Peak Peak Check Velocity Depth Designed Flows Flows I Systems I I I I I I I I fps Inches % % % fps Inches I I 0.95 0.29 0.0035 0.80 0.80 OK 1.37 I 0.87 0.78 0.39 0.0016 0.40 0.40 OK 1.18 1.16 0.74 0.00 0.0009 0.80 0.80 OK 1.12 I 0.58 0.74 0.00 0.0010 0.40 0.40 OK 1.12 1.16 0.74 0.00 0.0010 0.40 0.40 OK 1.12 1.16 ---I I I I I