Loading...
HomeMy WebLinkAboutDrainage ReportDrainage Report for Castlegate Subdivision -Section 7, Phase 2, College Station; Texas January 2007 Developer: Greens Prairie lnvestors, Ltd. By Greens Prairie Associates, LLC 4490 Castlegate Drive College Station, Texas 77845 (979) 690-7250 Prepared B1 '_: Civil Development, Ltd. 2900 Longmire Drive, Suite K College Stati on, Texas 77 845 (979) 764-7743 CERTIFICATION I, Joseph P. Schultz, Licensed Pro fess ional Engin eer No. 65889, State of Texas, certify that this report for the drainage design for the Castlegate Subdivision -Section 7, Phase 2, was prepared by me in accordance with the provisions of the City of College Station Drainage Policy and Design Standards for the owners hereof. TABLE OF CONTENTS DRAINAGE REPORT CASTLEGATE SUBDIVISION -SECTION 7, PHASE 2 CERTIFICATIO ................................................................................................................................................................. I TABLE OF CO TE TS ....................................................................................................................................................... 2 LIST OF TABLES .................................................................................................................................................................. 2 INTRODUCTION .................................................................................................................................................................. 3 GENERAL LOCATlON AND DESCRIPTIO ................................................................................................................. 3 FLOOD HAZARD INFORMATION ................................................................................................................................... 3 DEVELOPMENT DRAINAGE PATTERNS ...................................................................................................................... 3 DRAINAGE DESIGN CRITERIA ....................................................................................................................................... 3 STORM WATER RUNOFF DETERMINATION .............................................................................................................. 4 DETENTION FACILITY DESIGN ..................................................................................................................................... 5 STORM SEWER DESIGN .................................................................................................................................................... 5 CONCLUSIONS ..................................................................................................................................................................... 6 APPENDIX A ......................................................................................................................................................................... 7 Time of Co11 ce11tratio11 Equations & Calculations APPENDIX B ........................................................................................................................................................................ 12 Storm Sewer Inlet Design Calc11latio11s APPENDIX C ....................................................................................................................................................................... 15 Storm Sewer Pipe & Clza1111el Design Calc11/atio11s EXHIBIT A ........................................................................................................................................................................... 24 Post-Development Drainage Area Map LIST OF TABLES TABLE 1 -Rainfall Intensity Calculations .............................................................................................. 4 TABLE 2 -Time of Concentration (tc) Equations .................................................................................. 4 TABLE 3 -Po st-Development Runoff Informatio n -Storm Sewer Design ........................................... 5 DRAINAGE REPORT CASTLEGATE SUBDIVISION -SECTION 7, PHASE 2 INTRODUCTION The purpose of this report is to provide the hydrological effects of the construction of the Castlegate Subdivision -Section 7, Phase 2, and to verify that the proposed stonn drainage system meets the requirements set forth by the City of College Station Drainage Policy and Design Standards. GENERAL LOCATION AND DESCRIPTION The project is located in the Cast legate Subdivision west of State Highway 6 along the north side of Greens Prairie Road in College Station, Texas. This report addresses Section 7, Phase 2 of this subdivision, which is made up of approximately 13 acres, which is adjacent to Castlegate Section 7, Phase 1. The site is predominantly wooded. The existing ground elevations range from Elevation 312 to Elevation 334. The general location of the project site is shown on the vicinity map in Exhibit A. FLOOD HAZARD INFORMATION The project site is located in the Spring Creek branch of the Lick Creek Drainage Basin. Most of the proposed developed area of the site is located in a Zone X Area according to the Flood Insurance Rate Map prepared by the Federal Emergency Management Agency (FEMA) for Brazos County, Texas and incorporated areas dated February 9, 2000, panel number 48041 C0205-D. There is Flood Hazard Area on the east and west portions of this development. This area is shown on Exhibit A as the 100-year floodplain limit. No residential area of this development lies within the Flood Hazard Area. DEVELOPMENT DRAINAGE PATTERNS Prior to development, the storm water runoff for Section 7, Phase 2 generally flows in a northeasterly or westerly direction until it enters tributaries of Spring Creek. Ultimately, this runoff flows into Spring Creek and then north to the ex isting regional detention facility. Refer to the vicinity map in Exhibit A for the location of this regional detention faci lity. DRAINAGE DESIGN CRITERIA The design parameters for the stonn sewer are as follows: • The Rational Method is utilized to determine peak storm water runoff rates for the storm sewer design. • Design Stom1 Frequency Sto1111 sewer system • Runoff Coefficients I 0 and I 00-year stonn events Post-development (single family residenti al) c = 0.55 • Rain rai l Intensit y eq uati on s and va lu es fo r Bra1.os Co unt y can be round in Table I. • Time of Concentration, le -Calcul at ions are based on the method found in the TR-55 publi cation. Refer to Table 2 fo r th e equati ons and Appendi x A for calculati ons. The run off Oow paths used for calculating the post-development tim es of concentrat ion fo r th e sto rm sewer design are shown on Ex hi bit A. For smaller drainage areas, a minimum tc of l 0 minutes is used to detem1in e the rainfall intensit y va lu es. STORM WATER RUNOFF DETERMINATION The peak runoff values were detennined in accord ance with the criteria presented in the previous section for the 5, 10, 25 , 50, and 100-year stom1 events. The drain age areas fo r the post-development conditions for th e storm sewer des ign are shown on Exhib it A. Post- development runoff conditions for the storm sewer des ign are summarized in Tab le 3. TABLE 1 -Rainfall Intensity Calculations Rainfall Intensity Values (in/hr) Storm Event Is 110 l,s lso 1100 tc = 10 min 7.693 8.635 9.861 11 .148 11.639 I = b I (tc+d)" I = Rainfall Intensity (in/hr) tc = L/(V*60) le = Time of concentration (min) L = Length (ft) V = Velocity (ft/sec) Brazos County: 5 year storm 10 year storm 25 year storm 50 year storm 100 year storm b= 76 b= 80 b= 89 b= 98 b= 96 d= 8.5 d= 8.5 d= 8.5 d= 8.5 d = 8.0 e= 0.785 e= 0.763 e= 0.754 e= 0.745 e= 0.730 (Data taken from State Department of Highways and Public Transportation Hydraulic Manual, page 2-16) TABLE 2 -Time of Concentration (tc) Equations Th e time of concentration was determined usin g methods found in TR-55, "Urban Hydrology for Small Wat ersheds. " The equations are as follows.· Time of Concentration: For Shee t Flow: T, For Shallow Conc entrated Flow: Reier to A ppendix/\ for calc ulations. Tc= T1(shcel llow) + T1(rnnccnl raled shecl 1101\) where: T, =Travel Time, minutes where: T, =travel time, hours n =Manning 's roughness coefficient L = flow length, feet P2 = 2-year, 24-hou r rainfall = 45'' s = land slope, ft/ft T, = L I (60*V) where: T, =travel time, minutes V =Velocity. l"ps (See Fig 3-1. /\pp. /\) I, = flow length. kct TABLE 3 -: Post-Development Runoff In formation -Storm Sewer Design 5 year storm 10 year storm 25 year storm 50 year storm 100 year storm le Area# A c 125 0 25 lso Oso 1100 0 100 15 Os 110 0 10 (acres) (min) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) (in/hr) (cfs) 5 1.63 0.55 11 .7 7.180 6.44 8.074 7.24 9.229 8.27 10.441 9.36 10.897 9.77 6 1.58 0.55 22.8 5.091 4.42 5.781 5.02 6.634 5.76 7.534 6.55 7.864 6.83 13 1.30 0.55 10 7.693 5.50 8.635 6.17 9.861 7.05 11.148 7.97 11 .639 8.32 14 0.10 0.55 10 7.693 0.42 8.635 0.47 9.861 0.54 11.148 0.61 11 .639 0.64 15 0.13 0.55 10 7.693 0.55 8.635 0.62 9.861 0.71 11.148 0.80 11 .639 0.83 16 2.49 0.55 24.0 4.943 6.77 5.617 7.69 6.448 8.83 7.326 10.03 7.647 10.47 DETENTION FACILITY DESIGN The detention facility handling the runoff from thi s site is a regional facility designed by LJ A Engi neering & Surveying, lnc. The detention fac ility is located adjacent to Spring Creek pri or to Spring Creek enterin g the State Hi ghway 6 right-of-way. Also, a detention pond was constructed upstream of Cast legate Drive, noted as "Ex isting Pond" on Exhibit A, to reduce the peak flow res ulting from the Castlegate development. STORM SEWER DESIGN The stom1 sewer piping material fo r this project has been selected to be High Density Poly- Ethylene (HDPE) pipe meeting the requirements of AASHTO M294, Type S with watertight joints. The curb inlets will be cast-in-place concrete. Appendix B presents a summary of th e storm sewer inl et design parameters and calcul ations. The inlets were designed based on a l 0-year design storm. As per College Station guidelines, the capacities of inlets in sump were reduced by l 0% to allow for clogging. lnl ets for the residential streets were located to maintain a gutter flow depth of 5" or less. This design depth wi ll prevent th e spread of water from reaching the crown of the road fo r the 10- year storm event. Refer to Appendix B for a summary of the gutter flo w depths. The runo ff intercepted by the proposed stom1 sewer inlets was calculated using the fo llowing equations. The depth of flow in the gutter was detennined by using th e Straight Crown Flow equation. The capacities for the inlets in sump (lnlets 5 & 6) were calculated using the lnl ets in Sumps, Weir Flow equation with a maximum allowable depth of 7" (5" gutter fl ow plus 2" gutter depression). These equations and resulting data are summarized in Appendix B. There are no Inl ets On Grade for this phase of development. The maximum depth in the proposed streets is 4.10 inch es for th e IO-year storm event and 4.94 inches for th e 100-year storm event. These eq uations and the resulting data are summarized in Appendi x B. The area between the ri ght- of-way and the curb line of the streets will be graded as shown on th e Grad in g Pl an (re fer to construction plans) to provide a minimum of 6" of freeboard above the curb lin e. Thi s will ensure that the runoff fro m the I 00-year storm event wi ll remain within the street ri ght-of-way. Appendi x C presents a summ ary of th e storm se\\'er pipe design parameters and calculations. Al l pipes are 18" in di ameter or larger. For pipes with 18" and 24" diallleters, th e cro ss- sectional area is redu ced by 2Y%, as per Co llege Stati o n requi rements. A surnlll ary o f how thi s wa s ac hi eved is sho\\·11 i11 Appendix Caswell The pipes for the storm sewer svs tc111 "·ere designed based on the l 0-year storm event. Based on the depth of fl ow in the street determined fo r the 100-year storm event, this runo ff will be contained within the street right-of-way until it enters the storm sewer system. As required by Coll ege Station, the velocity o f fl ovv in th e stonn sewer pipe system is not lower than 2.5 feet per second , and it does not exceed 15 fee t per second . As th e data shows, even during low fl ow conditi ons, th e velocity in the p ipes will exceed 2.5 feet per second and prevent sediment build-up in the pipes. The maximum fl ow in the storm sewer pipe system will occur in Pipe No. 12. The maximum velocity for the pipe system in this development will be 10.1 feet per second and will occur in Pipe No. 12. Appendix C contains a summary of the pipe calcul ati ons, showin g both Mannings Equation and cul vert calcul ator data. CHANNEL NO. 1 DESIGN Storm water collected by the stom1 sewer system for this phase of the development w i II be discharged into a proposed grass-lined channel. T hi s channe l will carry the storm water to the 100-year fl oodplain located adj acent to this development, th en into an existing drainage channel, and then in to the existing pond. The channel will be a trapezoidal channel with 4H: IV sides, 0.4% slope, 6' bottom width, and 18" in depth. Data pertaining to thi s channel design can be found in Appendix C. CONCLUSIONS The construction of this project will increase the s tom1 water runo ff from this site. The proposed storm sewer system should adequately control the runoff and release it into an existing drainage, whi ch discharges into tributaries of Spring Creek. As shown in the Castlegate Floodplain Analys is, the Castl e gate Subdivision does not have a signi fican t effect on the 100-year floodplain water surface elevations or the floodplain limits. The existing pond also prov ides detention for Castlegate, and there w ill be no impact on the downstream properties w ithin Castlegate. The regional detention facility sho uld adequately control the peak post-development runoff so that it w ill not have any impact on the properties downstream of the Crowley Tract resulting from thi s development. APPENDIX A Time of Concentration Equations & Calculations Castlegate Subdivision -Section 7, Phase 2 Post-Development Time of Concentration Calculations Refer to Exhibit A for flow path locations. Drainage Area #5 Sheet Flow: L= 100 T1= 0.007(L*nt~ (P)os*(S)o4 Concentrated Flow: L= 240 T1= L/(60*V) Gutter Flow 1: L= 63 T1= L/(60*V) Gutter Flow 2: L= 80 T1= L/(60*V) n= P= = V= = V= = V= = 0.24 (dense grass) 4.5 Elev,= 0.149 hours= .._I ___ 8_._9_m_in __ ~ 2.05 fps (unpaved) Elev,= 2.0 min 3.45 fps (paved) Elev,= 0.3 min 2.50 fps (paved) Elev,= 0.5 min Slope= Slope= Slope= Slope= 0.042 0.0150 0.0286 0.0150 Drainage Area #6 Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 175 Elev1= Elev2= Slope= 0.022 T,= 0.007(L *nt~ = 0.302 hours= I 18.1 min (P)os*(S)o4 Concentrated Flow: V= 2.8 fps (unpaved) L= 140 Elev1= Elev2= Slope= 0.0300 T,= L/(60*V) = 0.8 min Gutter Flow 1: V= 1.75 fps (paved) L= 182 Elev1= Elev2= Slope= 0.0074 T,= L/(60*V) = 1.7 min Gutter Flow 2: V= 2.05 fps (paved) L= 126 Elev1= Elev2= Slope= 0.0100 T,= L/(60*V) = 1.0 min Gutter Flow 3: V= 4.00 fps (paved) L= 158 Elev1= Elev2= Slope= 0.0390 Ti= L/(60*V) = 0.7 min Gutter Flow 4: V= 2.5 fps (paved) L= 80 Elev1= Elev2= Slope= 0.0150 T,= L/(60*V) = 0.5 min ITc= 22.8 min Drainage Area #16 Sheet Flow: n= 0.24 (dense grass) P= 4.5 L= 150 Elev,= Elev2= Slope= 0.015 T1= 0.007(L *nt" = 0.311 hours= I 18.7 min (P)°s*(S)o4 Gutter Flow 1 : V= 1.85 fps (paved) L= 311 Elev,= Elev2= Slope= 0.0080 T1= L/(60*V) = 2.8 min Gutter Flow 2: V= 3.2 fps (paved) L= 408 Elev,= Elev2= Slope= 0.0280 T1= L/(60*V) = 2.1 min Gutter Flow 3: V= 2.4 fps (paved) L= 60 Elev1= Elev2= Slope= 0.0140 T1= L/(60*V) = 0.4 min ITc= 24.0 min • ~ 4--~ 4- <1J a. 0 .- VI <1J VI I- ::J 0 u I- <1J .._, .., :x :1.2 .50 .20 - .10 .06 .04 .02 - .01 - .005 ' 1 j ' I ' I I ' , ' I b ::..q_, ,--:;, 'tr ::.. ~f!; j' I J I I j I 2 ' ; I , ' I 4 I I I I j I I I 6 ' I ' ' I Average velocity, ft/sec , . ' , , I , I I 10 , , I I Fiicu~ l -1.-Avcrar:c vcl<><:iti"s for c•limatinic trJvcl time for •hallow c-onccntratcd now. (2 10-Vl-TR-55. Second Ed .. June L98G) I 20 \ APPENDIX B Storm Sewer Inlet Design Calculations I -' Castlegate Subdivision Sect ion 7, Phase 2 Depth of Flow in Street Gutter Gutter A Location c (acres) C1 1.63 0.55 -- C2 1.58 0.55 C3 0.37 0.55 C4 1.25 0.55 - F1 0.10 0.55 -F2 1.30 0.55 --F3 0.13 0.55 ----- - F4 2.49 0.55 ------ F5 0.44 0.55 ----- - F6 1.02 0.55 Transverse (Crown) slope (ft/ft) 27' street = 0.0330 Slope (ft/ft) 0.0150 0.0150 0.0100 0.0100 0.0200 0.0194 - 0.0266 - 0.0140 0.0080 -- 0.0080 10-year storm 0 10 Y10-actual (cfs) (ft) (in) 7.24 0.354 4.25 - 5.02 0.309 3.70 - 1.76 0.225 2.70 4 09 0.308 3.70 0.47 0.121 1.45 6.17 0.318 3.81 0.62 0.126 1.52 -·---7.69 0.367 4.40 2.09 0.250 3.00 3.35 0.298 3.58 Straight Crown Flow (Solved to find actual depth of flow in gutter, y): Q = 0.56 * (z/n) * S112 * y8'3 ¢ y ={Q I [0.56 * (z/n) * S112]}318 n =Roughness Coefficient= 0.018 S = Streel/Gutter Slope (ft/ft) y = Depth of flow at inlet (ft) z = Reciprocal of crown slope: 27' street = 30 100-year storm 0 100 Y100 (cfs) (ft) (in) 9.77 0.396 4.75 6.83 0.346 4.16 ---2.37 0.251 3.01 5.57 0.346 4.15 0.64 0.135 1.62 -- 8.32 0.355 4.26 0.83 0.141 1.70 ----10.47 0.412 4.94 ----- 2.82 0.280 3.35 --- 4.55 0.335 4.02 Castlegate Subdivision Section 7, Phase 2 Inlet Length Calculations Inlets In Sump Inlet# Length & Type Flow from Area # 5 1 o· Recessed 13 14 'i 10· Recessed 15 16 A c (acres) 1.30 0.55 0.10 0.55 0.13 0.55 -2.49 0.55 Transverse (Crown) slope (fVft) = 0.033 o,. O carry O\ler (cfs) (cfs) from lnlet1' 6.17 -0.47 0.62 7.69 Straight Crown Flow (Solved to find actual depth of flow, y): Q = 0.56 * (z/n} * S112 * y813 <:> y ={Q I [0.56 * (z/n) * S112]}318 n = Roughness Coefficient = 0.018 z = Reciprocal of crown slope = 30 S = StreeVGutter Slope (fVft) y = Depth of flow at inlet (ft) 10 year storm Orotal O rotal+10Y. Y10-actual (cfs) (cfs) (ft) (in) 6.17 6.79 0.298 3.58 --0.47 0.52 0.114 1.37 0.62 0.68 0.126 1.51 ---------------7.69 8.46 0.324 3.88 - 100 year storm L10-Req'd L10.ac1ual o, .. Ocarry over Orotal Orotal•10.,.. (ft) (ft) (cfs) (cfs) 8.32 5.48 10 ---- 0.64 0.83 6.85 10 ----- 10.47 "using v ..... = r = 0.583' Inlets in sumps, Weir Flow: L = QI (3 * y312} ¢ y = (Q I 3L)213 L = Length of inlet opening (ft) Q =Flow at inlet (cfs) y = total depth of flow on inlet (ft) max y for inlet in sump = 7" = 0.583' from Inlet # (cfs) (cfs) 8.32 9.15 0.64 0.70 0.83 0.92 --10.47 11.52 Y100 (ft) (i n) 0.476 5.71 0.556 6.67 APPENDIXC Storm Sewer Pipe & Channel Design Calculations 1 .~ Castlegate Subdivision -Section 7, Phase 2 Pipe Calculations -Mannings Equation 10-year Storm Pipe Size Length Slope Outlet Invert Contributing Contributing Tc 110 0 10 Mannings 1100 Inlet Invert Elev Elev Area Area "Actual Design V10 Travel Time, t110 No. Numbers •;.Full (in) (ft) (%) (ft) (ft) (acres) (min) (in/hr) (cfs) (cfs) (fps) (sec) I (min) (in/hr) 12 24 143.3 1.75 310.27 307.75 13,14,15,16 4.02 24.0 5.62 12.42 20.06 9.6 62.9 __ 1_5 __ 1~ .~ .,___ -13 24 73.9 2.24 312.02 310.37 13,14 1.40 10.0 8.63 6.65 10.74 9.0 63.8 8 0.14 11.64 ·rhese values reflect the actual flow for the 18" & 24" pipes. The design flow for these pipe sizes reflects a 25% reduction 1n pipe area. (Refer to attached calculation for specific information.) Channel Summary Bottom Width Side Slopes Slope 10-year storm 100-year storm Channel Channel No. Design/Actual Flow Depth v,. Design/Actual Flow Depth V100 Lining (in) (H:V) (%) (els) (In) (fps) (cfs) (in) (fps) Material 1 72 4:1 0.40 12.42 9.1 1.8 16.91 10.7 2.0 Grass 100-year Storm 0 100 Mannings "Actual Design V,oo Travel Time, 11100 % Full (sec) I (cfs) (cfs) (fps) (min) 16.91 27.31 10.1 80.4 14 I 0.24 -----8.96 14.47 9.4 81.2 8 0.13 Castlegate Subdivision -Section 7, Ph ase 2 Pipe Calculations -Culvert Calculator Size Length Slope Inlet Invert Outlet #of Elev Invert Elev Culvert No. Barrels (in) (ft) (%) (ft) (ft) 12 1 24 143.3 1.75 310.27 307.75 13 1 24 73.9 2.24 312.02 310.37 Top of Road 25-year storm 100-year storrn Design Flow v,. HW Design Flow V,.o HW (ft) (cfs) (fps) (ft) (cfs) (fps) (ft) 315.90 23.02 7.3 314.46 27.31 8.7 315.67 317.02 12.26 3.9 315.07 14.47 4.6 316.51 City of College Station requirement to Reduce Cross-Sectional Area of 18" & 24" Pipes by 25% Using Mannings Equation from page 48 of the College Station Drainage Policy & Design Standards Manual: Q = 1.49/n *A* R213 * S112 Q =Flow Capacity (cfs) 18" Pipe: Pipe size (inches)= 18 Wetted Perimeter W P· (ft)= 4.71 Cross-Sectional Area A, (ft2) = 1.766 Reduced Area AR, (ft2) = 1.325 Hydraulic Radius R =A/WP, (ft)= 0.375 Reduced Hydr Radius RR = AR/Wp, (ft)= 0.281 Roughness Coefficient n = 0.014 Friction Slope of Conduit Sr. (ft/ft)= 0.01 Example Calculation: Slope Flow Capacity Reduced Flow Capacity % Difference s Q 0.005 6.91 --0.006 7.57 --· --0.007 8.18 24" Pipe: Pipe size (inches) = Wetted Perimeter WP• (ft) = Cross-Sectional Area A, (ft2) = Reduced Area AR, (ft2) = Oreduced 4.28 -·-4.69 --5.06 Hydraulic Radius R = A/WP• (ft) = Reduced Hydr Radius RR = AR/WP' (ft) = Roughness Coefficient n = Friction Slope of Conduit Sr. (ft/ft) = Example Calculation: Slope Flow Capacity Reduced Flow Capacity s Q Qreduced 0.005 14.89 9.22 0.006 16.31 10.1 -0.007 17.61 10.9 Conclusion: Oreduced/Q 0.619 -0.619 ·-0.619 24 6.28 3.14 2.355 0.5 0.375 0.014 0.01 - ·- % Difference QreduceiQ 0.619 0.619 0.619 Multiply actual Q in 18" & 24" pipes by 1.615 to reflect a 25% reduction in the cross-sectional area called for on page 4 7, paragraph 5 of the College Station Drainage Policy & Design Standards manual. Pipe 12 -10 Year Storm Manning Pipe Calculator Given Input Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Mann ing's n .................... . Computed Results: Depth .......................... · Area ........................... . We t t ed Area .................... . Wetted Perimeter ............... . Perimeter ...................... . Velocity ....................... . Hyd raulic Radius ............... . Percent Full ................... . Ful l flow Flowrate ............. . Full flow velocity ............. . Circular Depth of Flow 24.0000 in 20.0600 cfs 0.0175 ft/ft 0.0140 15.1053 in 3.1416 ft2 2.0825 ft2 43.9812 in 75.3982 in 9.6326 fps 6.8184 in 62.9387 % 27.7890 cfs 8.8455 fps Pipe 12 -100 Year Storm Manning Pipe Calculator Given I nput Data: Shape .......................... . Solving for .................... . Diameter ....................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Computed Results: Dept h .......................... . Area ........................... . Wetted Area .................... . Wetted Perime t er ............... . Perimeter ...................... . Velocity ....................... . Hydraulic Radius ............... . Percent Full ................... . Fu ll flow Fl owrate ............. . Fu ll flow ve l ocity ............. . Circular Depth of Flow 24.0000 in 27.3100 cfs 0.0175 ft/ft 0.0140 19.3070 in 3.1416 ft2 2 .7085 f t2 53.4118 in 75.3982 i n 10.0831 fps 7.3022 in 80.4458 % 27.7890 cfs 8 .8455 fps Casllegate Subdi v i s io n College c~l..it.io11 , Tc;-:c!c: Sec l ion ·:1 Pllc'l se 2 Pipe 13 -10 Ye a r Storm Manni ng Pipe Calculator Given Input Data: Shape . . . . . . . ..... . Solving for Diameter Flowrate .. . Slope ............ . Manning's n ...... . Computed Results: Depth ..... . Area ................... . Wetted Area ............. . Wetted Perimeter Perimeter ...... . Velocity ....... . Hydraulic Radius Percent Full .... Full flow Flowrate Full flow vel ocity Circular Depth of Flow 24.0000 in 10 .7400 cfs 0.0224 ft/ft 0.0140 9. 6718 in 3 .1416 ft2 1.1852 ft2 33. 0130 in 75.3982 in 9.0617 fps 5.1698 in 40.2991 % 31.4397 cfs 10 .0076 fps Pipe 13 -100 Year Storm Manning Pipe Calculator Giv en Input Data: Shape . . . . . . . . . . . . . . . .... . Solving for . . . . . . . . . . . . . . .... . Diameter ....................... . Flowrate .................... . Slope ....................... . Manning's n .... Computed Results: Depth ........ . Area ........................... . Wetted Area ............... . Wetted Perimeter .......... . Perimeter ................ . Velocity ................ . Hydraulic Radius .. Percent Full ..... . Full flow Flowrate Full flow velocity ............ . Circular Depth of Flow 24 .0000 in 14.4700 cfs 0.0224 ft/ft 0.0140 11.4340 in 3.1416 ft2 1.4765 ft2 36.5668 in 75.3982 in 9.8002 fps 5.8145 in 47 .6418 % 31.4397 cfs 10 .0076 fps Cn~; l eqate Subdi·1 i s i o 11 r·. I J ,·CJc· ·L .1L. i < 11, ·re:·:<1~: Sect i c111 Phase ' Pipe 12 -10 Year Storm Culvert Calculator Entered Data: Shape ........... . Number of Barrels Solving for ........ . Chart Number ....... . Scale Number ............... . Chart Description .......... . Scale Description .......... . Overtopping .................. . Flowrate ..................... . Manning's n ..... . Roadway Elevation Inlet Elevation .. Outlet Elevation Diameter ......... . Length ........... . Entrance Loss ............ . Tailwater ... Computed Results: Headwater ...................... . Slope .......................... . Ve locity ....................... . Circular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE SQUARE EDGE ENTRANCE WITH HEADWALL Off 23.0200 cfs 0.0140 315.9000 ft 310.2700 ft 307.7500 ft 24.0000 in 143.3000 ft 0.5000 3.7500 ft 314.4642 ft Outlet Control 0.0176 ft/ft 7.3275 fps Pipe 12 -100 Year Storm Culvert Calculator Entered Data: Shape ...................... . Number of Barrels .......... . Solving for ................ . Chart Number ............... . Scale Number ................ . Chart Description .............. . Scale Description .............. . Overtopping . . ................. . Flowrate ................. . Manning's n ........ . Roadway Elevation .. . Inlet Elevation .... . Outlet Elevation ... . Diameter ................ . Length .................. . Entrance Loss ........... . Tailwater .. Computed Results: Headwater Slope ... Velocity . Circular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE SQUARE EDGE ENTRANCE WITH HEADWALL Off 27.3100 cfs 0.0140 315.9000 ft 310.2700 ft 307 .7500 ft 24 .0000 in 143.3000 ft 0.5000 3.7500 ft 315.6719 ft Outlet Control 0.0176 ft /ft 8.6930 fps Cas tl esia ro. SubcJ i··i sinn Coilf_'.~1 r ~;t1 ·i 1)t1, T f ·.··1:: .~:;c·c 1 c.'11 7 Pl1r::i SE:· -, Pipe 13 -10 Year Storm Culvert Calculator Entered Data: Shape ........... . Number of Barrels Solving for . Chart Number .......... . Scale Number ................ . Chart Description ........... . Scale Description ........... . Overtopping Flowrate ............ . Manning's n . . . . . . . . . .... . Roadway Elevat ion ............ . Inl et Elevation ............. . Outlet Elevation .......... . Diameter .... . Length ...... . Entrance Loss Tailwater ... Comput ed Results: Headwater ................... . Slope ........................ . Velocity ..................... . Circular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RIIJG ENTRANCE SQUARE EDGE ENTRANCE WITH HEADWALL Off 12.2600 c f s 0.0140 317 .0200 ft 312.0200 ft 310.3700 ft 24.0000 i n 73 .9000 ft 0.5000 4.0900 ft 315.0655 ft Outlet Control 0.0223 ft/ft 3.9025 fps Pipe 13 -100 Year Storm Culvert Calculator En tered Data: Shape ................... . Number of Barrels ....... . Solving for .................... . Chart Number ................... . Scale Number ............... . Chart Description ......... . Scale Description ........ . Overtopping ............. . Flowrate ................. . Manning's n .............. . Roadway Elevation ............. . I n let Elevation .......... . Outlet Elevation ......... . Diameter .... . Length ...... . Entrance Loss Tailwater .... Computed Results: Headwater . Slope ... Velocity ... Cast leg<itr· :·uhdi-.1 i sic'f1 .. J J<"CJ '-' .·· ol I• 11, 'ic:-.i~· Circular 1 Headwater 1 1 CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE SQUARE EDGE ENTRANCE WITH HEADWALL Off 14.4700 cfs 0.0140 317 .020 0 ft 312.0200 ft 310.3700 ft 24.0000 in 73.9000 ft 0.5000 5.3000 ft 316 .5135 ft Outlet Control 0.0223 ft/ft 4.6059 fps Channel 1 -10 Year Storm Channel Calculator Given I nput Data: Shape .......................... . Sol ving for .................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results: De pth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area ........................... . Perimeter ...................... . Percent full ................... . Trapezoidal Depth of Flow 12 .4200 cfs 0.0040 ft/ft 0.0350 18.0000 in 72.0000 in 0.2500 ft/ft (V/H) 0.2500 ft/ft (V/H) 9.0756 in 1.8196 fps 47.6840 cfs 6.8257 ft2 146.8390 in 6.6938 in 144.6045 in 18 .0000 ft2 220 .4318 in 50 .4198 % Channel 1 -100 Year Storm Channel Calculator Giv en Input Data: Shape .......................... . Solving for .................... . Flowrate ....................... . Slope .......................... . Manning's n .................... . Height ......................... . Bottom width ................... . Left slope ..................... . Right slope .................... . Computed Results : Depth .......................... . Velocity ....................... . Full Flowrate .................. . Flow area ...................... . Flow perimeter ................. . Hydraulic radius ............... . Top width ...................... . Area .......... . Perimeter ...................... . Percent full ................... . C.1,;t l e~1 ate Suhcl i··1,·1c_,11 :: ·, l . ( 4.JC ~-:; L I' l (_•t t I ·1 . I;. '.'";('-!"'" t i Oil Trapezoidal Depth of Flow 16 .9000 cfs 0.0040 ft /f t 0.0350 18 .0000 in 72.0000 in 0.2500 ft/ft (V/H) 0. 2500 ft /ft (V/H) 10.6703 in 1.9887 fps 47.6840 cfs 8.4978 ft2 15 9.9898 in 7 .6485 in 157 .3626 in 18.0000 ft2 220.4318 in 59.2796 % EXHIBIT A Post-Development Drainage Area Map