Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Report
Drainage Report for Castlegate II Subdivision Section 206 College Station, Texas December 2014 Owner/Developer: 3-D Development 4490 Castlegate Drive College Station, TX 77845 Prepared By: Schultz Engineering, LLC TBPE Firm No. 12327 P.O. Box 11995 College Station, TX 77842 2730 Longmire Drive, Suite A College Station, Texas 77845 (979) 764-3900 14 . 61q. ) Drainage Report—Executive Summary Castlegate II Subdivision, Section 206 College Station, Texas ENGINEER SCHULTZ ENGINEERING,LLC. P.O.Box 11995 College Station,Texas 77842 Phone: (979)764-3900 Fax: (979)764-3910 OWNER/DEVELOPER 3-D Development,LLC 4490 Castlegate Drive College Station,TX 77845 Phone: (979)690-7250 GENERAL DESCRIPTION AND LOCATION Section 205 is the twelfth phase being constructed in the Castlegate II Subdivision.It lies on the south portion of the subdivision,and is adjacent to Section 205 and the future Section 207. It consists of 52 residential lots,and includes the extension of Uphor Lane and Etonbury Avenue. Also, included is the addition of Somerton Court and Belliser Court. All of Section 206 lies within the Peach Creek Drainage Basin and will drain into the previously constructed detention pond. Improvements to the existing detention pond are proposed. Description: • Area: 24.693 Acres • Proposed Land Use: Single Family Residential • #of Lots: 52 lots • Existing Land Use: Vacant • Land Description: The terrain slopes generally towards the south. Primary Drainage Facility: Peach Creek Drainage Basin Flood Hazard Information: FEMA FIRM: 48041C0325E,Dated May 16,2012 Floodplain: None of this phase of the development lies within the floodplain. HYDROLOGIC CHARACTERISTICS The existing site is primarily wooded with some open areas. The elevations range from 318 to 306,sloping generally in a southeasterly direction. The runoff will be directed to the roadways and the proposed storm sewer system will discharge into an improved existing detention facility. Ultimately,this runoff flows into a tributary of Peach Creek. GENERAL STORMWATER PLAN The drainage plan for this development will involve the installation of curb and gutter,inlets,junction boxes,storm sewer pipes,drainage channels,and drainage flumes which will convey the runoff into an improved detention facility and with some areas discharging directly off site. The majority of runoff draining in the southeasterly direction will be captured by the detention pond and will discharge into an existing creek. A small portion of the runoff draining in the southeasterly direction will bypass the detention pond and discharge directly to the existing creek. The combined outfall is less than or equal to the predevelopment peak runoff draining in the southeasterly direction.The runoff that is collected by the detention pond will be discharged into a tributary of Peach Creek. COORDINATION&STORMWATER PERMITTING This project has a Notice of Intent filed with the Texas Commission for Environmental Quality. No other permits are anticipated for this project. DRAINAGE DESIGN—STORM SEWER General Information: Stormwater runoff from Section 206 of the subdivision will be collected by a storm sewer system and will ultimately discharge into a tributary of Peach Creek. The location of the drainage areas for evaluation of the gutter depth check,inlet sizing,pipe evaluation and channel sizing are shown on Exhibit C& D. Refer to Exhibit D for the locations of the inlets and storm sewer pipes. Street Design: Typical Streets: Standard Cross-Section(3%cross-slope,27'B-B Residential Roadway) Lay down curb and gutter on residential streets Etonbury Avenue: Standard Minor Collector Cross-Section(3%cross-slope,38' B-B Residential Roadway) Standard curb and gutter on residential streets Concrete Pavement Standard recessed curb inlets(5' & 10'in length) T',Methodology: TR 55 T;Minimum: 10 Minutes Design Storm Event: 10 year design storm& 100 year analysis for residential and collector streets & storm sewer Pipe Materials: Class III RCP,Profile Gasket in accordance with ASTM C443,ASTM C76 and Corrugated HDPE Storm Sewer Pipe with smooth interior Manning's n Values: 0.013 for pipes 0.018 for Streets Runoff Coefficients: 0.55 for developed lots Design Constraints: Max. water depth in gutter: 4.5" or 0.375' for the 10 year design storm for residential and collector streets ID Min.pipe flow velocity:2.5 fps - Max.pipe flow velocity: 15 fps 100-yr storm runoff maintained within the ROW(3"above curb) 4111 25%reduction of cross-sectional area of pipes less than 24"in diameter • Min. 1' freeboard for the 10 year design storm depth of flow Design Software: Excel Spreadsheets,Hydraflow Express Extension for AutoCAD Civil 3D 2013, • &Autodesk Civil 3D Storm Sewer Analysis. The software was used to compute pipe capacities, flow rates and velocities, - compute hydraulic grade line elevations, headwater elevations, gutter depth & inlet sizing. . The requirement for a 25% reduction in cross sectional area of pipes less than 24" diameter is achieved by using internal pipe diameters that are less than the 49 • standard diameter. The 24" diameter pipe areas were reduced by 25% and a 20.6" diameter pipe was used in the analysis and the 18" diameter pipe areas were reduced by 25%and a 15.6"diameter pipe was used in the analysis. Design Results: The data presented in the Appendices indicates the gutter depth, inlet sizing, • pipe sizes and channel sizing is in accordance with the requirements of and the • City of College Station. • Applicable Exhibits: Exhibit A—Drainage Area Map—Pre-Development Detention Pond Design • Exhibit B—Drainage Area Map—Post-Development Detention Pond Design Exhibit C—Drainage Area Map—Post-Development Pipe Design • Exhibit D—Drainage Area Map—Post-Development Gutter Depth • Appendix Al—Drainage Area Summary Appendix A2—Time of Concentration Computations • Appendix B1—Depth of Flow in Gutter Summary Appendix B2—Storm Sewer Inlet Design Analysis • Appendix B3—Storm Sewer Pipe Summary • Appendix B4—Culvert Design Summary Appendix D-Technical Design Summary • • • • • • • • • • • • • • • • • • • • • • • • • • • DETENTION ANALYSIS&DESIGN: General: The majority of the stormwater runoff from this subdivision discharges into the existing detention pond with a portion discharging offsite. The Detention Pond is existing and will be improved with Castlegate II Section 206 Construction and the runoff from this development will discharge in accordance with the requirements of the design guidelines. The Castlegate II Subdivision is a 202-acre development located immediately southwest of the existing Castlegate Subdivision in south College Station. It is a single-family residential development that has 645 lots under its current configuration. The new subdivision is split roughly in half by the extension of Victoria Avenue through the tract. Sections 100-107 are located on the northwest side of Victoria and Section 200-207 are located to the southeast. To date, Sections 100, 101, 102, 103, 104, 200, 201, 202, 203 and 205 have been built and Sections 204 and 105 are under construction with completion anticipated in early 2015. The 202-acre tract lies across the drainage divide that separates the Spring Creek Drainage Basin in the north and the Peach Creek Drainage Basin to the south. As a result, the development requires two independent drainage systems and two detention ponds. The larger of the two detention ponds is in the Spring Creek Basin and was construction with Section 200 near the intersection of Victoria Avenue and WS Phillips Parkway. It was designed to serve Sections 100-107 and Sections 200, 201, and 203. The second pond was built in conjunction with Section 202 at the south end of the development and will serve Sections 202, 204-208. The Detention and Drainage Report that follows analyzes this second pond(referred to as Pond B). The"Detention and Storm Drain Report for Castlegate II Subdivision, Section 202"was submitted by Phillips Engineering in June 2012 for the design of the Pond B detention facility. As the storm sewer design for Sections 205,206 and 207 have been developed it was determined that the flowline of the concrete flume that conveys the runoff to the pond outlet structure from the storm sewer piping would be below the elevation of the existing weir structure. Therefore, a drainage pipe will be added at a lower elevation through the pond berm to allow the pond to continue to function as a dry pond. Excavation will occur in the pond for the construction of the proposed flumes resulting in the pond having a greater volume. The revised volume and discharge values due to the addition of the drainage pipe were input into the HEC-HMS program. Also,with the drainage area boundaries for the post development condition were revised slightly from the 2012 report. These revised areas were used in this analysis. DETENTION POND B DESIGN: Hydrologic Analysis Design Software HEC-HMS 3.3 Soil Group Type C&D Design Storm 24 hr, SCS Type III distribution ID Storm Intervals 2, 10,25, 50 and 100 year events g C C C C Pond Information Pond B in Castlegate II Outlet Structure: There are two flow control structures: 15"HDPE Pipe with an invert of 303.83 and is set at a 0.30% Slope. Concrete,two-staged broad crested weir with 3-48" HDPE pipes carrying outflow to the adjacent natural channel, see plans for details. Emerg. Spillway: Grass lined trapezoidal channel 350 feet long Elevation=310.70 Top of Berm: Elevation=311.50 Summary of Results The Pre-and Post-development flowrates were analyzed immediately downstream pond at the Greens Prairie Road culvert pipe. HEC HMS Output Summary @ Study Pt B Greens Prairie Road 100yr Recurrance Int. (yr.) 2 10 25 50 100 Blocked Pre-Development(cfs) 162 330 388 471 541 Post-Development(cfs) 161 320 378 460 529 Pond WSEL(ft) 308.8 309.8 310.0 310.3 310.5 310.9 Emergency Spillway=310.7 Top of Berm=311.5 Applicable Exhibits: Exhibit A—Drainage Area Map—Pre-Development Detention Pond Design riW Exhibit B—Drainage Area Map—Post-Development Detention Pond Design Appendix Al—Drainage Area Summary Appendix A2—Time of Concentration Computations - Appendix C—Detention Pond Design Appendix D-Technical Design Summary 4111 • • • S S S • S • i CONCLUSION The storm sewer, culverts, channel drainage system and detention facility for Section 206 of Castlegate II Subdivision will function within the requirements and restrictions of the BCS Design Guidelines. CERTIFICATION 1,Joseph P. Schultz,Licensed Professional Engineer No. 65889, State of Texas,certify that this report for the drainage design for Castlegate II,Section 206,was prepared by me in accordance with the requirements of the Bryan/College Station Unified Drainage Design Guidelines for the owners of the property. All licenses and permits required by any and all state and federal regulatory agencies for the proposed drainage improvements have been issued. 4 'a _ 1 1 1 +_** ; ` tj Joseph . Schutz,P.E. 4116+ JOSEPH P. SCHULTZ fes. ipyar 65$89 1 4Whw ItiV4**tbISIVIV vs,"ilt, OM1IAL S. C Ini NNW fZr `E r/ 1. C F-12327 l SCHULTZ ENGINEERING, LLC. C • • • • • • a e • • • in • • • • • • e • 0 EXHIBIT A DRAINAGE AREA MAP • PRE-DEVELOPMENT • DETENTION POND DESIGN • • • • • • • • • • • • • • • • • • ii • • • • • • • • • • • • • • • • • • • EXHIBIT B • DRAINAGE AREA MAP • POST-DEVELOPMENT • DETENTION POND DESIGN • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • C EXHIBIT C C DRAINAGE AREA MAP POST-DEVELOPMENT PIPE DESIGN Alm w 0,04 C C C C *r C C C EXHIBIT D DRAINAGE AREA MAP POST-DEVELOPMENT GUTTER DEPTH C C a a a a a a a a C C C C 0 C APPENDIX Al DRAINAGE AREA SUMMARY r C C S C C C 0 C C C C S S C C C 34PPENDIX Al -Drainage Area Summary Castlegate II Section 206 Area,A C 10 year storm 100 year storm Area# 110 Q10 1100 Qin (acres) (min) (in/hr) (cfs) (in/hr) (cfs) 215 0.74 0.550 10.0 8.635 3.51 11.639 4.74 215A 0.67 0.550 10.0 8.635 3.18 11.639 4.29 The Rational Method: 215B 0.07 0.550 10.0 8.635 0.33 11.639 0.45 Q= CIA 220 1.03 0.550 16.0 6.969 3.95 9.434 5.34 Q= Flow(cfs) 220A 0.68 0.550 16.0 6.969 2.61 9.434 3.53 A=Area (acres) 220B 0.36 0.550 10.0 8.635 1.71 11.639 2.30 C = Runoff Coeff. 221 0.47 0.550 13.0 7.699 1.99 10.400 2.69 I = Rainfall Intensity (in/hr) 221A 0.31 0.550 13.0 7.699 1.31 10.400 1.77 221B 0.16 0.550 10.0 8.635 0.76 11.639 1.02 222 1.57 0.550 14.0 7.437 6.42 10.053 8.68 I = b/(tc+d)e 222A 0.37 0.550 10.0 8.635 1.76 11.639 2.37 tc= Time of concentration (min) 222B 1.21 0.550 14.0 7.437 4.95 10.053 6.69 223 0.77 0.550 14.0 7.437 3.15 10.053 4.26 tc= U(V*60) 223A 0.15 0.550 10.0 8.635 0.71 11.639 0.96 L= Length (ft 223B 0.62 0.550 14.0 7.437 2.54 10.053 3.43 V=Velocity(ft/sec) 224 1.44 0.550 22.0 5.896 4.67 8.016 6.35 224A 0.36 0.550 10.0 8.635 1.71 11.639 2.30 Brazos County: 224B 1.08 0.550 22.0 5.896 3.50 8.016 4.76 225 0.50 0.550 21.0 6.048 1.66 8.217 2.26 10 year storm 225A 0.21 0.550 21.0 6.048 0.70 8.217 0.95 b = 80 225B 0.29 0.550 10.0 8.635 1.38 11.639 1.86 d = 8.5 226 2.19 0.550 19.0 6.381 7.69 8.657 10.43 e= 0.763 226A 1.47 0.550 19.0 6.381 5.16 8.657 7.00 226B 0.72 0.550 10.0 8.635 3.42 11.639 4.61 100 year storrr 227 1.52 0.550 19.0 6.381 5.33 8.657 7.24 b = 96 227A 1.02 0.550 19.0 6.381 3.58 8.657 4.86 d = 8.0 227B 0.50 0.550 10.0 8.635 2.37 11.639 3.20 e = 0.730 228 0.35 0.550 10.0 8.635 1.66 11.639 2.24 228A 0.28 0.550 10.0 8.635 1.33 11.639 1.79 228B 0.06 0.550 10.0 8.635 0.28 11.639 0.38 229 0.31 0.550 10.0 8.635 1.47 11.639 1.98 229A 0.12 0.550 10.0 8.635 0.57 11.639 0.77 229B 0.19 0.550 10.0 8.635 0.90 11.639 1.22 230 1.02 0.550 18.0 6.564 3.68 8.899 4.99 230A 0.79 0.550 18.0 6.564 2.85 8.899 3.87 2308 0.22 0.550 10.0 8.635 1.04 11.639 1.41 231 0.69 0.550 15.0 7.194 2.73 9.732 3.69 231A 0.54 0.550 15.0 7.194 2.14 9.732 2.89 231B 0.15 0.550 10.0 8.635 0.71 11.639 0.96 232 1.28 0.550 24.0 5.617 3.95 7.647 5.38 232A 0.30 0.550 10.0 8.635 1.42 11.639 1.92 232B 0.98 0.550 24.0 5.617 3.03 7.647 4.12 233 0.58 0.550 15.0 7.194 2.29 9.732 3.10 233A 0.17 0.550 10.0 8.635 0.81 11.639 1.09 233B 0.41 0.550 15.0 7.194 1.62 9.732 2.19 234 0.33 0.550 10.0 8.635 1.57 11.639 2.11 234A 0.13 0.550 10.0 8.635 0.62 11.639 0.83 234B 0.20 0.550 10.0 8.635 0.95 11.639 1.28 235 0.20 0.550 10.0 8.635 0.95 11.639 1.28 236 1.36 0.500 31.0 4.840 3.29 6.619 4.50 237 0.84 0.550 14.0 7.437 3.44 10.053 4.64 237A 0.33 0.550 10.0 8.635 1.57 11.639 2.11 237B 0.51 0.550 14.0 7.437 2.09 10.053 2.82 APPENDIX Al -Drainage Area Summary Castlegate II Section 206 10 year storm 100 year storm Area# Area,A C tc 110 Quo 1100 Qloo (acres) (min) (in/hr) (cfs) (in/hr) (cfs) 238 0.73 0.550 13.0 7.699 3.09 10.400 4.18 238A 0.26 0.550 10.0 8.635 1.23 11.639 1.66 238B 0.47 0.550 13.0 7.699 1.99 10.400 2.69 239 0.73 0.550 15.0 7.194 2.89 9.732 3.91 239A 0.60 0.550 15.0 7.194 2.37 9.732 3.21 239B 0.13 0.550 10.0 8.635 0.62 11.639 0.83 240 1.37 0.550 22.0 5.896 4.44 8.016 6.04 240A 1.21 0.550 16.0 6.969 4.64 9.434 6.28 240B 0.17 0.550 10.0 8.635 0.81 11.639 1.09 Culver Calculations 602 3.38 0.400 34.0 4.578 6.19 6.270 8.48 603 1.20 0.400 40.0 4.139 1.99 5.688 2.73 Off-Site Contributing Areas 211 2.76 0.550 25.0 5.489 8.33 7.477 11.35 212 1.13 0.550 16.0 6.969 4.33 9.434 5.86 213 0.62 0.550 13.0 7.699 2.63 10.400 3.55 217 3.00 0.550 28.0 5.141 8.48 7.017 11.58 218 1.49 0.550 21.0 6.048 4.96 8.217 6.73 403 1.62 0.550 16.0 6.969 6.21 9.434 8.41 407 1.36 0.550 25.0 5.489 4.11 7.477 5.59 408 0.62 0.550 25.0 5.489 1.87 7.477 2.55 409 2.06 0.550 27.0 5.251 5.95 7.163 8.12 410 0.47 0.550 10.0 8.635 2.23 11.639 3.01 411 0.24 0.550 10.0 8.635 1.14 11.639 1.54 412 1.16 0.550 25.0 5.489 3.50 7.477 4.77 413 0.60 0.550 14.0 7.437 2.45 10.053 3.32 414 0.93 0.550 18.0 6.564 3.36 8.899 4.55 415 1.13 0.550 18.0 6.564 4.08 8.899 5.53 416 1.14 0.550 16.0 6.969 4.37 9.434 5.92 417 1.77 0.550 22.0 5.896 5.74 8.016 7.80 419 2.03 0.550 10.0 8.635 9.64 11.639 13.00 501 0.25 0.550 17.0 6.759 0.93 9.157 1.26 502 0.29 0.550 14.0 7.437 1.19 10.053 1.60 503 3.28 0.550 16.0 6.969 12.57 9.434 17.02 504 1.25 0.550 16.0 6.969 4.79 9.434 6.49 505 0.52 0.550 17.0 6.759 1.93 9.157 2.62 506 1.04 0.550 16.0 6.969 3.99 9.434 5.40 507 3.01 0.550 25.0 5.489 9.09 7.477 12.38 508 0.95 0.550 18.0 6.564 3.43 8.899 4.65 509 0.56 0.550 15.0 7.194 2.22 9.732 3.00 730 0.42 0.550 10.0 8.635 1.99 11.639 2.69 731 0.68 0.550 11.0 8.295 3.10 11.189 4.18 741 0.28 0.550 10.0 8.635 1.33 11.639 1.79 742 1.54 0.550 20.0 6.209 5.26 8.430 7.14 804 0.16 0.550 10.0 8.635 0.76 11.639 1.02 805 1.04 0.550 15.0 7.194 4.11 9.732 5.57 811 0.29 0.550 10.0 8.635 1.38 11.639 1.86 812 1.94 0.550 17.0 6.759 7.21 9.157 9.77 • • • • • • • • • • • • • • APPENDIX A2 POST DEVELOPMENT TIME OF CONCENTRATION COMPUTATIONS • • • • 1 I # III I En . E N 401 M CO''.r tO CO 'I yr N O1 01 CO cO e!.to r a MIO N CO Ill cO n,10 C DD-CO t0 N O n �. m "E N r e. N N e• CV N e• r T. r N •• M r e• N.r N N N 1 N r e• t• ec N r e• 0 C ..-E F E N co co co N co co V' V' N N O O O O N o sr M O N O N N N N O r0 co N o n V r r r r r r r r r r r r r r r r r r r C) 7 co 4 O g E O O r 0 0 0 O O O O O O O O O O O O O O O O O O O O O O O O r O O O O H E -g)1-c▪ ' -7-4 > r , ! s s y V',-; 1 z 0- E S U c`1 ,7) m o o [. o o n o o o o o o o a o o o o'O o o c o O o o o o o o orn,m o o l o L„ O ° o o 10 0 0 0 0 0 o O l o O,6 0 0 0 01.0 o ti o O o 0 0 O'0 0 o r 1 N O D i o l m N ; > 1 I 1 E o — a , I ; III 1 1 II � � u r 1 a 1 11 11 • m o Cl) C O = O ^ 1 i.. O, Z ,v O II it , O) \ O 1 I O r J > f I 1 1 Q 1 H to we < 4'<P. n., _i;r.4 4 »x,b..,, a7_. -.. .,4.,.3. u ,.,s i• ,. .. a O n'E N N r M M r r N N r r M M N N r r r N N N N n o6 n r 0 0 co O r r U Z ON NIN N n O O 0 CO O n '`.r oIO O O t 0 n n n'r O O o O O O O O LO W • M M O) N N r r r r r r N N,r r:M r r r r Nor r O...- 0 0. r 0 {r � � { Ce N IT m m I 1 N ▪ C y c e In tr.:4 m w coir g m col n n co m riyoin nen r to In rn1m 2 co roi N Z 0 L C7 to N NiN r r 0 0 0 0 0�0 0 0 r r.0 0 0, 0 0 010 r r r 010 . - 0 O 0 xv a J Y I k Z c N D) g m • 0 01,0 in N 01 0 6 co f 0•N 0 V co n N W V O 01 o'co N .4-16 6 M N1 //.�.� O U C C O) fD"0;N N M10 n �.2 to n o o r o CO 0) tD n O (Si M 70 o) m ° C.) — O L o C N co co r'a +1.- r N N N (Si I(Si r .- (N N r N .,-;.i. N Si' V N j r M ^4:1` V O - U N J 1 1 W/� CD 11 j = > 7 .. 0 < LU Q) 3 a 3 0 _ II II O $E O O O O O r O 0 0 M O r O 0 0 M 0 7 0 0 0 0 0 N O N r o N r O 0 0 U v N 2 i� $ II a 11 f' N > cn >[n Z cL o• N N 6 3 7 o n st oCrl ..) = V; 1. _ - - o M Cr? -4-.11,11°: N OWN OWN r O rld o yrr O� d ' '''=' 1 1,- MI ; iI d c , 1 1 O V t0 co j cl co r 1111 O , !� N O O N In r co C N r O O O O 0 0 N r o O LU0 7 r to to N O m N 3 co con .r) u°a) N co a a I N ,,,1 1'4E! r O V C n co tf) r r 0 I ,, h... - .0 . + ri._ _"tr., Cn 01 co V r tD cD V r N N O O c0 c0 D co O 111 ` .- co n o c0 O o co O co o N n N c0 co 0. L 1. E N7 r N N r r r N N r r r r C_ N 7 , 11 L... c5 1) n M r? PI-, 2 � rOrr O 0 O,M o) N W niii N o) O N D r COc - 0IN r r r o 0 oh- r r Oi0 000 O o r r o r 3 W N 1 O N LT. I 1 a) m ) f I NI 5, b y m O p O O O o to O o O n 0 0 0 r 0 0 3 r, L N O O O 1D O o , O .q. 0 0 o ti 0 , C o) n O N N O n O n to M O O O�O 0 0 t9 n O 0.l O1N O O Off` .q. n O n o r O. O 1 a w • N U o' = N N N N N N N N N N Csr N N CN NDN N N N N N N N N N N N N N N N NI 0 7 - 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0I 0 0 0 0 0 0 0 0 0 0 0 0.0 O o 0 0 0 O. o1 U 2 - d g i,"cp E .c E y m li IO) C . d C r N M n tXO 7.1 N M dO O n 0 N N cc:;) O n O tT O M n O o N M 7 n 10 n o) Fo N z N g INI N pa NNNNNNNNNNNNNNNNcr.; NNN .O V 7 777V 'O770In m11 II II p I- J G 0. cn . ,„ed..:vil.;1,-,i,:a'.,;-,, Iiiii42.44,m.-4,.*.t., .:.',.---:,,-;7-1.•',:-.,,:44,.,1*,,,,mt:„,,,,...,3_, -,,,g14,4,1:::. it*01 IT .z; 1 ,,,,,v1,1 Er44..;'‘...::,41EII.rit.I,JIY.41! °t'I';'1041.&''''''Lli'':•I'''I:I0 f"w'i-4t4:25?-1.P1,1,16'''', -.:;.:.-it-4A.; 14,=..; k'A' -''''":1 ,,-;',°1:.17,i':',;',.',.-:',•:',i4..e..1,:.--,„-:nj',-;:'..1.,.:-',4,),;i-,44.1«;,-;,!:?.:4',.'4,-pfe).10.::-.4. :kt ,.-,,,,!.;gr-40.,,,i;*, :r..ii,; 1-r TE E .T2 .5. c.o co r- c.0 LO 03 0 M. 0 0 ,-. 0 0 gn N3. 03 .0.- 0 01 •cl. .3:1- N .- 0) CD 033 0 ..t 0 <1. CO LO c.0 O E ,- n- I- I- N .- 3.- 01 .01- <- ..-- N .- - s- N N n- s- •,- ('4 N .- ..- .-- .- N .-.-- I- CI) 7 CY) 6 3 o 2..= 00 0 ,- 00 ,- 0 00 ,- ON- 00000 00 0 C, OC. 0 0 00 0 00 0 0 -C I- " -C .. .0 rn , A c`ir, '-a3o;o1icol,cooior- 000r- 000l000000000000000poo'al 616161csi 616 N 6 6 6 c‘i 6 N 6 6 6 6 6 6 6 6 6 6 6 6 6 co 6 6 6 6 4 w b g I •' ' L ' I i , 1 E ••-• — ti I ' 1 1 I r i I 1 I i i I 1 Cf) > g)2 z ''' , 'mi ,._ CO v- 12. '2 >) 3" <--' I h-'• H N- a 1 I Z II it II C) cn I ' 1 1 - I H : i I i i I O I- -I > i i , I I I I ' I i , I 1 1- i , • 1 1 , , i i 1 1 c„ 0 N _ - I CL 2 3 . 0 0 .- .- N s- .- 01 01 .- •- N N .t- ,- VI CO N N •t- ..- N N N 0 i_c‘•"E- 0 Z O i 7 F3 a.. co cc! a masaL0 g a 12- N: co N NI N N N an an 01 a aSE °:' N. N 'CI 0 aa. aq aq t'': N' N.I'' CO , 0 .- •.- N N 0 0 N s- .-I.- N N 3.- .- r ri r r r N N,,3,- 1- e- ,-- •r-- ...-,, 5 > < 0 E Ce (NI 'Cf C . .`i I Y, 'aI a r-I a r... '," "1" co co co co '4" co co co r- r-• i oo co oo N. r- t-- C‘11 Z 0o6 ,,- cioc, :„- .,..: ,:000ac, ‘- s- oo , 00000 000000 ..... a ar4 Lli 7, .. = ..), ,c, 3 5 0, .g. .= i I I I I 1 N- C 0 cn_ t ,..-• ..?.., z . '6' c ?Ic7-)1N" cCe) (° cTc N a ri; e° N '1,1 g 3 (9,I S g! '') a',,,'.c%' 'R. 2 8 ;.-.' r,3 °' g S ' c.) — ,,, 0 — ';', -6 _ a) CD 3C A a N ,.. gl N F. N En r's N ..- En <I. cr .-1 03- .- C.)- 031 an N N N I N .- ..- 0.1 .-- Na CU 4) 19 03 0 3 T "S < Li a) ii.rc,,, ,-, 76 .E ,- . . — ,- 00 '- to 0 ‘- ,- 00 ,- 00 ,- 0 00010 ,- 0 0001000 0 0 ii II , • (I) > a >'''a ' H ' I! i i 5 c r1300NNU. OOst .01- 001O0c70 ,- 0C001*-- 0 ,1•300C000N00000 Z 0 -, N0 .- NNOC) .- .- ONNOONNC3 ,- ON0 .- 0 .- s- s- c7 LU - > - a) i 1 2 12 11 I 0.. .a. I i . O 8 al . c) co co co ,r) to ,S3 La NI CO COI CO C 2 N ‘-- ..; .-.- 6 a ..; .,-: ;';:: ,-:, oi 61 l'-' ''''' '''' 6 i —I o (1) 1 LU o , O 1 Ii 1 1 i !I.n Lo to c, uo co an 1 ,..1 0 •ci- 001- a „„) , 4., p... [ „.; •cas, ,-, •,-, •,-• N _3 3F43;.:iiA',Nii;5 L'I3I;;Ic. 0:;-.I;3, CO 3 0 am .t a a 03 N Lo It, Ul CO '4' ‘- N N 03 a to ,,.52 ,..re a (9 •:,- N ,- a .- ,L5 'E ,- •••- •,- ,- N ,- .-- N cc) N. -..” a. •,,t- ii , • ° `I " '-- ‘- • '-'3 °) 0 '"- .- .- ..- 0 .- .-I'.--- .- ,.Z „ .,.I. '- „,I .‘- '...- '-' a 6 •,•-• •)-- - ,•-- 0 co ) II 0 r9 1 i Z E a To' I a) N il CD I 0 rn r.6 0000 ,._ •d- "0 „ co ,i ,.... ,r000t0000r. 00rn ,_ o , ,, ,-, N N 8 ,-:-. 02 = ogocao )0 E o +- 0040 ,, C, r.,. LOC1000 ,00 ,, , c0 co co .0 0 1 i I 1 -,.. I . ' = '2 E) I i g -. ..,2 •a- .3. ,I- -at- sl- ;13'i.t ..ctsr', .4- 31- -ant -'a- .3 .3=1. •;‘ ,..,r -a .4, .4- .4- a a a a g 3. = oi NI N N 01 cs1 °IN NI E N N N NI 01 N N N N N N N N N N N N N N ' r'•! 1 ood00006 olo66006006o66..o66o6000doo o 2 = II c co co c 0 0 poop 00000, ,, ,t0 ,- ,- r.- co o - N VI cl. 0 0 N. 0 •c- N cc) N. c0 0) 0 -E5 1' 2 NH 7) .- 2 )r) r.o In Lo Lt.) to 0 to co , r•-• r- co co co '- '- csi L.', " " " " c`" " ("1 ''''' c', ''') c'") c''' el s* .< NNNNNNNNNNNNNNCVNNN I2,„ II II , II 6- 1- _, . cl. a a a • • • a a • a a a a • r • a a • APPENDIX B1 - DEPTH OF FLOW IN GUTTER • • a • • • • a • S S S S • S S S • VI^ 0 0 CIO m 0D, 01 O N N O N l+l 01 n N O 01 m N C f0 N m 0 0 r. 0 01 O 0 O T a t._-.. N .- r r r r r r N r N O O N - N r N O V- m O O N N. m N O m rr n 0 O m < ID 412` N � to r N r r N r N N M N M N N N N N a - M N n N O n 1 2 ' S S Nv N 4 A S C r � � rM N N N N N N N F 0 O O C G O G C O C O O O O O o O o to a 0 a y1 O. mN T R c O C co ,� A M i i (ND O . . N O 01 01 10 . ' . . + - ' ° 0 r N N r N U E 0 E . m 2 M m n 0 N m m m n N N Of n 0 10 N) 0M G 0 O 8 0 2 R 0 N O r r N O a O' 0 U ^ n n n N n n n n n n N n n n n N n N . CO e.0 C r1 N M M 10 N N N N N N N N N O N NOD NCO N 0 0] a1 to 07 O 10 a in M a a M �W o. m m m m m m 6m m Co m m m O m U1 CO 07 C O S • Z co W 0. CL -E. o 0 0 0 0 0 0 0 O o 0 0 0 0 0 0 0 0 isQ S E S 8 S 8 S o S o o 8 S o S o o S o S C o 0 0 0 0 0 o m 0 ` O '0 O 0 M N • a E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O _ H . n n n n n n n m n n n n n n n m m m (,.1 p o 0 0 0 0 0 0 0 0 0 0 0 0 8 0 $ o0 00 a a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W "'o o c o c c o 0 0 o c o 0 0 0 o c c G . u m 9 m m l0 N l0 m m 10 m m lD N N N m N 1D co O m m V 0 N l0 0 N lD N 0 N l0 In N N l0 In lD N N d o 0 0 0 0 0 o 0 0 o 0 0 o 0 0 o o 0 0 = O W To- C H N O T O N O O ^ pp pp p pp pp pp O O .p.. ' CD 6.9 0 m tOD c\I S1 t+1 O 0 n S t0 S M O S O O O L GI A 0 O N O N N m N 0 fD lA N O O W N 0f — o c o 0 0 0 0 o r o 0 0 0 0 0 0 o r Q „ k • ,^ 5 Q 11 11 T m W T. V # U N m C C W Q m Q co Q p mt Q m Op co Q co tt< (t m�p Q m l0 m W W m 3.Z1 0 C p N •3 U lrl In co co co a N N N N N N N N N N N N N N N N N N W �W• LL N O W U • U O N M C W 5 O m LL X y W • ? c 0 `p 0 d ,_ N N M 01 N m n n O1 0 0 r r N N V CD .1 f0 �. a1 m 0 0 0T v v 4 4 a v 4 4- v a v a e v 0 ._ 0 Cl) p � R a) J co v) (1) CO CO CO N 0 N 0 O co N 0 N co 0 co V 0 Il a 11 n u U1 11 II 0 T II jj W N CO A N V A O 0 0 t0 N N A O 10 tD 0 CO V V 1O 10 O. M o V M M CO 1p (O N O is W 10 N O M t0 10 m q q V •,,,. N N N N N N N CO — N N N N N N — N N N M M CO CO CO 0 W CO t0 CO CO ` 0 0 CO ( CO N A CO C I- 1D N M t0 O O W ' t- co V 0 t0 00 0 N O1 V CO N ,- N N M M N V co MN M N M N N .- M N01 N N M I >; N W t0 I:: M V A A W 1D CO fN0 N t+f f0 m aOD (D O N W C .V- N (O M N N N co N N M N N N N N N N N E o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 in v w n m a 0 i, m c e v - x C7 E % • z7:, 6! d0O N CO V O .- M CO O- LD 10 M M N 0 N V N CnV N O N CD 0 A COV +1 P- .., .., O t 0 n V .- ' A N O 0 V t0 O N r O A 0 .- n 10C) ,- . d A N A 0) M A CO A A N A N A A A A N A A A A A U ® _L N W N A m N O N N �p N N CO N N W N N N O N N O1 E C CO CO W 1O M 1n M M M CO M N M O M M A M CO M Mco �. tD 1n O C) V !D V fG tG O CO 1fj N fG N tC 10 m < t0 V' co ...- CD V C ❑ Z y 11.1 a. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a .9E S8 C Nr SS C N SS W G SS OC 88 O ` S8 C 88O 88 88O 880 e aO 88 N G 88 N W O 0 0 O CO O N O O O V 0 0 0 0 0 0 0 0 0 0 O O • W N oA 10 A N O O m OO OO 00 O 0 0 0 0 • a coOa O O O O O O O O O O O O O O O O 0 O O O O O O O O O O O O O N ` 0 0 0 O 0 0 O 0 0 0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 C • • 10 0 a itm 1O N 10 N O O N N 1D 1O N 1O N N 1p LO 10 O N N 10 W N 1O (0 d 0N N H N In N N ID O N N N N N N N N N IO 1O 10 10 1O 1O `O 41, y 0 0 O O O O O O 0 O O O O 0 O O O 0 O O O O 0 C N O 7 O N 9 R pp C J ` pp p pp p p pp pp p R M • LO O O (O N O A N 1O N O t0 m t0 V 1O N Sl COD Q N L. m W .- 0 Cl co O 0 V n 0 M N M co M 1O A N N N 0 O O O 7 —. O C o o .- G .- 0 G o O .— O 0 O O o G O O 0 C 0 c- C O ; Q II G • O O C m U 4t. 0 C¢C�1 cmn cg N m m 03 co¢ M ((¢�1 m ¢ mN QR mo Q m Cp¢� CO Qn to a s m V. C a Q co ; +-' a N N N CO N N N N co N N N N N (V N N co N N N N N N n _ O N CO CO • (J O .1 lL X - ..a m U. O O 10 ... W m m 0 co e o Q m ¢ m ¢ m Q m Q m Q m ¢ m Q m Q m ¢ 0 Q m ¢ m m ? a.2- 6D G1 t y 7 0 0 M M V V (0 A A 10 .O co Cr 0 0 1- " 0 0 N fV . N O CO g ,�„1 y m U O O O O 0 0 0 0 O O 0 0 O C V C 0.1 N CO N CO N N CO CO N co N CO CO CO (op N co N N N N N N N A o II II II!II ❑ 1 I-. 0 a C co T N p m W O O co CO 10 N CO at a N W CO CO 10 M d to m 10 CD N N 10 N M O a s M a a s )l) a 01 0 0 O O O O O O O O 0 0 O 0 O O O O LI.L LL N) 0 co co co MM co 10 10 0 0) n n 3 i r a s 0 0 a s ) r a s o 0 M c') W W O 0 a a co tc CO N of N Ti Ti vi 0 c'i co of CO O v C' W MN MCNM N cotCN N o cotCo M to CO E i `o o o W w tm'1 r W coS• 'el 0 CO CO W t. t0') OWi• O N 1W0 01 0) Tr a co g e 4 Q N N N N N N Ti a N M N N N N V C j. c3 C M M M M C] M ; C7 M foo M C) M M M M to C o C CO CO 0 0 m Co 0 0 CO CO 0 0 N N CO Co a a • J W W t•-• n on co n r W W n N P) C? t0 m N N • ))• Ci t"i N N N N N N M CO N N N N N N V' a (7 M to to M to M to M to M M to M M N to CO CO Co CO 0 0 Co Co 0 0 CO CO 0 0 N N Co Co a a O d a a N N CO. m N N a N N CO CO '- r n 0- O a a CO CO N M 0 a 0 t'i N N N C'i M 0 a O f- U M M M C� c") M M M M M f7 M M M C) M CO M 7, n 0 n a 0 W M a 0 a m 0 W m Co s- > a N 0 0 M CO n tD N N )s N0 co O 4 m A`.. �- — — — e- N — N O O N N N N 0 .0 L O G d m m to to m m m m m to m m m m m Co m m o a CO r 0 n a N O N CO N W CO 00 CO CO 0) Co C if) ID CO O 0 0 a- 0 0 M 0 m O N O M .47. CO C '- N4 N N N N a N6 (0 a t0 N t0 CO m E '` m r N W M O N N O a s C M r CO CON O N X IC CO Z' Cm') 01 NN ts a- NN O. N M Cl N CO N N C] Q N O O O O O O O O O O O 0 O O O O O O z W 00 . Q. r 0 dN A ¢ d O CCD 7 I a I a CO dm• 1 1 N 0D Is n m a- 0 a a + `. CO O 6 4 co M O N N M d tor ' W W m W m n N Of CO m W M m W a- CO CO 0 . e N a r•• C') n N m N N O N m tD m m N 1n O ? O '- O O r O tri d C N fV N a CO W W W W 0 W W WN W CO O W M co 0 C 4 4 co ` W r O4 O 6 • . .Y E o 0 o 0 0 0 0 0 S8 00 0 00 0 0 0 0 0 0 0 0 0 0 c m o o o e o °f to Z° . c y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3, • D. r r n c- o n r m n c- o r n r c- o r m m m 0 C co 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O co 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o 0 m 6 0 0 0 0 0 o c o 0 0 6 0 0 0 6 0 6 c t m 8 n 0 S d 11) to 10 h m N 10 co N N N 10 N N 0 10 m O 9 m N . d..•. V 11) 10 10 N 1(1 10 N 10 10 N co 10 10 N m 10 10 10 o' 0 p ,1" O O O O O O O O O O O O 0 0 O O O O 7 I y O 0 >,O CO a. 0 0 0 O O O w O N O O 0 J 0 0 0 0 0 0 0 0 0 0 0 O 0 0 N 0 00 0 M M CD D n n m CO W ` O O t'l O O Q V 4+7 F CO 0 N O CO m N 0 0 0 N C N d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q �� a C o rn U � d• � .(0 mU N N 0 C at ¢ m ¢ CO ¢ CO ¢ m ¢ m ¢ m < CO ¢ m 0 m " 3 C t•E U m N ,- < N N N N CO N CO N N N N N Q a N N MN N N ' N N Is N N N N a) O o N M LL N O (/) N U O O N C C y 0 O ✓• LL x a) U ? r a ° 2 ( O W m o• 0 0 0 0 ¢ m ¢ m ¢ m ¢ m ¢ m ¢ m ¢ m ¢ m ¢ ¢ m o) � .0- 0 a 0 L N N t') M N m n r W O) O O_ ,— ," N N N j L 10 7 2 0 0 U▪ alwaQ v c v v v 0) v v a s a a e a 0) a e •� 0 cq p 10 d o m CO CO CO to CO CO fA N CO N CO to CO CO N m O n n II I) n H f/) a C (/) T N a e • 12 qC� • aO W O N N O W ` N O O W N O N W CD 10 10 CO CO W 2 Y.) N N N N N N N co N N CO CO N N N C'7 N 0, co co N N 6 O o O O O 0 0 O 0 0 O O 0 0 O 0 0 0 O 0 0 0 0 O • ` LL 0 CO0 N N N N O O n n W W CD m 'I' Q Q Q N. N. A A N N c N V Q ` f0 t0 CO t0 CD .1 4- fD CO c0 CD CO W CO CO _ r CO C) C) C) CO CO N CV N N 0 Ce W CO M M M M M M M M M M M M M CO M M M CO M M M M M E. i o y N m W Q N O 0 ON Q n co N CO W Q W N C) N O N 0i O O 7 N 7 N ' C0 Q N Q CO N CO CO 0. IA N In Q 0 1[) CO • R ; C 0 m, O M M rMM M M •-M M N C M M CM C M M C) C) M M C) CI M M •- •- MM M M N N M m N N N N 0 re AIM • W CO CO CO 0 C0 N N N ` N NW N 0) 0) N N N C) N. A CO C0 Y. J A A CO CO CO CO CO CO .- O 0 O 0 C) N M 0 N N N N LL O O C O C O 0 0 N N N N co N co N N N N N 0 M N co M M M co co co {) co M M ; co ! M M M M M N M M 15 .0 O W W ` ` Q CO CO Q Q CO CO Q Q V < O Q Q 0 t0 Q Q O f0 CO CO O N W W O N O. 7 1- r .- e- C1 6 C) d N CN e- N N N N O F (.) M M N) M M M M M (') M M M M M M M CO M M M (•) M N N AiliNV Mink 0 0 A O CO CO A Q 0 Q N Q A 0 0Q CO CO N A W CO In 0 CD N 0 r CO r Q N O) O W Q N N n A O) n O N O , N N N N CV N N N ..- N N N N .- N N N N 1- N N N w A r G m CO CO 00 O, to 6 00 CD CO OD O, `O 6 `O m `O m W 6 O, 6 to 6 O G a R. W N n n )0 CO N co Q N N O N O O O IO A 0 Q C 0)) W Q A O O co Q Q O Q n N N O O N n O W r N N CO Q CO Q N N N CO N N co C) N N co N N N N co _ Ow m WO W O _ O Q W .- 0 O M 0 N D W W CO CO O O D W CO O N A n ID N CO N ON ON O 0 N O N N N N N C) N N N N N N N N N N N N N Q ) 0 0 0 0 0 O O O 0 O 0 0 0 0 O 0 O 0 O 0 0 0 0 O z W 0e a 0. S Q a O $ y W 0) N NW Q N O N 0 0 0N A 0 0 A N N 0 0 CD N. CD 0 0 O O W O N 0 0 N 0 N m W CO a W Cl n CO a S. Al .- Q Q N N. v O CO N 0 ...L. Ci N N O N .- 0 N Q .. O N O n A W n 0) O N co N O M A NW0 N N W fN+) n f`W') M O $t O N N m O O CO tD O CO O Q CO Q co• r t0 co t0 N CD CO 0 01 h O 1- 00 C .- OO O r 0 O! 00 0 co • ` 88 888888 888 88 888888 0 88 .x 8 0 E O 6 O N W O W O 0 ' O 0 CO O b 0 CO O N O O N` N Nl y co o 0 0 O co O N 0 0 0 Q 0 0 p0 0 0 0 0 0 0 0 0 0 iiiii C '� W O N O O LLI O LO W O O O O O O O 0 O O O O O O O O G CN'I o 0 0 0 0 0 0 0 $ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o c a H `� O o O O O O 0 0 0 0 O 0 0 O 00 0 0 0 0 0 0 0 0 CO • 10 .. II - .. CO N CA N N N CO N 10 CO N LO O N N N N O N O an CO N N m 0 N Cn N N N N N N N N H H N N N O N N N CD N N uo ^y 0 O 0 O 0 0 0 0 O O O 0 O 0 O 0 0 O 0 O 0 0 O 0 W 11 N O >^ (0 9 lE C 11 ` pp p po p po p O O On 0 COO N O N CD N O O O 0 COD O W N O O 8 m O I. N V if •Of O 0 n 0. cA') N M CO N 0 A N N N N O O O N �+ "� 0 0 0 0 ,- O 4 O 0 O o 4 O 0 O 0 O 0 0 0 O O o . r 0 0 A II d o 3 V Q v •. II II m Q ) d d C d = V R m CO,�� Q Amy n m COQCOmt3 °N° m a COm 0 o a COm pa p m 0 0 et COQ m o O°C o N M C7 CO N N N N N N C N N N CN N N N CNN N N N N CD CO L y O 0 CO O N �. Q N N N N N N N N N N N N N N V _ �_ _ N Dm') . N O O m I. O a m y LI. X fp CF W m 0 c O 01 0 0 c E a o a m a m a m a m a m a m a m a m a m a m a m a m rn m ea d t C'0 0 0 N N Q O O N. N. 0p aD 0 0) 0 0 _ _ 0 0 - 0) a_O O O O O O O O O O O O O 0 O N N N N O an d C.) C) 0 0 O O O O O O CO 0 O m O O O CO CO O m m m O co O O o d' V! ❑ CC co N CO CO N CO N N CO CO N N CO CO CO N CON CO CO N y N m to 11 11 II II II 1- fA o C N r N • • • • • • • • • • • • • • • • • • • • • APPENDIX B2 • STORM SEWER INLET SUMMARY I • • • • • • • • • • • • • • • • • • • • APPENDIX B2 Castlegate II Section 206 Storm Sewer Inlets in Sump - Design Analysis Inlet Area# Inlet Type Q10 D10 D10 Q100 D100 D100* fil No. cfs ft. in. cfs ft. in. C S402 215 10 4.12 0.286 3.43 7.10 0.411 4.93 11 , I I S403 228 5 1.66 0.247 2.97 2.24 0.302 3.62 C, i C. S405 229 5 1.47 0.228 2.74 1.98 0.279 3.34 I S407 234 10 1.63 0.154 1.85 2.28 0.193 2.31 C S409 240 10 4.44 0.300 3.60 6.04 0.369 4.42 C ID S410 239 10 4.19 0.289 3.47 6.74 0.396 4.76 C S411 238 10 4.83 0.317 3.81 7.24 0.416 4.99 ID ill S412 237 10 3.52 0.257 3.09 5.02 0.326 3.91 • S600 233 10 2.29 0.193 2.32 3.10 0.236 2.84 III • S601 232 10 3.95 0.278 3.33 5.38 0.341 4.10 IP • S603 227 10 5.33 0.339 4.07 7.24 0.416 4.99 • S604 226 10 7.69 0.433 5.19 10.43 0.530 6.36 S606 223 5 3.15 0.379 4.55 4.26 0.463 5.56 0, S607 222 10 6.42 0.384 4.61 8.68 0.469 5.63 S608 221 5 1.99 0.279 3.35 2.69 0.341 4.09 IC S609 220 5 3.95 0.441 5.29 5.34 0.539 6.47 rS610 231 5 2.73 0.345 4.13 3.69 0.421 5.06 S611 230 5 3.68 0.421 5.05 4.99 0.515 6.18 S620 225 5 1.66 0.248 2.97 2.26 0.304 3.64 S621 224 10 4.67 0.310 3.73 6.35 0.381 4.57 *ROW elevation is 8"above gutter line so 100-yr storm runoff is contained within ROW Iti Assume 10% clogging for design APPENDIX B2 Castlegate II Section 206 Storm Sewer Inlets on Grade - Design Analysis Inlet Length Street Q10 L10, ft. Bypass Q100 L100, ft. Bypass No. ft. Slope cfs Design cfs cfs Design cfs S414 5 0.80% 0.95 6.44 0.06 1.28 7.41 0.17 S415 10 0.80% 3.29 11.55 0.09 4.50 13.38 0.38 S700* 5 0.80% 3.49 11.86 1.30 5.84 15.12 2.83 S701* 5 0.80% 4.19 12.93 1.74 6.17 15.51 3.06 Assume 10% clogging for design *Inlets S700 and S701 are proposed in a future phase, they are evaluated here to account for Bypass Se =Sx + (a/w)* Eo Eo=Qw/Q= 1 - [ 1 -W/T]2.67 L=Kc*Q0.47*So3*(1/(n*Se))o.6 W=Width of Depressed Gutter(ft)= 2 Sx=Cross flow of Road Surface 0.03 T=Total Spread of water in gutter(ft) 12.5 a=Gutter depression depth (ft)= 0.33 n=Manning's Roughness Coefficient= 0.018 Kc= 0.6 Qw=Flow in width, W E=Efficiency of inlet or percentage of interception S=Longitudinal Slope Li=Curb opening length Se = Sx + (a/w)* Eo 0.091412 Eo= Qw/Q = 1 - [ 1 -W/T]267 0.372194 • • • • • • • • • • • • • • • • • • • APPENDIX B3 STORM SEWER PIPE SUMMARY • • • S F C S S • • • S S • • • • • 06 L mM O O pp N a M M O O p y W M CO CO M rN Cr CO CO AW A o a CO a A o _ 7 N C C 0M) Ni WCrN MM N tM AN CW a Co N M M N tO7 N-N M M N N 7 • • o O Co W M Co M a Co rW N M C Q CO a Co Co Co N N A A :2 O W 0 A Co N Co • ra m a N N r Co o M N W Co N M Q n A a W OWW G G G n A W W N = W co M co co M co M M M M M M M 8 8 M M ppM oM N 77, M i 8 N o M • O O N a Q Co 0 M M Q N M N W CO a N Co Co CO Co CO a N W Q LL o oO 00o WA sr omp pap o omp Oro C"C" cop iN aaatpt 0) 0) toco a won Co CO co co ia� pop m N) co CC co CONpm co p6o • R 1 c) cA t0 tii M M M M M tii cii M tii M M CO) M M N M M C) M ti) N 009 M iii M C'I - C. a Co Co M CO A Co CO 0 N 0 a a Cr) Co CO N A a Co Co M a a CO CO 03 Co 7 D.> O Q N O 00 CO N a N 0 A r COa a a aCoO A N tO Co Co 0 2 co < co N N M co V' M N M a Q Co A r N r r M M M M M r r N N a . W M M M co co co M M co M M co M M co M co co M co M M co M co M M co co M • ` r r N M a C t0 A Co 0 N a 0 t0 A O N M a 0 0 A W W 0 0 0 CoU O CoO O O Co< Q O O O O O O O O O O 8 8 2 2 O R a a a Q a a a Co to to Co t0 tD to Co to t0 • r tan N co U) to to co co to to to to to to to to co co to to to to to co U) to co to to to N • • Co Q a Co Co N a 0 M N N N W co a N Co Co Co Co a A D a e m NN W C to N N D to CCo to O 10 O t0 a A 6 N o N O a r O) O. O LL ceAA CO t0 CD 0CCoAA ACCO CCO Co CO CO Co AC0 OCo Co CO 00A M 8 8888 8 88882 888888888888828888 m CO 0« E3co 0 M 0 A O N C0 O Co O N Q a 0 0 W N NC0 Co0 0 et N t0 M tO?i m ` n> v. N O CO Co N a N Co N O AN` O 01 a a a r D N O OIC '-Co Q CN N 7 C) O a CN M 0 V a m N CO CM M N N N c c M M M M M M M M M M M N M M M M M M M M M M M M M M M M M M 0.CD a'a Co c c a N M Co Co A h N M Co A N a Co CO D p O N M a Co 2 Co Co O O N Co Coa O O 2a Co a a a a Q a Q a Q a e o co co co co co co co co co co Co co CO a WNotoWNpNoWWpNWNONooWtootototoWWU) toW M CO W m m K eo D N N Z CO CO W .422 — a cc I . a. a O q O a N N G Co W 0) A Co CO M M M M M A 0) A a a co co Co Co N N C NCo co. O W A C O M N W W O N W OY A y iG N Q a C G C r Orrn 0 co o t0 A co ri 4 N IV N Co• • d n m0 .c.c W O O L t .E' 3 0 No e a) N- e e e e e e e e e e e e e e e e e e e e e e e N) N- N) Co -e r0.n W a Co M A t0 0 0 0 O M N Co a a 0 A 0 C r N N M A M O a Z. a 0C C) N N N N M O O O O 6 O Co Co O A 6 Q N Co OC O O 0 O O O N)M T N O 0 0 r r r r t] C C C 6 o t0 G r t7C 6 O C G t7 C O O o O o O r W N Co Co O 0ONNMOMW0OOO0 'O O C f., EL$ N O O O O N a N, N C O O O (0 r O N a a O 6 0 b ? O O GaiNMMMMNN r6MMM NNNNNN ^ O r rM 110 6 Co .-N c W t0 Co O O O CN W Nar CO Q M Co Co Cr) � N ZvC9 0 r N M N O ` W N o W A A M 03 Co co N CO co Co CO N C 0 iA )1 0 a a N CO Co co a N N a A Co Co Co Co M co Co a N a 1' N 0) CO N a N Co Ny CO C. N 7 7 CO 0.a C 2 O Co O N CND a0 N Co 00)) n ,,,r.- CC. N C CC) CN Co Co Co N A Co CW) C 0a) z-, Co N COO, < 8 8 E Q v 8 O) N N a a is LL) N 6 6 W W A N- C t0 O 'i `. t0 Co M CO N t0 a O N N M A A A A a a Q a Q M M N N Q d d o t0 % y o s. n a'a >` o m m`m `m N N v`o C >m O. C C C C C C C O C C C C C C C Co Co to t0 O O O O O C C C C C 00 V 0. 0 at N N N N N N N co N co O n A A A N N N N co a a co a a N N N N N r N C a E v6O6 w gni OIO •_ 6. Q r 0 O O W t0 O Co O O O Co O W t, CotD Co C C Co N to 0 O Co 9 Co m O O C N Q 6 C C) 10 o _ a Nt0MN V CN (W a a N N a a C M m C +) .) M 71 M + V N 8 J 'E'E � " co a iA — a E. N L CoM Co01 01 C) CoN N)) N sr M 009 CoOC9 Ci f0 N CI Co) M t, N C0) N N N N N Co CO CO _ W • 3 a y O N co .•L O O fr m N rc c m N M a Co CO A CoN a CoC Co A CoO N M Q CoC A COo W 0 0 Co O O it € C.0 Co Co O O 0 O O Co Co O Co O 0 0 0 O O O N N O t0 A w y 2 Q a Q a a Q a a a a a a a a a Co Co CO Co Co Co Co Co Co Co Co CO Co Co A O lL if C) N Z N-tV • • • • . 0 O r � ;l 0 6_ 0a T Ne N 2 O A M r o M M O N 70 N e N m h N) t7 O C) 0 mCD N- =0 C G C O O O 6 CO C C NNa " NiCh NiNO O O O G G O 4 N N NiC - • • O CO h 0) CO 0 m h CO CD N CO CO m m CO h h CO CO a a CO a 10 CO 0) N. a • O > O N m O of . 4 010 CDCD 4 N C) N- N) c N- N a N m CO 00 0 N O d m a N) N N O 0 a N1 N CA C) a m m0 m0 Wp O C) N) N O O 0p C C a S W co m m N) M co 8 M 3 3 8 M 3 M M M C1 tO C7 CO CO CO CO CO CO CO M 3 C) C� • 0 N a a Cl) 0 CO CO a N CO N 0) CD e N 1.0 CO 0) m co a N 0) a m 0 O CO VA Q CO A m OU7 W e CO VN CO m CO a O O h CO CO O m D N • u. O m m h h D D O mm rhhm 0) 0 Um mD h 1WW 0 Dm m D W EOaJM0M $ NMNhpOpppNNNNOppNOpNNpONN ol o cc • y 3,3 a m o N co in 0 CO 0 N N CD CDCDa a U) 0 0) N h a CO CD C) a a m DC m 0C m 0 e N CO CO O N v N CO N. N. O N. a- CO e a a a O O O 0 a • W CD < N) N N N) N) a N) N CO a V' F. N CO CO CO V. CO N N V' CO N) C) COCON) COCO N) C) M N) N) CD N) N) N) N) N) N) N) M N) N) 0) N) M N) N) CO • m r N C) e CO CD h 0) 0 N e m CD h 0 N 0 e m CD N. O O 0 0 0 O O O O p O p O O O O O O p O O O N FL' O co 100 10i 10 y N u) coo N N U) N N y 0) co N y 0 co co fmo co co co U) 10 10i v)ow • . • • CD N e a U) 0 N a 0 CO NO N N 0 m a N N m m m a N. e m N 0) m CO U) .- rn CO 0 to CO 0 m O U O a h 0) m m — N 0 a CD O) 1 LL O mis: hO co mO m m : is: m mO O O 0 mO O m m 0) D O O m N. Oppo0NpMppOppppppNNpp0NpMpCNpp C O O N `7 E _ c0 m CO m O CO CD h 0 N m 0 m 0 N a a m N) 0 C O N h e CO CD m 0 e N m N) O O O.> V; CO CO. CO CO N a N O N O h N. O O a a V; O O m O m e C) N N N) C) 0 V' C) N N) 6 < a m .- .- .- N .- 4 C) M C) N) .- ,- N N N C C 3 ~W c) 10 N) M N) M N) N) N) N) N) tO N) N) N) CO CO C) mm N M coM N) N) N) N) N) M a a • D O a a. � C C D N m o ch ON d m h N :1-: a m m r O o N 2 a o g O O O 0 O N O Do 0 O . a = a a e a = m co co mm mm mmm0mm a U U or ` Nn co O co co O O co co co co co co co co ' „m ' Vv L2 Xo,s.. Q N N • CO O a mm FE ' 0q^ co co m N O W n e O O 0) O O M 00 N) O h m m N ` 0 CO N CO a s y e co co 0) 0) 0) U) CO N Of O N OC co O .- ..- N- O V; h O h e d 9 >,w ID e a • ;II n- 0 1- N- h h m m of O m U) a a N) .- NiN) N N N m • m W L L a 3 3 o °) e e e a e e e e o a' e e aE a ;E e e ;2 a ;e 3e a _a_a m O V N N a CCOO COO O O O O O t00 N N 10 1 ' Om) CO IO N N a O O O ' -- O iiia s S N 0 0 O a r' _ .- 0 O O O 0 0 O 0 . r O O O O 0 O O O O G C7 O O N N • O CO +f+ " 0 0 0 O O 0 O co O ,, C) h O 0 0 ' 0 0 0 O O 0 N- O N) C) N) c0 CO 0 `o v C a m 0 O O 0 O 0 U) h O N) i O 0 0 O m C0 N C0 U) m N C0 N h N tO CD o IV N M N) CO M N) N N N C7 N) N) NNN Cl N N N N C) O W o .-N • W tD C0 E w w 0 e 7 m CO m h N) CO N m 0 N N N 0) 0f 0) N ` O) 0) N tO m N h 0) a 0) N N C a ID 0) h 0 0) 0) 0 N 0 CO h N CO e0 N m CO CO 0 N CO N. U) 0) CO M CO h N N U) a VU) CO N CO a' N CO a r a N. CD CD m < CD UV f a V' N CO CO N) e N m C0 CO m rg , >j CE O.-. O CONp h m h C) e W N CO m O 0 N CN) Nl m 8O 10 Om m e m V' co 10 nr . C6 R Q N) N a0- N O t.D tD 01 N m m 4 % O C C0 10 (0 aa_a T a o `m d O -111"m Ca m •ti) m m N C0 m N N m 0 U) m 0 N U) m C0 m 10 10 m U) 0 0 0 0 0 N m m m U) `Cp N a O. 0 a? CO m N N N N CO N O N h N. h N NiN Oh N N N N a 4 0 V. e N N N N C a y—n.. 0060066 , 0 0 0 0 0 0 0 0 0 0 0 0 0 .- 0 0 0 0 0 0 0 CI co o 0 O • m o"` < O 0 O O W O CO o o o o o 0 O h co 0 i0 'P u. CD. N N 8 O C O a 1 O O C C d a m C) U) N N NO) o ,_ Q Q e v v v Y) 0 m m m ,- CO ' t'1 , C1 ,_ 03 O O O O J N CO N) N N C.g.E C v a Cp m Cp p Cp p m p p m co co d ' O. N D t0 C) N 8 CO C+) ) N CO N N C) tO t0 Cm) CO) CO) toO tO COO CO COO N C07 N N N N N CO G) C) i co co .0 N M O O m .. • N G a c c 0.2 r ` 0 e a a a a a O a O a e a a a a S O m O O Om O O O O O m N N h ylLU • NO . N y Z z.- c-4 APPENDIX B4 CULVERT DESIGN SUMMARY • • o N Qn _ - N • - o G • e N O ap • • • _ .-•1 .--i • )g w - • 00 C! v ~ • N • +4 E m • • U O O OA N Qy i 00 00 M V'1 Q A M • - R 1/40 O 4115 limo ;:< t: '� 4.o oa O II' C7 R 4 • E O E U L7 C o0 CO- = Cl) p, "' .-� 1-1 U d- d X c p w OQ 0071-1 .4.� - CD > z v • U U eD - - Culvert Report Hydraflow Express Extension for Autodesk®AutoCAD®Civil 3D®by Autodesk, Inc. Tuesday,Oct 28 2014 Culver 418 - 10 Yr Storm Invert Elev Dn (ft) = 314.78 Calculations Pipe Length (ft) = 80.00 Qmin (cfs) = 6.19 Slope (%) = 1.00 Qmax (cfs) = 8.48 Invert Elev Up (ft) = 315.58 Tailwater Elev (ft) = (dc+D)/2 Rise (in) = 18.0 Shape = Circular Highlighted Span (in) = 18.0 Qtotal (cfs) = 6.19 No. Barrels = 1 Qpipe (cfs) = 6.19 n-Value = 0.012 Qovertop (cfs) = 0.00 Culvert Type = Circular Concrete Veloc Dn (ft/s) = 3.99 Culvert Entrance = Square edge w/headwall (C) Veloc Up (ft/s) = 5.18 Coeff. K,M,c,Y,k = 0.0098, 2, 0.0398, 0.67, 0.5 HGL Dn (ft) = 316.01 HGL Up (ft) = 316.54 Embankment Hw Elev (ft) = 317.07 Top Elevation (ft) = 318.32 Hw/D (ft) = 0.99 Top Width (ft) = 38.00 Flow Regime = Inlet Control Crest Width (ft) = 38.00 Elev(R) Culver 418-10 Yr Sturm M'death(RT 319_00 3.42 C C310.b 242 C 317.00 ......- _.. - ,a 1.42 to �, -3r a �+. a .-,.-,...-w-• C _.. —— 318_00 -- - —.n,._ i: 0.42 ✓.r C316.00 ....... .. _. _. _... ............_.........._........_—-0.66 314.00 -1S8 C C 313.00 -Z69 0 10 20 30 40 60 90 70 80 90 100 116 120 CircularCulvert HGL Embank CReich(R) it C .;.,4, ,.as%a.:MF�- ..,,.,R,,.za ...»:.F-,4ax.,.-gra:3.:.Kra:.s. NIP,-asM..a,;:w:, ;. ma.,,.....Men,:a—« ;mW -,..m,,..x,:. .;«., F.M:,..:nn..::.,o .a,,wk..r«. .:::v .a+4,..,:,:.:.ssx,:........,......,M..424x:.:.::s'.»saw, C C C C = c Culvert Report L Hydraflow Express Extension for Autodesk®AutoCAD®Civil 3D®by Autodesk, Inc. Tuesday,Oct 28 2014 Culver 418 - 100 Yr Storm - Invert Elev Dn (ft) = 314.78 Calculations Pipe Length (ft) = 80.00 Qmin (cfs) = 6.19 N Slope (%) = 1.00 Qmax (cfs) = 8.48 Invert Elev Up (ft) = 315.58 Tailwater Elev (ft) _ (dc+D)/2 Rise (in) = 18.0 Shape = Circular Highlighted c Span (in) = 18.0 Qtotal (cfs) = 8.48 No. Barrels = 1 Qpipe (cfs) = 8.48 n-Value = 0.012 Qovertop (cfs) = 0.00 Culvert Type = Circular Concrete Veloc Dn (ft/s) = 5.17 Culvert Entrance = Square edge w/headwall (C) Veloc Up (ft/s) = 5.96 i Coeff. K,M,c,Y,k = 0.0098, 2, 0.0398, 0.67, 0.5 HGL Dn (ft) = 316.09 HGL Up (ft) = 316.71 i Embankment Hw Elev (ft) = 317.49 Top Elevation (ft) = 318.32 Hw/D (ft) = 1.28 Top Width (ft) = 38.00 Flow Regime = Inlet Control I • Crest Width (ft) = 38.00 III - • Bev(ft) Culver 418-100 Yr Storm Hie Dept(R) 319_00 3.42 ._............................_........._._....___...__.............._........_............................__.._.................._____.._....___...............................__.........._____._....__.__..........__..................._...._......_...........__._...._._....................._....................._.....__.._._ III 378.00 2.42 Y lill , InIFl49A_�L o 317_00 3. F+' ir. :'» _,�..�,_. �..,e1.42 • • �...._. ________________y _— S 318_000.42 315.00 —-0.58 - 314.00 ............................._..........._..........__.._......._.._................................_..................................._...................__................................._................._..._........_....._____......__.._..___.__..........___...._.__......._....__....__.........._._...___..._........_....._.__._ _158 - is 313.00 -2.50 0 10 20 30 40 60 40 70 80 90 fOD 110 120 Circular tved 1-101- Embank • Reach(R) • - • • • II C • Culvert Report C C' Hydraflow Express Extension for Autodesk®AutoCAD®Civil 3D®by Autodesk, Inc. Tuesday,Oct 28 2014 w Culver 419 - 10 Yr Storm Invert Elev Dn (ft) = 304.34 Calculations ,,, Pipe Length (ft) = 48.00 Qmin (cfs) = 7.58 Slope (%) = 1.00 Qmax (cfs) = 10.42 a, Invert Elev Up (ft) = 304.82 Tailwater Elev (ft) = (dc+D)/2 Rise (in) = 18.0 C Shape = Circular Highlighted c Span (in) = 18.0 Qtotal (cfs) = 7.58 a No. Barrels = 1 Qpipe (cfs) = 7.58 n-Value = 0.012 Qovertop (cfs) = 0.00 r Culvert Type = Circular Concrete Veloc Dn (ft/s) = 4.71 Culvert Entrance = Square edge w/headwall (C) Veloc Up (ft/s) = 5.65 • Coeff. K,M,c,Y,k = 0.0098, 2, 0.0398, 0.67, 0.5 HGL Dn (ft) = 305.62 HGL Up (ft) = 305.89 Embankment Hw Elev (ft) = 306.55 Top Elevation (ft) = 307.67 Hw/D (ft) = 1.16 Top Width (ft) = 12.00 Flow Regime = Inlet Control c Crest Width (ft) = 12.00 C C i Elev(8) Culver 419-10 Yr Storm err Death(8) /Mr 308.00 3.18 ! CI' 411.444 i 307,00 r- 2.18 GI 308.00 __ _- __'',. 1.18 1 1111 305.00 _-a 0.18 v 41111 , S • 304A0 -0 62 L€ 411 303 90 -1.82 0 5 10 15 20 25 30 35 40 45 50 65 60 65 70 craduddvert HGI. Embank • Reich(8) �rs„•,+.»wr xu saz a t.:;,u: ,zs,:.,:, :s;,sc,.:x:w: :s;.,r;-• ;.-.W*S$:aix:sx a«-x�-:,:s„ sx .=rz«m�-_':c ava.V tea: ;,m4v*,- az..=..anaxsa,:w:,..._............::.::......rz.sa• :rte.. ;:«:,.«,:,xa .sr-.;a:. - - - • - • - • Culvert Report • Hydraflow Express Extension for Autodesk®AutoCAD®Civil 3D®by Autodesk,Inc. Tuesday,Oct 28 2014 goCulver 419 - 100 Yr Storm IInvert Elev Dn (ft) = 304.34 Calculations I Pipe Length (ft) = 48.00 Qmin (cfs) = 7.58 4 Slope (%) = 1.00 Qmax (cfs) = 10.42 Invert Elev Up (ft) = 304.82 Tailwater Elev (ft) = (dc+D)/2 I: Rise (in) = 18.0 • Shape = Circular Highlighted Span (in) = 18.0 Qtotal (cfs) = 10.42 A No. Barrels = 1 Qpipe (cfs) = 10.42 n-Value = 0.012 Qovertop (cfs) = 0.00 ir Culvert Type = Circular Concrete Veloc Dn (ft/s) = 6.16 4 Culvert Entrance = Square edge w/headwall (C) Veloc Up (ft/s) = 6.67 46 Coeff. K,M,c,Y,k = 0.0098, 2, 0.0398, 0.67, 0.5 HGL Dn (ft) = 305.71 HGL Up (ft) = 306.06 Embankment Hw Elev (ft) = 307.20 e Top Elevation (ft) = 307.67 Hw/D (ft) = 1.59 Top Width (ft) = 12.00 Flow Regime = Inlet Control t Crest Width (ft) = 12.00 - Cr Elev(it) Culver 419-100 Yr Storm tte Depth 00 Lr 308A0 3.18 I. ..___..._......_.._....._.._.....___._._.._....._._._.__._._._.._... .__.__._.._ _.__ ..._...._ __.._. 218 307.00 - _ . r • _.�'-, ...._._......._..._......._. 118 ._..__.._.._... II 30500 �� 6.18 yl i __.___..__... ,...) ...._ ........ ......_ ... ...... .... ... ... ._....... .. _ .......... .... ....-__._...__..__ 3s -iiii • 304.00 -082 IP i, �3 • 333.00 -1.82 1 0 5 10 15 20 25 30 36 40 46 50 65 80 GS 70 q Circular Weer! HGL Embr.c • Reach(11) :e ssa; ----,...<:r.;: ::aaaa :,; ,.....,:..;:,,.,,,-. «,:.ks,:w::c:,,:,:s ar:„w,,;,„.oe ,... ...Po.,.,a..-... .s.. .-.,.....,a; x......, ,,z:,,-w,.u, -....x:;,......:....,..,,,a. , ,v.r:. s;::,;:•,,.;.a:....r a: - - C - - Ili - APPENDIX Cl DETENTION POND B DESIGN Appendix Cl Castlegate II Section 206 Detention Pond B Area-Capacity Data Elevation Depth Area Area Volume 90% of Volume Cumulative Volume (ft) (ft) (ft2) (acres) (ac-ft) (ac-ft) (ac-ft) 303.83 0.00 0 0.000 0.000 0.000 0.000 304.00 0.17 29 0.001 0.000 0.000 0.000 305.00 1.17 2,491 0.057 0.021 0.019 0.019 305.50 1.67 6,149 0.141 0.048 0.043 0.062 • 306.00 2.17 10,890 0.250 0.097 0.087 0.149 307.00 3.17 35,450 0.814 0.505 0.454 0.604 308.00 4.17 69,797 1.602 1.186 1.067 1.671 309.00 5.17 108,962 2.501 2.035 1.832 3.503 • 309.30 5.47 122,963 2.823 0.798 0.718 4.221 310.00 6.17 146,390 3.361 2.161 1.945 6.167 310.70 6.87 161,717 3.713 2.475 2.227 8.394 311.00 7.17 168,285 3.863 1.136 1.023 9.416 311.50 7.67 180,368 4.141 2.001 1.801 11.217 • • *There are two flow control structures. The first being 80 LF of 15" HDPE . pipe. The pipe has an invert of 303.83 and is set at a 0.30% slope.The second flow control structure is an existing multi-tiered weir structure. From • Elevation 305.50'to 309.30' it has a 4'wide opening. From Elevation 309.30 • to 311 it is a 32'wide opening.The overflow spillway is 350' in width at Elev. • 310.70. a • • • • • • • • • • • • • • • Iii III 0 • Appendix Cl • Castlegate II Section 206 • Detention Pond B 4111 • Detention Pond B - Elevation-Discharge Data • Elevation Depth Discharge • (ft) (ft) Pipe Weir Spillway Comb. • 303.83 0.00 0.0 0.0 0 0.0 • 304.00 0.17 0.1 0.0 0 0.1 • 305.00 1.17 2.7 0.0 0 2.7 305.50 1.67 4.4 0.0 0 4.4 • 306.00 2.17 5.8 3.7 0 9.5 • 307.00 3.17 7.9 19.1 0 27.0 • 308.00 4.17 9.6 41.1 0 50.7 • 309.00 5.17 11.0 68.1 0 79.1 309.30 5.47 11.4 77.0 0 88.4 310.00 6.17 12.2 148.0 0 160.3 310.70 6.87 13.0 261.1 0 274.2 311.00 7.17 13.4 318.6 150 481.9 311.50 7.67 13.9 424.3 651 1089.2 i filo *There are two flow control structures. The first being 80 LF of 15" HDPE pipe. The pipe has an invert of 303.83 and is set at a 0.30% slope. The second flow control structure is an existing multi-tiered weir structure. From Elevation 305.50'to 309.30' it has a 4'wide opening. From Elevation 309.30 to 311 it is a 32'wide opening. The overflow spillway is 350' in width at Elev. I • 310.70. I ii 4111 ID • 1111 • IIII IIII fli ID APPENDIX Cl CASTLEGATE II SUBDIVISION-POND B HEC HMS MODELING INFORMATION SCS Lag Method November-14 DA# Area CN %Imp Lag Time sq.mi. % min Pre-Development 113 0.12588 79.5 0.0 49 Basins contributing to Study Pt B 121 0.16347 81.9 0.0 66 downstream of Castlegate II. HEC HMS MODEL DIAGRAM DA 113 Stdy Pt B DA 121 Post-Development 221 0.16347 81.9 0.0 66 Basins contributing to Study Pt B 211 0.12040 79.5 61.7 54 downstream of Castlegate II. HEC HMS MODEL DIAGRAM DA 211 Castle2 Pond Stdy Pt B DA 221 HEC HMS Output Summary @ Stdy Pt B Recurrance Int. 2 10 25 50 100 Pre-Development 162 330 388 471 541 Post-Development 161 320 378 460 529 Pond WSEL 308.8 309.8 310.0 310.3 310.5 Top of Berm=311.5 00 dull%pal42iaM o 0 0 - o0' (or)Eaiv aSEuw-ia(Eloy 0 0 0 c 0 0 o cu h z d C = p;tasouauop.so ssauisng o0 a r0 O. c y - a d iepuaplsax Ay1suou'l 'H "O "• al 0,1 e, Iequapisag'Sl!su0Qumyoysl el cle pr S `;. , Iepuapisag�isua0 mol en nj y (snip)amds uadO o en N M C14 ,f,ND PoN M cr, Cr, rn rn Ca) 00 N 078 •� o ;.1 ('OE)EaIy a`2uuiEIQ[Eloy Ir, o M • A r it •', a SIIRd 4.sume7 v '0 N 00 m 00 i o IS (mused food) 00 0, ,0 0', o °o 01 Z C� Ped aseg aumeatun 0 N 00 00 U U S .= i y C7 V V1 a 0 .;o Cle '= sea'y snowadwl rn rn a rn y a d d A •° eJ d CI CI t z a a 0 L a4 a O ea IeuSsnPul 00 0000 a a 0.i rya., A +. V• 1 7 U Cil o. ca q Co) C poiowwoj 0°'o rn "a" o, r �/ a S.7:3 6 0 y CI env 4/I lequapsay `o t� 00 0o ,',2., p a i Z z ZS 00 00 N M ROI Y1 00 r W 0 1IT 0 :713V MV I p±UuapIsa�l • c06 V r 0 oqQ • 010V Z lenuapsagtt. •0- '0 N 000 C 0,4 el h I sd01D MOZI b N 00 09; > O C �y 0 01 Q00 v 01 aM '4'. - LZ.,r oo 00 N V -i•a ' N •ti c : N fl N f 0 01 $2., papooM V• 0 0 0, V1 M .' 01 00 D\ M ,o N E' V 7 N• M 7 01 Z.. O ; U uo IipuoD ^ p 4IPS�9 NJ d 0:1 U q U q q U q q oN Bow a$Eu1CiG - NI N N c Ic I- / § k 4 = k \ ) ƒ $ CO ƒ I. S .0 ) ./ a k g m / 3 § \ ° CO a CO / _1 = ] f § \ \ % � Q o • \ w < m R § q) r G i t 11 � w & & \ 00m@ o ° @ G o E E o .,- a CC ■ a a = O ea) • > 7 g o > 7 g R .7 / o 2 / % % 2 ) 0 g / 2 j 2 0 X / 3 \ / 3 § \ 15 CO C • ) ) 2 2 0 0 % \ . — . 0 re & _ o o o_ • u t © 7 / 7 } / k < ' CD \ \ 7 ] — m n / ) n n . a > > m = 2 — o 0 2 — co o ra CD col E 1.11§ k \ § LLI 111■ - \ Co) II 2 2 C A 1. - £ F E 'c f ® § D E £ % 2 C £ / 2 § ] ] 2• \ ) 4.1 fo ) m co } co / T \ \ d e tri 3 a 6 \ f \ _ n o 4 b \ g § = § k ] } . k 7 w_ co _ i II � CD 1.-. @ w I o + 2 § VD « « .0 - C / § C \ j C C 11 473 o 0 4 • S • S S S S S S • • • S • • S APPENDIX C2 • HEC-HMS • OUTPUT DATA S S S r S S S S S S • • • • Project: CGII Pond Simulation Run: pre-2yr Start of Run: 03Nov2014, 08:00 Basin Model: PreDev End of Run: 04Nov2014, 08:05 Meteorologic Model: 2yr Compute Time:07Nov2014, 15:23:54 Control Specifications:24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (M12) (CFS) (IN) 121 0.163468 89.8 03Nov2014, 21:10 2.58 113 0.125880 76.8 03Nov2014, 20:55 2.38 Stdy Pt B - Greens Pr 0.289348 162.0 03Nov2014, 21:05 2.49 • • F Project: CGII Pond Simulation Run: pre-10yr Start of Run: 03Nov2014, 08:00 Basin Model: PreDev End of Run: 04Nov2014, 08:05 Meteorologic Model: 10yr Compute Time:07Nov2014, 15:23:46 Control Specifications:24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 121 0.163468 179.7 03Nov2014, 21:10 5.19 113 0.125880 158.7 03Nov2014, 20:55 4.95 Stdy Pt B - Greens Pr 0.289348 329.6 03Nov2014, 21:00 5.08 iamor A.+ r • • Project: CGII Pond Simulation Run: pre-25yr Start of Run: 03Nov2014, 08:00 Basin Model: PreDev End of Run: 04Nov2014, 08:05 Meteorologic Model: 25yr Compute Time:07Nov2014, 15:23:57 Control Specifications:24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 121 0.163468 211.1 03Nov2014, 21:10 6.13 113 0.125880 187.5 03Nov2014, 20:55 5.87 Stdy Pt B - Greens Pr 0.289348 388.4 03Nov2014, 21:00 6.01 Project: CGII Pond Simulation Run: pre-50yr Start of Run: 03Nov2014, 08:00 Basin Model: PreDev End of Run: 04Nov2014, 08:05 Meteorologic Model: 50yr Compute Time:07Nov2014, 15:24:01 Control Specifications:24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element - (M12) (CFS) (IN) 121 0.163468 255.0 03Nov2014, 21:10 7.45 113 0.125880 227.8 03Nov2014, 20:55 7.18 Stdy Pt B - Greens Pr 0.289348 470.8 03Nov2014, 21:00 7.33 Project: CGII Pond Simulation Run: pre-100yr Start of Run: 03Nov2014, 08:00 Basin Model: PreDev End of Run: 04Nov2014, 08:05 Meteorologic Model: 100yr Compute Time:07Nov2014, 15:23:49 Control Specifications:24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 121 0.163468 292.6 03Nov2014, 21:10 8.59 113 0.125880 262.4 03Nov2014, 20:55 8.32 Stdy Pt B - Greens Pr 0.289348 541.4 03Nov2014, 21:00 8.47 Project: CGII Pond Simulation Run: Post 2 Yr Reservoir: Castle2-South-Pond Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 2yr Compute Time: 07Nov2014, 15:23:33 Control Specifications: 24hr ri Volume Units:IN • -Computed Results —� --� • Peak Inflow: 95.3(CFS) Date/Tithe of Peak Inflow: 03Nov2014,20.56 • Peak Discharge: 734(DFS) Date/TIme of Peak Discharge: 03Nov2Q14;21:25; • Inflow Volume: 366(IN) Peak Storage31(AC-FT) Dlscharge:Volume:.3 65:(IN) peak E,levatIon 40110:CFO' 9 1a • • • • • • • • • • • • • r • • • • • i • • Project: CGII Pond Simulation Run: Post 10 Yr Reservoir: Castle2-South-Pond Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 10yr IMO Compute Time: 07Nov2014, 15:22:34 Control Specifications: 24hr 111111 Volume Units: AC-FT • • -Computed Results Peak.Inflow: 158.2;(CF$) Date/Time of Peak irflow:. 03Nov2014,2O 55 Peak Discharge: 142:3(CPS) Date/l irrte of Peak Dischar03Nov2014 2120 inflow Volume: 41.2(AC:-FT} Peak Stere (AC-FT) Discharge Volume.:4141 fAGFT) Pe*Elevation: 3.09..8(Ft) • • • • • • • • • • • • • • • • • • • • • • • • • Project: CGII Pond Simulation Run: Post 25 Yr Reservoir: Castle2-South-Pond Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 25yr Compute Time: 07Nov2014, 15:23:37 Control Specifications: 24hr a Volume Units:IN Computed Results_ ' Peak Inflow 193,4(CFS) Date me of Peak Inflow: 03Nolaial4,200 • Peak Discharge: `1. 0(CFS) Date/time of Peak Discharge 0Nov2014,21.:20 Inflow Volume:. • i . 7: 7(IN) PeakStorage: 63.(ACFT) DischargeVQiun. 7r3(IN). Peak Elevator': 310.0(F a • . • . •• • a a a a a a a • • M a Project: CGII Pond Simulation Run: Post 50 Yr Reservoir: Castle2-South-Pond Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 50yr Compute Time: 07Nov2014, 15:23:42 Control Specifications: 24hr Volume Units:IN Computed Results. . . Peak Inflow 1{" }: Date/Time of Peak Inflow: 1:13NO14;200 Peak> isch : 2CSA(CPS) Date!Titrie of Peak Discharge (13Nov2O14,•21 5 Int low Volume 813'.(14) Peak Storage: 7.1 (AC-FT); Discharge Vi tun" 8.71,RI) Peak Elevation 310,3(FT) C C C C t C C C C C C C C C C C t t t C C 3 a • Project: CGII Pond Simulation Run: Post 100 Yr Reservoir: Castle2-South-Pond Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 100yr ® Compute Time: 07Nov2014, 15:21:31 Control Specifications: 24hr Volume Units:IN Computed Results,., _ .., Peak Inflow: 259.0(+CFS1 DateMme of Peak Inflow: 03Nov2014,20 5 Peak Discharge: 2315(GFS Date/tne of Peak Discharge O3Nov201,4 21:15 I Inflow volume:: 9.90(11s1) Peak Storage: LT(AD-Fl) Discharge Volunne 9,84-(IN), Peak Elevation 904 C 40.6 C C err • • • • • 41111C C i • • • 111C C C • • C Project: CGII Pond Simulation Run: Post 100 Yr- Blocked Reservoir: Castle2-South-Pond Start of Run: 03Nov2014, 08:00 Basin Model: South Pond Emerg Spillway End of Run: 04Nov2014, 08:05 Meteorologic Model: 100yr Compute Time: 07Nov2014, 15:44:37 Control Specifications: 24hr Volume Units1N • -Computed Results 411 Peak Inflow 49.5(CF$) Date/Time of Peak Inflow 03140v204,-2055 • Peak DIsOorge: 2594(cF ) Date/lime of Peak Dist:name: 03Nov2014,21:90• : Inflow Volume: 9.90(IN) Peak Storae: 9.0(AC-FT) • Discharge'Volume: 9.19ØN) Peak ElovatIon: 310.9(Fr) 4, • • 411 O • • 411 • • • • • 411 C Project: CGII Pond Simulation Run: Post 2 Yr Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond 112 End of Run: 04Nov2014, 08:05 Meteorologic Model: 2yr Compute Time:07Nov2014, 15:23:33 Control Specifications:24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 221 0.16347 89.8 03Nov2014, 21:10 2.58 • 211 0.12040 95.3 03Nov2014, 20:55 3.66 • Castle2-South-Pond 0.12040 73.0 03Nov2014, 21:25 3.65 Stdy Pt B - Greens Pr 0.28387 161.0 03Nov2014, 21:20 3.03 • • • • • • • • • • • • • • • • • • • • • • . • • • • • air r Project: CGII Pond Simulation Run: Post 10 Yr • Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond • End of Run: 04Nov2014, 08:05 Meteorologic Model: 10yr Compute Time:07Nov2014, 15:22:34 Control Specifications:24hr ® Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (AC-FT) 221 0.16347 179.7 03Nov2014, 21:10 45.3 211 0.1204 168.2 03Nov2014, 20:55 41.2 Castle2-South-Pond 0.1204 142.3 03Nov2014, 21:20 41.1 Stdy Pt B - Greens Pr 0.28387 320.0 03Nov2014, 21:15 86.3 111 • a a a • a a a 411 i • • • w • • • • • • • • C C 0 S 0 Project: CGII Pond Simulation Run: Post 25 Yr wok Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 25yr Compute Time:07Nov2014, 15:23:37 Control Specifications:24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 221 0.16347 211.1 03Nov2014, 21:10 6.13 211 0.12040 193.6 03Nov2014, 20:55 7.37 Castle2-South-Pond 0.12040 168.0 03Nov2014, 21:20 7.36 Stdy Pt B - Greens Pr 0.28387 377.9 03Nov2014, 21:15 6.65 S S a S S S S lb S • • a S S S S a C • • • • Project: CGII Pond Simulation Run: Post 50 Yr Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 50yr Compute Time:07Nov2014, 15:23:42 Control Specifications:24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 221 0.16347 255.0 03Nov2014, 21:10 7.45 211 0.12040 229.1 03Nov2014, 20:55 8.73 Castle2-South-Pond 0.12040 206.4 03Nov2014, 21:15 8.71 Stdy Pt B - Greens Pr 0.28387 459.8 03Nov2014, 21:10 7.99 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • a Project: CGII Pond Simulation Run: Post 100 Yr • Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 100yr Compute Time:07Nov2014, 15:21:31 Control Specifications:24hr a Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (M12) (CFS) (IN) 221 0.16347 292.6 03Nov2014, 21:10 8.59 211 0.12040 259.5 03Nov2014, 20:55 9.90 Castle2-South-Pond 0.12040 236.8 03Nov2014, 21:15 9.88 4ftV Stdy Pt B - Greens Pr 0.28387 528.9 03Nov2014, 21:10 9.14 • • • • • • • • • • • • • a a a a • • • • a • • a a C C • • • • • • • • • • • • • • • • • • • APPENDIX D • TECHNICAL DESIGN SUMMARY • • • • • • • • • • • • • • • • • • • e SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY The Cities of Bryan and College Station both require storm drainage design to follow these Unified Stormwater Design Guidelines. Paragraph C2 of Section III (Administration) requires submittal of a drainage report in support of the drainage plan (stormwater management plan) proposed in connection with land development projects, both site projects and subdivisions. That report may be submitted as a traditional prose report, complete with applicable maps, graphs, tables and drawings, or it may take the form of a "Technical Design Summary". The format and content for such a summary report shall be in substantial conformance with the description in this Appendix to those Guidelines. In either format the report must answer the questions (affirmative or negative) and provide, at minimum, the information prescribed in the "Technical Design Summary" in this Appendix. The Stormwater Management Technical Design Summary Report shall include several parts as listed below. The information called for in each part must be provided as applicable. In addition to the requirements for the Executive Summary, this Appendix includes several pages detailing the requirements for a Technical Design Summary Report as forms to be completed. These are provided so that they may be copied and completed or scanned and digitized. In addition, electronic versions of the report forms may be obtained from the City. Requirements for the means (medium) of submittal are the same as for a conventional report as detailed in Section III of these Guidelines. . Note: Part 1 — Executive Summary must accompany any drainage report required to be provided in connection with any land development project, E regardless of the format chosen for said report. Note: Parts 2 through 6 are to be provided via the forms provided in this . Appendix. Brief statements should be included in the forms as requested, but additional information should be attached as necessary. • Part 1 — Executive Summary Report Part 2— Project Administration • Part 3 — Project Characteristics • Part 4— Drainage Concept and Design Parameters Part 5— Plans and Specifications Part 6—Conclusions and Attestation F STORMWATER MANAGEMENT TECHNICAL DESIGN SUMMARY REPORT Part 1 — Executive Summary This is to be a brief prose report that must address each of the seven areas listed below. Ideally it will include one or more paragraphs about each item. 1. Name, address, and contact information of the engineer submitting the report, and of the land owner and developer (or applicant if not the owner or developer). The date of submittal should also be included. 2. Identification of the size and general nature of the proposed project, including any proposed project phases. This paragraph should also include reference to STORMWATER DESIGN GUIDELINES Page 1 of 26 APPENDIX. D: TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 C IMO SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY applications that are in process with either City: plat(s), site plans, zoning requests, or clearing/grading permits, as well as reference to any application numbers or codes assigned by the City to such request. ® 3. The location of the project should be described. This should identify the Named Regulatory Watershed(s) in which it is located, how the entire project area is ® situated therein, whether the property straddles a watershed or basin divide, the ® approximate acreage in each basin, and whether its position in the Watershed dictates use of detention design. The approximate proportion of the property in the ® city limits and within the ETJ is to be identified, including whether the property • straddles city jurisdictional lines. If any portion of the property is in floodplains as ® described in Flood Insurance Rate Maps published by FEMA that should be disclosed. ® 4. The hydrologic characteristics of the property are to be described in broad terms: ® existing land cover; how and where stormwater drains to and from neighboring ® properties; ponds or wetland areas that tend to detain or store stormwater; existing creeks, channels, and swales crossing or serving the property; all existing drainage ® easements (or ROW) on the property, or on neighboring properties if they service ® runoff to or from the property. 5. The general plan for managing stormwater in the entire project area must be outlined to include the approximate size, and extent of use, of any of the following features: storm drains coupled with streets; detention / retention facilities; buried conveyance conduit independent of streets; swales or channels; bridges or culverts; outfalls to principal watercourses or their tributaries; and treatment(s) of existing watercourses. Also, any plans for reclaiming land within floodplain areas must be outlined. 6. Coordination and permitting of stormwater matters must be addressed. This is to include any specialized coordination that has occurred or is planned with other entities (local, state, or federal). This may include agencies such as Brazos County government, the Brazos River Authority, the Texas A&M University System, the Texas Department of Transportation, the Texas Commission for Environmental Quality, the US Army Corps of Engineers, the US Environmental Protection Agency, et al. Mention must be made of any permits, agreements, or understandings that pertain to the project. 7. Reference is to be made to the full drainage report (or the Technical Design Summary Report) which the executive summary represents. The principal elements of the main report (and its length), including any maps, drawings or construction documents, should be itemized. An example statement might be: "One -page drainage report dated , one set of construction drawings ( sheets) dated , and a -page specifications document dated comprise the drainage report for this project." STORMWATER DESIGN GUIDELINES Page 2 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 C SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY CI Part 2 — Proiect Administration Start (Page 2.1) • Engineering and Design Professionals Information 0 Engineering Firm Name and Address: Jurisdiction Schultz Engineering,LLC City: Bryan P.O.Box 11995 ✓ College Station College Station, Tx 77842 Date of Submittal: July 2013 Lead Engineer's Name and Contact Info.(phone, e-mail, fax): Other: • Joseph P.Schultz,PE email:joeschultz84@verizon.net Phone: 764-3900 fax: 764-3910 • Supporting Engineering /Consulting Firm(s): Other contacts: • n/a - Developer I Owner/ Applicant Information Developer/Applicant Name and Address: Phone and e-mail: 3-D Development,LLC 979-690-7250 4490 Castlegate Dr College Station, Tx 77845 Property Owner(s) if not Developer/ Applicant(&address): Phone and e-mail: Project Identification Development Name:Castlegate II Subdivision,Section 206 Is subject property a site project, a single-phase subdivision, or part of a multi-phase subdivision? Multi-Phase SubdivisionIf multi-phase, subject property is phase 13 of 16 • Legal description of subject property(phase)or Project Area: (see Section II, Paragraph B-3a) • Robert Stevenson League,A-54, Tract 25 IPA If subject property(phase) is second or later phase of a project, describe general status of all earlier phases. For most recent earlier phase Include submittal and review dates. Housing construction is in progress in the previous sections(Sections 200-203,205& 100-103). Road and utility construction is beginning in Section 204, 104& 105. General Location of Project Area, or subject property(phase): Immediately northwest of Greens Prairie Road,about 1.3 miles Southwest of the Arrington Rd-Greens Prairie Intersection. In City Limits? Extraterritorial Jurisdiction (acreage): Bryan: acres. Bryan: College Station: • College Station: 24.693 acres. Acreage Outside ETJ: C C STORMWATER DESIGN GUIDELINES Page 3 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 2 — Project Administration Continued (page 2.2) Project Identification (continued) Roadways abutting or within Project Area or Abutting tracts, platted land, or built subject property: developments: Entonbury Avenue and Greens Prairie Road Castlegate Subdivision,Sections 205 Named Regulatory Watercourse(s) &Watershed(s): Tributary Basin(s): Spring Creek Peach Creek Drainage Basin Plat Information For Project or Subject Property (or Phase) ® Preliminary Plat File#: 12-00500004 Final Plat File#: N/A Date:November '14 Name: CASTLEGATE II(PP) Status and Vol/Pg: submitted with this project If two plats, second name: File#: Status: Date: Zoning Information For Project or Subject Property (or Phase) Zoning Type: R4 Existing or Proposed? Existing Case Code: Case Date Status: Zoning Type: Existing or Proposed? Case Code: Case Date Status: Stormwater Management Planning For Project or Subject Property (or Phase) Planning Conference(s) & Date(s): Participants: N/A Preliminary Report Required? N/A Submittal Date Review Date Review Comments Addressed? Yes No In Writing? When? Compliance With Preliminary Drainage Report. Briefly describe(or attach documentation explaining)any deviation(s)from provisions of Preliminary Drainage Report, if any. t- STORMWATER DESIGN GUIDELINES Page 4 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 • SECTION IX • APPENDIX D - TECHNICAL DESIGN SUMMARY Part 2 - Project Administration Continued (page 2.3) Coordination For Project or Subject Property (or Phase) Note: For any Coordination of stormwater matters indicated below, attach documentation describing and substantiating any agreements, understandings, contracts, or approvals. Coordination Dept. Contact: Date: Subject: With Other Departments of Jurisdiction City(Bryan or College Station) Coordination With Summarize need(s) &actions taken (include contacts &dates): Non jurisdiction City Needed? Yes No ✓ 411 Coordination with Summarize need(s)&actions taken (include contacts &dates): Brazos County Needed? Yes No ✓ Coordination with Summarize need(s) &actions taken (include contacts&dates): TxDOT Needed? Yes No ✓ Coordination with Summarize need(s) &actions taken (include contacts&dates): • TAMUS Needed? Yes No ✓ Permits For Project or Subject Property (or Phase) As to stormwater management, are permits required for the proposed work from any of the entities listed below? If so, summarize status of efforts toward that objective in spaces below. Entity Permitted or Status of Actions (include dates) 4111) Approved . US Army Crops of Permitted Permit approved. Engineers No Yes ✓ US Environmental Protection Agency No ✓ Yes 4: Texas Commission on Environmental Quality No Yes ✓ Brazos River Authority No ! Yes STORMWATER DESIGN GUIDELINES Page 5 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 3 — Property Characteristics Start (Page 3.1) Nature and Scope of Proposed Work Existing: Land proposed for development currently used, including extent of impervious cover? Proposed development is residential subdivision.High density.Impervious cover=65% Site Redevelopment of one platted lot, or two or more adjoining platted lots. Development Building on a single platted lot of undeveloped land. Project Building on two or more platted adjoining lots of undeveloped land. (select all Building on a single lot, or adjoining lots, where proposed plat will not form applicable) a new street(but may include ROW dedication to existing streets). Other(explain): Subdivision Construction of streets and utilities to serve one or more platted lots. Development ✓ Construction of streets and utilities to serve one or more proposed lots on Project lands represented by pending plats. Site protects: building use(s), approximate floor space, impervious cover ratio. Describe Subdivisions: number of lots by general type of use, linear feet of streets and Nature and drainage easements or ROW. Size of 52 lots. Approximately 3,084'of Streets. Proposed Project 5.245 ac.-ROW Is any work planned on land that is not platted If yes, explain: or on land for which platting is not pending? ✓ No Yes FEMA Floodplains Is any part of subject property abutting a Named Regulatory Watercourse No ✓ Yes (Section II, Paragraph B1)or a tributary thereof? Is any part of subject property in floodplain No ✓ Yes Rate Map area of a FEMA-regulated watercourse? Encroachment(s) Encroachment purpose(s): Building site(s) Road crossing(s) into Floodplain areas planned? Utility crossing(s) Other(explain): No ✓ Yes If floodplain areas not shown on Rate Maps, has work been done toward amending the FEMA- approved Flood Study to define allowable encroachments in proposed areas? Explain. STORMWATER DESIGN GUIDELINES Page 6 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Fffcrtiva Fahriian/21)07 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 3 — Property Characteristics Continued (Page 3.2) Hydrologic Attributes of Subject Property (or Phase) Has an earlier hydrologic analysis been done for larger area including subject property? Yes Reference the study (& date) here, and attach copy if not already in City files. 1 Detention&Drainage System Report for and Detention&Drainage System Report for Castlegate II Subdivision,Section 200 Castlegate II Subdivision,Section 202 April,2011 April,2012(Revised June 2012) Is the stormwater management plan for the property in substantial conformance with the earlier study? Yes_ _ No_ 1 _ If not, explain how it differs. Changes were made to Detention Pond B. This report addresses the modifications to Pond B. No If subject property is not part of multi-phase project, describe stormwater management plan for the property in Part 4. If property is part of multi-phase project, provide overview of stormwater management plan for Project Area here. In Part 4 describe how plan for subject property will comply therewith. Do existing topographic features on subject property store or detain runoff? No ✓ Yes Describe them (include approximate size, volume, outfall, model, etc). Pond B is existing and will be modified with the construction of this Phase. Any known drainage or flooding problems in areas near subject property? ✓ No Yes Identify: Based on location of study property in a watershed, is Type 1 Detention (flood control)needed? (see Table B-1 in Appendix B) ✓ Detention is required. Need must be evaluated. Detention not required. What decision has been reached? By whom? If the need for How was determination made? Type 1 Detention must be evaluated: STORMWATER DESIGN GUIDELINES Page 7 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 3 — Property Characteristics Continued (Page 3.3) Hydrologic Attributes of Subject Property (or Phase) (continued) Does subject property straddle a Watershed or Basin divide? ✓ No Yes If yes, describe splits below. In Part 4 describe design concept for handling this. Watershed or Basin Larger acreage Lesser acreage Above-Project Areas(Section II, Paragraph B3-a) Does Project Area (project or phase) receive runoff from upland areas? No I Yes Size(s)of area(s) in acres: 1) 31.47 2) 3) 4) Flow Characteristics(each instance) (overland sheet, shallow concentrated, recognizable concentrated section(s), small creek(non-regulatory), regulatory Watercourse or tributary); Two drainage channels constructed with Castlegate II Section 202 will be directed into the proposed storm system. Flow determination: Outline hydrologic methods and assumptions: The assumption was made that Castlegate II Section 207 is fully developed. This provides a conservative approach that the proposed storm system can accommodate current topography and the future development Does storm runoff drain from public easements or ROW onto or across subject property? ✓ No Yes If yes, describe facilities in easement or ROW: Are changes in runoff characteristics subject to change in future? Explain The development of Section 207 will change the runoff characteristics. This drainage report assumes Section 207 is fully developed. Conveyance Pathways (Section II, Paragraph C2) Must runoff from study property drain across lower properties before reaching a Regulatory Watercourse or tributary? ✓ No Yes Describe length and characteristics of each conveyance pathway(s). Include ownership of property(ies). STORMWATER DESIGN GUIDELINES Page 8 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 3 — Property Characteristics Continued (Page 3.4) Hydrologic Attributes of Subject Property (or Phase) (continued) Conveyance Pathways (continued) Do drainage If yes, for what part of length? % Created by? plat, or easements instrument. If instrument(s), describe their provisions. exist for any part of pathway(s)? ✓ No Yes Where runoff must cross lower properties, describe characteristics of abutting lower property(ies). (Existing watercourses? Easement or Consent aquired?) Pathway Areas Describe any built or improved drainage facilities existing near the property(culverts, bridges, lined channels, buried conduit, swales, detention ponds, etc). Detention Pond constructed with previous phase that will be modified with the construction of this section. Nearby Drainage Do any of these have hydrologic or hydraulic influence on proposed stormwater Facilities design? No / Yes If yes, explain: Proposed storm drains will run directly into detention pond. The Proposed storm drain design has taken into effect the pond filling from a 100 yr storm. • • STORMWATER DESIGN GUIDELINES Page 9 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 4— Drainage Concept and Design Parameters Start (Page 4.1) Stormwater Management Concept Discharge(s) From Upland Area(s) If runoff is to be received from upland areas, what design drainage features will be used to accommodate it and insure it is not blocked by future development? Describe for each area, flow section, or discharge point. Pipes 700 and Pipe 417 are being stubbed out to accommodate future development of Section 207 Discharge(s)To Lower Property(ies) (Section II, Paragraph El) Does project include drainage features(existing or future) proposed to become public via platting? No ✓ _Yes Separate Instrument? ✓ No _ _Yes Per Guidelines reference above, how will Establishing Easements(Scenario 1) runoff be discharged to neighboring ✓ Pre-development Release (Scenario 2) property(ies)? Combination of the two Scenarios Scenario 1: If easements are proposed, describe where needed, and provide status of actions on each. (Attached Exhibit# ) Scenario 2: Provide general description of how release(s)will be managed to pre-development conditions(detention, sheet flow, partially concentrated, etc.). (Attached Exhibit# Existing Detention Pond B will be modified. Combination: If combination is proposed, explain how discharge will differ from pre- f. development conditions at the property line for each area (or point)of release. S air L F If Scenario 2, or Combination are to be used, has proposed design been coordinated with owner(s)of receiving property(ies)? No Yes Explain and provide documentation. STORMWATER DESIGN GUIDELINES Page 10 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D — TECHNICAL DESIGN SUMMARY Part 4 — Drainage Concept and Design Parameters Continued (Page 4.2) Stormwater Management Concept (continued) Within Project Area Of Multi-Phase Project Identify gaining Basins or Watersheds and acres shifting: Will project result in shifting runoff between Basins or between What design and mitigation is used to compensate for increased runoff Watersheds? from gaining basin or watershed? ✓ No Yes How will runoff from Project 1. With facility(ies) involving other development projects. Area be mitigated to pre- 2. Establishing features to serve overall Project Area. • development conditions? Select any or all of 1, 2, 3. On phase(or site) project basis within Project Area. and/or 3, and explain below. �. 1. Shared facility(type&location of facility; design drainage area served; relationship to size of Project Area): (Attached Exhibit# ) 1111 • 2. For Overall Project Area (type&location of facilities): (Attached Exhibit# ) 11111 di 3. By phase (or site) project: Describe planned mitigation measures for phases(or sites) in subsequent questions of this Part. it Are aquatic echosystems proposed? No Yes In which phase(s)or project(s)? a) cn c >- Are other Best Management Practices for reducing stormwater pollutants proposed? o- No Yes Summarize type of BMP and extent of use: q m a) o a z 76 If design of any runoff-handling facilities deviate from provisions of B-CS Technical F,✓ Specifications, check type facility(ies)and explain in later questions. cn Detention elements Conduit elements Channel features Swales Ditches Inlets Valley gutters Outfalls • Culvert features Bridges Other STORMWATER DESIGN GUIDELINES Page 11 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 4 — Drainage Concept and Design Parameters Continued (Page 4.3) Stormwater Management Concept (continued) Within Project Area Of Multi-Phase Project(continued) Will Project Area include bridge(s)or culvert(s)? No ✓ Yes Identify type and general size and In which phase( If detention/retention serves(will serve)overall Project Area, describe how it relates to subject phase or site project(physical location, conveyance pathway(s), construction sequence): A modified detention pond constructed with the previous phase will serve this phase. Runoff will enter the pond through the underground storm drains. • Within Or Serving Subject Property (Phase, or Site) If property part of larger Project Area, is design in substantial conformance with earlier analysis and report for larger area? Yes ✓ No, then summarize the difference(s): The detention pond is being modified to add an additional outlet and increase overall volume of the pond. C Identify whether each of the types of drainage features listed below are included, extent of use, L. and general characteristics. Typical shape? Surfaces? °%,, co Steepest side slopes: Usual front slopes: Usual back slopes: n a } ) Flow line slopes: least Typical distance from travelway: 0 typical greatest (Attached Exhibit# - ,, z co 2 ✓ Are longitudinal culvert ends in compliance with B-CS Standard Specifications? Yes No, then explain: At intersections or otherwise, do valley gutters cross arterial or collector streets? • } ° a' � ✓ No Yes If yes explain: jL iv Are valley gutters proposed to cross any street away from an intersection? ao ✓ No Yes Explain: (number of locations?) 0)Z rn L caSTORMWATER DESIGN GUIDELINES Page 12 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 4— Drainage Concept and Design Parameters Continued (Page 4.4) Stormwater Management Concept (continued) Within Or Serving Subject Property(Phase, or Site)(continued) Gutter line slopes: Least 0.70 Usual 0.80 Greatest 2..52 Are inlets recessed on arterial and collector streets? ✓ Yes No If"no", identify where and why. Will inlets capture 10-year design stormflow to prevent flooding of intersections(arterial with arterial or collector)? ✓ Yes No If no, explain where and why not. N• I, a) Will inlet size and placement prevent exceeding allowable water spread for 10-year ai design storm throughout site(or phase)? ✓ Yes No If no, explain. vor 4111 • c Sag curves: Are inlets placed at low points? ✓ Yes _No Are inlets and 1 -5 conduit sized to prevent 100-year stormflow from ponding at greater than 24 inches? o ✓ Yes No Explain"no" answers. r ) Will 100-yr stormflow be contained in combination of ROW and buried conduit on Q whole length of all streets? ✓ Yes No If no, describe where and why. 0 • Do designs for curb, gutter, and inlets comply with B-CS Technical Specifications? ✓ Yes No If not, describe difference(s)and attach justification. 0 • Are any 12-inch laterals used? ✓ No Yes Identify length(s) and where used. Pipe runs between system Typical 101' Longest 315' z a) access points(feet): aa)) ✓ Are junction boxes used at each bend? ✓ Yes No If not, explain where and why. L Z Are downstream soffits at or below upstream soffits? Least amount that hydraulic ' Yes I No If not, explain where and why: grade line is below gutter line (system-wide): 0.50' I .+ STORMWATER DESIGN GUIDELINES Page 13 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 4 — Drainage Concept and Design Parameters Continued (Page 4.5) Stormwater Management Concept(continued) Within Or Serving Subject Property(Phase, or Site)(continued) Describe watercourse(s), or system(s)receiving system discharge(s) below (include design discharge velocity, and angle between converging flow lines). 1) Watercourse(or system),velocity, and angle? Pipe 407 Outfall: Velocity 6.92 fps. E 2) Watercourse(or system),velocity, and angle? c 0 Pipe 414 Outfall: Velocity 7.77 fps. o o • E3)Watercourse(or system), velocity, and angle? - • 2 O Pipe 600 Outfall: Velocity 6.21 fps. c o -0 a E For each outfall above,what measures are taken to prevent erosion or scour of o 2 receiving and all facilities at juncture? Cir v) 0) a) 1) Outfall from this development will occur into Detention Pond B S ai 2) Outfall from this development will occur into Detention Pond B 0 3) Outfall from this development will occur into Detention Pond B • Are swale(s) situated along property lines between properties? No Yes Number of instances: For each instance answer the following questions. Surface treatments(including low-flow flumes if any): 0 • } Flow line slopes(minimum and maximum): 0 z Outfall characteristics for each (velocity, convergent angle, &end treatment). coa✓ 0 a) Will 100-year design storm runoff be contained within easement(s)or platted drainage ROW in all instances? Yes No If"no" explain: STORMWATER DESIGN GUIDELINES Page 14 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 4 — Drainage Concept and Design Parameters Continued (Page 4.6) Stormwater Management Concept(continued) Within Or Serving Subject Property(Phase, or Site)(continued) Are roadside ditches used? ✓ No Yes If so, provide the following: Is 25-year flow contained with 6 inches of freeboard throughout? Yes No Are top of banks separated from road shoulders 2 feet or more? Yes No Are all ditch sections trapezoidal and at least 1.5 feet deep? Yes No For any"no"answers provide location(s)and explain: If conduit is beneath a swale, provide the following information (each instance). Instance 1 Describe general location, approximate length: >- Is 100-year design flow contained in conduit/swale combination? Yes No - If "no" explain: 0 0 O co Space for 100-year storm flow? ROW Easement Width z c Swale Surface type, minimum Conduit Type and size, minimum and maximum To and maximum slopes: slopes, design storm: 0 vi -° R5 Tel Inlets Describe how conduit is loaded (from streets/storm drains, inlets by type): Cco L o • O o o Access Describe how maintenance access is provided (to swale, into conduit): O ;� ; I ° E • 0 0 .7 Instance 2 Describe general location, approximate length: - 0 �E � y 2 -a Is 100-year design flow contained in conduit/swale combination? Yes No If "no" explain: - E CD Space for 100-year storm flow? ROW Easement Width - 0 �, O Swale Surface type, minimum Conduit Type and size, minimum and maximum • m and maximum slopes: slopes, design storm: c co aInlets Describe how conduit is loaded (from streets/storm drains, inlets by type): To 3 Access Describe how maintenance access is provided (to swale, into conduit): C STORMWATER DESIGN GUIDELINES Page 15 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 4 — Drainage Concept and Design Parameters Continued (Page 4.7) Stormwater Management Concept (continued) Within Or Serving Subject Property(Phase, or Site)(continued) If"yes" provide the following information for each instance: Instance 1 Describe general location, approximate length, surfacing: E w L vi Is 100-year design flow contained in swale? Yes No Is swale wholly c >_ within drainage ROW? Yes No Explain "no" answers: W °'• Access Describe how maintenance access is provide: a) L o 5 Z E O • Instance 2 Describe general location, approximate length, surfacing: a) o !_ Is 100-year design flow contained in swale? Yes No Is swale wholly o within drainage ROW? Yes No Explain "no" answers: — o o Access Describe how maintenance access is provided: .U_ a Instance 3, 4, etc. If swales are used in more than two instances, attach sheet providing all above information for each instance. "New" channels: Will any area(s)of concentrated flow be channelized (deepened, widened, or straightened)or otherwise altered? No Yes If only slightly shaped, see"Swales" in this Part. If creating side banks, provide information below. .c Will design replicate natural channel? Yes No If"no",for each instance o Q describe section shape &area, flow line slope(min. & max.), surfaces, and 100-year w design flow, and amount of freeboard: ° Instance 1: c a) o Instance 2: L E o Z U) E / Instance 3: cU U STORMWATER DESIGN GUIDELINES Page 16 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 4 — Drainage Concept and Design Parameters Continued (Page 4.8) Stormwater Management Concept(continued) Within Or Serving Subject Property(Phase, or Site)(continued) Existing channels (small creeks): Are these used? No Yes If"yes" provide the information below. Will small creeks and their floodplains remain undisturbed? Yes No How many disturbance instances? Identify each planned location: For each location, describe length and general type of proposed improvement (including floodplain changes): For each location, describe section shape &area, flow line slope (min. & max.), surfaces, and 100-year design flow. • a) Watercourses (and tributaries): Aside from fringe changes, are Regulatory ® ° Watercourses proposed to be altered? No Yes Explain below. Submit full report describing proposed changes to Regulatory Watercourses. Address existing and proposed section size and shape, surfaces, alignment, flow line changes, length affected, and capacity, and provide full documentation of analysis procedures elk a and data. Is full report submitted? Yes No If"no" explain: E a) I • U All Proposed Channel Work: For all proposed channel work, provide information requested in next three boxes. If design is to replicate natural channel, identify location and length here, and describe design in Special Design section of this Part of Report. Will 100-year flow be contained with one foot of freeboard? Yes No If not, identify location and explain: Are ROW/easements sized to contain channel and required maintenance space? Yes No If not, identify location(s) and explain: I � SD STORMWATER DESIGN GUIDELINES Page 17 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 4 — Drainage Concept and Design Parameters Continued (Page 4.9) Stormwater Management Concept(continued) Within Or Serving Subject Property (Phase, or Site)(continued) How many facilities for subject property project? 1 For each provide info. below. For each dry-type facilitiy: Facility 1 Facility 2 Acres served &design volume+ 10% 66.43 8.3 ac ft 100-yr volume:free flow& plugged 7.7 ac ft 9.0 ac ft Design discharge(10 yr& 25 yr) 142 168 Spillway crest at 100-yr WSE? yes ✓ no yes no Berms 6 inches above plugged WSE? ✓ yes no yes no Explain any"no" answers: The spillway crest is 310.7 which was the 100 yr WSE from the previous design. The increased volume due to the modifications lowered the 100 yr WSE. a) } ✓ For each facility what is 25-yr design Q, and design of outlet structure? • Facility 1: 168 cfs - Z Facility 2: - Do outlets and spillways discharge into a public facility in easement or ROW? - Facility 1: Yes I No Facility 2: Yes No If"no"explain: • 0 a Discharges in existing tributary • 2 • a. For each, what is velocity of 25-yr design discharge at outlet? &at spillway? Facility 1: 5.32 & Facility 2: & Are energy dissipation measures used? No ✓ Yes Describe type and 1111 u_ location: o Concrete Headwall c ai a) 0 For each, is spillway surface treatment other than concrete? Yes or no, and describe: Facility1: Yes. Grass. Facility 2: For each, what measures are taken to prevent erosion or scour at receiving facility? Facility 1: Concrete Headwall and Rock Riprap Facility 2: If berms are used give heights, slopes and surface treatments of sides. Facility 1: 4 high, 5H:1 V side slopes,grass I Facility 2: STORMWATER DESIGN GUIDELINES Page 18 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 4 — Drainage Concept and Design Parameters Continued (Page 4.10) Stormwater Management Concept (continued) Within Or Serving Subject Property (Phase, or Site)(continued) Do structures comply with B-CS Specifications? Yes or no, and explain if"no": Facility 1; a) yes Facility 2: c o c o oFor additional facilities provide all same information on a separate sheet. Are parking areas to be used for detention? I No Yes What is maximum depth due to required design storm? Roadside Ditches:Will culverts serve access driveways at roadside ditches? No Yes If"yes", provide information in next two boxes. Will 25-yr.flow pass without flowing over driveway in all cases? Yes No Without causing flowing or standing water on public roadway? Yes No Designs&materials comply with B-CS Technical Specifications? Yes No Explain any"no"answers: 0) o• Are culverts parallel to public roadway alignment? Yes No Explain: U tB Creeks at Private Drives: Do private driveways, drives, or streets cross drainage 7-0 ways that serve Above-Project areas or are in public easements/ ROW? z No Yes If"yes" provide information below. • How many instances? Describe location and provide information below. t • Location 1: 0 Location 2: Location 3: For each location enter value for: 1 2 3 Design year passing without toping travelway? Water depth on travelway at 25-year flow? Water depth on travelway at 100-year flow? For more instances describe location and same information on separate sheet. STORMWATER DESIGN GUIDELINES Page 19 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D — TECHNICAL DESIGN SUMMARY 4, Part 4 — Drainage Concept and Design Parameters Continued (Page 4.11) Stormwater Management Concept(continued) C Within Or Serving Subject Property(Phase, or Site)(continued) Named Regulatory Watercourses (&Tributaries): Are culverts proposed on these (.. facilities? I No Yes, then provide full report documenting assumptions, criteria, analysis, computer programs, and study findings that support proposed design(s). Is report provided? Yes No If"no", explain: t t Arterial or Major Collector Streets: Will culverts serve these types of roadways? u) No ✓ Yes How many instances? 1 For each identify the a) location and provide the information below. Cco n Instance 1: Etonbury Avenue and Greens Prairie Road o Instance 2: o Instance 3: o oE Yes or No for the 100-year design flow: 1 2 3 o Headwater WSE 1 foot below lowest curb top? Yes a) Spread of headwater within ROW or easement? Yes (, E 2 Is velocity limited per conditions(Table C-11)? Yes C CD .N 1:3 Explain any"no" answer(s): u) o c V oL >.� (0 U o CO Minor Collector or Local Streets: Will culverts serve these types of streets? - o n No -.Yes._.: How many instances? for each identify the 4111 = 73 location and provide the information below: n a� • -co � Instance 1: II 0 = Instance 2: con O Instance 3: CD m ID i' For each instance enter value, or"yes"/"no"for: 1 2 3 - U (B o c Design yr. headwater WSE 1 ft. below curb top? f' Q .� 100-yr. max. depth at street crown 2 feet or less? tE Product of velocity(fps)&depth at crown (ft)= ? Is velocity limited per conditions(Table C-11)? , 4111 Limit of down stream analysis(feet)? Explain any"no" answers: Ili • a STORMWATER DESIGN GUIDELINES Page 20 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX • APPENDIX D - TECHNICAL DESIGN SUMMARY Part 4 — Drainage Concept and Design Parameters Continued (Page 4.12) 0 Stormwater Management Concept(continued) Within Or Serving Subject Property (Phase, or Site)(continued) 1110 All Proposed Culverts: For all proposed culvert facilities(except driveway/roadside this ditch intersects) provide information requested in next eight boxes. Do culverts and travelways intersect at 90 degrees? ✓ Yes No If not, identify location(s)and intersect angle(s), and justify the design(s): INC Does drainage way alignment change within or near limits of culvert and surfaced approaches thereto? ✓ No Yes If"yes" identify location(s), describe change(s), and justification: Si 4111 Are flumes or conduit to discharge into culvert barrel(s)? I No Yes If yes, identify location(s)and provide justification: • Are flumes or conduit to discharge into or near surfaced approaches to culvert ends? . a)aa) I No Yes If"yes" identify location(s), describe outfall design treatment(s): 1111 IP U Is scour/erosion protection provided to ensure long term stability of culvert structural 0 components, and surfacing at culvert ends? ✓ Yes No If"no" Identify locations and provide justification(s): • S • Will 100-yr flow and spread of backwater be fully contained in street ROW, and/or drainage easements/ ROW? I Yes No if not, why not? i Do appreciable hydraulic effects of any culvert extend downstream or upstream to neighboring land(s) not encompassed in subject property? I No Yes If "yes" describe location(s)and mitigation measures: IL. frito F Are all culvert designs and materials in compliance with B-CS Tech. Specifications? ✓ Yes No If not, explain in Special Design Section of this Part. 0 • . STORMWATER DESIGN GUIDELINES Page 21 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 r SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 4— Drainage Concept and Design Parameters Continued (Page 4.13) ti" Stormwater Management Concept(continued) - Within Or Serving Subject Property(Phase, or Site)(continued) ID Is a bridge included in plans for subject property project? ✓ No Yes IL If"yes" provide the following information. r Name(s) and functional classification of the roadway(s)? C 0 What drainage way(s) is to be crossed? in i 0) 72 AML W A full report supporting all aspects of the proposed bridge(s) (structural, geotechnical, hydrologic, and hydraulic factors)must accompany this summary report. Is the report I r provided? Yes No If"no" explain: I . Is a Stormwater Provide a general description of planned techniques: Pollution Prevention rock riprap,silt fence installation and inlet protection To Plan (SW3P) d established for o) project construction? co No ✓ Yes I Special Designs—Non-Traditional Methods . Are any non-traditional methods(aquatic echosystems, wetland-type detention, natural stream replication, BMPs for water quality, etc.) proposed for any aspect of subject property project? • ✓ No Yes If"yes" list general type and location below. IP L aw. I r Provide full report about the proposed special design(s) including rationale for use and expected benefits. Report must substantiate that stormwater management objectives will not be compromised, and that maintenance cost will not exceed those of traditional design solution(s). Is report provided? Yes No If"no"explain: r ii STORMWATER DESIGN GUIDELINES Page 22 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 4 — Drainage Concept and Design Parameters Continued (Page 4.14) Stormwater Management Concept(continued) Within Or Serving Subject Property(Phase, or Site)(continued) Special Designs—Deviation From B-CS Technical Specifications If any design(s) or material(s)of traditional runoff-handling facilities deviate from provisions of B-CS Technical Specifications, check type facility(ies)and explain by specific detail element. Detention elements Drain system elements Channel features Culvert features Swales Ditches Inlets Outfalls Valley gutters Bridges(explain in bridge report) In table below briefly identify specific element,justification for deviation(s). Specific Detail Element Justification for Deviation (attach additional sheets if needed) 1) 2) 3) 4) 5) Have elements been coordinated with the City Engineer or her/his designee? For each item above provide"yes"or"no", action date, and staff name: 1) 2) 3) 4) 5) Design Parameters Hydrology Is a map(s)showing all Design Drainage Areas provided? ✓ Yes No Briefly summarize the range of applications made of the Rational Formula: Pipe Design,Inlet Design and Gutter Depth Check a What is the size and location of largest Design Drainage Area to which the Rational Formula has been applied? 3.38 acres Location (or identifier): 602 - STORMWATER DESIGN GUIDELINES Page 23 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 4 — Drainage Concept and Design Parameters Continued (Page 4.15) Design Parameters(continued) Hydrology(continued) In making determinations for time of concentration,was segment analysis used? No ✓ Yes In approximately what percent of Design Drainage Areas? 100 % As to intensity-duration-frequency and rain depth criteria for determining runoff flows, were any criteria other than those provided in these Guidelines used? ✓ No Yes If"yes" identify type of data, source(s), and where applied: For each of the stormwater management features listed below identify the storm return frequencies(year)analyzed (or checked), and that used as the basis for design. Feature Analysis Year(s) Design Year Storm drain system for arterial and collector streets N/A N/A Storm drain system for local streets 10&100 100 Open channels N/A NM Swale/buried conduit combination in lieu of channel N/A N/A Swales N/A 100 Roadside ditches and culverts serving them N/A 100 Detention facilities: spillway crest and its outfall Detention facilities: outlet and conveyance structure(s) N/A N/A Detention facilities: volume when outlet plugged N/A NM Culverts serving private drives or streets N/A N/A Culverts serving public roadways N/A N/A Bridges: provide in bridge report. Hydraulics What is the range of design flow velocities as outlined below? Design flow velocities; Gutters Conduit Culverts Swales Channels Highest(feet per second) 3.34 7.77 N/A N/A N/A Lowest(feet per second) 0.65 2.13 N/A N/A N/A Streets and Storm Drain Systems Provide the summary information outlined below: Roughness coefficients used: For street gutters: 0.018 For conduit type(s) RCP HDPE Coefficients: 0.013 0.013 STORMWATER DESIGN GUIDELINES Page 24 of 26 APPENDIX. D: TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY 1111111, Part 4 — Drainage Concept and Design Parameters Continued (Page 4.16) Design Parameters (continued) Hydraulics(continued) IP Street and Storm Drain Systems (continued) S' For the following, are assumptions other than allowable per Guidelines? Inlet coefficients? ✓ No Yes Head and friction losses ✓ No Yes Explain any"yes" answer: C it In conduit is velocity generally increased in the downstream direction? ✓ Yes No Are elevation drops provided at inlets, manholes, and junction boxes? ✓ Yes No Explain any"no"answers: • Are hydraulic grade lines calculated and shown for design storm? ✓ Yes No 1111 For 100-year flow conditions? ✓ Yes No Explain any"no" answers: • What tailwater conditions were assumed at outfall point(s)of the storm drain system? Identify each location and explain: Yes,the storm drain system was designed taking into account the detention pond being full 1 Open Channels If a HEC analysis is utilized, does it follow Sec VI.F.5.a? Yes No Outside of straight sections, is flow regime within limits of sub-critical flow? Yes No If"no" list locations and explain: • Culverts If plan sheets do not provide the following for each culvert, describe it here. For each design discharge, will operation be outlet(barrel)control or inlet control? Entrance,friction and exit losses: • Bridges Provide all in bridge report 1110 STORMWATER DESIGN GUIDELINES Page 25 of 26 APPENDIX. D:TECH. DESIGN SUMMARY Effective February 2007 As Revised August 2012 SECTION IX APPENDIX D - TECHNICAL DESIGN SUMMARY Part 4— Drainage Concept and Design Parameters Continued (Page 4.17) Design Parameters(continued) Computer Software What computer software has been used in the analysis and assessment of stormwater management needs and/or the development of facility designs proposed for subject property project? List them below, being sure to identify the software name and version, the date of the version, any applicable patches and the publisher Excel spreadsheets,Autodesk Civil 3D Storm Sewer Analysis and Hydroflow Part 5 — Plans and Specifications Requirements for submittal of construction drawings and specifications do not differ due to use of a Technical Design Summary Report. See Section III, Paragraph C3. Part 6 — Conclusions and Attestation Conclusions Add any concluding information here: The storm sewer system and detention facilities are designed in accordance with the BCS Drainage Design Guidelines. Attestation Provide attestation to the accuracy and completeness of the foregoing 6 Parts of this Technical Design Summary Drainage Report by signing and sealing below. "This report(plan) for the drainage design of the development named in Part B was prepared by me (or under my supervision) in accordance with provisions of the Bryan/College Station Unified Drainage Design Guidelines for the owners of the property. All licenses and permits required by any and all state and federal regulatory agencies for the,,propqng drainage 1111 improvements have seen i -d . fall under applicable general per OF'S,' prs� - (Affix Seal) ? cG ego m eW3 i 2 Licens d Pr. essional Engineer £5S8 Fy` *vIS»E Q��ee� s*\- al State of Texas PE No. t� 5V8 '2�� `�'i`V<;9 aNAL STORMWATER DESIGN GUIDELINES Page 26 of 26 APPENDIX. D:TECH.As Revised d GN SUMMARY Effective February 2007 Castlegate II Subdivision Section 206 Revised Drainage Report Data December 2014 Pond Information Pond B in Castlegate II Outlet Structure: There are two flow control structures: 15"HDPE Pipe with an invert of 303.83 and is set at a 0.30% Slope. Concrete, two-staged broad crested weir with 3-48"HDPE pipes carrying outflow to the adjacent natural channel, see plans for details. Emerg. Spillway: Grass lined trapezoidal channel 350 feet long Elevation= 310.70 Top of Berm: Elevation=311.50 Summary of Results The Pre-and Post-development flowrates were analyzed immediately downstream pond at the Greens Prairie Road culvert pipe. HEC HMS Output Summary @ Study Pt B Greens Prairie Road 100yr Recurrance Int. (yr.) 2 10 25 50 100 Blocked Pre-Development(cfs) 162 330 388 471 541 Post-Development(cfs) 161 320 367 460 529 Pond WSEL(ft) 308.8 309.8 309.8 310.3 310.5 310.9 Emergency Spillway=310.7 Top of Berm=311.5 Applicable Exhibits: Exhibit A—Drainage Area Map—Pre-Development Detention Pond Design Exhibit B—Drainage Area Map—Post-Development Detention Pond Design Appendix Al —Drainage Area Summary Appendix A2—Time of Concentration Computations Appendix C—Detention Pond Design Appendix D-Technical Design Summary Rev. December 2014 APPENDIX Cl DETENTION POND B DESIGN Rev.December 2014 Appendix Cl Castlegate II Section 206 Detention Pond B Area-Capacity Data Elevation Depth Area Area Volume 90% of Volume Cumulative Volume (ft) (ft) (ft2) (acres) (ac-ft) (ac-ft) (ac-ft) 303.83 0.00 0 0.000 0.000 0.000 0.000 304.00 0.17 29 0.001 0.000 0.000 0.000 305.00 1.17 2,491 0.057 0.021 0.019 0.019 305.50 1.67 6,149 0.141 0.048 0.043 0.062 306.00 2.17 10,890 0.250 0.097 0.087 0.149 307.00 3.17 35,450 0.814 0.505 0.454 0.604 308.00 4.17 69,797 1.602 1.186 1.067 1.671 309.00 5.17 108,962 2.501 2.035 1.832 3.503 309.30 5.47 122,963 2.823 0.798 0.718 4.221 310.00 6.17 146,390 3.361 2.161 1.945 6.167 310.70 6.87 161,717 3.713 2.475 2.227 8.394 311.00 7.17 168,285 3.863 1.136 1.023 9.416 311.50 7.67 180,368 4.141 2.001 1.801 11.217 There are two flow control structures. The first being 80 LF of 15" HDPE pipe. The pipe has an invert of 303.83 and is set at a 0.30% slope. The second flow control structure is an existing multi-tiered weir structure. From Elevation 305.50'to 309.30' it has a 4'wide opening. From Elevation 309.30 to 311 it is a 32'wide opening. The overflow spillway is 350' in width at Elev. 310.70. Appendix Cl Castlegate II Section 206 Detention Pond B Detention Pond B - Elevation-Discharge Data Elevation Depth Discharge (ft) (ft) Pipe Weir Spillway Comb. 303.83 0.00 0.0 0.0 0 0.0 304.00 0.17 0.1 0.0 0 0.1 305.00 1.17 2.7 0.0 0 2.7 305.50 1.67 4.4 0.0 0 4.4 306.00 2.17 5.8 3.7 0 9.5 307.00 3.17 7.9 19.1 0 27.0 308.00 4.17 9.6 41.1 0 50.7 309.00 5.17 11.0 68.1 0 79.1 309.30 5.47 11.4 77.0 0 88.4 310.00 6.17 12.2 148.0 0 160.3 310.70 6.87 13.0 261.1 0 274.2 311.00 7.17 13.4 318.6 150 481.9 311.50 7.67 13.9 424.3 651 1089.2 *There are two flow control structures. The first being 80 LF of 15" HDPE pipe. The pipe has an invert of 303.83 and is set at a 0.30% slope. The second flow control structure is an existing multi-tiered weir structure. From Elevation 305.50'to 309.30' it has a 4'wide opening. From Elevation 309.30 to 311 it is a 32'wide opening. The overflow spillway is 350' in width at Elev. 310.70. APPENDIX Cl CASTLEGATE II SUBDIVISION- POND B HEC HMS MODELING INFORMATION SCS Lag Method November-14 DA# Area CN %Imp Lag Time sq.mi. % min Pre-Development 113 0.12588 79.5 0.0 49 Basins contributing to Study Pt B 121 0.16347 81.9 0.0 66 downstream of Castlegate H. HEC HMS MODEL DIAGRAM DA 113 Stdy Pt B DA 121 Post-Development 221 0.17672 81.9 0.0 66 Basins contributing to Study Pt B 211 0.10380 79.5 61.7 54 downstream of Castlegate II. HEC HMS MODEL DIAGRAM DA 211 Castle2 Pond Stdy Pt B DA 221 HEC HMS Output Summary @ Stdy Pt B Recurrance Int. 2 10 25 50 100 Pre-Development 162 330 388 471 541 Post-Development 161 320 367 460 529 Pond WSEL 308.8 309.8 309.8 310.3 310.5 Top of Berm=311.5 dug%Pa14$!aM o 0 0 o4 0 0 0 0 ,0 0 a 0 (oe)row atom('ployo o ,o o o ,p o eu rd - A d G `" lelasaanuoD.To ssamsng ^O O O CK a0. Ieiluap!sa21 gisuaQ 4gFH ' mi .0 ., 0 t• w. Ieuuapisa)J Cl!suaQ mmpalni N 0.) a s .,•.0 lequaplsaN AusuaQ Mo"I VI y (sse.uo)aaedS uadO o `en V M te Sia NDPa14 M N 00 N. 00 CI 0 .r.y b N M o $: 6 ('oe)row a�eorema Ielol o o co•© A — '0? . i■ E... �y s�li0d g sums-' a e n 00 y . O V C � � y � r V • '� (amised food) 0o 0 ,o a o C b T Ti I Ped aseg auolsam�� '0 N co 0D (, U vI 4.1 O 4.a CZ A ~ wi e e CIJ ~ 0 slay snowaduq a a a a 0. o iiA °, .- ao CI %., CI 6 ` °� C eWsnDul o0a rn a —i a : Q A El 01 - u V \ U Ieto�aunuo) o0'0 a g E O 1. Y 0 8 51x1 r M N tl b. Ci O aJoy tgl Ienuaprsall o o0 00 z V Z awi a b= 'VV any 1 Ie!luapisag M a tl 0 41tl 4 spy/1 v1 g `o 00 t: a. .^y a1oy Z Ie!luap!sag 7 CU sdoJJ Moll b n 00 o ?, n 00 00• c y. Q mad V b n 00 MN 'D l NCI 0 4.0 ti b Cl.., POP�M ,'00 so so o, G M a a 000 a b ,r; dM' rsi M O a Uuompao) < S I!os�9 NJ m U A t° F� U A A U A A s oN eaiy a8ea!eJQM^., N — N S Z rO M I- L M I- t GO gW C CO C 2 cua in 0 co 0) a `t co N 0 o o o o ,� II o * a , M il N 1 N NN � N III XI U IIN N N N N H 3 H C ,O ae � 8. as i+ o c .- 0 o CO rn N C •.�� V m m a O o 0 0 0 y _N o co r a vW r M y m toz.,-.)t'0 b CCV V 'p 0 o a .� G x o a 14) Gn V V to r CSD +r V n TO b y C p., to Z a• a CO42) evi II o , ° > C. *+ J a VI 0m ;CU AI 0 , 0q a m 0 0 a. co • 4:3z 42) i © 3 6 CO=a o a a > }CO � � a k �yyV M IG�p Vla 0 in co I OI V ILI k E. M C7 w 0 M M II X 2 C vl I— 1:-9 cg v co D in to P .1 g icA ti J J ^b .. Or. a ,� ER C 'E O o FN. O. U O 0 0O0 k. m a as 8, N M 0 �p (D _O v off V `Y a. 2 II II II 0_7 3 w VI >I n �e 7.02 2 .- N 0 a- Nr w r r : N N A C II a a a APPENDIX C2 HEC-HMS OUTPUT DATA Rev, December 2014 Project: CGII Pond Simulation Run: pre-2yr Start of Run: 03Nov2014, 08:00 Basin Model: PreDev End of Run: 04Nov2014, 08:05 Meteorologic Model: 2yr Compute Time:07Nov2014, 15:23:54 Control Specifications:24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 121 0.163468 89.8 03Nov2014, 21:10 2.58 113 0.125880 76.8 03Nov2014, 20:55 2.38 Stdy Pt B - Greens Pr 0.289348 162.0 03Nov2014, 21:05 2.49 Project: CGII Pond Simulation Run: pre-25yr Start of Run: 03Nov2014, 08:00 Basin Model: PreDev End of Run: 04Nov2014, 08:05 Meteorologic Model: 25yr Compute Time:07Nov2014, 15:23:57 Control Specifications:24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 121 0.163468 211.1 03Nov2014, 21:10 6.13 113 0.125880 187.5 03Nov2014, 20:55 5.87 Stdy Pt B - Greens Pr 0.289348 388.4 03Nov2014, 21:00 6.01 Project: CGII Pond Simulation Run: pre-50yr Start of Run: 03Nov2014, 08:00 Basin Model: PreDev End of Run: 04Nov2014, 08:05 Meteorologic Model: 50yr Compute Time:07Nov2014, 15:24:01 Control Specifications:24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 121 0.163468 255.0 03Nov2014, 21:10 7.45 113 0.125880 227.8 03Nov2014, 20:55 7.18 Stdy Pt B - Greens Pr 0.289348 470.8 03Nov2014, 21:00 7.33 Project: CGII Pond Simulation Run: pre-10yr Start of Run: 03Nov2014, 08:00 Basin Model: PreDev End of Run: 04Nov2014, 08:05 Meteorologic Model: 10yr Compute Time:07Nov2014, 15:23:46 Control Specifications:24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (M12) (CFS) (IN) 121 0.163468 179.7 03Nov2014, 21:10 5.19 113 0.125880 158.7 03Nov2014, 20:55 4.95 Stdy Pt B - Greens Pr 0.289348 329.6 03Nov2014, 21:00 5.08 Project: CGII Pond Simulation Run: pre-100yr Start of Run: 03Nov2014, 08:00 Basin Model: PreDev End of Run: 04Nov2014, 08:05 Meteorologic Model: 100yr Compute Time:07Nov2014, 15:23:49 Control Specifications:24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 121 0.163468 292.6 03Nov2014, 21:10 8.59 113 0.125880 262.4 03Nov2014, 20:55 8.32 Stdy Pt B - Greens Pr 0.289348 541.4 03Nov2014, 21:00 8.47 Project: CGII Pond Simulation Run: Post 2 Yr Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 2yr Compute Time: 31Dec2014, 16:26:46 Control Specifications: 24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 221 0.17672 89.8 03Nov2014, 21:10 2.38 211 0.10380 95.3 03Nov2014, 20:55 4.25 Castle2-South-Pond 0.10380 73.0 03Nov2014, 21:25 4.24 Stdy Pt B - Greens Pr 0.28052 161.0 03Nov2014, 21:20 3.07 Project: CGII Pond Simulation Run: Post 10 Yr Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 10yr Compute Time: 31 Dec2014, 16:26:35 Control Specifications: 24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 221 0.17672 179.7 03Nov2014, 21:10 4.80 211 0.10380 168.2 03Nov2014, 20:55 7.44 Castle2-South-Pond 0.10380 142.3 03Nov2014, 21:20 7.42 Stdy Pt B - Greens Pr 0.28052 320.0 03Nov2014, 21:15 5.77 Project: CGII Pond Simulation Run: Post 25 Yr Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 25yr Compute Time: 31 Dec2014, 16:26:41 Control Specifications: 24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 221 0.17672 228.2 03Nov2014, 21:10 6.13 211 0.10380 166.9 03Nov2014, 20:55 7.37 Castle2-South-Pond 0.10380 141.0 03Nov2014, 21:20 7.36 Stdy Pt B - Greens Pr 0.28052 366.7 03Nov2014, 21:15 6.58 Project: CGII Pond Simulation Run: Post 50 Yr Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 50yr Compute Time: 31Dec2014, 16:26:52 Control Specifications: 24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 221 0.17672 255.0 03Nov2014, 21:10 6.89 211 0.10380 229.1 03Nov2014, 20:55 10.13 Castle2-South-Pond 0.10380 206.4 03Nov2014, 21:15 10.11 Stdy Pt B - Greens Pr 0.28052 459.8 03Nov2014, 21:10 8.08 Project: CGII Pond Simulation Run: Post 100 Yr Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 100yr Compute Time: 31Dec2014, 16:26:24 Control Specifications: 24hr Hydrologic Drainage Area Peak DischargeTime of Peak Volume Element (MI2) (CFS) (IN) 221 0.17672 292.6 03Nov2014, 21:10 7.95 211 0.10380 259.5 03Nov2014, 20:55 11.48 Castle2-South-Pond 0.10380 236.8 03Nov2014, 21:15 11.46 Stdy Pt B - Greens Pr 0.28052 528.9 03Nov2014, 21:10 9.25 Project: CGII Pond Simulation Run: Post 2 Yr Reservoir: Castle2-South-Pond Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 2yr Compute Time: 31 Dec2014, 16:26:46 Control Specifications: 24hr Volume Units: IN Computed Results-- --- Peak esults -- Peak Inflow: 95.3(CFS) Date/Time of Peak Inflow : 03Nov2014, 20:55 Peak Outflow:: 73.0(CFS) Date/Time of Peak Outflow: 03Nov2014, 21:25 Total Inflow: 4.25(IN) Peak Storage: 3.1 (AC-FT) Total Outflow: 4.24(IN) Peak Elevation : 308.8(FT) r Project: CGII Pond Simulation Run: Post 10 Yr Reservoir: Castle2-South-Pond Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 10yr Compute Time: 31Dec2014, 16:26:35 Control Specifications: 24hr Volume Units: IN Computed Results . .- ,._ r_ .:.,�- --- Peak Peak Inflow: 168.2(CFS) Date/Time of Peak Inflow: 03Nov2014, 20:55 Peak Outflow: 142.3(CFS) Date/Time of Peak Outflow: 03Nov2014,21:20 Total Inflow: 7.44(IN) Peak Storage: 57(AC-FT) Total Outflow: 7.42(IN) Peak Elevation: 309.8(FT) Project: CGII Pond Simulation Run: Post 25 Yr Reservoir: Castle2-South-Pond Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 25yr Compute Time: 31 Dec2014, 16:26:41 Control Specifications: 24hr Volume Units: IN Computed Results- Peak Inflow: 166.9(CFS) Date/Time of Peak Inflow: 03Nov2014,20:55 Peak Outflow: 141.0(CFS) Date/Time of Peak Outflow: 03Nov2014, 21:20 Total Inflow: 7.37(IN) Peak Storage: 5.6(AC-FT) LTotal Outflow: 7.36(IN) Peak Elevation: 309.8(FT) Project: CGII Pond Simulation Run: Post 50 Yr Reservoir: Castle2-South-Pond Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 50yr Compute Time: 31Dec2014, 16:26:52 Control Specifications: 24hr Volume Units: IN Computed Results. - • Peak Inflow: 229.1 (CFS) Date/Time of Peak Inflow: 03Nov2014, 20:55 Peak Outflow: 206.4(CFS) Date/Time of Peak Outflow: 03Nov2014, 21:15 Total Inflow: 10.13(IN) Peak Storage: 7.1 (AC-FT) Total Outflow: 10.11 (IN) Peak Elevation : 310.3(FT) Project: CGII Pond Simulation Run: Post 100 Yr Reservoir: Castle2-South-Pond Start of Run: 03Nov2014, 08:00 Basin Model: Post South Pond End of Run: 04Nov2014, 08:05 Meteorologic Model: 100yr Compute Time: 31 Dec2014, 16:26:24 Control Specifications: 24hr Volume Units: IN Computed Results „_a,.. —.------- _. .. Peak Inflow: 259.5(CFS) Date/Time of Peak Inflow: 03Nov2014, 20:55 Peak Outflow: 236.8(CFS) Date/Time of Peak Outflow: 03Nov2014, 21:15 Total Inflow: 11.48(IN) Peak Storage: 7.7(AC-FT) Total Outflow: 11.46(IN) Peak Elevation : 310.5(FT) Project: CGII Pond Simulation Run: Post 100 Yr- Blocked Reservoir: Castle2-South-Pond Start of Run: 03Nov2014, 08:00 Basin Model: South Pond Emerg Spillway End of Run: 04Nov2014, 08:05 Meteorologic Model: 100yr Compute Time: 31Dec2014, 16:26:11 Control Specifications: 24hr Volume Units: AC-FT °ComPPeak Inflow: _ ..... .259.5(CFS) DatelTime of Peak Inflow: 03Nov2014, 20:55 Peak Outflow: 258.3(CFS) Date/Time of Peak Outflow: 03Nov2014, 21:00 Total Inflow: 63.6(AC-FT) Peak Storage: 9.0(AC-FT) Total Outflow 59.0(AC-FT) Peak Elevation : 310.9(FT)